JP2023005295A - Method for manufacturing optical fiber - Google Patents

Method for manufacturing optical fiber Download PDF

Info

Publication number
JP2023005295A
JP2023005295A JP2021107092A JP2021107092A JP2023005295A JP 2023005295 A JP2023005295 A JP 2023005295A JP 2021107092 A JP2021107092 A JP 2021107092A JP 2021107092 A JP2021107092 A JP 2021107092A JP 2023005295 A JP2023005295 A JP 2023005295A
Authority
JP
Japan
Prior art keywords
light
colored resin
optical fiber
resin
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021107092A
Other languages
Japanese (ja)
Inventor
那都子 竹内
Natsuko Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2021107092A priority Critical patent/JP2023005295A/en
Publication of JP2023005295A publication Critical patent/JP2023005295A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

To provide a method for manufacturing an optical fiber capable of reducing a difference in degree of cure of a colored layer due to a difference in color of a colored layer.SOLUTION: A method for manufacturing an optical fiber 1 comprising an optical fiber element wire 1N having a core 10 and a clad 11 surrounding the outer peripheral surface of the core 10, and a colored layer 15 which is composed of a colored resin containing a pigment and an ultraviolet curable resin and coats the outer peripheral surface of the optical fiber element wire 1N includes a coating step P4 of applying a colored resin to the outer peripheral surface of the optical fiber element wire 1N, irradiating the applied colored resin with light from an ultraviolet LED 55 to cure the colored resin and form the colored layer 15. The coating step P4 irradiates the colored resin with a predetermined irradiation amount of light prescribed based on absorbance of light from the ultraviolet light LED 55 of the cured colored resin.SELECTED DRAWING: Figure 4

Description

本発明は、光ファイバの製造方法に関する。 The present invention relates to an optical fiber manufacturing method.

コアの外周面を囲うクラッドを有する光ファイバ素線の外周面が顔料及び紫外線硬化樹脂を含む着色樹脂から成る着色層によって被覆される光ファイバが知られている。光ファイバテープ芯線では、光ファイバ同士を見分けるために各光ファイバの着色層が互いに異なる色とされることがある。このため、上記の光ファイバが光ファイバテープ芯線に用いられることがある。下記特許文献1には、このような着色層を有する光ファイバの製造方法が開示されている。 2. Description of the Related Art An optical fiber is known in which the outer peripheral surface of an optical fiber strand having a clad surrounding the outer peripheral surface of a core is coated with a colored layer made of a colored resin containing a pigment and an ultraviolet curable resin. In the optical fiber tape core wire, the colored layers of the optical fibers may have different colors in order to distinguish the optical fibers from each other. For this reason, the optical fiber described above is sometimes used for the core wire of the optical fiber tape. Patent Literature 1 listed below discloses a method for manufacturing an optical fiber having such a colored layer.

下記特許文献1では、顔料及び紫外線硬化樹脂を含む着色樹脂を光ファイバ素線の外周面に塗布し、塗布した着色樹脂に紫外線を照射することで当該着色樹脂を硬化させて、光ファイバ素線の外周面を被覆する着色層を形成している。また、下記特許文献1には、着色樹脂に照射する紫外線として紫外線LED(Light Emitting Diode)からの光を用いることができることが開示されている。 In Patent Document 1 below, a colored resin containing a pigment and an ultraviolet curable resin is applied to the outer peripheral surface of an optical fiber strand, and the colored resin is cured by irradiating the coated colored resin with ultraviolet rays to cure the optical fiber strand. A colored layer covering the outer peripheral surface of the is formed. Moreover, the following patent document 1 discloses that light from an ultraviolet LED (Light Emitting Diode) can be used as the ultraviolet ray irradiated to the colored resin.

特開2021-31366号公報Japanese Patent Application Laid-Open No. 2021-31366

ところで、着色層の色は、当該着色層となる着色樹脂に含まれる顔料の種類や量を変えることで変更される。この際、紫外線LEDからの光の照射条件が同じ場合、着色樹脂の色の違いによって当該着色樹脂の硬化性に違いが生じることがあり、着色層が所望の硬化度とならない場合があった。紫外線LEDからの光の一部は着色樹脂に含まれる顔料で吸収及び反射されるが、顔料で吸収及び反射される光の量は当該顔料の種類及び濃度によって異なる傾向にある。このため、着色樹脂の色の違いによって着色樹脂における紫外線硬化樹脂に含まれる光重合開始剤に吸収される光の量が異なり、当該着色樹脂の硬化性に違いが生じるためだと考えられる。 By the way, the color of the colored layer can be changed by changing the type and amount of the pigment contained in the colored resin that forms the colored layer. At this time, if the irradiation conditions of the light from the ultraviolet LED are the same, the curability of the colored resin may differ depending on the color of the colored resin, and the colored layer may not have the desired degree of curing. Part of the light from the ultraviolet LED is absorbed and reflected by the pigment contained in the colored resin, but the amount of light absorbed and reflected by the pigment tends to vary depending on the type and concentration of the pigment. For this reason, it is considered that the amount of light absorbed by the photopolymerization initiator contained in the ultraviolet curable resin in the colored resin differs depending on the color of the colored resin, resulting in a difference in curability of the colored resin.

そこで、本発明は、着色樹脂の色の違いによる着色層の硬化度の違いを低減し得る光ファイバの製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an optical fiber manufacturing method capable of reducing the difference in the degree of curing of a colored layer due to the difference in the color of a colored resin.

上記目的の達成のため、本発明は、コア及び前記コアの外周面を囲むクラッドを有する光ファイバ素線と、顔料及び紫外線硬化樹脂を含む着色樹脂から成り前記光ファイバ素線の外周面を被覆する着色層と、を有する光ファイバの製造方法であって、前記光ファイバ素線の外周面に前記着色樹脂を塗布し、塗布された前記着色樹脂に紫外線LEDからの光を照射して当該着色樹脂を硬化させて前記着色層を形成する被覆工程を備え、前記被覆工程では、硬化した前記着色樹脂の前記光の吸光度に基づいて予め定められる所定照射量の前記光を前記着色樹脂に照射することを特徴とするものである。 In order to achieve the above object, the present invention comprises an optical fiber strand having a core and a clad surrounding the outer peripheral surface of the core, and a colored resin containing a pigment and an ultraviolet curable resin to coat the outer peripheral surface of the optical fiber strand. and a colored layer, wherein the colored resin is applied to the outer peripheral surface of the optical fiber strand, and the applied colored resin is irradiated with light from an ultraviolet LED to achieve the coloring. A coating step of curing a resin to form the colored layer, wherein the coating step irradiates the colored resin with a predetermined irradiation amount of the light, which is predetermined based on the absorbance of the light of the cured colored resin. It is characterized by

この光ファイバの製造方法では、上記のように、着色樹脂に照射する紫外線LEDからの光の所定照射量は、硬化した着色樹脂の紫外線LEDからの光の吸光度に基づいて予め定められる。吸光度は対象物を光が透過する際に当該光の強度がどの程度弱まるかを示す無次元量であり、吸光度には対象物における光の吸収及び反射の影響が含まれる。このため、この着色樹脂の紫外線LEDからの光の吸光度は、顔料で吸収及び反射される光の量が多い場合には高くなり、少ない場合には低くなる。また、この吸光度は硬化した着色樹脂の吸光度である。このため、未硬化状態の着色樹脂の吸光度と比べて、着色樹脂における紫外線硬化樹脂に含まれる光重合開始剤に吸収される光による吸光度への影響は少なく、顔料で吸収及び反射される光の量の違いを適切に把握し得る。このため、顔料で吸収及び反射する光の量が多い場合には、着色樹脂が十分に硬化するように、紫外線LEDからの光の着色樹脂への照射量を多くし得る。また、顔料で吸収及び反射する光の量が少ない場合には、着色樹脂が十分に硬化する範囲で、紫外線LEDからの光の着色樹脂への照射量を少なくし得る。従って、この光ファイバの製造方法によれば、顔料の種類及び濃度の変化に応じて紫外線LEDからの光の照射量が変化しない場合と比べて、着色樹脂の色の違いによる着色層の硬化度の違いを低減し得る。 In this optical fiber manufacturing method, as described above, the predetermined irradiation amount of the light from the ultraviolet LED with which the colored resin is irradiated is determined in advance based on the absorbance of the cured colored resin from the light from the ultraviolet LED. Absorbance is a dimensionless quantity that indicates how much the intensity of light is weakened as it passes through an object, and includes the effects of light absorption and reflection on the object. Therefore, the absorbance of the light from the ultraviolet LED of this colored resin increases when the amount of light absorbed and reflected by the pigment is large, and decreases when the amount of light is small. Also, this absorbance is the absorbance of the cured colored resin. Therefore, compared to the absorbance of the colored resin in the uncured state, the light absorbed by the photopolymerization initiator contained in the ultraviolet curable resin in the colored resin has little effect on the absorbance, and the absorbance of the light absorbed and reflected by the pigment is less. It is possible to properly grasp the difference in quantity. Therefore, when a large amount of light is absorbed and reflected by the pigment, the amount of light emitted from the ultraviolet LED to the colored resin can be increased so that the colored resin is sufficiently cured. In addition, when the amount of light absorbed and reflected by the pigment is small, the amount of irradiation of the colored resin from the ultraviolet LED can be reduced within the range in which the colored resin is sufficiently cured. Therefore, according to this optical fiber manufacturing method, compared to the case where the irradiation amount of light from the ultraviolet LED does not change according to the change in the type and concentration of the pigment, the degree of curing of the colored layer due to the difference in the color of the colored resin can reduce the difference in

前記所定照射量は、前記着色樹脂における前記光のピーク波長での吸光度、及び、他の色の前記着色樹脂における前記光のピーク波長での吸光度と前記他の色の着色樹脂から成る前記着色層が所望の硬化度となる前記光の照射量との相関関係に基づいて定められることとしてもよい。 The predetermined irradiation amount is the absorbance of the colored resin at the peak wavelength of the light, the absorbance of the colored resin of another color at the peak wavelength of the light, and the colored layer made of the colored resin of the other color. may be determined based on the correlation with the irradiation amount of the light that provides the desired degree of curing.

