JP2022550903A - 活性薬剤を送達するための音響ネブライザ - Google Patents

活性薬剤を送達するための音響ネブライザ Download PDF

Info

Publication number
JP2022550903A
JP2022550903A JP2022520814A JP2022520814A JP2022550903A JP 2022550903 A JP2022550903 A JP 2022550903A JP 2022520814 A JP2022520814 A JP 2022520814A JP 2022520814 A JP2022520814 A JP 2022520814A JP 2022550903 A JP2022550903 A JP 2022550903A
Authority
JP
Japan
Prior art keywords
nebulizer
liquid
transducer
piezoelectric substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022520814A
Other languages
English (en)
Other versions
JPWO2021062494A5 (ja
Inventor
レスリー イェオ,
アムガド レズク,
アマリン マクドネル,
カルム ナイト,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RMIT University
Original Assignee
Royal Melbourne Institute of Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2019903755A external-priority patent/AU2019903755A0/en
Application filed by Royal Melbourne Institute of Technology Ltd filed Critical Royal Melbourne Institute of Technology Ltd
Publication of JP2022550903A publication Critical patent/JP2022550903A/ja
Publication of JPWO2021062494A5 publication Critical patent/JPWO2021062494A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/005Sprayers or atomisers specially adapted for therapeutic purposes using ultrasonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0085Inhalators using ultrasonics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets
    • B05B1/262Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors
    • B05B1/267Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors the liquid or other fluent material being deflected in determined directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0676Feeding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/001Particle size control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • A61M15/0066Inhalators with dosage or measuring devices with means for varying the dose size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0216Materials providing elastic properties, e.g. for facilitating deformation and avoid breaking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0272Electro-active or magneto-active materials
    • A61M2205/0294Piezoelectric materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3379Masses, volumes, levels of fluids in reservoirs, flow rates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3379Masses, volumes, levels of fluids in reservoirs, flow rates
    • A61M2205/3389Continuous level detection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0092Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin using ultrasonic, sonic or infrasonic vibrations, e.g. phonophoresis

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Special Spraying Apparatus (AREA)
  • Spray Control Apparatus (AREA)

Abstract

ハウジングと、ハウジング内に収容され、少なくとも1つの圧電基板(2)内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサ(48)が配置されるトランスデューサ表面(2a)と、対向する非トランスデューサ表面(2b)とを有する少なくとも1つの圧電基板(2)と、トランスデューサおよび非トランスデューサ表面のうちの少なくとも1つに液体を供給するための液体供給システムであって、液体を収容するためのリザーバ(3)と、リザーバ(3)から少なくとも1つの圧電基板(2)に液体を供給するための、少なくとも1つの圧電基板(2)と接触する少なくとも1つの比較的剛性の供給導管とを含む、液体供給システムと、少なくとも1つの圧電基板(2)上の液体の体積を検出するためのセンサとを含む、液滴を噴霧するためのネブライザ。【選択図】図1a

