JP2022536339A - アップリンク制御チャネルおよびサウンディング基準信号に対する空間関係表示を容易にするための方法および装置 - Google Patents

アップリンク制御チャネルおよびサウンディング基準信号に対する空間関係表示を容易にするための方法および装置 Download PDF

Info

Publication number
JP2022536339A
JP2022536339A JP2021573243A JP2021573243A JP2022536339A JP 2022536339 A JP2022536339 A JP 2022536339A JP 2021573243 A JP2021573243 A JP 2021573243A JP 2021573243 A JP2021573243 A JP 2021573243A JP 2022536339 A JP2022536339 A JP 2022536339A
Authority
JP
Japan
Prior art keywords
uplink
downlink
transmission
base station
default
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021573243A
Other languages
English (en)
Other versions
JPWO2020251718A5 (ja
Inventor
キラン・ベニューゴパール
ヤン・ジョウ
ティエンヤン・バイ
ジュン・ホ・リュ
ジュンイ・リ
タオ・ルオ
Original Assignee
クアルコム,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クアルコム,インコーポレイテッド filed Critical クアルコム,インコーポレイテッド
Publication of JP2022536339A publication Critical patent/JP2022536339A/ja
Publication of JPWO2020251718A5 publication Critical patent/JPWO2020251718A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

アップリンク制御チャネルおよびSRSに対する空間関係表示を容易にするための装置、方法、およびコンピュータ可読媒体が、本明細書で開示される。UEにおけるワイヤレス通信のための例示的な方法は、アップリンク送信のために基地局によってアップリンク送信ビームが構成されていないとき、アップリンク送信を送信するためのデフォルトアップリンク送信ビームを規則に基づいて決定するステップを含む。例示的な方法はまた、デフォルトアップリンク送信ビーム上でアップリンク送信を基地局へ送信するステップを含む。

Description

関連出願の相互参照
本出願は、「METHODS AND APPARATUS TO FACILITATE SPATIAL RELATION INDICATION FOR UPLINK CONTROL CHANNEL AND SOUNDING REFERENCE SIGNALS」と題する2019年6月14日に出願された米国特許仮出願第62/861,882号、および「METHODS AND APPARATUS TO FACILITATE SPATIAL RELATION INDICATION FOR UPLINK CONTROL CHANNEL AND SOUNDING REFERENCE SIGNALS」と題する2020年2月4日に出願された米国特許出願第16/781,784号の利益を主張し、その全体が参照により本明細書に明確に組み込まれる。
本開示は全般に、通信システムに関し、より具体的には、ビームを利用する通信システムに関する。
ワイヤレス通信システムは、電話、ビデオ、データ、メッセージング、およびブロードキャストなどの、様々な電気通信サービスを提供するために広く展開されている。典型的なワイヤレス通信システムは、利用可能なシステムリソースを共有することによって複数のユーザとの通信をサポートすることが可能な多元接続技術を利用することがある。そのような多元接続技術の例には、符号分割多元接続(CDMA)システム、時分割多元接続(TDMA)システム、周波数分割多元接続(FDMA)システム、直交周波数分割多元接続(OFDMA)システム、シングルキャリア周波数分割多元接続(SC-FDMA)システム、および時分割同期符号分割多元接続(TD-SCDMA)システムがある。
