JP2022548247A - 抗菌化合物 - Google Patents

抗菌化合物 Download PDF

Info

Publication number
JP2022548247A
JP2022548247A JP2022516117A JP2022516117A JP2022548247A JP 2022548247 A JP2022548247 A JP 2022548247A JP 2022516117 A JP2022516117 A JP 2022516117A JP 2022516117 A JP2022516117 A JP 2022516117A JP 2022548247 A JP2022548247 A JP 2022548247A
Authority
JP
Japan
Prior art keywords
mmol
alkyl
compound
give
optionally substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022516117A
Other languages
English (en)
Other versions
JPWO2021048342A5 (ja
Inventor
エミリ ジョルジュ ギルモン,ジェローム
マドレーヌ シモーヌ モット,マガリ
アリラ,マリア クリスティナ ビレラ
マリア ジェイ ラマン,ゴドリーブ
ジュリア ドミニク マリア レネ,アデライン
ルドビック ジェンティー,マシュー
アントニー ランプレヒト,ディルク
Original Assignee
ヤンセン・サイエンシズ・アイルランド・アンリミテッド・カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンセン・サイエンシズ・アイルランド・アンリミテッド・カンパニー filed Critical ヤンセン・サイエンシズ・アイルランド・アンリミテッド・カンパニー
Publication of JP2022548247A publication Critical patent/JP2022548247A/ja
Publication of JPWO2021048342A5 publication Critical patent/JPWO2021048342A5/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/53Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D498/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Communicable Diseases (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Pulmonology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pyridine Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Medicinal Preparation (AREA)

Abstract

本発明は次の化合物【化1】TIFF2022548247000183.tif34170[式中、整数は、本明細書中で定義されたとおりである]に関し、化合物は、例えば結核の治療にて使用するための薬剤として有用であり得る。

Description

本発明は、新規化合物に関する。本発明はまた、医薬として使用するための、及び更に細菌性疾患、例として、病原性マイコバクテリア、例えば、結核菌(Mycobacterium tuberculosis)を原因とする疾患の治療に使用するための、そのような化合物に関する。そのような化合物は、結核菌(M.tuberculosis)中のATPシンターゼを妨害することにより作用し得、主な作用機序としてはシトクロムbc活性の阻害である。従って、主として、そのような化合物は抗結核薬である。
結核菌(Mycobacterium tuberculosis)は、全世界に分布する、重篤で致死的となり得る感染症である結核(TB)の病原体である。世界保健機構(World Health Organization)の推定によると、毎年800万を超える人がTBに罹患し、年間200万人が結核により死亡する。最近の10年間で、TBの症例は世界中で20%増加しており、最も貧困な地域で最も負担が大きくなっている。これらの傾向が継続すると、TB発生率は次の20年で41%増加することになる。有効な化学療法の導入以来50年であるが、TBは依然として、世界でAIDSに次ぐ、成人の感染による死亡原因の主たるものである。TBの蔓延を助長するのは、多剤耐性株の出現の増加とHIVとの極めて有害な共生である。HIV陽性のTB感染者が活動性TBを発病する可能性は、HIV陰性の感染者と比べて30倍を超えて高く、世界中でHIV/AIDS患者の3人に1人がTBにより死亡している。
結核治療に対する既存の方法は全て、複数薬剤の組み合わせを含む。例えば、米国公衆衛生局(U.S.Public Health Service)により推奨されるレジメンは、イソニアジド、リファンピシン、及びピラジンアミドの2ヶ月間の組み合わせと、それに続くイソニアジド及びリファンピシンのみによる更に4ヶ月間の組み合わせである。これらの薬剤はHIVに感染した患者では更に7ヶ月間継続される。結核菌(M.tuberculosis)の多剤耐性株に感染した患者の場合には、エタンブトール、ストレプトマイシン、カナマイシン、アミカシン、カプレオマイシン、エチオナミド、サイクロセリン、シプロフォキサシン(ciprofoxacin)、及びオフロキサシンなどの薬剤が、この組み合わせ療法に加えられる。結核の臨床治療に有効な単一薬剤も、6ヶ月未満の治療を可能にする薬剤の組み合わせも存在しない。
患者及び提供者のコンプライアンスを容易にするレジメンを可能にすることにより、現行の治療を改善する、新規薬剤に対する医療上の高い必要性が存在する。より短期間のレジメン、及び管理の必要性が少ないレジメンがこれを達成するための最良の方法である。治療による恩恵の大部分は、4種の併用薬剤が与えられ、細菌負荷が大きく減少し、患者の感染性がなくなる、最初の2か月以内の、集中段階すなわち殺菌段階で得られる。4~6ヶ月の継続段階、すなわち滅菌段階が、残存する細菌を排除し、且つ再発のリスクを最小限に抑えるために必要とされる。治療を2ヶ月以下に短縮する、有効な滅菌薬剤があれば、極めて有益である。集中的に管理する必要性を少なくすることによりコンプライアンスを容易にする薬剤もまた必要とされている。明らかに、治療の全期間及び薬剤の投与頻度の両方を低減する化合物があれば、最も大きな恩恵が得られるであろう。
TBの蔓延を助長するのは、多剤耐性株、すなわちMDR-TBの発生の増加である。世界中の全ての症例の最大4パーセントが、MDR-TB、すなわち、最も有効な薬剤である4種標準薬剤、イソニアジド、及びリファンピンに耐性な菌株とみなされている。MDR-TBは、治療しないと致死的であり、しかも標準的治療により十分に治療することができず、そのため、最大2年間、「第2選択」薬が治療に必要となる。これらの薬剤は、多くの場合、毒性があり、高価で、且つ有効性もわずかである。有効な治療法がない状態で、感染性のMDR-TB患者がこの疾患を広め続けており、MDR-TB株による新たな感染を生み出している。薬剤耐性株、特にMDR株に対する活性を示す可能性のある、新規の作用機序を有する新規薬剤に対する医療上の高い必要性が存在する。
本明細書の上記又は下記に使用される「薬剤耐性」という用語は、微生物分野の技術者により十分理解されている用語である。薬剤耐性マイコバクテリウム(Mycobacterium)は、以前有効であった少なくとも1種の薬剤に対してもはや感受性を示さず、また以前有効であった少なくとも1種の薬剤による抗菌性攻撃に耐える能力を発達させたマイコバクテリウム(Mycobacterium)である。薬剤耐性株は、この耐性力をその子孫に受け継がせることができる。上記耐性は、単一薬剤又は種々の薬剤に対するその感受性を変化させる、細菌細胞におけるランダムな遺伝子突然変異によるものであり得る。
MDR結核は、少なくともイソニアジド及びリファンピシン(現在最も強力な2種の抗TB薬剤である)に対する細菌耐性(他の薬剤に対する耐性を伴うか又は伴わない)による特定形態の薬剤耐性結核である。従って、本明細書の上記又は下記に使用される場合は常に、「薬剤耐性」には、多剤耐性が含まれる。
TBの蔓延を制御することに関する別の要因には、潜伏性TBの問題がある。数十年に及ぶ結核(TB)制御プログラムにも関わらず、約20億の人が無症候性ではあるが結核菌(M.tuberculosis)に感染している。これらの個体の約10%に、一生の間に活動的なTBを発症するリスクがある。TBの世界的な蔓延は、HIV患者のTB感染及び多剤耐性TB株(MDR-TB)の増加により加速される。潜伏性TBの再活性化が、疾患発症の高リスク要因であり、HIV感染個体の死亡原因の32%を占める。TBの蔓延を制御するためには、休止状態又は潜伏状態の細菌を殺すことができる新規な薬剤を発見する必要がある。休止状態のTBは、腫瘍壊死因子α又はインターフェロン-γに対する抗体のような免疫抑制剤の使用により宿主の免疫が抑制されるなどのいくつかの要因によって再活性化されて疾患を引き起こし得る。HIV陽性患者の場合、潜伏性TBに利用可能な唯一の予防的治療は、リファンピシン、ピラジナミドの2~3ヶ月レジメンである。この治療レジメの効力はまだ明確ではなく、更に、資源が限定されている環境下では、治療期間が重大な制約となる。従って、潜伏性TB細菌を保持する個体に対して、化学予防薬として作用し得る新規薬剤を特定する必要性が大いにある。
結核菌は、吸入により健常個体に侵入するが、肺の肺胞マクロファージにより貪食される。これにより、強力な免疫応答及び肉芽腫の形成がもたらされるが、この肉芽腫は、T細胞により取り囲まれた、結核菌(M.tuberculosis)感染マクロファージからなる。6~8週間後、宿主免疫応答により、壊死による感染細胞の死及び特定の細胞外細菌による乾酪性物質の蓄積が生じ、その周辺をマクロファージ、類上皮細胞、及び周辺リンパ組織の層が取り囲む。健常人の場合、マイコバクテリアの大部分はこれらの環境において死滅するが、小さな割合の桿菌はまだ生存しており、非複製代謝低下状態で存在すると考えられ、抗TB薬物、例えば、イソニアジドによる死滅に対して耐性である。これらの細菌は、疾患の何ら臨床徴候を示すことなく、生理的環境の変化がある中で、個体の生涯にわたってさえ残存することができる。しかしながら、症例の10%で、これらの潜伏性細菌が再活性化して疾患を引き起こすことがある。これらの存続する細菌の発生に関する仮説の1つは、ヒト病変における病態生理学的な環境、すなわち、低下した酸素分圧、限定された栄養源、及び酸性pHの環境である。これらの要因によって、主要な抗マイコバクテリウム薬に対してこれらの細菌が表現型的に耐性を有するようになると仮定されている。
TBの蔓延への対応に加えて、第1選択の抗生物質に対する耐性の問題が出現しつつある。いくつかの重要な例として、ペニシリン耐性肺炎連鎖球菌(Streptococcus pneumoniae)、バンコマイシン耐性腸球菌(enterococci)、メチシリン耐性黄色ブドウ球菌(Staphylococcus aureus)、多剤耐性サルモネラ菌(salmonellae)が挙げられる。
抗生物質に対する耐性は、重大な結果をもたらしている。耐性菌を原因とする感染は、治療に応答せず、その結果、病気が長期にわたり、また死のリスクが高まる。治療の不成功により、感染力のある期間が延長され、それによって、地域社会の中を移動する感染した人の数が増加し、従って、一般住民が耐性菌感染に罹患するリスクに曝される。
病院は、世界中で抗菌薬耐性問題の重要な構成要素である。感受性が高い患者、集中的且つ長期間の抗菌薬の使用、及び交差感染が組み合わさると、高度に耐性の病原菌による感染が生じる。
抗菌薬による自己治療は、耐性に寄与する別の主要な要因である。自己治療の抗菌薬は、不必要なこともあり、投薬が不十分なことも多く、活性薬剤を十分な量含有していないこともある。
推奨治療に関する患者のコンプライアンスは別の主要な問題である。患者は、気分がよくなり始めると薬物の服用を忘れ、治療を中断するか、又は全コースを行うことができず、それによって、微生物が殺されるよりも適合するのに理想的な環境が築かれることがある。
複数の抗生物質に対する耐性が出現するため、医師は、有効な治療法がない感染症に直面している。そのような感染症の罹患率、死亡率、及び財政的費用により、世界中で医療制度に対する負担が増大している。
従って、細菌感染、特に薬剤耐性及び潜伏性のマイコバクテリア感染を含むマイコバクテリア感染、更に他の細菌感染、特に耐性細菌株を原因とする細菌感染を治療するための新規な化合物に対する高い必要性が存在する。
結核を治療するための抗感染化合物は、例えば、国際特許出願の国際公開第2011/113606号パンフレットに開示されている。そのような文献は、宿主マクロファージ内部での結核菌(M.tuberculosis)増殖を予防する化合物に関連し、例えば任意選択的に置換されているベンジル基に(例えば、アミド部分を介して)結合している二環式核のイミダゾピリジンを有する化合物に関する。
国際特許出願の国際公開第2014/015167号パンフレットも、結核の治療に潜在的に使用されるものとして開示される化合物を開示している。それに開示されるそのような化合物は、それ自身、別の二環又は芳香族基に結合し得るリンカー基(例えば、アミド基)により置換されている必須要素としての二環(5,5-縮合二環)を有する。この文献中のそのような化合物は、一連の4つ以上の環を含有しない。
Petheらによる雑誌論文Nature Medicine,19,1157-1160(2013)「Discovery of Q203,a potent clinical candidate for the treatment of tuberculosis」は、結核菌(M.tuberculosis)に対して試験された特定化合物を同定している。この化合物Q203は、以下に示される。
Figure 2022548247000002
この臨床候補物は、雑誌論文J.Medicinal Chemistry,2014,57(12),pp5293-5305にも考察されている。Q203は、MDR結核に対する活性を有し、マクロファージの内部で結核菌(M.tuberculosis)株のH37Rvに対して0.28nMのMIC50の活性を有すると記述されている。陽性対照データ(既知の抗TB化合物ベダキリン、イソニアジド及びモキシフロキサシンを使用)も報告されている。この文献は、突然変異体を用いる研究に基づく作用方式も示唆する。それは結核菌(M.tuberculosis)中でATPシンターゼを妨害することにより作用すること、及びシトクロムbc活性の阻害が主な作用機序であることが仮定される。シトクロムbcは、ATP合成のために必要とされる電子伝達系の不可欠な構成成分である。Q203は、複製及び非複製細菌の両方に対して高度に活性であることが明らかになった。
国際特許出願の国際公開第2015/014993号パンフレットも、結核菌(M.tuberculosis)に対する活性を有する化合物を開示している。国際特許出願の国際公開第2014/4015167号パンフレット、同第2017/001660号パンフレット、同第2017/001661号パンフレット、同第2017/216281号パンフレット、及び同第2017/216283号パンフレットも同様である。国際特許出願の国際公開第2013/033070号パンフレット及び国際公開第2013/033167号パンフレットは、キナーゼモジュレーターとしての種々の化合物を開示している。
本発明の目的は、細菌性疾患、特に病原性細菌、例えば、結核菌(Mycobacterium tuberculosis)を原因とする疾患(潜在的疾患を含み、薬物耐性結核菌(M.tuberculosis)株を含む)の治療に使用するための化合物を提供することである。そのような化合物はまた新規であり得、結核菌(M.tuberculosis)中のATPシンターゼを妨害することにより作用し得、シトクロムbc活性の阻害が主な作用機序であると考えられる。
ここで、式(I)
Figure 2022548247000003

[式中、
Aは、芳香族又は非芳香族であり得、且つ任意選択的に窒素及び硫黄から選択される1又は2個のヘテロ原子を含有する5員又は6員環であり;
Bは、1個又は2個の窒素ヘテロ原子を含有する5員芳香環であり;
は、ハロ(例えば、Cl、F)、-R6a、-O-R6b、-C(=O)-R6c、-C(=O)-N(R)(R)、-CN、及び-N(R7a)R7bから独立して選択される1つ以上(例えば、1つ、2つ、又は3つ)の任意選択的な置換基を表し;
は、ハロ及び-OC1~3アルキルから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルであり;
、R3a、R、及びR4aのうちのいずれか2つはHを表し、他の2つは、独立して、H、F、-C1~3アルキル、及び-O-C1~3アルキルから選択される置換基を表し;
は、H、-R9a、-C(=O)-R9b、-SO-R10、又はHetであり;
X及びYのうちのいずれか1つは、-CR11aを表し、その他のものは、N又は-CR11bを表し;
6a及びR6bは、独立して、ハロ(例えば、F)及び-O-CHから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルを表し;
6cは、-C1~3アルキルであり;
及びRは、H及び-C1~3アルキルから独立して選択され;
7a及びR7bは、独立して、H、C1~6アルキルを表すか、又はR7a及びR7bは、一緒になって、3~6員環を形成し;
9aは、ハロ、-OC1~3アルキル、及びHetから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルを表し;
9bは、水素又は-C1~3アルキル(任意選択的に1つ以上のフルオロ原子で置換されている)であり;
10は、ハロ(例えば、F)及び-O-CHから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルであり;
11a及びR11bは、独立して、H、C1~4アルキル(それ自体が、フルオロ、-CN、-R12a、-OR12b、-N(R12c)R12d、及び/又は-C(O)N(R12e)R12fから選択される1つ以上、例えば1つの置換基で任意選択的に置換されている)、又は-O-C1~4アルキル(それ自体が、フルオロ、-R12g、-OR12h、及び/又は-N(R12i)R12jから選択される1つ以上、例えば1つの置換基で任意選択的に置換されている)を表し;
12a、R12b、R12c、R12d、R12e、R12f、R12g、R12h、R12i、及びR12jは、独立して、水素又はC1~3アルキル(1個以上のフルオロ原子で任意選択的に置換されている)を表し;
Het及びHetは、独立して、好ましくは窒素及び硫黄から選択される1個又は2個のヘテロ原子を含有し、ハロ及びC1~3アルキル(それ自体が1個以上のフルオロ原子で任意選択的に置換されている)から選択される1つ以上の置換基で任意選択的に置換されている5員又は6員芳香環を表す]
の化合物、又はその薬学的に許容される塩が提供され、
その化合物は本明細書において「本発明の化合物」と言及され得る。
一実施形態では、ここで、式(Ia)
Figure 2022548247000004

[式中、
は、=N-又は=C(R)-を表し;
Aは、芳香族又は非芳香族であり得、且つ任意選択的に窒素及び硫黄から選択される1又は2個のヘテロ原子を含有する5員又は6員環であり;
Bは、1個又は2個の窒素ヘテロ原子を含有する5員芳香環であり;
は、ハロ(例えば、Cl、F)、-R6a、-O-R6b、-C(=O)-R6c、-C(=O)-N(R)(R)、-CN、及び-N(R7a)R7bから独立して選択される1つ以上(例えば、1つ、2つ、又は3つ)の任意選択的な置換基を表すか;又は任意の2つのR基は、一緒になって(A環の隣接原子に結合している場合)任意選択的に1個若しくは2個のヘテロ原子を含有する5員若しくは6員環を形成し、且つこの環は、1つ若しくは2つのC1~3アルキル置換基で任意選択的に置換されており;
は、ハロ及び-OC1~3アルキルから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルであり;
、R3a、R、及びR4aのうちのいずれか2つはHを表し、他の2つは、独立して、H、F、-C1~3アルキル、及び-O-C1~3アルキルから選択される置換基を表し;
は、H、-R9a、-C(=O)-R9b、-SO-R10、又はHetであり;
X及びYのうちのいずれか1つは、-CR11aを表し、その他のものは、N又は-CR11bを表し;
6a及びR6bは、独立して、水素、又はハロ(例えば、F)、-O-CH、及びフェニルから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルを表し;
6cは、-C1~3アルキルであり;
及びRは、H及び-C1~3アルキルから独立して選択され;
7a及びR7bは、独立して、H、C1~6アルキルを表すか、又はR7a及びR7bは、一緒になって、3~6員環を形成し;
9aは、ハロ、-OC1~3アルキル、及びHetから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルを表し;
9bは、水素又は-C1~3アルキル(任意選択的に1つ以上のフルオロ原子で置換されている)であり;
10は、ハロ(例えば、F)及び-O-CHから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルであり;
11a及びR11bは、独立して、H、C1~4アルキル(それ自体が、フルオロ、-CN、-R12a、-OR12b、-N(R12c)R12d、及び/又は-C(O)N(R12e)R12fから選択される1つ以上、例えば1つの置換基で任意選択的に置換されている)、又は-O-C1~4アルキル(それ自体が、フルオロ、-R12g、-OR12h、及び/又は-N(R12i)R12jから選択される1つ以上、例えば1つの置換基で任意選択的に置換されている)を表し;
12a、R12b、R12c、R12d、R12e、R12f、R12g、R12h、R12i、及びR12jは、独立して、水素又はC1~3アルキル(1個以上のフルオロ原子で任意選択的に置換されている)を表し;
Het及びHetは、独立して、好ましくは窒素及び硫黄から選択される1個又は2個のヘテロ原子を含有し、ハロ及びC1~3アルキル(それ自体が1個以上のフルオロ原子で任意選択的に置換されている)から選択される1つ以上の置換基で任意選択的に置換されている5員又は6員芳香環を表す]
の化合物、又はその薬学的に許容される塩も提供され、
その化合物は本明細書において「本発明の化合物」とも言及され得る。
薬学的に許容される塩としては、酸付加塩及び塩基付加塩が挙げられる。そのような塩は、従来の手段によって、例えば、遊離酸又は遊離塩基形態の式Iの化合物と1当量以上の適切な酸又は塩基との、任意選択で溶媒中での、又は塩が溶解しない媒体中での反応、それに続く、標準的な技術を用いての(例えば、真空中での、凍結乾燥による、又は濾過による)上記溶媒又は前記媒体の除去によって、生成し得る。塩を、塩の形態の本発明の化合物の対イオンを、例えば好適なイオン交換樹脂を使用して別の対イオンと交換することによっても調製し得る。
前述の薬学的に許容される酸付加塩は、式(I)の化合物が形成できる、治療活性を有する無毒の酸付加塩の形態を含むものとする。これらの薬学的に許容される酸付加塩は、塩基の形態をそのような適切な酸で処理することにより容易に得ることができる。適切な酸には、例えば、無機酸、例えば、塩酸又は臭化水素酸などのハロゲン化水素酸、硫酸、硝酸、リン酸などの酸;又は有機酸、例えば、酢酸、プロパン酸、ヒドロキシ酢酸、乳酸、ピルビン酸、シュウ酸(すなわち、エタン二酸)、マロン酸、コハク酸(すなわち、ブタン二酸)、マレイン酸、フマル酸、リンゴ酸、酒石酸、クエン酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、シクラミン酸、サリチル酸、p-アミノサリチル酸、パモ酸などの酸が含まれる。
本発明の目的のためには、本発明の化合物の溶媒和物、プロドラッグ、N-酸化物及び立体異性体もまた、本発明の範囲に含まれる。
本発明の関連化合物の「プロドラッグ」という用語は、経口又は非経口投与に続いて、インビボで代謝されて、その化合物を、所定の時間内(例えば、6~24時間の間(すなわち、1日1回~4回)の投与間隔内)に実験的に検出可能な量で形成する、任意の化合物を包含する。疑義を回避するために述べると、「非経口」投与という用語は、経口投与以外のあらゆる投与形態を包含する。
本発明の化合物のプロドラッグは、当該化合物上に存在する官能基を、そのようなプロドラッグが哺乳動物被験体に投与された際にインビボで修飾が切断されるような形で修飾することによって調製し得る。この修飾は、典型的には、プロドラッグ置換基を有する親化合物を合成することによって達成される。プロドラッグには、本発明の化合物中のヒドロキシル基、アミノ基、スルフヒドリル基、カルボキシ基又はカルボニル基が、それぞれ遊離のヒドロキシル基、アミノ基、スルフヒドリル基、カルボキシ基又はカルボニル基を再生するようにインビボで切断され得る任意の基に結合している本発明の化合物が含まれる。
プロドラッグの例としては、ヒドロキシ官能基のエステル及びカルバメート、カルボキシル官能基のエステル基、N-アシル誘導体及びN-マンニッヒ塩基が挙げられるが、これらに限定されない。プロドラッグに関する一般的な情報は、例えばBundegaard,H.“Design of Prodrugs”p.1-92,Elesevier,New York-Oxford(1985)に見出され得る。
本発明の化合物は、二重結合を含有し得、従って、各個々の二重結合に関してE(entgegen)及びZ(zusammen)幾何異性体として存在し得る。位置異性体もまた、本発明の化合物に包含され得る。全てのそのような異性体(例えば、本発明の化合物が二重結合又は縮合環を含む場合は、シス型及びトランス型が包含される)及びそれらの混合物は、本発明の範囲に含まれる(例えば、単一の位置異性体及び位置異性体の混合物は、本発明の範囲に含まれ得る)。
本発明の化合物はまた、互変異性を示し得る。全ての互変異性形態(又は互変異性体)及びそれらの混合物は、本発明の範囲に含まれる。「互変異性体」又は「互変異性形態」という用語は、低エネルギー障壁を介して相互変換可能な、異なるエネルギーの構造異性体を指す。例えば、プロトン互変異性体(プロトトロピー互変異性体としても知られる)には、プロトンの移動を介した相互変換、例えば、ケト-エノールとイミン-エナミンの異性化が含まれる。原子価互変異性体には、結合電子のうちのいくつかの再編成による相互変換が含まれる。
本発明の化合物はまた、1個以上の不斉炭素原子を含有し得、従って、光学異性及び/又はジアステレオ異性を示し得る。ジアステレオ異性体は、従来の技術、例えば、クロマトグラフィー又は分別結晶を用いて分離し得る。種々の立体異性体が、従来の例えば分別結晶又はHPLC技術を用いての、化合物のラセミ混合物又は他の混合物の分離により単離され得る。或いは、所望の光学異性体は、ラセミ化若しくはエピマー化を引き起こさない条件下における適切な光学的に活性な出発物質の反応(すなわち、「キラルプール」法)により、適切な出発物質と後に適切な段階で除去され得る「キラル補助剤」との反応により、例えばホモキラル酸を用いた誘導体化(すなわち、動的分割などの分割)、それに続く従来の手段(例えば、クロマトグラフィー)によるジアステレオマー誘導体の分離により、又は適切なキラル試薬若しくはキラル触媒を用いた反応により、いずれも当業者に知られている条件下において、調製し得る。
全ての立体異性体(ジアステレオ異性体、鏡像異性体及びアトロプ異性体が挙げられるが、これらに限定されない)及びそれらの混合物(例えば、ラセミ混合物)が、本発明の範囲に含まれる。
本明細書に示す構造において、任意の特定のキラル原子の立体化学が指定されていない場合、全ての立体異性体が企図されており、本発明の化合物として包含される。立体化学が特定の配置を示す実線の楔又は破線で指定されている場合、その立体異性体はそのように指定され、定義される。
本発明の化合物は非溶媒和形態及び薬学的に許容される溶媒(例えば、水、エタノールなど)との溶媒和形態で存在し得、本発明が溶媒和形態及び非溶媒和形態の両方を包含することが意図される。
本発明はまた、自然界で通常見られる原子質量又は質量数(又は自然界で見られる最も豊富なもの)とは異なる原子質量又は質量数を有する原子により1個以上の原子が置換されている以外は、本明細書に記載の化合物と同一の、同位体標識された本発明の化合物も包含する。本明細書で規定されている、任意の特定の原子又は元素の全ての同位体は、本発明の化合物の範囲内にあると考えられる。本発明の化合物中へ組み込み可能な同位体の例としては、水素、炭素、窒素、酸素、リン、硫黄、フッ素、塩素及びヨウ素(H、H、11C、13C、14C、13N、15O、17O、18O、32P、33P、35S、18F、36Cl、123I、及び125Iなど)の同位体が挙げられる。本発明の特定の同位体標識化合物(例えば、H及び14Cで標識されたもの)は、化合物において、また基質組織分布アッセイにとって有用である。トリチウム化同位体(H)及び炭素14(14C)同位体は、それらの調製容易性及び検出可能性に有用である。更に、重水素(即ち、H等のより重い同位体による置換は、より大きい代謝安定性の結果としてもたらされる所定の治療上の利点(例えば、インビボでの半減期の増加又は投薬必要量の減少)をもたらすことができるため、従って一部の状況で好ましい可能性がある。例えば、15O、13N、11C、及び18Fなどの陽電子放射性同位体は、基質受容体占有率を調べるための陽電子放射断層撮影(PET)の研究に有用である。本発明の同位体標識された化合物は、一般に、下記の記述/実施例で開示されているものと類似の手順に従い、非同位体標識試薬の代わりに同位体標識試薬を用いることによって、調製することができる。
特に断らない限り、本明細書で定義されるC1~qアルキル基(ここで、qは範囲の上限である)は、直鎖であるか、又は十分な数(すなわち、妥当な値として最低2個又は3個)の炭素原子が存在する場合は、分枝鎖、及び/若しくは環状(従って、C3~q-シクロアルキル基を形成している)であり得る。そのようなシクロアルキル基は、単環式又は二環式であり得、且つ更に架橋されているものであり得る。更に、十分な数(すなわち、最低4個)の炭素原子が存在する場合、このような基はまた、部分的に環状であり得る。そのようなアルキル基はまた、飽和であるか、又は十分な数(すなわち、最低2個)の炭素原子が存在する場合、不飽和(例えば、C2~qアルケニル基又はC2~qアルキニル基を形成している)であり得る。
具体的に言及され得るC3~qシクロアルキル基(ここで、qは範囲の上限である)は、単環式又は二環式のアルキル基であり得、このシクロアルキル基は、更に架橋されている(従って、例えば、3個の縮合シクロアルキル基などの縮合環系を形成している)ものであり得る。そのようなシクロアルキル基は、飽和であるか、又は、1個以上の二重結合を含有している不飽和のもの(例えば、シクロアルケニル基を形成している)であり得る。置換基は、シクロアルキル基上の任意の位置で結合され得る。更に、十分な数(すなわち、最低4個)が存在する場合、そのようなシクロアルキル基はまた、部分的に環状でもあり得る。
用語「ハロ」は、本明細書で使用される場合、好ましくは、フルオロ、クロロ、ブロモ、及びヨードを包含する。
本明細書で言及する場合、複素環基は、芳香族又は非芳香族複素環基を含み、従って、ヘテロシクロアルキル基及びヘテレオアリール基を包含し得る。同様に、「芳香族又は非芳香族5員又は6員環」は、環中に5又は6員を有する複素環基(及び炭素環基)であり得る。
言及され得るヘテロシクロアルキル基には、環系中の原子のうちの少なくとも1個(例えば、1個~4個)が炭素以外(すなわち、ヘテロ原子)であり、且つ環系中の原子の総数が3個~20個の間(例えば、3個~10個の間(例えば、3個~8個の間(例えば、5個~8個)))である、非芳香族の単環式及び二環式のヘテロシクロアルキル基が含まれる。そのようなヘテロシクロアルキル基はまた、架橋していてもよい。更に、そのようなヘテロシクロアルキル基は、飽和であるか、又は不飽和で1個以上の二重結合及び/又は三重結合を含有し得、例えばC2~qヘテロシクロアルケニル(ここで、qは範囲の上限である)基を形成している。言及され得るC2~qヘテロシクロアルキル基としては、7-アザビシクロ[2.2.1]ヘプタニル、6-アザビシクロ[3.1.1]ヘプタニル、6-アザビシクロ[3.2.1]-オクタニル、8-アザビシクロ-[3.2.1]オクタニル、アジリジニル、アゼチジニル、ジヒドロピラニル、ジヒドロピリジル、ジヒドロピロリル(2,5-ジヒドロピロリルを含む)、ジオキソラニル(1,3-ジオキソラニルを含む)、ジオキサニル(1,3-ジオキサニル及び1,4-ジオキサニルを含む)、ジチアニル(1,4-ジチアニルを含む)、ジチオラニル(1,3-ジチオラニルを含む)、イミダゾリジニル、イミダゾリニル、モルホリニル、7-オキサビシクロ[2.2.1]ヘプタニル、6-オキサビシクロ[3.2.1]オクタニル、オキセタニル、オキシラニル、ピペラジニル、ピペリジニル、非芳香族ピラニル、ピラゾリジニル、ピロリジノニル、ピロリジニル、ピロリニル、キヌクリジニル、スルホラニル、3-スルホレニル、テトラヒドロピラニル、テトラヒドロフラニル、テトラヒドロピリジル(例えば、1,2,3,4-テトラヒドロピリジル及び1,2,3,6-テトラヒドロピリジル)、チエタニル、チイラニル、チオラニル、チオモルホリニル、トリチアニル(1,3,5-トリチアニルを含む)、トロパニルなどが挙げられる。適切な場合、ヘテロシクロアルキル基上の置換基は、環系中の任意の原子(ヘテロ原子を含む)上に位置し得る。ヘテロシクロアルキル基の結合点は、環系中の、(適切な場合は)ヘテロ原子(例えば、窒素原子)を含む任意の原子、又は環系の一部として存在し得る任意の縮合炭素環式環上の原子を介し得る。ヘテロシクロアルキル基はまた、N又はS酸化形態であり得る。本明細書において言及されるヘテロシクロアルキルは、単環式又は二環式であると明示的に述べられている。
芳香族基は、アリール又はヘテロアリールであり得る。言及され得るアリール基としては、例えばC6~12(例えばC6~10)などのC6~20アリール基が含まれる。そのような基は、単環式、二環式又は三環式であってもよく、少なくとも1個の環は芳香族である6~12個(例えば、6~10個)の環炭素原子を有し得る。C6~10アリール基には、フェニル、ナフチルなど、例えば1,2,3,4-テトラヒドロナフチルが含まれる。アリール基の結合点は、環系の任意の原子を介し得る。例えば、アリール基が多環式である場合、結合点は、非芳香族環の原子などの原子を介し得る。しかしながら、アリール基が多環式(例えば、二環式又は三環式)である場合、それらは、芳香族環を介して分子の残部に連結されることが好ましい。本明細書において言及され得る最も好ましいアリール基は、「フェニル基」である。
特に断らない限り、本明細書で使用する場合、「ヘテロアリール基」という用語は、好ましくはN、O及びSから選択される1個以上のヘテロ原子(例えば、1~4個のヘテロ原子)を含有する芳香族基をいう。ヘテロアリール基には、5~20員(例えば、5~10)のものが含まれ、単環式、二環式又は三環式であり得る(ただし、環の中の少なくとも1つは芳香族環である(従って、例えば、単環式、二環式又は三環式ヘテロ芳香族基を形成する))。ヘテロアリール基が多環式である場合、結合点は、非芳香族環の原子を含む任意の原子を介し得る。しかしながら、ヘテロアリール基が多環式(例えば、二環式又は三環式)である場合、それらは、芳香族環を介して分子の残部に連結されることが好ましい。言及され得るヘテロアリール基としては、3,4-ジヒドロ-1H-イソキノリニル、1,3-ジヒドロイソインドリル、1,3-ジヒドロイソインドリル(例えば、3,4-ジヒドロ-1H-イソキノリン-2-イル、1,3-ジヒドロイソインドール-2-イル、1,3-ジヒドロイソインドール-2-イル;すなわち非芳香族環を介して連結されているヘテロアリール基)、又は、好ましくは、アクリジニル、ベンズイミダゾリル、ベンゾジオキサニル、ベンゾジオキセピニル、ベンゾジオキソリル(1,3-ベンゾジオキソリルを含む)、ベンゾフラニル、ベンゾフラザニル、ベンゾチアジアゾリル(2,1,3-ベンゾチアジアゾリルを含む)、ベンゾチアゾリル、ベンズオキサジアゾリル(2,1,3-ベンズオキサジアゾリルを含む)、ベンズオキサジニル(3,4-ジヒドロ-2H-1,4-ベンズオキサジニルを含む)、ベンズオキサゾリル、ベンゾモルホリニル、ベンゾセレナジアゾリル(2,1,3-ベンゾセレナジアゾリルを含む)、ベンゾチエニル、カルバゾリル、クロマニル、シンノリニル、フラニル、イミダゾリル、イミダゾ[1,2-a]ピリジル、インダゾリル、インドリニル、インドリル、イソベンゾフラニル、イソクロマニル、イソインドリニル、イソインドリル、イソキノリニル、イソチアジオリル、イソチオクロマニル、イソキサゾリル、ナフチリジニル(1,6-ナフチリジニル、又は、好ましくは、1,5-ナフチリジニル及び1,8-ナフチリジニルを含む)、オキサジアゾリル(1,2,3-オキサジアゾリル、1,2,4-オキサジアゾリル及び1,3,4-オキサジアゾリルを含む)、オキサゾリル、フェナジニル、フェノチアジニル、フタラジニル、プテリジニル、プリニル、ピラニル、ピラジニル、ピラゾリル、ピリダジニル、ピリジル、ピリミジニル、ピロリル、キナゾリニル、キノリニル、キノリジニル、キノキサリニル、テトラヒドロイソキノリニル(1,2,3,4-テトラヒドロイソキノリニル及び5,6,7,8-テトラヒドロイソキノリニルを含む)、テトラヒドロキノリニル(1,2,3,4-テトラヒドロキノリニル及び5,6,7,8-テトラヒドロキノリニルを含む)、テトラゾリル、チアジアゾリル(1,2,3-チアジアゾリル、1,2,4-チアジアゾリル及び1,3,4-チアジアゾリルを含む)、チアゾリル、チオクロマニル、チオフェネチル、チエニル、トリアゾリル(1,2,3-トリアゾリル、1,2,4-トリアゾリル及び1,3,4-トリアゾリルを含む)などが挙げられる。ヘテロアリール基上の置換基は、適切な場合は、環系の任意の原子(ヘテロ原子など)上に位置し得る。ヘテロアリール基の結合点は、環系の任意の原子((適切な場合は)ヘテロ原子(例えば、窒素原子)など)、又は環系の一部として存在し得る任意の縮合炭素環式環上の原子を介し得る。ヘテロアリール基はまた、N又はS酸化形態であり得る。本明細書において言及されるヘテロアリール基は、単環式又は二環式であると明示的に述べられている。ヘテロアリール基が非芳香族環の存在する多環式である場合、その非芳香族環は、1個以上の=O基により置換されていてもよい。本明細書で言及され得る最も好ましいヘテロアリール基は、1、2又は3個のヘテロ原子(例えば、窒素、酸素及び硫黄から選択されることが好ましい)を含有する、5員又は6員の芳香族基であり得る。
ヘテロアリール基が単環式又は二環式であることは、明示的に述べられ得る。ヘテロアリールが二環式であると指定されている場合、それは、別の5員、6員又は7員の環(例えば、単環式のアリール環又はヘテロアリール環)と縮合した、5員、6員又は7員の単環式環(例えば、単環式ヘテロアリール環)からなっていてもよい。
言及され得るヘテロ原子としては、リン、ケイ素、ホウ素、並びに、好ましくは、酸素、窒素及び硫黄が挙げられる。
本明細書において「芳香族」基が言及される場合、それらはアリール又はヘテロアリールであり得る。本明細書において「芳香族リンカー基」が言及される場合、それらはアリール又はヘテロアリールであり得、本明細書において定義されているとおり、好ましくは単環式(しかし、多環式でもよい)であり、そのリンカー基の任意の考えられる基を介して分子の残部に結合している。しかしながら、具体的に炭素環芳香族リンカー基が言及される場合、そのような芳香族基はヘテロ原子を含有し得ず、すなわち、それらはアリールであり得る(が、ヘテロアリールではない)。
疑義を回避するために述べると、ある基が1種以上の置換基(例えば、C1~6アルキル基から選択される)で置換され得ると本明細書で述べられている場合、そのような置換基(例えば、アルキル基)は互いに独立している。すなわち、そのような基は、同一の置換基(例えば、同一のアルキル置換基)で、又は異なる置換基(例えば、アルキル基)で置換されていてもよい。
本明細書において言及される全ての個々の特徴(例えば、好ましい特徴)は、単独で、又は本明細書において言及される任意の他の特徴(好ましい特徴を含む)と組み合わせて解釈され得る(従って、好ましい特徴は、他の好ましい特徴と併せて、又はそれらから独立して解釈され得る)。
当業者は、本発明の主題である本発明の化合物には安定なものが含まれることを理解するであろう。すなわち、本発明の化合物には、例えば反応混合物からの、有用な程度の純度への単離に十分に耐え得る強固なものが含まれる。
本発明の化合物は、式(I)の化合物又は式(Ia)の化合物に言及し得る。そのため、本発明の実施形態は、式(I)又は式(Ia)の化合物のいずれか(又は両方)に言及し得る。式(I)の化合物は、式(Ia)の化合物の一実施形態である。この態様では、言及され得る式(Ia)の化合物としては、式中:
は、=(CR)-を表し;
A環上の2つのR置換基は、一緒になって、上記で定義したとおり(すなわち、Rは、ハロ(例えば、Cl、F)、-R6a、-O-R6b、-C(=O)-R6c、-C(=O)-N(R)(R)、-CN、及び-N(R7a)R7bから独立して選択される1つ以上の(例えば、1つ、2つ、又は3つの)任意選択的な置換基を表す)の5員又は6員環を形成することができず、及び/又は
6a及びR6bは、独立して、ハロ(例えば、F)及び-O-CHから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルを表すものが挙げられる。
本発明の一実施形態では、好ましい化合物としては、式中:
A環上に何も存在してなくても良いか、1つ又は2つのR置換基が存在してもよく;
(存在する場合)は、F、Cl、-R6a、-O-R6b、-C(=O)-R6c、-C(=O)-N(R)(R)、-CN、及び-N(R7a)R7bから独立して選択される1つ又は2つの置換基を表し;
6aは、-O-C1~2アルキル(例えば、-OCH)から選択される(例えば、1つの置換基で)任意選択的に置換されているC1~3アルキル(例えば、メチル、エチル、n-プロピル)を表し;
6b及びR6cは、好ましくは非置換であるC1~3アルキル(例えば、メチル)を表し;
及びRは、独立して、水素又は好ましくは非置換であるC1~3アルキル(例えば、メチル)を表し;
7a及びR7bは、一緒になって、4~6(例えば5)員環を形成するものが挙げられる。
従って、一実施形態では、特定のR基は:F、Cl、-CH、-CH-OCH、-(CH-OH、-OCH、-C(O)CH、-C(O)N(CH、-C(O)N(H)CH、-CN、及び/又はピロリジン-1-イルであってもよい。
本発明の一実施形態では、好ましい化合物としては:
は、例えば-O-C1~2アルキル(例えば-OCH)から選択される1つ以上の置換基(例えば1つの置換基)で任意選択的に置換されている直鎖-C1~4アルキルであり;
、R3a、R、及びR4aのうちのいずれか2つはHを表し、他の2つは、独立して、H、F、-CH、及び-OCHから選択される置換基を表すものが挙げられる。
本発明の一実施形態では、好ましい化合物としては、式中:
は、H、-R9a、-C(=O)-R9b、-SO-R10、又はHetであり;
9aは、非置換であるか又は1つの置換基(例えばHetから選択される)で置換されているC1~3アルキル(例えばメチル)を表し;
9bは、H又は1つ以上のフルオロ原子で任意選択的に置換されているC1~3アルキル(例えばメチル)(従って、-CF基を形成する)を表し;
10は、フルオロ及び-OC1~2アルキル(例えば-OCH)から選択される1つ以上の置換基で任意選択的に置換されているC1~4アルキルを表し、従って、R10は、-CF、-CH、i-プロピル、-CHC(H)(CH(i-ブチル)、-CHCH-OCHを表してもよく;
Het及びHetは、独立して、窒素及び硫黄から選択される1個又は2個のヘテロ原子を含有する5員又は6員ヘテロアリール環を表し(従って、例えばチアゾリル環、例えば2-チアゾリル環を形成する)、この環は非置換であるか、又はC1~3アルキル(それ自体が1個以上のフルオロ原子で任意選択的に置換されている、従って、-CF基を形成する)から選択される1つ又は2つ(例えば1つ)の置換基で置換されており、従って、Het及びHetは、独立して、-CF置換基で任意選択的に置換されているチアゾリル基を表してもよいものが挙げられる。
更なる実施形態では:
X及びYのうちのいずれか1つは、-CR11aを表し、その他のものは、N又は-CR11bを表し(及び一実施形態では、XはNを表し、Yは-CR11aを表し);
11a又はR11bが、C1~4アルキルを表す場合、そのとき、R11a又はR11bは、非置換であるか、又は例えば、-CN、-OR12b、及び/若しくは-N(R12c)R12dで(例えば1つの置換基で)置換されていてもよく;
12bは、H又はC1~2アルキル(例えばメチル)を表し;
12c及びR12dは、独立して、C1~2アルキル(例えばメチル)を表してもよく;
従って、R11a又はR11bが、C1~4アルキルなどを表す場合、そのとき、R11a又はR11bは、-CH、-CHCH、-CHCH-OH、-CHCH-OCH、-C(H)(CH、-CH-N(CH、又は-CH-CN)であってもよく;
11a又はR11bが、-O-C1~4アルキルを表す場合、そのとき、R11a又はR11bは、好ましくは非置換であり、-OC1~2アルキル(例えば-OCH)を表してもよい。
本発明の一実施形態では、好ましい化合物としては、式中:
は、直鎖-C1~4アルキル(例えば、メチル又はエチルなどの非置換のC1~2アルキル)、シクロプロピル、若しくは-CH-O-CHであり;
は、H、-C1~4アルキル、-C(=O)-R9b、若しくは-SO-R10であり;疑義を回避するために述べると、ここでは、「Tf」が置換基として言及されている場合、「Tf」は、-S(O)CFを指し;
及びRは、H及び-CHから独立して選択され;
9bはHであるか、若しくは別の実施形態では、-CHであり;並びに/又は
10は、-CF、直鎖非置換-C1~4アルキル、若しくは-O-CHで置換されている-C1~4アルキルであるものが挙げられる。
一実施形態では、例えば、式中、RがH以外である本発明の化合物を調製するために、式中、RがHである本発明の化合物が有用な中間体である。
本発明の別の実施形態では、本発明の化合物としては、式中:
は、H、F、若しくは-O-CHであり;
は、H、F、-CH、若しくは-O-CHであり;
3aは、Hであり;
4aは、H若しくはFであり;並びに/又は
、R、R3a、及びR4aの全ては、水素を表すか、若しくはR、R、R3a、及びR4aのうちの任意の1つ若しくは2つは、水素以外の置換基を表し(且つ、その他のものは水素を表し)、例えば:(i)Rは、H以外の置換基(例えばF又は-OCH)を表し、その他のもの、すなわちR、R3a、及びR4aは、水素を表し;(ii)Rは、H以外の置換基(例えばF、-CH、又は-OCH)を表し、その他のもの、すなわちR、R3a、及びR4aは、水素を表し;(iii)R及びR4aは、H以外の置換基(例えばF)を表し、その他のもの、すなわちR及びR3aは、水素を表すものが挙げられる。
更なる又は代替的な実施形態では:
は、=N-若しくは=C(R)-を表し(一実施形態では、Qは、=C(R)-を表す);並びに/又は
、R、R3a、及びR4aの全ては、水素を表すか、若しくはR及びR4aのうちの1つは、本明細書で定義されたような置換基(例えばフルオロ、メチル、又はメトキシを表し;一実施形態では、それはフルオロを表す)を表す。
更なる又は代替的な実施形態では:
XはNを表し、YはCR11aを表し;及び/又は
11aは、H、C1~3アルキル(例えばメチル又はイソプロピル)、若しくは-OC1~2アルキル(例えば-OCH)を表す。
一実施形態では:
環A上に1つ又は2つ(例えば1つ)のR置換基が存在しており(一実施形態では、Rは、水素ではないが本明細書で定義されたような置換基である);
環B上に1つのR基が存在している。
本発明の更なる一実施形態では、好ましい化合物としては、式中:
環Aは、以下:
Figure 2022548247000005