Description

記載される実施形態は、一般に、液体を小さい空中浮遊液滴に噴霧するためのネブライザ、特に、液体を噴霧するために音響波エネルギーを使用するネブライザを対象とする。
液体の噴霧のための表面音響波(SAW)の使用は、1990年代から提案されている。「M.Kurosawa et al.,’Surface acoustic wave atomizer’,Sensors and Actuators A:Physical,1995,50,69-74」を参照されたい。SAWネブライザは、その後、活性薬剤の投与を含む様々な分野での用途が見出されている。吸入薬物は、喘息、慢性閉塞性肺疾患(COPD)、ならびに閉塞性気管支炎、肺気腫、およびのうほう性線維症などの気流制限に関連付けられた他の疾患のための最も一般的な治療形態である。質量分析(‘S.R.Heron et al.,‘Surface acoustic wave nebulisation of peptides as a microfluidic interface for mass spectrometry’,Analytical Chemistry,2010,82,3985-3989参照)、ナノ粒子合成(‘J.R.Friend et al,‘Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomisation’,Nanotechnology,2008,19,1453010参照)、および肺送達(A.E.Rajapaksa et al.,‘Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization’,Respiratory Research,2014,15,1参照)との連結のための高速液滴イオン化を含む様々な用途でSAW噴霧プラットフォームの性能を改善するための広範な研究開発が行われている。
これらの継続的な取り組みにもかかわらず、現在の最新技術は、実用的および商業的使用のためにプラットフォームを変換することに関連付けられた問題に対処するために、研究室の環境を超えて進歩していない。研究者によってしばしば見落とされるこれらの問題は、面倒で複雑な流体チップのリザーバへのインターフェース、弱い流量、および(しばしば送達される体積の大部分を占める)大きい液滴のスプリアス射出を含み、最終的には、特定の実験室の用途に適合するようにカスタマイズされ、エンドユーザによって確実かつ容易に使用され得る実用的かつ商業的に実現可能なプラットフォームではなく、専門家のユーザによってのみ実行できる、次善のネブライザを生成する。
そのようなSAW噴霧プラットフォームを使用する際の特定の課題は、使用される液体を取り囲む問題およびデバイスへのそれらの供給に関する。一般的なアプローチは、圧電基板のトランスデューサ表面上に配置されたウィックを使用して液体を供給することであった。電気音響トランスデューサは、典型的にはインターデジタルトランスデューサ(IDT)の形態であり、SAWがトランスデューサ表面上を伝播できるように、圧電基板上にフォトリソグラフィ的に適用される。供給ウィックを使用する構成は、例えば、US8991722(Monash University)に示されている。
しかしながら、トランスデューサ表面上のウィックの使用は、SAWの望ましくない減衰、界面材料の加熱、および、特に、音響エネルギーがチップ上に集束されるとき、デバイス上の液体の空間的位置に応じた性能の感度をもたらす可能性がある。加えて、複雑な多段階の幾何学的形状を有する後続の液膜は、噴霧中にデバイス上に存在することが多く、設計上意図されない大きい液滴(10μmを超える)および最大100μmのサイズの液滴の生成をもたらし、これは、深部肺沈着のために1μm程度の液滴が必要とされる肺薬物送達用途には特に望ましくない。
上述の問題の少なくともいくつかを回避するための1つの提案された構成が、国際公開第2014/132228号(RMIT University)に示されており、供給ウィックが圧電基板の周縁部と接触し、それによって、ウィックと、トランスデューサ表面と接触している供給液体とに関連付けられたエネルギー損失が最小限に抑えられる。むしろ、周辺縁部におけるSAWと供給された液体との相互作用は、噴霧化が起こり得る薄い液体層の形成につながる。
提案されていた代替のアプローチは、SAWではなく、圧電基板の本体内で生成された従来のバルク音響波(BAW)を使用して液体を噴霧することである。US6679436(Omron)は、この目的のために従来のバルク波を使用する噴霧器を記載している。SAWプラットフォームが使用されているが、SAWは、噴霧するためではなく、液体を感知するため(すなわち、液体が存在するかどうかを感知するため)に使用される。代わりに、液体は圧電基板の非トランスデューサ表面に適用され、基板内で生成されたバルク波は、液体を噴霧するために使用される。
従来技術のSAWおよびBAWプラットフォームに関連付けられた問題は、そのようなプラットフォームで可能な噴霧レートが比較的低いことである。SAWプラットフォームは、典型的には、約0.1ml/minの噴霧レートのみを有し、そのようなプラットフォームの潜在的な用途を有意に制限する。
SAWを使用する噴霧プラットフォームが最も効率的な波型であるということが一般的な信念であるが、最近の研究では、優れた液体噴霧を提供するためにSAWと表面反射バルク波(SRBW)の両方の組合せが示されていることが示されている(‘Amgad R.Rezk et al,‘Hybrid Resonant Acoustics (HYDRA)’,Advanced Materials,2016,1970-1975’参照)。SRBWは、圧電基板のトランスデューサ表面上のSAWが、トランスデューサ表面と、基板表面に平行に隣接した関係で配置されている基板の対向する非トランスデューサ表面との間で内部反射するときに生成される。したがって、SRBWは、SAWと同じ周波数で生成される。したがって、SAWとSRBWの両方を組み合わせるハイブリッド音響波は、それらの相互関係のために生成され、トランスデューサ表面と非トランスデューサ表面の両方に現れる。SRBWの生成は、基板の厚さが生成されたSAWの波長またはその付近であるときに最適化される。
国際公開第WO2016/179664号(RMIT University)は、液体を噴霧するためにSAWとSRBWとを組み合わせたハイブリッド音響波を使用する噴霧プラットフォームについて記載している。液体は、ウィックを使用して、または基板縁部を液体のリザーバ内に直接浸漬することによって、圧電基板の側縁部または端縁部に供給され得る。次いで、ハイブリッド音響波(すなわち、SAWおよびSRBW)は、基板のIDT表面と非IDT表面の両方に液体の薄膜を引き寄せるように作用する。しかしながら、SAWおよびSRBWの噴霧プラットフォームの組合せは、記載された実施形態のうちの1つにおいて基板と接触するウィックを使用するため、SAWのみの噴霧プラットフォームに見られるものと同様の懸念に依然として直面する。
吸入薬物を含む活性薬剤の投与におけるSAWネブライザシステムのさらなる課題は、正しい用量が治療効果のために患者によって確実に受け取られるように、正確で測定可能な用量の送達である。これは、患者が、例えば、過剰投与を受けることを防止する。吸入の間、呼吸ガスの流速は、可変であり得、これは、投薬レートを変化させ得るか、または吸入療法があまり効果的でなくなる可能性があり、これらの両方は、被験者に悪影響を与える可能性がある。
圧電チップ上部の流体体積の増加/減少に伴う負荷(すなわち、圧電チップ抵抗)の過渡的変化を考慮すると、流体の存在(ON/OFF状態)を検出し、基板の表面上の流体の量を測定するための標準的な方法は、負荷/チップに供給される無線周波数(RF)信号を介する。しかしながら、この手順は、オシロスコープおよび電流プローブにRF信号を接続することを必要とし、これらは、高価であるだけでなく、小型化するのが非常に困難である。
吸入薬物を含む活性薬剤の投与におけるSAWネブライザシステムの別の課題は、チップの表面、側面または端部からの噴霧液の損失を防止することである。これは、例えば、噴霧化の前に音響波が液体を表面から追い払う場合に起こり得る。チップ表面からの噴霧液の損失は、投薬レートを変化させるか、または吸入療法があまり効果的でなくなる可能性があり、これは、被験者に悪影響を与える可能性がある。
これらおよび他のSAWネブライザシステムは、性能の信頼性、再現性、効率、および液滴分布に関する問題も抱えている。特に、単結晶チップを利用するシステムは、過熱による故障、焦電故障の傾向があり、いくつかの構成では、チップが液体サンプルと常に接触することを必要とする。そのようなデバイスの性能信頼性および効率を改善する余地がある。さらに、多様な範囲の医薬品有効成分(API)の投与のために、液滴サイズ、液滴分布の幾何標準偏差(GSD)、安定化期間(すなわち、使用時間)、体積噴霧レート、および微粒子率を含むがこれらに限定されない適切な動作パラメータを達成することは、依然として課題である。
背景技術の上記の議論は、記載された実施形態の文脈を説明するために含まれる。背景技術が、本明細書の特許請求の範囲のいずれか1つの優先日に知られていたこと、または一般的な一般知識の一部であったことを容認するものと解釈されないものとする。
本明細書全体を通して、「含む(comprise)」という単語、または「含む(comprises)」もしくは「含む(comprising)」などの変形は、記載された要素、整数もしくはステップ、または要素、整数もしくはステップのグループを含むことを意味し、任意の他の要素、整数もしくはステップ、または要素、整数もしくはステップのグループを排除しないことを理解されよう。
「音響波エネルギー」という用語は、本明細書では、進行および定在表面音響波(SAW)、ならびに表面反射バルク波(SRBW)を含むバルク音響波(BAW)、および前記波の組合せ、特にSAWとSRBWの組合せを指すために使用される。
「液体」という用語は、本明細書において、医薬品、プラスミドDNA、ペプチド、香料などの機能的もしくは治療的薬剤を含む純粋な液体、または液体混合物を指すために使用される。
従来技術の音響ネブライザに関連付けられた1つ以上の欠点に対処するか、または少なくともそれに代わるものを提供する音響ネブライザが必要とされている。
本開示の一態様によれば、ネブライザが提供され、ネブライザは、
ハウジングと、
ハウジング内に収容され、少なくとも1つの圧電基板内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサが配置されるトランスデューサ表面と、対向する非トランスデューサ表面とを有する少なくとも1つの圧電基板と、
トランスデューサおよび非トランスデューサ表面のうちの少なくとも1つに液体を供給するための液体供給システムであって、液体を収容するためのリザーバと、リザーバから少なくとも1つの圧電基板に液体を供給するための、少なくとも1つの圧電基板と接触する少なくとも1つの比較的剛性の供給導管とを含む、液体供給システムと、
少なくとも1つの圧電基板上の液体の体積を検出するためのセンサと
を含む。
1つ以上の実施形態では、供給導管は、ペン先または針の形態であり得る。
本開示の別の態様によれば、液滴を噴霧するためのネブライザが提供され、ネブライザは、
ハウジングと、
ハウジング内に収容され、基板内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサが配置されるトランスデューサ表面と、対向する非トランスデューサ表面とを有する少なくとも1つの圧電基板と、
少なくとも1つの圧電基板の周囲表面の少なくとも一部と接触しているコンプライアント材料と、
トランスデューサおよび非トランスデューサ表面のうちの少なくとも1つに液体を供給するための液体供給システムであって、液体を収容するためのリザーバと、リザーバから基板に液体を供給するための少なくとも1つの供給導管とを含む、液体供給システムと、
基板の表面上の液体の体積を検出するためのセンサと
を含む。
1つ以上の実施形態では、コンプライアント材料は、粘着テープ、シリコーンゴム、サーマルペースト、またはこれらの組合せからなる群から選択される。コンプライアント材料は、少なくとも1つの圧電基板の遠位端の周囲の少なくとも一部と接触し得る。
1つ以上の実施形態では、少なくとも1つの供給導管は、少なくとも1つの圧電基板と接触する比較的剛性の供給導管であり得る。
1つ以上の実施形態では、少なくとも1つの供給導管は、ペン先、針、ウィック、マイクロチャネル、またはそれらの組合せからなる群から選択される。
1つ以上の実施形態では、センサは、直流であり得るネブライザを横切る電流の変化を測定することによって、少なくとも1つの圧電基板の表面上の液体の体積を検出する。
1つ以上の実施形態では、センサは、少なくとも1つの圧電基板のトランスデューサ表面および/または非トランスデューサ表面上の液体の体積を検出するように構成され得る。
1つ以上の実施形態では、(電流が測定される)ネブライザシステムは、電子回路、および少なくとも1つの圧電基板を含む。電子回路は、少なくとも1つのプリント回路基板を含み得る。1つ以上の実施形態では、ネブライザは、ネブライザの動作を制御するためのセンサに応答する制御スイッチをさらに含み得る。
1つ以上の実施形態では、ネブライザは、基板の表面、側面、または端部からの噴霧液の損失を防止するように適合され得る。例えば、一実施形態では、ネブライザは、噴霧の前に少なくとも1つの圧電基板から液体が追い払われる程度を低減するために、反対方向に音響波エネルギーを生成するための少なくとも1つの追加の、および/または対向する電気音響トランスデューサをさらに含み得る。さらに他の実施形態では、少なくとも1つの圧電基板は、噴霧の前またはその間に、少なくとも1つの圧電基板に適用される液体の損失を含み、および/または防止するための含有バリア構造をさらに含み得る。1つ以上の実施形態では、含有バリア構造は、リップ、壁、ガスケット、堆積***膜、およびこれらの組合せを含み得る。
1つ以上の実施形態では、液体は、リザーバから重力供給されるか、または能動ポンプシステムを介してリザーバから移送され得る。さらに他の実施形態では、液体供給システムは、そこから液体の安定した流れを提供するための流量調整器をさらに含む。
1つ以上の実施形態では、少なくとも1つの圧電基板は、少なくとも1つの圧電基板と供給導管との接触を制御するための変位可能なマウント上に支持され得る。
1つ以上の実施形態では、ネブライザは、噴霧された液滴のサイズを制御するための制御手段をさらに含み得る。1つ以上の実施形態では、制御手段は、トランスデューサ表面または非トランスデューサ表面の少なくとも一方に略平行に隣接した関係で配置されている少なくとも1つのバッフルを含み得る。
1つ以上の実施形態では、ハウジングは、入口開口部をさらに含み得、リザーバは、入口開口部内に収容することができるネック部分を含み得る。
1つ以上の実施形態では、ネブライザは、離間して、平行に隣接した関係で配置されている少なくとも2つの圧電基板を含み得る。
1つ以上の実施形態では、液滴サイズ制御手段は、隣接する基板表面間に供給される液体のメニスカスの厚さを制御し、それによって噴霧された液滴のサイズを制御するために、少なくとも2つの圧電基板間の間隔の事前設定を可能にするように構成され得る。
1つ以上の実施形態では、液滴サイズ制御手段は、隣接する基板表面と内壁との間に供給される液体のメニスカスの厚さを制御し、それによって噴霧された液滴のサイズを制御するために、ハウジングの内壁からの少なくとも2つの圧電基板の間隔の事前設定を可能にするように構成されている。
1つ以上の実施形態では、液滴サイズ制御手段は、少なくとも1つの圧電基板に供給される液体のメニスカスの厚さを制御し、それによって噴霧された液滴のサイズを制御するために、液体供給導管および少なくとも1つの圧電基板と流体連通している液膜形成構造を含む。
1つ以上の実施形態では、液膜形成構造は、ウェブ、メッシュ、1つ以上の繊維、または液体供給導管のスロット、またはそれらの組合せを含む。
1つ以上の実施形態では、記載された実施形態のネブライザのトランスデューサ表面、非トランスデューサ表面、またはそれらの組合せの少なくとも一部がパターニングされ得る。
1つ以上の実施形態では、生成された音響波エネルギーは、少なくとも1つの圧電基板のトランスデューサ表面で伝播する表面音響波(SAW)を含み得る。音響波エネルギーは、少なくとも1つの圧電基板のトランスデューサ表面と非トランスデューサ表面との間で反射される表面反射バルク波(SRBW)を含み得る。1つ以上の実施形態では、音響波エネルギーは、少なくとも1つの圧電基板のトランスデューサ表面を伝播する表面音響波(SAW)と、少なくとも1つの圧電基板のトランスデューサ表面と非トランスデューサ表面との間で反射される表面反射バルク波(SRBW)との組合せを含み得る。表面音響波(SAW)は、定在波、進行波、およびそれらの組合せを含み得る。表面反射バルク波(SRBW)は、定在波、進行波、およびそれらの組合せを含み得る。前述のように、SRBWは、圧電基板のトランスデューサ表面上のSAWが、トランスデューサ表面と、基板表面に平行に隣接した関係で配置されている基板の対向する非トランスデューサ表面(すなわち、基板の他方の側)との間で内部反射するときに生成される。したがって、SRBWは、SAWと同じ周波数で生成される。SAWとSRBWの両方を組み合わせるハイブリッド音響波は、それらの相互関係のために生成され得、トランスデューサと対向する非トランスデューサ表面の両方に現れる。
上述のように、液体供給システムは、トランスデューサおよび非トランスデューサ表面の少なくとも一方に液体を供給し得る。このこと、および音響波がトランスデューサ表面と対向する非トランスデューサ表面の両方に現れ得るという事実を考慮して、液体サンプルが、トランスデューサ表面、対向する非トランスデューサ表面、またはトランスデューサ表面と対向する非トランスデューサの両方から噴霧され得ることが理解される。一実施形態では、液体は、トランスデューサ表面から噴霧される。別の実施形態では、液体は、非トランスデューサ表面から噴霧される。別の実施形態では、液体は、トランスデューサ表面と対向する非トランスデューサ表面の両方から噴霧される。
記載された実施形態の圧電基板および電気音響トランスデューサはまた、少なくとも1つの基板上の液体質量を感知するために使用されてもよい。表面波、すなわちSAWが感知のために使用されるUS6679436(Omron)とは異なり、バルク波、すなわち同じ基板上に生成されたBAWが、記載された実施形態において感知のために使用される。記載された実施形態によるネブライザのための電気音響トランスデューサは、インターデジタルトランスデューサ(IDT)であってもよい。少なくとも1つの圧電基板は、ニオブ酸リチウム(LiNbO)から形成され得る。
一実施形態では、非トランスデューサ表面の少なくとも一部は、少なくとも1つの金属を含むコーティングをさらに含み得る。一実施形態では、基板の遠位端におけるトランスデューサ表面の少なくとも一部は、少なくとも1つの金属を含むコーティングをさらに含み得る。少なくとも1つの金属は、チタン、金、アルミニウム、クロム、銅、またはこれらの組合せであってもよい。
圧電基板は、トランスデューサ表面を伝播するSAWの波長またはその付近の厚さを有し得る。これは、基板内のSRBWの生成を最適化する。
1つ以上の実施形態では、液体は、トランスデューサ表面、非トランスデューサ表面、またはトランスデューサ表面と非トランスデューサ表面の両方から噴霧される。
記載された実施形態によるネブライザでは、液体を噴霧して、0.1μm~100μmの範囲にわたるサイズを有する液滴を形成し得る。
1つ以上の実施形態では、液体は、最大10.0ml/minの噴霧レートで噴霧され得る。
ネブライザの一実施形態によれば、ハウジングは、少なくとも1つの電気音響トランデューサに接続された外部電気接点と、一体型液体供給システムとを有するカートリッジの形態であり得る。
1つ以上の実施形態では、少なくとも1つの圧電基板は、変位マウントに接合される。
1つ以上の実施形態では、少なくとも1つの圧電基板は、トランスデューサ表面と変位マウントとの間に液密シールを提供するシーリングで変位マウントに接合される。
1つ以上の実施形態では、非トランスデューサ表面は、1つ以上の電気音響トランスデューサを含む。