本発明者は、上記の吸光度と照射量との相関関係が概ね比例関係であることを見出した。このため、所望の硬化度となる光の照射量が予め求められていない着色樹脂であっても、当該着色樹脂における紫外線LEDからの光のピーク波長での吸光度を求めることで、所望の硬化度となる光の照射量が分かり得る。従って、所望の硬化度となる光の照射量を実験等で求める場合と比べて、着色層が所望の硬化度となるようにし易くし得る。 The inventors have found that the correlation between the absorbance and the irradiation dose is generally proportional. For this reason, even for a colored resin for which the irradiation amount of light for a desired degree of curing is not determined in advance, the desired degree of curing can be obtained by obtaining the absorbance at the peak wavelength of the light from the ultraviolet LED in the colored resin. It is possible to know the irradiation amount of light that becomes Therefore, compared with the case where the irradiation amount of light that provides the desired degree of curing is obtained by experiments or the like, it is possible to easily obtain the desired degree of curing of the colored layer.

或いは、前記所定照射量は、前記光のスペクトルと前記着色樹脂の吸収スペクトルとの重なり積分、及び、前記光のスペクトルと他の色の前記着色樹脂の吸収スペクトルとの重なり積分と、前記他の色の着色樹脂から成る前記着色層が所望の硬化度となる前記光の照射量との相関関係に基づいて定められることとしてもよい。 Alternatively, the predetermined irradiation amount is the overlap integral of the spectrum of the light and the absorption spectrum of the colored resin, the overlap integral of the spectrum of the light and the absorption spectrum of the colored resin of another color, and the other The color may be determined based on the correlation with the irradiation amount of the light that provides the desired degree of curing of the colored layer made of the colored resin.

波長と当該波長に対する吸光度との関係を示す吸収スペクトルには、吸光度と同様に、対象物における光の吸収及び反射の影響が含まれる。そして、本発明者は、上記の重なり積分と照射量との相関関係が概ね比例関係であることを見出した。このため、所望の硬化度となる光の照射量が予め求められていない着色樹脂であっても、紫外線LEDからの光のスペクトルとこの着色樹脂の吸収スペクトルとの重なり積分を求めることで、所望の硬化度となる光の照射量が分かり得る。従って、この光ファイバの製造方法によれば、所望の硬化度となる光の照射量を実験等で求める場合と比べて、着色層が所望の硬化度となるようにし易くし得る。 The absorption spectrum, which indicates the relationship between wavelength and absorbance for that wavelength, includes the effects of light absorption and reflection on objects, as well as absorbance. The inventors of the present invention have found that the correlation between the overlap integral and the dose is generally proportional. Therefore, even for a colored resin for which the irradiation amount of light to achieve a desired degree of curing is not determined in advance, the desired degree of curing can be obtained by obtaining the overlap integral of the spectrum of the light from the ultraviolet LED and the absorption spectrum of the colored resin. It is possible to know the irradiation amount of light that becomes the degree of curing of . Therefore, according to this method of manufacturing an optical fiber, it is easier to obtain the desired degree of curing of the colored layer than in the case where the irradiation amount of light that provides the desired degree of curing is obtained by experiments or the like.

前記被覆工程では、前記光の強度を調節して、前記所定照射量の前記光を前記着色樹脂に照射することとしてもよい。 In the covering step, the intensity of the light may be adjusted to irradiate the colored resin with the predetermined irradiation amount of the light.

この場合、着色層の色に応じて製造にかかる時間が変化することを抑制し得る。 In this case, it is possible to suppress the time required for manufacturing from changing depending on the color of the colored layer.

また、前記光の前記着色樹脂への照射時間を調節して、前記所定照射量の前記光を前記着色樹脂に照射することとしてもよい。 Further, the irradiation time of the light to the colored resin may be adjusted to irradiate the colored resin with the predetermined irradiation amount of the light.

前記紫外線LEDは複数であり、少なくとも2つの前記紫外線LEDからの光のピーク波長は互いに異なり、前記被覆工程では、複数の前記紫外線LEDのうち、ピーク波長が前記紫外線硬化樹脂の光重合開始剤における光の吸収量が最大となる波長に最も近い特定の前記紫外線LEDからの光の前記着色樹脂への照射量を調整して、前記所定照射量の前記光を前記着色樹脂に照射することとしてもよい。 The ultraviolet LEDs are plural, and the peak wavelengths of the light from at least two of the ultraviolet LEDs are different from each other, and in the coating step, among the plurality of ultraviolet LEDs, the peak wavelength is By adjusting the irradiation amount of light from the specific ultraviolet LED to the colored resin that is closest to the wavelength at which the amount of light absorbed is maximum, the predetermined irradiation amount of the light is irradiated to the colored resin. good.

一般的に、光重合開始剤における光の吸収量は、当該吸収量が最大となる波長から遠い波長の光ほど小さくなる傾向にある。このため、この光ファイバの製造方法によれば、複数の紫外線LEDのうち、上記の特定の紫外線LED以外の紫外線LEDからの光の着色樹脂への照射量を調整する場合と比べて、着色層を所望の硬化度にし易い。 In general, the amount of light absorbed by a photopolymerization initiator tends to decrease as the wavelength of light farther from the wavelength at which the amount of absorption is maximized. For this reason, according to this optical fiber manufacturing method, compared to the case of adjusting the irradiation amount of the light from the ultraviolet LEDs other than the above-mentioned specific ultraviolet LEDs to the colored resin, the colored layer can be easily adjusted to the desired degree of hardening.

この場合、前記被覆工程では、前記特定の紫外線LED以外の少なくとも1つの前記紫外線LEDからの光の前記着色樹脂への照射量を調整せずに一定にすることとしてもよい。或いは、前記被覆工程では、前記特定の紫外線LED以外の少なくとも1つの前記紫外線LEDからの光の前記着色樹脂への照射量を更に調整して、前記所定照射量の前記光を前記着色樹脂に照射することとしてもよい。 In this case, in the covering step, the irradiation amount of the light from at least one of the ultraviolet LEDs other than the specific ultraviolet LEDs to the colored resin may be kept constant without adjusting. Alternatively, in the coating step, the irradiation amount of the light from at least one of the ultraviolet LEDs other than the specific ultraviolet LED to the colored resin is further adjusted, and the predetermined irradiation amount of the light is irradiated onto the colored resin. It is also possible to

以上のように、本発明によれば、着色樹脂の色の違いによる着色層の硬化度の違いを低減し得る光ファイバの製造方法が提供される。 As described above, according to the present invention, there is provided an optical fiber manufacturing method capable of reducing the difference in the degree of curing of the colored layer due to the difference in color of the colored resin.

本発明の実施形態に係る光ファイバの長手方向に垂直な断面の様子を概略的に示す図である。It is a figure which shows roughly the appearance of the cross section perpendicular|vertical to the longitudinal direction of the optical fiber which concerns on embodiment of this invention. 本発明の実施形態に係る光ファイバの製造方法の工程を示すフローチャートである。4 is a flow chart showing steps of an optical fiber manufacturing method according to an embodiment of the present invention. 顔料の種類が互いに異なる着色樹脂から成るいくつかの樹脂サンプルにおける測定された吸収スペクトルの例を示す図である。FIG. 3 shows examples of measured absorption spectra in several resin samples made of colored resins with different types of pigments. 本発明の実施形態に係る被覆工程の様子を概略的に示す図である。It is a figure which shows roughly the mode of the coating process which concerns on embodiment of this invention. 実験例における模擬評価方法を説明するめの図である。It is a figure for demonstrating the simulated evaluation method in an experimental example. 実験例における模擬評価方法を説明するめの別の図である。It is another figure for demonstrating the simulated evaluation method in an experimental example.

以下、本発明に係る光ファイバの製造方法を実施するための形態が添付図面とともに例示される。以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、以下の実施形態から変更、改良することができる。また、本明細書では、理解を容易にするために、各部材の寸法が誇張して示されている場合がある。 Embodiments for carrying out the method for manufacturing an optical fiber according to the present invention will be exemplified below with reference to the accompanying drawings. The embodiments illustrated below are intended to facilitate understanding of the present invention, and are not intended to limit and interpret the present invention. The present invention can be modified and improved from the following embodiments without departing from its gist. In addition, in this specification, the dimensions of each member may be exaggerated to facilitate understanding.

図1は、本発明の実施形態に係る光ファイバの長手方向に垂直な断面の様子を概略的に示す図である。図1に示すように、本実施形態の光ファイバ1は、光ファイバ素線1Nと、光ファイバ素線1Nの外周面を被覆する着色層15と、を主な構成として備える。本実施形態の光ファイバ素線1Nは、コア10、当該コア10の外周面を囲むクラッド11、及び当該クラッド11の外周面を被覆する保護樹脂層12から成る。光ファイバ素線1Nの直径は、特に制限されないが、例えば、240μmである。 FIG. 1 is a diagram schematically showing a cross section perpendicular to the longitudinal direction of an optical fiber according to an embodiment of the present invention. As shown in FIG. 1, the optical fiber 1 of this embodiment mainly includes an optical fiber strand 1N and a colored layer 15 covering the outer peripheral surface of the optical fiber strand 1N. The optical fiber strand 1N of this embodiment comprises a core 10, a clad 11 surrounding the outer peripheral surface of the core 10, and a protective resin layer 12 covering the outer peripheral surface of the clad 11. As shown in FIG. Although the diameter of the optical fiber strand 1N is not particularly limited, it is, for example, 240 μm.

コア10の屈折率はクラッド11の屈折率よりも高くされる。本実施形態では、コア10はゲルマニウム(Ge)等の屈折率が高くなるドーパントが添加されたシリカガラスからなり、クラッド11は何ら添加物の無いシリカガラスからなる。なお、コア10が何ら添加物の無いシリカガラスからなり、クラッド11がフッ素(F)等の屈折率が低くなるドーパントが添加されたシリカガラスからなっていてもよい。また、コア10が屈折率を高くするドーパントが添加されたシリカガラスからなり、クラッド11が屈折率を低くするドーパントが添加されたシリカガラスからなっていてもよい。また、屈折率を高くするドーパント及び屈折率を低くするドーパントは特に制限されるものではない。 The core 10 has a higher refractive index than the clad 11 . In this embodiment, the core 10 is made of silica glass doped with a dopant such as germanium (Ge) that increases the refractive index, and the clad 11 is made of silica glass without any additives. The core 10 may be made of silica glass without any additives, and the clad 11 may be made of silica glass doped with a dopant such as fluorine (F) that lowers the refractive index. Alternatively, the core 10 may be made of silica glass doped with a dopant that increases the refractive index, and the clad 11 may be made of silica glass doped with a dopant that lowers the refractive index. Moreover, the dopant for increasing the refractive index and the dopant for decreasing the refractive index are not particularly limited.