として表されるものが挙げられる。
本発明の別の実施形態では、より好ましい化合物としては、式中:
環Bは、以下:
Figure 2022548247000006

として表されるものが挙げられる。
本発明の一実施形態では、本発明の好ましい化合物としては、式中:
複合環系、すなわち、環A及び環Bは、以下:
Figure 2022548247000007

として表されるものが挙げられる。
本発明の別の実施形態では、複合環系、すなわち、環A及び環Bは、以下の亜群:
Figure 2022548247000008

[式中、Rは、本明細書で定義されたとおりであり、Rは、(例えば、式(I)の化合物、式(Ia)の化合物、又はいずれかの更なる実施形態に関して)本明細書で定義されたとおりの1つ以上(例えば1つ、2つ、又は3つ)の任意選択的な置換基を表す]のいずれかで表されてもよい。
更なる又は代替的な実施形態では、Rは存在しないか、又はハロ(例えばクロロ、フルオロ、ブロモ)、C1~3アルキル(例えばメチル)、及び-N(R7a)R7b(式中、R7a及びR7bは、独立して、水素又はメチルなどのC1~3アルキルを表すか、又は一緒になって4員~6員環を形成し、従って、-NH、-N(H)CH、-N(CH、及び/若しくはピロリジニルを形成してもよい)から選択される置換基を表してもよい。任意選択的には、2つのR基は、一緒になって5員又は6員環を形成してもよい。
本発明の更なる又は代替的な実施形態では、2つのR基は、一緒になって5員又は6員環を形成し、そのとき:
-これは、炭素元素のみを含有してもよいか、若しくは窒素及び酸素から選択される1つ若しくは2つのヘテロ原子を含有してもよく;
-これは、これ以上の二重結合を含有しなくてもよい(これは飽和であってもよい)か、若しくは1つ若しくは2つの二重結合を含有してもよく、従って更なる芳香環を形成してもよく;
-これは、以下の部分:
Figure 2022548247000009

のうちの1つを形成してもよく;及び/又は
-これは、1つ若しくは2つ(例えば1つ)のC1~3アルキル(例えばメチル)基で任意選択的に置換されていてもよい。
一実施形態では、2つのR基は、一緒になって本明細書で定義されたような更なる5員又は6員環を形成しない場合がある。
本発明の一実施形態では:
は、ハロ(例えば、Cl、F)、-R6a、-O-R6b、-C(=O)-R6c、-C(=O)-N(R)(R)、-CN、及び-N(R7a)R7bから独立して選択される1つ以上(例えば、1つ、2つ、又は3つ)の任意選択的な(従って、Rはまた、水素を表してもよい)置換基を表し;
6a、R6b、及びR6cは、独立して、C1~3アルキル(例えばメチル、シクロプロピル)を表し;
及びRは、H及びC1~3アルキルから独立して選択され;
7a及びR7bは、独立して、H、C1~3アルキルを表すか、若しくは一緒になって、4員~6員環(例えば5員)を形成し;並びに/又は
は、(例えば-O-C1~3アルキルから選択される)1つの置換基で任意選択的に置換されているC1~4アルキルを表す。
本発明の更なる又は代替的な実施形態では、Rは、ハロ(例えばフルオロ)及び-OC1~3アルキルから選択される1つ以上の置換基で任意選択的に置換されているC1~4アルキルを表してもよく、例えば、Rは、-CF、-CHF、-CHCH、-CH、シクロプロピル、
-OCHを表してもよい。
本発明の更なる実施形態としては、式中:
は、H、Cl、F、-R6a、-O-R6b、-C(=O)-R6c、及び-C(=O)-N(R)(R)から選択される1つ若しくは2つ(例えば1つ)の置換基を表し;
6a、R6b、及びR6cは、独立して、-CHを表し;
及びRは、H及び-CHから独立して選択され;並びに/又は
は、直鎖C1~4アルキル、シクロプロピル、若しくはCH-O-CHであるものが挙げられる。
更なる又は代替的な実施形態では、Rは存在しないか、又はハロ(例えばクロロ、フルオロ、ブロモ)、C1~3アルキル(例えばメチル)、及び
-N(R7a)R7b(式中、R7a及びR7bは、独立して、水素若しくはメチルなどのC1~3アルキルを表すか、又は一緒になって、4員~6員環を形成し、従って、
-NH、-N(H)CH、-N(CH、及び/若しくはピロリジニルを形成してもよい)から選択される置換基を表してもよい。
本発明のなお更なる実施形態としては、式中:
は、-C1~4アルキル(例えばメチル)、-C(=O)-R9b(例えば-C(O)H、又は別の実施形態では、-C(O)CH)、若しくは-SO-R10であり;
複合環系、すなわち、環A及び環Bは、式(IX)若しくは式(X)の環であり、Rは、-SO-R10であり;
は、H、Cl、F、-C1~4アルキル(例えばメチル、エチル、又は-CH-OCH)、若しくは-O-C1~4アルキル(例えばOCH)であり、更なる実施形態では、Rは、より好ましくは、Clを表し;
は、-C1~4アルキル(例えばメチル、エチル、シクロプロピル、又は-CH-OCH)であり;並びに/又は
10は、イソプロピル(-CHCH(CH)、-CH、-CH-CH-OCH、若しくは特定の実施形態では、-CFであるものが挙げられる。
代替的な実施形態では:
-Rは、水素、-S(O)10若しくはHetを表し(及び特定の実施形態では、Rは、-S(O)10を表す);
-R10は、1つ以上のフルオロ原子で任意選択的に置換されているC1~3アルキル(例えばメチル)(従って、特定の実施形態では、CFを形成する)を表し;並びに/又は
-Hetは、1つ若しくは2つ(例えば1つ)のヘテロ原子(例えば、酸素、窒素、及び硫黄から選択され;特に硫黄である)を含有する5-員ヘテロアリール基を表し、従って、例えばチエニル基を形成する。
特定の実施形態では、Rは、-S(O)10を表し、更なる特定の実施形態では、R10は、1つ以上のフルオロ原子で任意選択的に置換されているC1~3アルキル(例えばメチル)(従って、特定の実施形態では、CFを形成する)を表す。
本発明の更なる実施形態としては、式中:
11a及びR11bは、独立して、H、-CH、-CHCH、又は-OCHを表し;
XはNを表し、Yは-CR11a(式中、
11aは、H、-CH、-CHCH、又は-OCHを表す)を表すものが挙げられる。
X及びYのうちのいずれか1つは、-CR11aを表し、その他のものは、N又は
-CR11bを表し、一実施形態では、XはNを表し、YはCR11a(本明細書で定義されたような)を表すことが述べられている。
薬効薬理
本発明の化合物は、驚くべきことに、マイコバクテリア感染、特に、結核菌(Mycobacterium tuberculosis)(その潜伏性且つ薬剤耐性の形態を含む)などの病原性マイコバクテリアを原因とする疾患を含む、細菌感染の治療に適していることが示された。従って、本発明はまた、薬剤として使用するための、特にマイコバクテリア感染を含む細菌感染の治療用薬剤として使用するための、上で定義した本発明の化合物に関する。
そのような本発明の化合物は、結核菌(M.tuberculosis)中でATPシンターゼを妨害することにより作用し得、シトクロムbc活性の阻害が主な作用機序である。シトクロムbcは、ATP合成のために必要とされる電子伝達系の不可欠な構成成分である。
更に、本発明はまた、マイコバクテリア感染を含む細菌感染治療用薬剤の製造のための、本発明の化合物及び後述するようなその医薬組成物のうちの任意のものの使用に関する。
従って、別の態様では、本発明は、マイコバクテリア感染を含む細菌感染に罹患しているか、又はそのリスクがある患者を治療する方法であって、本発明の化合物又は医薬組成物の治療有効量を患者に投与することを含む方法を提供する。
本発明の化合物は、耐性細菌株に対しても活性を示す。
本明細書の上記又は下記において記載する場合は常に、化合物が細菌感染を治療することができるということは、その化合物が、1種以上の細菌株による感染を治療することができることを意味する。
本発明はまた、薬学的に許容される担体と、有効成分として治療有効量の本発明に従う化合物とを含む組成物に関する。本発明に従う化合物は、投与目的のための種々の薬学的形態に製剤化されてもよい。適切な組成物として、全身性投与薬物に通常使用される全ての組成物を挙げてもよい。本発明の医薬組成物を調製するために、活性成分として、特定の化合物の有効量を、任意選択的に付加塩形態で、薬学的に許容される担体と組み合わせて均質混合物にするが、この担体は、投与に所望される製剤の形態に応じて、多種多様な形態をとってもよい。これらの医薬組成物は、特に経口投与又は非経口注射による投与に好適な、単位剤形のものが望ましい。例えば、経口投与形態の組成物の調製において、懸濁液、シロップ剤、エリキシル剤、乳剤、及び溶液剤等の経口液体製剤の場合には、通常の医薬媒体(例えば、水、グリコール、油、アルコール、及び同類のもの)のいずれかを用い得るか、又は粉末剤、丸剤、カプセル剤、及び錠剤の場合には、固体担体(例えば、デンプン、糖、カオリン、希釈剤、潤滑剤、結合剤、崩壊剤、及び同類のもの)を用いてもよい。錠剤及びカプセル剤は、その投与が容易であるため、最も有利な経口単位剤形であり、その場合、固体医薬担体が当然利用される。非経口組成物の場合、担体は、通常、滅菌水を少なくとも大部分含むことになるが、例えば溶解性を促進するための他の成分も含まれてよい。例えば、担体が生理食塩水、グルコース溶液又は生理食塩水とグルコース溶液との混合物を含む注射用溶液が調製されてもよい。注射用懸濁液が調製されてもよく、その場合、適切な液体担体、懸濁剤などが利用されてもよい。使用の直前に液体形態調製物に変換されることが意図される固体形態調製物もまた包含される。
投与方法に応じて、医薬組成物は、好ましくは0.05~99重量%、より好ましくは0.1~70重量%、より一層好ましくは0.1~50重量%の活性成分を含み、1~99.95重量%、より好ましくは30~99.9重量%、より一層好ましくは50~99.9重量%の薬学的に許容される担体を含むであろう。(パーセンテージは組成物の全重量に対するものである)。
医薬組成物は、更に、当該技術分野において公知の種々の他の成分(例えば、滑沢剤、安定剤、緩衝剤、乳化剤、粘度調整剤、界面活性剤、保存剤、着香料又は着色料)を含有し得る。
投与を容易にし、且つ用量を均一にするために、前述の医薬組成物を単位剤形に製剤化することが特に有利である。単位剤形は、本明細書で使用される場合、単位用量として好適である物理的に個別の単位を指し、各単位は、必要な医薬担体と共同して所望の治療効果を生じるように計算された所定量の有効成分を含む。そのような単位剤形の例は、錠剤(分割錠剤又はコーティング錠剤を含む)、カプセル剤、丸剤、粉末パケット、ウエハー、坐剤、注射液、又は懸濁剤、及び同類のもの、並びにこれらの分離複合剤である。本発明に従う化合物の1日投薬量は、当然、使用される化合物、投与方法、所望される治療、及び示されるマイコバクテリウム属疾患によって変化するであろう。しかしながら、一般的に、満足のいく結果は、本発明に従う化合物が1グラムを超えない、例えば10~50mg/kg体重の範囲内の1日投薬量で投与される場合に得られるであろう。
式(Ia)又は式(Ib)の化合物が細菌感染に対して活性であるならば、細菌感染を効果的に治療するために、本化合物を他の抗菌薬と組み合わせることができる。
従って、本発明はまた、(a)本発明に従う化合物と、(b)1種以上の他の抗菌剤との組み合わせに関する。
本発明はまた、医薬品としての使用のための、(a)本発明に従う化合物と、(b)1種以上の他の抗菌剤との組み合わせに関する。
本発明はまた、細菌感染を治療するための、直ぐ上に定義された組み合わせ又は医薬組成物の使用に関する。
薬学的に許容される担体と、有効成分として、治療有効量の(a)本発明の化合物及び(b)1種以上の他の抗菌薬とを含む医薬組成物もまた、本発明に含まれる。
組み合わせとして与えられる場合の(a)本発明に従う化合物と(b)他の抗菌剤との重量比は、当業者により決定され得る。上記比、並びに正確な投与量及び投与頻度は、当業者に周知のとおり、使用される本発明に係る特定の化合物、及び他の抗癌剤、治療される特定の病態、治療される病態の重症度、特定の患者の年齢、体重、性別、食事、投与時間、及び全身の健康状態、投与様式、並びにその個体が服用している可能性がある他の医薬剤に依存する。更に、有効1日量を、治療される対象の応答に応じて及び/又は本発明の化合物を処方する医師の評価に応じて減少させ得るか又は増加させ得ることが明らかである。本発明の本化合物と他の抗菌薬との具体的な重量比は、1/10~10/1の範囲、特には1/5~5/1の範囲、更に特には1/3~3/1の範囲であってもよい。
本発明に従う化合物及び1種以上の他の抗菌剤は、単一の調製物において組み合わされてもよいか、又はそれらは、それらが同時に、別個に又は逐次的に投与され得るように、別個の調製物として製剤化されてもよい。従って、本発明はまた、細菌感染症の治療における同時、別個又は逐次的使用のための組み合わせ製剤として、(a)本発明に従う化合物と、(b)1種以上の他の抗菌剤とを含有する製品に関する。
本発明の化合物と組み合わせることができる他の抗菌薬は、例えば、当該技術分野で知られた抗菌薬である。例えば、本発明の化合物は、結核菌(Mycobacterium tuberculosis)の呼吸鎖を妨害することが知られている抗菌薬、例えば、ATP合成酵素の直接阻害剤(例えばベダキリン、ベダキリンフマル酸塩又は従来技術に開示されている場合がある任意の他の化合物、例えば国際公開第2004/011436号パンフレットに開示されている化合物)、ndh2の阻害剤(例えばクロファジミン)及びシトクロムbdの阻害剤などと組み合わせることができる。本発明の化合物と組み合わせることができる更なるマイコバクテリア薬剤には、例えば、リファンピシン(=リファンピン);イソニアジド;ピラジナミド;アミカシン;エチオナミド;エタンブトール;ストレプトマイシン;パラ-アミノサリチル酸;サイクロセリン;カプレオマイシン;カナマイシン;チオアセタゾン;PA-824;デラマニド;キノロン系剤/フルオロキノロン系剤、例えばモキシフロキサシン、ガチフロキサシン、オフロキサシン、シプロフロキサシン、スパルフロキサシンなど;マクロライド系剤、例えばクラリスロマイシン、アモキシシリン/クラブラン酸など;リファマイシン系剤;リファブチン;リファペンチン;及び現在開発中の他の薬剤(しかし未上市であり得る;例えばhttp://www.newtbdrugs.org/pipeline.phpを参照されたい)がある。
本発明の化合物(本発明の化合物を含む形態及び組成物/組み合わせを含む)は、前述の適応症に使用されるか否かにかかわらず、それらが従来技術で既知の化合物と比較して、有効性が高い、毒性が低い、作用時間が長い、効力が高い、副作用の発生が少ない、容易に吸収される、及び/又は優れた薬物動態学的特性(例えば、高い経口バイオアベイラビリティ及び/又は低いクリアランス)を有する、及び/又は他の有用な薬理学的、物理的又は化学的特性を有するという利点を有し得る。例えば、本発明の化合物は、以下に関連する利点を有し得る:心毒性が低い;反応性代謝物(例えば、毒性、例えば遺伝子毒性の問題を引き起こす可能性がある)の形成がない;分解物(例えば、望ましくない、又は不要な副作用を誘発する可能性がある)の形成がない;及び/又は経口吸収がより速く、且つ改善された生物学的利用能。
一般的調製
本発明の化合物は、一般に、それぞれが当業者に知られている、又は本明細書に記載され得る一連の工程により調製することができる。
式Iの化合物は、後の実施例で用いられる技術(及び当業者に公知の方法)に従って、例えば、次の技術を使用することにより調製されてもよい。
式(I)又は(Ia)の化合物は、
(i)式(XIV)、
Figure 2022548247000010

[式中、整数は前に定義されたとおりである]の化合物と、式(XV)又は(XVA)、それぞれ
Figure 2022548247000011

[式中、整数は上記に定義されたとおりであり、一実施形態では、Rは、上記に定義されたとおりであるが、好ましくは、-C1~4アルキル、-C(=O)-R9b、又は-S(O)-R10を表す]の化合物との反応により調製されてもよく、この反応は、例えば、ジイソプロピルエチルアミン(DIPEA)、1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3-トリアゾロ[4,5-b]ピリジニウム-3-オキシドヘキサフルオロホスフェート(HATU)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド(EDCI)、1-ヒドロキシベンゾトリアゾール(HOBt)、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニムテトラフルオロボレート(TBTU)、又はこれらの組み合わせから選択される好適なカップリング試薬の存在下、以下の例に記載されているような好適な条件下;例えば、好適なカップリング試薬(例えば、1,1’-カルボニルジイミダゾール、N,N’-ジシクロヘキシルカルボジイミド、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド(又はその塩酸塩)又は炭酸N,N’-ジスクシンイミジル)の存在下、任意選択的に好適な塩基(例えば、水素化ナトリウム、重炭酸ナトリウム、炭酸カリウム、ピリジン、トリエチルアミン、ジメチルアミノピリジン、ジイソプロピルアミン、水酸化ナトリウム、カリウムtert-ブトキシド及び/又はリチウムジイソプロピルアミド(又はその変種)及び適切な溶媒(例えば、テトラヒドロフラン、ピリジン、トルエン、ジクロロメタン、クロロホルム、アセトニトリル、ジメチルホルムアミド、トリフルオロメチルベンゼン、ジオキサン又はリエチルアミン)の存在下で実施されてもよい。或いは、式(XIV)の化合物のカルボン酸基は、最初に標準的条件下で対応する塩化アシルに変換することができ(例えば、POCl、PCl、SOCl又は塩化オキサリルの存在下)、その後にその塩化アシルを式(XV)の化合物と、例えば、上記と同様の条件下で反応させる;
(ii)式(XVII)又は(XVIIA)、それぞれ
Figure 2022548247000012

[式中、整数は前に定義されたとおりであり、R12は、好適な脱離基、例えば、クロロ、ブロモ、ヨード、又はスルホネート基(例えば、カップリングのために配置され得るタイプの基)などの好適な基を表す]の化合物と、式(XVI)
Figure 2022548247000013

[式中、Rは前に定義されたとおりである(しかし、好ましくは、Hを表さない)]の化合物との、標準的条件下、例えば、任意選択的に適切な金属触媒(又はその塩若しくは錯体)、例えば、Pd(dba)、Pd(OAc)、Cu、Cu(OAc)、CuI、NiClなどの存在下、任意選択的な添加剤、例えば、PhP、X-phosなどを用いる、適切な塩基(例えば、t-BuONaなど)の存在下、好適な溶媒(例えば、ジオキサンなど)中での当業者に公知の反応条件下でのカップリング;
(iii)式(I)又は(Ia)[式中、XはNを表す(且つRは、好ましくは、Hを表す)]の化合物に関して、式(XVIII)又は(XVIIIA)、それぞれ、
Figure 2022548247000014

[式中、整数は上記に定義されたとおりである(且つRは、好ましくは、Hを表す)]の化合物の反応、式(XIX)
11xC(OCH (XIX)
[式中、R11xは、R11a又はR11b(適宜)を表す]の化合物などとの反応であって、本明細書、例えば、実施例において記載されているような反応条件下での反応;
(iv)式(I)又は(Ia)[式中、XはNを表す(且つ、好ましくはRは、Hを表す)]の化合物に関して、式(XX)又は(XXA)、それぞれ
Figure 2022548247000015