1つ以上の実施形態では、液滴を噴霧するためのネブライザが提供され、ネブライザは、ハウジングと、ハウジング内に収容され、少なくとも1つの圧電基板内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサが配置されるトランスデューサ表面を有する少なくとも1つの圧電基板と、噴霧の前にトランデューサ表面から液体が追い払われる程度を低減するために、反対方向に音響波エネルギーを生成するための少なくとも1つの対向する電気音響トランスデューサと、少なくとも1つの圧電基板に液体を供給するための液体供給システムとを含む。
1つ以上の実施形態では、液滴を噴霧するためのネブライザが提供され、ネブライザは、ハウジングと、ハウジング内に収容された少なくとも2つの圧電基板であって、各々がそれぞれの圧電基板内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサが配置されたそれぞれのトランスデューサ表面を有し、離間して、平行に隣接した関係で配置されている、少なくとも2つの圧電基板と、圧電基板の少なくとも1つに液体を供給するための液体供給システムと、噴霧された液滴のサイズを制御するための制御手段であって、制御手段が、隣接する基板表面間に供給される液体のメニスカスの厚さを制御し、それによって噴霧された液滴のサイズを制御するために、少なくとも2つの圧電基板間の間隔の事前設定を可能にするように構成されている、制御手段とを含む。
1つ以上の実施形態では、液滴を噴霧するためのネブライザが提供され、ネブライザは、ハウジングと、ハウジング内に収容され、基板内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサが配置されるトランスデューサ表面と、対向する非トランスデューサ表面とを有する少なくとも1つの圧電基板と、トランスデューサおよび非トランスデューサ表面のうちの少なくとも1つに液体を供給するための液体供給システムであって、液体を収容するためのリザーバと、リザーバから少なくとも1つの圧電基板に液体を供給するための、少なくとも1つの圧電基板と接触する少なくとも1つの比較的剛性の供給導管とを含む、液体供給システムとを含む。
1つ以上の実施形態では、液滴を噴霧するためのネブライザが提供され、ネブライザは、ハウジングと、ハウジング内に収容され、少なくとも1つの圧電基板内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサが配置されるトランスデューサ表面と、対向する非トランスデューサ表面とを有する少なくとも1つの圧電基板と、少なくとも1つの圧電基板の周囲表面の少なくとも一部と接触しているコンプライアント材料と、トランスデューサおよび非トランスデューサ表面のうちの少なくとも1つに液体を供給するための液体供給システムであって、液体を収容するためのリザーバと、リザーバから少なくとも1つの圧電基板に液体を供給するための少なくとも1つの供給導管とを含む、液体供給システムとを含む。
1つ以上の実施形態では、少なくとも1つの電気音響トランデューサは、少なくとも1つの圧電基板上の液体の体積を示す出力を提供するように構成され得る。
1つ以上の実施形態では、少なくとも1つの電気音響トランスデューサによって提供される出力は、電流であり得る。
1つ以上の実施形態では、ネブライザは、少なくとも1つの圧電基板上の液体の体積を検出するためのセンサをさらに含み得る。
1つ以上の実施形態では、少なくとも1つの電気音響トランスデューサは、センサを含み得る。
1つ以上の実施形態では、ネブライザは、噴霧の前に少なくとも1つの圧電基板から液体が追い払われる程度を低減するために反対方向に音響波エネルギーを生成するための少なくとも1つの対向する電気音響トランスデューサをさらに含み得る。
1つ以上の実施形態では、少なくとも1つの対向する電気音響トランデューサは、少なくとも1つの圧電基板上の液体の体積を示す出力を提供するように構成され得る。
1つ以上の実施形態では、少なくとも1つの対向する電気音響トランスデューサによって提供される出力は、電流であり得る。
1つ以上の実施形態では、少なくとも1つの対向する電気音響トランスデューサは、センサを含み得る。
1つ以上の実施形態では、ネブライザは、噴霧された液滴のサイズを制御するための制御手段をさらに含み得る。
1つ以上の実施形態では、ネブライザは、離間して、平行に隣接した関係で配置されている少なくとも2つの圧電基板を含み得る。
1つ以上の実施形態では、液滴サイズ制御手段は、隣接する基板表面間に供給される液体のメニスカスの厚さを制御し、それによって噴霧された液滴のサイズを制御するために、少なくとも2つの圧電基板間の間隔の事前設定を可能にするように構成され得る。
1つ以上の実施形態では、液滴サイズ制御手段は、隣接する基板表面と内壁との間に供給される液体のメニスカスの厚さを制御し、それによって噴霧された液滴のサイズを制御するために、ハウジングの内壁からの少なくとも2つの圧電基板の間隔の事前設定を可能にするように構成され得る。
1つ以上の実施形態では、液滴サイズ制御手段は、少なくとも1つの圧電基板に供給される液体のメニスカスの厚さを制御し、それによって噴霧された液滴のサイズを制御するために、液体供給導管および少なくとも1つの圧電基板と流体連通している液膜形成構造を含み得る。
1つ以上の実施形態では、液膜形成構造は、ウェブ、メッシュ、1つ以上の繊維、または液体供給導管のスロットを含み得る。
1つ以上の実施形態では、ネブライザシステムが提供され、ネブライザシステムは、上記で開示したネブライザを含み、ネブライザは、第1のネブライザ、および第2のネブライザである。
1つ以上の実施形態では、第1のネブライザは、第1のネブライザ水接触面を含み、第2のネブライザは、第2のネブライザ水接触面を含む。
1つ以上の実施形態では、第1のネブライザ水接触面は、第2のネブライザ水接触面に直交する。
1つ以上の実施形態では、第1のネブライザ水接触面は、トランスデューサ表面または非トランスデューサ表面であり、第2のネブライザ水接触面は、第2のネブライザのトランスデューサ表面または第2のネブライザの非トランスデューサ表面である。
本開示の別の態様によれば、上記のようなネブライザまたは上記のようなネブライザシステムを使用して液体を噴霧する方法が提供される。
方法は、0.1~100μmの範囲のサイズを有する液滴を形成するために液体を噴霧することを含み得る。1~5μmの間のより小さい液滴サイズは、治療薬の吸入の用途に理想的である。しかしながら、香料、化粧品、殺虫剤、塗料、または防腐剤を含む他の用途に必要であれば、10μmを超えるより大きいサイズの液滴を形成することができることを理解されたい。
この方法は、最大10.0ml/minの噴霧レートで液体を噴霧することをさらに含み得る。
この方法は、10μm未満の幾何標準偏差(GSD)を有する液滴を形成するために液体を噴霧することをさらに含んでもよい。
方法は、医薬品、プラスミドDNA、RNAi、ペプチド、タンパク質、および細胞などの機能的もしくは治療的薬剤、または香料、化粧品、防腐剤、農薬、もしくは塗料などの非治療的薬剤を含む液体を噴霧することを含み得る。1つ以上の実施形態では、機能的または治療的薬剤は、単位用量として送達されてもよい。1つ以上の実施形態では、単位用量は、基板の表面上の液体の体積を検出するためのセンサによって決定される。
本開示によるネブライザにおける流体送達および噴霧のためのトランスデューサ表面と非トランスデューサ表面の両方の使用は、はるかに高い噴霧レート(典型的な0.1~0.2ml/minのSAW噴霧レートと比較して、1ml/min以上)を提供するだけでなく、典型的には不十分な音響整合特性を有する、以前の噴霧構成(ガラス、ウィック、PDMSなど)における流体送達のために典型的に使用される材料に結合されるとき、音響波エネルギーの粘性散逸による望ましくない加熱も回避する。加えて、本開示によるネブライザの構成は、化学物質および敏感なサンプルと電気音響トランスデューサとの接触も低減し得る。これは、過酷な化学物質からトランスデューサの電極を保護するとともに、電極によって生成される強い電界から任意の敏感な生物学的サンプルを保護するという利点を有する。
ネブライザの実施形態を示す添付の図面を参照して、実施形態をさらに説明することが便利であろう。他の実施形態も可能であり、したがって、添付の図面の特殊性は、前述の説明の一般性に取って代わるものとして理解されないものとする。
一実施形態によるネブライザの側断面図である。 一実施形態によれば、ペン先または針を構成する液体送達システムの拡大図である。 一実施形態によるネブライザの側面詳細図である。 ネブライザの別の実施形態の詳細な側断面図である。 ネブライザの別の実施形態の側断面図である。 ネブライザのための圧電基板を保持するプラットフォームの斜視図である。 ネブライザのトランスデューサ表面の直交図である。 基板の周囲表面を強調する、記載されたネブライザの別の実施形態のトランスデューサ表面の直交図である。説明したように、コンプライアント吸収性材料は、図3bで強調されている基板サーフェーサの周囲表面の少なくとも一部と接触していてもよい。 トランスデューサ表面の遠位端およびパターニングに適したエリア上の、記載されたネブライザ強調コーティングの別の実施形態のトランスデューサ表面の直交図である。 記載されたネブライザの非トランスデューサ表面が部分的にコーティングされる、記載されたネブライザの代表的な例である。 基板のトランスデューサ表面の遠位端上の、記載されたネブライザ強調コーティングの別の実施形態のトランスデューサ表面の直交図である。 図4aおよび図4bは、ネブライザの別の実施形態の側断面図である。 バッフルなしのネブライザの射出された滴経サイズ分布のグラフである。 バッフルありのネブライザの射出された滴経サイズ分布のグラフである。 周波数の関数としてのHumalog(インスリン投薬)の質量感知を示すグラフである。 非トランスデューサ基板表面がチタンおよび金でコーティングされている、一実施形態によるネブライザの噴霧化分布データを示すグラフである。 (a)RF負荷を監視する標準的な方法、および(b)センサによって、表面上の液体の体積を検出するためのセンサの代表的な例である。 センサが、液体の存在(ON/OFF)および/または表面上の液体の体積を検出するように適合され、ネブライザシステムが、活性薬剤の投与に適合され、表面上の液体の体積が、投与される所与の活性物質の単位用量に等しくなり得る、記載された実施形態による表面上の液体の体積を検出するためのセンサの代表的な例である。 ネブライザが2つの対向するIDTを含み、黒い正方形がIDT間の噴霧化ゾーンを表す代表的な実施形態である。 破線が、例えば噴霧化エリアの周囲のガスケットの位置を示す、ネブライザが表面に流体を含むための構造を含む代表的な実施形態である。 例えば、a.界面にあり、基板と液体供給導管との間で流体連通している繊維またはウェブの束、b.基板上の繊維またはウェブ間で形成される薄いメニスカスの側面図、c.液体供給導管内のマイクロスロット、d.動作中の液体供給導管内のマイクロスロットによって生成される薄膜の側面図を含む、液膜形成構造の代表的な例である。 トランスデューサ表面とネブライザのマウントとの間に液密シールを提供するシーリングを含むネブライザの代表的な実施形態である。 第1のネブライザと、第1のネブライザに対してある角度で提供される第2のネブライザとを含むネブライザシステムの代表的な実施形態である。 噴霧の第1の軌道および噴霧の第2の軌道を示す、図14のネブライザシステムの代表的な実施形態である。
最初に図1aおよび図1cを参照すると、本開示によるネブライザの第1の実施形態が示されている。ネブライザは、圧電基板2を支持するマウント1を含む。圧電基板2は、電気音響トランスデューサ48が配置されているトランスデューサ表面2aを含む。電気音響トランスデューサ48は、インターデジタルトランスデューサ(IDT)(図示せず)を含むか、またはインターデジタルトランスデューサ(IDT)の形態である。基板2は、非トランスデューサ表面2bをさらに含む。非トランスデューサ表面2bは、基板2のトランスデューサ表面2bとは反対側または逆の表面上に配置または設けられ得る。図示のように、非トランスデューサ表面2bは、トランスデューサ表面2aに対して平行に隣接した関係で配置され得る。
図3(a)を参照すると、電気音響トランスデューサ48は、1つ以上のインターデジタルトランスデューサ(IDT)35を含むか、またはその形態である。電気音響トランスデューサ48は、基板2の少なくとも一部を含むか、または基板2の少なくとも一部にまたがり、メインIDTバー30を含む。電気音響トランデューサ48は、電気接点端部32を含む。電気音響トランデューサ48は、シールド28を含む。シールド28は、第1の細長い部分60と、第2の細長い部分62とを含む。第1の細長い部分60は、第2の細長い部分62に対して実質的に垂直である。第1の細長い部分60は、メインIDTバー30に対して実質的に垂直である。シールド28は、電気音響トランスデューサ48によって生成される波(例えば、以下でより詳細に説明するように、表面音響波または表面反射バルク波)が基板2または電気接点端部32の周囲64に到達する程度を低減するのを助け得る。基板2の周囲64または電気接点端部32に到達する波は、損傷を引き起こし、基板2および/または電気音響トランスデューサ48の寿命を低下させる可能性がある。電気音響トランデューサ48は、ベンド29を含む。特に、メインIDTバー30は、各々、1つ以上のベンド29を含み得る。ベンド29は、生成された波が基板2または電気接点端部32の周囲に到達する程度を減少させるのを助け得る。電気音響トランデューサ48は、リフレクタバー31を含む。リフレクタバー31は、生成された波が基板2または電気接点端部32の周囲64に到達する程度を低減するのを助け得る。
ネブライザは、液体供給システムを含む。液体供給システムは、基板2に液体を供給するように構成されている。すなわち、液体供給システムは、トランスデューサ表面2aおよび/または非トランスデューサ表面2bに液体を供給するように構成される。ネブライザは、ネブライザによって噴霧される液体4が内部に収容される液体リザーバ3をさらに含む。いくつかの実施形態では、液体供給システムは、液体リザーバ3を含む。リザーバ3は、ハウジング(図示せず)に設けられたねじ付き入口開口5にねじ込むことができるねじ付きネック3aを有し得るボトルまたはバイアルの形態とすることができる。液体供給システムはまた、本明細書に記載されるように、供給導管6を含んでいてもよい。供給導管6は、比較的剛性であり得る。ネブライザは、図1aおよび図1cにその使用位置で示されており、それによって、液体4がリザーバ3からペン先または針6の形態の比較的剛性の供給導管6を通って重力供給されることを可能にする。トランスデューサ表面2aのペン先または針6の端部に、液体メニスカス7が形成されている(図1b)。RF電力は、電気接点8を介して電気音響トランデューサ48に供給される。これにより、トランスデューサ表面2aに表面音響波(SAW)が生成され、トランスデューサ表面2aと非トランスデューサ表面2bとの間で反射される表面反射バルク波(SRBW)が生成される。SAWと組み合わされたSRBWの一意のハイブリッド波構成は、液体4がトランスデューサ表面2aを横切って液体メニスカス7から引き出されることを可能にする。液体4の蓄積がトランスデューサ表面2aの端部で起こる場合、音響波エネルギーは、液体4を基板2の端部の周りで基板2の非トランスデューサ表面2b上に引っ張り、そこで液体4を噴霧することもできる。重力供給構成は、針またはペン先6をプライムするための液体の連続的な自己調節された流れを可能にする。
さらに詳述すると、ペン先もしくは針6の供給ポンプ、重力供給、または毛管作用は、単にそれをプライムするように作用する。次いで、液体4は、図1bに示すように、音響波によって基板2の表面上に引き出される。いくつかの実施形態では、液体送達システム、すなわちペン先または針6は、基板2と接触している。これは、国際公開第WO2012/096378(Panasonic Corp.)号の基板にエッチングされた供給チャネルへの毛管駆動液体送達とは対照的である。音響波によってペン先または針6から基板2上に液体を引き出すことにより、噴霧された液体だけがデバイス上に引き出されるので、溢れが回避される。
ペン先または針6の材料の選択は、音響反射材料を含み得る。音響吸収材料は、基板2上の音響エネルギーを吸収し、したがって減衰させる傾向がある。そのような材料は、金属、ポリマーまたはセラミック材料を含み得る。
ネブライザの設計によっては、メッシュを使用して、噴霧された液滴のサイズの均一性を制御し、維持しようとする。これらのネブライザは、超音波または他のバルク定常波によって生成されるピストン作用に依存して、メッシュを通してfを押し引きして液滴を生成する。メッシュがなければ、これらのネブライザは、定在バルク波が、関連する基板を横切って不均一な厚さの液膜を生成し、その後、不均一で大きい液滴を生成するので、機能することができない。さらに、そのようなメッシュは詰まりやすい。本明細書に記載のネブライザの実施形態は、基板2の非トランスデューサ表面2b上であっても、定在波および進行波成分を有する表面音響波および表面バルク反射波を提供する。これにより、液体が基板2を横切って薄膜に引き込まれ、その結果、より小さい液滴が均一に生成される。
ハウジングは、少なくとも1つのバッフル9を含んでもよく、バッフル9は、例えば、ハウジングの壁によって形成することができる。少なくとも1つのバッフル9は、トランスデューサ表面2aから離間していてもよく、トランスデューサ表面2aに略平行に隣接した関係で配置され得る。同様に、少なくとも1つのバッフル9は、非トランスデューサ表面2bから離間していてもよく、トランスデューサ表面2bに略平行に隣接した関係で配置され得る。少なくとも1つのバッフル9は、基板2の長さの少なくとも一部に沿って延在してもよく、バッフル9は、液滴サイズの均一性に対する制御をアサートする簡単な手段を提供する。音響波エネルギーが液体4に結合する角度(レイリー角として知られる)により、10μm~100μm程度のサイズを有するより大きい液滴11が、より小さい液滴よりも大きい運動量で基板表面2aから射出される。これは、液滴が同じ角度で噴霧されるときに、液滴が射出されることを引き起こす。次いで、これらの大きい液滴11は、バッフル9の表面に衝突し、その結果、基板表面2aに戻るように方向変換され、そこで、リザーバ3から既存の液体供給物に再供給される。したがって、以前は戻された液滴11の一部であった液体は、再び噴霧される。一方、約1μm程度のサイズを有するより小さい液滴10は、著しく小さい運動量を有し、したがって、バッフル9の表面に到達しない。むしろ、小さい液滴10は、ネブライザから出る空気流に巻き込まれる。同様の液滴サイズ制御プロセスは、非トランスデューサ表面2bと、非トランスデューサ表面2bに隣接する対応するバッフル表面9との間でも発生する。
図1dは、ネブライザ内に積み重ねられた構成で支持された少なくとも2つの圧電基板12、13を利用する、本開示によるネブライザの別の実施形態を示す。3つ以上の圧電基板を、ネブライザ内の平行で隣接する位置に積み重ねることもできる。各圧電基板12、13は、各基板12、13のトランスデューサ表面12a、13a上に配置された電気音響トランスデューサ48を有する図1aおよび図1cに示された実施形態と同様の構成を有し、各基板内に音響波エネルギーを発生させ、それによって各基板12、13の基板表面12a、13aと平行に隣接する(または逆)非基板表面12b、13bの両方に供給された噴霧液を引き込むことができる。ハウジングはまた、下側基板13のトランスデューサ表面13aに平行に隣接して配置された下側バッフル9aを含み、これは、前述のように液滴サイズ制御を助ける。同様の効果が、上部基板12の非トランスデューサ表面12bと、その表面と反対側のバッフル9bとの間で生じる。2つの基板12、13のトランスデューサ12a、13aおよび非トランスデューサ12b、13b表面の配向は、それぞれのトランスデューサ表面12a、13aおよび非トランスデューサ表面12b、13bが互いに逆であるか、または平行し、隣接している限り、交換されてもよい。しかしながら、この構成は、液滴サイズの均一性を制御するためのさらなる手段を提供する。また、液体は、2つの基板12、13の間の隙間空間14と、下側基板13のトランスデューサ表面13aと下側バッフル表面9aとの間と、上側基板12の非トランスデューサ表面12bと上側バッフル表面9bとの間とに閉じ込められる。液体メニスカス7の厚さは、液滴サイズを制御する際に使用されるパラメータである。したがって、各基板12、13とバッフル面9a、9bとの間の相対的な間隔を調整することによって、メニスカス厚さを制御することができ、それによって噴霧された液滴のサイズを均一にすることができる。したがって、この構成は、上述の間隔を調整することによって液滴サイズを制御することを可能にする。また、複数の間隔を有することによって、複数の液滴サイズを取得することができることも想定される。