保護樹脂層12を構成する樹脂として、例えば、熱硬化樹脂、及び紫外線硬化樹脂が挙げられる。保護樹脂層12は、クラッド11を被覆する1つの樹脂の層からなる単層構造とされてもよく、複数の樹脂の層からなる多層構造とされてもよい。 Examples of resins forming the protective resin layer 12 include thermosetting resins and ultraviolet curable resins. The protective resin layer 12 may have a single-layer structure consisting of one resin layer covering the clad 11, or may have a multi-layer structure consisting of a plurality of resin layers.

着色層15は、顔料及び紫外線硬化樹脂を含む着色樹脂から成る。着色層15の色は特に制限されるものではない。また、着色層15の厚さは、特に制限されないが、例えば、3μm~10μmである。顔料として、例えば、天然鉱物顔料、合成無機顔料、有機顔料等が挙げられる。紫外線硬化樹脂として、例えば、ラジカル重合型の紫外線硬化樹脂とカチオン重合型の紫外線硬化樹脂とが挙げられる。ラジカル重合型の紫外線硬化樹脂として、例えば、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレート等のアクリル系化合物と光重合開始剤とを含む樹脂等が挙げられ、この場合の光重合開始剤として、例えば、ベンゾフェノン系、アルキルフェノン系の光重合開始剤が挙げられる。カチオン重合型の紫外線硬化樹脂として、例えば、エポキシ、オキセタン等の環状エーテル化合物と光重合開始剤とを含む樹脂等が挙げられ、この場合の光重合開始剤として、例えば、スルホニウム塩系、ヨードニウム塩系の光重合開始剤が挙げられる。 The colored layer 15 is made of a colored resin containing a pigment and an ultraviolet curable resin. The color of the colored layer 15 is not particularly limited. Also, the thickness of the colored layer 15 is not particularly limited, but is, for example, 3 μm to 10 μm. Examples of pigments include natural mineral pigments, synthetic inorganic pigments, organic pigments, and the like. Examples of the ultraviolet curable resin include a radical polymerization type ultraviolet curable resin and a cationic polymerization type ultraviolet curable resin. Radical polymerization type ultraviolet curable resins include, for example, resins containing acrylic compounds such as urethane acrylate, epoxy acrylate, polyester acrylate, and photopolymerization initiators. and alkylphenone-based photopolymerization initiators. Examples of cationic polymerization type ultraviolet curable resins include resins containing a cyclic ether compound such as epoxy and oxetane and a photopolymerization initiator. system photoinitiators.

次に、光ファイバ1を製造する方法について説明する。 Next, a method for manufacturing the optical fiber 1 will be described.

図2は、本実施形態に係る光ファイバ1の製造方法の工程を示すフローチャートである。図2に示すように、本実施形態の光ファイバ1の製造方法は、測定工程P1と、決定工程P2と、光ファイバ素線製造工程P3と、被覆工程P4と、を含んでいる。 FIG. 2 is a flow chart showing the steps of the method for manufacturing the optical fiber 1 according to this embodiment. As shown in FIG. 2, the manufacturing method of the optical fiber 1 of this embodiment includes a measuring process P1, a determining process P2, an optical fiber bare wire manufacturing process P3, and a coating process P4.

(測定工程P1)
本工程は、硬化した着色樹脂における紫外線LEDから出射する光の吸光度を測定する工程であり、紫外線LEDは後述する被覆工程P4において着色樹脂を硬化させるために用いられるものである。本工程の準備段階として、まず、硬化した着色樹脂から成る所定の厚さの樹脂サンプルを作製する。本実施形態では、アクリル板の一方の面上に未硬化状態の着色樹脂を所定の厚さとなるように塗布する。この着色樹脂に紫外線を照射して着色樹脂を硬化させ、硬化した着色樹脂をアクリル板から剥がすことで、所定の厚さの板状の樹脂サンプルを作製する。着色樹脂に照射する紫外線の量は、着色樹脂の紫外線硬化樹脂に含まれる光重合開始剤が十分に反応して着色樹脂が十分に硬化する量とされる。着色樹脂に照射する紫外線として、紫外線LEDからの光であってもよく、紫外線ランプからの光であってもよい。所定の厚さは、着色層15の厚さと概ね同じとされるが、着色層15の厚さと異なっていてもよい。なお、サンプル樹脂の作製方法は特に制限されるものではない。また、樹脂サンプルは、例えば、光透過性の板状部材の一方の面上に形成されるものでもよく、板状部材として、例えば、ガラス板、アクリル板等が挙げられる。
(Measurement process P1)
This step is a step of measuring the absorbance of light emitted from the ultraviolet LED in the cured colored resin, and the ultraviolet LED is used to cure the colored resin in the coating step P4 described later. As a preparatory step for this process, first, a resin sample having a predetermined thickness is prepared from a cured colored resin. In this embodiment, an uncured colored resin is applied to a predetermined thickness on one surface of the acrylic plate. This colored resin is irradiated with ultraviolet rays to cure the colored resin, and the cured colored resin is peeled off from the acrylic plate to prepare a plate-like resin sample having a predetermined thickness. The amount of ultraviolet rays irradiated to the colored resin is an amount that allows the photopolymerization initiator contained in the ultraviolet curable resin of the colored resin to react sufficiently to sufficiently cure the colored resin. The ultraviolet rays with which the colored resin is irradiated may be light from an ultraviolet LED or light from an ultraviolet lamp. The predetermined thickness is approximately the same as the thickness of the colored layer 15 , but may be different from the thickness of the colored layer 15 . Note that the method for preparing the sample resin is not particularly limited. Also, the resin sample may be formed on one side of a light-transmitting plate-shaped member, and examples of the plate-shaped member include a glass plate and an acrylic plate.

次に、硬化した着色樹脂における紫外線LEDからの光の吸光度として、作製した樹脂サンプルにおけるこの光の吸光度を測定する。本実施形態では、分光光度計を用いて樹脂サンプルの吸収スペクトルを測定し、紫外線LEDからの光のピーク波長での吸光度を求める。なお、上記のように、樹脂サンプルが光透過性の板状部材の一方の面上に形成される場合には、樹脂サンプルの吸収スペクトルとして、樹脂サンプル及び光透過性の板状部材からなる部材の吸収スペクトルを測定する。 Next, the absorbance of this light in the prepared resin sample is measured as the absorbance of light from the ultraviolet LED in the cured colored resin. In this embodiment, a spectrophotometer is used to measure the absorption spectrum of the resin sample, and the absorbance at the peak wavelength of the light from the ultraviolet LED is obtained. As described above, when the resin sample is formed on one side of the light-transmitting plate-like member, the absorption spectrum of the resin sample is Measure the absorption spectrum of

顔料の種類が互いに異なる着色樹脂から成るいくつかの樹脂サンプルにおける測定された吸収スペクトルの例を図3に示す。図3では、7つの樹脂サンプルSA1~SA7の吸収スペクトルとともに紫外線LEDからの光のスペクトルが示されている。また、図3では、横軸は波長(nm)であり、右側の縦軸が紫外線LEDからの光の相対放射強度であり、左側の縦軸が樹脂サンプルの吸光度(Abs)である。図3に示すように、着色樹脂における顔料の種類の違いよって吸収スペクトルが異なる。樹脂サンプルSA1~SA7の色は、青色、黄色、赤色、紫色、白色、桃色、水色であり、樹脂サンプルSA1~SA7を構成する着色樹脂には、この色となる顔料がそれぞれ含まれている。また、これら樹脂サンプルSA1~SA7を構成する着色樹脂における紫外線硬化樹脂は、互いに同じであり、これら樹脂サンプルSA1~SA7の厚さも互いに同じである。また、青色の樹脂サンプルSA1における紫外線LEDからの光のピーク波長での吸光度は、0.93Absであり、黄色の樹脂サンプルSA2のこの吸光度は、1.54Absであり、赤色の樹脂サンプルSA3のこの吸光度は、1.23Absであり、紫色の樹脂サンプルSA4のこの吸光度は、2.58Absであり、白色の樹脂サンプルSA5のこの吸光度は、2.52Absであり、桃色の樹脂サンプルSA6のこの吸光度は、2.19Absであり、水色の樹脂サンプルSA7のこの吸光度は、1.40Absである。 FIG. 3 shows examples of measured absorption spectra of several resin samples composed of colored resins with different types of pigments. FIG. 3 shows the absorption spectra of seven resin samples SA1 to SA7 as well as the spectrum of light from the UV LED. In FIG. 3, the horizontal axis is the wavelength (nm), the right vertical axis is the relative radiation intensity of the light from the UV LED, and the left vertical axis is the absorbance (Abs) of the resin sample. As shown in FIG. 3, the absorption spectrum differs depending on the type of pigment in the colored resin. The colors of the resin samples SA1 to SA7 are blue, yellow, red, purple, white, pink, and light blue, and the colored resins constituting the resin samples SA1 to SA7 contain pigments for these colors, respectively. Further, the ultraviolet curable resin in the colored resins forming these resin samples SA1 to SA7 is the same, and the thicknesses of these resin samples SA1 to SA7 are also the same. The absorbance at the peak wavelength of the light from the ultraviolet LED in the blue resin sample SA1 is 0.93 Abs, the absorbance in the yellow resin sample SA2 is 1.54 Abs, and the absorbance in the red resin sample SA3 is 0.93 Abs. The absorbance is 1.23 Abs, the absorbance of the purple resin sample SA4 is 2.58 Abs, the absorbance of the white resin sample SA5 is 2.52 Abs, the absorbance of the pink resin sample SA6 is , 2.19 Abs, and the absorbance of light blue resin sample SA7 is 1.40 Abs.