[式中、整数は上記に定義されたとおりである(且つRは、好ましくは、Hを表す)]の化合物の反応、上記で定義された式(XIX)の化合物との反応であって、本明細書、例えば、実施例において記載されているような反応条件下での反応;及び/又は
(v)式(I)又は(Ia)[式中、Rは、
-C(=O)-R9b、-S(O)-R10、又はHetを表す]の化合物の調製に関して、式(I)[式中、RはHを表す]の対応する化合物と、式(XXI)、
LG-Z(XXI)
[式中、Zは、-C(=O)-R9b、-S(O)-R10、又はHetを表し、LGは、好適な脱離基、例えばクロロ、ブロモ、ヨード、又はスルホネート基を表し、ここで整数は本明細書で定義されたとおりであり、Hetの場合、Rに結合したN原子は、Hetと反応して(例えば、孤立電子対を介して)LGを置換することができるように、LGは、そのヘテロ芳香族環の適切なC原子に結合している]の化合物との反応。
前述の反応及び以下の反応において、反応生成物が反応媒体から単離され、必要な場合、当該技術分野において一般に知られている方法(例えば、抽出、結晶化及びクロマトグラフィー)に従って更に精製され得ることは、明らかである。更に、2種以上の鏡像異性形態で存在する反応生成物が、知られている技術、特に分取クロマトグラフィー(例えば、分取HPLC、キラルクロマトグラフィー)によりそれらの混合物から単離され得ることは、明らかである。個々のジアステレオ異性体又は個々の鏡像異性体はまた、超臨界流体クロマトグラフィー(SCF)によっても得られ得る。
出発物質及び中間体は、市販されているか、又は当該技術分野において一般に知られている従来の反応手順に従って調製され得るかのいずれかである化合物である。
1.一般的情報
融点
示差走査熱量計DSC1 Mettler Toledoを使用して融点を記録した。融点は、25~350℃で毎分10℃の温度勾配で測定された。値はピーク値である。特に明記されていない限り、この方法が使用される。
別の方法は、Mettler ToledoMP50のオープンキャピラリーチューブを用いる方法であり、これは「MT」で示され得る。本方法により、融点は、10℃/分の温度勾配で測定する。最高温度は、300℃である。融点データは、デジタル表示装置から読み取り、ビデオ録画システムで確認する。
H NMR
H NMRスペクトルを、内部重水素ロックを使用し、z勾配を有する逆二重共鳴(H、13C、SEI)プローブヘッドを備え、プロトンに関して400MHz及び炭素に関して100MHzで作動するBruker Avance DRX 400分光計又はBruker Advance III 400分光計、並びにz勾配を有するBruker 5mm BBFOプローブヘッドを備え、プロトンに関して500MHz及び炭素に関して125MHzで作動するBruker Avance 500MHz分光計で記録した。
NMRスペクトルは、特に明記しない限り、周囲温度で記録された。
データを以下のとおりに報告する:内部標準、積分、多重度(s=一重項、d=二重項、t=三重項、q=四重項、quin=五重項、sex=六重項、m=多重項、b=ブロード又はこれらの組み合わせ)として使用されたTMS(δ=0ppm)に対する百万分率(ppm)単位の化学シフト、ヘルツ(Hz)単位のカップリング定数J。
HPLC-LCMS
分析方法
LCMS
一部の化合物の質量は、LCMS(液体クロマトグラフィー質量分析)を用いて記録した。使用した方法を以下に記載する。
一般的手順LCMS法A及びB
高速液体クロマトグラフィー(HPLC)測定は、それぞれの方法に記載したLCポンプ、ダイオードアレイ(DAD)検出器又はUV検出器及びカラムを使用して実施された。必要に応じて追加の検出器を含めた(下の方法の表を参照されたい)。カラムからの流れは、大気圧イオン源を装備した質量分析計(MS)に導入した。化合物の公称モノアイソトピック分子量(MW)の特定を可能にする、イオンを得るための調整パラメーター(例えば、走査範囲、データ取り込み時間等)を設定することは、当業者の知識の範囲内に含まれる。データ収集は、適切なソフトウェアを用いて実施した。化合物は、それらの実験保持時間(R)及びイオンにより説明されている。データの表に別段記載されていない場合には、報告された分子イオンは、[M+H](プロトン化分子)及び/又は[M-H](脱プロトン化分子)に対応する。化合物を直接イオン化できなかった場合、付加物の種類を記載する(即ち、[M+NH、[M+HCOO]など)。複数の同位体パターンを持った分子(Br、Clなど)については、報告される値は、最も低い同位体質量について得られた値である。全ての結果には、使用した方法に一般的に結び付いている実験による不確実性が付随した。本明細書では以下、「SQD」は、シングル四重極検出器を意味し、「RT」は室温を意味し、「BEH」は架橋エチルシロキサン/シリカハイブリッドを意味し、「HSS」は、高強度シリカを意味し、「DAD」はダイオードアレイ検出器を意味し、「MSD」は質量選択検出器を意味する。
Figure 2022548247000016
化合物がLCMS法で異なるピークを与える異性体の混合物である場合、主成分の保持時間のみをLCMS表に示す。
2.略語(及び式)
AcOH 酢酸
AcCl 塩化アセチル
BINAP 2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル
BrettPhos 2-(ジシクロヘキシルホスフィノ)3,6-ジメトキシ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル
BrettPhos Pd G3 [(2-’-シクロヘキシルホスフィノ-3,6-ジメトキシ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル)-2-(2’-アミノ-1,1’-ビフェニル)]パラジウム(II)メタンスルホネートメタンスルホネート
CBr テトラブロモメタン
CbzCl クロロギ酸ベンジル
CHCN/ACN アセトニトリル
CsCO 炭酸セシウム
CSA カンファー-10-スルホン酸
DCE ジクロロエタン
DCM又はCHCl ジクロロメタン
DIPEA N,N-ジイソプロピルエチルアミン
DMAP 4-(ジメチルアミノ)ピリジン
DME 1,2-ジメトキシエタン
DMF ジメチルホルムアミド
DMF-DMA N,N-ジメチルホルムアミドジメチルアセタール
DMSO メチルスルホキシド
EDCI・HCl N-(3-ジメチルアミノプロピル)-N’-エチルカルボジイミドヒドロクロリド
EtO ジエチルエーテル
EtN又はTEA トリエチルアミン
EtOAc 酢酸エチル
EtOH エタノール
h 時間
二水素ガス
HATU ヘキサフルオロホスフェートアザベンゾトリアゾールテトラメチルウロニウム
HCl 塩酸
HFIP ヘキサフルオロイソプロパノール
HOBT・HO 1-ヒドロキシベンゾトリアゾール水和物
i-PrOH イソプロピルアルコール
CO 炭酸カリウム
KHSO 重硫酸カリウム
LiOH 水酸化リチウム
LiHMDS リチウムビス(トリメチルシリル)アミド
MeOH メタノール
MeTHF/2-MeTHF メチルテトラヒドロフラン
MgSO 硫酸マグネシウム
min 分
窒素
NaCl 塩化ナトリウム
NaHCO 重炭酸ナトリウム
NaOH 水酸化ナトリウム
NBS 1-ブロモピロリジン-2,5-ジオン
NH アンモニア
NHCl 塩化アンモニウム
NHHCO 重炭酸アンモニウム
NMR 核磁気共鳴
Pd/C 炭素上のパラジウム
PdCl(PPh ジクロロビス(トリフェニルホスフィン)パラジウム(II)
Pd(OAc) 酢酸パラジウム(II)
Pddba トリス(ジベンジリデンアセトン)ジパラジウム(0)
Pd(PPh パラジウム-テトラキス(トリフェニルホスフィン)
PIDA (ジアセトキシヨード)ベンゼン
POCl オキシ塩化リン
Ra-Ni/Ni Raney ラネー(登録商標)-ニッケル
rt/RT 室温
RuPhos 2-ジシクロヘキシルホスフィノ-2’,6’-ジイソプロポキシビフェニル
RuPhos Pd G3 (2-ジシクロヘキシルホスフィノ-2’,6’-ジイソプロポキシ-1,1’-ビフェニル)[2-(2’-アミノ-1,1’-ビフェニルl)]パラジウム(II)メタンスルホネート
t-AmylOH tert-アミルアルコール
SiOH シリカゲル
TBTU O-ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロボレート
TfO トリフルオロメタンスルホン酸無水物
TFA トリフルオロ酢酸
THF テトラヒドロフラン
TMSCl トリメチルシリルクロリド
TsOH又はPTSA p-トルエンスルホン酸
キサントホス 4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン
3.手順
化合物1の合成
Figure 2022548247000017
中間体A1の調製
1Lのオートクレーブ内で、MeOH中の7M NH溶液(600mL)中のN-Boc-[2-[(4-シアノフェニル)アミノ]エチル][865788-36-9](50.0g、191mmol)及びラネーニッケル(2.25g、38.2mmol)の混合物を、室温にて、10barのH下、24時間水素添加した。反応混合物をCelite(登録商標)パッドに通して濾過し、DCM及びMeOH(9/1)の混合物で洗浄した。濾液を真空中で蒸発させ、50.2gの中間体A1を緑色を帯びた油(99%)として得た。
中間体A2の調製
2Lのフラスコに、DCM(600mL)及びMe-THF(100mL)中の6-クロロ-2-エチルイミダゾ[1,2-a]ピリジン-3-カルボン酸[1216142-18-5](15.0g、66.8mmol)、中間体A1(18.6g、70.1mmol)、及びDIPEA(17.3mL、100mmol)を充填した。反応混合物を室温で10分間撹拌し、次いでHATU(27.9g、73.4mmol)を5分間かけて少量ずつ添加し、反応混合物を室温で5時間撹拌した。混合物をDCM(1L)及び水(800mL)で希釈した。有機層を分離し、水(400mL)で洗浄し、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を、最小量の温EtOAc中に溶解させた。溶液を室温まで、次いで0℃まで冷却した。懸濁液を濾過により回収し、固体を冷EtOAc、次いでEtOで洗浄し、その後、真空下で乾燥させて、21.7gの中間体A2をオフホワイト色の固体(69%)として得た。
中間体A3の調製
中間体A2(5.00g、10.6mmol)を40℃でMe-THF(80mL)及び酢酸(6.1mL、106mmol)中に溶解させた。亜硝酸イソペンチル(7.12mL、53.0mmol)を滴加し、反応混合物を40℃で3時間撹拌した。溶液を、EtOAc及び水中に希釈させ、NaHCO(sat.、aq.)(2回)及びブラインで洗浄し、MgSO上で乾燥させ、真空中で蒸発させた。残渣をEtO中でトリチュレートし、生成物を濾過により回収し、EtOで洗浄し、真空下で乾燥させて、4.26gの中間体A3をベージュ色の固体(80%)として得た。
中間体A4の調製
中間体A3(5.00g、9.98mmol)のTHF(100mL)及びMeOH(65mL)中溶液を、NaOH(1M、aq.、100mL)で処理した。ホルムアミジンスルフィン酸(5.40g、49.9mmol)を添加し、反応混合物を50℃で1.5時間撹拌した。反応混合物をDCM中に希釈させて、KCO(10%、aq.)を添加した。層を分離した。水相をDCM及びMeOH(95/5)で抽出した。合わせた有機層をMgSO上で乾燥させ、濾過し、真空で蒸発させて、4.67gの中間体A4を白色固体(Quant.)として得た。
中間体A5の調製
中間体A4(4.67g、9.59mmol)のMeOH(96mL)中溶液に、TMSCl(9.73mL、76.7mmol)を滴加した。反応混合物を40℃で1.5時間、室温で更に17時間撹拌した。混合物を真空中で濃縮した。残渣をEtO中でトリチュレートし、固体を濾過により回収し、EtOで洗浄し、真空下で乾燥させて、4.76gの中間体A5を淡黄色固体(Quant.)として得た。
中間体A6の調製
中間体A5(4.76g、10.4mmol)及びオルトギ酸トリメチル(3.40mL、31.1mmol)の酢酸(52mL)中混合物を、100℃で1時間撹拌した。反応混合物を真空中で濃縮した。残渣をDCMに希釈させ、KCO(10%、aq.)を添加した。水層をDCM及びMeOH(95/5)で2回抽出した。合わせた有機抽出物をMgSO上で乾燥させ、濾過し、真空中で蒸発させて、3.44gの中間体A6をベージュ色の固体(83%)として得た。
化合物1の調製
中間体A6(80mg、0.202mmol)のDCM(6mL)及びMe-THF(3mL)中溶液を、EtN(70μL、0.50mmol)で処理した。混合物を0℃まで冷却し、TfO溶液(DCM中1M、302μL、0.302mmol)を滴加した。反応混合物を0℃で20分間撹拌した。MeOH(0.3mL)、続いてKCO(10%、aq.、5mL)、及びDCMを添加した。層を分離した。有機相をMgSO上で乾燥させ、濾過し、真空中で蒸発させた。粗混合物を分取LC(不定形SiOH、15~40μm、12g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtOAc 勾配70:30~0:100)により精製した。残渣(62mg)を温EtOAc(3mL)中に溶解させ、室温まで放冷させた。上清を除去した。固体をEtO中でトリチュレートした。生成物を濾過により回収し、真空下で乾燥させて、42mgの化合物1を白色固体(36%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.07(s,1H),8.47(br s,1H),7.67(d,J=8.1Hz,1H),7.46(br d,J=9.1Hz,1H),7.30(br d,J=8.1Hz,2H),7.20(br d,J=7.6Hz,2H),4.49(br d,J=5.1Hz,2H),4.41(s,2H),4.18(s,2H),3.39-3.31(m,1H),2.98(q,J=7.4Hz,2H),2.63-2.58(m,2H),2.34-2.29(m,2H),1.26(br t,J=7.3Hz,3H)
H NMR(400MHz,DMSO-d)δ ppm 9.12(s,1H)8.71(m,1H)7.79(d,J=9.4Hz,1H)7.68(d,J=8.8Hz,1H)7.26-7.37(m,3H)7.19(d,J=8.7Hz,2H)4.48(d,J=5.9Hz,2H)4.08(t,J=4.5Hz,2H)3.83(t,J=4.8Hz,2H)3.01(q,J=7.6Hz,2H)1.27(t,J=7.5Hz,3H)
化合物2の合成
Figure 2022548247000018
中間体A7の調製
中間体A5(300mg、0.652mmol)及びオルトプロピオン酸トリメチル(0.102mL、0.718mmol)の酢酸(6mL)中混合物を、100℃で1時間撹拌した。更なる量のオルトプロピオン酸トリメチル(0.102mL、0.718mmol)を添加し、反応混合物を100℃で更に2時間撹拌した。反応混合物をDCM及びNaOH(3M、aq.)に希釈させた。層を分離し、有機相を分離したMgSO上で乾燥させ、濾過し、真空中で蒸発させて、138mgの中間体A7を発泡体(50%)として得た。
化合物2の調製
中間体A7(138mg、0.325mmol)のDCM(4mL)中溶液を、EtN(113μL、0.812mmol)で処理した。混合物を0℃まで冷却し、TfOのDCM中溶液(DCM中1M、357μL、0.357mmol)を滴加した。反応混合物を0℃で20分間撹拌した。反応物をMeOH(0.2mL)及びピリジン(0.1mL)でクエンチした。Celite(登録商標)を添加し、混合物を真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、24g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtOAc 勾配70:30~0:100)により精製した。2回目の精製を、逆相(固定相:YMC-actus Triaroom temperature C18 10μm 30×150mm、移動相:NHHCO(水中0.2%)/MeCN、勾配40:60~10:90)により実施し、60mgの化合物2を白色固体(33%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.07(d,J=1.6Hz,1H)8.43(t,J=5.9Hz,1H)7.66(d,J=9.5Hz,1H)7.45(dd,J=9.5,2.1Hz,1H)7.32(d,J=8.7Hz,2H)7.18(d,J=8.8Hz,2H)4.46(d,J=5.9Hz,2H)3.91-4.02(m,2H)3.79-3.90(m,2H)2.98(q,J=7.5Hz,2H)2.61(q,J=7.3Hz,2H)1.26(t,J=7.5Hz,3H)1.18(t,J=7.3Hz,3H).
化合物3の合成
Figure 2022548247000019
圧力容器型反応器で、化合物1(250mg、0.473mmol)及びPd/C(54mg、50.5μmol)のEtOH(15mL)中混合物を、室温で5barのH下、20時間撹拌した。混合物をCelite(登録商標)パッド上で濾過した。濾過ケーキをEtOH及びDCMで洗浄し、濾液を真空中で蒸発させた。残渣を別のバッチと合わせ、250mgの粗混合物を得た。残渣を逆相(固定相:YMC-actus Triaroom temperature C18 10μm 30×150mm、移動相:NHHCO(水中0.2%)/MeCN、勾配55:45~30:70)により精製した。残渣をEtO中でトリチュレートし、溶媒を減圧下で除去して、165mgの化合物3を白色固体(58%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 8.16(t,J=6.1Hz,1H)7.28(s,1H)7.26(d,J=8.6Hz,2H)7.16(d,J=8.6Hz,2H)4.35(d,J=6.1Hz,2H)4.07(t,J=4.6Hz,2H)3.97(t,J=5.7Hz,2H)3.77-3.87(m,2H)2.68-2.75(t,J=6.4Hz,2H)2.60(q,J=7.5Hz,2H)1.73-1.90(m,4H)1.09(t,J=7.5Hz,3H).
化合物4の合成
Figure 2022548247000020
中間体B1の調製
フラスコ(findenser装備)に4-フルオロベンゾニトリル[1194-02-1](1.00g、8.26mmol)、DMSO(5.9mL)、及びエタノールアミン(0.757g、12.4mmol)を充填した。EtN(1.72mL、12.4mmol)を添加し、反応混合物を120℃で17時間撹拌した。混合物をブライン中に注いだ。層を分離し、水相をEtOAcで抽出した。合わせた有機抽出物をブラインで洗浄し(3回)、MgSO上で乾燥させ、濾過し、真空内で蒸発させて、中間体B1を淡黄色油(Quant.)として得た。
中間体B2の調製
中間体B1(2.00g、12.3mmol)及びトリフェニルホスフィン(4.21g、16.0mmol)のMe-THF(100mL)中溶液を、CBr(5.32g、16.0mmol)で処理した。反応混合物を室温で17時間撹拌した。混合物を真空中で蒸発させた。残渣をEtOH(40mL)中に溶解させ、メチルヒドラジン(5.19mL、98.6mmol)で処理した。反応混合物を75℃で4時間撹拌し、真空中で濃縮した。残渣をDCMで希釈し、HCl(3M、aq.)を添加した。層を分離し、有機相を水で洗浄した。合わせた水性抽出物をKCOの添加により塩基性化した。水相をDCMで(2回)抽出した。合わせた有機層をMgSO上で乾燥させ、濾過し、真空中で濃縮して、2.54gの化合物B2をオレンジ色の油(Quant.)として得た。
中間体B3の調製
中間体B2(2.15g、11.3mmol)及びオルトギ酸トリメチル(3.71mL、33.9mmol)の酢酸(60mL)中溶液を、60℃で17時間撹拌した。黄色溶液を室温まで冷却した。水(150mL)及びEtOAc(150mL)を添加した。水層を塩基性化するまで、KCOを少量ずつ添加した。有機層を分離し、水及びブラインで洗浄し、MgSO上で乾燥させ、濾過し、真空中で蒸発させて、1.50gの中間体B3をオレンジ色の固体(66%)として得た。
中間体B4の調製
オートクレーブ内で、MeOH中の7M NH溶液(64mL)中の中間体B3(1.5g、7.49mmol)及びラネーニッケル(440mg、7.49mmol)の混合物を、室温にて、5barのH下、17時間水素添加した。反応混合物をCelite(登録商標)パッドに通して濾過し、DCM及びMeOH(9/1)の混合物で洗浄した。濾液を真空中で蒸発させて、1.53gの中間体B4を灰色固体(Quant.)として得た。
化合物4の調製
6-クロロ-2-エチルイミダゾ[1,2-a]ピリジン-3-カルボン酸[1216142-18-5](600mg、2.67mmol)を、Me-THF(30mL)及びDCM(15mL)中に溶解させ、DIPEA(0.736mL、4.27mmol)を添加した。完全に溶解させた後、中間体B4(627mg、3.07mmol)、続いてHATU(1.17g、3.07mmol)を添加した。反応混合物を35℃で3時間撹拌した。EtOAc及び水を添加した。有機層を分離し、水、次いでブラインで洗浄した。合わせた有機抽出物をMgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を、最小量の温EtOAc中に溶解させた。溶液を室温まで冷却し、懸濁液を濾過した。固体を、EtOAc、次いでEtOH及びEtOで洗浄した。固体を濾過によって回収し、真空下で乾燥させて210mgのオフホワイトの固体を得た。固体を濾液と合わせ、真空中で蒸発させた。残渣を分取LC(不定形SiOH 15~40μm、80g、移動相:DCM/(DCM/MeOH/NH3 aq.、18/20/2)、勾配90:10~60:40)により精製した。残渣をEtOAcから結晶化し、EtOで洗浄し、真空下で乾燥させて、317mgの化合物4を得た。
H NMR(400MHz,DMSO-d)δ ppm 9.07(d,J=1.47Hz,1H)8.45(t,J=5.81Hz,1H)7.67(d,J=9.66Hz,1H)7.46(dd,J=9.41,2.08Hz,1H)7.30-7.36(m,3H)7.11(d,J=8.56Hz,2H)4.47(d,J=5.87Hz,2H)3.70(t,J=5.01Hz,2H)3.17(d,J=5.14Hz,1H)2.88-3.01(m,4H)2.54-2.65(m,4H)1.26(t,J=7.52Hz,3H).
化合物5の合成
Figure 2022548247000021
中間体B5の調製
NBS(204mg、1.15mmol)を、化合物1(600mg、1.13mmol)のMeCN(9.5mL)中溶液に添加し、反応混合物を室温で20時間撹拌した。混合物をEtOAc及び水で希釈した。層を分離した。有機相をNaHCO(sat.、aq.)で洗浄し、MgSO上で乾燥させ、濾過し、溶媒を減圧下で除去して、700mgの中間体B5を褐色の残渣として得た。
化合物5の調製
中間体B5(250mg、0.234mmol)、トリメチルボロキシン(131μL、0.938mmol)、及びCsCO(229mg、0.703mmol)のDME(3.6mL)及び水(3.6mL)中混合物を、Nでパージした。PdCl(PPh(32.9mg、0.0469mmol)を添加し、混合物を再度、Nでパージした。反応混合物を100℃で16時間撹拌した。水及びEtOAcを添加した。層を分離し、水相をEtOAcで抽出した。合わせた有機抽出物をブラインで洗浄し、MgSO上で乾燥させ、濾過し、真空中で蒸発乾固した。残渣を分取LC(不定形SiOH、15~40μm、24g 乾燥充填材(Celite(登録商標))、移動相:DCM/MeOH 勾配99:1~95:5)により精製した。2回目の精製を、逆相(固定相:YMC-actus Triaroom temperature C18 10μm 30×150mm、移動相 NHHCO(水中0.2%)/MeCN、勾配55:45~35:65)により実施し、14mgの白色残渣を得て、これをMeCN中に溶解させ、水で増量し、凍結乾燥させて、12mgの化合物5を白色粉末(7%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.07(d,J=1.34Hz,1H)8.48(t,J=5.99Hz,1H)7.67(d,J=9.41Hz,1H)7.46(dd,J=9.54,2.08Hz,1H)7.29(s,1H)7.22(s,1H)7.21(d,J=7.74Hz,2H)7.12-7.17(m,1H)4.49(d,J=6.11Hz,2H)4.10(br d,J=4.28Hz,2H)3.38-3.54(m,4H)3.00(q,J=7.42Hz,2H)2.67-2.69(m,1H)2.52-2.56(m,5H)2.33-2.45(m,2H)2.25(s,3H)1.19-1.33(m,3H).
化合物6の合成
Figure 2022548247000022
中間体C1の調製
密閉チューブ内で、中間体A5(300mg、0.652mmol)及びモレキュラーシーブ3ÅのMeOH(4.3mL)中混合物を、室温で10分間撹拌した。テトラメチルオルトカルボネート(347μL、2.61mmol)を添加し、反応混合物を室温で16時間撹拌した。水及びDCMを添加した。層を分離し、有機相をMgSO上で乾燥させ、濾過し、真空中で蒸発乾固した。残渣を分取LC(不定形SiOH、15~40μm、24g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtOAc、勾配60:40~0:100)により精製して、77mgの中間体C1を白色固体(24%)として得た。
化合物6の調製
室温の中間体C1(48mg、0.112mmol)の無水DCM(1.3mL)中溶液に、EtN(23.4μL、0.169mmol)を添加し、混合物を室温で10分間撹拌した。混合物を0℃まで冷却し、TfOのDCM中溶液(DCM中1M、112μL、0.112mmol)を滴加した。混合物を室温まで温めながら1時間撹拌した。TfOのDCM中溶液(DCM中1M、112μL、0.112mmol)を添加し、混合物を室温で更に1時間撹拌した。NaHCO(sat.、aq.)及びDCMを添加した。層を分離し、有機相をNaHCO(2回)及びブラインで洗浄した。合わせた有機抽出物をMgSO上で乾燥させ、濾過し、真空中で濃縮した。残渣を分取LC(不定形SiOH、15~40μm、24g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtOAc 勾配50:50~0:100)により精製した。2回目の精製を、逆相(固定相:YMC-actus Triaroom temperature C18 10μm 30×150mm、移動相:NHHCO(水中0.2%)/MeCN、勾配45:55~25:75)により実施し、33mgの化合物6を白色固体(37%)として得た。
H NMR(500MHz,DMSO-d)δ ppm 9.07(d,J=1.58Hz,1H)8.39(t,J=5.83Hz,1H)7.66(d,J=9.46Hz,1H)7.44(dd,J=9.46,2.21Hz,1H)7.29(d,J=8.51Hz,2H)7.15(d,J=8.83Hz,2H)4.46(d,J=5.99Hz,2H)4.06-4.14(m,2H)3.85(s,3H)3.71-3.77(m,2H)3.32-3.46(m,2H)3.17(d,J=5.36Hz,1H)2.97(q,J=7.36Hz,2H)2.52-2.58(m,6H)1.26(t,J=7.57Hz,3H).
化合物7の合成
Figure 2022548247000023
中間体C2の調製
5℃の2-アミノ-5-クロロピリミジン[428-89-7](500mg、3.86mmol)のMe-THF(40mL)中溶液に、エチル3-シクロプロピル-3-オキソプロパノエート[24922-02-9](0.603g、3.86mmol)及び(ジアセトキシヨード)ベンゼン(1.24g、3.86mmol)を添加した。三フッ化ホウ素エーテレート(50μL、0.191mmol)を滴加し、反応混合物を5℃で30分間、次いで室温で1時間撹拌した。追加量のエチル3-シクロプロピル-3-オキソプロパノエート(0.301g、1.93mmol)、(ジアセトキシヨード)ベンゼン(0.622g、1.93mmol)、及び三フッ化ホウ素エーテレート(50μL、0.191mmol)を添加した。混合物をNでパージし、室温で1時間撹拌した。追加量のエチル3-シクロプロピル-3-オキソプロパノエート(0.301g、1.93mmol)、(ジアセトキシヨード)ベンゼン(0.622g、1.93mmol)、及び三フッ化ホウ素エーテレート(50μL、0.191mmol)を再び添加した。混合物をNでパージし、室温で更に1時間撹拌した。EtOAc及び水を添加した。層を分離し、有機相をMgSO上で乾燥させ、濾過し、真空中で濃縮した。粗混合物を分取LC(不定形SiOH、15~40μm、80g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtOAc、80:20、65:35)により精製した。残渣をペンタン中でトリチュレートした。固体を濾過により回収し、真空下で乾燥させて、598mgの中間体C2を白色固体(58%)として得た。
中間体C3の調製
中間体C2(125mg、0.47mmol)のEtOH(2.2mL)及び水(2.2mL)中溶液に、KCO(196mg、1.42mmol)を添加した。反応混合物を65℃で16時間撹拌した。混合物を室温まで冷却し、反応物をHCl(水中1M)でpH約3までクエンチした。混合物を真空中で蒸発させて、294mgの中間体C3を白色固体として得た。粗生成物を次の工程でそのまま使用した。
化合物7の調製
中間体C3(294mg、0.472mmol)のDMF(4.5mL)中溶液に、EDCI●HCl(110mg、0.574mmol)、HOBt●HO(76mg、0.496mmol)、DIPEA(0.245mL、1.42mmol)、及び中間体E9(185mg、0.516mmol)を添加した。反応混合物を室温で16時間撹拌し、真空中で蒸発させた。残渣をEtOAcに溶解させ、NaHCO(sat.、aq.)及びブラインで洗浄した。有機層をMgSO上で乾燥させ、濾過し、真空中で蒸発させた。粗混合物を分取LC(不定形SiOH、15~40μm、24g Buechi、乾燥充填材(Celite(登録商標))、移動相:ヘプタン/(EtOAc/MeOH、9:1)、勾配90:10~40:60)により精製して、淡黄色の固体を得た。固体をEtOAcから結晶化し、ペンタン中で音波処理した。固体を濾過により回収し、真空下で乾燥させて、121mgの化合物7を白色固体(47%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.40(d,J=1.8Hz,1H)8.58-8.75(m,2H)7.34(d,J=8.1Hz,2H)7.29(s,1H)7.19(d,J=8.4Hz,2H)4.50(d,J=5.6Hz,2H)4.08(s,2H)3.83(s,2H)2.38-2.46(m,1H)1.03-1.13(m,4H).
化合物8の合成
Figure 2022548247000024
中間体C4の調製
2-アミノ-5-クロロピリジン[1072-98-6](3.00g、23.3mmol)のMe-THF(100mL)中溶液に、ヨードベンゼンジアセテート(7.50g、23.3mmol)及びエチル-4-メトキシ-3-オキソブタノエート[66762-68-3](6.00g、34.8mmol)を添加した。次いで、三フッ化ホウ素エーテレート(0.30mL、1.15mmol)を滴加した。溶液を、5℃で1時間撹拌した。混合物を室温まで温め、更に1時間撹拌した。EtOAc及びNaHCO(sat.、aq.)を添加した。層を分離し、水層をEtOAcで抽出した。合わせた有機抽出物をブラインで洗浄し(2回)、MgSO上で乾燥させ、濾過し、蒸発させて褐色の液体を得た。粗混合物を分取LC(不定形SiOH、15~40μm、120g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtOAc、勾配90:10~40:60)により精製して、2.44gの中間体C4を黄色固体(39%)として得た。
中間体C5の調製
中間体C4(1.44g、5.36mmol)のEtOH(11.5mL)及び水(11.5mL)中溶液に、NaOH(650mg、16.3mmol)を添加し、反応混合物を室温で一晩撹拌した。反応物をHCl(水中3N)でpH約3までクエンチした。混合物を濾過し、996mgの中間体C5をオフホワイト色の固体(77%)として得た。
化合物8の調製
室温の中間体C5(125mg、0.519mmol)及びDIPEA(270μL、1.57mmol)のDMF(5mL)中混合物に、EDCI●HCl(125mg、0.652mmol)及びHOBt●HO(85mg、0.555mmol)を添加した。中間体E9(205mg、0.571mmol)を添加し、得られた混合物を16時間撹拌した。NaHCO(1%、aq.)及びEtOAcを添加し、層を分離した。有機層をブラインで洗浄し(3回)、MgSO上で乾燥させ、濾過し、乾燥するまで真空中で濃縮し、オレンジ色の固体を得て、これを分取LC(不定形 SiOH 15~40μm、24g、乾燥充填材(Celite(登録商標))、移動相:ヘプタン/(EtOAc/MeOH、9:1)、勾配75:20~30:70)により精製して、白色固体を得た。残渣を逆相(球形 C18、25μm、40g YMC-ODS-25、乾燥充填材(Celite(登録商標))、移動相:NHHCO(水中0.2%)/MeCN、勾配60:40~0:100)により精製して、233mgの化合物8を白色固体(71%)として得た。
H NMR(400MHz,CDCl-d)δ ppm 9.68(dd,J=2.0,0.8Hz,1H)8.51(t,J=4.7Hz,1H)7.56(d,J=9.4Hz,1H)7.31-7.36(m,3H)7.18(d,J=7.9Hz,2H)7.11(s,1H)4.75(s,2H)4.59(d,J=5.5Hz,2H)4.06(t,J=4.7Hz,2H)3.79(t,J=4.7Hz,2H)3.28(s,3H)
化合物9の合成
Figure 2022548247000025
中間体D1の調製
3,4-ジフルオロベンゾニトリル[64248-62-0](3.67g、26.4mmol)、N-Boc-1,2-ジアミノエタン(5.50g、34.3mmol)、及びEtN(14.7mL、105mmol)のDMSO(47mL)中混合物を、120℃で2時間撹拌した。反応混合物を冷却し、EtOAc及び水で希釈した。層を分離し、水相をEtOAcで抽出した(2回)。合わせた有機層をブラインで洗浄し(3回)、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、80g、液体注入(DCM)、移動相:ヘプタン/EtOAc、勾配100:0~50:50)により精製して、5.02gの中間体D1を白色固体(68%)として得た。
中間体D2の調製
オートクレーブ内で、MeOH中の7M NH溶液(70mL)中の中間体D1(2.00g、7.16mmol)の溶液に、窒素でパージし、ラネーニッケル(3.39g、57.7mmol)を添加した。反応混合物を7bar下にて室温で2時間水素添加した。混合物をCelite(登録商標)パッドに通して濾過し、MeOHですすいだ。濾液を真空中で濃縮して、2.11gの中間体D2を白色固体(Quant.)として得た。
中間体D3の調製
HATU(2.57g、6.77mmol)を、6-クロロ-2-エチルイミダゾ[1,2-a]ピリジン-3-カルボン酸[1216142-18-5](1.52g、6.77mmol)及びDIPEA(4.7mL、27.1mmol)のDCM(126mL)中混合物に添加した。反応混合物を室温で10分間撹拌し、次いで中間体D2(2.11g、7.45mmol)を添加し、反応混合物を室温で20時間撹拌した。反応混合物をDCM及び水で希釈した。水層を、DCMで抽出した(2回)。合わせた有機層をブラインで洗浄し(2回)、MgSO上で乾燥させ、濾過し、真空中で濃縮した。残渣を分取LC(不定形SiOH、15~40μm、120g、液体注入(DCM)、移動相:ヘプタン/EtOAc、勾配50:50~0:100)により精製して、2.76gの中間体D3を淡褐色の固体(83%)として得た。
中間体D4の調製
中間体D3(1.5g、3.06mmol)を40℃でMe-THF(23.2mL)及びAcOH(1.75mL)中に溶解させた。亜硝酸イソペンチル(2.06mL、15.3mmol)を10分にわたって滴加し、反応混合物を40℃で1時間撹拌した。溶液をEtOAc及びNaHCO(sat.、qa.)中で希釈した。層を分離し、有機層をNaHCO(sat.、qa.)(2回)、及びブラインで洗浄し、MgSO上で乾燥させ、真空中で蒸発させて、1.74gの中間体D4を淡黄色の油をして得た。
中間体D5の調製
中間体D4(1.59g、3.06mmol)のTHF(47mL)及びMeOH(32mL)中溶液を、NaOH(1M、aq.、37mL)で処理した。二酸化チオ尿素(ホルムアミジンスルホン酸)(1.66g、15.3mmol)を添加し、反応混合物を50℃で1時間(findeser装備を用いて)撹拌した。反応混合物をDCMで希釈し、KCO(10%、aq.)を添加した。層を分離し、有機層をMgSO上で乾燥させ、濾過し、溶媒を減圧下で除去して、1.44gの中間体D5を黄色油として得た。
中間体D6の調製
中間体A5(1.55g、3.06mmol)のMeOH(34mL)中溶液を、TMSCl(3.88mL、30.6mmol)で処理し、反応混合物を室温で20時間撹拌した。溶媒を減圧下で除去し、得られた固体をEtO中でトリチュレートした。溶媒を蒸発させて、1.51gの中間体D6を淡黄色の固体(Quant.)として得た。
中間体D7の調製
オルトギ酸トリメチル(0.618mL、5.65mmol)を、中間体D6(900mg、1.88mmol)のHFIP(18mL)中懸濁液に添加し、反応混合物を60℃で1時間撹拌した。反応混合物を室温まで冷却し、EtOAcで希釈し、次いでNaHCO(sat.、aq.)で塩基性化した。層を分離し、水層をEtOAcで抽出した。合わせた有機層をMgSOで乾燥させ、濾過し、溶媒を減圧下で除去した。残渣を分取LC(不定形SiOH、15~40μm、24g、液体注入(DCM)、移動相:DCM/MeOH、勾配100:0~90:10)により精製して、202mgの中間体D7をオフホワイト色の固体(33%)として得た。
化合物9の調製
EtN(0.169mL、1.22mmol)を中間体D7(202mg、0.487mmol)のDCM(9mL)及び1,4-ジオキサン(6mL)中溶液に添加した。溶液を5℃まで冷却し、TfOのDCM中溶液(DCM中1M、0.487mL、0.487mmol)を、5分かけて滴加した。反応混合物をDCM及びNaHCO(sat.、aq.)で希釈した。層を分離した。有機層をブラインで洗浄し、MgSO上で乾燥させ、濾過し、溶媒を減圧下で除去した。残渣を分取LC(不定形SiOH、15~40μm、12g、液体注入(DCM)、移動相:ヘプタン/EtOAc、勾配70:30~0:100)により精製して、183mgの黄色固体を得た。固体をEtOAc中でトリチュレートし、音波処理した。懸濁液を濾別した。固体及び濾液を合わせた。残渣をEtO中でトリチュレートし、音波処理し、濾別し、EtOで洗浄し、回収して、125mgの化合物9を白色固体(47%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.09(d,J=1.5Hz,1H)8.48(t,J=5.9Hz,1H)7.67(d,J=9.5Hz,1H)7.47(dd,J=9.5,2.0Hz,1H)7.30-7.41(m,2H)7.16-7.30(m,2H)4.50(d,J=5.9Hz,2H)4.10(br t,J=4.2Hz,2H)3.65(t,J=4.6Hz,2H)3.00(q,J=7.5Hz,2H)1.27(t,J=7.5Hz,3H).
化合物10の合成
Figure 2022548247000026
2-エチル-6-フルオロイミダゾ[1,2-a]ピリジン-3-カルボン酸[1368682-64-7](82mg 0.393mmol)のDMF(4.5mL)中溶液に、EDCI●HCl(91mg、0.474mmol)、HOBt●HO(63mg、0.415mmol)、及びDIPEA(203μL、1.18mmol)を添加した。混合物を室温で15分間撹拌した。中間体B9(155mg、0.432mmol)を添加し、反応混合物を室温で20時間撹拌した。溶媒を減圧下で除去し、残渣をEtOAc及び水で希釈した。層を分離し、水層をEtOAcで抽出した。合わせた有機層をブラインで洗浄し(2回)、MgSO上で乾燥させ、濾過し、溶媒を減圧下で除去した。残渣を分取LC(不定形SiOH、15~40μm、12g、液体注入(DCM)、移動相:DCM/MeOH 勾配100:0~90:10)により精製した。2回目の精製を、逆相(固定相:YMC-actus Triart C18 10μm 30*150mm、移動相:NHHCO(水中0.2%)/MeCN、勾配50:50~25:75)により実施した。残渣をMeCN及びMeOH(50:50)中に溶解させ、水で抽出し、凍結乾燥させて、44mgの化合物10を白色固体(22%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.40(dd,J=4.8,2.9Hz,1H)8.82(d,J=3.1Hz,1H)8.51(t,J=5.7Hz,1H)7.26-7.35(m,3H)7.18(d,J=8.7Hz,2H)4.48(d,J=5.7Hz,2H)4.08(t,J=4.6Hz,2H)3.82(t,J=4.8Hz,2H)3.02(q,J=7.5Hz,2H)1.27(t,J=7.5Hz,3H).
化合物11の合成
Figure 2022548247000027
室温の2-エチル-イミダゾ[1,2-a]ピリミジン-3-カルボン酸[1403942-20-0](125mg、0.654mmol)及びDIPEA(228μL、1.32mmol)のDMF(6.5mL)中混合物に、EDCI●HCl(150mg、0.782mmol)及びHOBt●HO(105mg、0.686mmol)を添加した。中間体E9(230mg、0.714mmol)を添加し、得られた混合物を16時間撹拌した。NaHCO(1%、aq.)及びEtOAcを添加した。層を分離し、有機層をブラインで洗浄し(2回)、MgSO上で乾燥させ、濾過し、乾燥するまで真空中で濃縮した。残渣を分取LC(不定形SiOH、15~40μm、24g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/(EtOAc/MeOH、9/1)、勾配60:40~10:90)により精製した。残渣をEtOAcから結晶化し、濾過により回収して、170mgの化合物11を白色固体(52%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.30(dd,J=7.0,2.0Hz,1H)8.61(dd,J=4.2,2.0Hz,1H)8.48(t,J=5.9Hz,1H)7.27-7.35(m,3H)7.13-7.21(m,3H)4.47(d,J=6.0Hz,2H)4.05-4.11(m,2H)3.83(t,J=4.8Hz,2H)3.01(q,J=7.5Hz,2H)1.27(t,J=7.5Hz,3H).
化合物12の合成
Figure 2022548247000028
6-エチル-2-メチル-イミダゾ[2,1-b]チアゾール-5-カルボン酸[1131613-58-5](150mg、0.608mmol)及びDIPEA(345μL、2.00mmol)のDMF(6.5mL)中混合物に、EDCI●HCl(140mg、0.730mmol)及びHOBt●HO(100mg、0.653mmol)を添加した。混合物を室温で15分間撹拌した。次いで、中間体E9(240mg、0.669mmol)を添加し、得られた混合物16時間撹拌した。混合物を真空中で蒸発させた。NaHCO(1%、aq.)及びEtOAcを添加し、層を分離した。有機層をブラインで洗浄し、MgSO上で乾燥させて乾燥するまで濃縮した。残渣を分取LC(不定形SiOH、15~40μm、24g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/(EtOAc/MeOH、9/1)、勾配95:5~50:50)により精製した。2回目の精製を逆相(球形 C18、25μm、40g YMC-ODS-25、乾燥充填材(Celite(登録商標))、移動相:NHHCO(水中0.2%)/MeCN、勾配60:40~5:95)により実施して、206mgの化合物12を白色固体(66%)として得た。
H NMR(500MHz,DMSO-d)δ ppm 8.05(t,J=6.0Hz,1H)7.87(s,1H)7.24-7.30(m,3H)7.17(d,J=8.5Hz,2H)4.41(d,J=6.0Hz,2H)4.04-4.10(m,2H)3.81(br t,J=4.7Hz,2H)2.86(q,J=7.6Hz,2H)2.41(s,3H)1.20(t,J=7.6Hz,3H).
化合物13及び化合物14の合成
Figure 2022548247000029
中間体E1の調製
反応を2つのバッチで実施した。本明細書では、1つのバッチについての手順を報告する。本明細書において、「Tf」を使用する場合、不明確性を避けるために、それは-S(O)CHを表す。更に、中間体E9は、HCl塩として調製及び/又は使用されてもよい。findenserを装備した1Lのフラスコに、4-フルオロベンゾニトリル[1194-02-1](20g、165mmol)、DMSO(320mL)、及びN-boc-1,2-ジアミノエタン(39.7g、248mmol)を充填した。EtN(92mL、661mmol)を添加し、反応混合物を120℃で20時間撹拌した。2つのバッチを合わせ、砕氷及び水の混合物(1L)中に注いだ。ブライン(1kg)を添加し、混合物を室温で30分間撹拌した。EtOAc(1L)を添加した。層を分離し、水層をEtOAc(2×500mL)で抽出した。合わせた有機層をブラインで洗浄し(2×1L)、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣をペンタン(500mL)中でトリチュレートした。固体を濾過により回収し、冷EtOで洗浄し、真空下で乾燥させて、48.28gの中間体E1を白色固体(46%、92%純度)として得た。
中間体E2の調製
1Lのオートクレーブ内で、MeOH中の7M NH溶液(500mL)中の中間体E1(41.5g、159mmol)及びラネーニッケル(4.66g、79.4mmol)の混合物を、室温で6barのH下、12時間水素添加した。反応混合物をCelite(登録商標)パッドに通して濾過し、DCM及びMeOH(9/1)の混合物で洗浄し、濾液を真空中で蒸発させて、41.8gの中間体E2を緑色の油(99%)として得た。
中間体E3の調製
0℃のN下、クロロギ酸ベンジル(0.592mL、4.15mmol)を、中間体E2(1g、3.8mmol)及びDIPEA(0.78mL、4.52mmol)のDCM(38mL)中混合物に滴加した。反応混合物を室温で16時間撹拌し、DCMで希釈した。混合物をNaHCO(sat.、aq.)で洗浄し、MgSO上で乾燥させ、濾過し、溶媒を減圧下で除去して、1.11gの中間体E3を白色固体(74%)として得た。
中間体E4の調製
中間体E3(1.11g、2.78mmol)を40℃でMe-THF(21mL)及びAcOH(1.6mL)中に溶解させた。亜硝酸イソペンチル(1.87mL、13.9mmol)を15分かけて滴加し、反応混合物を40℃で1.5時間撹拌した。溶液を、EtOAc及びNaHCO(sat.、aq.)で希釈した。層を分離し、有機相をNaHCO(sat.、aq.、2回)、ブラインで洗浄し、MgSO上で乾燥させ、真空中で蒸発させて、1.23gの中間体E4を淡黄色の固体(Quant.)として得た。
中間体E5の調製
中間体E4(1.24g、2.89mmol)のTHF(29mL)及びMeOH(19mL)中溶液を、NaOH(1M、aq.、29mL)で処理した。次いで、二酸化チオ尿素(ホルムアミジンスルホン酸)(1.56g、14.5mmol)を添加し、反応混合物50℃で1.5時間撹拌した。反応混合物をDCMで希釈し、KCO(10%、aq.)を添加した。層を分離した。水層をDCM及びMeOH(95/5)で抽出した。合わせた有機層をMgSO上で乾燥させ、濾過し、真空中で濃縮して、970mgの中間体E5を淡黄色の油(81%)として得た。
中間体E6の調製
中間体E5(970mg、2.34mmol)のMeOH(23mL)中溶液に、TMSCl(2.4mL、18.7mmol)を滴加した。反応混合物を室温で20時間撹拌し、真空中で濃縮して、710mgの中間体E6を褐色の固体(78%)として得た。
中間体E7の調製
中間体E6(0.71g、1.83mmol)及びオルトギ酸トリメチル(0.602mL、5.50mmol)のAcOH(9.2mL)中混合物を、100℃で50分間撹拌した。反応混合物を真空中で濃縮した。残渣をDCM及びKCO(10%、aq.)の溶液中に希釈した。層を分離し、水層をDCM及びMeOH(95/5)で抽出した(2回)。合わせた有機層をMgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、40g、液体注入(DCM)、移動相:DCM/MeOH、勾配100:0~90:10)により精製して、273mgの中間体E7を黄色の残渣(46%)として得た。
中間体E8の調製
EtN(0.292mL、2.10mmol)を、中間体E7(273mg、0.842mmol)のDCM(12mL)中溶液に添加した。次いで溶液を5℃まで冷却し、TfO溶液(DCM中1M、1.0mL、1.0mmol)を5分かけて滴加した。反応混合物を1時間撹拌し、DCM及びNaHCO(sat.、aq.)で希釈した。層を分離した。水層をDCMで抽出した(2回)。合わせた有機層をMgSO上で乾燥させ、濾過し、溶媒を減圧下で除去した。残渣を分取LC(不定形SiOH、15~40μm、12g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtOAc、勾配100:0~0:100)により精製して、105mgの中間体E8を白色固体(27%)として得た。
中間体E9の調製
スチールボンベ(steal bomb)内で、中間体E8(85mg、0.186mmol)及びPd(OH)(21mg、0.075mmol)のMeOH(8.5mL)中混合物を、室温にて、10barのH下、6時間水素添加した。混合物をCelite(登録商標)パッドで濾過し、濾液を真空中で蒸発させて、65mgの中間体E9を白色の残渣(Quant.)として得た。
化合物13の調製
6-クロロ-2-エチル-イミダゾ[1,2-a]ピリミジン-3-カルボン酸[2059140-68-8](46mg、0.202mmol)及びDIPEA(0.070mL、0.403mmol)のDCM(3mL)及びMe-THF(3mL)中混合物に、EDCI●HCl(39mg、0.202mmol)、HOBt・HO(31mg、0.202mmol)、及び中間体E9(65mg、0.202mmol)を添加した。反応混合物を室温で20時間撹拌した。反応混合物をDCMで希釈し、NaHCO(sat.、aq.)で洗浄した。有機層をMgSO上で乾燥させ、濾過し、溶媒を減圧下で除去した。残渣を分取LC(不定形SiOH、15~40μm、12g、液体注入(DCM)、移動相:DCM/MeOH 勾配100:0~90:10)により精製した。固体(70mg)をEtO中でトリチュレートし、音波処理して、溶媒を減圧下で除去した。残渣(68mg)を逆相(固定相:YMC-actus Triart C18 10μm 30×150mm、移動相:NHHCO(水中0.2%)/MeCN、勾配55:45~35:65)により精製して、42mgの化合物13を白色固体(39%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.40(d,J=2.69Hz,1H)8.68(d,J=2.57Hz,1H)8.55(t,J=5.87Hz,1H)7.32(m,J=8.68Hz,2H)7.28(s,1H)7.19(m,J=8.68Hz,2H)4.47(d,J=5.87Hz,2H)4.08(t,J=4.58Hz,2H)3.83(t,J=4.77Hz,2H)3.01(q,J=7.46Hz,2H)1.29(t,J=7.46Hz,3H).
化合物14の調製
化合物13の合成について報告した手順に従って、中間体E9及び5-メトキシ-2-メチルピラゾロ[1,5-a]ピリジン-3-カルボン酸[1352395-28-8]から出発して化合物14を調製し、32mgを白色のふわふわの固体(40%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 8.50(d,J=7.46Hz,1H)7.86(t,J=5.99Hz,1H)7.25-7.33(m,3H)7.24(d,J=2.69Hz,1H)7.18(d,J=8.68Hz,2H)6.63(dd,J=7.46,2.81Hz,1H)4.43(d,J=5.99Hz,2H)4.08(t,J=4.59Hz,2H)3.85(s,3H)3.79-3.83(m,2H).
化合物15の合成
Figure 2022548247000030
中間体F1の調製
4-フルオロベンゾニトリル[1194-02-1](10.0g、82.6mmol)、N-boc-N-メチルエチレンジアミン(20.2mL、116mmol)、及びKCO(13.7g、99.1mmol)の無水DMSO(40mL)中混合物を、120℃で6時間加熱した。反応混合物をブライン中に注ぎ、EtOAcを添加した。層を分離し、水層をEtOAcで抽出した。合わせた有機層を水及びブラインで洗浄し、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。粗混合物を分取LC(不定形SiOH、15~40μm、330g、液体注入(DCM)、移動相:ヘプタン/EtOAc、勾配90:10~30:70)により精製して、18.04gの中間体F1を無色の油(80%)として得た。
中間体F2の調製
1Lのオートクレーブ内で、中間体F1(17.0g、61.7mmol)及びラネーニッケル(14.5g、247mmol)のMeOH(330mL)中混合物を、室温にて、6barのH下で、2時間撹拌した。混合物をCelite(登録商標)パッド上で濾過し、MeOHで洗浄し、濾液を真空中で蒸発させて、17.25gの中間体F2を青色/緑色の油(Quant.)として得た。
中間体F3の調製
6-クロロ-2-エチルイミダゾ[1,2-a]ピリジン-3-カルボン酸[1216142-18-5](2.35g、10.0mmol)、中間体F2(3.07g、11.0mmol)、及びDIPEA(3.45mL、20.0mmol)のDCM(70mL)及びMe-THF(70mL)中混合物に、EDCI・HCl(2.30g、12.0mmol)及びHOBt・HO(1.62g、12.0mmol)を添加した。反応混合物を室温で8時間撹拌した。混合物を蒸発させて、粗混合物を分取LC(不定形SiOH 15~40μm、220g、乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtOAc、勾配70:30~EtOAc0:100)により精製して、3.703gの中間体F3を褐色の発泡体(76%)として得た。
中間体F4の調製
中間体F3(3.54g、7.28mmol)をMe-THF(62mL)及びAcOH(4.17mL、72.8mmol)中に溶解させた。亜硝酸イソペンチル(4.89mL、36.4mmol)を滴加し、反応混合物を40℃で1時間撹拌した。得られた溶液をEtOAc中に希釈した。有機層をKCO(10%、aq.)(2回)及びブラインで洗浄し、MgSO上で乾燥させ、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、80g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtOAc、勾配50:50~0:100)により精製して、3.54gの中間体F4をオレンジ色のペースト(94%)として得た。
中間体F5の調製
中間体F4(1.13g、2.19mmol)のTHF(22mL)及びMeOH(14mL)中溶液を、NaOH(1M aq.、22mL、22mmol)で処理した。ホルムアミジンスルフィン酸(1.19g、11.0mmol)を添加し、反応混合物を50℃で1.5時間撹拌した。反応混合物をDCM中に希釈し、KCO(10% aq.)を添加した。水層をDCM及びMeOH(95/5)で抽出した(2回)。合わせた有機層をMgSO上で乾燥させ、濾過し、真空中で蒸発させて、970mgの中間体F5を黄色の発泡体(91%純度、80%)として得た。
中間体F6の調製
中間体F5(932mg、1.69mmol)のMeOH(18mL)中溶液を、TMSCl(2.15mL、16.9mmol)で処理した。反応混合物を室温で20時間撹拌し、真空中で蒸発させた。固体をEtO中でトリチュレートした。上清を除去し、黄色粉末を真空下で乾燥させて、915mgの中間体F6(Quant.)を得た。
化合物15の調製
中間体F6(270mg、0.570mmol)のHFIP(4.86mL)中溶液に、オルトギ酸トリメチル(187μL、1.71mmol)を添加し、反応混合物を60℃で16時間撹拌した。反応混合物をEtOAcで希釈し、KCO(10%、aq.)でクエンチした。有機層をHO(1回)及びブライン(1回)で洗浄し、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。粗混合物を分取LC(不定形SiOH、15~40μm、12g 乾燥充填材(Celite(登録商標))、移動相:DCM/(DCM/MeOH、80:20)、勾配95:5~75:25)により精製した。残渣をEtOH中の還流下で20分間加熱した。溶液を室温まで冷却し、0℃で冷却した。混合物を濾過した。固体を冷EtOHですすぎ、真空下にて60℃で7時間乾燥させ、51mgの化合物15をベージュ色の綿毛のような固体(22%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.03(s,1H)8.40(t,J=5.8Hz,1H)7.66(d,J=9.4Hz,1H)7.45(dd,J=9.5,2.08Hz,1H)7.18(d,J=8.7Hz,2H)7.10(d,J=8.7Hz,2H)6.70(s,1H)4.42(d,J=5.8Hz,2H)3.51(t,J=5.2Hz,2H)3.34(t,J=5.2Hz,2H)2.96(q,J=7.6Hz,2H)2.83(s,3H)1.25(t,J=7.5Hz,3H).
化合物16の合成
Figure 2022548247000031
中間体G1の調製
フラスコに、6-クロロ-2-エチルイミダゾ[1,2-a]ピリジン-3-カルボン酸[1216142-18-5](1.00g、4.45mmol)、4-ブロモ-2-フルオロベンジルアミン[112734-22-2](0.954g、4.67mmol)、Me-THF(15mL)、DCM(15mL)、及びDIPEA(1.23mL、7.12mmol)を充填した。HATU(1.86g、4.90mmol)を少量ずつ添加し、反応混合物を室温で17時間撹拌した。混合物をEtOAc及び水で希釈した。層を分離し、有機層をブラインで洗浄し(2回)、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を温EtOAcに溶解させた。溶液を室温まで、そして0℃まで冷却した。懸濁液を濾別し、固体を冷EtOAcで、次いでEtOで洗浄した。固体を真空中で乾燥させ、773mgの中間体G1をオフホワイト色の固体(42%)として得た。
中間体G2の調製
中間体G1(740mg、1.80mmol)、N-boc-エチレンジアミン(375mg、2.34mmol)、及びCsCO(1.06g、3.24mmol)のtert-アミルアルコール(24mL)及びMe-THF(16mL)中混合物を、Nでパージした。Brettphos Pd G3(82mg、0.090mmol)及びBrettphos(97mg、0.18mmol)を添加した。反応混合物を再度、Nでパージし、80℃で17時間撹拌した。反応混合物を室温まで冷却した。Celite(登録商標)を添加し、混合物を真空中で蒸発させた。残渣を分取LC(不定形SiOH 15~40μm、40g、移動相:ヘプタン/EtOAc、勾配50:50 0:100)により精製して、444mgの中間体G2を淡黄色の発泡体(50%)として得た。
中間体G3の調製
中間体F4の合成について報告した合成に従って中間体G2から出発して中間体G3を調製し、408mgを黄色固体(87%)として得た。
中間体G4の調製
中間体F5の合成について報告した手順に従って中間体G3から出発して中間体G4を調製し、362mgをベージュ色の固体(94%)として得た。
中間体G5の調製
中間体F6の合成について報告した手順に従って中間体G4から出発して中間体G5を調製し、343mgを黄色粉末(Quant.)として得た。
中間体G6の調製
中間体G5(283mg、0.592mmol)及びオルトギ酸トリメチル(194μL、1.78mmol)の無水DMF(3.7mL)中混合物を、60℃で23時間撹拌した。更なる量の無水DMF(3.7mL)及びオルトギ酸トリメチル(194μL、1.78mmol)を室温で添加し、反応混合物を60℃で更に1.5時間撹拌した。反応混合物をDCMで希釈し、KCO(10%、aq.)でクエンチした。層を分離し、水層をDCM及びMeOH(95/5)で抽出した(2回)。合わせた有機層を水及びブラインで洗浄し、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。粗混合物を分取LC(不定形SiOH、15~40μm、12g 乾燥充填材(Celite(登録商標))、移動相:DCM/(DCM/MeOH、80/20)、勾配95:5~70:30)により精製して、156mgの中間体G6を白色固体(63%)として得た。
化合物16の調製
雰囲気下、中間体G6(143mg、0.345mmol)及びEtN(240μL、1.72mmol)の、無水DCM(5mL)、無水Me-THF(5mL)、及び無水1,4-ジオキサン(5mL)中混合物を、40℃で加熱した。反応混合物を0℃まで冷却し、トリフルオロメタンスルホン酸無水物(0.517mL、0.517mmol)を滴加した。混合物を0℃で20分間撹拌し、DCMで希釈した。少量のMeOHを添加し、KCO(10%、aq.)を添加した。層を分離し、水層をDCMで抽出した(2回)。合わせた有機層を水及びブラインで洗浄し、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。粗混合物を分取LC(不定形SiOH、15~40μm、12g 乾燥充填材(Celite(登録商標))、移動相:DCM/(DCM/MeOH、80:20)、勾配100:0~80:20)により精製した。残渣を逆相(固定相:YMC-actus Triart C18 10μm 30×150mm、移動相:NHHCO(水中0.2%)/MeCN、勾配55:45~25:75)により精製して、84mgの化合物16を白色固体(45%)として得た。
H NMR(500MHz,DMSO-d)δ ppm 9.05(s,1H)8.40(t,J=5.8Hz,1H)7.66(d,J=9.5Hz,1H)7.45(dd,J=9.5,2.1Hz,1H)7.36(t,J=8.5Hz,1H)7.02(m,2H)7.32(s,1H)4.50(d,J=5.8Hz,2H)4.07(t,J=4.7Hz,2H)3.86(t,J=4.7Hz,2H)2.96(q,J=7.5Hz,2H)1.25(t,J=7.5Hz,3H).
化合物17の合成
Figure 2022548247000032
化合物17の調製
雰囲気下、中間体A6(180mg、0.454mmol)及びEtN(315μL、2.27mmol)の、無水Me-THF(7mL)、無水1,4-ジオキサン(7mL)、及び無水DCM(7mL)中混合物を0℃まで冷却した。イソブタンスルホニルクロリド(88.8μL、0.680mmol)を滴加した。反応混合物を0℃で1時間撹拌し、DCMで希釈し、KCO(10%、aq.)でクエンチした。層を分離し、水層をDCM及びMeOH(95/5)で抽出した(2回)。合わせた有機層をMgSO上で乾燥させ、濾過し、真空中で蒸発させた。固体を分取LC(不定形SiOH、15~40μm、12g 乾燥充填材(Celite(登録商標))、移動相:DCM/(DCM:MeOH、80:20)、勾配100:0~95:5)により精製して、124mgの化合物17をわずかに黄色の固体(53%)として得た。
H NMR(500MHz,CDCl)δ ppm 9.51-9.54(m,1H)7.51-7.55(m,1H)7.32(d,J=8.7Hz,2H)7.29(dd,J=9.5,2.0Hz,1H)7.23(s,1H)7.18(d,J=8.7Hz,2H)6.03(br t,1H)3.71(t,J=4.6Hz,2H)3.00(d,J=6.6Hz,2H)2.95(q,J=7.6,2H)2.32(m,1H)1.39(t,J=7.6Hz,3H)1.15(s,3H)1.14(s,3H).
化合物18の合成
Figure 2022548247000033
雰囲気下、中間体A6(300mg、0.756mmol)及びEtN(0.525mL、3.78mmol)の、無水DCM(11.5mL)、無水Me-THF(11.5mL)、及び無水1,4-ジオキサン(11.5mL)中混合物を、70℃で2.5時間撹拌した。混合物を室温まで、次いで0℃まで冷却した。アセチルクロリド(53.9μL、0.756mmol)を滴加し、反応混合物を0℃で30分間撹拌した。反応混合物をDCMで希釈し、MeOH及びKCO(10%、aq.)でクエンチした。層を分離し、水層をDCM及びMeOH(95/5)で抽出した(2回)。合わせた有機層をブラインで洗浄し、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、12g 乾燥充填材(Celite(登録商標))、移動相:DCM/(DCM/MeOH、80/20)、勾配95:5~85:15)により精製して、180mgの化合物18を白色固体(54%)として得た。
H NMR(500MHz,DMSO-d)δ ppm 回転異性体:9.08(d,J=1.3Hz,1H)8.17(br t,J=5.4Hz,1H)7.62(d,J=9.8Hz,1H)7.58(br s,1H)7.41(dd,J=9.5,2.2Hz,1H)7.30(d,J=8.8Hz,2H)7.20(d,J=8.5Hz,2H)4.49(d,J=6.0Hz,2H)3.86(br s,2H)3.66(t,J=5.0Hz,2H)2.99(q,J=7.6Hz,2H)2.25(s,3H)1.28(t,J=7.6Hz,3H).
化合物19の合成
Figure 2022548247000034
中間体A6(100mg、0.252mmol)及びEtN(0.175mL、1.26mmol)の、無水DCM(2.7mL)及び無水Me-THF(2.7mL)中混合物に、2-メトキシ-1-エタンスルホニルクロリド(88.3μL、0.756mmol)を0℃で添加し、反応混合物を0℃で15分間撹拌した。反応物を少量のMeOHでクエンチし、KCO(10%、aq.)を添加した。層を分離し、水層をDCMで抽出した(2回)。合わせた有機層を水(2回)及びブラインで洗浄し、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、12g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtAOc、勾配55:45~0:100、次いでEtOAc/MeOH 99:1)により精製した。固体をMeCN中でトリチュレートし、上清を除去し、固体を真空下で乾燥させて、53mgの化合物19を白色固体(41%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.06(d,J=1.5Hz,1H)8.43(t,J=5.9Hz,1H)7.66(d,J=9.5Hz,1H)7.45(dd,J=9.5,2.1Hz,1H)7.28(d,J=8.7Hz,2H)7.17(d,J=8.7Hz,2H)7.14(s,1H)4.45(d,J=5.9Hz,2H)3.84(t,J=4.3Hz,2H)3.63-3.75(m,6H)3.24(s,3H)2.97(q,J=7.5Hz,2H)1.25(t,J=7.5Hz,3H)1.09(t,J=7.0Hz,1H).
化合物20の合成
Figure 2022548247000035
中間体A6(120mg、0.302mmol)及びEtN(210μL、1.51mmol)の無水THF(6mL)中混合物を0℃まで冷却した。メタンスルホニルクロリド(46.8μL、0.605mmol)を滴加し、反応混合物を0℃で15分間撹拌した。更なる量のメタンスルホニルクロリド(23.4μL、0.302mmol)を0℃で滴加し、反応混合物を0℃で更に30分間撹拌した。反応混合物をDCMで希釈し、少量のMeOHでクエンチし、KCO(10%、aq.)を添加した。層を分離し、水層をDCMで抽出した(2回)。合わせた有機層を水及びブラインで洗浄し、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、12g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtOAc、勾配30:70~0:100、次いでEtOAc/MeOH 99:1)により精製した。固体をEtOAc中でトリチュレートし、上清を除去して、68mgの化合物20を白色固体(47%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.06(d,J=1.6Hz,1H)8.43(t,J=5.8Hz,1H)7.66(d,J=9.5Hz,1H)7.45(dd,J=9.4,2.08Hz,1H)7.28(d,J=8.6Hz,2H)7.19(s,1H)7.17(d,J=8.8Hz,2H)4.46(d,J=5.9Hz,2H)3.86(t,J=5.1Hz,2H)3.70(t,J=5.1Hz,2H)3.27(s,3H)2.97(d,J=7.5Hz,2H)1.99(s,1H)1.25(t,J=7.5Hz,3H).
化合物21の合成
Figure 2022548247000036
中間体H6の調製
中間体A5(200mg、0.435mmol)及びオルト酢酸トリメチル(166μL、1.31mmol)の酢酸(3.6mL)中混合物を、100℃で3時間撹拌した。反応混合物を真空中で蒸発させた。残渣をDCMで希釈し、KCO(10%、aq.)を添加した。層を分離し、水層をDCM及びMeOH(95/5)で抽出した(2回)。合わせた有機層をMgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、12g 乾燥充填材、移動相:DCM/MeOH、勾配100:0~95:5)により精製して、132mgの中間体H6を黄色の発泡体(77%純度、57%)として得た。
化合物21の調製
中間体H6(133mg、0.249mmol)の無水DCM(2.7mL)及び無水Me-THF(2.5mL)中混合物に、EtN(0.17mL、1.3mmol)を添加した。混合物を0℃まで冷却し、トリフルオロメタンスルホン酸無水物(0.75mL、0.75mmol)を滴加した。反応混合物を0℃で15分間撹拌し、少量のMeOH及びKCO(10%、aq.)でクエンチした。層を分離し、水相をDCMで抽出した(2回)。合わせた有機抽出物をブラインで洗浄し、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、12g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtAOc、勾配80:20~0:100)により精製した。2回目の精製を、逆相(固定相:YMC-actus Triart C18 10μm 30×150mm、移動相:NHHCO(水中0.2%)/MeCN、勾配40:60~10:90)により実施し、52mgの化合物21をオフホワイト色の固体(38%)として得た。
H NMR(500MHz,DMSO-d)δ ppm 9.06(d,J=1.6Hz,1H)8.44(s,1H)7.66(d,J=9.5Hz,1H)7.45(dd,J=9.6,2.1Hz,1H)7.30(d,J=8.8Hz,2H)7.16(d,J=8.8Hz,2H)4.46(d,J=6.0Hz,2H)4.00(t,J=5.4Hz,2H)3.82(t,J=5.4Hz,2H)2.97(q,J=5.6Hz,2H)2.26(s,3H)1.25(t,J=7.6Hz,3H).
化合物22の合成
Figure 2022548247000037
中間体I1の調製
4-ブロモ-2-メトキシベンゾニトリル[330793-38-9](1.55g、7.31mmol)、N-boc-エチレンジアミン(1.76g、11.0mmol)、及びCsCO(4.76g、14.6mmol)の無水tert-アミルアルコール(46mL)中混合物を、Nでパージした。Brettphos Pd G3(331mg、0.365mmol)及びBrettphos(392mg、0.731mmol)を添加し、反応混合物を、シングルモードマイクロ波(Biotage Initiator60)を用いて120℃で1時間、次いで更に45分間加熱した。2つのバッチをCelite(登録商標)パッド上で濾過し、濾液を真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、120g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtAOc、勾配90:10~0:100)により精製して、1.64gの中間体I1(74%)を得た。
中間体I2の調製
中間体F2の合成について報告した手順に従って中間体I1から出発して中間体I2を調製し、1.55gの灰色の油(94%)を得た。
中間体I3の調製
中間体F3の合成について報告した手順に従って中間体I2から出発して中間体I3を調製し、765mgのベージュ色の固体(62%)を得た。
中間体I4の調製
中間体F4の合成について報告した手順に従って中間体I3から出発して中間体I4を調製し、724mgの黄色の固体(90%)を得た。
中間体I5の調製
中間体F5の合成について報告した手順に従って中間体I4から出発して中間体I5を調製し、692mgのベージュ色の発泡体(99%)を得た。
中間体I6の調製
中間体F6の合成について報告した手順に従って中間体I5から出発して中間体E6を調製し、710mgのベージュ色の固体(Quant.)を得た。
中間体I7の調製
中間体I6(270mg、0.551mmol)及びN,N-ジメチルホルムアミドジメチルアセタール(73.8μL、0.551mmol)の無水DMF(3.4mL)中溶液を、室温で4.5時間撹拌した。反応混合物をDCMで希釈し、KCO(10%、aq.)でクエンチした。層を分離し、水相をDCM及びMeOH(95/5)で抽出した(2回)。合わせた有機層をMgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、12g 乾燥充填材(Celite(登録商標))、移動相:DCM/(DCM:MeOH、80/20)、勾配95:5~85:15)により精製して、100mgの中間体I7を白色固体(42%)として得た。
化合物22の調製
雰囲気下0℃で、中間体I7(92.0mg、0.216mmol)及びEtN(150μL、1.08mmol)の、無水DCM(3.1mL)、無水Me-THF(3.1mL)、及び無水1,4-ジオキサン(3.1mL)中混合物に、トリフルオロメタンスルホン酸無水物(0.323mL、0.323mmol)を滴加した。反応混合物を0℃で10分間撹拌し、DCM及びKCO(10%、aq.)で希釈した。層を分離し、水相をDCM及びMeOH(95/5)で抽出した(2回)。合わせた有機抽出物をMgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、12g 乾燥充填材(Celite(登録商標))、移動相:DCM/(DCM/MeOH、95/5)、勾配100:0~80/20)により精製した。固体をEtOAc中でトリチュレートした。上清を除去し、白色固体を真空下で60℃で1時間乾燥させ、28mgの化合物22(23%)を得た。
H NMR(400MHz,DMSO-d)δ ppm 9.04(d,J=1.5Hz,1H)8.23(t,J=5.7Hz,1H)7.66(d,J=9.7Hz,1H)7.45(dd,J=9.5,2.1Hz,1H)7.31(s,1H)7.19(d,J=8.3Hz,1H)6.93(d,J=2.0Hz,1H)6.70(dd,J=8.3,2.0Hz,1H)4.43(d,J=5.7Hz,2H)4.07(br d,J=4.6Hz,2H)3.86(br d,J=5.3Hz,2H)3.84(s,3H)2.96(d,J=7.5Hz,2H)1.25(t,J=7.5Hz,3H).
化合物23の合成
Figure 2022548247000038
中間体J1の調製
中間体E7(400mg、1.23mmol)及びEtN(0.857mL、6.17mmol)の無水DCM(18mL)中混合物に、イソブタンスルホニルクロリド(0.161mL、1.23mmol)を0℃で滴加した。反応混合物を室温で1時間撹拌した。反応物をNaHCO(sat.、aq.)でクエンチした。層を分離し、水相をDCM及びMeOH(95/5)で抽出した(2回)。合わせた有機抽出物をMgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、24g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtOAc、勾配100:0~0:100、次いで移動相EtOAc/MeOH、勾配100:0~95:5)により精製して、406mgの中間体J1を緑色の固体(74%)として得た。
中間体J2の調製
中間体J1(406mg、0.913mmol)及びPd(OH)(264mg、0.941mmol)の、MeOH(20mL)、EtOAc、(20mL)、及びTHF(5mL)中混合物を、室温にて15barのH下18時間撹拌した。反応混合物を濾別し、MeOH、EtOAc、及びTHFですすいだ。濾液を真空中で蒸発させて、180mgの中間体J2を黄色の固体(60%)として得た。
化合物23の調製
6-クロロ-2-エチル-イミダゾ[1,2-a]ピリミジン-3カルボン酸[2059140-68-8](113mg、0.501mmol)、中間体J2(180mg、0.551mmol)、EDCI・HCl(96.0mg、0.501mmol)、HOBt・HO(76.7mg、0.501mmol)、及びDIPEA(431μL、2.50mmol)のDCM(10mL)及びMe-THF(6mL)中混合物を、室温で18時間撹拌した。反応混合物をDCMで希釈し、水(2回)及びブラインで洗浄した。有機相をMgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、12g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtAOc、勾配90:10~0:100、次いで移動相:EtOAc/MeOH、勾配100:0~95:5)により精製して、101mgの化合物23をわずかに黄色の固体(39%)として得た。
H NMR(500MHz,DMSO-d)δ ppm 9.39(d,J=2.8Hz,1H)8.67(d,J=2.6Hz,1H)8.51(t,J=6.0Hz,1H)7.28(d,J=8.7Hz,2H)7.19(s,1H),7.17(d,J=8.8Hz,3H)4.46(d,J=6.0Hz,2H)3.86(t,J=4.8Hz,2H)3.69(t,J=4.9Hz,2H)3.32(d,J=6.6Hz,3H)3.01(q,J=7.5Hz,2H)2.13(m,1H)1.27(t,J=7.6Hz,3H)1.06(s,3H)1.04(s,3H).
化合物24の合成
Figure 2022548247000039
中間体K1の調製
0℃の中間体E7(550mg、1.70mmol)及びEtN(1.18mL、8.48mmol)の無水DCM(24mL)中混合物に、アセチルクロリド(0.145mL、2.04mmol)を滴加した。反応混合物を室温で15分間撹拌して、反応物をNaHCO(sat.、aq.)でクエンチした。層を分離し、水相をDCM及びMeOH(95/5)で抽出した(2回)。合わせた有機抽出物をMgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣をEtOAc中でトリチュレートし、固体を濾過により回収し、320mgの中間体K1をわずかに黄色の固体(52%)として得た。
中間体K2の調製
中間体K1(256mg、0.698mmol)、Pd(OH)(157mg、0.558mmol)、及びHCl(HO中1M、0.698mL、0.698mmol)の、MeOH(6.4mL)及びEtOAc(6.4mL)中混合物を、室温にて5barのH下で1時間撹拌した。反応混合物を濾過し、EtOAc及びMeOHですすいだ。黄色の固体を分取LC(不定形SiOH 15~40μm、12g、乾燥充填材(Celite(登録商標))、移動相DCM/(DCM/MeOH/NH aq.、80/20/0.5)、勾配100:0~70:30)により精製して、130mgの中間体K2(75%)を得た。
化合物24の調製
6-クロロ-2-エチル-イミダゾ[1,2-a]ピリミジン-3-カルボン酸[2059140-68-8](98.5mg、0.436mmol)、中間体K2(129mg、0.480mmol)、及びDIPEA(752μL、4.36mmol)の、DCM(8.8mL)及びMe-THF(5.2mL)中混合物に、EDCI・HCl(83.7mg、0.436mmol)及びHOBt・HO(66.8mg、0.436mmol)を添加した。反応混合物を室温で16時間撹拌し、濾過し、固体をDCMで洗浄して、114mgの化合物24をわずかに黄色の綿毛のような固体(59%)として得た。
H NMR(500MHz,DMSO-d)δ ppm 9.38(d,J=2.2Hz,1H)8.61(d,J=2.5Hz,1H)8.26(br t,J=6.0Hz,1H)7.56(br s,1H)7.28(br d,J=8.5Hz,2H)7.18(d,J=8.5Hz,2H)4.47(d,J=5.7Hz,2H)3.84(br s,2H)3.64(t,J=5.0Hz,2H)3.01(q,J=7.6Hz,3H)2.23(br s,3H)1.28(t,J=7.4Hz,3H).
化合物25の合成
Figure 2022548247000040
中間体L1の調製
4-フルオロ-3-メトキシ-ベンゾニトリル[243128-37-2](4.88g、32.3mmol)及びN-boc-エチレンジアミン(18.0mL、0.129mol)のDMSO(58mL)中混合物に、EtN(6.65mL、42.0mmol)を添加した。反応混合物を120℃で16時間撹拌した。反応混合物を冷却し、ブライン中に注いだ。EtOAcを添加した。層を分離し、水相をEtOAcで抽出した(2回)。合わせた有機抽出物を水及びブライン(1/1)の混合物で洗浄し(3回)、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、330g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtOAc、勾配100:0~30:70)により精製して、5.23gの中間体L1を白色固体(56%)として得た。
中間体L2の調製
中間体F2の合成について報告した手順に従って中間体L1から出発して中間体L2を合成し、1.09gの緑色の油(Quant.)を得た。
中間体L3の調製
6-クロロ-2-エチルイミダゾ[1,2-a]ピリジン-3-カルボン[1216142-18-5](701mg、3.12mmol)、中間体L2(1.01g、3.43mmol)、及びDIPEA(2.69mL、15.6mmol)の、DCM(60mL)及びMe-THF(40mL)中混合物に、EDCI・HCl(598mg、3.12mmol)及びHOBt・HO(478mg、3.12mmol)を添加した。反応混合物を室温で16時間撹拌し、DCM及び水で希釈した。層を分離し、水相をDCMで抽出した(2回)。合わせた有機抽出物をブラインで洗浄し(2回)、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、80g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtOAc、勾配60:40~0:100)により精製して、1.078gの中間体L3を黄色の固体(69%)として得た。
中間体L4の調製
中間体L3(1.08g、2.15mmol)をMe-THF(21mL)及び酢酸(1.23mL、21.5mmol)中に溶解させた。亜硝酸イソペンチル(1.44mL、10.7mmol)を滴加し、反応混合物を40℃で1.5時間撹拌した。反応混合物をEtOAc及びNaHCO(sat.、aq.)で希釈した。層を分離した。有機相をNaHCO(sat.、aq.)(2回)及びブラインで洗浄し、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣をペンタン中でトリチュレートし、上清を除去して黄色の固体を得て、これを真空下で乾燥させて、1.127gの中間体L4(99%)を得た。
中間体L5の調製
中間体F5の合成について報告した手順に従って中間体L4から出発して中間体L5を調製し、1.07gのオレンジ色の発泡体(97%)を得た。
中間体L6の調製
中間体F6の合成について報告した手順に従って中間体L5から出発して中間体L6を調製し、1.10gの黄色粉末(Quant.)を得た。
中間体L7の調製
中間体L6(600mg、1.14mmol)及びオルトギ酸トリメチル(374μL、3.42mmol)のHFIP(10.8mL)中混合物を、60℃で1時間撹拌した。反応混合物をEtOAcで希釈し、KCO(10%、aq.)でクエンチした。層を分離し、有機相をHO及びブラインで洗浄し、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、25g 乾燥充填材(Celite(登録商標))、移動相:DCM/(DCM/MeOH、80/20)、勾配100:0~50:50)により精製して、290mgの中間体L7をわずかにオレンジ色の固体(60%)として得た。
化合物25の調製
中間体L7(290mg、0.679mmol)及びEtN(0.472mL、3.40mmol)の無水DCM(10mL)及び無水Me-THF(10mL)中混合物に、0℃のトリフルオロメタンスルホン酸無水物(0.815mL、0.815mmol)を滴加した。反応混合物を0℃で15分間撹拌し、DCMで希釈した。続いて、少量のMeOH及びKCO(10%、aq.)を添加した。層を分離し、水相をDCM及びMeOH(95/5)で抽出した(2回)。合わせた有機抽出物を水及びブラインで洗浄し、MgSO上で乾燥させ、濾過し、蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、25g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtOAc 勾配70:30~0:100)により精製した。黄色の固体をEtO中でトリチュレートし、音波処理し、濾過により回収して、135mgの化合物25をベージュ色の固体(36%)として得た。
H NMR(500MHz,DMSO-d)δ ppm 9.06(d,J=1.6Hz,1H)8.47(br t,J=6.0Hz,1H)7.66(d,J=9.5Hz,1H)7.46(dd,J=9.5,2.2Hz,1H)7.29(s,1H)7.21(d,J=7.9Hz,1H)7.08(s,1H)6.96(d,J=7.9Hz,1H)4.52(d,J=6.0Hz,2H)4.06(br t,J=4.4Hz,2H)3.82(s,3H)3.55(br t,J=4.7Hz,2H)3.01(d,J=7.6Hz,2H)1.27(t,J=7.6Hz,3H).
化合物26の合成
Figure 2022548247000041
中間体M1の調製
2-アミノ-5-メトキシピリミジン[13418-77-4](4.75g、38.0mmol)、3-オキソ吉草酸エチル[4949-44-4](9.48mL、66.4mmol)、及び(ジアセトキシヨード)ベンゼン(ヨードベンゼンジアセテート)(12.2g、38.0mmol)の無水Me-THF(150mL)中混合物に、三フッ化ホウ素エーテレート(0.993mL、3.80mmol)を滴加した。反応混合物を室温で3時間撹拌した。2つのバッチを合わせ、混合物をEtOAcで希釈した。NaHCO(sat.、aq.)を添加した。層を分離し、有機相をブラインで洗浄し、MgSO上で乾燥させ、濾過し、真空中で濃縮した。残渣を分取LC(不定形SiOH、15~40μm、330g、液体注入(DCM)、移動相:ヘプタン/EtOAc、勾配85:15~50:50)により精製して、4.94gの中間体M1を黄色の固体(26%)として得た。
中間体M2の調製
中間体M1(500mg、2.01mmol)のTHF(10mL)中溶液に、LiOH●HO(253mg、6.02mmol)の水(5mL)中溶液を添加した。反応混合物を45℃で2時間撹拌し、室温まで冷却し、HCl(1M、aq.、6mL)、続いてEtOAcを添加した。層を分離し、水相をDCM、次いでDCMとMeOH(95/5)の混合物で抽出した。合わせた有機抽出物をMgSO上で乾燥させ、濾過し、真空中で蒸発させて、80mgの中間体M2(18%)を得た。
化合物26の調製
中間体M2(80mg、0.362mmol)及び中間体E9(117mg、0.362mmol)のDMF(2.44mL)中混合物に、DIPEA(0.156mL、0.904mmol)及びTBTU(128mg、0.398mmol)を連続的に添加した。反応混合物を室温で17時間撹拌した。反応混合物をEtOAc中に注いだ。有機相をブラインで洗浄し(2回)、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、24g、液体注入(DCM)、移動相:ヘプタン/EtOAc、勾配50:50~0:100)により精製して、78mgの化合物26を白色固体(41%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.40(d,J=2.57Hz,1H)8.68(d,J=2.69Hz,1H)8.53(t,J=5.87Hz,1H)7.30(d,J=8.68Hz,2H)7.15(d,J=8.68Hz,2H)4.46(d,J=5.87Hz,2H)4.06-4.18(m,2H)3.85(s,3H)3.69-3.78(m,2H)3.01(q,J=7.54Hz,2H)1.27(t,J=7.52Hz,3H).
化合物27の合成
Figure 2022548247000042
中間体N1の調製
中間体E6(3.00g、7.75mmol)の酢酸(30mL)中溶液を、テトラメトキシメタン(2.58mL、19.4mmol)で処理し、室温で2時間撹拌した。反応混合物をDCM中に注ぎ、KCO(10%、aq.)でクエンチした。層を分離し、水相をDCM及びMeOH(98/2)で抽出した。合わせた有機抽出物をMgSO上で乾燥させ、濾過し、真空中で蒸発させた。粗混合物を分取LC(不定形SiOH、15~40μm、80g、液体注入(DCM)、移動相:ヘプタン/EtOAc、勾配70:30~0:100)により精製して、1.09gの中間体N1を油(40%)として得た。
中間体N2の調製
中間体N1(1.00g、2.82mmol)及びDIPEA(0.972mL、5.64mmol)のDCM(15mL)中混合物に、TfOのDCM中溶液(DCM中1M、2.96mL、2.96mmol)を10分かけて滴加した。反応混合物を室温で30分間撹拌し、DCMで希釈した。混合物をNaHCO(sat.、aq.)で洗浄し、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、40g、液体注入(DCM)、移動相:ヘプタン/EtOAc、勾配80:20~40:60)により精製して、680mgの中間体N2を白色固体(50%)として得た。
中間体N3の調製
スチールボンベ(steal bomb)内で、中間体N2(630mg、1.30mmol)、Pd(OH)(132mg、0.470mmol)、及びHCl(HO中3M、0.432mL、1.30mmol)の、MeOH(5mL)及びEtOAc(5mL)中混合物を、室温にて、5barのH下で2時間水素添加した。混合物をCelite(登録商標)パッド上で濾過し、503mgの中間体N3を白色固体(Quant.)として得た。
化合物27の調製
中間体N3(150mg、0.665mmol)、6-クロロ-2-エチル-イミダゾ[1,2-a]ピリミジン-3-カルボン酸[2059140-68-8](284mg、0.731mmol)、及びDIPEA(0.344mL、1.99mmol)のDMF(4.5mL)中混合物を、TBTU(235mg、0.731mmol)で処理し、反応混合物を室温で3時間撹拌した。反応混合物をEtOAcで希釈し、水及びブラインで洗浄し、MgSO上で乾燥させて、濾過し、真空中で濃縮した。残渣を分取LC(不定形SiOH 40μm、24g、液体注入(DCM)、移動相:ヘプタン/EtOAc 勾配80:20~20:80)により精製した。白色固体を温EtOAc中に溶解し、溶液を室温、次いで0℃まで冷却した。懸濁液を濾別し、EtOで洗浄し、真空中で乾燥させて、固体(71mg)を得た。濾液を真空中で蒸発させ、固体と合わせた。残渣を温i-PrOH中に溶解させ、室温まで冷却した。懸濁液を真空下(120mbar)でゆっくりと濃縮し、濃厚な溶液を得た。濾過の後、固体をEtOで洗浄し、真空下で乾燥させ、135mgの化合物27を白色固体(36%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 8.94(d,J=3.06Hz,1H)8.51(d,J=3.06Hz,1H)8.40(t,J=5.87Hz,1H)7.32(d,J=8.68Hz,2H)7.28(s,1H)7.19(d,J=8.68Hz,2H)4.48(d,J=5.87Hz,2H)4.08(t,J=4.65Hz,2H)3.86(s,3H)3.79-3.84(m,2H)2.99(q,J=7.50Hz,2H)1.25(t,J=7.52Hz,3H).
化合物28の合成
Figure 2022548247000043