図1eは、ネブライザ内に積み重ねられた構成で支持された少なくとも2つの圧電基板12、13を利用する、本開示によるネブライザの別の実施形態を示す。図1dに記載された実施形態と同様に、液体は、2つの基板12、13の間の隙間空間14の間に閉じ込められる。図1dとは異なり、液体メニスカス7は、基板12と13の両方と接触している必要はない。さらに、一実施形態では、ペン先または針6は、基板12のうちの1つの表面と直接接触して、液体6を送達し得る。別の実施形態では、ペン先または針6は、基板12の表面と接触せず、液体6が基板12の表面と接触するように送達されるように配置されてもよい。少なくとも2つの圧電基板12、13は、同じであってもよいし、異なっていてもよいことが想定される。例えば、1つ以上の基板は、ネブライザ出力パラメータのさらなる制御を提供するために、以下に詳細に記載されるようにパターニングされてもよい。
さらに、図1dおよび図1eの構成を考慮すると、例えば、噴霧が起こり得る複数の基板表面が存在するので、より高い噴霧レートを提供することができる。隣接する基板表面は、1つの基板表面から射出された設計上意図されない大きい液滴が隣接する基板の表面上に集められ、より小さい液滴が生成されるまで再噴霧される能動バッフルとしても機能することができる。このアプローチは、ハウジングの内壁によって提供される受動的な物理的バッフルではなく、能動的な基板バッフルと考えることができる。このシステムは、前述の技法を使用して定在波または定在波の領域を促進することによって強化され得る。
同じ圧電基板2、12、13および電気音響トランスデューサ48は、感知機能を使用するために、基板の基本厚さモード(BAW)に対応するより低い周波数(500μm厚さの基板に対して約3.5MHz)でトリガすることもできる。感知のために厚さモードを使用する理由は、これに限定されないが、使用される128YXニオブ酸リチウム圧電結晶などの単結晶が、当然、10~10程度の高品質係数Qを有するからである。したがって、そのようなプラットフォームは、10ngまでの検出の制限で、効率的な噴霧と効率的な質量感知の両方を同時に行うことができる。両方の機能は、異なる電極パターンを組み込み、および/または異なるマイクロ流体機能のために完全に異なる追加の電極を必要とする他の既知のデバイスとは異なり、同じ電極パターンで達成することができる。これらの他のデバイスは、特定の共振周波数でトリガされるが、本明細書で説明されるネブライザの実施形態は、噴霧と感知機能の両方を可能にする電気回路を提供する。すなわち、同じ回路を使用して、2つのモード、すなわち、噴霧のための第1のモードと、感知のための第2のモードとが有効にされる。いくつかの実施形態では、感知モードは、国際公開第WO2015054742A1号に記載されているものであり得、その内容が参照により本明細書に組み込まれる。
したがって、記載された実施形態によるネブライザは、送達された総用量から差し引くことによって、ユーザに投与される実際の用量を決定するために、噴霧中に残留質量を感知する機能を追加することができる。さらに、本明細書に記載のネブライザの実施形態は、有利には、検出機能を可能にするために複数の格納部(例えば、流体格納部品)を必要とせず、これは、複数の格納部を必要とする他のデバイスよりも有利である。
図1aおよび図1cの上記の実施形態では、液体4は、ペン先または針6に重力供給される。ペン先または針6は、トランスデューサ表面2aの端部を押圧し、液体4をトランスデューサ表面2aと接触させ、そこで液体4を液滴10、11に噴霧することができる。ペン先または針6の間の堅牢な接触は、マウント1をペン先または針6に向かって変位させることによって達成され、ペン先または針6は、力がプリロードされ、変位下で一定の圧力を加える(図示せず)。一実施形態では、プリロードされた力は、マウント1をカンチレバーに固定することによって、またはマウント1を、例えば、ハウジング(図示せず)に固定されたばね16構成の形態でピボット15および弾性部材で構成することによって達成される。ペン先または針6の基板2への押圧によって引き起こされるマウント1の変位は、ペン先または針6の端部とトランスデューサ表面2aとの間の一定の圧力および接触が実現されることを可能にし、メニスカス7が形成され、維持されることを可能にする。このメニスカス7は、液体がリザーバ3から基板上に自由に流れないように、密閉されたリザーバ3の圧力と等しい圧力を提供する。マウント1を変位させ、圧力を加える能力は、剛性のペン先または針6を基板と直接接触させて効果的に使用することができることを意味する。図1bを参照すると、ペン先または針は音響波エネルギーと共鳴し、音響波エネルギーがペン先または針6から基板表面2を横切って液体4を引き出すことを可能にする。液体4の噴霧中、液体4の損失はメニスカス7を減少させる。次いで、生じた負圧は、ペン先または針6を通ってさらなる液体4を引き出し、メニスカス7を補充する。ペン先または針6を通る液体4の流出によってリザーバ3の相対圧力が十分に低いとき、気泡が入口穴17を介してリザーバ3に入り、圧力を均衡させ、液体4がペン先または針6によって引き出されることを可能にする。このプロセスは、リザーバ3が枯渇するまで続く。流量を増加させ、システムの信頼性を増加させるために、複数のペン先または針を使用することができることが想定される。しかしながら、圧力解放弁を使用して、トランスデューサ表面2a上に制御された液体の流れを提供することも想定される。さらに、基板2の端部がメニスカスに浸され、液体が密接に位置するオリフィスによって提供されることが想定される。あるいは、シリンジまたは蠕動ポンプなどの能動ポンプシステムを使用して、基板表面2a上に能動的に液体を供給することが想定される。能動ポンプシステムは、高い表面張力および/または高い粘度を有する液体をトランスデューサ表面2aに送達する必要がある状況において好ましい場合がある。
流量調整器19はまた、上述の重力供給システム、隣接オリフィス、または能動ポンプシステムと併せて使用されてもよい。また、流量調整器19は、万年筆と同様に動作することも想定される。そのような構成が図1aに示されており、リザーバ3内の流体は、流量調整器19を介して内部チャンバ18に流入する。流量調整器19は、液体4が通過することができる液体出口通路20と、リザーバ3に接続された空気入口通路21とを含む。したがって、流量調整器19は、そうでなければ入口通路21を通って入る気泡の解放によって中断される、液体4の安定した供給を提供し、それによってそのリザーバ3の外部および内部の空気圧を均衡させる。液体4は、内部チャンバ18に送達される。内部チャンバ18は、ペン先または針6に接続し、ペン先または針6が内部に収容される周辺開口22を有する。したがって、ペン先または針6は、液体4で常に湿っている。
基板2の電気接点端部は、基板2を損傷する可能性のある局所的な加熱を消散させるために、マウント1に直接接触して押圧される。この押圧は、広い電気接点8が埋め込まれた接触カンチレバー23を介して圧力を加えることによって達成することができ、例えば、広い電気接点8はまた、噴霧中に発生する高電圧下での電気接点8と基板2との間の有害なアーク放電を軽減する。接触カンチレバー23の基部への圧力は、例えば、磁気吸引効果を介して、またはねじ24を使用してばねワッシャ25を押し下げることによって加えることができる。あるいは、圧力は、ばね荷重電気接点を介して加えられてもよい。さらに、導電性材料は、電気接点の代替として、電気音響トランデューサ48に直接接合されてもよいことが想定される。マウント1に組み込むことができるヒートシンク面(図示せず)は、ペン先または針6を平行な基板2に押し付けることによって利用することもでき、次いで、ヒートシンクと接触したままにし、噴霧中に基板2を冷却することができる。このヒートシンクはまた、噴霧が起こっている間にシステムの堅牢性をさらに増大させるために、基板2の噴霧端部と接触する少量の過剰な液体を保持する形状を特徴とすることができる。また、マウント1は、過剰な焦電誘起電荷の容易な放電を可能にする、金属などの導電性材料から作製されてもよい。これにより、基板2にわたる有害なアーク放電の可能性が低減され、基板2の寿命が延長される。
吸入薬物を含む活性薬剤の投与におけるSAWネブライザシステムの課題の1つは、正しい用量が治療効果のために患者によって確実に受け取られるように、正確で測定可能な用量の送達であることが認識される。したがって、さらに他の実施形態では、記載された実施形態によるネブライザは、ネブライザシステムにわたる電流の変化を測定することによって基板の表面上の液体の体積を検出するための1つ以上のセンサを含み得る。1つ以上の実施形態では、ネブライザシステムは、電子回路、および少なくとも1つの圧電基板を含む。いくつかの実施形態では、センサは、基板の表面上の液体の体積を検出するために、ネブライザシステムにわたる直流(DC)の変化を測定する。電子回路は、少なくとも1つのプリント回路基板(PCB)を含み得ることを理解されたい。したがって、同じ回路(すなわち、電気音響トランスデューサを含むネブライザの回路)が、噴霧と感知の両方に使用され得る。
いくつかの実施形態では、電気音響トランデューサ48は、少なくとも1つの圧電基板2上の液体の体積を示すように構成される。すなわち、電気音響トランデューサ48は、本明細書に記載されているように、少なくとも1つの圧電基板2上の液体の体積を示す出力を提供するように構成される。出力は、電気音響トランデューサ48を通過する電流であってもよい。したがって、電気音響トランデューサ48は、液体を噴霧することと、少なくとも1つの圧電基板2上の液体の体積を感知することとの両方が可能である。
本明細書に開示されるセンサは、ネブライザの電気回路(例えば、電気音響トランスデューサ48、50)のサイズまたは形状とは独立して機能することができる。センサはまた、基板2のサイズまたは形状に関係なく機能することができる。これらは、両方とも、他のネブライザに比べて提供される顕著な利点である。
本明細書に記載されるアプローチは、回路全体(図8bに示される)にわたるDC電流入力を測定する。DC信号からPCB、負荷に至るまで、下流の多くの変数を考慮すると、これは簡単ではない。PCB設計は、RF信号出力を過ぎた負荷の変化を除いて、電流入力のあらゆる変動を排除するように注意深く構成することができることが想定される。図9に示されているのは、液体がチップと接触するとすぐに、PCB回路全体に供給される全体の電流が増加することが示され、次いで、流体が除去される(噴霧される)と減少する例である。これは、PCBおよび基板/負荷が1つのエンティティと見なされる、流体検出へのシステム全体のアプローチを表す。したがって、このアプローチは、DC電流変動を介して流体を監視するための非常に簡単なアプローチを提供し、代わりに下流RF(図8aに示される)を測定する既存のシステムと対照的である。DC電流変動は、例えば、オンボード電流カウンタ(すなわち、PCBに追加される小さい構成要素)内で容易に監視することができることが想定される。例えば、回路全体にわたってDCを測定するように適合されたそのようなセンサは、基板の表面上の流体体積を測定するための手段として働くことができるだけでなく、液体量が所望の閾値を下回るまたは上回ると、噴霧化プロセス(すなわち、ON/OFF)のためのスイッチとして任意選択で働くこともできることを理解されたい。したがって、1つ以上の実施形態では、記載された実施形態のネブライザは、ネブライザの動作を制御するためのセンサに応答する制御スイッチをさらに含み得る。1つ以上の他の実施形態では、ネブライザは、基板への流体の流れを制御するためのセンサに応答する制御弁をさらに含み得る。
センサは、基板2上の液体4の量の指示を提供するために、PCB回路(例えば、液体を噴霧するための電気音響トランデューサ)に供給される電流を検出するように構成される。ネブライザ、または関連する構成要素(例えば、コンピューティングデバイス)は、基板2上の液体の量を示すセンサによって出力される読取値を使用して、特定の期間にわたって噴霧された液体の量を決定することができる。噴霧された液体の量は、ネブライザから(例えば、ネブライザのユーザに)送達される液体の量に等しいか、またはそれに関連付けられ得る。これは、例えば、噴霧された液体の体積または質量であり得る。これは、他のネブライザが、噴霧された量ではなく、液体の存在または不足を決定することしかできない場合があるので、他のネブライザよりも有利である。
さらに他の実施形態では、このアプローチは、異なる導電率または粘度を有する他のタイプの流体に拡張することができ、流体の特性を監視するために使用することができることが想定される。
基板の表面上の液体の体積を検出するためのセンサは、吸入薬物を含む活性薬剤の正確で測定可能な投与量送達に適合され得ることがさらに理解される。1つ以上の実施形態では、単一の単位用量の投与は、基板の表面上の液体の体積を検出するためのセンサによって決定され得る。さらに他の実施形態では、単一の単位用量として機能的または治療的薬剤を投与するための方法が提供される。
基板の表面、側面、または端部からの噴霧液の損失は、吸入薬物を含む活性薬剤の投与におけるSAWネブライザシステムにとって依然として課題であることが理解される。これは、例えば、噴霧化の前に音響波が液体を表面から追い払う場合に起こり得る。チップ表面からの噴霧液の損失は、投薬レートを変化させるか、または吸入療法があまり効果的でなくなる可能性があり、これは、被験者に悪影響を与える可能性がある。したがって、1つ以上の実施形態では、噴霧の前に基板の表面から液体が追い払われるのを防止するために反対方向に音響波エネルギーを生成するための少なくとも1つの対向する電気音響トランスデューサ50をさらに含むネブライザが提供される。電気音響トランスデューサ48は、第1の電気音響トランスデューサと呼ばれ得る。少なくとも1つの対向する電気音響トランスデューサ50は、第2の電気音響トランスデューサと呼ばれ得る。少なくとも1つの対向する電気音響トランスデューサ50は、1つ以上のインターデジタルトランスデューサ(IDT)35を含むか、またはその形態である。少なくとも1つの対向する電気音響トランスデューサ50のIDT35は、静電トランスデューサ48を参照して説明したIDT35と同様であっても、同じであってもよい。少なくとも1つの対向する電気音響トランスデューサ50は、基板2の少なくとも一部分を含むか、または基板2の少なくとも一部分にまたがり、メインIDTバー56を含む。電気音響トランデューサ48は、電気接点端部66を含む。電気接点端部66は、前に説明した電気接点端部32と同様であっても、同じであってもよい。メインIDTバー56は、静電トランスデューサ48を参照して説明したメインIDTバー30と同様であっても、同じであってもよい。少なくとも1つの対向する電気音響トランスデューサ50は、シールド52を含む。シールド52は、少なくとも1つの対向する電気音響トランスデューサ50によって生成される波(例えば、表面音響波または表面反射バルク波)が基板2または電気接点端部66の周囲に到達する程度を低減するのを助け得る。基板2の周囲または電気接点端部66に到達する波は、損傷を引き起こし、基板2および/または電気音響トランスデューサ50の寿命を低下させる可能性がある。シールド52は、静電トランスデューサ48を参照して説明したシールド28と同様であっても、同じであってもよい。少なくとも1つの対向する電気音響トランスデューサ50は、ベンド54を含む。特に、メインIDTバー30は、各々、1つ以上のベンド54を含み得る。ベンド54は、生成された波が基板2または電気接点端部66の周囲に到達する程度を減少させるのを助け得る。少なくとも1つの対向する電気音響トランスデューサ50は、リフレクタバー58を含む。リフレクタバー58は、生成された波が基板2の周囲または電気接点端部66に到達する程度を低減するのを助け得る。リフレクタバー58は、本明細書に記載のリフレクタバー31と同様であっても、同じであってもよい。図10は、対向する電気音響トランスデューサ48、50(IDTの形態であってもよい)のそのような構成の表現を提供し、シールド28、52、ベンド29、54、メインIDTバー30、56、およびリフレクタバー31、58などの特徴が、それに応じて追加される。
驚くべきことに、対向する電気音響トランスデューサ48、50間の噴霧流体は、過剰な流体が音響によって基板2の表面、遠位端、または側面から追い払われるのを有利に防止し得ることが見出された。有利には、対向する電気音響トランスデューサ48、50のそのような構成は、対向する電気音響トランスデューサ48、50の間に安定した噴霧化ゾーン45を提供し、噴霧化エリア、ひいては潜在的な噴霧化レートを効果的に増大させ得ると想定される。安定した噴霧化ゾーン45の両側に対向する電気音響トランデューサ48、50を設けると、ネブライザは、相互作用する対向する音響波を生成し得る。すなわち、少なくとも1つの対向する電気音響トランスデューサ50は、電気音響トランスデューサ48によって生成される音響波と大きさが等しいが、反対方向に生成される音響波を生成し得る。対向する音響波は、安定した噴霧化ゾーン45において安定性を提供し得る。場合によっては、少なくとも1つの対向する電気音響トランスデューサ50が設けられていない場合、安定した噴霧化ゾーン45内の液体は、電気音響トランスデューサ48によって生成される音響波によって電気音響トランスデューサ48から追い払われることがある。したがって、液体は、噴霧ではなく、基板2から落下する可能性がある。上述の実施形態は、噴霧まで液体が安定した噴霧化ゾーン45内に確実に維持されるように構成することができ、したがって、この問題に対する解決策を提供する。
基板2の劣化は、比較的音響的に非吸収性である材料を基板2に提供する(例えば、接合する)ことによって低減することができる。いくつかの実施形態では、音響的に非吸収性の材料は、基材に選択的に提供される。例えば、音響的に非吸収性の材料は、安定した噴霧化ゾーン45の上で基板に接合することができる。これにより、安定した噴霧化ゾーン45の劣化が低減され得る。音響的に非吸収性の材料は、金属であってもよい。金属は、基板2上で、例えば、安定した噴霧化ゾーン45に電気メッキすることができる。
図11に示すようなものなど、さらに他の実施形態では、基板2が含有バリア構造46をさらに含むネブライザが提供される。含有バリア構造46は、液体を含み、かつ/または噴霧の前に表面(すなわち、トランスデューサ表面2a)に適用される液体の損失を防止または低減するためのものである。例として、そのような含有バリア構造46は、リップ、壁、ガスケット、堆積***膜、またはこれらの組合せを含み得る。図11は、液体を含み、かつ/または表面に適用される液体の損失を防止または低減するための、そのような含有バリア構造46の表現を提供する(すなわち、基板の表面上にガスケットを含み得る点線領域を参照されたい)。有利には、安定した噴霧化ゾーン45の周囲に延在し得る含有バリア構造46は、電気音響トランデューサ48、50を含むシステムの残りの部分から安定した噴霧化ゾーン45を隔離することも可能にし得る。これは、システムの他の要素を、潜在的に有害な流体の接触および汚れから保護するという追加の利点を有する。一実施形態では、固体疎水性ガスケットが、安定した噴霧化ゾーン45の縁部の周りに接触して押し付けられる。ガスケットなど、そのような含有バリア構造46は、流体が安定した噴霧化ゾーン45から出る可能性を防止または低減し、音響放射を著しく減衰させないことが想定される。
ここで図2を参照すると、マウント1は、マウント1と基板2との間に任意の浸潤が生じた場合に、音響波エネルギーが基板2に沿って進むときに減衰されないように、基板2をその側縁に沿って狭い棚26上に保持する。また、マウント1の狭い棚26に沿って隙間27が設けられ、液体4が基板2とマウント1との接触の間で基板2を這い上がるのを防止する。