(決定工程P2)
本工程は、測定工程P1で測定した着色樹脂の紫外線LEDからの光の吸光度に基づいて、後述する被覆工程P4において光ファイバ素線1Nの外周面に塗布された未硬化の着色樹脂に照射する紫外線LEDからの光の所定照射量を決定する工程である。吸光度は対象物を光が透過する際に当該光の強度がどの程度弱まるかを示す無次元量であり、吸光度には対象物における光の吸収及び反射の影響が含まれる。このため、この着色樹脂の吸光度は、顔料で吸収及び反射される光の量が多い場合には高くなり、少ない場合には低くなる。このため、所定照射量は、顔料で吸収及び反射する光の量が多い場合、つまり、着色樹脂の吸光度が高い場合には、着色樹脂が十分に硬化するように、多い量に決定される。また、所定照射量は、顔料で吸収及び反射する光の量が少ない場合、つまり、着色樹脂の吸光度が低い場合には、着色樹脂が十分に硬化する範囲で、少ない量に決定される。
(Decision step P2)
In this step, the uncured colored resin applied to the outer peripheral surface of the optical fiber strand 1N in the coating step P4, which will be described later, is irradiated based on the absorbance of the light from the ultraviolet LED of the colored resin measured in the measurement step P1. This is a step of determining a predetermined irradiation amount of light from the ultraviolet LED. Absorbance is a dimensionless quantity that indicates how much the intensity of light is weakened as it passes through an object, and includes the effects of light absorption and reflection on the object. Therefore, the absorbance of this colored resin increases when the amount of light absorbed and reflected by the pigment is large, and decreases when the amount of light is small. Therefore, when the amount of light absorbed and reflected by the pigment is large, that is, when the absorbance of the colored resin is high, the predetermined irradiation amount is set to a large amount so that the colored resin is sufficiently cured. Further, when the amount of light absorbed and reflected by the pigment is small, that is, when the absorbance of the colored resin is low, the predetermined irradiation amount is set to a small amount within a range in which the colored resin is sufficiently cured.

本実施形態では、所定照射量を、測定工程P1で測定した着色樹脂の吸光度、及び、この着色樹脂の色と異なる他の色の着色樹脂における吸光度とこの他の色の着色樹脂から成る着色層15が所望の硬化度となる紫外線LEDからの光の照射量との相関関係に基づいて定める。なお、この吸光度は紫外線LEDからの光のピーク波長での吸光度である。本発明者は、着色層の厚さ及び紫外線硬化樹脂が変わらない場合には、この吸光度と照射量との相関関係が概ね比例関係であることを見出した。本実施形態では、この相関関係が実験によって予め求められている。具体的には、製造する光ファイバ1の着色層15の色と異なる他の色の着色樹脂におけるこの吸光度とこの他の色の着色樹脂から成る着色層15が所望の硬化度となる紫外線LEDからの光の照射量との組を、実験によって予め二つ以上得る。得られた二つ以上の吸光度と照射量との組に基づいて、吸光度と照射量との比例関係を得る。比例関係を得る方法は特に限定されるものではなく、例えば、最小二乗法を用いて比例関係を求めてもよい。 In this embodiment, the predetermined irradiation dose is the absorbance of the colored resin measured in the measurement step P1, the absorbance of the colored resin of a different color from the color of the colored resin, and the colored layer made of the colored resin of the other color. 15 is determined based on the correlation with the irradiation amount of light from the ultraviolet LED that provides the desired degree of curing. This absorbance is the absorbance at the peak wavelength of the light from the ultraviolet LED. The inventors have found that the correlation between the absorbance and the irradiation dose is generally proportional when the thickness of the colored layer and the ultraviolet curable resin are not changed. In this embodiment, this correlation is obtained in advance by experiment. Specifically, the absorbance of the colored resin of a color different from the color of the colored layer 15 of the optical fiber 1 to be manufactured and the degree of curing of the colored layer 15 made of the colored resin of the other color are obtained from the UV LED. Two or more pairs of , and the amount of irradiation of light are obtained in advance by experiment. Based on the obtained two or more sets of absorbance and irradiation dose, a proportional relationship between absorbance and irradiation dose is obtained. The method of obtaining the proportional relationship is not particularly limited, and for example, the proportional relationship may be obtained using the method of least squares.

(光ファイバ素線製造工程P3)
本工程は、光ファイバ素線1Nを製造する工程である。本実施形態では、本工程の準備段階として、まず、コア10となるロッド状のコアガラス体とロッド状のコアガラス体の外周面を囲いクラッド11となるクラッドガラス体とから成る概ね円柱状の光ファイバ用母材を準備する。この光ファイバ用母材を紡糸炉によって加熱して線引きすることで、コア10と当該コア10の外周面を囲うクラッド11とから構成されるガラス線を得る。次に、このガラス線の外周面に保護樹脂層12となる樹脂を塗布して当該樹脂を硬化することで、クラッド11の外周面を被覆する保護樹脂層12を形成し、図1に示す光ファイバ素線1Nを得る。このようにして得られる光ファイバ素線1Nをボビンに巻き取る。
(Optical fiber strand manufacturing process P3)
This step is a step of manufacturing the optical fiber strand 1N. In the present embodiment, as a preparatory step for this process, first, a substantially cylindrical core glass body is formed, which is composed of a rod-shaped core glass body that serves as the core 10 and a clad glass body that surrounds the outer peripheral surface of the rod-shaped core glass body and serves as the clad 11. Prepare an optical fiber preform. By heating and drawing this optical fiber preform in a spinning furnace, a glass wire composed of a core 10 and a clad 11 surrounding the outer peripheral surface of the core 10 is obtained. Next, a resin that forms the protective resin layer 12 is applied to the outer peripheral surface of the glass wire, and the resin is cured to form the protective resin layer 12 that covers the outer peripheral surface of the clad 11. The light shown in FIG. A fiber strand 1N is obtained. The optical fiber strand 1N thus obtained is wound around a bobbin.

(被覆工程P4)
本工程は、光ファイバ素線製造工程P3で製造した光ファイバ素線1Nの外周面に着色樹脂を塗布し、塗布した着色樹脂に紫外線LEDからの光を照射して当該着色樹脂を硬化させて着色層15を形成する工程である。
(Coating step P4)
In this step, a colored resin is applied to the outer peripheral surface of the optical fiber 1N manufactured in the optical fiber manufacturing step P3, and the applied colored resin is irradiated with light from an ultraviolet LED to cure the colored resin. This is the step of forming the colored layer 15 .

図4は、本実施形態に係る本工程の様子を概略的に示す図である。図4に示すように、本実施形態では、被覆装置100を用いて本工程を行う。この被覆装置100は、送り出し部30と、塗布部40と、硬化部50と、巻取り部60と、を主な構成として備える。 FIG. 4 is a diagram schematically showing the state of this step according to this embodiment. As shown in FIG. 4, in this embodiment, this step is performed using a coating apparatus 100. As shown in FIG. The coating device 100 includes a delivery section 30, an application section 40, a curing section 50, and a winding section 60 as main components.

まず、光ファイバ素線製造工程P3によって製造された光ファイバ素線1Nが巻き付けられたボビン31を送り出し部30に取り付け、当該送り出し部30によって光ファイバ素線1Nをボビン31から送り出す。送り出される光ファイバ素線1Nの方向をターンプーリ35によって変換し、光ファイバ素線1Nがターンプーリ35の下方に配置される塗布部40を通過するようにする。塗布部40には、着色層15となる未硬化状態の着色樹脂が貯留されており、光ファイバ素線1Nが塗布部40を通過することで、光ファイバ素線1Nの外周面に着色樹脂が塗布される。塗布部40の下方に配置される硬化部50によって、塗布された着色樹脂に紫外線LEDからの光を照射して当該着色樹脂を硬化させて着色層15を形成する。 First, the bobbin 31 around which the optical fiber 1N manufactured in the optical fiber manufacturing process P3 is wound is attached to the delivery unit 30, and the optical fiber 1N is delivered from the bobbin 31 by the delivery unit 30. The direction of the optical fiber 1N sent out is changed by the turn pulley 35 so that the optical fiber 1N passes through the coating section 40 arranged below the turn pulley 35. FIG. Uncured colored resin that forms the colored layer 15 is stored in the coating portion 40, and as the optical fiber 1N passes through the coating portion 40, the colored resin is applied to the outer peripheral surface of the optical fiber 1N. applied. A curing unit 50 disposed below the coating unit 40 irradiates the applied colored resin with light from an ultraviolet LED to cure the colored resin, thereby forming the colored layer 15 .

本実施形態の硬化部50は、上下方向に並んで配置される4つの硬化ユニット51を有する。着色樹脂が塗布された光ファイバ素線1Nは、これら硬化ユニット51を順番に通過する。それぞれの硬化ユニット51は、筐体52と、筐体52の内部空間に配置される紫外線LED55とを有し、紫外線LED55から出射する光の強度を調節可能に構成される。筐体52の内側面は、紫外線LED55からの光を反射する反射面とされる。このような硬化ユニット51は、通過する光ファイバ素線1Nの着色樹脂に紫外線LED55からの光を照射する。これら4つの硬化ユニット51は同じ構成とされ、紫外線LED55からの光の強度が最大となるピーク波長は概ね385nmであり、当該光のスペクトルが図3に示されている。本実施形態では、着色樹脂に照射される硬化部50の紫外線LED55からの光の照射量が決定工程P2で定められた所定照射量となるように、全ての硬化ユニット51の紫外線LED55からの光の強度を同じように調節する。このため、調節後の全ての紫外線LED55からの光の強度は互いに同じである。 The curing section 50 of the present embodiment has four curing units 51 arranged vertically. The optical fiber strand 1N coated with the colored resin passes through these curing units 51 in order. Each curing unit 51 has a housing 52 and an ultraviolet LED 55 arranged in the internal space of the housing 52, and is configured so that the intensity of light emitted from the ultraviolet LED 55 can be adjusted. The inner surface of the housing 52 is a reflecting surface that reflects light from the ultraviolet LEDs 55 . Such a curing unit 51 irradiates the colored resin of the passing optical fiber 1N with light from the ultraviolet LED 55 . These four curing units 51 have the same configuration, and the peak wavelength at which the intensity of the light from the ultraviolet LED 55 is maximum is approximately 385 nm, and the spectrum of the light is shown in FIG. In this embodiment, the light emitted from the ultraviolet LEDs 55 of all the curing units 51 is adjusted so that the irradiation amount of the light from the ultraviolet LEDs 55 of the curing unit 50 irradiated to the colored resin becomes the predetermined irradiation amount determined in the determination step P2. similarly adjust the intensity of Therefore, the light intensities from all the UV LEDs 55 after adjustment are the same.

なお、硬化部50の構成は特に制限されるものではない。また、硬化部50が有する硬化ユニット51の数は、特に制限されるものではなく、硬化部50は、1つの硬化ユニット51から構成されてもよい。また、それぞれの硬化ユニット51が有する紫外線LED55の数は特に制限されるものではない。 Note that the configuration of the curing section 50 is not particularly limited. Moreover, the number of curing units 51 included in the curing section 50 is not particularly limited, and the curing section 50 may be composed of one curing unit 51 . Further, the number of ultraviolet LEDs 55 included in each curing unit 51 is not particularly limited.