PTSA(108mg、567μmol)を、化合物1(300mg、567mmol)のMeOH(7.8mL)中懸濁液に添加した。音波処理後、溶液を室温で1時間撹拌し、溶媒を減圧下で除去した。残渣をEtO中でトリチュレートし、溶媒を減圧下で除去して(操作を2回繰り返す)、406mgの化合物28をオフホワイト色の固体(Quant.)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.14(s,1H)8.80(t,J=5.7Hz,1H)7.74-7.89(m,2H)7.47(d,J=8.1Hz,2H)7.27-7.37(m,3H)7.19(d,J=8.7Hz,2H)7.11(d,J=7.8Hz,2H)4.49(d,J=5.9Hz,3H)4.08(t,J=4.4Hz,2H)3.83(t,J=4.8Hz,2H)3.02(q,J=7.5Hz,2H)2.29(s,3H)1.27(t,J=7.5Hz,3H).
化合物29の合成
Figure 2022548247000044

MeSOHのMeOH中溶液(9.1%v/v、368μL、516μmol)を、化合物1(300mg、567μmol)のMeOH(15mL)中混合物に添加した。反応混合物を室温で45分間撹拌し、蒸発乾固した。残渣をEtO中でトリチュレートして、溶媒を減圧下で除去した。固体を減圧下で乾燥させて、355mgの化合物29をオフホワイト色の固体(Quant.)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.13(s,1H)8.74(t,J=5.3Hz,1H)7.82(d,J=9.4Hz,1H)7.73(d,J=9.4Hz,1H)7.33(m,J=8.7Hz,2H)7.29(s,1H)7.19(m,J=8.7Hz,2H)4.49(d,J=5.9Hz,2H)4.08(t,J=4.6Hz,2H)3.83(t,J=4.8Hz,2H)3.02(q,J=7.5Hz,2H)2.32(s,3H)1.27(t,J=7.5Hz,3H).
化合物30の合成
Figure 2022548247000045

(1R)-(-)-カンファー-10-スルホン酸(110mg、473μmol)を、化合物1(250mg、473μmol)の無水MeOH(5mL)中溶液に添加した。反応混合物を室温で30分間撹拌し、溶媒を減圧下で除去した。残渣をEtO中でトリチュレートし、溶媒を減圧下で除去して、359mgの化合物30を白色固体(Quant.)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.12(d,J=1.3Hz,1H)8.69(t,J=5.3Hz,1H)7.80(m,1H)7.69(m,1H)7.33(d,J=8.6Hz,2H)7.28(s,1H)7.19(d,J=8.7Hz,2H)4.48(d,J=5.7Hz,3H)4.08(t,J=4.6Hz,2H)3.83(t,J=4.8Hz,2H)3.01(q,J=7.6Hz,2H)2.86(d,J=14.7Hz,1H)2.65-2.75(m,1H)2.37(d,J=14.7Hz,1H)2.23(dt,J=18.1,3.9Hz,1H)1.93(t,J=4.5Hz,1H)1.83-1.91(m,1H)1.82(s,1H)1.77(s,1H)1.21-1.32(m,5H)1.05(s,3H)0.74(s,3H).
化合物31の合成
Figure 2022548247000046

HClのEtOH中溶液(2.5M、89μL、473μmol)を、化合物1(250mg、473μmol)のMeOH(2.7mL)中混合物に添加した。反応混合物を室温で30分間撹拌し、次いで真空中で蒸発乾固した。残渣をEtO中でトリチュレートし、溶媒を減圧下で除去して、269mgの化合物31を白色固体(Quant.)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.12(s,1H)8.71(m,1H)7.79(d,J=9.4Hz,1H)7.68(d,J=8.8Hz,1H)7.26-7.37(m,3H)7.19(d,J=8.7Hz,2H)4.48(d,J=5.9Hz,2H)4.08(t,J=4.5Hz,2H)3.83(t,J=4.8Hz,2H)3.01(q,J=7.6Hz,2H)1.27(t,J=7.5Hz,3H).
化合物32の合成
Figure 2022548247000047

SO(13μL、238μmol)を、化合物1(252mg、476μmol)のMeOH(4.2mL)中溶液に添加した。反応混合物を室温で30分間撹拌し、次いで蒸発乾固した。残渣をEtO中でトリチュレートして、溶媒を減圧下で除去した。白色固体を真空下で60℃にて6時間乾燥させ、271mgの化合物32を白色固体(98%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.11(s,1H)8.63(t,J=5.5Hz,1H)7.76(d,J=9.5Hz,1H)7.62(d,J=9.8Hz,1H)7.26-7.36(m,3H)7.19(d,J=8.7Hz,2H)4.48(d,J=5.9Hz,2H)4.07(t,J=4.7Hz,2H)3.83(t,J=4.7Hz,2H)3.00(q,J=7.5Hz,2H)1.26(t,J=7.5Hz,3H).
化合物33の合成
Figure 2022548247000048
中間体O1の調製
滴下漏斗を装備した2Lの丸底フラスコに、5℃で、2-アミノ-5-クロロピリミジン[5428-89-7](10g、77mmol)のMe-THF(350L)中溶液を充填した。3-オキソ吉草酸エチル[4949-44-4](20mL、140mmol)及び(ジアセトキシヨード)ベンゼン(ヨードベンゼンジアセテート)(25g、78mmol)を添加した。三フッ化ホウ素ジエチルエーテレート(1mL、3.8mmol)を30分かけて滴加し、溶液を5℃で2時間撹拌した。混合物を室温まで温め、1時間撹拌した。混合物を濾過した。EtOAc及びNaHCO(sat.、aq.)を濾液に添加した。有機層をMgSO上で乾燥させ、濾過し、真空中で濃縮した。粗混合物を分取LC(不定形SiOH、15~40μm、330g、液体注入(DCM)、移動相:ヘプタン/EtOAc、勾配85:15~50:50)により精製して、中間体O1(2.98g、15%)を得た。
中間体O2の調製
中間体O1(1.00g;3.94mmol)、カリウム(メトキシメチル)トリフルオロボレート[910251-11-5](1.80g、11.8mmol)、及びCsCO(3.85g、11.8mmol)の、1,4-ジオキサン(10mL)及び水(1.4mL)中溶液を、窒素でパージした。RuPhos(184mg、0.394mmol)及びRuPhos Pd G3(330mg、0.394mmol)を添加した。反応混合物を窒素で再度パージし、100℃で17時間撹拌した。反応混合物を真空中で濃縮し、分取LC(不定形SiOH 15~40μm、40g、液体注入(DCM)、移動相:ヘプタン/EtOAc 勾配75:25~0:100)により精製した。残渣を逆相(固定相:YMC-actus Triart C18 10μm 30×150mm、移動相:(aq.NHHCO 0.2%)/MeCN、勾配70:30~30:70)により精製して、中間体O2(212mg、20%)を白色固体として得た。
中間体O3の調製
中間体O2(130mg、0.494mmol)及びLiOH(14mg、0.585mmol)のTHF(2.3mL)及び水(2.3mL)中混合物を、室温で36時間撹拌した。反応混合物を真空中で蒸発させて、168mgの中間体O3を明黄色のガムとして得た。粗生成物をそのまま次の工程で使用した。
化合物33の調製
中間体O3(168mg、0.529mmol)及びDIPEA(0.275mL、1.59mmol)のDMF(5mL)中混合物に、HOBt●HO(83.0mg、0.542mmol)、EDCI●HCl(102mg、0.533mmol)、及び中間体E9(223mg、0.536mmol)を連続的に添加した。反応混合物を室温で20時間撹拌した。DCM及び水を添加した。層を分離し、有機層をNaHCO(sat.、aq.)及びブライン(3回)で洗浄し、MgSO上で乾燥させ、濾過し、蒸発させた。粗混合物を分取LC(不定形SiOH、15~40μm、24g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/(EtOAc/MeOH、9/1)、勾配90:10~0:100)により精製した。残渣(175mg)を逆相(固定相:YMC-actus Triart C18 10μm 30×150mm、40g、乾燥充填材(Celite(登録商標))、移動相:(aq.NHHCO 0.2%)/MeCN、勾配90:10~30:70)により精製した。MeCNを蒸発させ、生成物をDCMで抽出した(2回)。有機層をMgSO上で乾燥させ、濾過し、真空中で蒸発させて、154mgの白色固体を得た。生成物を逆相(固定相:YMC-actus Triart C18 10μm 30×150mm、40g、乾燥充填材(Celite(登録商標))、移動相:(aq.NHHCO 0.2%)/MeCN、勾配60:40~45:55)により精製した。MeCNを蒸発させ、生成物をDCMで抽出した(2回)。有機層をMgSO上で乾燥させ、濾過し、真空中で蒸発させた。生成物をMeCN及びEtOAc中でトリチュレートし、濾過し、高真空下50℃で16時間乾燥させて、化合物33(119mg、42%)を白色固体として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.27(d,J=2.3Hz,1H)8.60(d,J=2.4Hz,1H)8.50(t,J=6.0Hz,1H)7.27-7.34(m,3H)7.19(d,J=8.7Hz,2H)4.53(s,2H)4.47(d,J=5.9Hz,2H)4.03-4.12(m,2H)3.79-3.86(m,2H)3.34(s,3H)3.00(q,J=7.5Hz,2H)1.27(t,J=7.5Hz,3H).
化合物34の合成
Figure 2022548247000049