再び図3(a)を参照すると、トランスデューサ表面2aは、シールド28、メインIDTバー30のベンド29、および電気接点端部32のリフレクタバー31などの表面特徴を有し、これらは、音響波エネルギーの進行を妨害し、電気接点端部32における潜在的に有害な音響波エネルギーの反射および吸収を促進する。反射された音響波エネルギーは、基板2の噴霧端部33における液体の噴霧を助ける。裸面34は、噴霧液とIDT35との間の接触を緩和するために、メインIDTバー30の端部とデバイスの噴霧端部33との間にある。
別の実施形態では、記載されたネブライザは、基板の周囲表面の少なくとも一部と接触するコンプライアント吸収性材料をさらに含み得る。例えば、基板の周囲表面は、図3(b)においてハッシュ領域40として強調されている。コンプライアント吸収性材料は、図3(b)で強調された周囲表面40の少なくとも一部と接触してもよいことが理解される。驚くべきことに、チップの耐久性は、基板の周囲表面の少なくとも一部と接触するコンプライアント材料の追加によって向上され得ることが見出された。理論に縛られることを望むものではないが、コンプライアント材料の付加は、チップ内および/またはチップ上の過剰な振動を分散または低下させ得ると考えられる。さらに、コンプライアント材料の付加は、基板内および/または基板上の過熱または局所過熱を防止し得ると考えられる。これにより、基板の破損率が低減され、ネブライザからの信頼性が向上し、破損または故障することなく使用することができる。例えば、適切なコンプライアント材料は、ペースト、テープ、またはコンプライアント固形物を含み得る。一実施形態において、コンプライアント材料は、粘着テープである。一実施形態において、コンプライアント材料は、シリコーンゴムである。一実施形態において、コンプライアント材料は、サーマルペーストである。一実施形態では、コンプライアント材料は、チップの周囲と接触するハウジングの一部を含む。
一実施形態では、コンプライアント吸収材料は、基板の遠位端の周囲の少なくとも一部と接触していてもよい。一実施形態では、コンプライアント吸収材料は、基材の周囲の表面の1つ以上の側面の少なくとも一部と接触していてもよい。一実施形態では、コンプライアント吸収材料は、基板の1つ以上の側面の一部および遠位端の一部と接触していてもよい。特に、周囲表面の少なくとも一部の周りに配置することにより、基板の噴霧化領域内の音響放射が、噴霧化を達成するのに十分であることが可能になる。
さらに、基板の非トランスデューサ側の少なくとも一部をコーティングすると、波の反射および定在波比(SWR)が変化する可能性があることが見出された。一実施形態では、コーティングは、1つ以上の金属を含み得る。一実施形態では、コーティングは、チタン、金、アルミニウム、クロム、およびこれらの組合せから形成される。本発明者らは、驚くことに、基板の非トランスデューサ表面の少なくとも一部を1つ以上の金属でコーティングすることにより、過熱を低減し得ることを見出した。さらに、本発明者らは、驚くことに、基板の非トランスデューサ表面の少なくとも一部をコーティングすることによって、SAW、SRBW、およびそれらの組合せにおける定在波および進行波成分を調整するある程度の制御および/または能力が提供されることを見出した。驚くことに、固体コーティングまたは部分コーティングが、基板上および基板中に存在する進行波成分および定在波成分に影響を及ぼすことが見出された。代表的な例が図3(d)に示されており、すなわち、基板の非トランスデューサ表面43が部分的にコーティングされている(42)。定在波比は、コーティングの硬度、厚さ、および/または粗さなどのパラメータを調整することによってさらに修正され得る。定在波比を1と無限大との間で調整することにより、基板の安定性および噴霧化レートを高めることができることが観察されている。例として、噴霧化分布データが図7に示されており、非トランスデューサ基板表面がチタンおよび金でコーティングされている。コーティングの結果として、幾何標準偏差(GSD)によって測定されるように、全体的な液滴分布はより密であった。比較すると、コーティングされていないチップが使用されるとき、噴霧された流体の液滴分布における2つの別個のピークが、典型的に観察される。これは、このシステムにおける定在波成分ではなく進行波成分の促進または優先に起因すると考えられる。逆に、チップがコーティングされている場合、進行波成分ではなく定在波成分の促進または優先が観察される。進行波成分と定在波成分との比を修正することによって、液滴サイズおよび幾何学的標準偏差を含むパラメータが制御または調整され得る。これらのパラメータは、以下でさらに説明される。1つ以上の実施形態では、説明したネブライザは、進行波成分、定在波成分、および/またはそれらの組合せを利用し得る。1つ以上のさらなる実施形態では、説明したネブライザは、SAWにおける定在波成分、SRBWにおける定在波成分、SAWにおける進行波成分、SRBWにおける進行波成分、それらの順列および組合せを利用し得る。
非トランスデューサ表面に塗布されるコーティングに加えて、本発明者らは、驚くことに、基板のトランスデューサ表面の少なくとも一部を1つ以上の金属でコーティングすることにより、過熱を低減し得ることを見出した。特に、本発明者らは、トランスデューサ表面の少なくとも一部が、基板の遠位端にコーティングをさらに含む場合、過熱または焦電故障によるチップ故障が低減または排除され、より効率的で堅牢なシステムが提供されることを見出した。一実施形態では、トランスデューサ表面上のコーティングは、1つ以上の金属を含み得る。一実施形態では、コーティングは、チタン、金、およびそれらの組合せを含む生体適合性金属から形成される。代表的な例が図3(c)および3(e)に示されており、すなわち、基板のトランスデューサ表面の全体がコーティング41を含み(図3c)、基板のトランスデューサ表面の少なくとも一部が基板の遠位端にコーティング44を含む(図3e)。
別の実施形態では、説明したネブライザは、基板表面の一部分上に導電性材料をパターニングすることをさらに含み得る。本明細書で使用されるように、「パターニング」および「パターニングされた」という用語ならびにそれらの変形は、所与の基板上に幾何学的パターンを転写するフォトリソグラフィなどの技法を指す。そのような技法は、典型的には、チップ産業におけるパターニングのために使用される。一般に、コーティング、特に上述の金属コーティングが適用され、その後、リソグラフィまたは他の手段によって表面がパターニングされる。一実施形態では、トランスデューサ基板表面がパターニングされる。別の実施形態では、非トランスデューサ基板表面がパターニングされる。驚くべきことに、(基板のトランスデューサ表面の機能エリア以外のエリアにおける)パターニングの付加は、局所的な過熱および/または焦電誘起電荷の消散または低減を助け得ることが見出された。さらに、基板の非トランスデューサ表面は、代替的にまたは追加的にパターニングされてもよいことが理解される。図3(c)は、基板のトランスデューサ表面の機能エリア(メインIDTバー30、IDT35、シールド28、ベンド29、リフレクタバー31を含む)を強調している。パターニングに適した基板のトランスデューサ表面のエリアの1つは、図3(c)においてグレーで強調されたコーティングされた表面41を含む。当業者は、そのようなパターニングが、デバイスがネブライザとして機能することを依然として可能にするチップの表面の任意の領域に配置されてもよいことを理解するであろう。
加えて、定在波比の調整は、結果として生じる波が相互作用するようにIDTの複数のセットを位置決めすることによって達成され得ることもわかっている。例として、IDTのパターニングは、破壊的な音響波を破壊し、例えば、不要な過熱を低減し、結果として得られるチップの信頼性を高めることが想定される。さらに、一実施形態では、基板は、定在波または進行波のいずれかが促進される別個の領域を提供するような方法でパターニングまたはコーティングされてもよい。そのような構成は、噴霧された液体の出力パラメータの範囲において、さらなる同調性を提供することが想定される。
針またはペン先を利用する実施形態を説明したが、少なくとも1つの供給導管がウィックまたはマイクロチャネルを含み得る、さらに他の実施形態が想定される。特定の供給導管の選択は、部分的には、導管がネブライザシステムの他の特徴と組み合わせてどのように動作するかに依存し得る。
図4aおよび図4bは、ネブライザの別の実施形態を示す。この構成は、基板2および他の重要な構成要素を、ネブライザ(図示せず)の適切な電気システムおよびフローチャンバを特徴とする外部ハウジングとインターフェースすることができ、使用後に廃棄することができる単一または複数の用量カートリッジ36として使用することができる、単一の一体化されたハウジングまたはカートリッジ36に一体化する。リザーバ3は、カートリッジ36のキャビティから形成することができ、その一方の表面は、押し下げることができる変形可能なブリスターまたはボタン37とすることができ、これは、リザーバ内の液体を移動させ、針またはペン先6内の液体4をプライムする働きをすることができ、またはメニスカス7を形成するために基板2上に液体4の全用量を堆積させることができ、シリンジプランジャなどの液体4を移動させる他の手段も可能である。図4aは、ブリスター37が押し下げられて液体4が堆積される前のシステムを示し、図4bは、ブリスター37が押し下げられて液体4が堆積された後のシステムを示す。RF電力は、基板2と接触している広い電気接点8に接続されている露出したばね接点38を介して基板に供給することができる。露出したばね接点38は、カートリッジ36が、適切なネブライザ電気システムおよびフローチャンバ(図示せず)を収容することができる外部本体とインターフェースされることを可能にする。基板2の周りの、周囲の平行な表面のような周囲の表面は、液滴のサイズを制御し、過剰な液体4を再循環させるためのバッフル表面9として作用する。カートリッジは、液体4が噴霧される前に、またはカートリッジ36がネブライザの外部本体と接続されるときに、破られるか、または除去され得るシール39によって保護され得る。このカートリッジは、図1a、図1c、図1d、図1e、図2および図3a、図3b、図3cまたは図3dに記載され、図示された特徴の任意の組合せを組み込むことができる。
提示された回路は、高周波数(10MHz)で動作する小型化されたハンドヘルド回路である。代替無線周波数(RF)回路がかさばる小型化のボトルネックを克服する主な理由は、回路が単純であるためである。最も重要な構成要素が、ターゲット周波数を追跡し、センサドライバ、電源ボタンなどの様々なアドオン構成要素をトリガするために、デジタルデータおよびプログラミングに一般的かつ直感的に依存する一般的なRF回路とは異なり、この回路は、回路上の負荷の性質にかかわらず、堅牢で安定した固定の単一周波数を利用する。加えて、回路は、ネブライザを駆動するために、および/またはトリガボタンによって動作するために、ユーザの呼吸パターンを感知することができ、回路全体のためのアナログデータ転送および作動のみを維持する。
この回路は、小型でコンパクトであるが、1-ボタンを連続的に押すか、もしくはトグルするか、または2-ユーザの吸入による「スマートな」トリガのいずれかによる二重トリガ方法を提供し、トリガ時間はあらかじめ決定され、したがって、あまりにも長い間吸入するユーザに適応する。したがって、これは、正確な投与時間、したがって既知の用量を可能にする。
RF領域で動作するアナログデータ転送を利用する上述の直観に反する回路設計アプローチは、小さい11.1V(3セル)リチウムポリマー電池を介して回路を駆動することを可能にした。
図5aは、バッフル9を使用しない射出された液滴サイズ分布を示す。このグラフは、液滴の大部分が10μm~100μmの範囲のサイズを有することを示す。図5bは、バッフル9が使用されたときの射出された液滴サイズ分布を示す。このグラフは、10μm~100μmのサイズの大きい液滴が最小化されることを示す。
さらに他の実施形態では、液滴サイズ制御手段は、液膜形成構造47をさらに含み得る。液膜形成構造47は、基板表面に供給される液体のメニスカス7の厚さを制御し、それによって噴霧された液滴のサイズを制御するために、液体供給導管6および基板2と流体連通し得る。さらに他の実施形態では、液膜形成構造47は、基板表面に供給される液体のメニスカス7の厚さを制御し、それによって噴霧された液滴のサイズを制御するために、液体供給導管6と基板2との間の界面にある。さらなる実施形態では、液膜形成構造47は、基板2の一体部分であるか、または基板2に直接接合される。これは、例えば、電気めっきによって達成され得る。したがって、液膜形成構造47は、電気めっき構造であってもよい。図12a~図12dは、液膜形成構造47のいくつかの実施形態を示す。液体フィルム形成構造47は、ウェブ、メッシュ、1つ以上の繊維、液体供給導管のスロット、または組合せを含み得る。構造は、液滴サイズ制御を可能にする流体膜の形成を促進するデバイス表面と接触することができる。図12aおよび図12bは、硬質可撓性繊維の束51が基板2の表面にわたって押し付けられ、広げられ、流体導管6として作用する一実施形態を示す。繊維51は、深い肺浸透のために理想的なサイズにされた小さい液滴の形成を促進する薄い流体膜の形成を促進する。図12cおよび12dに示されるように、ミクロンサイズの高アスペクト比スロット53のような、その端部に小さい開口を有する流体伝導構造をデバイス表面に接触させ、小さい開口を介して流体を送達し、薄膜および小さい液滴の形成を順番に促進することができる。
いくつかの実施形態(図示せず)では、非トランスデューサ表面2a、2b、12b、13bは、1つ以上の電気音響トランスデューサを含む。そのような非トランスデューサ表面は、第2のトランスデューサ表面と呼ばれることがある。これらの実施形態は、前述の電気音響トランスデューサ48と同様の、または同じ1つ以上の電気音響トランスデューサを含み得る。これらの実施形態は、前述したような少なくとも1つの対向する電気音響トランスデューサを含み得る。したがって、これらの実施形態の非トランスデューサ表面(または第2のトランスデューサ表面)は、前述のように、安定した噴霧化ゾーン45も含み得る。これらの実施形態の非トランスデューサ表面(または第2のトランスデューサ表面)は、前述のように、含有バリア構造46も含み得る。
図13は、ネブライザの別の実施形態を示す。前述のように、SAWと組み合わされたSRBWの形態でネブライザによって提供される一意のハイブリッド波形構成は、液体4がトランスデューサ表面2aと非トランスデューサ表面2bの両方から噴霧されることを可能にする。いくつかの実施形態では、ネブライザは、液体が非トランスデューサ表面2bに適用されるように構成される。次いで、液体4は、非トランスデューサ表面2bから噴霧される。図13の実施形態では、液体供給導管6は、液体4が液体供給導管6によって非トランスデューサ表面2bに提供されるように構成される。液体4は、非トランスデューサ表面2b上にメニスカスを形成し、液体4は、電気音響トランスデューサ48(図13には示されていない)および少なくとも1つの対向する電気音響トランスデューサ50(設けられている場合)の起動によって、非トランスデューサ表面2bから噴霧される。
トランスデューサ表面2aは、マウント1に接合されている。いくつかの実施形態では、基板2の1つ以上の縁部は、シーリング70によってマウント1に接合される。シーリング70は、基板2およびマウント1に接合されて、基板2の1つ以上の縁部をマウントにシールする。いくつかの実施形態では、トランスデューサ表面2aの1つ以上の部分が、シーリング70によってマウント1に接合される。いくつかの実施形態では、基板2の1つ以上の縁部およびトランスデューサ表面3aの1つ以上の部分が、シーリング70によってマウント1に接合される。シーリング70は、トランスデューサ表面2aとマウント1との間に液密シールを提供する。トランスデューサ表面2aをシーリングし、それを非トランスデューサ表面2bから隔離することによって、ネブライザは、液体がトランスデューサ表面2aに接触することなく液体4を噴霧するように構成される。これにより、トランスデューサ表面2aおよび電気音響トランスデューサ48、50は、ネブライザの動作の結果としての劣化または汚損から保護される。いくつかの実施形態では、基板2は、基板2がマウント1に接合されることに関して説明したのと同様に、ハウジングに接合されてもよい。
図14および図15は、いくつかの実施形態による噴霧システム72の実施形態を示す。噴霧システム72は、第1のネブライザ74を含む。第1のネブライザ74は、本明細書に記載のネブライザのいずれか1つの形態であってもよい。あるいは、第1のネブライザ74は、別の形態であってもよい。噴霧システム74はまた、第2のネブライザ76を含む。第2のネブライザ76は、本明細書に記載のネブライザのいずれか1つの形態であってもよい。あるいは、第2のネブライザ76は、別の形態であってもよい。第2のネブライザ76は、能動バッフルと考えられ得る。第2のネブライザ76は、第1のネブライザ74に対して角度を持つように配置されている。具体的には、第2のネブライザ76は、第1のネブライザ74に対して直交するように配置されている。言い換えれば、第1のネブライザ74の水接触表面(例えば、第1のネブライザ74のトランスデューサ表面または非トランスデューサ表面)に正接する第1の線は、第2のネブライザ76の水接触表面(例えば、第2のネブライザ76のトランスデューサ表面または非トランスデューサ表面)に正接する第2の線に対して直交する。第1のネブライザ74の水接触表面は、トランスデューサ表面(前述のような電気音響トランスデューサを含む)および/または第1のネブライザ74の非トランスデューサ表面であってもよい。同様に、第2のネブライザ76の水接触表面は、第2のネブライザ76のトランスデューサ表面(前述のような電気音響トランスデューサを含む)および/または非トランスデューサ表面であってもよい。
液体4は、液体投与点78で第1のネブライザ74に投与される。第1のネブライザ74は、液体を噴霧する。第1のネブライザ74から射出される液体の第1の部分82は、3μm未満の直径を有する比較的小さい液滴の形態である。これらの比較的小さい液滴は、ほとんど運動量を持たず、第1のネブライザ74から遠くに移動しない。第1のネブライザ74から射出される液体の第2の部分84は、3μmよりも大きい直径を有する比較的大きい液滴の形態である。これらの比較的大きい液滴は、3μm未満の直径を有する小さい液滴よりも比較的大きい運動量を持っており、第2のネブライザ76に接触することができる。
第1のネブライザ74から噴出される液体は、第1の軌道80を有し得る。第1の軌道80は、例えば、ほぼ上向きの軌道であり得る。第2のネブライザ76に接触すると、液滴は、より小さい液滴(例えば、3μm未満の直径を有する)に分割される。したがって、噴霧システム72によって生成される液滴のかなりの部分(例えば、大部分または全部)は、サイズ閾値未満のサイズのものである。例えば、噴霧システム72によって生成される液滴は、直径閾値、例えば3μm未満の直径のものである。液滴は、第2のネブライザ76上で最小の滞留時間を経験する。第2のネブライザ76に接触する液滴は、第2の軌道86に沿って第2のネブライザから離れる方向に向けられる。第2の軌道86は、第1の軌道80にほぼ直交する。したがって、第2のネブライザ76は、第1のネブライザ74によって噴霧された液体の一部を方向転換するように構成され得る。さらに、第2のネブライザ76は、すでに噴霧された液体を噴霧すると考えられ得る。
第2のネブライザ76が第1のネブライザ74に対して角度を持ち、第2のネブライザ76に接触する液体は、第1のネブライザ74から離れる方向に向けられる(すなわち、第1の軌道80と第2の軌道86とは異なる)。これは、第2のネブライザ76に接触する液体が第1のネブライザ74に再循環して戻る程度を低減するのに役立つ。
感知のために、光学的に平坦な単結晶基板は、10~10程度の大きい品質係数Qを有するバルク(例えば、ラム)波共振を可能にする。したがって、基板の表面上の非常に小さい質量負荷は、検出可能な周波数シフトを生成することができ、それにより、10ngの感度までのサンプルの質量感知を可能にする。これは、Humalog(インスリン投薬)の質量感知を示す図6のグラフに示されている。このグラフは、100ngの感度で、質量が増加するにつれて線形周波数シフトを示す。