このようにして着色層15が形成され光ファイバ素線1Nの外周面が着色層15によって被覆され、光ファイバ素線1Nが光ファイバ1となる。硬化部50の下方には、ターンプーリ65が配置されており、光ファイバ1はターンプーリ65により方向が変換され、巻取り部60によってボビン61に巻き取られる。本実施形態では、送り出し部30による光ファイバ素線1Nの送り出し速度と巻取り部60による光ファイバ1の巻取り速度とを調節することで、硬化部50を通過する光ファイバ素線1Nの速度を調節することができる。 Thus, the colored layer 15 is formed, the outer peripheral surface of the optical fiber strand 1N is covered with the colored layer 15, and the optical fiber strand 1N becomes the optical fiber 1. FIG. A turn pulley 65 is arranged below the curing section 50 , the direction of the optical fiber 1 is changed by the turn pulley 65 , and the optical fiber 1 is wound onto a bobbin 61 by the winding section 60 . In this embodiment, by adjusting the delivery speed of the optical fiber 1N by the delivery unit 30 and the winding speed of the optical fiber 1 by the winding unit 60, the speed of the optical fiber 1N passing through the curing unit 50 is adjusted. can be adjusted.

以上説明したように、本実施形態の光ファイバの製造方法は、被覆工程P4を備える。被覆工程P4では、硬化した着色樹脂の紫外線LED55からの光の吸光度に基づいて予め定められる所定照射量の紫外線LED55からの光を着色樹脂に照射する。前述のように、吸光度には対象物における光の吸収及び反射の影響が含まれるため、着色樹脂における紫外線LED55からの光の吸光度は、顔料で吸収及び反射される光の量が多い場合には高くなり、少ない場合には低くなる。また、この吸光度は硬化した着色樹脂の吸光度である。このため、未硬化状態の着色樹脂の吸光度と比べて、着色樹脂における紫外線硬化樹脂に含まれる光重合開始剤に吸収される光によるこの吸光度への影響は少なく、顔料で吸収及び反射される光の量の違いを適切に把握し得る。このため、顔料で吸収及び反射する紫外線LED55からの光の量が多い場合には、着色樹脂が十分に硬化するように、紫外線LED55からの光の着色樹脂への照射量を多くし得る。また、顔料で吸収及び反射する紫外線LED55からの光の量が少ない場合には、着色樹脂が十分に硬化する範囲で、紫外線LED55からの光の着色樹脂への照射量を少なくし得る。従って、本実施形態の光ファイバの製造方法によれば、顔料の種類及び濃度の変化に応じて紫外線LED55からの光の照射量が変化しない場合と比べて、着色樹脂の色の違いによる着色層の硬化度の違いを低減し得る。 As described above, the optical fiber manufacturing method of the present embodiment includes the coating step P4. In the covering step P4, the colored resin is irradiated with light from the ultraviolet LEDs 55 in a predetermined irradiation amount that is predetermined based on the absorbance of the light from the ultraviolet LEDs 55 of the cured colored resin. As described above, the absorbance includes the influence of light absorption and reflection on the object, so the absorbance of the light from the UV LED 55 in the colored resin is Higher, lower if less. Also, this absorbance is the absorbance of the cured colored resin. Therefore, compared to the absorbance of the uncured colored resin, the light absorbed by the photopolymerization initiator contained in the ultraviolet curable resin in the colored resin has little effect on this absorbance, and the light absorbed and reflected by the pigment It is possible to appropriately grasp the difference in the amount of Therefore, when a large amount of light from the ultraviolet LEDs 55 is absorbed and reflected by the pigment, the amount of light irradiated from the ultraviolet LEDs 55 to the colored resin can be increased so that the colored resin is sufficiently cured. Moreover, when the amount of light from the ultraviolet LEDs 55 that is absorbed and reflected by the pigment is small, the amount of light emitted from the ultraviolet LEDs 55 to the colored resin can be reduced within a range in which the colored resin is sufficiently cured. Therefore, according to the optical fiber manufacturing method of the present embodiment, compared to the case where the irradiation amount of light from the ultraviolet LED 55 does not change according to the change in the type and concentration of the pigment, the colored layer due to the difference in the color of the colored resin can reduce the difference in the degree of cure.

また、本実施形態の光ファイバの製造方法では、所定照射量は、着色樹脂における紫外線LED55からの光のピーク波長での吸光度、及び、他の色の着色樹脂における紫外線LED55からの光のピーク波長での吸光度と当該他の色の着色樹脂から成る着色層15が所望の硬化度となる紫外線LED55からの光の照射量との相関関係に基づいて定められる。本発明者は、この吸光度と照射量との相関関係が概ね比例関係であることを見出した。このため、所望の硬化度となる紫外線LEDからの光の照射量が予め求められていない着色樹脂であっても、当該着色樹脂における紫外線LED55からの光のピーク波長での吸光度を求めることで、所望の硬化度となる照射量が分かり得る。従って、所望の硬化度となる紫外線LED55からの光の照射量を実験等で求める場合と比べて、着色層15が所望の硬化度となるようにし易くし得る。 Further, in the method for manufacturing an optical fiber according to the present embodiment, the predetermined irradiation dose is the absorbance at the peak wavelength of the light from the ultraviolet LED 55 in the colored resin, and the peak wavelength of the light from the ultraviolet LED 55 in the colored resin of another color. is determined based on the correlation between the absorbance at and the irradiation amount of light from the ultraviolet LED 55 at which the colored layer 15 made of the colored resin of the other color has a desired degree of curing. The inventors have found that the correlation between the absorbance and the irradiation dose is generally proportional. Therefore, even for a colored resin for which the irradiation amount of light from the ultraviolet LED that provides the desired degree of curing is not determined in advance, by obtaining the absorbance at the peak wavelength of the light from the ultraviolet LED 55 in the colored resin, The dose that results in the desired degree of cure can be known. Therefore, compared to the case where the irradiation amount of light from the ultraviolet LED 55 that provides the desired degree of curing is determined by experiment or the like, it is possible to easily obtain the desired degree of curing of the colored layer 15 .

また、本実施形態の被覆工程P4では、紫外線LED55からの光の強度を調節して、所定照射量の光を着色樹脂に照射する。このため、着色層15の色に応じて製造にかかる時間が変化することを抑制し得る。 Further, in the coating step P4 of the present embodiment, the intensity of the light from the ultraviolet LED 55 is adjusted to irradiate the colored resin with a predetermined amount of light. Therefore, it is possible to suppress the time required for manufacturing from changing depending on the color of the colored layer 15 .

以上、本発明について上記実施形態を例に説明したが、本発明はこれに限定されるものではない。 As described above, the present invention has been described by taking the above embodiment as an example, but the present invention is not limited to this.

例えば、上記実施形態では、所定照射量が、着色樹脂における紫外線LED55からの光のピーク波長での吸光度、及び、吸光度と照射量との相関関係に基づいて定められる決定工程P2を例に説明した。しかし、所定照射量は、硬化した着色樹脂における紫外線LED55からの光の吸光度に基づいて定められればよい。例えば、所定照射量は、紫外線LED55からの光のスペクトルと着色樹脂の吸収スペクトルとの重なり積分、及び、紫外線LED55からの光のスペクトルと他の色の着色樹脂の吸収スペクトルとの重なり積分と、他の色の着色樹脂から成る着色層15が所望の硬化度となる紫外線LED55からの光の照射量との相関関係に基づいて定められてもよい。本発明者は、着色層の厚さ及び紫外線硬化樹脂が変わらない場合には、この重なり積分と照射量との相関関係が概ね比例関係であることを見出した。このため、所望の硬化度となる紫外線LEDからの光の照射量が予め求められていない着色樹脂であっても、紫外線LED55からの光のスペクトルとこの着色樹脂の吸収スペクトルとの重なり積分を求めることで、所望の硬化度となる照射量が分かり得る。従って、このように所定照射量を定めることによって、所望の硬化度となる紫外線LED55からの光の照射量を実験等で求める場合と比べて、着色層15が所望の硬化度となるようにし易くし得る。なお、重なり積分と照射量との相関関係は、実験によって予め求める。具体的には、紫外線LEDからの光の照射量と、紫外線LEDからの光のスペクトルと製造する光ファイバ1の着色層15の色と異なる他の色の着色樹脂との重なり積分との組を、実験によって予め二つ以上得る。得られた二つ以上の重なり積分と照射量との組に基づいて、重なり積分と照射量との比例関係を得る。比例関係を得る方法は特に限定されるものではなく、例えば、最小二乗法を用いて比例関係を求めてもよい。 For example, in the above embodiment, the determination step P2 in which the predetermined irradiation dose is determined based on the absorbance at the peak wavelength of the light from the ultraviolet LED 55 in the colored resin and the correlation between the absorbance and the irradiation dose was described as an example. . However, the predetermined irradiation amount may be determined based on the absorbance of the light from the ultraviolet LEDs 55 in the cured colored resin. For example, the predetermined irradiation amount is the overlap integral of the spectrum of the light from the ultraviolet LED 55 and the absorption spectrum of the colored resin, and the overlap integral of the spectrum of the light from the ultraviolet LED 55 and the absorption spectrum of the colored resin of another color, The colored layer 15 made of colored resin of another color may be determined based on the correlation with the irradiation amount of the light from the ultraviolet LED 55 that provides the desired curing degree. The inventors have found that the correlation between the overlap integral and the irradiation amount is generally proportional when the thickness of the colored layer and the ultraviolet curable resin are not changed. For this reason, even for a colored resin for which the amount of irradiation of light from the ultraviolet LED that provides a desired degree of curing is not determined in advance, the overlap integral of the spectrum of the light from the ultraviolet LED 55 and the absorption spectrum of this colored resin is obtained. By doing so, it is possible to know the irradiation dose that provides the desired degree of curing. Therefore, by determining the predetermined irradiation amount in this way, it is easier to obtain the desired degree of curing of the colored layer 15 than when the irradiation amount of the light from the ultraviolet LED 55 that provides the desired degree of curing is obtained by experiments or the like. can. Note that the correlation between the overlap integral and the dose is obtained in advance by experiment. Specifically, a set of the irradiation amount of light from the ultraviolet LED, the overlap integral of the spectrum of the light from the ultraviolet LED, and the colored resin of a color different from the color of the colored layer 15 of the optical fiber 1 to be manufactured is , obtain two or more in advance by experiment. A proportional relationship between the overlap integral and the dose is obtained based on the obtained sets of two or more overlap integrals and doses. The method of obtaining the proportional relationship is not particularly limited, and for example, the proportional relationship may be obtained using the method of least squares.