5-メトキシ-2-メチルピラゾロ[1,5-a]ピリジン-3-カルボン酸[1352395-28-8](80mg、0.39mmol)、中間体N3(151mg、0.39mmol)、及びDIPEA(201μL、1.17mmol)のDMF(5mL)中混合物に、EDCI●HCl(74mg、0.39mmol)及びHOBt●HO(59mg、0.39mmol)を添加した。反応混合物を室温で18時間撹拌し、真空中で濃縮した。残渣をEtOAc及び水中に希釈した。層を分離し、水相をEtOAcで抽出した。合わせた有機層をMgSO上で乾燥させ、濾過し、濃縮した。残渣(229mg)を逆相(固定相:YMC-actus Triart C18(30×150mm)、移動相:(aq.NHHCO 0.2%)/MeCN、勾配50:50~25:75)により精製して、118mgの化合物34を得た。
H NMR(400MHz,DMSO-d)δ ppm 8.49(d,J=7.5Hz,1H)7.85(t,J=5.9Hz,1H)7.22-7.29(m,3H)7.14(d,J=8.7Hz,2H)6.62(dd,J=7.5,2.8Hz,1H)4.41(d,J=6.0Hz,2H)4.07-4.12(m,2H)3.84(d,J=2.3Hz,6H)3.69-3.75(m,2H)2.52(s,3H).
化合物35の合成
Figure 2022548247000050
中間体P1の調製
丸底フラスコ内で、3,4,5-トリフルオロベンゾニトリル[134227-45-5](5g、31.8mmol)、N-boc-1,2-ジアミノエタン[57260-73-8](5.2mL、32.8mmol)、及びEtN(17.7mL、127mmol)の無水DMSO(57mL)中溶液を、120℃で16時間撹拌した。反応混合物を室温まで冷却し、DMSOをGenevacで蒸発させた。EtOAc、水、及びNaClを添加した。層を分離し、有機層をブラインで洗浄し(3回)、MgSO上で乾燥させ、濾過し、真空内で蒸発させた。粗製混合物をEtOAc中に溶解させ、SiOHを添加した。乾燥充填材を蒸発させ、ヘプタン(100mL)で洗浄した。生成物をヘプタン/EtOAc(1:1、3×100mL)で溶離した。濾液を蒸発させて、9.30gの中間体P1を静置時に結晶化する無色の油として得た(98%)。
中間体P2の調製
中間体E2について報告した合成に従って中間体P1(31.3mmol)から出発して中間体P2を調製し、9.3gを静置時に結晶化する明青色のガム(99%)として得た。
中間体P3の調製
中間体E3について報告した合成に従って中間体P2(6.64mmol)から出発して中間体P3を調製し、1.63gを静置時に結晶化する無色の油(56%)として得た。
中間体P4の調製
中間体E4について報告した合成に従って中間体P3(3.74mmol)から出発して中間体P4を調製し、1.91gを黄色の油(91%)として得た。
中間体P5の調製
中間体E5について報告した合成に従って中間体P4(3.74mmol)から出発して中間体P5を調製し、1.69gを静置時に結晶化する黄色の油(100%)として得た。
中間体P6の調製
中間体P5(1.69g、3.75mmol)の無水DCM(35mL)中溶液を、TFA(3.5mL、45.7mmol)で処理し、反応混合物を室温で18時間撹拌した。反応混合物を真空中で蒸発させて、3.42gの中間体P6をオレンジ色のガムとして得た。
中間体P7の調製
オルトギ酸トリメチル(1.24mL、11.3mmol)を、中間体P6(3.42g、3.78mmol)のHFIP(35mL)中溶液に添加し、混合物を60℃で2時間撹拌した。反応混合物を室温まで冷却し、EtOAcで希釈し、NaHCO(sat.、aq.)で塩基性化した。層を分離し、水層をEtOAcで抽出した(1回)。合わせた有機層をMgSO上で乾燥させ、濾過し、溶媒を減圧下で除去して2.0gの中間体P7を黄色のガムとして得た。
中間体P8の調製
トリエチルアミン(1mL、7.19mmol)を、中間体P7(1.5g、2.83mmol)のDCM(28mL)中の溶液に添加した。次いで、溶液を0℃(氷/水浴)まで冷却し、TfO(DCM中1M、3.4mL、3.4mmol)を5分かけて滴加した。反応混合物を0℃で30分間撹拌した。混合物を室温までゆっくりと温め、2時間撹拌した。DCM、水、及びNaHCO(10%、aq.)を添加した。層を分離し、水層をDCMで抽出した。合わせた有機層をMgSO4上で乾燥させ、濾過し、蒸発させた。残渣(1.61g)を分取LC(不定形SiOH、30μm、80g、液体注入(DCM)、移動相:ヘプタン/EtOAc、勾配95:5~50:550)により精製して、317mgの中間体P8をオレンジ色のガム(23%全3工程)として得た。
中間体P9の調製
スチールボンベ(steal bomb)内で、中間体P8(317mg、0.644mmol)、炭素上水酸化パラジウム、Pd 20%、名目上50%の水(120mg、0.171mmol)、及びHCl(1M、aq.、0.64mL、0.64mmol)のEtOAc(3.2mL)及びMeOH(3.2mL)中混合物を、5barのH下、室温で4時間水素添加した。混合物を濾過した。追加量の炭素上水酸化パラジウム、Pd 20%、名目上50%の水(60mg、0.085mmol)及びHCl(1M、aq.、0.64mL、0.64mmol)を添加した。混合物を5barのH下、室温で1.5時間水素添加した。反応混合物を濾過し、濾液を真空中で蒸発させて、269mgの中間体P9をオレンジ色のガムとして得た。粗生成物をそのまま次の工程で使用した。
化合物35の調製
6-クロロ-2-エチルイミダゾ[1,2-a]ピリジン-3-カルボン酸[1216142-18-5](80mg、0.356mmol)及びDIPEA(0.245mL、1.42mmol)のDMF(3.5mL)中混合物に、EDCI●HCl(72mg、0.376mmol)、HOBt●HO(60mg、0.392mmol)、及び中間体P9(270mg、0.356mmol)を連続的に添加した。反応混合物を室温で20時間撹拌した。粗生成物をDCM中に溶解させ、NaHCO(sat.、aq.)を添加した。層を分離し、有機層をブラインで洗浄し(2回)、MgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣(409mg)を分取LC(定形SiOH 30μm、24g、移動相:ヘプタン/(EtOAc/MeOH、9/1)、勾配80:20~20:80)により精製した。2回目の精製を、逆相(固定相:YMC-actus Triart C18 25μm 30×150mm、40g、乾燥充填材(Celite(登録商標))、移動相:(aq.NHHCO 0.2%)/MeCN、勾配65:35~25:75)により実施した。所望の画分を合わせ、MeCNを蒸発させた。生成物をDCMで抽出し(3回)、有機層をMgSO上で乾燥させ、濾過し、蒸発させて無色のガム(81mg)を得た。生成物をペンタン及びEtO(1/1)中でトリチュレートして、蒸発させて、高真空下で50℃にて5時間乾燥させて、66mgの化合物35を明黄色の固体(24%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.11(m,1H)8.45-8.53(m,1H)7.69(d,J=9.4Hz,1H)7.48(dd,J=9.7,1.8Hz,1H)7.29(s,1H)7.18(d,J=9.5Hz,2H)4.54(d,J=5.6Hz,2H)4.05-4.13(m,2H)3.61-3.70(m,2H)3.03(q,J=7.4Hz,2H)1.23-1.35(t,J=7.4Hz,3H).
化合物36の合成
Figure 2022548247000051
中間体Q1の調製
四臭化炭素(16g;43.4mmol)を、2-アミノ-5-メトキシピリジン[10167-97-2](3g、24.2mmol)及び3-オキソ吉草酸エチル[4949-44-4](5.2mL、36.6mmol)のMeCN(50mL)中混合物に添加した。反応混合物を80℃で2時間加熱した。反応混合物を室温まで冷却し、濃縮乾固した。残渣(20g)を分取LC(定形SiOH 30μm、330g、乾燥充填材(SiOH)、移動相:ヘプタン/EtOAc、勾配80:20~0:100)により精製して、1.89gの中間体Q1を緑色を帯びた固体(32%)として得た。
中間体Q2の調製
中間体Q1(1.89g、7.61mmol)の水(20mL)及びEtOH(25mL)中溶液に、NaOH(913mg、22.8mmol)を添加した。反応混合物を室温で16時間撹拌した。更なる量のNaOH(304mg、7.61mmol)を添加し、反応混合物を3時間撹拌した。EtOHを濃縮した。混合物をHCl(1N)でpH2~3に酸性化した。白色の沈殿物を濾過し、水で洗浄して、高真空下で乾燥させて、750mgの中間体Q2を白色固体(45%)として得た。
化合物36の調製
中間体Q2(150mg、0.681mmol)及びDIPEA(0.48mL、2.79mmol)のDMF(7mL)中混合物に、EDCI●HCl(174mg、0.908mmol)、HOBt●HO(144mg、0.94mmol)、及び中間体N3(265mg、0.681mmol)を連続的に添加した。反応混合物を室温で16時間撹拌し、蒸発させた。残渣をDCM中に溶解させ、NaHCO(sat.、aq.)を添加した。層を分離し、有機層を水及びブライン(2回)で洗浄し、MgSO上で乾燥させ、濾過し、蒸発させた。粗混合物を分取LC(定形SiOH 30μm、24g、液体注入(DCM)、移動相:ヘプタン/(EtOAc/MeOH、9/1)、勾配80:20~20:80)により精製した。生成物を含有する画分を合わせ、蒸発させて、白色固体(304mg)を得た。生成物をMeCNから再結晶化し、濾過し、高真空下で50℃にて3時間乾燥させて、200mgの化合物36を白色固体(53%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 8.65(d,J=2.2Hz,1H)8.23-8.32(m ,1H)7.53(d,J=9.5Hz,1H)7.29(d,J=8.7Hz,2H)7.13-7.21(m,3H)4.46(d,J=5.9Hz,2H)4.06-4.17(m,2H)3.85(s,3H)3.72-3.82(m,5H)2.95(q,J=7.5Hz,2H)1.24(t,J=7.5Hz,3H).
化合物37の合成
Figure 2022548247000052
中間体R1の調製
中間体E3について報告した合成に従って中間体D2(7.06mmol)から出発して中間体R1を調製し、2.53gをオフホワイト色の固体(86%)として得た。
中間体R2の調製
中間体E4について報告した合成に従って中間体R1(6.06mmol)から出発して中間体R2を調製し、次の工程で精製することなくそのまま使用される3.2gの黄色の油を得た。
中間体R3の調製
中間体E5について報告した合成に従って中間体R2(6.06mmol 理論上)から出発して中間体R3を調製し、2.22gを黄色の油(87%全2工程)として得た。
中間体R4の調製
中間体R3(2.22g、5.13mmol)のMeOH(52mL)中溶液に、TMSCl(5.2mL、41mmol)を滴加した。反応混合物を室温で20時間撹拌し、真空中で濃縮した。EtOを残渣に添加し、ガムをトリチュレートした。溶媒を減圧下で除去して、2.06gの中間体R4を淡緑色の固体(99%)として得た。
中間体R5の調製
中間体R4(1.00g、2.47mmol)の酢酸(25mL)中溶液を、テトラメトキシメタン(0.82mL、6.17mmol)で処理し、室温で1時間撹拌した。更なる量のテトラメトキシメタン(0.82mL、6.17mmol)を添加し、混合物を室温で30分間撹拌した。反応混合物をDCM及び水中に注いだ。混合物をKCO粉末で塩基性化し、層を分離した。水層をDCM(1回)で抽出し、合わせた有機層をMgSO上で乾燥させ、濾過し、真空中で蒸発させた。残渣(685mg)を分取LC(不定形SiOH 40μm、24g、液体注入(DCM)、移動相:DCM/MeOH、勾配100:0~85:15)により精製して、445mgの中間体R5を無色の油(48%)として得た。
中間体R6の調製
中間体P8について報告した合成に従って中間体R5(1.19mmol)から出発して中間体R6を調製し、0.45gを無色の油(72%)として得た。
中間体R7の調製
中間体P9について報告した合成に従って中間体R6(0.61mmol)から出発して中間体R7を調製し、0.24gを無色の油(96%)として得た。
化合物37の調製
6-クロロ-2-エチルイミダゾ[1,2-a]ピリジン-3-カルボン酸[1216142-18-5](87.3mg、0.388mmol)、中間体R7(158mg、0.388mmol)、及びDIPEA(0.335mL、1.94mmol)のDMF(5.3mL)中混合物に、EDCI●HCl(74.5mg、0.388mmol)及びHOBt●HO(59.5mg、0.388mmol)を連続的に添加した。反応混合物を室温で16時間撹拌し、真空中で蒸発させた。粗混合物を分取LC(不定形SiOH、15~40μm、12g 乾燥充填材(Celite(登録商標))、移動相:ヘプタン/EtOAc 勾配80:20~30:70)により精製した。所望の画分を合わせ、真空下で蒸発させた。生成物(163mg)をEtO中で音波処理し、濾過して、118mgの化合物37を白色固体(53%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.09(d,J=1.6Hz,1H)8.47(t,J=5.9Hz,1H)7.68(d,J=9.5Hz,1H)7.42-7.50(m,2H)7.16-7.25(m,2H)4.49(d,J=5.9Hz,2H)4.07-4.15(m,2H)3.83(s,3H)3.53-3.61(m,2H)3.00(q,J=7.5Hz,2H)1.27(t,J=7.5Hz,3H).
化合物38の合成
Figure 2022548247000053
中間体S1の調製
室温のDMF(103μL、1.33mmol)のDCE(6.5mL)中溶液に、POCl(123μL、1.33mmol)を添加し、混合物を室温で30分間撹拌した。次いで、混合物を0℃まで冷却し、DCE(6.5mL)中の中間体E7(430mg、1.33mmol)を滴加し、混合物を0℃で2時間撹拌した。水及びDCMを添加した。水層をNaHCO(S)でpH8までゆっくりと塩基性化した。層を分離し、水層をDCMで抽出した。合わせた有機層をブラインで洗浄し、MgSO上で乾燥させ、濾別して、蒸発させて、421mgの中間体S1を黄色固体として得た。粗製をそのまま次の工程で使用した。
中間体S2の調製
スチール容器(steal vessel)内で、中間体S1(421mg、1.20mmol)、水酸化パラジウム(100mg、0.14mmol)、及びHO中1MのHCl(1.2mL、1.2mmol)の、MeOH(10.5mL)及びEtOAc(10.5mL)中混合物を、室温にて、5barのH下、3時間水素添加した。混合物をcelite(登録商標)パッド上で濾過して、413mgの中間体S2を黄色の固体として得た。粗製をそのまま次の工程で使用した。
化合物38の調製
6-クロロ-2-エチルイミダゾ[1,2-a]ピリジン-3-カルボン酸(CAS[1216142-18-5]、240mg、1.07mmol)及びジイソプロピルエチルアミン(0.75mL、4.35mmol)のDCM(11mL)中溶液に、EDCI●HCl(210mg、1.10mmol)及びHOBt●HO(170mg、1.11mmol)、次いで中間体S2(410mg、1.13mmol)を添加し、混合物を室温で16時間撹拌した。DCM及び水を添加した。層を分離し、有機層をNaHCOの飽和水溶液及びブラインで洗浄した。有機層をMgSO4上で乾燥させて、濾過して、蒸発させた。粗製を逆相(固定相:YMC-actus Triart C18 10μm 30×150mm、40g、乾燥充填材(Celite(登録商標)上)、移動相:勾配80%(aq.NHHCO 0.2%)、20%MeCN~40%(aq.NHHCO 0.2%)、60%MeCN)により精製した。MeCNを蒸発させ、生成物をDCM/MeOH(9:1)で抽出した(3回)。有機層をMgSO上で乾燥させ、濾過し、蒸発させて、176mgの明黄色の固体を得た。これを逆相(固定相:YMC-actus Triart C18 10μm 30×150mm、40g、乾燥充填材(Celite(登録商標)上)、移動相:勾配60%(aq.NHHCO 0.2%)、40%MeCN~45%(aq.NHHCO 0.2%)、55%MeCN 全16CV)により精製した。全ての画分を合わせ、139mgを黄色固体として得た。これを逆相(固定相:YMC-actus Triart C18 10μm 30×150mm、液体充填材(DMSO)、移動相:勾配70%(aq.NHHCO 0.2%)、30%ACN~50%(aq.NHHCO 0.2%)、50%ACN)により精製して、39mgを白色固体として得た。これをDCM/MeOH中に溶解させ、次いで前の画分と合わせ、高真空下(50℃、2時間)で蒸発及び乾燥させて68mgのオフホワイト色の固体を得た。これをMeOH中で共蒸発させ(5回)、次いで高真空下(50℃、6時間)で乾燥させ、65mgの化合物38をオフホワイト色の固体(12%)として得た。
多数の回転異性体(84%) H NMR(500MHz,DMSO-d6,350K)δ ppm 9.07(s,1H),8.57(s,1H),8.15(br t,J=5.2Hz,1H),7.61(d,J=9.5Hz,1H),7.53(s,1H),7.39(dd,J=9.6,2.0Hz,1H),7.28(d,J=8.5Hz,2H),7.19(d,J=8.5Hz,2H),4.47(d,J=6.0Hz,2H),3.78(br t,J=4.7Hz,2H)3.64(br t,J=4.8Hz,2H),2.97(q,J=7.6Hz,2H),1.26(t,J=7.6Hz,3H).少数の回転異性体(16%)H NMR(500MHz,DMSO-d6,350K)δ ppm 9.07(s,1H),8.57(s,1H),8.15(br t,J=5.2Hz,1H),7.61(d,J=9.5Hz,1H),7.53(s,1H),7.39(dd,J=9.6,2.0Hz,1H),7.28(d,J=8.5Hz,2H),7.19(d,J=8.5Hz,2H),4.47(d,J=6.0Hz,2H),3.90(m,2H)3.73(m,2H),2.97(q,J=7.6Hz,2H),1.26(t,J=7.6Hz,3H).
化合物39の合成
Figure 2022548247000054
中間体T1の調製
5℃にてN下の3-クロロ-4-メトキシピリジン-2-アミン(CAS[1232431-05-8]、0.2g、1.26mmol)の2-MeTHF(6mL)中溶液に、3-オキソ吉草酸エチル(CAS[4949-44-4]、0.18mL、1.26mmol)及びヨードベンゼンジアセテート((ジアセトキシヨード)ベンゼン)(0.406g、1.26mmol.)を添加し、次いで三フッ化ホウ素エーテレート(16.5μL、0.063mmol)を滴加した。溶液を5℃で30分間撹拌し、次いで室温まで温め、2時間撹拌した。追加量の3-オキソ吉草酸エチル(0.09mL、0.63mmol)、ヨードベンゼンジアセテート(0.203g、0.63mmol)、及び三フッ化ホウ素エーテレート(16.5μL、0.063mmol)を添加し、混合物をNでパージし、rtで1時間撹拌した。EtOAc及び水を添加した。層を分離し、有機層をMgSO上で乾燥させ、濾別し、濃縮した。粗製を分取LC(定形SiOH、30μm、24g 液体充填材(DCM)、移動相:ヘプタン95%、EtOAc5% 3CVで均一濃度、次いで、12CVでヘプタン60%、EtOAc40%へ勾配)により精製して、295mgの中間体T1を白色固体(83%)として得た。
中間体T2の調製
中間体T1(270mg、0.96mmol)の水(4.8mL)及びEtOH(4.8mL)中溶液に、NaOH(115mg、2.88mmol)を添加し、混合物を室温で4日間撹拌した。混合物を蒸発させて、371mgの中間体T2を明黄色の固体(純度71%)として得た。粗製をそのまま次の工程で使用した。
化合物39の調製
中間体T2(371mg、0.952mmol)及びジイソプロピルエチルアミン(0.50mL、2.90mmol)のDMF(9.5mL)中溶液に、HOBt●HO(160mg、1.05mmol)及びEDCI●HCl(195mg、1.02mmol)、次いで中間体E9(400mg、0.959mmol)を添加した。混合物をrtで20時間撹拌した。混合物を蒸発させて、次いでDCM中に溶解させ、NaHCOの飽和水溶液を添加した。有機層を分離し、ブラインで洗浄し、MgSO上で乾燥させ、濾過し、蒸発させてオレンジ色のガムを得た。粗製を分取LC(不定形SiOH、15~40μm、50g、液体充填材(DCM中)、移動相勾配:ヘプタン75%、EtOAc/MeOH(9:1)25%~ヘプタン25%、EtOAc/MeOH(9:1)75% 全12CV)により精製した。透明な画分を合わせ、蒸発させて、312mgを明黄色の固体として得た。これを逆相(固定相:YMC-actus Triart C18 10μm 30×150mm、40g、乾燥充填材(Celite(登録商標)上)、移動相:勾配55%(aq.NHHCO 0.2%)、45%MeCN~5%(aq.NHHCO 0.2%)、95%MeCN 全12CV)により精製して、286mgをオフホワイト色の固体として得た。これをMeCN中で音波処理し(懸濁)、次いで濾別した。固体を高真空(50℃、6時間)下で乾燥させて、230mgの化合物39を白色固体(43%)として得た。
H NMR(400MHz,DMSO-d6)δ ppm 8.94(d,J=7.7Hz,1H),8.35(t,J=5.9Hz,1H),7.26-7.35(m,3H),7.12-7.23(m,3H),4.45(br d,J=5.9Hz,2H),4.07(br d,J=4.4Hz,2H),3.99(s,3H),3.82(t,J=4.6Hz,2H),2.95(q,J=7.6Hz,2H),1.24(t,J=7.5Hz,3H).
化合物40及び化合物41の合成
Figure 2022548247000055
中間体U1の調製
中間体E6(1.00g、2.58mmol)、エチル-3-エトキシ-3-イミノプロパノエートヒドロクロリド(CAS[2318-25-4]、2.17g、7.75mmol)、及びトリエチルアミン(1.08mL、7.75mmol)のNMP(14mL)中混合物を、密閉チューブ内で150℃で18時間撹拌した。反応混合物をEtOAc及び水で希釈した。水相をEtOAcで抽出した(×3)。合わせた有機相をNaCl sat.で洗浄し、MgSO上で乾燥させ、濃縮して、1.85gを褐色の油として得た。これをEtOAc中に希釈し、NaClの希釈溶液で洗浄した。有機層をMgSO上で乾燥させ、濃縮して、1.03gの中間体U1を得た。粗生成物を理論量に基づいてそのまま次の工程に使用した。
中間体U2の調製
-78℃で、中間体U1(900mg、2.19mmol)及びトリエチルアミン(914μL、6.58mmol)の乾燥DCM(45mL)中溶液に、DCM中1MのTfO(3.1mL、3.1mmol)を滴加し、反応混合物を15分間撹拌した。反応混合物をDCM及び水で希釈した。有機相をMgSO上で乾燥させ、濾別し、蒸発させて、1.0gを得た。残渣を分取LC(不定形SiOH 15~40μm、40g、液体充填材(DCM)、移動相勾配:ヘプタン中(EtOAc/MeOH(90:10))0~50% 全5CV 次いで5CVで均一濃度)により精製して、456mgの中間体U2をオレンジ色-褐色の油(38%)として得た。
中間体U3の調製
水素化ホウ素リチウム(276μL;0.553mmol)を、中間体U2(150mg;0.276mmol)のTHF(5mL)中溶液に添加し、溶液を室温で15時間撹拌した。更に、水素化ホウ素リチウム(276μL、0.553mmol)を添加し、反応混合物を6時間撹拌した。反応混合物をEtOAc及び水で希釈した。水層をもう一度EtOAcで抽出し、合わせた有機層をブラインで洗浄し(3回)、MgSO上で乾燥させて、濾過し、蒸発乾固させて、132mgの中間体U3(95%)を黄色残渣として得た。
中間体U4の調製
従って、中間体S2と同じ方法で中間体U3(0.132g、0.26mmol)から出発して中間体U4を調製し、0.11g(定量的)を得た。
化合物40の調製
6-クロロ-2-エチルイミダゾ[1,2-a]ピリジン-3-カルボン酸(CAS[1216142-18-5]、67mg、0.300mmol)、中間体U4(110mg、0.300mmol)、及びジイソプロピルエチルアミン(155μL、0.901mmol)のDMF(4mL)中溶液に、EDCI●HCl(58mg、0.30mmol)及びHOBt●HO(46mg、0.30mmol)を添加し、反応混合物を室温で18時間撹拌した。反応混合物を濃縮した。残渣をEtOAc及び水に溶解させた。有機層をNaCl satで洗浄し、MgSO上で乾燥させ、濾別し、濃縮し、143mgを得た。粗製を分取LC(不定形SiOH 15~40μm、80g、液体充填材(DCM)、移動相勾配:ヘプタン中(EtOAc/MeOH(90:10)) 0~50% 全5CV 次いで5CVで均一濃度)により精製して、100mgを白色固体として得た。これを逆相(球形 C18、25μm、40g YMC-ODS-25、乾燥充填材(Celite(登録商標))、移動相勾配:55%(aq.NHHCO 0.2%)、45%MeCN~75%(aq.NHHCO 0.2%)MeCN)により精製して、19mg及び59mgの残渣を得て、これをEtOH及びMeCNと共蒸発させて、80mgの化合物40を黄色がかった固体(合わせた収率:57%)として得た。
H NMR(500MHz,DMSO-d6)δ ppm 9.03-9.13(m,1H)8.41(br t,J=6.0Hz,1H)7.66(d,J=9.5Hz,1H)7.45(dd,J=9.5,1.9Hz,1H)7.32(d,J=8.5Hz,2H)7.16(d,J=8.5Hz,2H)4.66(t,J=5.7Hz,1H)4.47(d,J=6.0Hz,2H)3.96(br t,J=5.0Hz,2H)3.84(t,J=4.9Hz,2H)3.73(q,J=6.6Hz,2H)2.98(q,J=7.6Hz,2H)2.74(t,J=6.9Hz,2H)1.26(t,J=7.6Hz,3H)
化合物41の調製
従って、化合物40と同じ方法で6-クロロ-2-エチル-イミダゾ[1,2-a]-ピリミジン-3-カルボン酸(CAS[2059140-68-8]、0.32mmol)及び中間体U4(0.32mmol)から出発して化合物41を調製し、0.067g(37%)を明緑色の固体として得た。
H NMR(500MHz,DMSO-d6)δ ppm 9.39(d,J=2.5Hz,1H)8.68(d,J=2.5Hz,1H)8.55(t,J=5.8Hz,1H)7.31(m,J=8.5Hz,2H)7.15(m,J=8.5Hz,2H)4.70(t,J=5.7Hz,1H)4.47(d,J=6.0Hz,2H)3.95(br t,J=4.9Hz,2H)3.79-3.88(m,2H)3.72(q,J=6.6Hz,2H)3.01(q,J=7.4Hz,2H)2.73(t,J=6.8Hz,2H)1.27(t,J=7.6Hz,3H)
化合物42の合成
Figure 2022548247000056

中間体Q2(125mg、0.568mmol)のジイソプロピルエチルアミン(0.4mL、2.32mmol)及びDMF(6mL)中溶液に、EDCI●HCl(145mg、0.756mmol)、HOBt●HO(120mg、0.784mmol)、次いで中間体E9(205mg、0.571mmol)を添加した。混合物を室温で16時間撹拌した。反応混合物を蒸発させて、DCM及びNaHCOの飽和水溶液中に溶解させた。層を分離し、有機層を水、ブライン(2回)で洗浄し、MgSO上で乾燥させ、濾過し、蒸発させた。粗製を分取LC(定形SiOH、30μm、24g、液体充填材(DCM)、移動相勾配:ヘプタン80%、EtOAc/MeOH(9:1)20%~ヘプタン20%、EtOAc/MeOH(9:1)80% 全12CV)により精製して、166mgの白色固体を得た。これをMeCNから再結晶化し、次いで濾別し、高真空下で乾燥させて、107mgの化合物42を白色固体(36%)として得た。
H NMR(400MHz,DMSO-d6)δ ppm 8.64(d,J=2.2Hz,1H),8.30(t,J=5.8Hz,1H),7.53(d,J=9.5Hz,1H),7.27-7.36(m,3H),7.14-7.22(m,3H),4.47(d,J=5.9Hz,2H),4.08(br t,J=4.5Hz,2H),3.83(br t,J=4.5Hz,2H)3.76(s,3H),2.95(q,J=7.5Hz,2H),1.24(t,J=7.5Hz,3H).
化合物43の合成
Figure 2022548247000057
中間体V1の調製
密閉チューブ内で、イミダゾ[1,2-a]-ピリジン-3-カルボン酸、6-ブロモ-2-エチル-エーテルエステル(CAS[1908481-13-9]、400mg、1.35mmol)、カリウム(メトキシメチル)トリフルオロボレート(614mg、4.04mmol)、及び炭酸セシウム(1.32g、4.04mmol)の、1,4-ジオキサン(3.44mL)及び水(0.49mL)中懸濁液を、Nでパージした。RuPhos(62.8mg、0.135mmol)及びRuPhos Pd G3(113mg、0.135mmol)を添加し、混合物を再びNでパージし、次いで100℃で一晩撹拌した。混合物を濾別し、次いで濾液を蒸発させた。粗製を分取LC(定形SiOH、30μm、50g、乾燥充填材(Celite(登録商標)上)、移動相勾配:ヘプタン90%、EtOAc/MeOH(9:1)10%~ヘプタン50%、EtOAc/MeOH(9:1)50% 全12CV)により精製して、317mgの中間体V1を静置時に結晶化する無色のガムとして得た(66%)。
中間体V2の調製
中間体V1(317mg、0.894mmol)の水(4mL)及びEtOH(4mL)中溶液に、NaOH(107mg、2.68mmol)を添加し、混合物を室温で24時間撹拌した。混合物を蒸発させて、518mgの中間体V2を黄色のガムとして得た。粗製をそのまま次の工程で使用した。
化合物43の調製
従って、化合物42と同じ方法で中間体V2(0.9mmol)及び中間体E9(0.84mmol)から出発して化合物43を調製し、0.113g(22%)を白色固体として得た。
H NMR(500MHz,DMSO-d6)δ ppm 8.93(s,1H),8.38(t,J=6.0Hz,1H),7.58(d,J=9.1Hz,1H),7.26-7.36(m,4H),7.19(d,J=8.5Hz,2H),4.43-4.51(m,4H),4.08(br t,J=4.6Hz,2H),3.83(t,J=4.7Hz,2H),3.30(s,3H),2.96(q,J=7.4Hz,2H),1.25(t,J=7.6Hz,3H).
化合物44の合成
Figure 2022548247000058

従って、化合物42と同じ方法で5-メトキシ-2-メチルピラゾロ[1,5-a]-ピリジン-3-カルボン酸(CAS[1352395-28-8]、0.37mmol)及び中間体N3(0.37mmol)から出発して化合物44を調製し、0.19g(42%)を白色固体として得た。
H NMR(500MHz,DMSO-d)δ ppm 8.51(d,J=7.6Hz,1H)7.91(t,J=6.0Hz,1H)7.43(t,J=8.7Hz,1H)7.26(d,J=2.8Hz,1H)7.12-7.23(m,2H)6.64(dd,J=7.6,2.8Hz,1H)4.44(d,J=5.7Hz,2H)4.07-4.15(m,2H)3.86(s,3H)3.82(s,3H)3.53-3.60(m,2H)2.53(s,3H)
化合物45の合成
Figure 2022548247000059
中間体W1の調製
4-クロロ-5-メトキシピリジン-2-アミン(CAS[867131-26-8]、500mg、3.15mmol)の乾燥アセトニトリル(7.5mL)中溶液に、3-オキソ吉草酸エチル(0.90mL、6.3mmol)、ブロモトリクロロメタン(1.1mL、11mmol)、及び重炭酸カリウム(947mg、9.46mmol)を添加した。混合物を80℃で16時間撹拌した。反応混合物をEtOAc及び水中に希釈した。次いで有機層をブラインで洗浄し、MgSO上で乾燥させ、濾別し、蒸発させた。残渣を分取LC(不定形SiOH、15~40μm、40g 乾燥充填材(celite登録商標))、移動相勾配:ヘプタン/EtOAc 95/5~ヘプタン/EtOAc 40/60 15CVで)により精製して、458mgの中間体W1を黄色固体(51%収率)として得た。
中間体W2の調製
中間体W1(456mg、1.61mmol)及びNaOH(194mg、4.86mmol)の、水(8.1mL)、EtOH(8.1mL)、及びMeOH(9.8mL)中混合物を、室温で16時間撹拌した。反応混合物を蒸発させた。残渣をMeOHと溶解させ、HClの3N水溶液で酸性化した。溶液を蒸発させて、726mgの黄色固体を得た。DCM及びMeOHを黄色固体に添加した。次いで、混合物を濾別し、濾液を蒸発させて、443mgの中間体W2をベージュ色の固体(93%純度、定量的)として得た。
化合物45の調製
従って、化合物42と同じ方法で中間体W2(0.46mmol)及び中間体N3(0.46mmol)から出発して化合物45を調製し、0.19g(69%)をベージュ色の固体として得た。
H NMR(400MHz,DMSO-d)δ ppm 8.77(s,1H)8.32(t,J=5.8Hz,1H)7.86(s,1H)7.29(d,J=8.6Hz,2H)7.15(d,J=8.7Hz,2H)4.46(br d,J=5.7Hz,2H)4.10(br t,J=4.8Hz,2H)3.87(s,3H)3.85(s,3H)3.74(br t,J=4.8Hz,2H)2.95(q,J=7.5Hz,2H)1.24(t,J=7.5Hz,3H)
化合物46の合成
Figure 2022548247000060
中間体X1の調製
従って、中間体T1と同じ方法で5-クロロ-4-メトキシピリジン-2-アミン CAS[662117-63-7](6.31mmol)から出発して中間体X1を調製し、1.23g(69%)を明黄色の固体として得た。
中間体X2の調製
従って、中間体V2と同じ方法で中間体X1(4.35mmol)から出発して中間体X2を調製し、0.83g(75%)を明黄色の固体として得た。
化合物46の調製
従って、化合物化合物42と同じ方法で中間体X2(0.45mmol)及び中間体R7(0.43mmol)から出発して化合物46を調製し、0.14g(48%)を白色固体として得た。
H NMR(500MHz,DMSO-d6)δ ppm 9.11(s,1H),8.27(br t,J=5.8Hz,1H),7.44(t,J=8.5Hz,1H),7.16-7.25(m,3H),4.47(br d,J=5.7Hz,2H),4.08-4.13(m,2H),3.95(s,3H),3.83(s,3H),3.54-3.59(m,2H),2.96(q,J=7.5Hz,2H),1.27(t,J=7.5Hz,3H)
化合物47の合成
Figure 2022548247000061

従って、化合物42と同じ方法で中間体6-クロロ-2-エチル-イミダゾ[1,2-a]-ピリミジン-3-カルボン酸CAS[2059140-68-8](0.38mmol)及び中間体P9(0.31mmol)から出発して化合物47を調製し、0.027g(15%)をふわふわした白色固体として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.35(d,J=2.7Hz,1H),8.63(d,J=2.7Hz,1H),8.52(t,J=5.9Hz,1H),7.21(s,1H),7.12(d,J=9.4Hz,2H),4.46(br d,J=5.7Hz,2H),4.01(br s,2H),3.57(br t,J=4.3Hz,2H),2.98(q,J=7.5Hz,2H),1.23(t,J=7.5Hz,3H)
化合物48の合成
Figure 2022548247000062

従って、化合物42と同じ方法で中間体Q2(0.52mmol)及び中間体R7(0.51mmol)から出発して化合物48を調製し、0.15g(52%)を白色固体として得た。
H NMR(500MHz,DMSO-d6)δ ppm 8.67(d,J=2.2Hz,1H),8.31(t,J=5.8Hz,1H),7.54(d,J=9.8Hz,1H),7.45(t,J=8.7Hz,1H),7.15-7.25(m,3H),4.49(d,J=5.7Hz,2H),4.07-4.14(m,2H),3.83(s,3H),3.78(s,3H),3.54-3.60(m,2H),2.98(q,J=7.6Hz,2H),1.26(t,J=7.6Hz,3H)
化合物49の合成
Figure 2022548247000063

従って、化合物42と同じ方法で中間体W2(0.44mmol)及び中間体R7(0.44mmol)から出発して化合物49を調製し、0.164g(62%)を白色固体として得た。
H NMR(500MHz,DMSO-d)δ ppm 8.80(s,1H)8.36(br t,J=5.8Hz,1H)7.87(s,1H)7.45(t,J=8.5Hz,1H)7.15-7.26(m,2H)4.50(br d,J=5.7Hz,2H)4.10(br t,J=5.0Hz,2H)3.87(s,3H)3.82(s,3H)3.56(br t,J=5.0Hz,2H)2.98(q,J=7.6Hz,2H)1.26(t,J=7.6Hz,3H)
化合物50の合成
Figure 2022548247000064
中間体Y1の調製
従って、中間体X1と同じ方法で2-アミノ-5-メトキシピリミジンCAS[13418-77-4](75.92mmol)から出発して中間体Y1を調製し、4.94g(26%)を黄色固体として得た。
中間体Y2の調製
中間体Y1(150mg、0.602mmol)のTHF(3mL)中溶液に、LiOH(75.8mg、1.81mmol)の水(1.5mL)中溶液を添加した。反応混合物を45℃で2時間撹拌した。混合物を蒸発させて、218mgの中間体Y2を黄色固体として得た。粗製をそのまま次の工程で使用した。
化合物50の調製
従って、化合物42と同じ方法で中間体Y2(0.6mmol)及び中間体R7(0.55mmol)から出発して化合物50を調製し、0.098g(31%)を白色固体として得た。
H NMR(400MHz,DMSO-d6)δ ppm 8.96(d,J=2.9Hz,1H),8.52(d,J=2.9Hz,1H),8.41(t,J=5.9Hz,1H),7.45(t,J=8.6Hz,1H),7.15-7.26(m,2H),4.50(d,J=5.7Hz,2H),4.08-4.14(m,2H),3.86(s,3H),3.83(s,3H),3.53-3.59(m,2H),3.02(q,J=7.5Hz,2H),1.28(t,J=7.5Hz,3H)
化合物51及び化合物52の合成
Figure 2022548247000065
化合物51の調製
従って、化合物42と同じ方法で2-エチル-7-メトキシイミダゾ[1,2-a]-ピリジン-3-カルボン酸(CAS[1536994-62-3]、0.46mmol)及び中間体E9(0.46mmol)から出発して化合物51を調製し、0.195g(72%)を白色固体として得た。
H NMR(400MHz,DMSO-d)δ ppm 8.83(d,J=7.6Hz,1H)8.19(t,J=5.9Hz,1H)7.25-7.34(m,3H)7.18(d,J=8.7Hz,2H)7.00(d,J=2.4Hz,1H)6.70(dd,J=7.6,2.6Hz,1H)4.44(d,J=5.9Hz,2H)4.07(br t,J=4.4Hz,2H)3.78-3.88(m,5H)2.92(q,J=7.5Hz,2H)1.24(t,J=7.5Hz,3H)
化合物52の調製
従って、化合物42と同じ方法で2-エチル-7-メトキシイミダゾ[1,2-a]-ピリジン-3-カルボン酸(CAS[1536994-62-3]、0.46mmol)及び中間体N3(0.46mmol)から出発して化合物52を調製し、0.178g(69%)を白色固体として得た。
H NMR(500MHz,DMSO-d)δ ppm 8.84(d,J=7.6Hz,1H)8.16(t,J=6.0Hz,1H)7.28(d,J=8.7Hz,2H)7.14(d,J=8.7Hz,2H)6.99(d,J=2.5Hz,1H)6.70(dd,J=7.7,2.7Hz,1H)4.43(d,J=5.7Hz,2H)4.10(br t,J=5.0Hz,2H)3.84(m,6H)3.73(br t,J=5.0Hz,2H)2.91(q,J=7.6Hz,2H)1.25(t,J=7.6Hz,3H)
化合物53の合成
Figure 2022548247000066
中間体Z1の調製
従って、中間体X1と同じ方法で4,5-ジメトキシ-ピリジン-2-イルアミンCAS[1000843-61-7](1.3mmol)から出発して中間体Z1を調製し、0.135g(37%)を明黄色固体として得た。
中間体Z2の調製
従って、中間体X2と同じ方法で中間体Z1(0.49mmol)から出発して中間体Z2を調製し、0.209g(63%)を明黄色固体として得た。
化合物53の調製
従って、化合物42と同じ方法で中間体Z2(0.48mmol)及び中間体R7(0.4mmol)から出発して化合物53を調製し、0.149g(39% 最後の2工程で)を白色固体として得た。
H NMR(400MHz,DMSO-d6)δ ppm 8.67(s,1H),8.11(t,J=5.8Hz,1H),7.44(t,J=8.6Hz,1H),7.15-7.23(m,2H),7.05(s,1H),4.47(d,J=5.7Hz,2H),4.07-4.14(m,2H),3.87(s,3H),3.83(s,3H),3.76(s,3H),3.53-3.59(m,2H),2.95(q,J=7.5Hz,2H),1.25(t,J=7.5Hz,3H)
化合物54の合成
Figure 2022548247000067

中間体C1(190mg、0.445mmol)、2-ブロモチアゾール(48.1μL、0.534mmol)、及びナトリウムtert-ブトキシド(214mg、2.23mmol)の乾燥1,4-ジオキサン(5mL)中混合物を、Nでパージした(3回)。キサントホス(51.5mg、89.0μmol)及びPd(OAc)(9.99mg、44.5μmol)を添加し、混合物をNでパージした(3回)。反応混合物を100℃で2時間撹拌した。反応混合物をEtOAc/MeOH(95/5)及び水で希釈した。水層をEtOAcで抽出した(2回)。合わせた有機層をブラインで洗浄し、MgSO上で乾燥させ、濾別し、蒸発させて、黄色の固体を得た。固体を分取LC(定形SiOH30μm、25g、乾燥充填材(celite(登録商標))、移動相勾配:DCM100%~DCM/(DCM:MeOH 80:20)90/10 15CVで)により精製した。生成物を含有する画分を合わせ、真空下で蒸発させて、淡黄色固体を得た。固体をEtO中でトリチュレートし、濾別し、EtOで洗浄し、次いで真空下で乾燥させて、153mgの化合物54を白色固体(67%収率)として得た。
H NMR(500MHz,DMSO-d)δ ppm 9.08(d,J=1.5Hz,1H)8.42(t,J=5.9Hz,1H)7.66(d,J=9.6Hz,1H)7.45(dd,J=9.5,2.1Hz,1H)7.40(d,J=3.7Hz,1H)7.27(d,J=8.7Hz,2H)7.22(d,J=8.7Hz,2H)7.17(d,J=3.7Hz,1H)4.46(d,J=5.8Hz,2H)4.20(t,J=5.1Hz,2H)3.92(s,3H)3.67(t,J=5.1Hz,2H)2.98(q,J=7.6Hz,2H)1.26(t,J=7.6Hz,3H)
化合物55の合成
Figure 2022548247000068
中間体AA1の調製
密閉チューブ内で、中間体A5(300mg、0.652mmol)、3-メトキシプロピオンイミド酸エーテルエステルヒドロクロリド(328mg、1.96mmol)及びトリエタノールアミン(272μL、1.96mmol)の2-プロパノール(6mL)中混合物を、90℃で1.5時間撹拌した。室温まで冷却した後、反応混合物を濃縮した。残渣をEtOAc中に溶解させ、NaHCO水溶液(1%)を添加した。分離後、水相をEtOAcで抽出した(2回)。合わせた有機層をMgSO上で乾燥させ、濾別し、濃縮して、280mgの中間体AA1を静置時に結晶化する明黄色の油として得た(94%)。
化合物55の調製
トリエチルアミン(0.281mL、2.02mmol)を、中間体AA1(230mg、0.506mmol)の乾燥DCM(4.6mL)中溶液に添加した。次いで、溶液を0℃(氷/水浴)で冷却した。TfOの1M溶液(1.01mL、1.01mmol)を滴加し、反応混合物を0℃で30分間撹拌した。DCM及びNaHCOの水溶液(10%)を添加した。層を分離し、水層をDCMで抽出した。合わせた有機層をMgSO上で乾燥させ、濾別し、蒸発させて、褐色のガムを得て、これを分取LC(定形SiOH、30μm、24g、液体充填材(DCM)、移動相勾配:ヘプタン90%、EtOAc/MeOH(9:1)10%~ヘプタン25%、EtOAc/MeOH(9:1)75% 全12CV)により精製した。生成物を含有する画分を合わせ、蒸発させて、208mgを黄色の固体として得た。これを逆相(固定相:YMC-actus Triart C18 25μm 30×150mm、40g、乾燥充填材(Celite(登録商標))、移動相:勾配60%(aq.NHHCO 0.2%)、40%MeCN~100%MeCN 全12CV)により精製した。生成物を含有する画分を合わせ、蒸発させて、175mgを黄色の固体として得た。これを分取LC(定形SiOH、30μm、24g、液体充填材(DCM)、移動相勾配:ヘプタン90%、EtOAc/MeOH(9:1)10%~ヘプタン25%、EtOAc/MeOH(9:1)75% 全12CV)により精製した。生成物を含有する画分を合わせ、蒸発させて、146mgを白色固体として得た。これを逆相(固定相:YMC-actus Triart C18 25μm 30×150mm、40g、乾燥充填材(Celite(登録商標))、移動相:勾配60%(aq.NHHCO 0.2%)、40%MeCN/MeOH(1:1)~15%(aq.NHHCO 0.2%)、85%MeCN/MeOH(1:1) 全14CV)により精製した。生成物を含有する画分を合わせ、蒸発させて、129mgを白色固体として得た。これをアキラルSFC(固定相:ジエチルアミノプロピル 5μm 150×21.2mm、移動相:90%CO、10%MeOH)により精製した。生成物を含有する画分を合わせ、蒸発させて、94mgを白色固体として得た。これをMeCN(10mL)中で音波処理し、蒸発させて(3回)、次いでMeCN(5mL)を添加し、精製物を濾過し、高真空下(50℃、2時間)で乾燥させて、84mgの化合物55を白色固体(28%)として得た。
H NMR(400MHz,DMSO-d6)δ ppm 9.07(d,J=1.5Hz,1H),8.44(br t,J=5.7Hz,1H),7.67(d,J=9.4Hz,1H),7.45(dd,J=9.4,2.1Hz,1H),7.32(m,J=8.7Hz,2H),7.16(m,J=8.7Hz,2H),4.47(br d,J=5.9Hz,2H),3.90-4.00(m,2H),3.81-3.89(m,2H),3.66(t,J=6.7Hz,2H),3.26-3.29(m,3H),2.98(q,J=7.5Hz,2H),2.82(t,J=6.7Hz,2H),1.26(t,J=7.5Hz,3H)
次の化合物を、本明細書に記載の手順に従って調製した:
Figure 2022548247000069

Figure 2022548247000070

Figure 2022548247000071

Figure 2022548247000072

Figure 2022548247000073

Figure 2022548247000074
化合物73の合成
Figure 2022548247000075
中間体AB1の調製
5℃の2-アミノ-5-シアノピリジン(CAS[4214-73-7];5g、42.0mmol)のMe-THF(200mL)中溶液に、ヨードベンゼンジアセテート(13.5g、41.9mmol)及び3-オキソ吉草酸エチル(10mL、70.1mmol)を添加した。次いで、三フッ化ホウ素エーテレート(550μL、2.10mmol)を滴加した。溶液を5℃で1時間撹拌した。混合物を室温まで温め、2時間撹拌した。EtOAc及びNaHCO飽和溶液を添加した。層を分離し、水層をEtOAcで抽出した。合わせた有機層をブラインで洗浄し(2回)、MgSO上で乾燥させて、濾別し、次いで蒸発させて、26gの褐色の液体を得た(これは静置すると結晶化した)。粗生成物を分取LC(不定形SiOH、15~40μm、330g、Grace、乾燥充填材(Celite(登録商標))、移動相勾配:ヘプタン85%、EtOAc15%~ヘプタン30%、EtOAc70%)により精製して、3.14gの中間体AB1を黄色固体(30%)として得た。
中間体AB2の調製
窒素下、NaH60%(0.677g;16.9mmol)を、2-(トリメチルシリル)エタノール(2.43mL;16.9mmol)の乾燥トルエン(50mL)中溶液に0℃で添加した。反応混合物を0℃で15分間撹拌し、次いで中間体AB1(0.823g;3.38mmol)を添加し、反応混合物を室温に温めながら16時間撹拌した。反応混合物をNH4Clの飽和水溶液で加水分解し、EtOAcで抽出した。水層をEtOAcで抽出した(2回)。合わせた有機層をMgSO上で乾燥させ、濾過し、蒸発乾固し、分取LC(定形SiOH、30~40μm、40g、充填材(DCM)、移動相勾配:ヘプタン/EtOAc 100:0~50:50)により精製した。生成物を含有する画分を蒸発させて、559mgの中間体AB2を白色固体として得た(52%)。
化合物73の調製
フッ化セシウム(289mg、1.90mmol)を、中間体AB2(200mg、0.634mmol)のF(8.4mL)中溶液に添加し、反応混合物を60℃で2時間撹拌した。次いで、ジイソプロピルエチルアミン(139μL、0.817mmol)及びHATU(267mg、0.701mmol)を添加し、反応混合物を室温で15分間撹拌した(反応混合物は褐色に変わった)。中間体R7(266mg、0.634mmol)を添加し、反応混合物を室温で2時間撹拌した。反応混合物をEtOAcで抽出し、有機層を1%のNaHCO3水溶液、次いで水及びブラインで洗浄し、MgSO上で乾燥させて、濾別し、濃縮した。DCM及びMeOHを残渣に添加した。混合物を濾過した。沈殿物を50℃にて真空下で乾燥させ、160mgの粗生成物を白色固体として得た。粗生成物をEtOAc(15mL)で20分間加熱還流させて、次いでゆっくりと撹拌しながら、18時間、室温までゆっくりと冷却した。固体を濾過し、冷EtOAcですすぎ、60℃にて真空下で乾燥させ、128mgの化合物73を白色固体(36%)として得た。
1H NMR(400MHz,DMSO-d6)δ ppm 9.50(s,1H)8.63(t,J=5.9Hz,1H)7.78(d,J=9.3Hz,1H)7.66(dd,J=9.3,1.7Hz,1H)7.45(t,J=8.6Hz,1H)7.13-7.31(m,2H)4.51(d,J=5.87Hz,2H)4.06-4.19(m,2H)3.53-3.62(m,2H)3.02(q,J=7.50Hz,2H)1.28(t,J=7.46Hz,3H).
化合物74の合成
Figure 2022548247000076
中間体AC1の調製
中間体A5(500mg、1.09mmol)、メチル-2,2-ジエトキシアセトイミデート(526mg、3.26mmol)、及びトリエチルアミン(453μL、3.26mmol)のiPrOH(9.4mL)中混合物を、90℃で2時間撹拌した。室温まで冷却した後、反応混合物を濃縮した。残渣をEtOAc及び水に溶解させた。分離後、水相をEtOAcで抽出した(1回)。合わせた有機層をブラインで洗浄し、MgSO上で乾燥させ、濾別し、濃縮した。残渣を分取LC(不定形SiOH15~40μm、80g、液体充填材(DCM)、移動相勾配:ヘプタン中EtOAc 20~80% 次いで均一濃度)により精製した。生成物を含有する画分を合わせ、蒸発させて、343mgの中間体AC1を白色固体(63%)として得た。
中間体AC2の調製
ジイソプロピルエチルアミン(0.311mL、1.80mmol)を、中間体AC1(300mg、0.601mmol)のDCM(5.5mL)中溶液に添加した。次いで、溶液を0℃(氷/水浴)で冷却した。DCM中のTfO 1M溶液(0.721mL、1.2eq.、0.721mmol)を滴加し、反応混合物を0℃で1時間撹拌した。追加量のDCM中のTfOの1M溶液(0.721mL、1.2eq.、0.721mmol)を添加し、混合物を0℃で1時間撹拌した。NaHCOの飽和水溶液及びDCMを添加した。層を分離し、水層をDCMで抽出した。合わせた有機層をMgSO上で乾燥させ、濾別し、蒸発させて、褐色のガムを得た。この粗生成物を分取LC(定形SiOH、30μm、24g、液体充填材(DCM)、移動相勾配:DCM100%~DCM85%、MeOH/AcOH(9:1)15%)により精製して、94mgの中間体AC2をオレンジ色のガムとして得た。
化合物74の調製
中間体AC2(94mg、0.17mmol)のAcOH(29μL、0.51mmol)及びDCM(1.5mL)中溶液に、THF中のジメチルアミンの2M溶液(0.25mL、0.51mmol)を添加し、混合物を室温で6時間撹拌した。次いで、トリアセトキシ水素化ホウ素ナトリウム(71.5mg、0.34mmol)を添加し、混合物を室温で16時間撹拌した。NaHCOの飽和水溶液を注意深く添加し、次いで層を分離した。水層をDCMで抽出し(2回)、合わせた有機層をMgSO上で乾燥させ、濾別し、蒸発させた。粗生成物を分取LC(定形SiOH、30μm、12g、液体充填材(DCM)、移動相勾配:ヘプタン80%、EtOAc/MeOH(9:1)20%~ヘプタン15%、EtOAc/MeOH(9:1)85%)により精製した。生成物を含有する画分を合わせ、蒸発させて、68mgを明黄色の油として得て、これを逆相(固定相:YMC-actus Triart C18 25μm 30×150mm、12g、乾燥充填材(Celite(登録商標))、移動相:勾配55%(aq.NHHCO 0.2%)、45%MeCN~100%MeCN)により精製した。生成物を含有する画分を合わせ、蒸発させて、無色の油を得て、これをEtO中でトリチュレートし、高真空下(50℃、1時間)で乾燥させ、40mgの化合物74を白色固体(40%)として得た。
H NMR(400MHz,DMSO-d)δ ppm 9.06(d,J=1.0Hz,1H)8.44(br t,J=5.8Hz,1H)7.67(d,J=9.7Hz,1H)7.45(dd,J=9.4,1.8Hz,1H)7.33(br d,J=8.6Hz,2H)7.19(br d,J=8.6Hz,2H)4.47(br d,J=5.5Hz,2H)3.90(br dd,J=16.6,4.2Hz,4H)2.97(q,J=7.5Hz,2H)2.19(s,7H)1.26(t,J=7.5Hz,4H).
化合物75の合成
Figure 2022548247000077
中間体AD1の調製
四臭化炭素(26.9g、81.0mmol)を、2-アミノ-4-メトキシピリジン[CAS:10201-73-7](5.02g、40.4mmol)及び3-オキソ吉草酸エチル(8.69mL、60.8mmol)のMeCN(85mL)中溶液に添加し、反応混合物を80℃で4時間撹拌した。反応混合物を乾燥するまで蒸発させ、次いで分取LC(定形SiOH、30μm、330g、乾燥充填材(Celite(登録商標))、移動相勾配:ヘプタン/EtOAc 95/5~EtOAc)により精製して、669mgの中間体AD1(16%)を得た。
中間体AD2の調製
中間体AD1(1.55g、6.24mmol)の水(20mL)及びEtOH(20mL)中混合物に、NaOH(752mg、18.8mmol)を添加し、混合物を室温で2日間撹拌した。反応混合物を蒸発させ、2.16gの中間体AD2(Quant.)を得た。
化合物75の調製
中間体AD2(138mg、0.397mmol)、中間体R7(160mg、397μmol)、EDCI●HCl(99.1mg、0.517mmol)、HOBt(79.1mg、0.517mmol)、及びジイソプロピルエチルアミン(205μL、1.19mmol)のDMF(6mL)中混合物を、室温で20時間撹拌した。残渣をEtOAc及び水に溶解させた。水層をEtOAcで抽出した(2回)。合わせた有機層をMgSO上で乾燥させ、濾別し、蒸発させて、オレンジ色の油を得た。油を分取LC(定形SiOH30μm、12g、乾燥充填材(celite(登録商標))、移動相勾配:ヘプタン/EtOAc 70/30~EtOAc100%)により精製した。生成物を含有する画分を合わせ、真空下で蒸発させて、黄色固体を得て、これをEtO中でトリチュレートした。上清をピペットで除去し、固体を真空下で乾燥させて、124mgの白色固体を得て、これをEtO中で共蒸発させて(3回)、120mgの化合物75を白色固体(46%収率)として得た。
H NMR(400MHz,DMSO-d)δ ppm 8.86(d,J=7.7Hz,1H)8.21(br t,J=5.8Hz,1H)7.44(t,J=8.5Hz,1H)7.12-7.26(m,2H)7.01(d,J=2.3Hz,1H)6.71(dd,J=7.6,2.5Hz,1H)4.47(br d,J=5.9Hz,2H)4.07-4.15(m,2H)3.84(d,J=8.2Hz,6H)3.52-3.61(m,2H)2.94(q,J=7.5Hz,2H)1.26(t,J=7.5Hz,3H).
化合物76の合成
Figure 2022548247000078