SAWネブライザは、活性薬剤の投与を含む様々な分野での用途が見出されている。吸入薬物は、喘息、慢性閉塞性肺疾患(COPD)、ならびに閉塞性気管支炎、肺気腫、およびのうほう性線維症など他の呼吸疾患のための最も一般的な治療形態である。例えば、コルチコステロイド、気管支拡張薬、およびβ2アゴニストは、典型的には、喘息、COPDおよび他の呼吸疾患の治療のために、吸入によって投与される。記載されたネブライザは、一連の可能な活性薬剤と組み合わせて使用され得ることが想定される。適切な活性薬剤には、限定はしないが、コルチコステロイド(フルチカゾン、ブデソニド、モメタゾン、ベクロメタゾン、およびシクレソニドなど)、気管支拡張薬(サルメテロールまたはアルブテロール、ホルモテロール、ビランテロール、レバルブテロール、およびイプラトロピウムなど)が含まれる。例として、サルブタモールまたはベントリンとも呼ばれるアルブテロールは、β2作動薬であり、肺の中気道および大気道を開く短期気管支拡張薬である。臭化イプラトロピウムとも呼ばれるイプラトロピウムは、肺の中気道および大気道を開放するムスカリン性拮抗薬(抗コリン作用薬の一種)である。ブデソニドは、BUDとも呼ばれ、喘息および慢性閉塞性肺疾患(COPD)の長期管理に使用されるコルチコステロイドの一種である。一実施形態では、記載されたネブライザは、アルブテロールの送達に適合される。一実施形態では、記載されたネブライザは、イプラトロピウムの送達に適合される。一実施形態では、記載されたネブライザは、ブデソニドの送達に適合される。
記載されたネブライザは、有利には、活性薬剤の信頼性があり、効率的であり、かつ正確な送達を提供する。結果として得られる噴霧された液体は、1つ以上のパラメータによって特徴付けられ得る。各活性薬剤は、異なる物理化学的特性を有することが理解される。さらに、記載されたネブライザの種々なパラメータは、液滴サイズ(ミクロン)、幾何標準偏差(GSD)、体積噴霧レート、安定化期間(すなわち、使用時間)、投与されたAPIの割合、軌道損失、および微粒子率を含む、所与の活性薬剤の送達のために最適化され得ることが理解される。
一態様では、記載されたネブライザは、噴霧された液体の液滴サイズの制御を提供する。特に、噴霧された液体の液滴サイズは、所与の活性薬剤に対して最適化されてもよい。一実施形態では、記載のネブライザは、液滴サイズが0.1~100μmの範囲、好ましくは0.1~10μmの範囲、好ましくは0.5~7.5μmの範囲、より好ましくは1~5μmの範囲、さらにより好ましくは2~4μmの範囲である噴霧液を提供する。一実施形態では、記載のネブライザは、液滴サイズが10μm未満、好ましくは8μm未満、好ましくは6μm未満、好ましくは5μm未満、好ましくは3μm未満の噴霧液を提供する。
一態様では、記載されたネブライザは、噴霧された液体の液滴の幾何学的標準偏差(GSD)の制御を提供する。特に、噴霧された液体のGSDは、所与の活性薬剤に対して最適化されてもよい。一実施形態では、記載されたネブライザは、GSDが10μm未満、好ましくは8μm未満、好ましくは6μm未満、好ましくは5μm未満、好ましくは3μm未満、好ましくは2.5μm未満、好ましくは2.1μm未満の噴霧液を提供する。
一態様では、記載されたネブライザは、安定化期間(すなわち、使用時間)の制御を提供する。有利には、記載されたネブライザは、安定化期間(すなわち、使用時間)を短縮する。短いまたは短縮された安定化期間は、使用までのラグタイムの短縮、効率の増加、サンプル損失または流体損失の減少、ならびに活性薬剤の投薬および投与の精度の向上を提供する。特に、安定化期間は、所与の活性薬剤に対して最適化されてもよい。一実施形態では、記載されたネブライザは、1秒未満、好ましくは0.5秒未満、好ましくは0.25秒未満、好ましくは0.1秒未満、好ましくは0.05秒未満、好ましくは0.03秒未満、好ましくは0.02秒未満、好ましくは0.01秒未満の安定化期間を提供する。
一態様では、記載されたネブライザは、噴霧された液体の体積噴霧レートの制御を提供する。特に、噴霧された液体の体積噴霧レートは、所与の活性薬剤に対して最適化されてもよい。一実施形態では、記載のネブライザは、体積噴霧レートが0.1~10ml/minの範囲、好ましくは0.15~7.5ml/minの範囲、好ましくは0.2~5ml/minの範囲である噴霧液を提供する。一実施形態において、記載されたネブライザは、噴霧された液体を提供し、体積噴霧レートは、0.1mL/minを超える、好ましくは0.25mL/minを超える、好ましくは0.3mL/minを超える、好ましくは0.35mL/minを超える、好ましくは0.4mL/minを超える、好ましくは0.45mL/minを超える、好ましくは0.5mL/minを超える、好ましくは0.55mL/minを超える、好ましくは0.6mL/minを超える、好ましくは0.65mL/minを超える、好ましくは0.7mL/minを超える、好ましくは0.75mL/minを超える。
一態様では、記載されたネブライザは、噴霧された液体中で投与されるAPIの割合の制御を提供する。特に、投与されるAPIの割合は、所与の活性薬剤の物理化学的特性に依存し得るが、記載されたシステムにより所与の活性薬剤について最適化され得る。一実施形態において、記載されたネブライザは、噴霧された液体を提供し、投与されるAPIの割合は、60%を超える、好ましくは65%を超える、好ましくは70%を超える、好ましくは75%を超える、好ましくは80%を超える、好ましくは85%を超える、好ましくは90%を超える、好ましくは95%を超える、好ましくは97%を超える、好ましくは98%を超える、好ましくは99%を超える。
一態様では、記載されたネブライザは、噴霧された液体における軌道損失の制御を提供する。特に、軌道損失は、所与の活性薬剤に対して最適化されてもよい。一実施形態において、記載されたネブライザは、噴霧された液体を提供し、軌道損失は、好ましくは20%未満、好ましくは15%未満、好ましくは10%未満、好ましくは9%未満、好ましくは8%未満、好ましくは7%未満、好ましくは6%未満、好ましくは5%未満である。
一態様では、記載されたネブライザは、噴霧された液体の微粒子率の制御を提供する。微粒子率は、一般に、ほぼ等張の噴霧エアロゾルの吸入中に肺に沈着する質量の尺度として理解される。異なる微粒子定義で吸入されたエアロゾルの量を、ほぼ等張の噴霧されたエアロゾルについて肺および肺胞領域に沈着するエアロゾルの量と比較する。液滴ステージ1~7は、深部肺組織を蓄積または標的とする形態で65%の薬物を有することが認められている。微粒子率は、所与の活性薬剤の物理化学的特性に依存し得るが、記載されたシステムにより所与の活性薬剤について最適化され得る。一実施形態において、記載されたネブライザは、液滴段階1~7において20%を超える、好ましくは30%を超える、好ましくは35%を超える、好ましくは40%を超える、好ましくは45%を超える、好ましくは50%を超える、好ましくは55%を超える、好ましくは60%を超える、好ましくは65%を超える、好ましくは70%を超える、好ましくは75%を超える微粒子率を提供する。
記載された活性薬剤に加えて、記載されたネブライザは、繊細な分子および粒子(例えば、DNA、RNAi、ペプチド、タンパク質、および細胞)を含む流体またはサンプルを、変性させることなく、全体にわたって(典型的には1ml/minを超える)高い噴霧を維持しながら噴霧するように適合され得る。従来技術のネブライザは、今日まで0.1~0.4ml/minの間に制限され、それによって、長い吸入時間、典型的には数十分~1時間を必要とする。したがって、これは、従来のネブライザの実際の取り込みを制限してきた。記載された実施形態のネブライザによって達成され得るより高い噴霧レートは、投与時間を有意に短縮し得る。
記載された実施形態によるネブライザは、Technetium-99m DTPAエアロゾル([99mTc]DTPAエアロゾル)を使用する吸入による肺への活性薬剤の送達の効率を決定するために、ヒト臨床試験に供されてきた。最初の結果は、記載されたネブライザシステムが、噴霧された活性薬剤の標的組織への効果的な送達を提供することを示す。
Figure 2022550903000002
当業者に自明であると思われる修正および変形は、添付の特許請求の範囲において請求される本発明の範囲内に含まれる。
第1の態様では、本開示は、
・液滴を噴霧するためのネブライザを提供し、ネブライザは、
ハウジングと、
ハウジング内に収容され、基板内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサが配置されるトランスデューサ表面と、対向する非トランスデューサ表面とを有する少なくとも1つの圧電基板と、
トランスデューサおよび非トランスデューサ表面のうちの少なくとも1つに液体を供給するための液体供給システムであって、液体を収容するためのリザーバと、リザーバから基板に液体を供給するための、基板と接触する少なくとも1つの比較的剛性の供給導管とを含む、液体供給システムと
を含む。
第2の態様では、本開示は、
・液滴を噴霧するためのネブライザを提供し、ネブライザは、
ハウジングと、
ハウジング内に収容され、基板内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサが配置されるトランスデューサ表面と、対向する非トランスデューサ表面とを有する少なくとも1つの圧電基板と、
トランスデューサおよび非トランスデューサ表面のうちの少なくとも1つに液体を供給するための液体供給システムであって、液体を収容するためのリザーバと、リザーバから基板に液体を供給するための、基板と接触する少なくとも1つの比較的剛性の供給導管とを含む、液体供給システムと、
少なくとも1つの圧電基板上の液体の体積を検出するためのセンサと
を含む。
第3の態様では、本開示は、
・液滴を噴霧するためのネブライザを提供し、ネブライザは、
ハウジングと、
ハウジング内に収容され、基板内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサが配置されるトランスデューサ表面と、対向する非トランスデューサ表面とを有する少なくとも1つの圧電基板と、
少なくとも1つの圧電基板の周囲表面の少なくとも一部と接触しているコンプライアント材料と、
トランスデューサおよび非トランスデューサ表面のうちの少なくとも1つに液体を供給するための液体供給システムであって、液体を収容するためのリザーバと、リザーバから基板に液体を供給するための少なくとも1つの供給導管とを含む、液体供給システムと
を含む。
第4の態様では、本開示は、
・液滴を噴霧するためのネブライザを提供し、ネブライザは、
ハウジングと、
ハウジング内に収容され、基板内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサが配置されるトランスデューサ表面と、対向する非トランスデューサ表面とを有する少なくとも1つの圧電基板と、
少なくとも1つの圧電基板の周囲表面の少なくとも一部と接触しているコンプライアント材料と、
トランスデューサおよび非トランスデューサ表面のうちの少なくとも1つに液体を供給するための液体供給システムであって、液体を収容するためのリザーバと、リザーバから基板に液体を供給するための少なくとも1つの供給導管とを含む、液体供給システムと、
少なくとも1つの圧電基板上の液体の体積を検出するためのセンサと
を含む。
・供給導管は、ペン先または針の形態である、第1または第2の態様に記載のネブライザ。
・供給導管は、音響的に反射する材料から形成されている、第1または第2の態様に記載のネブライザ。
・液体は、供給導管を介してリザーバから重力供給される、第1または第2の態様に記載のネブライザ。
・液体は、能動ポンプシステムを介してリザーバから移送される、態様のいずれか1つに記載のネブライザ。
・能動ポンプシステムは、シリンジまたは蠕動ポンプである、態様のいずれか1つに記載のネブライザ。
・液体供給システムは、そこから液体の安定した流れを提供するための流量調整器をさらに含む、態様のいずれか1つに記載のネブライザ。
・流量調整器は、液体が通過可能な液体出口通路と、リザーバに接続された空気入口通路とを含む、態様のいずれか1つに記載のネブライザ。
・センサは、ネブライザシステムを横切る電流の変化を測定することによって、基板の表面上の液体の体積を検出する、態様のいずれか1つに記載のネブライザ。
・電流は直流である、態様のいずれか1つに記載のネブライザ。
・電流の変化が検出されるネブライザシステムは、電子回路、および少なくとも1つの圧電基板を含む、態様のいずれか1つに記載のネブライザ。
・電子回路は、少なくとも1つのプリント回路基板を含む、態様のいずれか1つに記載のネブライザ。
・ネブライザの動作を制御するためのセンサに応答する制御スイッチをさらに含む、態様のいずれか1つに記載のネブライザ。
・ネブライザは、噴霧の前に基板の表面から液体が追い払われるのを防止するために反対方向に音響波エネルギーを生成するための少なくとも1つの対向する電気音響トランスデューサをさらに含む、態様のいずれか1つに記載のネブライザ。
・基板は、噴霧の前に表面に適用される液体の損失を含み、および/または防止するための構造をさらに含む、態様のいずれか1つに記載のネブライザ。
・構造は、リップ、壁、ガスケット、堆積***膜、またはこれらの組合せを含む、態様のいずれか1つに記載のネブライザ。
・流量調整器に接続された内部チャンバをさらに含み、内部チャンバは、供給導管の周辺先端が内部に収容される周辺開口を有し、液体は、毛管作用によって周辺開口と供給導管の周辺先端との間を通過することができる、態様のいずれか1つに記載のネブライザ。
・基板は、基板と供給導管との接触を制御するための変位可能なマウント上に支持される、態様のいずれか1つに記載のネブライザ。
・マウントは、その一端にピボット支持体を含み、反対側の端部は、弾性部材上に支持される、態様のいずれか1つに記載のネブライザ。
・マウントは、カンチレバーで支持されている、態様のいずれか1つに記載のネブライザ。
・噴霧された液滴のサイズを制御するための制御手段をさらに含む、態様のいずれか1つに記載のネブライザ。
・制御手段は、トランスデューサ表面の少なくとも一方に略平行に隣接した関係で配置されている少なくとも1つのバッフルを含む、態様のいずれか1つに記載のネブライザ。
・バッフルは、少なくとも1つの前記基板表面から平行に隣接した関係で配置されているハウジング内壁によって提供される、態様のいずれか1つに記載のネブライザ。
・ハウジングは、入口開口部をさらに含み、リザーバは、入口開口部内に収容することができるネック部分を含む、態様のいずれか1つに記載のネブライザ。
・離間して、平行に隣接した関係で配置されている少なくとも2つの前記基板を含む、態様のいずれか1つに記載のネブライザ。
・液滴サイズ制御手段は、隣接する基板表面間に供給される液体のメニスカスの厚さを制御し、それによって噴霧された液滴のサイズを制御するために、基板間の間隔を事前設定することを含む、態様のいずれか1つに記載のネブライザ。
・液滴サイズ制御手段は、隣接する基板表面と内壁との間に供給される液体のメニスカスの厚さを制御し、それによって噴霧された液滴のサイズを制御するために、ハウジングの内壁からの基板の間隔を事前設定することを含む、態様のいずれか1つに記載のネブライザ。
・液滴サイズ制御手段は、隣接する基板表面間に供給される液体のメニスカスの厚さを制御し、それによって噴霧された液滴のサイズを制御するために、液体供給導管と基板との間の界面に液膜形成構造を含む、態様のいずれか1つに記載のネブライザ。
・液膜形成構造は、ウェブ、メッシュ、1つ以上の繊維、または液体供給導管のスロットを含む、態様のいずれか1つに記載のネブライザ。
・圧電基板および電気音響トランデューサは、少なくとも1つの基板上の液体質量を感知するためにも使用される、態様のいずれか1つに記載のネブライザ。
・コンプライアント材料は、粘着テープ、シリコーンゴム、サーマルペースト、またはこれらの組合せからなる群から選択される、態様のいずれか1つに記載のネブライザ。
・コンプライアント材料は、基板の遠位端の周囲の少なくとも一部と接触している、態様のいずれか1つに記載のネブライザ。
・少なくとも1つの供給導管は、基板と接触する比較的剛性の供給導管である、第3または第4の態様に記載のネブライザ。
・少なくとも1つの供給導管は、ペン先、針、ウィック、マイクロチャネル、またはそれらの組合せからなる群から選択される、第3または第4の態様に記載のネブライザ。
・トランスデューサ表面、非トランスデューサ表面、またはそれらの組合せの少なくとも一部がパターニングされている、態様のいずれか1つに記載のネブライザ。
・音響波エネルギーは、少なくとも1つの圧電基板のトランスデューサ表面で伝播する表面音響波(SAW)を含む、態様のいずれか1つに記載のネブライザ。
・音響波エネルギーは、少なくとも1つの基板のトランスデューサ表面と非トランスデューサ表面との間で反射される表面反射バルク波(SRBW)を含む、態様のいずれか1つに記載のネブライザ。
・音響波エネルギーは、少なくとも1つの基板のトランスデューサ表面を伝播する表面音響波(SAW)と、少なくとも1つの基板のトランスデューサ表面と非トランスデューサ表面との間で反射される表面反射バルク波(SRBW)との組合せを含む、態様のいずれか1つに記載のネブライザ。
・表面音響波(SAW)は、定在波、進行波、およびそれらの組合せを含む、態様のいずれか1つに記載のネブライザ。
・表面反射バルク波(SRBW)は、定在波、進行波、およびそれらの組合せを含む、態様のいずれか1つに記載のネブライザ。
・電気音響トランスデューサは、インターデジタルトランスデューサ(IDT)である、態様のいずれか1つに記載のネブライザ。
・少なくとも1つの圧電基板は、トランスデューサ表面を伝播するSAWの波長またはその付近の厚さを有する、態様のいずれか1つに記載のネブライザ。
・少なくとも1つの圧電基板は、ニオブ酸リチウム(LiNbO)から形成される、態様のいずれか1つに記載のネブライザ。
・非トランスデューサ表面の少なくとも一部は、少なくとも1つの金属を含むコーティングをさらに含む、態様のいずれか1つに記載のネブライザ。
・トランスデューサ表面の少なくとも一部は、基板の遠位端に、少なくとも1つの金属を含むコーティングをさらに含む、態様のいずれか1つに記載のネブライザ。
・コーティングは、チタン、金、アルミニウム、クロム、またはこれらの組合せを含む、態様のいずれか1つに記載のネブライザ。
・液体は、トランスデューサ表面、非トランスデューサ表面、またはトランスデューサ表面と非トランスデューサ表面の両方から噴霧される、態様のいずれか1つに記載のネブライザ。
・液体が噴霧されて、0.1~100μmのサイズ範囲を有する液滴を形成する、態様のいずれか1つに記載のネブライザ。
・液体は、最大10ml/minの噴霧レートで噴霧される、態様のいずれか1つに記載のネブライザ。
・マウントは、基板が取り付けられるシェルフを含み、シェルフは、基板に沿った液体のクリープを防止するための1つ以上の隙間を含む、態様のいずれか1つに記載のネブライザ。
・ハウジングは、少なくとも1つの電気音響トランスデューサに接続された外部電気接点と、一体型液体供給システムとを有するカートリッジハウジングの形態である、態様のいずれか1つに記載のネブライザ。
・第1または第2の態様に記載のネブライザを使用して液体を噴霧する方法。
・0.1~100μmのサイズ範囲を有する液滴を形成するために液体を噴霧することを含む、態様のいずれか1つに記載の噴霧する方法。
・最大10ml/minの体積噴霧レートで液体を噴霧することを含む、態様のいずれか1つに記載の噴霧する方法。
・10μm未満の幾何学的標準偏差(GSD)を有する液滴を形成するために液体を噴霧することを含む、態様のいずれか1つに記載の噴霧する方法。
・液体は、医薬品、DNA、RNAi、ペプチド、タンパク質、および細胞などの機能的もしくは治療的薬剤、または香料、化粧品、農薬、塗料、もしくは防腐剤などの非治療的薬剤を含む、態様のいずれか1つに記載の噴霧する方法。
・機能的もしくは治療的薬剤は、単位用量として送達される、態様のいずれか1つに記載の噴霧する方法。
・単位用量は、基板の表面上の液体の体積を検出するためのセンサによって決定される、態様のいずれか1つに記載の噴霧する方法。