また、上記実施形態では、ボビン31から送り出される光ファイバ素線1Nの外周面に着色樹脂を塗布し、塗布した着色樹脂に紫外線LED55からの光を照射して当該着色樹脂を硬化させて着色層15を形成する被覆工程P4を例に説明した。しかし、被覆工程P4は、光ファイバ素線製造工程P3中に行われてもよい。この場合、例えば、ガラス線の外周面に塗布された保護樹脂層12となる樹脂を硬化する硬化部の下方に、被覆装置100の塗布部40が配置され、当該塗布部40の下方に硬化部50が配置される。また、この場合、保護樹脂層12となる樹脂を硬化する硬化部がなくてもよく、硬化部50によって、ガラス線の外周面に塗布された保護樹脂層12となる樹脂と当該樹脂の外周面に塗布された着色樹脂との両方を硬化させてもよい。 Further, in the above-described embodiment, the colored resin is applied to the outer peripheral surface of the optical fiber strand 1N sent out from the bobbin 31, and the applied colored resin is irradiated with light from the ultraviolet LEDs 55 to cure the colored resin and form the colored layer. The covering step P4 for forming 15 has been described as an example. However, the coating step P4 may be performed during the optical fiber strand manufacturing step P3. In this case, for example, the coating unit 40 of the coating device 100 is arranged below the curing unit that cures the resin that forms the protective resin layer 12 applied to the outer peripheral surface of the glass wire, and the curing unit 40 is disposed below the coating unit 40. 50 are placed. Further, in this case, there may be no curing section for curing the resin that forms the protective resin layer 12, and the resin that forms the protective resin layer 12 applied to the outer peripheral surface of the glass wire by the curing section 50 and the outer peripheral surface of the resin may be cured. You may cure both with the coloring resin applied to.

また、上記実施形態では、保護樹脂層12を有する光ファイバ素線1Nを例に説明した。しかし、光ファイバ素線1Nは、コア10と当該コア10の外周面を囲むクラッド11とを有していればよい。例えば、光ファイバ素線1Nは、保護樹脂層12を有していなくてもよく、この場合、着色層15がクラッド11の外周面を被覆し、当該着色層15が保護樹脂層12を兼ねる。 Further, in the above embodiment, the optical fiber strand 1N having the protective resin layer 12 is described as an example. However, the optical fiber strand 1N only needs to have the core 10 and the clad 11 surrounding the outer peripheral surface of the core 10 . For example, the optical fiber strand 1N may not have the protective resin layer 12. In this case, the colored layer 15 covers the outer peripheral surface of the clad 11, and the colored layer 15 also serves as the protective resin layer 12.

また、上記実施形態では、光ファイバ素線製造工程P3によって製造された光ファイバ素線1Nに着色層15を形成する被覆工程P4を例に説明した。しかし、被覆工程P4では、購入等によって準備した光ファイバ素線1Nに着色層15を形成してもよい。 Further, in the above-described embodiment, the coating step P4 of forming the colored layer 15 on the optical fiber strand 1N manufactured in the optical fiber strand manufacturing step P3 has been described as an example. However, in the covering step P4, the colored layer 15 may be formed on the optical fiber strand 1N prepared by purchase or the like.

また、上記実施形態では、硬化部50が備える全ての紫外線LED55からの光の強度を同じように調節するとこで、決定工程P2で定めた所定照射量の紫外線LED55からの光を着色樹脂に照射する被覆工程P4を例に説明した。しかし、紫外線LED55からの光の照射量が決定工程P2で定めた所定照射量となればよい。紫外線LED55からの光の強度を調節する硬化ユニット51の数は特に制限されるものではなく、例えば、少なくとも1つの硬化ユニット51の紫外線LED55からの光の照射量は、着色樹脂によらずに一定であってもよい。また、紫外線LED55からの光の着色樹脂への照射時間を調節して、照射量が所定照射量となるようにしてもよい。この場合、例えば、送り出し部30及び巻取り部60によって硬化部50を通過する光ファイバ素線1Nの速度を調節する。また、紫外線LED55からの光の強度及び硬化部50を通過する光ファイバ素線1Nの速度を調節して、紫外線LED55からの光の照射量が所定照射量となるようにしてもよい。このような構成によれば、着色樹脂に光を照射する紫外線LEDの数を調節する場合と比べて、紫外線LEDの数を少なくし得、被覆装置100の大型化を抑制し得る。なお、上記実施形態のように、紫外線LED55からの光の強度を調節するとこで、所定照射量の紫外線LED55からの光を着色樹脂に照射する場合には、着色層の色に応じて製造にかかる時間が変化することを抑制し得る。 Further, in the above embodiment, by adjusting the intensity of light from all the ultraviolet LEDs 55 provided in the curing unit 50 in the same manner, the colored resin is irradiated with the light from the ultraviolet LEDs 55 having a predetermined irradiation amount determined in the determination step P2. The covering step P4, which is to However, it is sufficient that the irradiation amount of the light from the ultraviolet LED 55 becomes the predetermined irradiation amount determined in the determination step P2. The number of curing units 51 that adjust the intensity of the light from the ultraviolet LEDs 55 is not particularly limited. For example, the irradiation amount of light from the ultraviolet LEDs 55 of at least one curing unit 51 is constant regardless of the colored resin. may be Further, the irradiation time of the light from the ultraviolet LED 55 to the colored resin may be adjusted so that the irradiation amount becomes a predetermined irradiation amount. In this case, for example, the speed of the optical fiber 1N passing through the curing section 50 is adjusted by the sending section 30 and the winding section 60 . Further, the intensity of the light from the ultraviolet LEDs 55 and the speed of the optical fiber 1N passing through the curing section 50 may be adjusted so that the irradiation amount of the light from the ultraviolet LEDs 55 becomes a predetermined irradiation amount. According to such a configuration, the number of ultraviolet LEDs can be reduced compared to the case of adjusting the number of ultraviolet LEDs that irradiate the colored resin with light, and the enlarging of the coating apparatus 100 can be suppressed. As in the above embodiment, by adjusting the intensity of the light from the ultraviolet LEDs 55, when the colored resin is irradiated with a predetermined irradiation amount of light from the ultraviolet LEDs 55, it is possible to manufacture according to the color of the colored layer. A change in this time can be suppressed.

上記実施形態では、複数の紫外線LED55を備え、それぞれの紫外線LEDからの光のピーク波長が同じである硬化部50を例に説明した。しかし、少なくとも2つの紫外線LED55のピーク波長が互いに異なっていてもよい。この場合、被覆工程P4では、複数の紫外線LED55のうち、ピーク波長が紫外線硬化樹脂の光重合開始剤における光の吸収量が最大となる波長に最も近い特定の紫外線LED55からの光の着色樹脂への照射量を調整して、所定照射量の光を硬化部50によって着色樹脂に照射してもよい。一般的に、光重合開始剤における光の吸収量は、当該吸収量が最大となる波長から遠い波長の光ほど小さくなる傾向にある。このため、このようにすることで、複数の紫外線LED55のうち、上記の特定の紫外線LED55以外の紫外線LED55からの光の着色樹脂への照射量を調整する場合と比べて、着色層を所望の硬化度にし易い。また、この場合、被覆工程P4では、上記の特定の紫外線LED55以外の少なくとも1つの紫外線LED55からの光の着色樹脂への照射量を調整せずに一定にすることとしてもよい。或いは、上記の特定の紫外線LED55以外の少なくとも1つの紫外線LED55からの光の着色樹脂への照射量を更に調整して、所定照射量の光を硬化部50によって着色樹脂に照射することとしてもよい。この場合において上記のように重なり積分と光の照射量との相関関係に基づいて所定照射量が定められる際には、上記の特定の紫外線LED55以外の紫外線LED55の全部の照射量が一定である場合と比べて、光の照射時の着色樹脂の温度を調節し易くし得る。このため、例えば、着色樹脂の色の違いによる温度の違いを低減し易くし得る。 In the above embodiment, the curing section 50 including a plurality of ultraviolet LEDs 55 and having the same peak wavelength of light from each ultraviolet LED was described as an example. However, at least two ultraviolet LEDs 55 may have different peak wavelengths. In this case, in the coating step P4, among the plurality of ultraviolet LEDs 55, the light from the specific ultraviolet LED 55 whose peak wavelength is closest to the wavelength at which the light absorption amount in the photopolymerization initiator of the ultraviolet curable resin is maximum is transferred to the colored resin. By adjusting the irradiation amount of , the curing unit 50 may irradiate the colored resin with a predetermined irradiation amount of light. In general, the amount of light absorbed by a photopolymerization initiator tends to decrease as the wavelength of light farther from the wavelength at which the amount of absorption is maximized. Therefore, by doing so, compared to the case of adjusting the irradiation amount of the light from the ultraviolet LEDs 55 other than the specific ultraviolet LEDs 55 among the plurality of ultraviolet LEDs 55 to the colored resin, the colored layer can be obtained as desired. Easy to harden. Further, in this case, in the covering step P4, the irradiation amount of light from at least one ultraviolet LED 55 other than the specific ultraviolet LED 55 to the colored resin may be kept constant without adjusting. Alternatively, the irradiation amount of light from at least one ultraviolet LED 55 other than the specific ultraviolet LED 55 to the colored resin may be further adjusted, and the curing unit 50 may irradiate the colored resin with a predetermined irradiation amount of light. . In this case, when the predetermined irradiation amount is determined based on the correlation between the overlap integral and the light irradiation amount as described above, the irradiation amount of all the ultraviolet LEDs 55 other than the specific ultraviolet LEDs 55 is constant. Compared to the case, the temperature of the colored resin can be easily adjusted during light irradiation. Therefore, for example, it is possible to easily reduce the difference in temperature due to the difference in color of the colored resin.

以下、本発明を、実験例を挙げて更に詳細に説明するが、本発明はこれらに制限されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to experimental examples, but the present invention is not limited to these.