中間体A6(30.0mg、75.6μmol)、2-ブロモチアゾール(8.18μL、90.7μmol)、及びNaOtBu(36.3mg、0.378mmol)の乾燥1,4-ジオキサン(1.3mL)中混合物を、Nでパージした(3回)。次いで、キサントホス(8.7mg、15μmol)及び酢酸パラジウム(II)(1.7mg、7.6μmol)を添加し、混合物をNでパージした(3回)。反応混合物を80℃で22時間撹拌した。反応混合物をEtOAc/MeOH及び水で希釈した。水層をEtOAcで抽出した(2回)。合わせた有機層をブラインで洗浄し、MgSO上で乾燥させ、濾別し、蒸発させて、褐色の固体を得た。固体を分取LC(定形SiOH30μm、12g、乾燥充填材(celite(登録商標))、移動相勾配:DCM100%~DCM/(DCM:MeOH 80:20)30/70)により精製した。生成物を含有する画分を合わせ、真空下で蒸発させて、17mgの化合物76を黄色固体(47%収率)として得た。
H NMR(500MHz,DMSO-d)δ ppm 9.07(d,J=1.4Hz,1H)8.45(t,J=5.9Hz,1H)7.63-7.69(m,2H)7.45(dd,J=9.5,2.0Hz,1H)7.39(d,J=3.5Hz,1H)7.26(dd,J=36.7,8.7Hz,2H)7.16(d,J=3.5Hz,1H)4.46(d,J=5.6Hz,2H)4.00(t,J=5.0Hz,2H)3.78(t,J=5.0Hz,2H)2.98(q,J=7.5Hz,2H)1.26(t,J=7.5Hz,4H).
次の化合物も、本明細書に記載の手順に従って調製した:
化合物77
Figure 2022548247000079
B.更なる手順
化合物127の合成
Figure 2022548247000080

HATU(0.099g、0.26mmol)を、N下で、2-(トリフルオロメチル)-イミダゾ[1,2-A]ピリジン-3-カルボン酸(CAS[73221-19-9]、0.052g、0.23mmol)、及びDIPEA(0.097mL、0.56mmol)の乾燥Me-THF(1.52mL)及びDCM(0.51mL)中溶液に添加した。溶液を室温で15分間撹拌し、次いで中間体E9(0.08g、0.25mmol)を添加し、反応混合物を室温で16時間撹拌した。次いで、溶媒を蒸発させ、残渣を酢酸エチル中に希釈し、NaHCOの飽和水溶液、水、次いでブラインで洗浄した。有機層をMgSO上で乾燥させ、濾過して、真空中で蒸発させて、黄色油を0.167g得た。シリカゲルのフラッシュクロマトグラフィー(12g、不定形SiOH 25~40μM、DCM/MeOH 100/0~97/3)により、精製を行った。純粋画分を回収し、蒸発させて、静置時に結晶化する無色の油0.102gを得た。逆相(固定相:YMC-actus Triart C18 10μm 30×150mm、移動相:勾配40%NHHCO 0.2%、60%ACN~10%NHHCO 0.2%、90%ACN)により、精製を行った。純粋画分を回収し、蒸発させて0.037gを白色の発泡体として得た。これをDIPE及び少しのヘプタンでトリチュレートし、沈殿物を濾別し、60℃にて真空下で乾燥させ、化合物127を白色粉末0.032g(26%)として得た。
H NMR(500MHz,DMSO-d)δ ppm 9.23(br s,1H),8.53(br d,J=6.4Hz,1H),7.79(br d,J=8.9Hz,1H),7.55(br t,J=7.5Hz,1H),7.25-7.37(m,3H),7.20(br d,J=8.1Hz,3H),4.42-4.56(m,2H),4.08(br s,2H),3.84(br s,2H)
化合物128の合成
Figure 2022548247000081

従って、化合物127と同じ方法で2-(ジフルオロメチル)-イミダゾ[1,2-A]ピリジン-3-カルボン酸(CAS[2059954-47-9]、0.23mmol)及び中間体E9から出発して化合物128を調製し、白色粉末0.045g(39%)を得た。
H NMR(500MHz,DMSO-d)δ ppm 8.96(br t,J=5.6Hz,1H),8.79(d,J=7.0Hz,1H),7.76(d,J=9.0Hz,1H),7.52(t,J=7.8Hz,1H),7.25-7.45(m,4H),7.20(d,J=8.7Hz,2H),7.16(td,J=6.9,1.1Hz,1H),4.48(d,J=5.6Hz,2H),4.08(br t,J=4.5Hz,2H),3.84(t,J=4.8Hz,2H)
化合物137の合成
Figure 2022548247000082

HATU(0.093g、0.24mmol)を、N下で、2-(ジフルオロメチル)-5H,6H,7H,8H-イミダゾ[1,2-A]ピリジン-3-カルボン酸(0.046g、0.21mmol)及びDIPEA(0.091mL、0.53mmol)の乾燥Me-THF(1.43mL)及びDCM(0.48mL)中溶液に添加した。溶液を室温で15分間撹拌した。次いで中間体R7(0.095g、0.23mmol)を添加し、反応混合物を室温で16時間撹拌した。次いで、溶媒を蒸発させ、残渣を酢酸エチル中に希釈し、NaHCOの飽和水溶液、水、次いでブラインで洗浄した。有機層をMgSO上で乾燥させ、濾過し、真空中で蒸発させて、黄色油0.271gを得た。シリカゲルのフラッシュクロマトグラフィー(12g、不定形SiOH 25~40μM、DCM/MeOH 100/0~97/3)により、精製を行った。純粋画分を回収し、蒸発させて、静置時に結晶化する無色の油0.112gを得た。これをDIPE及び少しのヘプタンでトリチュレートし、沈殿物を濾別し、60℃にて真空下で乾燥させ、化合物137を白色粉末0.096g(79%)として得た。
H NMR(500MHz,DMSO-d)δ ppm 8.77(br t,J=5.6Hz,1H),7.44(t,J=8.6Hz,1H),7.10-7.19(m,2H),6.95(t,J=54.3Hz,1H),4.40(br d,J=5.8Hz,2H),4.06-4.15(m,2H),4.02(br t,J=5.5Hz,2H),3.83(s,3H),3.54-3.60(m,2H),2.78(br t,J=6.3Hz,2H),1.89(br d,J=4.6Hz,2H),1.83(br d,J=5.5Hz,2H)
化合物79の合成
Figure 2022548247000083

従って、化合物137と同じ方法で2-(トリフルオロメチル)-イミダゾ[1,2-A]ピリジン-3-カルボン酸(CAS[73221-19-9]、0.21mmol)及び中間体R-7(0.23mmol)から出発して化合物79を調製し、白色粉末0.09g(70%)を得た。
H NMR(500MHz,DMSO-d6)δ ppm 9.27(t,J=5.8Hz,1H),8.57(d,J=6.9Hz,1H),7.80(d,J=9.2Hz,1H),7.40-7.62(m,2H),7.14-7.27(m,3H),4.47-4.56(m,2H),4.08-4.14(m,2H),3.84(s,3H),3.52-3.63(m,2H)
化合物132の合成
Figure 2022548247000084
中間体AB-1の調製
密閉チューブ内で、2-アミノ-5-クロロピコリン(CAS[36936-27-3]、1.00g、7.01mmol)のACN(12mL)中溶液に、3-オキソ吉草酸エチル-エチル(CAS[4949-44-4]、2.00mL、14.0mmol)、ブロモトリクロロメタン(2.40mL、24.4mmol)、及び重炭酸カリウム(2.12g、21.2mmol)を添加した。混合物を80℃で16時間撹拌した。EtOAc及び水を添加した。有機層をブラインで洗浄し、乾燥させ(MgSO)、蒸発させて、分取LC(不定形SiOH 15~40μm、80g、移動相勾配:ヘプタン/EtOAc 90:10~10:90)により精製した。生成物を含有する画分を合わせ、蒸発させて、0.95gの中間体AB-1をオレンジ色の固体(51%)として得た。
中間体AB-2の調製
中間体AB-1(180mg、0.675mmol)の水(2.2mL)及びEtOH(2.2mL)中混合物に、NaOH(81mg、2.03mmol)を添加し、混合物を40℃で18時間撹拌した。反応混合物を蒸発させて、270mg gの中間体AB-2(Quant.純度65%)を得た。
化合物132の調製
中間体AB-2(150mg、0,374mmol、純度65%)、中間体R7(151mg、0,374mmol)、HATU(157mg、0.414mmol)、DIPEA(82μL、0.48mmol)、及びDMF(2.3mL)の混合物を、室温で2時間撹拌した。反応混合物をEtOAcで希釈し、有機層を1%のNaHCO水溶液、次いで水及びブラインで洗浄し、MgSO上で乾燥させ、濾別し、濃縮して、分取LC(不定形SiOH、15~40μm、40g Grace、充填材(DCM)、移動相勾配:ヘプタン/EtOAc:50/50~0/100 7CVで、次いでEtOAc100% 7CVで)により精製した。生成物を含有する画分を合わせ、蒸発させて、116mgを白色固体として得た。これを分取LC(球状 C18、25μm、40g YMC-ODS-25、(MeOH/MeCN)、移動相勾配 0.2%aq.NH HCO /MeCN 70:30~0:100)により精製した。生成物を含有する画分を合わせ、蒸発させて、86mgの化合物132を白色固体(39%)として得た。
1H NMR(400MHz,DMSO-d6)δ ppm 9.12(s,1H),8.35(t,J=5.9Hz,1H),7.64(s,1H),7.45(t,J=8.6Hz,1H),7.11-7.27(m,2H),4.48(d,J=5.9Hz,2H),4.11(br t,J=5.2Hz,2H),3.83(s,3H),3.57(br t,J=4.9Hz,2H),2.99(q,J=7.5Hz,2H),2.40(s,3H),1.26(t,J=7.5Hz,3H)
化合物141の合成
Figure 2022548247000085
中間体AC-1の調製
5℃の5-クロロ-4-フルオロ-2-ピリジンアミン(CAS[1393574-54-3]、250mg、1.71mmol)のMe-THF(8mL)中溶液に、ヨードベンゼンジアセテート(550mg、1.71mmol)及び3-オキソ吉草酸エチル-エチル(0.4mL、2.80mmol)を添加した。次いで、三フッ化ホウ素エーテレート(25μL、95.5μmol)を滴加した。溶液を5℃で1時間撹拌した。混合物を室温まで温め、18時間撹拌した。EtOAc及び水を添加した。有機層をブラインで洗浄し、乾燥させ(MgSO4)、蒸発させて、分取LC(不定形SiOH 15~40μm、40g、grace、充填材(DCM)移動相勾配:ヘプタン/EtOAc 90:10~10:90 全10CV)により精製して、119mgの中間体AC-1を淡褐色の固体(P1;26%)として得た。
中間体AC-2の調製
中間体AC-1(200mg、0.739mmol)、水酸化リチウム(177mg、7.39mmol)、水(3.2mL)、及びTHF(4.4mL)の混合物を、50℃で18時間撹拌した。EtOAc及びaq.KHSO 10%を添加した。有機層を乾燥させ(MgSO)、蒸発させて、179mgの中間体AC-2を黄色固体(Quant.)として得た。
化合物141の調製
従って、化合物132と同じ方法で中間体AC-2(0.78mmol)及び中間体R7から出発して化合物141を調製し、0.127g(27%)を白色粉末として得た。
1H NMR(400MHz,DMSO-d6)δ ppm 9.24(d,J=7.3Hz,1H),8.45(br t,J=5.8Hz,1H),7.79(d,t,J=9.9Hz,1H),7.45(t,t,J=8.7Hz,1H),7.12-7.27(m,2H),4.49(d,t,J=5.9Hz,2H),4.11(t,t,J=4.9Hz,2H),3.83(s,3H),3.57(t,t,J=4.9Hz,2H),2.99(q,t,J=7.5Hz,2H),1.27(t,J=7.5Hz,3H)
化合物158の合成
Figure 2022548247000086
中間体AD-1の調製
従って、化合物AC-1と同じ方法で6,7-ジヒドロ-5h-シクロペンタ[d]ピリミジン-2-アミン(CAS[108990-72-3]、7.4mmol)から出発して化合物AD-1を調製し、0.726g(38%)を得た。
中間体AD-2の調製
従って、化合物AB-2と同じ方法でAD-1(0.77mmol)から出発して化合物AD-2を調製し、0.446g(44%)を得た。
化合物158の調製
従って、化合物132と同じ方法で中間体AD-2(0.77mmol)及び中間体R7から出発して化合物158を調製し、0.145g(32%)を白色粉末として得た。
1H NMR(500MHz,DMSO-d6)δ ppm 9.10(s,1H),8.39(t,J=6.0Hz,1H),7.44(t,J=8.5Hz,1H),7.12-7.26(m,2H),4.47(d,J=5.9Hz,2H),4.10(t,J=4.8Hz,2H),3.83(s,3H),3.56(t,J=4.8Hz,2H),2.89-3.03(m,6H),2.05-2.16(m,2H),1.26(t,J=7.6Hz,3H)
化合物193の調製
Figure 2022548247000087

従って、化合物158と同じ方法で中間体AI-3(0.44mmol)及び中間体R-7(0.37mmol)から出発して化合物193を調製し、白色固体0.108g(52%)を得た。
H NMR(400MHz,DMSO)d 9.19-9.10(m,1H),8.51(d,J=2.4Hz,1H),8.44(t,J=5.9Hz,1H),7.44(t,J=8.6Hz,1H),7.26-7.14(m,2H),4.49(d,J=5.9Hz,2H),4.14-4.03(m,2H),3.83(s,3H),3.59-3.53(m,2H),3.01(q,J=7.5Hz,2H),2.34(d,J=0.6Hz,3H),1.28(t,J=7.5Hz,3H).
化合物194の調製
Figure 2022548247000088

従って、化合物158と同じ方法で6-クロロ-2-(トリフルオロメチル)イミダゾ[1,2-a]ピリジン-3-カルボン酸(CAS[874830-60-1](0.7mmol)及び中間体R-7(0.47mmol)から出発して化合物194を調製し、白色固体0.110g(39%)を得た。
H NMR(400MHz,DMSO)d 9.23(t,J=5.8Hz,1H),8.35(s,1H),7.70(d,J=9.3Hz,1H),7.52-7.37(m,2H),7.19(m,2H),4.51(d,J=5.8Hz,2H),4.17-4.07(m,2H),3.84(s,3H),3.63-3.55(m,2H),2.34(s,3H).
化合物204の調製
Figure 2022548247000089

従って、化合物158と同じ方法で2-エチル-6-フルオロイミダゾ[1,2-a]ピリジン-3-カルボン酸(CAS[1368682-64-7]、0.84mmol)及び中間体R-7(0.7mmol)から出発して化合物204を調製し、白色固体0.132g(34%)を得た。
H NMR(400MHz,DMSO)d 9.09-9.01(m,1H),8.40(t,J=5.9Hz,1H),7.73-7.64(m,1H),7.53-7.41(m,2H),7.25-7.14(m,2H),4.49(d,J=5.9Hz,2H),4.15-4.05(m,2H),3.83(s,3H),3.61-3.51(m,2H),3.00(q,J=7.5Hz,2H),1.27(t,J=7.5Hz,3H).
化合物206の調製
Figure 2022548247000090

従って、化合物158と同じ方法で中間体AM-2(0.61mmol)及び中間体R-7(0.47mmol)から出発して化合物206を調製し、ベージュ色の粉末0.07g(24%)を得た。
H NMR(400MHz,DMSO)d 9.02(t,J=5.7Hz,1H),8.92(d,J=1.7Hz,1H),7.83(d,J=9.6Hz,1H),7.61(dd,J=9.6,2.0Hz,1H),7.52-7.16(m,4H),4.51(d,J=5.7Hz,2H),4.13-4.07(m,2H),3.83(s,3H),3.60-3.55(m,2H).
化合物209の調製
Figure 2022548247000091

従って、化合物158と同じ方法で中間体AQ-2(0.56mmol)及び中間体R-7(0.4mmol)から出発して化合物209を調製し、白色粉末0.142g(59%)を得た。
H NMR(400MHz,DMSO)d 8.95(s,1H),8.41(t,J=5.9Hz,1H),7.80(s,1H),7.44(t,J=8.6Hz,1H),7.26-7.14(m,2H),4.48(d,J=5.9Hz,2H),4.15-4.06(m,2H),3.83(s,3H),3.60-3.52(m,2H),2.97(q,J=7.5Hz,2H),2.32(s,3H),1.26(t,J=7.5Hz,3H).
化合物210の調製
Figure 2022548247000092

従って、化合物158と同じ方法で中間体AL-2(0.55mmol)及び中間体R-7(0.4mmol)から出発して化合物210を調製し、白色固体0.161g(68%)を得た。
H NMR(400MHz,DMSO)d 8.92(d,J=1.4Hz,1H),8.60(t,J=5.9Hz,1H),7.62(dd,J=10.6,1.6Hz,1H),7.45(t,J=8.6Hz,1H),7.26-7.15(m,2H),4.50(d,J=5.8Hz,2H),4.15-4.06(m,2H),3.83(s,3H),3.61-3.52(m,2H),3.01(q,J=7.5Hz,2H),1.27(t,J=7.5Hz,3H).
中間体AA-3の調製
Figure 2022548247000093
中間体AA-1の調製
中間体R4(19.6g、48.4mmol)及びオルトギ酸トリメチル(15.9mL、145mmol)のHFIP(490mL)中溶液を、60℃で45分間撹拌した。反応混合物を蒸発させた。残渣をDCM中に希釈させ、KCOの10%水溶液を添加した。水層をDCM/MeOH(95/5)で2回抽出した。合わせた有機層をMgSO上で乾燥させ、濾別し、蒸発させた。粗製(m=25.6g)を分取LC(定形SiOH30μm、330g、乾燥充填材(celite(登録商標))、移動相勾配:ヘプタン75%、EtOAc/MeOH(9:1)25%~ヘプタン25%、EtOAc/MeOH(9:1))により精製した。生成物を含有する画分を合わせ、蒸発させて、14.61gの中間体AA-1を静置時に結晶化する無色の油として得た(85%)。
中間体AA-2の調製
-5℃(氷/NaCl 固体)で、中間体AA-1(14.6g、42.7mmol)及びDIPE(22.1mL、128mmol)の乾燥DCM(340mL)中溶液に、滴下漏斗を用いてDCM中1MのTfO(47mL、47mmol)を15分かけて滴加し、5分間撹拌を続けた。反応混合物をNaHCOの飽和水溶液でクエンチした。層を分離し、水層をDCMで抽出した(2回)。合わせた有機層をMgSO上で乾燥させ、濾別し、濃縮した。粗製(m=36.4g)を分取LC(定形SiOH、30μm、120g、乾燥充填材(celite(登録商標))、移動相勾配:ヘプタン/EtOAc 90/10~70/30)により精製した。生成物を含有する画分を合わせ、真空下で蒸発させて、10.18gの中間体AA-2を白色固体(50%)として得た。
中間体AA-3の調製
スチールボンベ(steal bomb)内で、中間体AA-2(10.2g、21.5mmol)、炭素上水酸化パラジウム20%、名目上50%の水(3.01g、2.15mmol)、及び3Mの水性HCl(7.15mL、7.15mmol)のMeOH(150mL)及びEtOAc(150mL)中混合物を、室温にて5barのH下、1時間水素添加した。混合物をcelite(登録商標)パッド上で濾過し、MeOHで洗浄した。次いで、濾液をMeOHと共蒸発させて(2回)、7.86gの中間体AA-3を得た。
化合物163の合成
Figure 2022548247000094

HATU(0.083g、0.22mmol)を、N下で6-エチル-2-メチルイミダゾ[2,1-b][1,3]チアゾール-5-カルボン酸(CAS[1131613-58-5]、0.04g、0.19mmol)及びDIPEA(0.082mL、0.48mmol)の乾燥Me-THF(1.28mL)及びDCM(0.43mL)中溶液に添加した。溶液を室温で15分間撹拌した。次いで中間体AA-3(0.083g、0.22mmol)を添加し、反応混合物を室温で16時間撹拌した。次いで、溶媒を蒸発させ、残渣を酢酸エチル中に希釈し、NaHCOの飽和水溶液、水、次いでブラインで洗浄した。有機層をMgSO上で乾燥させ、濾過し、真空中で蒸発させて無色油を得た。シリカゲルのフラッシュクロマトグラフィー(12g、不定形SiOH 25~40μM、DCM/MeOH 100/0~97/3)により精製を行った。純粋画分を回収し、蒸発させて白色発泡体0.096gを得た。これをDIPE及び少しのヘプタンでトリチュレートし、沈殿物を濾別し、60℃にて真空下で乾燥させ、化合物163を白色粉末0.088g、86%として得た。
H NMR(500MHz,DMSO-d)δ ppm 8.14(br t,J=5.8Hz,1H),7.90(s,1H),7.38(s,1H),7.32(t,J=8.5Hz,1H),7.20(br d,J=13.1Hz,1H),7.16(br d,J=8.2Hz,1H),4.44(br d,J=6.0Hz,2H),4.10(br s,2H),3.59-3.68(m,2H),2.88(q,J=7.5Hz,2H),2.42(s,3H),1.22(t,J=7.5Hz,3H)
化合物147の合成
Figure 2022548247000095

従って、化合物163と同じ方法で2-(ジフルオロメチル)-5H,6H,7H,8H-イミダゾ[1,2-A]ピリジン-3-カルボン酸(CAS[2060043-79-8]、0.19mmol)及び中間体AA-3から出発して化合物147を調製して、白色粉末0.08g(77%)を得た。
H NMR(400MHz,DMSO-d)δ ppm 8.79(br t,J=5.6Hz,1H),7.38(s,1H),7.33(t,J=8.6Hz,1H),7.07-7.23(m,2H),6.95(t,J=54.2Hz,1H),4.41(br d,J=5.9Hz,2H),4.10(br s,2H),4.02(br t,J=5.5Hz,2H),3.65(br t,J=4.6Hz,2H),2.68-2.91(m,2H),1.89(br d,J=4.3Hz,2H),1.83(br d,J=5.3Hz,2H)
化合物159の合成
Figure 2022548247000096

従って、化合物163と同じ方法で2-(ジフルオロメチル)-イミダゾ[1,2-A]ピリジン-3-カルボン酸(CAS[2059954-47-9]、0.19mmol)及び中間体AA-3から出発して化合物159を調製し、白色粉末0.084g(82%)を得た。
H NMR(400MHz,DMSO-d)δ ppm 9.00(br s,1H),8.81(br d,J=7.0Hz,1H),7.77(d,J=9.0Hz,1H),7.08-7.59(m,7H),4.52(br s,2H),4.10(br s,2H),3.66(br t,J=4.5Hz,2H)
化合物135の合成
Figure 2022548247000097

従って、化合物163と同じ方法で2-クロロ-6-エチル-2-メチルイミダゾ[2,1-b][1,3]チアゾール-5-カルボン酸(CAS[2089471-58-7]、0.21mmol)及び中間体AA-3から出発して化合物135を調製し、白色粉末0.056g(49%)を得た。
H NMR(500MHz,DMSO-d)δ ppm 8.31(m,1H),8.28(br t,J=5.8Hz,1H),7.38(m,1H),7.33(br t,J=8.5Hz,1H),7.21(br d,J=13.4Hz,1H),7.16(br d,J=8.2Hz,1H),4.45(br d,J=5.8Hz,2H),4.10(br s,2H),3.64(br t,J=4.4Hz,2H),2.89(q,J=7.4Hz,2H),1.22(br t,J=7.5Hz,3H)
化合物152の合成
Figure 2022548247000098

従って、化合物163と同じ方法で2-(トリフルオロメチル)-イミダゾ[1,2-A]ピリジン-3-カルボン酸(CAS[73221-19-9]、0.92mmol)及び中間体AA-3から出発して化合物152を調製し、白色粉末0.418g(82%)を得た。
H NMR(500MHz,DMSO-d)δ ppm 9.29(t,J=5.8Hz,1H),8.57(d,J=6.9Hz,1H),7.80(d,J=9.2Hz,1H),7.56(ddd,J=9.1,6.9,1.1Hz,1H),7.39(s,1H),7.36(t,J=8.5Hz,1H),7.22-7.26(m,1H),7.18-7.22(m,2H),4.53(d,J=5.8Hz,2H),4.11(br t,J=4.3Hz,2H),3.67(t,J=4.7Hz,2H)
化合物124の合成
Figure 2022548247000099

6-クロロ-2-(トリフルオロメチル)イミダゾ[1,2-a]ピリジン-3-カルボン酸(CAS[874830-60-1]、100mg、0.378mmol)及びDIPEA(0.306mL、1.80mmol)のDMF(1.7mL)中溶液に、HATU(164mg、0.432mmol)を添加した。10分の撹拌の後、中間体AA-3(137mg、0.360mmol)を添加し、反応混合物を室温で18時間撹拌した。褐色のペーストを分取LC(定形SiOH 30μm、25g、乾燥充填材(celite(登録商標))、移動相勾配:ヘプタン/EtOAc 90/10~30/70)により精製した。生成物を含有する画分を合わせ、蒸発させて、216mgを黄色固体として得た。これをEtO中でトリチュレートした。混合物を濾別した。固体をEtOですすぎ、回収して、真空下で乾燥させ、172mgを白色固体として得た。これをEtOAc中に溶解させ、蒸発させて(3回)、158mgを白色固体として得た。これをMeCNと共蒸発させ(3回)、真空下で乾燥させて、143mgの化合物124を白色固体(50%)として得た。
1H NMR(400MHz,DMSO-d6)δ ppm 9.28(br s,1H),8.75(m,1H),7.87(d,J=9.4Hz,1H),7.65(dd,J=9.4,1.8Hz,1H),7.31-7.41(m,2H),7.15-7.30(m,2H),4.54(br d,J=4.1Hz,2H),4.10(br t,J=4.0Hz,2H),3.67(br t,J=4.6Hz,2H)
化合物129の合成
Figure 2022548247000100

従って、化合物124と同じ方法で8-クロロ-2-エチルイミダゾ[1,2-a]ピリジン-3-カルボン酸(CAS[1517795-25-3]、0.6mmol)及び中間体AA-3から出発して化合物129を調製し、0.136g(41%)を白色固体として得た。
H NMR(400MHz,DMSO-d6)δ ppm 8.90(br d,J=6.9Hz,1H),8.59(br t,J=5.6Hz,1H),7.59(br d,J=7.5Hz,1H),7.30-7.46(m,2H),7.15-7.29(m,2H),7.01(br t,J=7.1Hz,1H),4.50(d,J=5.9Hz,2H),4.10(br t,J=4.4Hz,2H),3.65(br t,J=4.9Hz,2H),3.01(q,J=7.5Hz,2H),1.27(br t,J=7.6Hz,3H)
化合物133の合成
Figure 2022548247000101

従って、化合物124と同じ方法で2-クロロ-6-メチル-イミダゾ[2,1-b]チアゾール-5-カルボン酸(CAS[2089471-57-6]、0.52mmol)及び中間体AA-3から出発して化合物133を調製し、0.142g(51%)を白色固体として得た。
H NMR(400MHz,DMSO-d6)δ ppm 8.31(s,1H),8.25(br t,J=5.9Hz,1H),7.38(br s,1H),7.33(t,J=8.5Hz,1H),7.14-7.25(m,2H),4.45(br d,J=5.9Hz,2H),4.10(br t,J=4.5Hz,2H),3.64(br t,J=4.8Hz,2H),2.52(s,1H)
化合物136の合成
Figure 2022548247000102

従って、化合物124と同じ方法で2-メチル-6-(トリフルオロメチル)イミダゾ[2,1-b]チアゾール-5-カルボン酸(CAS[1369332-25-1]、0.58mmol)及び中間体AA-3から出発して化合物136を調製し、0.173g(56%)を白色粉末として得た。
H NMR(500MHz,DMSO-d6)δ ppm 8.99(br t,J=4.3Hz,1H),7.86(br s,1H),7.39,(m,1H),7.35(br t,J=8.5Hz,1H),7.14-7.24(m,2H),4.47(br d,J=5.5Hz,2H),4.11(m,2H),3.67(br t,J=4.3Hz,2H),2.48(br s,3H)
化合物164の合成
Figure 2022548247000103

従って、化合物124と同じ方法で2-エチル-6-メチルイミダゾ[1,2-a]ピリジン-3-カルボン酸(CAS[1216036-36-0]、0.64mmol)及び中間体AA-3から出発して化合物164を調製し、0.11g(33%)を白色固体として得た。
H NMR(400MHz,DMSO-d6)δ ppm 8.75-8.84(br s,1H),8.37(t,J=6.0Hz,1H),7.52(d,J=8.9Hz,1H),7.32-7.41(m,2H),7.17-7.28(m,3H),4.50(br d,J=5.9Hz,2H),4.11(br t,J=4.2Hz,2H),3.66(t,J=4.7Hz,2H),2.98(q,J=7.5Hz,2H),2.31(s,3H),1.37(t,J=7.5Hz,3H)
化合物157の合成
Figure 2022548247000104

従って、化合物124と同じ方法で中間体AC-2(0.78mmol)及び中間体AA-3から出発して化合物157を調製し、0.106g(24%)を白色粉末として得た。
H NMR(400MHz,DMSO-d6)δ ppm 9.23(d,J=7.3Hz,1H),8.42-8.53(m,1H),7.80(d,J=9.7Hz,1H),7.29-7.40(m,2H),7.17-7.28(m,2H),4.50(d,J=5.9Hz,2H),4.07-4.13(m,2H),3.65(br t,J=4.6Hz,2H),2.99(q,J=7.5Hz,2H),1.27(t,J=7.5Hz,3H)
化合物154の合成
Figure 2022548247000105

従って、化合物124と同じ方法で中間体AD-2(0.78mmol)及び中間体AA-3から出発して化合物154を調製し、0.092g(21%)を白色固体として得た。
H NMR(400MHz,DMSO-d6)δ ppm 9.23(d,J=7.3Hz,1H),8.42-8.54(br t,J=5.9Hz,1H),7.80(d,J=9.8Hz,1H),7.30-7.41(m,2H),7.16-7.28(m,2H),4.50(br d,J=5.9Hz,2H),4.10(br t,J=4.9Hz,2H),3.65(br t,J=4.7Hz,2H),2.99(br q,J=7.4Hz,2H),1.27(br t,J=7.5Hz,3H)
化合物156の合成
Figure 2022548247000106

従って、化合物124と同じ方法で2-エチル-6-フルオロイミダゾ[1,2-a]ピリジン-3-カルボン酸(CAS[1368682-64-7]、0.27mmol)及び中間体AA-3から出発して化合物156を調製し、白色固体0.096g(68%)を得た。
H NMR(400MHz,DMSO-d6)δ ppm 8.99-9.12(m,1H),8.41(br t,J=7.5Hz,1H),7.65-7.77(m,1H),7.44-7.57(m,1H),7.32-7.40(m,2H),7.18-7.28(m,2H),4.51(br t,J=5.9Hz,2H),4.11(br t,J=4.5Hz,2H),3.66(t,J=4.6Hz,2H),3.01(q,J=7.5Hz,2H),1.28(br t,J=7.5Hz,3H)
化合物153の合成
Figure 2022548247000107

従って、化合物124と同じ方法で2,6-ジメチルイミダゾ[2,1-b][1,3]チアゾール-5-カルボン酸(CAS[1007875-19-5]、0.67mmol)及び中間体AA-3から出発して化合物153を調製し、白色固体0.138g(42%)を得た。
H NMR(500MHz,DMSO-d6)δ ppm 8.11(t,J=6.0Hz,1H),7.84-7.95(m,1H),7.38(br s,1H),7.32(br t,J=8.7Hz,1H),7.14-7.23(m,2H),4.45(d,J=6.0Hz,2H),4.10(br t,J=4.4Hz,2H),3.64(br t,J=4.9Hz,2H),2.51(s,3H),2.41(d,J=1.2Hz,3H)
化合物146の合成
Figure 2022548247000108

従って、化合物124と同じ方法で6-クロロ-2-エチル-イミダゾ[1,2-a]ピリミジン-3-カルボン酸(CAS[2059140-68-8]、0.26mmol)及び中間体AA-3から出発して化合物146を調製し、白色固体0.154g(74%)を得た。
H NMR(400MHz,DMSO-d6)δ ppm 9.41(d,J=2.7Hz,1H),8.69(d,J=2.7Hz,1H),8.58(m,1H),7.31-7.40(m,2H),7.18-7.28(m,2H),4.51(m,2H),4.10(br t,J=4.5Hz,2H),3.65(br t,J=4.8Hz,2H),3.04(br q,J=7.5Hz,2H),1.29(br t,J=7.5Hz,3H)
化合物175の合成
Figure 2022548247000109