Claims (73)

  1. 液滴を噴霧するためのネブライザであって、
    ハウジングと、
    前記ハウジング内に収容され、少なくとも1つの圧電基板内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサが配置されるトランスデューサ表面と、対向する非トランスデューサ表面とを有する少なくとも1つの圧電基板と、
    前記トランスデューサおよび非トランスデューサ表面のうちの少なくとも1つに液体を供給するための液体供給システムであって、前記液体を収容するためのリザーバと、前記リザーバから前記少なくとも1つの圧電基板に前記液体を供給するための、前記少なくとも1つの圧電基板と接触する少なくとも1つの比較的剛性の供給導管とを含む、液体供給システムと、
    前記少なくとも1つの圧電基板上の液体の体積を検出するためのセンサと
    を含むネブライザ。
  2. 前記供給導管は、ペン先または針の形態である、請求項1に記載のネブライザ。
  3. 液滴を噴霧するためのネブライザであって、
    ハウジングと、
    前記ハウジング内に収容され、少なくとも1つの圧電基板内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサが配置されるトランスデューサ表面と、対向する非トランスデューサ表面とを有する少なくとも1つの圧電基板と、
    前記少なくとも1つの圧電基板の周囲表面の少なくとも一部と接触しているコンプライアント材料と、
    前記トランスデューサおよび非トランスデューサ表面のうちの少なくとも1つに液体を供給するための液体供給システムであって、前記液体を収容するためのリザーバと、前記リザーバから前記少なくとも1つの圧電基板に前記液体を供給するための少なくとも1つの供給導管とを含む、液体供給システムと、
    前記少なくとも1つの圧電基板上の液体の体積を検出するためのセンサと
    を含むネブライザ。
  4. 前記コンプライアント材料は、粘着テープ、シリコーンゴム、サーマルペースト、またはこれらの組合せからなる群から選択される、請求項3に記載のネブライザ。
  5. 前記コンプライアント材料は、少なくとも1つの前記圧電基板の遠位端の周囲の少なくとも一部と接触している、請求項3または4に記載のネブライザ。
  6. 前記少なくとも1つの供給導管は、前記少なくとも1つの圧電基板と接触する比較的剛性の供給導管である、請求項3~5のいずれか一項に記載のネブライザ。
  7. 前記少なくとも1つの供給導管は、ペン先、針、ウィック、マイクロチャネル、またはそれらの組合せからなる群から選択される、請求項3~5のいずれか一項に記載のネブライザ。
  8. 前記センサは、前記ネブライザを横切る電流の変化を測定することによって、前記少なくとも1つの圧電基板の前記表面上の液体の前記体積を検出する、請求項1~7のいずれか一項に記載のネブライザ。
  9. 前記電流は直流である、請求項8に記載のネブライザ。
  10. 前記センサは、前記少なくとも1つの圧電基板の前記トランスデューサ表面および/または前記非トランスデューサ表面上の液体の体積を検出するように構成されている、請求項1~9のいずれか一項に記載のネブライザ。
  11. 前記電子回路は、少なくとも1つのプリント回路基板を含む、請求項10に記載のネブライザ。
  12. 前記ネブライザの動作を制御するための前記センサに応答する制御スイッチをさらに含む、請求項1~11のいずれか一項に記載のネブライザ。
  13. 前記ネブライザは、噴霧の前に前記少なくとも1つの圧電基板から液体が追い払われる程度を低減するために、反対方向に音響波エネルギーを生成するための少なくとも1つの対向する電気音響トランスデューサをさらに含む、請求項1~12のいずれか一項に記載のネブライザ。
  14. 前記少なくとも1つの圧電基板は、噴霧の前に前記圧電基板に適用される液体の損失を含み、および/または防止するための含有バリア構造をさらに含む、請求項1~13のいずれか一項に記載のネブライザ。
  15. 前記含有バリア構造は、リップ、壁、ガスケット、堆積***膜、およびこれらの組合せを含む、請求項14に記載のネブライザ。
  16. 前記液体は、i)前記リザーバから重力供給されるか、またはii)能動ポンプシステムを介して前記リザーバから移送される、請求項1~15のいずれか一項に記載のネブライザ。
  17. 前記液体供給システムは、そこから液体の安定した流れを提供するための流量調整器をさらに含む、請求項1~16のいずれか一項に記載のネブライザ。
  18. 前記少なくとも1つの圧電基板は、前記少なくとも1つの圧電基板と前記供給導管との前記接触を制御するための変位可能なマウント上に支持される、請求項1~17のいずれか一項に記載のネブライザ。
  19. 前記噴霧された液滴のサイズを制御するための制御手段をさらに含む、請求項1~18のいずれか一項に記載のネブライザ。
  20. 前記制御手段は、前記トランスデューサ表面または前記非トランスデューサ表面の少なくとも一方に略平行に隣接した関係で配置されている少なくとも1つのバッフルを含む、請求項19に記載のネブライザ。
  21. 前記バッフルは、前記トランスデューサ表面または前記非トランスデューサ表面の少なくとも一方に対して平行に隣接した関係で配置されているハウジング内壁によって提供される、請求項20に記載のネブライザ。
  22. 前記ハウジングは、入口開口部をさらに含み、前記リザーバは、前記入口開口部内に収容することができるネック部分を含む、請求項1~21のいずれか一項に記載のネブライザ。
  23. 前記少なくとも2つの圧電基板は、離間して、平行に隣接した関係で配置されている、請求項1~22のいずれか一項に記載のネブライザ。
  24. 前記液滴サイズ制御手段は、隣接する基板表面間に供給される液体のメニスカスの厚さを制御し、それによって前記噴霧された液滴の前記サイズを制御するために、前記少なくとも2つの圧電基板間の間隔の事前設定を可能にするように構成されている、請求項19に従属する請求項23に記載の、または請求項19に従属する請求項20~22のいずれか一項に記載のネブライザ。
  25. 前記液滴サイズ制御手段は、隣接する基板表面と前記内壁との間に供給される液体のメニスカスの厚さを制御し、それによって前記噴霧された液滴の前記サイズを制御するために、前記ハウジングの内壁からの前記少なくとも2つの圧電基板の間隔の事前設定を可能にするように構成されている、請求項21に従属する請求項23に記載のネブライザ。
  26. 前記液滴サイズ制御手段は、前記少なくとも1つの圧電基板に供給される液体のメニスカスの厚さを制御し、それによって前記噴霧された液滴の前記サイズを制御するために、前記液体供給導管および前記少なくとも1つの圧電基板と流体連通している液膜形成構造を含む、請求項19に記載のネブライザ。
  27. 前記液膜形成構造は、ウェブ、メッシュ、1つ以上の繊維、または前記液体供給導管のスロットを含む、請求項26に記載のネブライザ。
  28. 前記トランスデューサ表面、前記非トランスデューサ表面、またはそれらの組合せの少なくとも一部がパターニングされている、請求項1~27のいずれか一項に記載のネブライザ。
  29. 前記音響波エネルギーは、前記少なくとも1つの圧電基板の前記トランスデューサ表面で伝播する表面音響波(SAW)を含む、請求項1~28のいずれか一項に記載のネブライザ。
  30. 前記音響波エネルギーは、前記少なくとも1つの圧電基板の前記トランスデューサ表面と非トランスデューサ表面との間で反射される表面反射バルク波(SRBW)を含む、請求項1~29のいずれか一項に記載のネブライザ。
  31. 前記音響波エネルギーは、前記少なくとも1つの圧電基板の前記トランスデューサ表面を伝播する表面音響波(SAW)と、前記少なくとも1つの圧電基板の前記トランスデューサ表面と非トランスデューサ表面との間で反射される表面反射バルク波(SRBW)との組合せを含む、請求項1~28のいずれか一項に記載のネブライザ。
  32. 表面音響波(SAW)は、定在波、進行波、およびそれらの組合せを含む、請求項29または31に記載のネブライザ。
  33. 表面反射バルク波(SRBW)は、定在波、進行波、およびそれらの組合せを含む、請求項30または31に記載のネブライザ。
  34. 前記電気音響トランスデューサは、インターデジタルトランスデューサ(IDT)である、請求項1~33のいずれか一項に記載のネブライザ。
  35. 前記少なくとも1つの圧電基板は、前記トランスデューサ表面を伝播する前記SAWの波長またはその付近の厚さを有する、請求項29~34のいずれか一項に記載のネブライザ。
  36. 前記少なくとも1つの圧電基板は、ニオブ酸リチウム(LiNbO)から形成される、請求項1~35のいずれか一項に記載のネブライザ。
  37. 前記液体は、前記トランスデューサ表面、前記非トランスデューサ表面、または前記トランスデューサ表面と前記非トランスデューサ表面の両方から噴霧される、請求項1~36のいずれか一項に記載のネブライザ。
  38. 前記液体が噴霧されて、0.1~100μmのサイズ範囲を有する液滴を形成する、請求項1~37のいずれか一項に記載のネブライザ。
  39. 前記液体は、最大10ml/minの噴霧レートで噴霧される、請求項1~38のいずれか一項に記載のネブライザ。
  40. 前記ハウジングは、前記少なくとも1つの電気音響トランスデューサに接続された外部電気接点と、一体型液体供給システムとを有するカートリッジハウジングの形態である、請求項1~39のいずれか一項に記載のネブライザ。
  41. 前記少なくとも1つの圧電基板は、前記変位可能なマウントに接合されている、請求項18に記載の、または請求項18に従属する請求項19~40のいずれか一項に記載のネブライザ。
  42. 前記少なくとも1つの圧電基板は、前記トランスデューサ表面と前記変位可能なマウントとの間に液密シールを提供するシーリングで前記変位可能なマウントに接合される、請求項41に記載のネブライザ。
  43. 前記少なくとも1つの圧電基板は、前記トランスデューサ表面と前記ハウジングとの間に液密シールを提供するシーリングで前記ハウジングに接合される、請求項1~40のいずれか一項に記載のネブライザ。
  44. 前記非トランスデューサ表面は、1つ以上の電気音響トランスデューサを含む、請求項1~43のいずれか一項に記載のネブライザ。
  45. 液滴を噴霧するためのネブライザであって、
    ハウジングと、
    前記ハウジング内に収容され、少なくとも1つの圧電基板内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサが配置されるトランスデューサ表面を有する少なくとも1つの圧電基板と、
    噴霧の前に前記トランデューサ表面から液体が追い払われる程度を低減するために、反対方向に音響波エネルギーを生成するための少なくとも1つの対向する電気音響トランスデューサと、
    前記少なくとも1つの圧電基板に液体を供給するための液体供給システムと
    を含むネブライザ。
  46. 液滴を噴霧するためのネブライザであって、
    ハウジングと、
    前記ハウジング内に収容された少なくとも2つの圧電基板であって、各々が前記それぞれの圧電基板内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサが配置されたそれぞれのトランスデューサ表面を有し、
    離間して、平行に隣接した関係で配置されている、少なくとも2つの圧電基板と、
    前記圧電基板の少なくとも1つに液体を供給するための液体供給システムと、
    前記噴霧された液滴のサイズを制御するための制御手段であって、前記制御手段が、隣接する基板表面間に供給される液体のメニスカスの厚さを制御し、それによって前記噴霧された液滴の前記サイズを制御するために、前記少なくとも2つの圧電基板間の間隔の事前設定を可能にするように構成されている、制御手段と、
    を含むネブライザ。
  47. 液滴を噴霧するためのネブライザであって、
    ハウジングと、
    前記ハウジング内に収容され、前記基板内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサが配置されるトランスデューサ表面と、対向する非トランスデューサ表面とを有する少なくとも1つの圧電基板と、
    前記トランスデューサおよび非トランスデューサ表面のうちの少なくとも1つに液体を供給するための液体供給システムであって、前記液体を収容するためのリザーバと、前記リザーバから前記少なくとも1つの圧電基板に前記液体を供給するための、前記少なくとも1つの圧電基板と接触する少なくとも1つの比較的剛性の供給導管とを含む、液体供給システムと、
    を含むネブライザ。
  48. 液滴を噴霧するためのネブライザであって、
    ハウジングと、
    前記ハウジング内に収容され、少なくとも1つの圧電基板内に音響波エネルギーを生成するための少なくとも1つの電気音響トランスデューサが配置されるトランスデューサ表面と、対向する非トランスデューサ表面とを有する少なくとも1つの圧電基板と、
    前記少なくとも1つの圧電基板の周囲表面の少なくとも一部と接触しているコンプライアント材料と、
    前記トランスデューサおよび非トランスデューサ表面のうちの少なくとも1つに液体を供給するための液体供給システムであって、前記液体を収容するためのリザーバと、前記リザーバから前記少なくとも1つの圧電基板に前記液体を供給するための少なくとも1つの供給導管とを含む、液体供給システムと、
    を含むネブライザ。
  49. 前記少なくとも1つの電気音響トランスデューサは、前記少なくとも1つの圧電基板上の液体の体積を示す出力を提供するように構成されている、請求項1~48のいずれか一項に記載のネブライザ。
  50. 前記少なくとも1つの電気音響トランスデューサによって提供される前記出力は、電流である、請求項49に記載のネブライザ。
  51. 前記少なくとも1つの圧電基板上の液体の体積を検出するためのセンサをさらに含む、請求項45~48のいずれか一項に記載のネブライザ。
  52. 前記少なくとも1つの電気音響トランデューサは、前記センサを含む、請求項51に記載のネブライザ。
  53. 噴霧の前に前記少なくとも1つの圧電基板から液体が追い払われる程度を低減するために、反対方向に音響波エネルギーを生成するための少なくとも1つの対向する電気音響トランスデューサをさらに含む、請求項45~52のいずれか一項に記載のネブライザ。
  54. 前記少なくとも1つの対向する電気音響トランスデューサは、前記少なくとも1つの圧電基板上の液体の体積を示す出力を提供するように構成されている、請求項53に記載のネブライザ。
  55. 前記少なくとも1つの対向する電気音響トランスデューサによって提供される前記出力は、電流である、請求項54に記載のネブライザ。
  56. 前記少なくとも1つの対向する電気音響トランデューサは、前記センサを含む、請求項51に従属する請求項53に記載のネブライザ。
  57. 前記噴霧された液滴のサイズを制御するための制御手段をさらに含む、請求項45~56のいずれか一項に記載のネブライザ。
  58. 離間して、平行に隣接した関係で配置されている少なくとも2つの圧電基板を含む、請求項45~57のいずれか一項に記載のネブライザ。
  59. 前記液滴サイズ制御手段は、隣接する基板表面間に供給される液体のメニスカスの厚さを制御し、それによって前記噴霧された液滴の前記サイズを制御するために、前記少なくとも2つの圧電基板間の間隔の事前設定を可能にするように構成されている、請求項57に従属する請求項58に記載のネブライザ。
  60. 前記液滴サイズ制御手段は、隣接する基板表面と前記内壁との間に供給される液体のメニスカスの厚さを制御し、それによって前記噴霧された液滴の前記サイズを制御するために、前記ハウジングの内壁からの前記少なくとも2つの圧電基板の間隔の事前設定を可能にするように構成されている、請求項57に従属する請求項58に記載のネブライザ。
  61. 前記液滴サイズ制御手段は、前記少なくとも1つの圧電基板に供給される液体のメニスカスの厚さを制御し、それによって前記噴霧された液滴の前記サイズを制御するために、前記液体供給導管および前記少なくとも1つの圧電基板と流体連通している液膜形成構造を含む、請求項57に記載のネブライザ。
  62. 前記液膜形成構造は、ウェブ、メッシュ、1つ以上の繊維、または前記液体供給導管のスロットを含む、請求項61に記載のネブライザ。
  63. ネブライザシステムであって、
    請求項1~62のいずれか一項に記載のネブライザであって、前記ネブライザが第1のネブライザである、ネブライザと、
    第2のネブライザと
    を含むネブライザシステム。
  64. 前記第1のネブライザは、第1のネブライザ水接触面を含み、
    前記第2のネブライザは、第2のネブライザ水接触面を含む、
    請求項63に記載のネブライザシステム。
  65. 前記第1のネブライザ水接触面は、前記第2のネブライザ水接触面に直交する、請求項64に記載のネブライザシステム。
  66. 前記第1のネブライザ水接触面は、前記トランスデューサ表面または前記非トランスデューサ表面であり、
    前記第2のネブライザ水接触面は、前記第2のネブライザのトランスデューサ表面または前記第2のネブライザの非トランスデューサ表面である、
    請求項64または請求項65に記載のネブライザシステム。
  67. 請求項1~62のいずれか一項に記載のネブライザ、または請求項63~66のいずれか一項に記載のネブライザシステムを使用して液体を噴霧する方法。
  68. 0.1~100μmのサイズ範囲を有する液滴を形成するために液体を噴霧することを含む、請求項67に記載の液体を噴霧する方法。
  69. 最大10ml/minの体積噴霧レートで液体を噴霧することを含む、請求項67または請求項68に記載の液体を噴霧する方法。
  70. 10μm未満の幾何学的標準偏差(GSD)を有する液滴を形成するために液体を噴霧することを含む、請求項67~69のいずれか一項に記載の液体を噴霧する方法。
  71. 前記液体は、医薬品、DNA、RNAi、ペプチド、タンパク質、および細胞などの機能的もしくは治療的薬剤、または香料、化粧品、農薬、塗料、もしくは防腐剤などの非治療的薬剤を含む、請求項6777~70のいずれか一項に記載の液体を噴霧する方法。
  72. 前記機能的もしくは治療的薬剤は、単位用量として送達される、請求項71に記載の方法。
  73. 前記単位用量は、前記少なくとも1つの基板上の液体の前記体積を検出するためのセンサによって決定される、請求項72に記載の方法。
JP2022520814A 2019-10-04 2020-10-05 活性薬剤を送達するための音響ネブライザ Pending JP2022550903A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2019903755A AU2019903755A0 (en) 2019-10-04 Acoustic nebuliser for delivery of active agents
AU2019903755 2019-10-04
PCT/AU2020/051072 WO2021062494A1 (en) 2019-10-04 2020-10-05 Acoustic nebuliser for delivery of active agents