これらの多元接続技術は、異なるワイヤレスデバイスが都市、国家、地域、さらには地球規模のレベルで通信することを可能にする共通プロトコルを提供するために、様々な電気通信規格において採用されている。例示的な電気通信規格は5G New Radio(NR)である。5G NRは、レイテンシ、信頼性、セキュリティ、スケーラビリティ(たとえば、Internet of Things(IoT)との)と関連付けられる新しい要件、および他の要件を満たすように、第3世代パートナーシッププロジェクト(3GPP)によって公表された継続的なモバイルブロードバンドの進化の一部である。5G NRは、拡張モバイルブロードバンド(eMBB)、大規模機械タイプ通信(mMTC)、および超高信頼低遅延通信(URLLC)と関連付けられるサービスを含む。5G NRのいくつかの態様は、4G Long Term Evolution(LTE)規格に基づくことがある。5G NR技術のさらなる改善の必要がある。これらの改善はまた、他の多元接続技術、およびこれらの技術を採用する電気通信規格に適用可能であり得る。
以下は、1つまたは複数の態様の基本的理解をもたらすために、そのような態様の簡略化された概要を提示する。この概要は、すべての可能な態様の包括的な概説ではなく、すべての態様の主要または重要な要素を特定することも、いずれかまたはすべての態様の範囲を定めることも意図していない。その唯一の目的は、後で提示されるより詳細な説明の前置きとして、1つまたは複数の態様のいくつかの概念を簡略化された形で提示することである。
本開示のある態様では、方法、コンピュータ可読媒体、および装置が提供される。ユーザ機器(UE:user equipment)におけるワイヤレス通信のための例示的な装置は、アップリンク送信のために基地局によってアップリンク送信ビームが構成されていないとき、アップリンク送信を送信するためのデフォルトアップリンク送信ビームを規則に基づいて決定する。例示的な装置はまた、デフォルトアップリンク送信ビーム上でアップリンク送信を基地局へ送信する。
本開示の別の態様では、方法、コンピュータ可読媒体、および装置が提供される。基地局におけるワイヤレス通信のための例示的な装置は、ダウンリンクビーム上でダウンリンク送信をユーザ機器(UE)へ送信する。例示的な装置はまた、アップリンク送信のために基地局がアップリンク送信ビームを構成していないとき、デフォルトアップリンク送信ビーム上でアップリンク送信をUEから受信する。
上記の目的および関係する目的の達成のために、1つまたは複数の態様は、以下で十分に説明され、特に特許請求の範囲で指摘される特徴を備える。以下の説明および添付の図面は、1つまたは複数の態様のいくつかの例示的な特徴を詳細に記載する。しかしながら、これらの特徴は、様々な態様の原理が採用されてもよい様々な方法のうちのいくつかを示すものにすぎず、この説明は、そのようなすべての態様およびそれらの均等物を含むものとする。
ワイヤレス通信システムおよびアクセスネットワークの例を示す図である。 第1の5G/NRフレームの例を示す図である。 5G/NRサブフレーム内のDLチャネルの例を示す図である。 第2の5G/NRフレームの例を示す図である。 5G/NRサブフレーム内のULチャネルの例を示す図である。 アクセスネットワークの中の基地局およびユーザ機器(UE)の例を示す図である。 本明細書で開示される教示による、基地局とUEとの間の例示的な通信フローを示す図である。 本明細書で開示される教示による、UEにおけるワイヤレス通信の方法のフローチャートである。 本明細書で開示される教示による、UEにおけるワイヤレス通信の方法のフローチャートである。 本明細書で開示される教示による、UEにおけるワイヤレス通信の方法のフローチャートである。 本明細書で開示される教示による、UEにおけるワイヤレス通信の方法のフローチャートである。 本明細書で開示される教示による、UEにおけるワイヤレス通信の方法のフローチャートである。 例示的な装置の中の異なる手段/コンポーネントの間のデータフローを示す概念的なデータフロー図である。 処理システムを利用する装置のハードウェア実装形態の例を示す図である。 本明細書で開示される教示による、基地局におけるワイヤレス通信の方法のフローチャートである。 例示的な装置の中の異なる手段/コンポーネントの間のデータフローを示す概念的なデータフロー図である。 処理システムを利用する装置のハードウェア実装形態の例を示す図である。