従って、化合物124と同じ方法で6-メチル-2-(トリフルオロメチル)イミダゾ[1,2-a]ピリジン-3-カルボン酸(CAS[874830-67-8]、0.53mmol)及び中間体AA-3から出発して化合物175を調製し、0.117g(53%)を白色粉末として得た。
H NMR(400MHz,DMSO-d6)δ ppm 9.08(s,1H),7.66(d,J=9.2Hz,1H),7.44(t,J=8.4Hz,1H),7.32(dd,J=9.2,1.6Hz,1H),7.19(s,1H),7.17-7.08(m,2H),6.63(br s,1H),4.64(d,J=5.7Hz,2H),4.13-4.04(m,2H),3.74-3.65(m,2H),2.41(s,3H).
化合物125の合成
Figure 2022548247000110
中間体AE-1の調製
従って、中間体AC-1と同じ方法で2-アミノ-4-クロロピリミジン(CAS[3993-78-0]、15.4mmol)から出発して中間体AE-1を調製し、0.94g(26%)を得た。
中間体AE-2の調製
従って、中間体AC-2と同じ方法で中間体AE-1(1.25mmol)から出発して中間体AE-2を調製し、0.26g(92%)を得た。
中間体AE-3の調製
中間体AE-2(175mg、0.776mmol)の塩化チオニル(4.4mL)中混合物を、60℃で20時間撹拌した。反応混合物を蒸発させて、0.288gを褐色ペーストとして得た。(純度は定量的収率を得るために計算された)。
化合物125の調製
中間体AE-3(288mg、0.779mmol)及び中間体AA-3(295mg、0.779mmol)及びDIPEA(0.331mL、1.95mmol)の乾燥DCM(4.8mL)中混合物を、室温で10分間撹拌した。水を添加した。水層をDCMで抽出した(1回)。合わせた有機層をブラインで洗浄し、MgSO上で乾燥させ、濾別し、蒸発させて、0.4gの褐色発泡体を得た。これを分取LC(定形SiOH30μm、25g、乾燥充填材(celite(登録商標))、移動相勾配:ヘプタン/EtOAc 90/10~50/50)により精製した。生成物を含有する画分を合わせ、蒸発させて、0.229gの黄色発泡体得た。黄色発泡体をEtO中で音波処理した。沈殿物を濾別し、146mgの化合物125を白色固体(33%)として得た。
H NMR(500MHz,DMSO-d6)δ ppm 9.29(d,J=7.2Hz,1H),8.53-8.61(m,1H),7.38(br s,1H),7.34(br t,J=8.7Hz,1H),7.17-7.28(m,3H),4.49(br d,J=5.9Hz,2H),4.08-4.12(m,2H),3.65(br t,J=4.9Hz,2H),3.01(br q,J=7.4Hz,2H),1.27(br t,J=7.4Hz,3H)
化合物130の合成
Figure 2022548247000111
中間体AF-1の調製
従って、中間体AC-1と同じ方法で2-アミノ-5-フルオロピリミジン(CAS[1683-85-8]、17.68mmol)から出発して中間体AF-1を調製し、1.18g(27%)を得た。
中間体AF-2の調製
中間体AF-1(1.1g、4.64mmol)のEtOH(24mL)及び水(24mL)中溶液に、炭酸カリウム(3.2g、23.2mmol)を添加し、混合物を65℃で加熱し、3時間撹拌した。(代替条件を上記スキームに示した。) 混合物を3MのHClでpH=1まで酸性化し(沈殿物は発生しなかった)、次いで真空中で蒸発させた。残渣をEtOH/水(1:1)と溶解させて、音波処理し、次いで濾別し(沈殿物にはKCOのみが含まれていた)、濾液を濃縮し、次いでDCMで2回蒸発させて0.92gの中間体AF-2を褐色の固体(95%)として得た。粗製をそのまま使用した。
化合物130の調製
従って、化合物124と同じ方法で中間体AF-2(0.96mmol)及び中間体AA-3から出発して化合物130を調製し、白色固体0.194g(39%)を得た。
H NMR(400MHz,DMSO-d6)δ ppm 9.39-9.48(m,1H),8.77-8.89(m,1H),8.50-8.59(m,1H),7.17-7.42(m,4H),4.52(br d,J=4.4Hz,2H),4.07-4.13(m,2H),3.62-3.68(m,2H),3.05(br q,J=7.2Hz,2H),1.29(br t,J=7.5Hz,3H)
化合物131の合成
Figure 2022548247000112
中間体AG-1の調製
2H,3H-フロ[2,3-c]ピリジン-5-アミン(CAS[1785357-12-1]、500mg、3.67mmol)のACN(8.4mL)中溶液に、オキソ吉草酸エチル(1.05mL、7.35mmol)及び四臭化ホウ素(2.44g、7.35mmol)を添加し、反応混合物を80℃で18時間撹拌した。反応混合物をEtOAcで希釈し、有機層を水及びブラインで洗浄し、MgSO上で乾燥させ、濾別し、濃縮して、分取LC(不定形SiOH、15~40μm、40g、液体充填材(DCM)、移動相勾配:ヘプタン/EtOAc:100/0~0/100 10CVで 次いで、EtOAc100% 5CVで)により精製した。生成物を含有する画分を合わせ、蒸発させて、0.21gの中間体AG-1(22%)を得た。
中間体AG-2の調製
中間体AG-1(186mg、0.715mmol)、水性の3M NaOH(1.19mL、3.57mmol)、及びMeOH(2mL)の混合物を、60℃で2日間撹拌した。混合物を蒸発させて、0.33gの中間体AG-2(純度を推定して定量的収率を得た)を得た。
化合物131の調製
従って、化合物124と同じ方法で中間体AG-2(0.71mmol)及び中間体AA-3から出発して化合物131を調製し、白色固体0.09g(23%)を得た。
H NMR(400MHz,DMSO-d6)δ ppm 8.50(s,1H),8.19-8.32(m,1H),7.47(s,1H),7.38(br s,1H),7.29-7.36(m,1H),7.14-7.25(m,2H),4.61(t,J=8.2Hz,2H),4.47(br d,J=5.7Hz,2H),4.09(br t,J=4.3Hz,2H),3.65(t,J=4.7Hz,2H),3.25-3.32(m,2H),2.94(q,J=7.5Hz,2H),1.24(t,J=7.5Hz,3H)
化合物134の合成
Figure 2022548247000113
中間体AH-1の調製
6-ブロモ-1,3-ジオキソロ[4,5-c]-ピリジン(CAS[2230730-23-9]、3.87g、19.2mmol)の乾燥トルエン(100mL)中溶液を、Nでcした(3回)。Pd(dba)(1.75g、1.92mmol)及びCyJohnPhos(2.80g、7.66mmol)を添加し、反応混合物をNで脱気した(3回)。次いで、LiHMDS(THF中1.0M)(23mL、23mmol)を室温で滴加し、反応混合物を60℃で18時間撹拌した。反応混合物をEtOAc、水中に希釈させ、HCl水溶液(1N)で酸性化した。水層をEtOAcで抽出した(2回)。次いで、水層をNaOH溶液(3M)で塩基性化し、EtOAcで抽出した(3回)。合わせた有機層をMgSO上で乾燥させ、濾別し、蒸発させて、1.84gの中間体AH-1を褐色固体(70%)として得た。
中間体AH-2の調製
従って、中間体AB-1と同じ方法で中間体AH-1(3.62mmol)から出発して中間体AH-2を調製し、0.165g(17%)を得た。
中間体AH-3の調製
従って、中間体AB-2と同じ方法で中間体AH-2(0.95mmol)から出発して中間体AH-3を調製し、0.421g(純度を推定して定量的収率を得た)を得た。
化合物134の調製
従って、化合物124と同じ方法で中間体AH-3(0.45mmol)及び中間体AA-3から出発して化合物134を調製し、白色固体0.194g(84%)を得た。
H NMR(400MHz,DMSO-d6)δ ppm 8.62(br s,1H),8.24(t,J=6.0Hz,1H),7.38(s,1H),7.34(t,J=8.6Hz,1H),7.14-7.24(m,2H),7.08(s,1H),6.16(br s,2H),4.47(br d,J=5.8Hz,2H),4.07-4.12(m,2H),3.65(br t,J=4.6Hz,2H),2.91(q,J=7.5Hz,2H),1.23(t,J=7.5Hz,3H)
化合物161の合成
Figure 2022548247000114
中間体AI-1の調製
2-アミノ-5-ブロモピリミジン(10.0g;57.5mmol)を乾燥2-MeTHF(250mL)中に懸濁した。3-オキソ吉草酸エチル(8.2mL、57.5mmol、1eq.)及びヨードベンゼンジアセテート(18.5g、57.5mmol、1eq.)を添加した。次いで、三フッ化ホウ素エーテレート(0.75mL、2.87mmol、0.05eq.)を滴加し、反応混合物を60℃で1.5時間撹拌した。追加量の3-オキソ吉草酸エチル-エチル(4.10mL、28.7mmol、0.5eq.)、ヨードベンゼンジアセテート(9.25g、28.7mmol、0.5eq.)、及び三フッ化ホウ素エーテレート(0.75mL、2.87mmol、0.05eq.)を室温で添加し、混合物を60℃で1時間撹拌した。混合物を室温まで冷却し、次いでEtOAc及び水を添加した。有機層を分離し、NaHCO飽和溶液(2回)、次いでブライン(2回)で洗浄した。有機層をMgSO上で乾燥させ、濾別し、蒸発させて、19.7gを褐色油として得た。粗製を分取LC(不定形SiOH、15~40μm、330g、乾燥充填材(SiOH)、移動相勾配:DCM100%~DCM85%、EtOAc15%)により精製して、中間体AI-1、9.03gを黄色の結晶(53%)として得た。
中間体AI-2の調製
下の密閉チューブ内で、N2下で脱気した中間体AI-1(500mg、1.68mmol)及びPd(PPh(96.9mg、0.084mmol)のTHF(12mL)中溶液に、ヘキサン中2mのトリエチルアルミニウム(2eq.、1.68mL、3.35mmol)を添加した。混合物をN2で再度パージし、65℃で1時間加熱した。追加量のヘキサン中2mのトリエチルアルミニウム(1eq.、0.839mL、1.68mmol)を添加し、混合物を65℃で1時間撹拌した。混合物をDCMで希釈し、0℃まで冷却し、1mLの水を注意深く添加した。混合物を室温で一晩撹拌し、次いでMgSOを添加した。撹拌しながら30分後、混合物をcelite(登録商標)プラグで濾過し、蒸発させて、412mgのオレンジ色のガムを得た。粗製を分取LC(定形SiOH、30μm、40g、乾燥充填材(celite(登録商標))、移動相溶離液:ヘプタン95%、EtOAc5%~ヘプタン50%、EtOAc50%)により精製した。生成物を含有する画分を合わせ、濃縮して、中間体AI-2である354mgの黄色ガム(90%)を得た。
中間体AI-3の調製
中間体AI-2(120mg、0.514mmol)の水(1mL)及びEtOH(4mL)中溶液に、NaOH(62mg、1.55mmol)を添加し、混合物を室温で一晩撹拌した。混合物を蒸発させ、次いでEtOHと共蒸発させて、中間体AI-3、190mgを黄色固体として得た。粗製をそのまま次の工程で使用した。
化合物161の調製
中間体AI-3(190mg、0.518mmol)、HATU(280mg、0.736mmol)、DIPEA(0.163mL、0.958mmol)、及びDMF(2.5mL)の混合物を、室温で15分間撹拌し、次いで中間体AA-3(180mg、0.473mmol)を添加し、3日間にわたって撹拌を続けた。DMFを蒸発させた。残渣をDCM及び水中に溶解させ、次いでNaHCOの飽和水溶液(2回)、ブライン(2回)で洗浄し、MgSO上で乾燥させ、濾別し、濃縮した。粗製(m=378mg)を分取LC(定形SiOH、30μm、24g、移動相勾配:ヘプタン85%、EtOAc/MeOH(9:1)15%~ヘプタン25%、EtOAc/MeOH(9:1)75)により精製した。生成物を含有する画分を合わせ、濃縮して、277mgを白色固体として得た。固体をEtOAcから再結晶化し、濾別し、高真空下で乾燥させて、162mgの化合物161を白色固体(54%)として得た。
H NMR(400MHz,DMSO-d6)δ ppm 9.15(d,J=1.2Hz,1H),8.52(br d,J=2.3Hz,1H),8.44-8.49(m,1H),7.38(br s,1H),7.34(m,J=8.6Hz ,1H),7.17-7.27(m,2H),4.50(br d,J=5.9Hz,2H),4.07-4.13(m,2H),3.65(br t,J=4.6Hz,2H),3.01(q,J=7.5Hz,2H),2.34(br s,3H),1.28(t,J=7.5Hz,3H)
化合物162、148、及び151の合成
Figure 2022548247000115
中間体AJ-1の調製
反応は、窒素雰囲気下の無水条件下で実施した。N下5℃の3-フルオロ-5-メチルピリジン-2-アミン(2.00g、15.9mmol)の2-MeTHF(60mL)中溶液に、プロピオニル酢酸エチル(3.60mL、24.8mmol)、ヨードベンゼンジアセテート(7.80g、24.2mmol)、及び三フッ化ホウ素エーテレート(200μL、1.62mmol)を添加した。反応物を5℃で1時間、次いで室温で48時間撹拌した。EtOAc(200mL)及び水(200mL)を添加した。層を分離し、有機層をNaHCO飽和水溶液(200mL)、ブライン(2×100mL)で洗浄し、NaSO上で乾燥させ、濾過し、蒸発させて、4.92gを褐色のペーストとして得た。粗製を分取LC(SiOH、120g、50μm、溶離液:シクロヘキサン/EtOAc、95:05~50:5)により精製し、生成物を含有する画分を回収し、蒸発させ、ペンタン(2×20mL)でトリチュレートし、1.68gの中間体AJ-1を白色固体(42%)として得た。
中間体AJ-2の調製
中間体AJ-1(500mg、2.00mmol)の水(12.5mL)及びEtOH(12.5mL)中溶液に、NaOH(275mg、6.880mmol)を添加した。反応混合物を40℃で16時間撹拌した。粗製をDCM(30mL)及びEtOAc(30mL)で洗浄し、水相をHCl水溶液(3N)でpH=2になるまで酸性化した。形成した沈殿物を真空下で焼結ガラスを使用して回復させ、水(2×2mL)で洗浄し、50℃の真空チャンバ中で一晩乾燥させて、415mgの中間体AJ-2をオフホワイト色の固体(93%)として得た。
化合物162の調製
従って、化合物161と同じ方法で中間体AJ-2(0.36mmol)及び中間体AA-3から出発して化合物162を調製し、0.113g(48%)白色固体として得た。
H NMR(400MHz,DMSO-d6)δ ppm 8.61(br s,1H),8.53(br t,J=5.9Hz,1H),7.31-7.40(m,2H),7.17-7.27(m,3H),4.50(d,J=5.9Hz,2H),4.10(br t,J=4.5Hz,2H),3.65(br t,J=4.5Hz,2H),2.98(q,J=7.5Hz,2H),2.31(s,3H),1.26(t,J=7.5Hz,3H)
中間体AK-1の調製
従って、中間体AJ-1と同じ方法で2-アミノ-3,5-ジフルオロピリジン(CAS[732306-31-9]、15.37mmol)から出発して中間体AK-1を調製し、0.89g(23%)を白色固体として得た。
中間体AK-2の調製
従って、中間体AJ-2と同じ方法で中間体AK-1(1.97mmol)から出発して中間体AK-2を調製し、0.345g(78%)を得た。
化合物148の調製
従って、化合物161と同じ方法で中間体AK-2(0.35mmol)及び中間体AA-3から出発して化合物148を調製し、0.189g(82%)を白色固体として得た。
H NMR(500MHz,DMSO-d6)δ ppm 8.92(dd,J=4.7,1.8Hz,1H),8.58(t,J=5.9Hz,1H),7.64-7.74(m,1H),7.38(br s,1H),7.35(t,J=8.5Hz,1H),7.18-7.27(m,2H),4.50(d,J=5.9Hz,2H),4.10(br t,J=4.7Hz,2H),3.65(t,J=4.9Hz,2H),3.01(q,J=7.5Hz,2H),1.27(t,J=7.6Hz,3H)
中間体AL-1の調製
従って、中間体AJ-1と同じ方法で2-アミノ-5-クロロ-3-フルオロピリジン(CAS[20712-16-7]、17.06mmol)から出発して中間体AL-1を調製し、0.52g(11%)を白色固体として得た。
中間体AL-2の調製
従って、中間体AJ-2と同じ方法で中間体AL-1(1.77mmol)から出発して中間体AL-2を調製し、0.26g(60%)を得た。
化合物151の調製
従って、化合物161と同じ方法で中間体AL-2(0.43mmol)及び中間体AA-3から出発して化合物151を調製し、0.104g(38%)を白色固体として得た。
H NMR(400MHz,DMSO-d6)δ ppm 8.92(d,J=1.0Hz,1H),8.58-8.67(m,1H),7.63(dd,J=10.6,1.4Hz,1H),7.31-7.40(m,2H),7.17-7.28(m,2H),4.51(br d,J=5.6Hz,2H),4.07-4.13(m,2H),3.65(t,J=4.6Hz,2H),3.01(q,J=7.4Hz,2H),1.27(t,J=7.4Hz,3H)
化合物145及び144の合成
Figure 2022548247000116
中間体AM-1の調製
従って、AJ-1と同じ方法で2-アミノ-5-クロロピリジン(CAS[1072-98-6]、3.89mmol)及び4,4-ジフルオロ-3-オキソ酪酸エチル(CAS[352-24-9])から出発して中間体AM-1を調製し、0.248g(23%)を白色固体として得た。
中間体AM-2の調製
従って、中間体AJ-2と同じ方法で中間体AM-1(0.73mmol)から出発して中間体AM-2を調製し、0.175g(96%)を得た。
化合物145の調製
従って、化合物161と同じ方法で中間体AM-2(0.39mmol)及び中間体AA-3から出発して化合物145を調製し、0.164g(64%)を白色固体として得た。
H NMR(500MHz,DMSO-d6)δ ppm 9.04(s,1H),8.88-8.96(m,1H),7.83(dd,J=9.6,1Hz,1H),7.61(dd,J=9.6,2.1Hz,1H),7.46-7.47(m,1H),7.33-7.40(m,2H),7.19-7.30(m,2H),4.51-4.54(m,2H),4.08-4.12(m,2H),3.66(br t,J=4.9Hz,2H)
中間体AN-1の調製
従って、AJ-1と同じ方法で5-クロロ-4-フルオロピリジン-2-アミン(CAS[1393574-54-3]、6.82mmol)及び4,4-ジフルオロ-3-オキソ酪酸エチル(CAS[352-24-9])から出発して中間体AN-1を調製し、0.57g(28%)を白色固体として得た。
中間体AN-2の調製
従って、中間体AJ-2と同じ方法で中間体AN-1(0.85mmol)から出発して中間体AN-2を調製し、0.145g(64%)を得た。
化合物144の調製
従って、化合物161と同じ方法で中間体AM-2(0.41mmol)及び中間体AA-3から出発して化合物144を調製し、0.204g(72%)を白色固体として得た。
H NMR(500MHz,DMSO-d6)δ ppm 9.09(d,J=7.2Hz,1H),9.03-9.07(m,1H),7.98(d,J=9.6Hz 1H),7.20-7.40(m,4H),4.52(br d,J=4.6Hz,2H),4.09-4.13(m,2H),3.65-3.68(m,2H),2.53(br s,1H)
化合物138、139、及び140、並びに化合物143の合成
Figure 2022548247000117
中間体AO-1の調製
従って、AJ-1と同じ方法で4-ブロモ-5-メチルピリジン-2-アミン(CAS[1033203-32-5]、5.35mmol)及び3-オキソ吉草酸エチル(CAS[4949-44-4])から出発して中間体AO-1を調製し、0.88g(50%)を白色固体として得た。
中間体AO-2の調製
従って、中間体AJ-2と同じ方法で中間体AO-1(0.48mmol)から出発して中間体AO-2を調製し、0.205g(78%)を得た。
中間体AO-3の調製
従って、化合物161と同じ方法で中間体AO-2(0.49mmol)及び中間体AA-3から出発して中間体AO-3を調製し、0.27g(71%)を白色固体として得た。
化合物138の調製
中間体AO-3(210mg、0.347mmol)、ベンゾフェノンイミン(116μL、0.694mmol)、炭酸セシウム(226mg、0.694mmol)、及び1,4-ジオキサン(1.75mL)の混合物を、Nでパージし、Pd(OAc)(3.9mg、0.017mmol)、及びBINAP(21.6mg、0.0347mmol)を添加した。混合物をNでパージし、100℃で18時間撹拌した。混合物をcelite(登録商標)パッドで濾過し、ケーキをEtOAcで洗浄した。次いで、有機層を濃縮し、残渣を1,4-ジオキサン(2.5mL)及び1Mの水性HCl(2.5mL)中で室温にて16時間撹拌した。混合物をEtOAcで希釈し、NaHCO飽和水溶液でゆっくりとクエンチした。層を分離し、水層をEtOAcで抽出した(2回)。有機層を合わせ、MgSO上で乾燥させ、濾別し、蒸発させた。残渣を分取LC(定形SiOH 30μm、24g、移動相溶離液:ヘプタン90%、EtOAc/MeOH/aq.NH(90:9.5:0.5)10%~ヘプタン20%、EtOAc/MeOH/aq.NH(90:9.5:0.5)80%)により精製した。生成物を含有する画分を合わせ、濃縮して、0.125gを白色固体として得た。この固体をEtOAcから再結晶化し、濾別し、高真空下で乾燥させて、97mgの化合物138を白色固体(52%)として得た。
H NMR(400MHz,DMSO-d6)δ ppm 8.61-8.70(m,1H),7.89(t,J=6.0Hz,1H),7.38(s,1H),7.32(t,J=8.5Hz,1H),7.14-7.22(m,2H),6.46-6.47(m,1H),5.69-5.72(m,2H),4.44(br d,J=5.8Hz,2H),4.10(br t,J=4.3Hz,2H),3.64(t,J=4.6Hz,2H),2.87(q,J=7.5Hz,2H),2.08(s,3H),1.21(t,J=7.5Hz,3H)
中間体AP-1の調製
従って、AJ-1と同じ方法で4,5-ジメチルピリジン-2-アミン(CAS[57963-11-8]、4.09mmol)及び3-オキソ吉草酸エチル(CAS[4949-44-4])から出発して中間体AP-1を調製し、0.73g(72%)を白色固体として得た。
中間体AP-2の調製
従って、中間体AJ-2と同じ方法で中間体AP-1(0.81mmol)から出発して中間体AP-2を調製し、0.3g(定量的)を得た。
化合物139の調製
従って、化合物161と同じ方法で中間体AP-2(0.49mmol)及び中間体AA-3から出発して化合物139を調製し、0.142g(58%)を白色固体として得た。
H NMR(500MHz,DMSO-d6)δ ppm 8.78(br s,1H),8.24(t,J=5.9Hz,1H),7.38(s,2H),7.34(t,J=8.5Hz,1H),7.16-7.25(m,2H),4.48(d,J=5.9Hz,2H),4.10(br t,J=4.7Hz,2H),3.65(t,J=4.5Hz,2H),2.95(q,J=7.5Hz,2H),2.30(s,3H),2.22(s,3H),1.25(t,J=7.5Hz,3H)
中間体AQ-1の調製
従って、AJ-1と同じ方法で4-クロロ-5-メチルピリジン-2-アミン(CAS[1033203-31-4]、7.01mmol)及び3-オキソ吉草酸エチル(CAS[4949-44-4])から出発して中間体AQ-1を調製し、0.39g(20%)を白色固体として得た。
中間体AQ-2の調製
従って、中間体AJ-2と同じ方法で中間体AQ-1(0.45mmol)から出発して中間体AQ-2を調製し、0.15g(定量的)を得た。
化合物140の調製
従って、化合物161と同じ方法で中間体AQ-2(0.45mmol)及び中間体AA-3から出発して化合物140を調製し、0.23g(68%)を白色粉末として得た。
H NMR(500MHz,DMSO-d6)δ ppm 8.95(s,1H),8.45(br t,J=5.9Hz,1H),7.81(br s,1H),7.38(br s,1H),7.34(t,J=8.5Hz,1H),7.17-7.26(m,2H),4.50(d,J=5.9Hz,2H),4.10(br t,J=4.4Hz,2H),3.65(t,J=4.7Hz,2H),2.97(q,J=7.3Hz,2H),2.32(s,3H),1.26(t,J=7.4Hz,3H)
中間体AR-1の調製
従って、AJ-1と同じ方法で4-ブロモ-5-クロロピリジン-2-アミン(CAS[1187449-01-9]、9.64mmol)及び3-オキソ吉草酸エチル(CAS[4949-44-4])から出発して中間体AR-1を調製し、0.655g(21%)を得た。
中間体AR-2の調製
従って、中間体AJ-2と同じ方法で中間体AR-1(2.05mmol)から出発して中間体AR-2を調製し、0.94g(定量的)を得た。
中間体AR-3の調製
従って、化合物161と同じ方法で中間体AR-2(2.06mmol)及び中間体AA-3から出発して中間体AR-3を調製し、0.42g(33%)をオフホワイト色の固体として得た。
化合物143の調製
従って、化合物138と同じ方法で中間体AR-3(0.4mmol)から出発して化合物143を調製し、0.08g(33%)を白色固体として得た。
H NMR(400MHz,DMSO-d6)δ ppm 9.03(s,1H),8.01(t,J=5.7Hz,1H),7.38(s,1H),7.33(t,J=8.6Hz,1H),7.15-7.24(m,2H),6.63(br s,1H),6.12(br s,2H),4.45(d,J=5.9Hz,2H),4.07-4.12(m,2H),3.64(t,J=4.5Hz,2H),2.90(q,J=7.5Hz,2H),1.22(t,J=7.5Hz,3H)
化合物126の合成
Figure 2022548247000118
中間体AS-1の調製
0℃の4,5-ジクロロピリミジン-2-アミン(CAS[403854-21-7]、12.5g、76.2mmol)のMe-THF(315mL)中溶液に、ヨードベンゼンジアセテート(73.7g、229mmol)及び3-オキソ吉草酸エチル(16.5mL、116mmol)を添加した。次いで、三フッ化ホウ素エーテレート(1.92mL、15.2mmol)を滴加した。混合物を5℃で1時間、次いで室温で16時間撹拌した。追加の三フッ化ホウ素エーテレート(1.92mL、15.2mmol)を滴加し、反応混合物を室温で28時間撹拌した。EtOAc及び水を添加した。有機層をブラインで洗浄し、MgSO上で乾燥させ、蒸発させて褐色油を得た。油を分取LC(不定形SiOH、15~40μm、330g、勾配:ヘプタン100%~ヘプタン/EtOAc75/25)により精製した。生成物を含有する画分を合わせ、蒸発させて、黄色混合物を得て、これをペンタン中でトリチュレートした。上清をピペットで除去し、残渣を真空下で乾燥させ、1.16gの中間体AS-1を白色固体(5%)として得た。上清を蒸発させて、黄色混合物を得た。上清をピペットで除去し、5.02gの中間体AS-1を黄色ペースト(32%)として得た。
中間体AS-2の調製
中間体AS-1(5.02g、5.58mmol、純度32%)、4-メトキシベンジルアミン(CAS[2393-23-9]、2.19mL、16.7mmol)、及び1,4-ジオキサン(16mL)の混合物を、100℃で1時間撹拌した。混合物を蒸発させ、分取LC(不定形SiOH、15~40μm、120g、乾燥充填材(celite(登録商標))、移動相勾配:ヘプタン/EtOAc:70/30~30/70)により精製した。生成物を含有する画分を合わせ、蒸発させて、1.6gの中間体AS-2(74%)を得た。
中間体AS-3の調製
中間体AS-2(0.900g、2.31mmol)、NaOH(278mg、6.94mmol)、及びMeOH(9.2mL)の混合物を60℃で40時間撹拌した。混合物を蒸発させて、1.05gの中間体AS-3(定量的)を得た。
中間体AS-4の調製
中間体AS-3(1.05g、2.30mmol、純度84%)、EDCI.HCl(0.8783g、4.61mmol)、HOBT.H0(0.706mg、4.61mmol)、DIPEA(1.19mL、6.91mmol)、及びDMF(35mL)の混合物を、50℃で30分間撹拌した。中間体AA-3(865mg、2.42mmol)を添加し、混合物を室温で18時間撹拌した。反応混合物をEtOAcで希釈し、有機層を水及びブラインで洗浄し、MgSO上で乾燥させ、濾別し、濃縮して、分取LC(不定形SiOH、15~40μm、120g、移動相勾配:ヘプタン/EtOAc 50/50~0/100)により精製した。生成物を含有する画分を合わせ、蒸発させて、560mgの中間体AS-4(36%)を得た。
化合物126の調製
中間体AS-4(560mg、0.820mmol)、TFA(4.5mL)、及びDCE(4.5mL)の混合物を、80℃で20時間撹拌した。混合物を蒸発させて、分取LC(球形 C18 25μm、120g YMC-ODS-25、液体充填材(DMSO)、移動相勾配0.2%aq.NH HCO /MeCN 75:25~20:80)により精製した。生成物を含有する画分を合わせ、蒸発させて、白色固体としての204mg、及び350mgの不純な所望の生成物を得た。この第2の画分を分取LC(球状 C18 25μm、120g YMC-ODS-25、液体充填材(DMSO)、移動相勾配0.2% aq.NH HCO /MeCN 75:25~20:80)により精製した。生成物を含有する画分を蒸発させて、65mgを白色固体として得た。純化合物の画分を還流状態にてEtOAcと溶解させた。混合物をゆっくりと撹拌しながらゆっくりと室温まで冷却した。沈殿物を濾過し、0.355gの化合物126を白色固体(93%)として得た。
H NMR(500MHz,DMSO-d6)δ ppm 9.06(s,1H),8.12(t,J=6.0Hz,1H),6.99-7.64(m,6H),4.45(d,J=6.0Hz,2H),4.09(br d,J=5.2Hz,2H),3.64(t,J=4.7Hz,2H),2.87(q,J=7.4Hz,2H),1.21(t,J=7.5Hz,3H)
化合物155の合成
Figure 2022548247000119
中間体AT-1の調製
従って、AJ-1と同じ方法で5-クロロ-4-メチルピリミジン-2-アミン(CAS[40439-76-7]、6.96mmol)及び3-オキソ吉草酸エチル(CAS[4949-44-4])から出発して中間体AT-1を調製し、0.37g(20%)を白色固体として得た。
中間体AT-2の調製
従って、中間体AJ-2と同じ方法で中間体AT-1(0.37mmol)から出発して中間体AT-2を調製し、0.165g(定量的)を得た。
化合物155の調製
従って、化合物161と同じ方法で中間体AT-2(0.38mmol)及び中間体AA-3から出発して化合物155を調製し、0.055g(26%)を白色粉末として得た。
H NMR(500MHz,DMSO-d)δ ppm 9.35(br s,1H),8.48(t,J=6.1Hz,1H),7.30-7.40(m,2H),7.16-7.28(m,2H),4.50(br d,J=5.6Hz,2H),4.06-4.13(m,2H),3.65(br t,J=4.5Hz,2H),3.01(q,J=7.5Hz,2H),2.62(s,3H),1.27(t,J=7.5Hz,3H)
化合物150の合成
Figure 2022548247000120

HATU(0.097g、0.26mmol)を、N下の2-(トリフルオロメチル)-イミダゾ[1,2-A]ピリジン-3-カルボン酸(CAS[73221-19-9]、0.051g、0.22mmol)及びDIPEA(0.096mL、0.56mmol)の乾燥Me-THF(1.5mL)及びDCM(0.5mL)中溶液に添加した。溶液を室温で15分間撹拌した。次いで中間体N3(0.095g、0.24mmol)を添加し、反応混合物を室温で16時間撹拌した。次いで、溶媒を蒸発させ、残渣を酢酸エチル中に希釈し、NaHCOの飽和水溶液、水、次いでブラインで洗浄した。有機層をMgSO4上で乾燥させ、濾過し、真空中で蒸発させて、黄色油0.314gを得た。シリカゲルのフラッシュクロマトグラフィー(12g、不定形SiOH 25~40μM、DCM/MeOH 100/0~97/3)により、精製を行った。純粋画分を回収し、蒸発させて0.119gを白色の発泡体として得た。これをDIPE及び少しのヘプタンでトリチュレートし、沈殿物を濾別し、60℃にて真空下で乾燥させ、化合物150を白色粉末0.103g(82%)として得た。
H NMR(500MHz,DMSO-d)δ ppm 9.21(br t,J=5.3Hz,1H),8.53(br d,J=6.7Hz,1H),7.79(br d,J=9.0Hz,1H),7.55(br t,J=7.8Hz,1H),7.29(br d,J=8.4Hz,2H),7.13-7.22(m,3H),4.47(br d,J=5.5Hz,2H),4.07-4.15(m,2H),3.86(s,3H),3.76(br t,J=4.6Hz,2H)
化合物88の合成
Figure 2022548247000121

従って、化合物150と同じ方法で2-(ジフルオロメチル)-イミダゾ[1,2-A]ピリジン-3-カルボン酸(CAS[2059954-47-9]、0.23mmol)及び中間体N3から出発して化合物88を調製し、白色粉末0.104g(86%)を得た。
H NMR(500MHz,DMSO-d)δ ppm 8.94(br t,J=5.1Hz,1H),8.79(d,J=7.0Hz,1H),7.76(d,J=9.0Hz,1H),7.52(t,J=7.9Hz,1H),7.19-7.43(m,3H),7.14-7.19(m,3H),4.47(br d,J=5.2Hz,2H),4.07-4.14(m,2H),3.85(s,3H),3.71-3.79(m,2H)
化合物200の調製
Figure 2022548247000122

従って、化合物150と同じ方法で中間体AI-3(0.64mmol)及び中間体N3(0.51mmol)から出発して化合物200を調製し、白色粉末0.085g(31%)を得た。
H NMR(400MHz,DMSO)d 9.15-9.11(m,1H),8.51(d,J=2.3Hz,1H),8.41(t,J=5.9Hz,1H),7.29(d,J=8.7Hz,2H),7.15(d,J=8.7Hz,2H),4.45(d,J=5.8Hz,2H),4.15-4.06(m,2H),3.85(s,3H),3.76-3.70(m,2H),2.98(q,J=7.5Hz,2H),2.34(s,3H),1.26(t,J=7.5Hz,3H).
化合物169及び化合物180の合成
Figure 2022548247000123
中間体AU-1の調製
スクリュートップバイアル内で、室温のプロピオニル酢酸エチル(0.105g、0.73mmol)、5H,6H,8H-ピラノ[3,4-d]ピリミジン-2-アミン(CAS[1781072-41-0]、0.11g、0.73mmol)、炭酸水素カリウム(0.08g、0.8mmol)、及びブロモトリクロロメタン(0.143mL、1.45mmol)のアセトニトリル(12mL)中混合物を、80℃で16時間撹拌した。更なるプロピオニル酢酸エチル(0.105g、0.73mmol)、炭酸水素カリウム(0.08g、0.8mmol)、及びブロモトリクロロメタン(0.143mL、1.45mmol)を混合物に添加し、これを80℃で24時間撹拌した。次いで、混合物をEtOAcで希釈し、sat.NaHCOaq.溶液で洗浄した(3×)。有機層をMgSO上で乾燥させ、濾過し、真空中で濃縮した。粗製を、シリカゲルのフラッシュカラムクロマトグラフィー(12g、EtOAc/ヘプタン 0/100~100/0)により精製した。所望の画分を回収し、溶媒を真空中で蒸発させて、中間体AU-1を黄色の粘性固体として得た(0.084g、42%)。
中間体AU-2の調製
スクリュートップバイアル内で、15%の炭酸カリウム水溶液(0.8mmol、0.87mmol)を、室温で中間体AU-1のEtOH(4mL)中溶液上に添加した。反応混合物を75℃で加熱し、36時間撹拌した。次いで、2MのHCl水溶液をpH3まで添加し、溶媒を真空中で蒸発させて、中間体AU-2をオレンジ色の固体として得て、これを更に精製することなく次の工程で使用した(0.18g、定量的)/
化合物169の調製
従って、化合物161と同じ方法で中間体AU-2(0.41mmol)及び中間体AA-3から出発して化合物169を調製し、0.051g(28%)を白色粉末として得た。
1H NMR(400MHz,CDCl3)δ ppm 9.54(s,1H),7.44(t,J=8.5Hz,1H),7.19(s,1H),7.16-7.05(m,2H),6.18(br t,J=5.6Hz,1H),4.84(s,2H),4.64(d,J=5.8Hz,2H),4.13-4.05(m,2H),4.02(t,J=5.7Hz,2H),3.71-3.63(m,2H),3.05-2.89(m,4H),1.45(t,J=7.5Hz,3H).
化合物180の調製
従って、化合物161と同じ方法で中間体AU-2(0.081mmol)及び中間体R-7から出発して化合物180を調製し、0.012g(30%)を白色粉末として得た。
H NMR(400MHz,CDCl3)δ ppm 9.54(s,1H),7.46(t,J=8.6Hz,1H),7.10(m,2H),6.17(br t,J=5.5Hz,1H),4.84(s,2H),4.63(d,J=5.8Hz,2H),4.15-4.05(m,2H),4.02(t,J=5.7Hz,2H),3.89(s,3H),3.65-3.55(m,2H),3.07-2.92(m,4H),1.45(t,J=7.5Hz,3H).
化合物177の合成
Figure 2022548247000124
中間体AV-1の調製
反応物を、それぞれ1.5gの2つのバッチに分けた。2,4-ジメトキシベンジルアミン(CAS[20781-20-8]、2.97mL、19.76mmol)を、0℃で窒素下の丸底フラスコ内の2,4-ジクロロ-5-フルオロピリミジン(CAS[2927-71-1]、3g、17.97mmol)及びトリエチルアミン(3mL、21.5mmol)の乾燥THF中溶液に滴加した。反応混合物を室温まで16時間温め、混合物をNaHCO飽和水溶液で希釈し、EtOAcで抽出した。有機層を分離し、MgSOで乾燥させ、濾過し、溶媒を真空中で蒸発させた。粗生成物を、シリカゲルのフラッシュカラムクロマトグラフィー(80g、ヘプタン中酢酸エチル 100/0~20/80)により精製した。所望の画分を回収し、真空中で濃縮し、中間体AV-1をベージュ色の固体4.8g(85%)として得た。
中間体AV-2の調製
反応物を、それぞれ2.4gの2つのバッチに分けた。トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.7g、0.77mmol)及びXPhos(0.73g、1.53mmol)を、ガラス製の圧力ボトルで窒素をバブリングしながら、AV-1(4.32g、15.32mmol)の乾燥ジオキサン(31mL)中溶液に添加した。次いで、THF中の1M リチウムビス(トリメチルシリル)アミド溶液(33.7mL、33.7mmol)を滴加し、得られた溶液を80℃で3時間加熱した。トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.7g、0.77mmol)、XPhos(0.73g、1.53mmol)、及びTHF中の1M リチウムビス(トリメチルシリル)アミド溶液(33.7mL、33.7mmol)を、窒素をバブリングながら添加し、反応混合物を80℃で16時間加熱した。反応物を1NのHCl溶液で酸性化し、30分間撹拌した。次いで得られた物をEtOAcで抽出した。水層を1NのNaOH溶液で中和し、DCMで抽出した。有機層を分離し、乾燥させ(MgSO)、濾過し、溶媒を真空中で蒸発させて、中間体AV-2を褐色固体3.4g(76%)として得た。
中間体AV-3の調製
反応は、同量の反応性AV-2を用いて2つのバッチで設定された。重炭酸カリウム(0.6g、6.04mmol)及びプロピオニル酢酸エチル(0.89mL、6.04mmol)を、rtで、スクリュートップバイアル内のAV-2(1.12g、4.02mmol)のACN(8.1mL)中溶液に添加した。次いで、ブロモトリクロロメタン(1.19mL、12.07mmol)を室温で添加し、混合物を80℃で16時間撹拌した。バッチを混合して一緒に処理した。混合物を水で希釈し、EtOAcで抽出した。有機層を乾燥させ(MgSO4)、濾過し、真空中で濃縮した。粗製を、シリカゲルのフラッシュクロマトグラフィーカラム(25g;ヘプタン中EtOAc 0/100~35/65)により精製した。所望の画分を回収し、真空中で濃縮し、中間体AV-3を黄色発泡体固体0.42g(22%)として得た。
中間体AV-4の調製
TFA(9.64mL、128.43mmol)を、0℃の丸底フラスコ内のAV-3(1.06g、2.37mmol)に添加した。混合物を室温で16時間撹拌した。混合物をNaHCO飽和水溶液で中和し、DCMで抽出した。有機層を水で洗浄し、真空中で濃縮した。得られたものをDIPEでトリチュレートし、固体を濾過して、中間体AV-4をベージュ色の固体、0.6g(95%)として得た。
中間体AV-5の調製
イソアミルニトリル(CAS[110-46-3]、0.46mL、3.38mmol)及び塩化銅(II)(0.318g、2.36mmol)を、室温で、丸底フラスコ内のAV-4(0.6g、2.25mmol)の乾燥ACN(36mL)中懸濁液に添加した。混合物を還流状態で3時間撹拌した。水を添加し、混合物をEtOAcで抽出した。有機層を分離し、乾燥させ(MgSO)、濾過し、溶媒を真空中で蒸発させた。粗製を、シリカゲルのフラッシュクロマトグラフィーカラム(12g;ヘプタン中EtOAc 0/100~10/90)により精製した。所望の画分を回収し、真空中で濃縮し、中間体AV-5を白色固体0.315g(51%)として得た。
中間体AV-6の調製
鉄(III)アセチルアセトネート(0.051g、0.14mmol)を、0℃にて窒素下の丸底フラスコ内のAV-5(0.39g、1.41mmol)の乾燥THF(8mL)及びNMP(0.7mL)中溶液に添加した。次いで、ジエチルエーテル中の3.0M 臭化メチルマグネシウム溶液(0.71mL、2.12mmol)を滴加し、反応混合物を0℃で30分間撹拌した。TLCは完全な変換を示した。反応物をNHCl飽和水溶液でクエンチした。混合物を酢酸エチルで抽出した。有機層を分離し、MgSO上で乾燥させ、濾過し、溶媒を真空中で蒸発させた。粗生成物を、シリカゲルのフラッシュカラムクロマトグラフィー(12g;ヘプタン中EtOAc 0/100~15/75)により精製した。所望の画分を回収し、真空中で濃縮して、白色固体である中間体AV-6 0.325g(91%)を得た。
中間体AV-7の調製
15%の水性炭酸カリウム(0.88mL、0.96mmol)を、室温でスクリュートップバイアル内のAV-6(0.152g、0.6mmol)のEtOH(2mL)中溶液に添加した。混合物を90℃で18時間撹拌し、15%の水性炭酸カリウム(0.88mL、0.96mmol)を反応混合物に添加した。混合物を90℃で2時間撹拌した。次いで、1MのHCl水溶液をpH7まで添加した。混合物を真空中で濃縮して、中間体AV-7を白色固体(0.188g、定量的)として得た。
化合物177の調製
中間体AA-3(0.158g、0.4mmol)を、室温で、丸底フラスコ内のAV-7(0.187g、0.6mmol)、HATU(0.198g、0.52mmol)、及びDIPEA(0.42mL、2.4mmol)の乾燥DMF(5mL)中溶液に添加した。混合物を室温で1時間撹拌した。NaHCO飽和水溶液を添加し、混合物をEtOAcで抽出した(×3)。合わせた有機層をMgSO上で乾燥させ、濾過し、真空中で濃縮した。粗生成物を、シリカゲルのフラッシュカラムクロマトグラフィー(12g;DCM中(DCM/MeOH 9:1)0/100~10/90)により精製した。所望の画分を回収し、真空中で濃縮した。得られたものをDIPEでトリチュレートし、固体を濾過して、化合物177をベージュ色の固体0.092g(41%)として得た。
H NMR(400MHz,DMSO-d6)δ ppm 9.32(d,J=5.5Hz,1H),8.44(br t,J=5.9Hz,1H),7.38(s,1H),7.34(t,J=8.6Hz,1H),7.25(br d,J=13.2Hz,1H),7.20(br d,J=8.3Hz,1H),4.50(d,J=5.8Hz,2H),4.17-4.02(m,2H),3.72-3.58(m,2H),3.02(q,J=7.5Hz,2H),2.56(d,J=2.7Hz,3H),1.28(t,J=7.5Hz,3H).
化合物142及び化合物181の合成
Figure 2022548247000125
中間体AW-1の調製
6-クロロ-5-フルオロニコチノニトリル(CAS[1020253-14-8]、13.57g、86.68mmol)、n-boc-1,2-ジアミノエタン(CAS[57260-73-8]、17.8mL、113mmol)、及びEtN(48.2mL、347mmol)の乾燥DMSO(155mL)中溶液を、120℃で16時間撹拌した。EtOAc及び水を反応混合物に添加した。層を分離し、有機層をブラインで洗浄し(5回)、MgSO4上で乾燥させ、濾別し、蒸発させてオレンジ色の固体を得た。固体を分取LC(定形SiOH30μm、330g、液体充填材(DCM)、移動相勾配:ヘプタン/EtOAc 95/5~ヘプタン/EtOAc 40/60)により精製した。生成物を含有する画分を合わせ、蒸発させて、22.55gの中間体AW-1を黄色固体(93%収率)として得た。
中間体AW-2の調製
窒素でパージしたAW-1(3.2g、11.42mmol)のNH(MeOH中7M)(179mL)中溶液に、ラネーニッケル(5.3g、91.3mmol)を添加し、次いで反応混合物を大気圧下室温にて16時間水素添加した。混合物をCelite(登録商標)パッドに通して濾過し、Celite(登録商標)をMeOHですすぎ、濾液を真空中で濃縮した。残渣をDCMに希釈し、MgSOを添加した。混合物をCelite(登録商標)パッドに通して濾過し、Celite(登録商標)をDCMで洗浄し、濾液を真空中で蒸発させて、mmotte_8598_1、3.18gを無色油(96%)として得た。
中間体AW-3の調製
丸底フラスコに、AW-2(3.18g、10.96mmol)、DIPEA(2.17mL、12.6mmol)、及びDMAP(0.04g、0.33mmol)の乾燥DCM(68.2mL)中溶液を充填した。反応混合物を窒素流に接続し、次いで0℃まで冷却した。クロロギ酸ベンジル(1.72mL、12.06mmol)を滴加した。次いで反応混合物を0℃で1時間撹拌した。反応混合物を水の添加によりクエンチし、室温で10分間撹拌した。水層を、DCMで抽出した(2回)。合わせた有機層をMgSO4上で乾燥させ、濾別し、蒸発させて、5.38gを粗製として得た。シリカゲルのフラッシュクロマトグラフィー(120g、不定形SiOH 25~40μM、DCM/MeOH 100/0~97/3)により精製を行った。純粋画分を回収し、蒸発させて、中間体AW-3を淡いベージュ色の固体3.54g(77%)として得た。
中間体AW-4の調製
AW-3(3.54g、8.46mmol)を、40℃でMe-THF(65mL)及びAcOH(4.84mL、84.59mmol)に溶解させた。次いで、イソアミルニトリル(5.68mL、42.3mmol)を滴加し、混合物を40℃で2時間撹拌した。溶液をEtOAc(60mL)及び水(30mL)中に希釈させ、NaHCO飽和溶液(2回)、ブラインで洗浄し、MgSO上で乾燥させ、蒸発させて、4.67gを淡黄色油として得た。シリカゲルのフラッシュクロマトグラフィー(80g、不定形SiOH 25~40μM、DCM/MeOH 100/0~97/3)により精製を行った。純粋画分を回収し、蒸発させて、中間体AW-4を黄色油3.99g(純度92%で97%、次の工程でそのまま使用)として得た。
中間体AW-5の調製
亜鉛末(4.29g、65.63mmol)を、室温で、AW-4(3.99g、8.2mmol)及びAcOH(7mL、123.05mmol)のEtOH(170.9mL)及び水(42.7mL)中溶液に添加した。混合物を室温で1.5時間撹拌した。水を添加し、水層をDCMで3回抽出し、合わせた有機層をMgSO上で乾燥させ、減圧下で濃縮し、無色油4.12gを得た。シリカゲルのフラッシュクロマトグラフィー(80g、定形SiOH 25~40μM、DCM/MeOH 100/0~97/3)により、精製を行った。純粋画分を回収し、蒸発させて、中間体AW-5、1.88gを無色油(50%)として得た。
中間体AW-6の調製
AW-5(1.88g、4.08mmol)のMeOH(40.2mL)中溶液に、TMSCl(4.14mL、32.61mmol)を滴加した。反応混合物を、室温で18時間撹拌した。反応混合物を真空中で濃縮し、中間体AW-6、1.45g(80%)を得て、これをそのまま次の工程で使用した。
中間体AW-7の調製
AW-6(1.45g、3.21mmol)及びB(1.41mL、12.85mmol)のC(32.4mL)中溶液を、70℃で一晩撹拌した。反応混合物を蒸発させた。残渣をDCM及びKCOの10%水溶液に希釈させた。水層をDCM/MeOH(95/5)で2回抽出した。合わせた有機層をMgSO上で乾燥させ、濾別し、蒸発させて、黄色固体を得た。シリカゲルのフラッシュクロマトグラフィー(12g、不定形SiOH 25~40μM、DCM/MeOH 100/0~90/10)により精製を行った。純粋画分を回収し、蒸発させて、中間体AW-7を無色油、0.58gとして得て、次の工程でそのまま使用した。
中間体AW-8の調製
氷浴内で5℃に冷却されたAW-7(0.58g、1.69mmol)及びDIPEA(0.87mL、5.07mmol)の乾燥DCM(14.6mL)中溶液に、DCM中1MのTfO(1.69mL、1.69mmol)を滴加した。反応混合物を5℃で15分間撹拌した。反応混合物をNaHCO飽和溶液で直ちにクエンチした。水層を、DCMで抽出した(2回)。合わせた有機層をブラインで洗浄し(1回)、MgSO上で乾燥させ、濾別し、蒸発させた。シリカゲルのフラッシュクロマトグラフィー(24g、不定形SiOH 25~40μM、DCM/MeOH 100/0~97/3)により精製を行った。純粋画分を回収し蒸発させ、中間体AW-8を静置時に結晶化する淡黄色油0.59g(73%)として得た。
中間体AW-9の調製
スチールボンベ(steal bomb)内で、AW-8(0.59g、1.24mmol)、炭素上水酸化パラジウム20%、名目上50%の水(0.17g、0.12mmol)、及び3Mの水性HCl(0.41mL、1.24mmol)のMeOH(8.7mL)及びEtOAc(8.7mL)中混合物を、3barのH下、室温で3時間水素添加した。混合物をcelite(登録商標)パッド上で濾過し、MeOHで洗浄した。濾液を蒸発させ、次いでMeOHと共蒸発させ(2回)、中間体AW-9、0.484g(90%)を、淡いベージュ色の粉末として得た。
化合物142の調製
Figure 2022548247000126