Publications (2)

Publication Number Publication Date
JP2022550903A true JP2022550903A (ja) 2022-12-05
JPWO2021062494A5 JPWO2021062494A5 (ja) 2023-10-12

Family

ID=75336677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022520814A Pending JP2022550903A (ja) 2019-10-04 2020-10-05 活性薬剤を送達するための音響ネブライザ

Country Status (7)

Country Link
US (1) US20220401662A1 (ja)
EP (1) EP4037740A4 (ja)
JP (1) JP2022550903A (ja)
CN (1) CN115151292A (ja)
AU (1) AU2020359673A1 (ja)
CA (1) CA3153497A1 (ja)
WO (1) WO2021062494A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4240452A1 (en) * 2020-11-06 2023-09-13 Trudell Medical International Surface acoustic wave atomizer with fluid direction and migration prevention
TW202413419A (zh) 2022-05-27 2024-04-01 法商賽諾菲公司 與nkp46和bcma變體結合之具有fc工程化的自然殺手(nk)細胞接合物
CN115999037B (zh) * 2023-02-17 2024-07-19 西安交通大学医学院第一附属医院 一种超声给药***

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5996903A (en) * 1995-08-07 1999-12-07 Omron Corporation Atomizer and atomizing method utilizing surface acoustic wave
JP3905621B2 (ja) * 1998-01-21 2007-04-18 シャープ株式会社 粒子径可変生成装置及び粒子径可変生成方法
JP3312216B2 (ja) * 1998-12-18 2002-08-05 オムロン株式会社 噴霧装置
JP2008104966A (ja) * 2006-10-26 2008-05-08 Seiko Epson Corp 霧化装置、吸引装置
JP4915567B2 (ja) * 2006-10-26 2012-04-11 パナソニック株式会社 弾性表面波霧化装置
GB2548071B (en) * 2015-12-18 2018-05-02 Thermo Fisher Scient Bremen Gmbh Liquid sample introduction system and method, for analytical plasma spectrometer
US11717845B2 (en) * 2016-03-30 2023-08-08 Altria Client Services Llc Vaping device and method for aerosol-generation
CN106174706A (zh) * 2016-08-31 2016-12-07 云南中烟工业有限责任公司 一种声表面波雾化器
CN118080245A (zh) * 2018-04-05 2024-05-28 皇家墨尔本理工大学 雾化器和液体雾化方法
EP3954416A4 (en) * 2019-04-09 2023-01-04 Japan Tobacco Inc. AEROSOL DELIVERY DEVICE

Also Published As

Publication number Publication date
EP4037740A1 (en) 2022-08-10
US20220401662A1 (en) 2022-12-22
EP4037740A4 (en) 2023-11-01
AU2020359673A1 (en) 2022-04-21
CA3153497A1 (en) 2021-04-08
CN115151292A (zh) 2022-10-04
WO2021062494A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP2022550903A (ja) 活性薬剤を送達するための音響ネブライザ
US6601581B1 (en) Method and device for ultrasound drug delivery
EP3778036B1 (en) Inhaler
US20210100963A1 (en) Multi Surface Acoustic Nebuliser
US6769626B1 (en) Device and method for detecting and controlling liquid supply to an apparatus discharging liquids
EP0923957B1 (en) Nozzle body and liquid droplet spray device for an inhaler suitable for respiratory therapies
EP2632519B1 (en) A nebulizer, a control unit for controlling the same, and a method of controlling a nebulizer
US6722582B2 (en) Liquid droplet spray device
EP2744541B1 (en) A nebulizer, a control unit for controlling the same and a method of operating a nebulizer
US9821125B2 (en) Nebulizer and a method of manufacturing a nebulizer
WO2022219623A1 (en) Nebulizer
US20240173489A1 (en) Portable ultrasonic nebulizer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231003