添付の図面に関して以下に記載される詳細な説明は、様々な構成の説明として意図されており、本明細書で説明される概念が実践され得る唯一の構成を表すことは意図されていない。詳細な説明は、様々な概念の完全な理解を与える目的で、具体的な詳細を含む。しかしながら、これらの概念がこれらの具体的な詳細なしに実践され得ることが当業者には明らかであろう。いくつかの事例では、よく知られている構造およびコンポーネントは、そのような概念を不明瞭にすることを避けるためにブロック図の形で示される。
次に、電気通信システムのいくつかの態様が、様々な装置および方法を参照して提示される。これらの装置および方法は、以下の詳細な説明において説明され、(「要素」と総称される)様々なブロック、コンポーネント、回路、プロセス、アルゴリズムなどによって添付の図面において示される。これらの要素は、電子ハードウェア、コンピュータソフトウェア、またはそれらの任意の組合せを使用して実装され得る。そのような要素がハードウェアとして実装されるか、またはソフトウェアとして実装されるかは、具体的な適用例および全体的なシステムに課される設計制約に依存する。
例として、要素、または要素の任意の部分、または要素の任意の組合せは、1つまたは複数のプロセッサを含む「処理システム」として実装され得る。プロセッサの例は、マイクロプロセッサ、マイクロコントローラ、グラフィックス処理装置(GPU)、中央処理装置(CPU)、アプリケーションプロセッサ、デジタル信号プロセッサ(DSP)、縮小命令セットコンピューティング(RISC)プロセッサ、システムオンチップ(SoC)、ベースバンドプロセッサ、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理デバイス(PLD)、ステートマシン、ゲート論理、個別ハードウェア回路、および本開示全体にわたって説明される様々な機能を実行するように構成された他の好適なハードウェアを含む。処理システムの中の1つまたは複数のプロセッサがソフトウェアを実行し得る。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語などの名称にかかわらず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアコンポーネント、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行ファイル、実行スレッド、プロシージャ、関数などを意味するように広く解釈されるべきである。
したがって、1つまたは複数の例示的な実施形態では、説明される機能は、ハードウェア、ソフトウェア、またはそれらの任意の組合せで実装され得る。ソフトウェアで実装される場合、機能は、コンピュータ可読媒体上に記憶されるか、またはコンピュータ可読媒体上に1つまたは複数の命令もしくはコードとして符号化され得る。コンピュータ可読媒体はコンピュータ記憶媒体を含む。記憶媒体は、コンピュータによってアクセスされ得る任意の利用可能な媒体であり得る。限定ではなく例として、そのようなコンピュータ可読媒体は、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、電気的消去可能プログラマブルROM(EEPROM)、光ディスクストレージ、磁気ディスクストレージ、他の磁気ストレージデバイス、上述のタイプのコンピュータ可読媒体の組合せ、または、コンピュータによってアクセス可能な命令もしくはデータ構造の形態のコンピュータ実行可能コードを記憶するために使用可能な任意の他の媒体を備え得る。
本明細書で使用するコンピュータ可読媒体という用語は、任意のタイプのコンピュータ可読ストレージデバイスおよび/またはストレージディスクを含み、伝搬信号を除外し、かつ送信媒体を除外するように、明確に定義される。本明細書で使用する、「コンピュータ可読媒体」、「機械可読媒体」、「コンピュータ可読メモリ」、および「機械可読メモリ」は、互換的に使用される。
図1は、ワイヤレス通信システムおよびアクセスネットワーク100の例を示す図である。ワイヤレス通信システム(ワイヤレスワイドエリアネットワーク(WWAN)とも呼ばれる)は、基地局102、UE104、発展型パケットコア(EPC)160、および別のコアネットワーク190(たとえば、5Gコア(5GC))を含む。基地局102は、マクロセル(大電力セルラー基地局)および/またはスモールセル(小電力セルラー基地局)を含み得る。マクロセルは基地局を含む。スモールセルは、フェムトセル、ピコセル、およびマイクロセルを含む。