HATU(0.15g、0.4mmol)を、N流下、6-クロロ-2-エチルイミダゾ[1,2-a]ピリジン-3-カルボン酸(CAS[1216142-18-5]、0.078g、0.35mmol)、及びDIPEA(0.21mL、1.21mmol)の乾燥Me-THF(2.8mL)及び乾燥DCM(2mL)中溶液に添加した。溶液を室温で15分間撹拌した。次いでAW-9(0.118g、0.35mmol)を添加し、反応混合物を室温で16時間撹拌した。次いで、溶媒を蒸発させ、残渣を酢酸エチル中に希釈し、NaHCOの飽和水溶液、水、次いでブラインで洗浄した。有機層をMgSO4上で乾燥させ、濾過し、真空中で蒸発させて、褐色残渣を得た。シリカゲルのフラッシュクロマトグラフィー(40g、不定形SiOH 25~40μM、celite(登録商標)上の固体堆積物、DCM/MeOH 100/0~97/3)により精製を行った。純粋画分を回収し、蒸発させて、淡黄色粉末0.512gを得た。アキラルSFC(固定相:Whelk-O1(S,S)5μm 250×30mm、移動相:60%のCO、MeOH/DCM 80/20v/v+0.3%iPrNHの40%混合物)により精製を行った。純粋画分を回収し、蒸発させて白色固体0.31gを得た。これをDIPE及び少しのヘプタンでトリチュレートし、沈殿物を濾別し、60℃にて真空下で乾燥させ、化合物142を白色粉末0.29g(47%)として得た。
H NMR(500MHz,DMSO-d6)δ ppm 9.09(d,J=1.4Hz,1H),8.46(t,J=5.8Hz,1H),8.13(br s,1H),7.63-7.75(m,2H),7.47(dd,J=9.4,2.1Hz,1H),7.37(s,1H),4.51(br d,J=5.8Hz 2H),4.13(br t,J=4.5Hz,2H),3.92(t,J=4.8Hz,2H),2.99(q,J=7.5Hz,2H),1.26(t,J=7.5Hz,3H)
化合物181の調製
Figure 2022548247000127

AW-9(0.09g、0.24mmol)を、室温の丸底フラスコ内のAJ-2(0.099g、0.38mmol)、HATU(0.12g、0.31mmol)、及びDIPE(0.25mL、1.43mmol)の乾燥DMF(5mL)中溶液に添加した。混合物を室温で16時間撹拌した。混合物をNaHCO飽和水溶液で希釈し、DCMで抽出した。有機層を分離し、乾燥させ(MgSO)、濾過し、溶媒を真空中で濃縮し、褐色油を得た。粗生成物をDCMでトリチュレートし、固体を濾過し、真空中で乾燥させて、白色固体である化合物181、0.059g(45%)を得た。
H NMR(400MHz,DMSO-d6)δ ppm 8.62(s,1H),8.51(br t,J=5.8Hz,1H),8.13(s,1H),7.69(dd,J=12.7,1.7Hz,1H),7.37(s,1H),7.22(dd,J=11.7,0.9Hz,1H),4.51(d,J=5.8Hz,2H),4.17-4.10(m,2H),3.96-3.89(m,2H),2.97(q,J=7.5Hz,2H),2.31(s,3H),1.26(t,J=7.5Hz,3H).
化合物201の調製
Figure 2022548247000128

従って、化合物142と同じ方法で中間体AI-3(0.64mmol)及び中間体AW-9(0.4mmol)から出発して化合物201を調製し、白色固体0.063g(30%)を得た。
H NMR(400MHz,DMSO)d 9.19-9.12(m,1H),8.51(d,J=2.4Hz,1H),8.44(t,J=5.8Hz,1H),8.13(s,1H),7.69(dd,J=12.7,1.7Hz,1H),7.36(s,1H),4.51(d,J=5.8Hz,2H),4.13(t,J=4.6Hz,2H),3.96-3.87(m,2H),3.00(q,J=7.5Hz,2H),2.34(s,3H),1.27(t,J=7.5Hz,3H).
化合物213の合成
Figure 2022548247000129
中間体AX-1の調製
N,Nジメチルアセトアミドジメチルアセタール(0.2mL;1.26mmol)を、中間体D6(0.3g;0.63mmol)のHFIP(10.8mL)中溶液に添加し、混合物を室温で20時間撹拌した。反応混合物をEtOAcで希釈し、NaHCO飽和水溶液で処理した。層を分離し、水層をEtOAcで抽出した。合わせた有機層をMgSO上で乾燥させ、濾過し、溶媒を減圧下で除去して無色油を得た。シリカゲルのフラッシュクロマトグラフィー(24g、不定形SiOH 25~40μM、DCM/MeOH 95/5~90/10)により精製を行った。純粋画分を回収し、蒸発させて、中間体AX-1を、無色油0.176g(65%)として得た。
化合物213の調製
氷浴内で5℃に冷却された中間体AX-1(0.139g、0.32mmol)及びDIPEA(0.17mL、0.97mmol)の乾燥DCM(2.8mL)中溶液に、DCM中1M TfO(0.32mL、0.32mmol)を滴加した。反応混合物を5℃で15分間撹拌した。反応混合物をNaHCO飽和溶液で直ちにクエンチした。水層を、DCMで抽出した(2回)。合わせた有機層をブラインで洗浄し(1回)、MgSO上で乾燥させ、濾別し、粗製を得た。乾燥DCM(2.8mL)を粗製に添加し、溶液を5℃まで冷却し、次いでDIPEA(0.056mL、0.32mmol)、続いてDCM中1M TfO(0.13mL、0.13mmol)を添加した。反応混合物を5℃で15分間撹拌した。反応混合物をNaHCO飽和溶液で直ちにクエンチした。水層を、DCMで抽出した(2回)。合わせた有機層をブラインで洗浄し(1回)、MgSO上で乾燥させ、濾別し、0.217gを油として得た。シリカゲルのフラッシュクロマトグラフィー(12g、不定形SiOH 25~40μM、DCM/MeOH 100/0~97/3)により精製を行った。純粋画分を回収し、蒸発させて、化合物213をベージュ色の粉末0.093g(51%)として得た。シリカゲルのフラッシュクロマトグラフィー(12g、不定形SiOH 25~40μM、DCM/MeOH 100/0~97/3)により精製を行った。純粋画分を回収し、蒸発させて、化合物213をベージュ色の粉末0.075g(41%)として得た。これをDIPE/ヘプタンから結晶化し、トリチュレートし、濾別し、真空下60℃で乾燥させ、化合物213を白色粉末0.063g(35%)として得た。
H NMR(500MHz,DMSO-d)δ ppm 9.04-9.11(m,1H),8.47(t,J= 5.9Hz ,1H),7.64-7.72(m,1H),7.46(dd,J=9.5,2.1Hz,1H),7.29-7.38(m,1H),7.13-7.27(m,2H),5.12-5.18(m,1H),4.49(d,J=6.0Hz,2H),3.95-4.06(m,2H),3.67-3.77(m,2H),3.01(q,J=7.5Hz,2H),2.25(s,3H),1.22-1.31(t,J=7.5Hz,3H).
中間体AY-3の合成
Figure 2022548247000130
中間体AY-1の調製
N,Nジメチルアセトアミドジメチルアセタール(1.68mL;10.33mmol)を、中間体E6(2g;5.16mmol)のHFIP(88mL)中溶液に添加し、混合物を室温で20時間撹拌した。反応混合物をEtOAcで希釈し、NaHCO飽和水溶液で処理した。層を分離し、水層をEtOAcで抽出した。合わせた有機層をMgSO上で乾燥させ、濾過し、溶媒を減圧下で除去した。残渣を分取LC(不定形SiOH 40μm、40g、DCM/MeOH 95/5~90/10)により精製して、442mgの中間体AY-1を静置時に結晶化する無色残渣として得た(25%)。
中間体AY-2の調製
従って、化合物213と同じ方法でAY-1(1.31mmol)から出発して中間体AY-2を調製し、ベージュ色の粉末0.388g(63%)を得た。
中間体AY-3の調製
スチールボンベ(steal bomb)内で、AY-2(0.39g、0.82mmol)、炭素上水酸化パラジウム、Pd 20%、名目上50%の水(0.12g、0.082mmol)及び1Mの水性HCl(0.82mL、0.82mmol)のMeOH(5.8mL)及びEtOAc(5.8mL)中混合物を、5barのH下、室温で1.5時間水素添加した。混合物をceliteパッド上で濾過し、MeOHで洗浄した。濾液を蒸発させて、中間体AY-3、0.32g(96%、純度92%)を得て、これをそのまま次の工程で使用した。
化合物214の調製
Figure 2022548247000131

従って、化合物181と同じ方法で2-(トリフルオロメチル)-イミダゾ[1,2-A]ピリジン-3-カルボン酸(CAS[73221-19-9]、0.34mmol)及び中間体AY-3(0.39mmol)から出発して化合物214を調製し、白色粉末0.098g(52%)を得た。
H NMR(500MHz,DMSO-d)δ ppm 9.17-9.29(m,1H),8.48-8.58(m,1H),7.73-7.83(m,1H),7.49-7.60(m,1H),7.30(br d,J=8.2Hz,2H),7.13-7.24(m,3H),4.42-4.52(m,2H),4.01(br s,2H),3.84(br d,J=4.3Hz,2H),2.27(s,3H)
化合物215の調製
Figure 2022548247000132

従って、化合物181と同じ方法で2-エチル-6-メチルイミダゾ[1,2-a]ピリジン-3-カルボン酸(CAS[1216036-36-0]、0.34mmol)及び中間体AY-3(0.39mmol)から出発して化合物215を調製し、白色粉末0.129g(72%)を得た。
H NMR(500MHz,DMSO-d6)δ ppm 8.77(s,1H),8.29-8.36(m,1H),7.47-7.54(m,1H),7.27-7.33(m,2H),7.21-7.25(m,1H),7.14-7.19(m,2H),4.41-4.49(m,2H),4.06-4.09(m,1H),3.96-4.05(m,2H),3.79-3.84(m,2H),2.90-3.02(m,2H),2.31(s,3H)2.26(s,3H),1.20-1.30(m,3H)
化合物217の調製
Figure 2022548247000133

従って、化合物181と同じ方法で中間体AU-2(0.31mmol)及び中間体AY-3から出発して化合物217を調製し、白色発泡体0.018g(10%)を得た。
H NMR(500MHz,DMSO-d)δ ppm 9.17(s,1H),8.40(t,J=6.0Hz,1H),7.27-7.35(m,2H),7.12-7.21(m,2H),4.69-4.77(m,2H),4.41-4.49(m,2H),3.98-4.04(m,2H),3.91-3.97(m,2H),3.79-3.84(m,2H),2.95-3.01(m,2H),2.89-2.94(m,2H),2.25(s,3H),1.22-1.29(m,4H)
化合物218の調製
Figure 2022548247000134

従って、化合物181と同じ方法で6-エチル-2-メチルイミダゾ[2,1-b][1,3]チアゾール-5-カルボン酸(CAS[1131613-58-5]、0.29mmol)及び中間体AY-3から出発して化合物218を調製し、白色発泡体0.059g(38%)を得た。
H NMR(500MHz,DMSO-d)δ ppm 8.09(t,J=6.0Hz,1H),7.80-7.91(m,1H),7.21-7.32(m,2H),7.08-7.19(m,2H),4.40(d,J=6.0Hz,2H),4.00(t,J=4.9Hz,2H),3.81(t,J=4.9Hz,2H),2.85(q,J=7.5Hz,2H),2.40-2.46(m,3H),2.22-2.28(m,3H),1.20(t,J=7.5Hz,3H)
化合物216の合成
Figure 2022548247000135
中間体AZ-1の調製
オルトイソ酪酸トリメチル(0.2mL;1.26mmol)を、中間体D(0.3g;0.63mmol)のHFIP(10.8mL)中溶液に添加し、混合物を室温で20時間撹拌した。反応混合物をEtOAcで希釈し、NaHCO飽和水溶液で処理した。層を分離し、水層をEtOAcで抽出した。合わせた有機層をMgSO上で乾燥させ、濾過し、溶媒を減圧下で除去して油を得た。シリカゲルのフラッシュクロマトグラフィー(4g、不定形SiOH、DCM/MeOH 95/5~85/15)により精製を行った。純粋画分を回収し、蒸発させて、中間体AZ-1を無色油、0.105g(37%)として得た。
化合物216の調製
氷浴内で5℃に冷却されたAZ-1(0.11g、0.23mmol)及びDIPEA(0.12mL、0.69mmol)の乾燥DCM(2mL)中溶液に、DCM中1M TfO(0.23mL、0.23mmol)を滴加した。反応混合物を5℃で15分間撹拌した。反応混合物をNaHCO飽和溶液で直ちにクエンチした。水層をDCMで抽出した(2回)。合わせた有機層をブラインで洗浄し(1回)、MgSO上で乾燥させ、濾別し、蒸発させた。DCM(2mL)を残渣に添加し、溶液を5℃まで冷却し、次いでDIPEA(0.04mL、0.23mmol)、続いてDCM中1M TfO(0.092mL、0.092mmol)を添加した。反応混合物を5℃で15分間撹拌した。反応混合物をNaHCO飽和溶液で直ちにクエンチした。水層を、DCMで抽出した(2回)。合わせた有機層をブラインで洗浄し(1回)、MgSO4上で乾燥させ、濾別し、0.725gを得た。シリカゲルのフラッシュクロマトグラフィー(4g、不定形SiOH 25-40μM、ヘプタン/EtOAc 90/10~70/30)により精製を行った。純粋画分を回収し、蒸発させてベージュ色の粉末0.06gを得た。これをDIPE及び少しのヘプタンでトリチュレートし、沈殿物を濾別し、60℃にて真空下で乾燥させて、化合物216を白色粉末0.040gとして得た。
H NMR(500MHz,DMSO-d)δ ppm 9.03-9.18(m,1H),8.47(br t,J=5.5Hz,1H),7.63-7.73(m,1H),7.43-7.50(m,1H),7.30-7.38(m,1H),7.16-7.27(m,2H),4.50(br d,J=5.6Hz,2H),3.87-3.94(m,2H),3.80(br s,2H),2.93-3.05(m,3H),1.24-1.32(m,3H),1.14-1.21(m,6H)
中間体BA-3の合成
Figure 2022548247000136
中間体BA-1の調製
従って、AZ-1と同じ方法で中間体E6(6.45mol)から出発して中間体BA-1を調製し、無色油1.82g(77%)を得た。
中間体BA-2の調製
従って、化合物216と同じ方法でBA-1(4.97mmol)から出発して中間体BA-2を調製し、ベージュ色の粉末1.58g(58%)を得た。
中間体BA-3の調製
従って、AY-3と同じ方法で中間体BA-2(3.17mol)から出発して中間体BA-3を調製し、ベージュ色の固体1.39g(91%、純度約90%、次の工程でそのまま使用)を得た。
次の化合物も、本明細書に記載の方法に従って調製する/した:
Figure 2022548247000137

Figure 2022548247000138

Figure 2022548247000139

Figure 2022548247000140

Figure 2022548247000141

Figure 2022548247000142

Figure 2022548247000143

Figure 2022548247000144

Figure 2022548247000145

Figure 2022548247000146

Figure 2022548247000147

Figure 2022548247000148

Figure 2022548247000149

Figure 2022548247000150

Figure 2022548247000151

Figure 2022548247000152

Figure 2022548247000153

Figure 2022548247000154

Figure 2022548247000155

Figure 2022548247000156

Figure 2022548247000157

Figure 2022548247000158

Figure 2022548247000159
Figure 2022548247000160
Figure 2022548247000161
Figure 2022548247000162
Figure 2022548247000163
Figure 2022548247000164
Figure 2022548247000165
Figure 2022548247000166
Figure 2022548247000167
5.生物学的アッセイ/薬理学的実施例
結核菌(M.tuberculosis)に対する試験化合物のMICの測定。
試験1
試験化合物及び参照化合物をDMSO中に溶解させ、最終濃度の200倍で、96ウェルプレートのウェルごとに1μLの溶液をスポットした。カラム1及びカラム12は化合物を含まないままにし、カラム2~11までの化合物濃度を3倍に希釈した。緑色蛍光タンパク質(GFP)を発現する結核菌(Mycobacterium tuberculosis)EH4.0株の凍結ストックを事前に調製し、滴定した。接種材料を調製するために、1バイアルの凍結細菌ストックを室温まで解凍し、7H9ブロスで1mL当たり5×10個のコロニー形成単位に希釈した。1×10個のコロニー形成単位に相当する200μLの接種材料を、ウェルごとにカラム12を除くプレート全体に移した。200μLの7H9ブロスを、カラム12のウェルに移した。蒸発を防ぐためにプレートをポリ袋に入れて37℃でインキュベートした。7日後、蛍光をGemini EMマイクロプレートリーダー上で485の励起波長及び538nmの発光波長で測定し、IC50及び/又はpIC50値(など、例えばIC50、IC90、pIC90、など)を計算した(又は計算することができる)。
試験2
実験/試験化合物及び参照化合物の適切な溶液は、7H9培地を有する96ウェルプレート中で作製した。結核菌(Mycobacterium tuberculosis)株H37Rvの試料を対数増殖期の培養物から採取した。これらを最初に希釈して600nmの波長における0.3の光学密度を得、次に1/100に希釈すると、1mL当たり約5×10個のコロニー形成単位の接種材料が得られた。5×10個のコロニー形成単位に相当する100μLの接種材料を、ウェルごとにカラム12を除くプレート全体に移した。蒸発を防ぐためにプレートをポリ袋に入れて37℃でインキュベートした。7日後、レサズリンを全てのウェルに添加した。2日後、蛍光をGemini EM マイクロプレートリーダー上で543の励起波長及び590nmの発光波長で測定し、MIC50値及び/又はpIC50値(など、例えば、IC50、IC90、pIC90、など)を計算した(又は計算することができる)。
試験3:タイム・キル・アッセイ
化合物の殺菌又は静菌活性を、ブロス希釈法を使用して、タイム・キル・速度論的アッセイで測定することができる。このアッセイでは、結核菌(M.tuberculosis)(H37Rv株及びH37Ra株)の出発接種量は、Middlebrook(1x)7H9ブロス中、10CFU/mLとする。試験化合物は、単独で又は別の化合物(例えば、シトクロムbd阻害剤など、異なる作用機序を有する化合物)と、それぞれ10~30μMから0.9~0.3μMの範囲の濃度で組み合わせて試験される。抗菌薬を入れないチューブを培養菌増殖の対照とする。微生物及び試験化合物を入れたチューブを37℃でインキュベートする。0、1、4、7、14、及び21日間のインキュベーション後、Middlebrook 7H9培地中での段階希釈(10~10-6)及びMiddlebrook 7H11寒天培地上への播種(100μL)による生菌数の決定のために試料を取り出す。プレートを、37℃で21時間インキュベートして、コロニー数を測定する。時間に対して1mL当たりのlog10CFUをプロットすることにより、殺菌曲線を作成することができる。試験化合物(単独で又は組み合わせのいずれか)の殺菌効果は、一般に、0日目と比較して、(1mL当たりのCFU数が)2-log10減少することであると定義されている。薬剤の持ち越し効果の可能性は、寒天プレートに0.4%の炭を使用することで制限され、連続希釈及び播種用使用可能な最高希釈でのコロニーのカウントにより除去される。
結果
本発明/実施例の化合物は、例えば上記の試験1で試験した場合、典型的にはpIC50が3~10(例えば4.0~9.0、例えば5.0~8.0など)を有し得る。
6.生物学的結果
実施例の化合物を上記の試験1で(「薬理学的な実施例」の項で)試験し、以下の結果が得られた:
Figure 2022548247000168
Figure 2022548247000169
Figure 2022548247000170
7.本発明/実施例の代表的な化合物についての更なるデータ
本発明/実施例の化合物は、インビトロ効力、インビトロでの殺傷速度論(すなわち、殺菌効果)、PK特性、食物効果、安全性/毒性(肝臓毒性、凝固、5-LOオキシゲナーゼを含む)、代謝安定性、AmesII陰性、MNT陰性、水ベースの溶解度(及び製剤化能力)、及び/又は心血管効果、例えば動物(例えば、麻酔をかけたモルモット)に関連する利点を有し得る。生成/計算された以下のデータは、例えば、文献で入手可能であるか、又は供給元によって実施される場合がある標準的な方法/アッセイ(例えば、ミクロソーム安定性アッセイ-Cyprotex、ミトコンドリア毒性(Glu/Gal)アッセイ-Cyprotex、並びにCYPカクテル阻害アッセイの文献)を使用して取得され得る。場合によっては、GSHを測定し(反応性代謝物、グルクロン酸抱合)、LCMS(フラグメンテーションイオン)によってジヒドロジオールが観察されるかどうかを観察し、これは、コア複素環のジヒドロキシル化に対応する。
この次のデータは、化合物1で生成された:
cLogP=4.3/TPSA=107.7
CVS(Na Ch,Ca Ch,hERGdof),IC50=>10,>10,>10
Cocktail Cyp-450,IC50=>20(決定的ではなかったCYP3A4を除く)
CLint(μL/分/mg プロット)=(H)29.6/(M)21.5
次のデータは化合物13で生成された:
cLogP=3.3/TPSA=120.7
CVS(Na Ch,Ca Ch,hERGdof),IC50=>10,>10,7.4
Cocktail Cyp-450,IC50=>20(決定的ではなかったCYP3A4及びCY2D6を除く)
CLint(μL/分/mg プロット)=(H)16.3/(M)13.3
次のデータは化合物20で生成された:
cLogP=3.75/TPSA=107.7
CVS(Na Ch,Ca Ch,hERGdof),IC50=>10,>10,>10
Cocktail Cyp-450,IC50=>20(CYP3A4を除く、IC50=13.2μM)
CLint(μL/分/mg プロット)=(H)56.6/(M)15.9
次のデータは化合物73で生成された:
これは試験され、GSHの測定値を示さなかった
cLogP=3.2/TPSA140.8
CVS(Ca,Na,Herg),IC50=>10
Cocktail Cyp-450,IC50=>20(全てについて)
CLint(μL/分/mg プロット)=(H)18/(M)93
次のデータは化合物9で生成された
cLogP=4.4/TPSA107,8
CVS(Ca,Na,Herg),IC50=>10
Cocktail Cyp-450,IC50=>20(全てについて)
CLint(μL/分/mg プロット)=(H)19/(M)41
次のデータは化合物26で生成された
cLogP=3.1/TPSA129.9
CVS(Ca,Na,Herg),IC50=>10
Cocktail Cyp-450,IC50=>20(全てについて)
CLint(μL/分/mg プロット)=(H)37/(M)35
次のデータは化合物16で生成された
cLogP=4.4/TPSA107,8
CVS(Ca,Na,Herg),IC50=>10
Cocktail Cyp-450,IC50=>20(全てについて)
CLint(μL/分/mg プロット)=(H)24/(M)18
次のデータは化合物6で生成された
これは試験され、GSHの測定値を示さなかった
cLogP=4.3/TPSA117
CVS(Ca,Na,Herg),IC50=>10
Cocktail Cyp-450,IC50=>20(全てについて)
CLint(μL/分/mg プロット)=(H)37.6/(M)49
以下の更なるデータ/結果を生成した。
化合物1:
ミトコンドリア毒性が低いことが判明(Glu/Galアッセイで<3)-従って、ミトコンドリア毒性アラートは無し
良好な生物学的利用能を有していた(げっ歯類に示されているように)
化合物6:
ミトコンドリア毒性が低いことが判明(Glu/Galアッセイで<3)-従って、ミトコンドリア毒性アラートは無し
不要な反応性代謝物を生成しなかった(GSHの測定値は示されなかった)
化合物152:
ミトコンドリア毒性が低いことが判明(Glu/Galアッセイで<3)-従って、ミトコンドリア毒性アラートは無し
良好な生物学的利用能を有していた(げっ歯類に示されているように)
反応性代謝物の形成はブロックされた
化合物161:
ミトコンドリア毒性が低いことが判明(Glu/Galアッセイで<3)-従って、ミトコンドリア毒性アラートは無し
良好な生物学的利用能を有していた(げっ歯類に示されているように)
反応性代謝物の形成はブロックされた
化合物161の特異的データ:
TPSA=120.6
HTEq Sol(μg/mL)-pH2:33,pH7:<0.02,FaSSIF:5,FeSSIF:16
Cocktail Cyp-450,IC50(μM)=>20
Cyp 3A4誘導(%対照)-1μMにおける=3.0
CLint Hep(mL/分/10細胞個)=(M)0.012/(R)0.019/(D)0.0047/(H)0.0067
PPB(%非結合)(H)1.5/(M)2.45
AMESII-陰性(スコア1)
Glu/Gal-陰性(比<3)
GSH/CN-反応性代謝物無し
キナーゼパネル-陰性
CTCM(μM)-5μMまでクリーンアップ
CVS(Na Ch,Ca Ch,hERGdof),IC50=>10,>10,15.85
ラットにおける化合物161の経口生物学的利用能
化合物161をラットにPO投与し(5mg/kg、PEG4000(溶液)、0.5w/vメトセル(懸濁液)、溶液及び懸濁液について以下の結果が得られた。
Figure 2022548247000171
結論
従って、本発明/実施例の化合物(例えば化合物161により例示されるような)は、以下の利点を有し得る:
インビトロでの心毒性は観察されない(例えば、CVSの結果又はGlu/Galアッセイの結果のいずれかによる)。
反応性代謝物の形成は観察されない(例えばGSH);及び/又は
例えば他の化合物、例えば先行技術の化合物と比較して、比較的高い非結合画分がある。
本発明/実施例の特定の化合物はまた、それらが分解物(例えば、望ましくないか、又は望ましくない副作用を誘発する可能性がある)を形成しないという追加の利点を有し得る。
本発明/実施例の化合物(例えば、化合物161により表されるような)は、(ラットにおける経口生物学的利用能データによって示され得るように)より速い経口吸収及び改善された生物学的利用能が示されるという利点を有し得る。

Claims (16)

  1. 式(Ia)
    Figure 2022548247000172

    [式中、
    は、=N-又は=C(R)-を表し;
    Aは、芳香族又は非芳香族であり得、且つ任意選択的に窒素及び硫黄から選択される1又は2個のヘテロ原子を含有する5員又は6員環であり;
    Bは、1個又は2個の窒素ヘテロ原子を含有する5員芳香環であり;
    は、ハロ(例えば、Cl、F)、-R6a、-O-R6b、-C(=O)-R6c、-C(=O)-N(R)(R)、-CN、及び-N(R7a)R7bから独立して選択される1つ以上(例えば、1つ、2つ、又は3つ)の任意選択的な置換基を表すか;又は任意の2つのR基は、一緒になって(A環の隣接原子に結合している場合)任意選択的に1個若しくは2個のヘテロ原子を含有する5員若しくは6員環を形成し、且つこの環は、1つ若しくは2つのC1~3アルキル置換基で任意選択的に置換されており;
    は、ハロ及び-OC1~3アルキルから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルであり;
    、R3a、R、及びR4aのうちのいずれか2つはHを表し、他の2つは、独立して、H、F、-C1~3アルキル、及び-O-C1~3アルキルから選択される置換基を表し;
    は、H、-R9a、-C(=O)-R9b、-SO-R10、又はHetであり;
    X及びYのうちのいずれか1つは、-CR11aを表し、その他のものは、N又は-CR11bを表し;
    6a及びR6bは、独立して、水素、又はハロ(例えば、F)、-O-CH、及びフェニルから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルを表し;
    6cは、-C1~3アルキルであり;
    及びRは、H及び-C1~3アルキルから独立して選択され;
    7a及びR7bは、独立して、H、C1~6アルキルを表すか、又はR7a及びR7bは、一緒になって、3~6員環を形成し;
    9aは、ハロ、-OC1~3アルキル、及びHetから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルを表し;
    9bは、水素又は-C1~3アルキル(任意選択的に1つ以上のフルオロ原子で置換されている)であり;
    10は、ハロ(例えば、F)及び-O-CHから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルであり;
    11a及びR11bは、独立して、H、C1~4アルキル(それ自体が、フルオロ、-CN、-R12a、-OR12b、-N(R12c)R12d、及び/又は-C(O)N(R12e)R12fから選択される1つ以上、例えば1つの置換基で任意選択的に置換されている)、又は-O-C1~4アルキル(それ自体が、フルオロ、-R12g、-OR12h、及び/又は-N(R12i)R12jから選択される1つ以上、例えば1つの置換基で任意選択的に置換されている)を表し;
    12a、R12b、R12c、R12d、R12e、R12f、R12g、R12h、R12i、及びR12jは、独立して、水素又はC1~3アルキル(1個以上のフルオロ原子で任意選択的に置換されている)を表し;
    Het及びHetは、独立して、好ましくは窒素及び硫黄から選択される1個又は2個のヘテロ原子を含有し、ハロ及びC1~3アルキル(それ自体が1個以上のフルオロ原子で任意選択的に置換されている)から選択される1つ以上の置換基で任意選択的に置換されている5員又は6員芳香環を表す]
    の化合物、又はその薬学的に許容される塩。
  2. 式(I)
    Figure 2022548247000173

    [式中、
    Aは、芳香族又は非芳香族であり得、且つ任意選択的に窒素及び硫黄から選択される1又は2個のヘテロ原子を含有する5員又は6員環であり;
    Bは、1個又は2個の窒素ヘテロ原子を含有する5員芳香環であり;
    は、ハロ(例えば、Cl、F)、-R6a、-O-R6b、-C(=O)-R6c、-C(=O)-N(R)(R)、-CN、及び-N(R7a)R7bから独立して選択される1つ以上(例えば、1つ、2つ、又は3つ)の任意選択的な置換基を表し;
    は、ハロ及び-OC1~3アルキルから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルであり;
    、R3a、R、及びR4aのうちのいずれか2つはHを表し、他の2つは、独立して、H、F、-C1~3アルキル、及び-O-C1~3アルキルから選択される置換基を表し;
    は、H、-R9a、-C(=O)-R9b、-SO-R10、又はHetであり;
    X及びYのうちのいずれか1つは、-CR11aを表し、その他のものは、N又は-CR11bを表し;
    6a及びR6bは、独立して、ハロ(例えば、F)及び-O-CHから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルを表し;
    6cは、-C1~3アルキルであり;
    及びRは、H及び-C1~3アルキルから独立して選択され;
    7a及びR7bは、独立して、H、C1~6アルキルを表すか、又はR7a及びR7bは、一緒になって、3~6員環を形成し;
    9aは、ハロ、-OC1~3アルキル、及びHetから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルを表し;
    9bは、水素又は-C1~3アルキル(任意選択的に1つ以上のフルオロ原子で置換されている)であり;
    10は、ハロ(例えば、F)及び-O-CHから選択される1つ以上の置換基で任意選択的に置換されている-C1~4アルキルであり;
    11a及びR11bは、独立して、H、C1~4アルキル(それ自体が、フルオロ、-CN、-R12a、-OR12b、-N(R12c)R12d、及び/又は-C(O)N(R12e)R12fから選択される1つ以上、例えば1つの置換基で任意選択的に置換されている)、又は-O-C1~4アルキル(それ自体が、フルオロ、-R12g、-OR12h、及び/又は-N(R12i)R12jから選択される1つ以上、例えば1つの置換基で任意選択的に置換されている)を表し;
    12a、R12b、R12c、R12d、R12e、R12f、R12g、R12h、R12i、及びR12jは、独立して、水素又はC1~3アルキル(1個以上のフルオロ原子で任意選択的に置換されている)を表し;
    Het及びHetは、独立して、好ましくは窒素及び硫黄から選択される1個又は2個のヘテロ原子を含有し、ハロ及びC1~3アルキル(それ自体が1個以上のフルオロ原子で任意選択的に置換されている)から選択される1つ以上の置換基で任意選択的に置換されている5員又は6員芳香環を表す]
    の化合物、又はその薬学的に許容される塩。
  3. A環上に何も存在してなくても良いか、1つ又は2つのR置換基が存在してもよく;
    (存在する場合)は、F、Cl、-R6a、-O-R6b、-C(=O)-R6c、-C(=O)-N(R)(R)、-CN、及び-N(R7a)R7bから独立して選択される1つ又は2つの置換基を表し;
    6aは、-O-C1~2アルキル(例えば、-OCH)から選択される(例えば、1つの置換基で)任意選択的に置換されているC1~3アルキル(例えば、メチル、エチル、n-プロピル)を表し;
    6b及びR6cは、好ましくは非置換であるC1~3アルキル(例えば、メチル)を表し;
    及びRは、独立して、水素又は好ましくは非置換であるC1~3アルキル(例えば、メチル)を表し;
    7a及びR7bは、一緒になって、4~6(例えば5)員環を形成する、請求項1又は2に記載の化合物。
  4. 環Aは、以下:
    Figure 2022548247000174

    のように表される、請求項1~3のいずれか一項に記載の化合物。
  5. 環Bは、以下:
    Figure 2022548247000175

    のように表される、請求項1~4のいずれか一項に記載の化合物。
  6. 複合環系、すなわち、環A及び環Bは、以下:
    Figure 2022548247000176

    のように表され得る、請求項1~5のいずれか一項に記載の化合物。
  7. は、例えば-O-C1~2アルキル(例えば-OCH)から選択される1つ以上の置換基(例えば1つの置換基)で任意選択的に置換されている直鎖-C1~4アルキルであり;
    、R3a、R、及びR4aのうちのいずれか2つはHを表し、他の2つは、独立して、H、F、-CH、及び-OCHから選択される置換基を表し;
    は、H、-R9a、-C(=O)-R9b、-SO-R10、若しくはHetであり;
    9aは、非置換であるか若しくは1つの置換基(例えばHetから選択される)で置換されているC1~3アルキル(例えばメチル)を表し;
    9bは、H若しくは1つ以上のフルオロ原子で任意選択的に置換されているC1~3アルキル(例えばメチル)(従って、-CF基を形成する)を表し;
    10は、フルオロ及び-OC1~2アルキル(例えば-OCH)から選択される1つ以上の置換基で任意選択的に置換されているC1~4アルキルを表し、従って、R10は、-CF、-CH、i-プロピル、-CHC(H)(CH(i-ブチル)、-CHCH-OCHを表してもよく;並びに/又は
    Het及びHetは、独立して、窒素及び硫黄から選択される1個若しくは2個のヘテロ原子を含有する5員若しくは6員ヘテロアリール環を表し(従って、例えばチアゾリル環、例えば2-チアゾリル環を形成する)、この環は非置換であるか、若しくはC1~3アルキル(それ自体が1個以上のフルオロ原子で任意選択的に置換されている、従って、-CF基を形成する)から選択される1つ若しくは2つ(例えば1つ)の置換基で置換されており、従って、Het及びHetは、独立して、-CF置換基で任意選択的に置換されているチアゾリル基を表してもよい、請求項1~6のいずれか一項に記載の化合物。
  8. X及びYのうちのいずれか1つは、-CR11aを表し、その他のものは、N又は-CR11bを表し(及び一実施形態では、XはNを表し、Yは-CR11aを表し);
    11a又はR11bが、C1~4アルキルを表す場合、そのとき、R11a又はR11bは、非置換であるか、又は例えば、-CN、-OR12b、及び/若しくは-N(R12c)R12dで(例えば1つの置換基で)置換されていてもよく;
    12bは、H又はC1~2アルキル(例えばメチル)を表し;
    12c及びR12dは、独立して、C1~2アルキル(例えばメチル)を表してもよく;
    従って、R11a又はR11bが、C1~4アルキルなどを表す場合、そのとき、R11a又はR11bは、-CH、-CHCH、-CHCH-OH、-CHCH-OCH、-C(H)(CH、-CH-N(CH、又は-CH-CN)であってもよく;
    11a又はR11bが、-O-C1~4アルキルを表す場合、そのとき、R11a又はR11bは、好ましくは非置換であり、-OC1~2アルキル(例えば-OCH)を表してもよい、請求項1~7のいずれか一項に記載の化合物。
  9. 医薬として使用するための、請求項1~8のいずれか一項に記載の化合物。
  10. 薬学的に許容される担体と、有効成分として、治療有効量の請求項1~8のいずれか一項に記載の化合物とを含む、医薬組成物。
  11. マイコバクテリア感染症(例えば、結核)の治療において使用するための、請求項1~8のいずれか一項に記載の化合物。
  12. マイコバクテリア感染症(例えば、結核)の治療のための薬剤の製造のための、請求項1~8のいずれか一項に記載の化合物の使用。
  13. マイコバクテリア感染症(例えば、結核)の治療方法であって、前記方法が、治療有効量の請求項1~8のいずれか一項に記載の化合物の投与を含む、方法。
  14. (a)請求項1~8のいずれか一項に記載の化合物と、(b)1つ以上の他の抗マイコバクテリア(例えば、抗結核)薬との組み合わせ。
  15. 細菌感染の治療における同時使用、個別使用、又は逐次使用のための組み合わせ製剤としての、(a)請求項1~8のいずれか一項に記載の化合物と、(b)1つ以上の他の抗マイコバクテリア(例えば、抗結核)薬とを含有する製品。
  16. 請求項2に記載の式(I)の化合物又は請求項1に記載の式(Ia)の化合物を調製するための方法であって、前記方法が:
    (i)式(XIV)、
    Figure 2022548247000177

    [式中、整数は請求項1で定義されたとおりである]の化合物と、式(XV)又は(XVA)、それぞれ
    Figure 2022548247000178

    [式中、整数は請求項1で定義されたとおりである]の化合物との反応;
    (ii)式(XVII)又は(XVIIA)、それぞれ
    Figure 2022548247000179

    [式中、整数は請求項1で定義されたとおりであり、且つR12は好適な基、例えば好適な脱離基を表す]の化合物と、式(XVI)
    Figure 2022548247000180

    [式中、Rは請求項1で定義されたとおりである]
    の化合物とのカップリング;
    (iii)式(I)又は(Ia)[式中、XはNを表す(且つRは、好ましくは、Hを表す)]の化合物に関して、式(XVIII)又は(XVIIIA)、それぞれ
    Figure 2022548247000181

    [式中、整数は請求項1で定義されたとおりである(且つRは、好ましくは、Hを表す)]の化合物の反応、式(XIX)
    11xC(OCH (XIX)
    [式中、R11xは、R11a又はR11b(適宜;且つ請求項1で定義されたとおりである)を表す]の化合物などとの反応;
    (iv)式(I)又は(Ia)[式中、XはNを表す(且つ、好ましくはRは、Hを表す)]の化合物に関して、式(XX)又は(XXA)、それぞれ
    Figure 2022548247000182

    [式中、整数は請求項1で定義されたとおりである(且つRは、好ましくは、Hを表す)]の化合物の反応、上記で定義されたとおりの式(XIX)の化合物との反応;及び/又は
    (v)式(I)又は(Ia)[式中、Rは、-C(=O)-R9b、-S(O)-R10、又はHetを表す]の化合物の調製に関して、式(I)[式中、RはHを表す]の対応する化合物と、式(XXI)、
    LG-Z (XXI)
    [式中、Zは、-C(=O)-R9b、-S(O)-R10、又はHetを表し、LGは、好適な脱離基を表し、ここで整数は請求項1で定義されたとおりであり、Hetの場合、LGは、そのヘテロ芳香族環の適切なC原子に結合している]の化合物との反応
    を含む方法。
JP2022516117A 2019-09-13 2020-09-11 抗菌化合物 Pending JP2022548247A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19197183 2019-09-13
EP19197183.7 2019-09-13
PCT/EP2020/075458 WO2021048342A1 (en) 2019-09-13 2020-09-11 Antibacterial compounds

Publications (2)

Publication Number Publication Date
JP2022548247A true JP2022548247A (ja) 2022-11-17
JPWO2021048342A5 JPWO2021048342A5 (ja) 2023-09-19

Family

ID=67956507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022516117A Pending JP2022548247A (ja) 2019-09-13 2020-09-11 抗菌化合物

Country Status (10)

Country Link
US (1) US20220340564A1 (ja)
EP (1) EP4028399B1 (ja)
JP (1) JP2022548247A (ja)
KR (1) KR20220062564A (ja)
CN (1) CN114423758A (ja)
AU (1) AU2020346370A1 (ja)
BR (1) BR112022003799A2 (ja)
CA (1) CA3149868A1 (ja)
MX (1) MX2022003037A (ja)
WO (1) WO2021048342A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PE20181352A1 (es) 2015-09-17 2018-08-22 Marvin J Miller Compuestos heterociclicos que contienen bencilamina y composiciones utiles contra infeccion por micobacterias
BR112023018662A2 (pt) * 2021-03-16 2023-12-19 Janssen Sciences Ireland Unlimited Co Compostos antibacterianos
AR127483A1 (es) 2021-10-28 2024-01-31 Janssen Sciences Ireland Unlimited Co Compuestos antibacterianos
EP4296674A1 (en) 2022-06-20 2023-12-27 Université Toulouse III - Paul Sabatier Innovative molecules decreasing virulence of mycobacterium for the treatment of tuberculosis
WO2024089170A1 (en) 2022-10-27 2024-05-02 Janssen Sciences Ireland Unlimited Company Antibacterial compounds

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101070304B (zh) 2002-07-25 2011-10-26 詹森药业有限公司 喹啉衍生物及其作为分枝杆菌抑制剂的应用
MX345762B (es) 2010-03-18 2017-02-15 Pasteur Institut Korea Compuestos antiinfecciosos.
EA026152B1 (ru) 2011-09-01 2017-03-31 Новартис Аг СОЕДИНЕНИЯ И КОМПОЗИЦИИ В КАЧЕСТВЕ ИНГИБИТОРОВ КИНАЗЫ с-kit
US9199981B2 (en) 2011-09-01 2015-12-01 Novartis Ag Compounds and compositions as C-kit kinase inhibitors
US9605002B2 (en) 2012-07-18 2017-03-28 University Of Notre Dame Du Lac 5,5-heteroaromatic anti-infective compounds
WO2015014993A2 (en) 2013-08-02 2015-02-05 Institut Pasteur Korea Anti-infective compounds
CN105524058B (zh) * 2014-10-21 2018-03-27 广州艾格生物科技有限公司 吡唑并[1,5‑a]吡啶类化合物及其应用
CN107708809A (zh) 2015-07-02 2018-02-16 爱尔兰詹森科学公司 抗细菌化合物
PE20181352A1 (es) * 2015-09-17 2018-08-22 Marvin J Miller Compuestos heterociclicos que contienen bencilamina y composiciones utiles contra infeccion por micobacterias
AU2017286370B2 (en) * 2016-06-16 2021-09-09 Janssen Sciences Ireland Uc Heterocyclic compounds as antibacte rials
MA45377A (fr) 2016-06-16 2019-04-24 Janssen Sciences Ireland Unlimited Co Composés hétérocycliques en tant qu'agents antibacteriens
WO2018084809A1 (en) * 2016-11-02 2018-05-11 Nanyang Technological University Methods for the treatment or prevention of mycobacterial infections

Also Published As

Publication number Publication date
CN114423758A (zh) 2022-04-29
EP4028399C0 (en) 2024-02-14
EP4028399B1 (en) 2024-02-14
AU2020346370A1 (en) 2022-05-05
EP4028399A1 (en) 2022-07-20
BR112022003799A2 (pt) 2022-05-24
KR20220062564A (ko) 2022-05-17
MX2022003037A (es) 2022-04-07
US20220340564A1 (en) 2022-10-27
CA3149868A1 (en) 2021-03-18
WO2021048342A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
AU2016287477B2 (en) Antibacterial compounds
US11179396B2 (en) Heterocyclic compounds as antibacterials
JP2022548247A (ja) 抗菌化合物
CA3182633A1 (en) 2-oxoimidazolidine-4-carboxamides as nav1.8 inhibitors
AU2017286370A1 (en) Heterocyclic compounds as antibacte rials
KR20140059164A (ko) 트라이사이클릭 자이라제 억제제
CA3217605A1 (en) Aryl 3-oxopiperazine carboxamides and heteroaryl 3-oxopiperazine carboxamides as nav1.8 inhibitors
EP4308579A1 (en) Antibacterial compounds
WO2023078451A1 (zh) 用作cdk7激酶抑制剂的化合物及其应用
JP2024509997A (ja) 抗菌化合物
JP2022551823A (ja) 抗菌化合物
JP2023521172A (ja) キナーゼ阻害剤
WO2022032484A1 (zh) 哒嗪-3-甲酰胺类化合物、其制备方法及其在医药学上的应用
WO2022194803A1 (en) Antibacterial compounds
US20240182495A1 (en) Antibacterial compounds

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230907