図2に示す光ファイバ素線製造工程P3によって図1に示す光ファイバ素線1Nを製造した。光ファイバ素線1Nの直径は239μmであり、保護樹脂層12はウレタンアクリレートから成り、保護樹脂層12の厚さは57μmであった。また、青色、黄色、赤色、紫色、白色、桃色、及び水色の着色樹脂をそれぞれ準備した。これら着色樹脂は、吸収スペクトルが図3に示された樹脂サンプルSA1~SA7を形成する際に用いた着色樹脂と同じであり、当該着色樹脂における紫外線硬化樹脂はエポキシアクリレートとベンゾフェノン系の光重合開始剤とを含んでいた。図4に示す被覆装置100を用いて、上記実施形態と同様に、光ファイバ素線1Nに準備した青色の着色樹脂を塗布し、当該着色樹脂を硬化させて青色の着色層15を形成し、図1に示す光ファイバ1を複数製造した。それぞれの光ファイバ1を製造する際、紫外線LED55からの光の照射時間は変化させずに紫外線LED55の発光出力を50%~100%で変化させて紫外線LED55からの光の強度を変化させた。また、青色の着色樹脂の場合と同様に、準備した紫色の着色樹脂を光ファイバ素線1Nに塗布し、当該着色樹脂を硬化させて紫色の着色層15を形成し、図1に示す光ファイバ1を複数製造した。それぞれの光ファイバ1を製造する際、紫外線LED55の発光出力を50%~100%で変化させて紫外線LED55からの光の強度を変化させた。 The optical fiber strand 1N shown in FIG. 1 was manufactured by the optical fiber strand manufacturing step P3 shown in FIG. The diameter of the optical fiber 1N was 239 μm, the protective resin layer 12 was made of urethane acrylate, and the thickness of the protective resin layer 12 was 57 μm. Also, blue, yellow, red, purple, white, pink, and light blue colored resins were prepared. These colored resins are the same as the colored resins used to form the resin samples SA1 to SA7 whose absorption spectra are shown in FIG. containing the drug. Using the coating apparatus 100 shown in FIG. 4, as in the above embodiment, the prepared blue colored resin is applied to the optical fiber strand 1N, and the colored resin is cured to form the blue colored layer 15, A plurality of optical fibers 1 shown in FIG. 1 were manufactured. When manufacturing each optical fiber 1, the intensity of the light from the ultraviolet LED 55 was changed by changing the light emission output of the ultraviolet LED 55 from 50% to 100% without changing the irradiation time of the light from the ultraviolet LED 55. Further, similarly to the case of the blue colored resin, the prepared purple colored resin is applied to the optical fiber wire 1N, the colored resin is cured to form the purple colored layer 15, and the optical fiber shown in FIG. 1 was manufactured. When manufacturing each optical fiber 1, the light intensity of the ultraviolet LED 55 was changed by changing the light emission output of the ultraviolet LED 55 from 50% to 100%.

得られた青色の着色層15を有する複数の光ファイバ1、及び紫色の着色層15を有する複数の光ファイバ1のそれぞれに対して、着色層15の硬化性を以下に説明する模擬評価によって評価した。図5及び図6に示すように、アクリルから成る平板状の8個の基台70のそれぞれの上面に未硬化の紫外線硬化樹脂71を厚さが80μmとなるように塗布した。それぞれの基台70の紫外線硬化樹脂71上に、光ファイバ1を切断して得られる10本のサンプル75を配置した。なお、図5は、実験例における模擬評価の方法を説明するための図であり、サンプル75が配置された1つの基台70を上方側から見る図である。また、図6は、実験例における模擬評価の方法を説明するための別の図であり、サンプル75が配置された1つの基台70をサンプル75の長手方向に沿って当該サンプル75の一端部側から見る図である。図5及び図6では、1つのサンプル75にのみ符号が付されている。サンプル75の長さは概ね10cmであり、着色層15の外周の1/4以上が紫外線硬化樹脂71と接触しており、サンプル75の一端部は基台70の縁から外にはみ出ていた。次に、それぞれの基台70の紫外線硬化樹脂71に、紫外線ランプからの光を照射して、紫外線硬化樹脂71を硬化させ、紫外線硬化樹脂71と着色層15とを接着させた。紫外線ランプからの光の照射量は、紫外線硬化樹脂71に含まれる光重合開始剤が十分に反応する量であった。次に、サンプル75の一端部を基台70の上方に向けて引っ張り、サンプル75を移動させた。移動の際にサンプル75が基台70から離れる速度は2cm/秒以下であった。次に、移動後のサンプル75の状態を観察し、着色層15の光ファイバ素線1Nからの剥がれがない場合を合格とし、この剥がれがある場合を不良とするときの不良率を算出した。不良率が概ね10%~20%となるような着色層15の硬化性を所望の硬化度に設定した。この所望の硬化度となる青色の着色層15を有するサンプル75は、紫外線LED55の発光出力が60%とされた際に製造されたものであった。また、この所望の硬化度となる紫色の着色層15を有するサンプル75は、紫外線LED55の発光出力が80%とされた際に製造されたものであった。なお、不良率を得るための基台70及びサンプル75の数は特に制限されるものではなく、求める精度によって適宜変更しても良い。 For each of the plurality of optical fibers 1 having the blue colored layer 15 and the plurality of optical fibers 1 having the purple colored layer 15 obtained, the curability of the colored layer 15 was evaluated by a simulated evaluation described below. bottom. As shown in FIGS. 5 and 6, an uncured UV curable resin 71 was applied to the upper surface of each of eight acryl plate-shaped bases 70 to a thickness of 80 μm. Ten samples 75 obtained by cutting the optical fiber 1 were arranged on the ultraviolet curable resin 71 of each base 70 . FIG. 5 is a diagram for explaining the method of simulation evaluation in the experimental example, and is a diagram of one base 70 on which a sample 75 is arranged, viewed from above. FIG. 6 is another diagram for explaining the simulation evaluation method in the experimental example. Fig. 3 is a view from the side; 5 and 6 only one sample 75 is labeled. The sample 75 had a length of approximately 10 cm, more than 1/4 of the outer circumference of the colored layer 15 was in contact with the ultraviolet curable resin 71, and one end of the sample 75 protruded from the edge of the base 70. Next, the ultraviolet curable resin 71 of each base 70 was irradiated with light from an ultraviolet lamp to cure the ultraviolet curable resin 71 and bond the ultraviolet curable resin 71 and the colored layer 15 together. The irradiation amount of light from the ultraviolet lamp was an amount sufficient for the photopolymerization initiator contained in the ultraviolet curable resin 71 to react. Next, one end of the sample 75 was pulled upward from the base 70 to move the sample 75 . The speed at which the sample 75 separated from the base 70 during movement was 2 cm/sec or less. Next, the state of the sample 75 after the movement was observed, and the defective rate was calculated when the case where the colored layer 15 was not peeled off from the optical fiber strand 1N was judged as acceptable, and the case where there was this peeling was judged as defective. Curability of the colored layer 15 was set to a desired degree of curing so that the defect rate would be approximately 10% to 20%. The sample 75 having the blue colored layer 15 with the desired degree of curing was manufactured when the emission output of the ultraviolet LED 55 was set to 60%. Moreover, the sample 75 having the purple colored layer 15 with the desired curing degree was manufactured when the light emission output of the ultraviolet LED 55 was set to 80%. The number of bases 70 and samples 75 for obtaining the defect rate is not particularly limited, and may be appropriately changed according to the desired accuracy.

また、前述のように、青色の樹脂サンプルSA1における紫外線LED55からの光のピーク波長での吸光度は0.93Absであり、紫色の樹脂サンプルSA4のこの吸光度は2.58Absである。ここで、不良率と紫外線LED55の発光出力とが概ね比例関係になることは、他の実験から分かっていた。このため、吸光度と着色層15が設定した所望の硬化度となる紫外線LED55の発光出力とが比例関係となると予想し、これらの吸光度とこの模擬評価の結果から、当該相関関係を比例関係として求めた。前述のように、黄色の樹脂サンプルSA2のこの吸光度は1.54Absであり、赤色の樹脂サンプルSA3のこの吸光度は1.23Absであり、白色の樹脂サンプルSA5のこの吸光度は2.52Absであり、桃色の樹脂サンプルSA6のこの吸光度は2.19Absであり、水色の樹脂サンプルSA7のこの吸光度は1.40Absである。これらの吸光度と求めた相関関係とに基づいて、黄色、赤色、白色、桃色、及び水色の着色樹脂のそれぞれに対して、紫外線LED55の発光出力を算出した。次に、黄色、赤色、白色、桃色、及び水色の着色樹脂のそれぞれについても、青色の着色樹脂の場合と同様に、着色樹脂を光ファイバ素線1Nに塗布し、当該着色樹脂を硬化させて着色層15を形成し、図1に示す光ファイバ1を製造した。この際、紫外線LED55の発光出力は、算出した発光出力であり、得られた光ファイバ1のそれぞれに対して、上記の模擬評価を行った。その結果を表1に示す。

Figure 2023005295000002
Further, as described above, the absorbance at the peak wavelength of the light from the ultraviolet LED 55 in the blue resin sample SA1 is 0.93 Abs, and the absorbance in the purple resin sample SA4 is 2.58 Abs. Here, it has been known from other experiments that the defect rate and the light output of the ultraviolet LED 55 are in a roughly proportional relationship. Therefore, it is expected that there will be a proportional relationship between the absorbance and the light emission output of the UV LED 55 at which the desired degree of curing of the colored layer 15 is set. rice field. As before, this absorbance for the yellow resin sample SA2 is 1.54 Abs, for the red resin sample SA3 this absorbance is 1.23 Abs, for the white resin sample SA5 this absorbance is 2.52 Abs, This absorbance for pink resin sample SA6 is 2.19 Abs and for light blue resin sample SA7 this absorbance is 1.40 Abs. Based on these absorbances and the obtained correlations, the light emission output of the ultraviolet LED 55 was calculated for each of the yellow, red, white, pink, and light blue colored resins. Next, for each of the yellow, red, white, pink, and light blue colored resins, the colored resin is applied to the optical fiber strand 1N and cured in the same manner as the blue colored resin. A colored layer 15 was formed to manufacture the optical fiber 1 shown in FIG. At this time, the luminous output of the ultraviolet LED 55 is the calculated luminous output, and the simulation evaluation described above was performed for each of the obtained optical fibers 1 . Table 1 shows the results.
Figure 2023005295000002

表1に示されるように、黄色、赤色、白色、桃色、及び水色の着色樹脂においても、概ね不良率が10%~20%となっていることが分かった。紫外線LED55からの光の照射時間は同じであるため、紫外線LED55の発光出力は紫外線LED55からの光の照射量に比例する。従って、硬化した着色樹脂としての樹脂サンプルSA1~SA7における紫外線LEDからの光のピーク波長での吸光度と着色層15が所望の硬化度となる紫外線LED55からの光の照射量とが概ね比例関係であることが分かった。 As shown in Table 1, yellow, red, white, pink, and light blue colored resins were found to generally have a defect rate of 10% to 20%. Since the irradiation time of the light from the ultraviolet LEDs 55 is the same, the light emission output of the ultraviolet LEDs 55 is proportional to the irradiation amount of the light from the ultraviolet LEDs 55 . Therefore, the absorbance at the peak wavelength of the light from the ultraviolet LED in the resin samples SA1 to SA7 as the cured colored resin and the irradiation amount of the light from the ultraviolet LED 55 at which the colored layer 15 has a desired degree of curing are in a roughly proportional relationship. It turns out there is.