4G LTE(Evolved Universal Mobile Telecommunications System (UMTS)地上波無線アクセスネットワーク(E-UTRAN)と総称される)のために構成された基地局102は、第1のバックホールリンク132(たとえば、S1インターフェース)を通じてEPC160とインターフェースし得る。5G NR(次世代RAN(NG-RAN)と総称される)のために構成された基地局102は、第2のバックホールリンク184を通じてコアネットワーク190とインターフェースし得る。他の機能に加えて、基地局102は、以下の機能、すなわち、ユーザデータの転送、無線チャネルの暗号化および解読、完全性保護、ヘッダ圧縮、モビリティ制御機能(たとえば、ハンドオーバ、デュアル接続性)、セル間干渉協調、接続のセットアップおよび解放、負荷分散、非アクセス層(NAS)メッセージのための配信、NASノード選択、同期、無線アクセスネットワーク(RAN)共有、マルチメディアブロードキャストマルチキャストサービス(MBMS)、加入者および機器の追跡、RAN情報管理(RIM)、ページング、測位、ならびに警告メッセージの配送のうちの、1つまたは複数を実行し得る。基地局102は、第3のバックホールリンク134(たとえば、X2インターフェース)を介して互いに直接または間接的に(たとえば、EPC160またはコアネットワーク190を通じて)通信し得る。第3のバックホールリンク134は、有線またはワイヤレスであり得る。
基地局102は、UE104とワイヤレスに通信し得る。基地局102の各々は、それぞれの地理的カバレッジエリア110に通信カバレッジを提供し得る。重複する地理的カバレッジエリア110が存在することがある。たとえば、スモールセル102'は、1つまたは複数のマクロ基地局102のカバレッジエリア110と重複するカバレッジエリア110'を有することがある。スモールセルとマクロセルの両方を含むネットワークは、異種ネットワークと呼ばれることがある。異種ネットワークは、限定加入者グループ(CSG)として知られる限定グループにサービスを提供し得るHome Evolved Node B(eNB)(HeNB)を含むこともある。基地局102とUE104との間の通信リンク120は、UE104から基地局102への(逆方向リンクとも呼ばれる)アップリンク(UL)送信、および/または基地局102からUE104への(順方向リンクとも呼ばれる)ダウンリンク(DL)送信を含むことがある。通信リンク120は、空間多重化、ビームフォーミング、および/または送信ダイバーシティを含む、多入力多出力(MIMO)アンテナ技術を使用することがある。通信リンクは、1つまたは複数のキャリアを通じたものであり得る。基地局102/UE104は、各方向における送信のために使用される合計Yx MHz(x個のコンポーネントキャリア)までのキャリアアグリゲーションにおいて割り振られた、キャリア当たりY MHz(たとえば、5、10、15、20、100、400MHzなど)までの帯域幅のスペクトルを使用し得る。キャリアは、互いに隣接してもしなくてもよい。キャリアの割振りは、DLおよびULに関して非対称であってもよい(たとえば、DLに対してULよりも多数または少数のキャリアが割り振られてもよい)。コンポーネントキャリアは、1次コンポーネントキャリアおよび1つまたは複数の2次コンポーネントキャリアを含んでもよい。1次コンポーネントキャリアは1次セル(PCell)と呼ばれることがあり、2次コンポーネントキャリアは2次セル(SCell)と呼ばれることがある。
いくつかのUE104は、デバイス間(D2D)通信リンク158を使用して互いに通信し得る。D2D通信リンク158は、DL/UL WWANスペクトルを使用し得る。D2D通信リンク158は、物理サイドリンクブロードキャストチャネル(PSBCH)、物理サイドリンク発見チャネル(PSDCH)、物理サイドリンク共有チャネル(PSSCH)、および物理サイドリンク制御チャネル(PSCCH)などの、1つまたは複数のサイドリンクチャネルを使用し得る。D2D通信は、たとえば、FlashLinQ、WiMedia、Bluetooth、ZigBee、IEEE 802.11規格に基づくWi-Fi、LTE、またはNRなどの、様々なワイヤレスD2D通信システムを通じたものであってもよい。
ワイヤレス通信システムは、5GHz免許不要周波数スペクトルにおいて通信リンク154を介してWi-Fi局(STA)152と通信しているWi-Fiアクセスポイント(AP)150をさらに含み得る。免許不要周波数スペクトルにおいて通信するとき、STA152/AP150は、チャネルが利用可能であるかどうかを決定するために、通信するより前にクリアチャネルアセスメント(CCA)を実行し得る。
スモールセル102'は、免許および/または免許不要周波数スペクトルにおいて動作し得る。免許不要周波数スペクトルにおいて動作しているとき、スモールセル102'は、NRを利用し、Wi-Fi AP150によって使用されるのと同じ5GHz免許不要周波数スペクトルを使用し得る。免許不要周波数スペクトルにおいてNRを利用するスモールセル102'は、アクセスネットワークへのカバレッジを増強し、および/またはアクセスネットワークの容量を増大させ得る。
基地局102は、スモールセル102'であろうとラージセル(たとえば、マクロ基地局)であろうと、eNB、gNodeB(gNB)、もしくは別のタイプの基地局を含んでもよく、および/またはそのように呼ばれてもよい。gNB180などのいくつかの基地局は、UE104と通信して、従来のサブ6GHzスペクトル、ミリ波(mmW)周波数、および/または準mmW周波数で動作し得る。gNB180がmmW周波数または準mmW周波数で動作するとき、gNB180はmmW基地局と呼ばれることがある。極高周波(EHF)は、電磁スペクトルにおけるRFの一部である。EHFは、30GHzから300GHzの範囲および1ミリメートルから10ミリメートルの間の波長を有する。その帯域における電波は、ミリ波と呼ばれることがある。準mmWは、波長が100ミリメートルの3GHzという周波数まで下方に広がることがある。超高周波(SHF)帯域は、3GHzと30GHzとの間に広がり、センチメートル波とも呼ばれる。mmW/準mmW無線周波数帯域(たとえば、3GHz~300GHz)を使用する通信は、経路損失が極めて大きく距離が短い。mmW基地局180は、極めて大きい経路損失および短い距離を補償するために、UE104と一緒にビームフォーミング182を利用し得る。基地局180およびUE104は各々、ビームフォーミングを促進するために、アンテナ要素、アンテナパネル、および/またはアンテナアレイなどの複数のアンテナを含み得る。
基地局180は、1つまたは複数の送信方向182'においてUE104にビームフォーミングされた信号を送信し得る。UE104は、1つまたは複数の受信方向182''において基地局180からビームフォーミングされた信号を受信し得る。UE104はまた、1つまたは複数の送信方向において基地局180にビームフォーミングされた信号を送信し得る。基地局180は、1つまたは複数の受信方向においてUE104からビームフォーミングされた信号を受信し得る。基地局180/UE104は、基地局180/UE104の各々に対する最良の受信方向および送信方向を決定するためにビーム訓練を実行し得る。基地局180に対する送信方向および受信方向は、同じであっても同じでなくてもよい。UE104に対する送信方向および受信方向は、同じであっても同じでなくてもよい。
EPC160は、モビリティ管理エンティティ(MME)162、他のMME164、サービングゲートウェイ166、マルチメディアブロードキャストマルチキャストサービス(MBMS)ゲートウェイ168、ブロードキャストマルチキャストサービスセンター(BM-SC)170、およびパケットデータネットワーク(PDN)ゲートウェイ172を含み得る。MME162は、ホーム加入者サーバ(HSS)174と通信していることがある。MME162は、UE104とEPC160との間のシグナリングを処理する制御ノードである。一般に、MME 162は、ベアラおよび接続の管理を行う。すべてのユーザインターネットプロトコル(IP)パケットは、サービングゲートウェイ166を通じて転送され、サービングゲートウェイ166自体は、PDNゲートウェイ172に接続される。PDNゲートウェイ172は、UE IPアドレス割振りならびに他の機能を提供する。PDNゲートウェイ172およびBM-SC170は、IPサービス176に接続される。IPサービス176は、インターネット、イントラネット、IPマルチメディアサブシステム(IMS)、PSストリーミングサービス、および/または他のIPサービスを含み得る。BM-SC 170は、MBMSユーザサービスプロビジョニングおよび配信のための機能を提供することができる。BM-SC170は、コンテンツプロバイダMBMS送信のためのエントリポイントとして働くことがあり、公衆陸上移動網(PLMN)内のMBMSベアラサービスを認可および開始するために使用されることがあり、MBMS送信をスケジューリングするために使用されることがある。MBMSゲートウェイ168は、特定のサービスをブロードキャストするマルチキャストブロードキャスト単一周波数ネットワーク(MBSFN)エリアに属する基地局102にMBMSトラフィックを配信するために使用されることがあり、セッション管理(開始/停止)およびeMBMS関係の課金情報を収集することを担うことがある。