本発明によれば、着色樹脂の色の違いによる着色層の硬化度の違いを低減し得る光ファイバの製造方法が提供され、光ファイバに関連する種々の分野において利用可能である。 INDUSTRIAL APPLICABILITY According to the present invention, there is provided an optical fiber manufacturing method that can reduce differences in the degree of curing of colored layers due to differences in the color of colored resins, and can be used in various fields related to optical fibers.

1・・・光ファイバ
1N・・・光ファイバ素線
15・・・着色層
40・・・塗布部
50・・・硬化部
51・・・硬化ユニット
55・・・紫外線LED
P1・・・測定工程
P2・・・決定工程
P3・・・光ファイバ素線製造工程
P4・・・被覆工程
100・・・被覆装置
DESCRIPTION OF SYMBOLS 1... Optical fiber 1N... Optical fiber strand 15... Colored layer 40... Coating part 50... Curing part 51... Curing unit 55... Ultraviolet LED
P1... Measuring process P2... Determining process P3... Optical fiber strand manufacturing process P4... Coating process 100... Coating device

Claims (8)

コア及び前記コアの外周面を囲むクラッドを有する光ファイバ素線と、顔料及び紫外線硬化樹脂を含む着色樹脂から成り前記光ファイバ素線の外周面を被覆する着色層と、を有する光ファイバの製造方法であって、
前記光ファイバ素線の外周面に前記着色樹脂を塗布し、塗布された前記着色樹脂に紫外線LEDからの光を照射して当該着色樹脂を硬化させて前記着色層を形成する被覆工程を備え、
前記被覆工程では、硬化した前記着色樹脂の前記光の吸光度に基づいて予め定められる所定照射量の前記光を前記着色樹脂に照射する
ことを特徴とする光ファイバの製造方法。
Manufacture of an optical fiber having an optical fiber strand having a core and a clad surrounding the outer peripheral surface of the core, and a colored layer made of a colored resin containing a pigment and an ultraviolet curable resin and coating the outer peripheral surface of the optical fiber strand. a method,
A coating step of applying the colored resin to the outer peripheral surface of the optical fiber strand and irradiating the applied colored resin with light from an ultraviolet LED to cure the colored resin and form the colored layer;
In the coating step, the colored resin is irradiated with a predetermined amount of light which is predetermined based on the absorbance of the light of the cured colored resin.
前記所定照射量は、前記着色樹脂における前記光のピーク波長での吸光度、及び、他の色の前記着色樹脂における前記光のピーク波長での吸光度と前記他の色の着色樹脂から成る前記着色層が所望の硬化度となる前記光の照射量との相関関係に基づいて定められる
ことを特徴とする請求項1に記載の光ファイバの製造方法。
The predetermined irradiation amount is the absorbance of the colored resin at the peak wavelength of the light, the absorbance of the colored resin of another color at the peak wavelength of the light, and the colored layer made of the colored resin of the other color. 2. The method of manufacturing an optical fiber according to claim 1, wherein is determined based on a correlation with the irradiation amount of the light that provides a desired degree of curing.
前記所定照射量は、前記光のスペクトルと前記着色樹脂の吸収スペクトルとの重なり積分、及び、前記光のスペクトルと他の色の前記着色樹脂の吸収スペクトルとの重なり積分と、前記他の色の着色樹脂から成る前記着色層が所望の硬化度となる前記光の照射量との相関関係に基づいて定められる
ことを特徴とする請求項2に記載の光ファイバの製造方法。
The predetermined irradiation amount is an overlap integral of the spectrum of the light and the absorption spectrum of the colored resin, an overlap integral of the spectrum of the light and the absorption spectrum of the colored resin of another color, and the absorption spectrum of the other color. 3. The method of manufacturing an optical fiber according to claim 2, wherein said colored layer made of a colored resin is determined based on a correlation with said irradiation amount of said light at which a desired degree of curing is achieved.
前記被覆工程では、前記光の強度を調節して、前記所定照射量の前記光を前記着色樹脂に照射する
ことを特徴とする請求項1から3のいずれか1項に記載の光ファイバの製造方法。
4. The manufacturing of the optical fiber according to any one of claims 1 to 3, wherein in the coating step, the intensity of the light is adjusted to irradiate the colored resin with the predetermined irradiation amount of the light. Method.
前記被覆工程では、前記光の前記着色樹脂への照射時間を調節して、前記所定照射量の前記光を前記着色樹脂に照射する
ことを特徴とする請求項1から4のいずれか1項に記載の光ファイバの製造方法。
5. The method according to any one of claims 1 to 4, wherein in the coating step, the irradiation time of the light to the colored resin is adjusted to irradiate the colored resin with the predetermined irradiation amount of the light. A method of making the described optical fiber.
前記紫外線LEDは複数であり、
少なくとも2つの前記紫外線LEDからの光のピーク波長は互いに異なり、
前記被覆工程では、複数の前記紫外線LEDのうち、ピーク波長が前記紫外線硬化樹脂の光重合開始剤における光の吸収量が最大となる波長に最も近い特定の前記紫外線LEDからの光の前記着色樹脂への照射量を調整して、前記所定照射量の前記光を前記着色樹脂に照射する
ことを特徴とする請求項1から5のいずれか1項に記載の光ファイバの製造方法。
The ultraviolet LED is plural,
peak wavelengths of light from at least two UV LEDs are different from each other;
In the coating step, among the plurality of ultraviolet LEDs, the colored resin of the light from the specific ultraviolet LED whose peak wavelength is closest to the wavelength at which the light absorption amount in the photopolymerization initiator of the ultraviolet curable resin is maximum. 6. The method for manufacturing an optical fiber according to any one of claims 1 to 5, wherein the predetermined irradiation amount of the light is applied to the colored resin by adjusting the irradiation amount of the colored resin.
前記被覆工程では、前記特定の紫外線LED以外の少なくとも1つの前記紫外線LEDからの光の前記着色樹脂への照射量を調整せずに一定にする
ことを特徴とする請求項6に記載の光ファイバの製造方法。
7. The optical fiber according to claim 6, wherein in the coating step, the irradiation amount of the light from at least one of the ultraviolet LEDs other than the specific ultraviolet LED to the colored resin is kept constant without being adjusted. manufacturing method.
前記被覆工程では、前記特定の紫外線LED以外の少なくとも1つの前記紫外線LEDからの光の前記着色樹脂への照射量を更に調整して、前記所定照射量の前記光を前記着色樹脂に照射する
ことを特徴とする請求項6に記載の光ファイバの製造方法。

In the coating step, the irradiation amount of light from at least one ultraviolet LED other than the specific ultraviolet LED to the colored resin is further adjusted, and the predetermined irradiation amount of the light is irradiated to the colored resin. The method for manufacturing an optical fiber according to claim 6, characterized by:

JP2021107092A 2021-06-28 2021-06-28 Method for manufacturing optical fiber Pending JP2023005295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021107092A JP2023005295A (en) 2021-06-28 2021-06-28 Method for manufacturing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021107092A JP2023005295A (en) 2021-06-28 2021-06-28 Method for manufacturing optical fiber

Publications (1)

Publication Number Publication Date
JP2023005295A true JP2023005295A (en) 2023-01-18

Family

ID=85108028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021107092A Pending JP2023005295A (en) 2021-06-28 2021-06-28 Method for manufacturing optical fiber

Country Status (1)

Country Link
JP (1) JP2023005295A (en)

Similar Documents

Publication Publication Date Title
CN108885182B (en) Optical fiber inspection device, optical fiber manufacturing device, optical fiber inspection method, and optical fiber manufacturing method
US8492448B2 (en) Systems and methods for performing photoreactions using light-diffusing optical fiber
JP2007246394A (en) Coated fiber strand having one or more heterogeneous regions and method of making the same
US8452146B2 (en) Process for manufacturing an optical fiber and an optical fiber so obtained
TW201512720A (en) Compound elliptical reflector for curing optical fibers
US11059747B2 (en) Light diffusing optical fibers for emitting white light
JP2023005295A (en) Method for manufacturing optical fiber
CN111094916A (en) Broadband semiconductor ultraviolet light source for spectral analysis device
US11073258B2 (en) Ultraviolet irradiation device including circular irradiation units that focus light on a single point
JP7487199B2 (en) Diffuse reflectors and methods of use
JP2005350310A (en) Method of manufacturing optical fiber strand
JPH0572339B2 (en)
JP6582815B2 (en) Optical fiber manufacturing method
JP6798126B2 (en) Striatum covering method and covering device
US20020164433A1 (en) Apparatus and method for passing multiple fibers through a small zone of high intensity radiant energy
CN111433168B (en) Method and apparatus for manufacturing optical fiber
JP6545767B2 (en) Method of manufacturing optical fiber strand and manufacturing apparatus of optical fiber strand
JP6622272B2 (en) Optical fiber strand manufacturing method and optical fiber strand manufacturing apparatus
JP2023502874A (en) Low attenuation rollable optical fiber ribbon
JP2019064853A (en) Manufacturing method and manufacturing apparatus of optical fiber wire
JP2020117426A (en) Production method of optical fiber
JP7281649B2 (en) lighting equipment
CN104536086A (en) Fiber and manufacture method thereof
JP2023119763A (en) Method of manufacturing optical fiber
JP2021500621A (en) A method for forming a light-diffusing optical fiber having uniform illumination along a diffusion length, and a method for forming a light-diffusing optical fiber.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240213