コアネットワーク190は、アクセスおよびモビリティ管理機能(AMF)192、他のAMF193、セッション管理機能(SMF)194、ならびにユーザプレーン機能(UPF)195を含み得る。AMF192は、統合データ管理(UDM)196と通信していることがある。AMF192は、UE104とコアネットワーク190との間のシグナリングを処理する制御ノードである。一般に、AMF192は、QoSフローおよびセッション管理を提供する。すべてのユーザインターネットプロトコル(IP)パケットは、UPF195を通して転送される。UPF195は、UE IPアドレス割振りならびに他の機能を提供する。UPF195は、IPサービス197に接続される。IPサービス197は、インターネット、イントラネット、IPマルチメディアサブシステム(IMS)、PSストリーミングサービス、および/または他のIPサービスを含み得る。
基地局は、gNB、Node B、eNB、アクセスポイント、トランシーバ基地局、無線基地局、無線トランシーバ、トランシーバ機能、基本サービスセット(BSS)、拡張サービスセット(ESS)、送受信ポイント(TRP)、もしくは何らかの他の適切な用語を含むことがあり、および/またはそれらとして呼ばれることがある。基地局102は、EPC160またはコアネットワーク190へのアクセスポイントをUE104に提供する。UE104の例には、携帯電話、スマートフォン、セッション開始プロトコル(SIP)電話、ラップトップ、携帯情報端末(PDA)、衛星無線、全地球測位システム、マルチメディアデバイス、ビデオデバイス、デジタルオーディオプレーヤ(たとえば、MP3プレーヤ)、カメラ、ゲーム機、タブレット、スマートデバイス、ウェアラブルデバイス、車両、電気メータ、ガスポンプ、大型または小型の調理家電、健康管理デバイス、インプラント、センサ/アクチュエータ、ディスプレイ、または任意の他の同様の機能デバイスがある。UE104のいくつかは、IoTデバイス(たとえば、パーキングメータ、ガスポンプ、トースター、車両、心臓モニタなど)と呼ばれることがある。UE104は、局、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、移動加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、または他の何らかの好適な用語で呼ばれることもある。
再び図1を参照すると、いくつかの態様では、UE104は、アップリンク制御チャネルおよび/またはSRSに対するデフォルト空間関係を決定することを介してワイヤレス通信の1つまたは複数の態様を管理するように構成され得る。一例として、図1において、UE104は、アップリンク送信のために基地局によってアップリンク送信ビームが構成されていないとき、アップリンク送信を送信するためのデフォルトアップリンク送信ビームを規則に基づいて決定するように構成されたUE空間関係コンポーネント198を含み得る。UE空間関係コンポーネント198はまた、デフォルトアップリンク送信ビーム上でアップリンク送信を基地局へ送信するように構成され得る。
まだ図1を参照すると、いくつかの態様では、基地局180は、アップリンク制御チャネルおよび/またはSRSに対するデフォルト空間関係を監視することを介してワイヤレス通信の1つまたは複数の態様を管理するように構成され得る。一例として、図1において、基地局180は、ダウンリンクビーム上でダウンリンク送信をユーザ機器(UE)へ送信するように構成された基地局送信構成表示(TCI:transmission configuration indication)コンポーネント199を含み得る。例示的な基地局TCIコンポーネント199はまた、アップリンク送信のために基地局がアップリンク送信ビームを構成していないとき、デフォルトアップリンク送信ビーム上でアップリンク送信をUEから受信するように構成され得る。
本明細書で使用する「空間関係」という用語は、UE側の情報を指すために使用されてもよく、「TCI」という用語は、基地局側の情報を指すために使用されてもよい。しかしながら、いくつかの例では、「空間関係」および「TCI」という用語は互換的に使用されてもよい。
以下の説明はアップリンク通信に注目するが、本明細書で説明される概念は、ダウンリンク通信および/またはサイドリンク通信に適用可能であり得る。さらに、以下の説明は5G/NRに注目することがあるが、本明細書で説明される概念は、アップリンク制御チャネルおよび/またはSRSに対するデフォルト空間関係が通信を改善し得る、LTE、LTE-A、CDMA、GSM、および/または他のワイヤレス技術などの、他の同様の分野に適用可能であり得る。たとえば、本明細書で開示される技法は、シグナリングオーバーヘッドを低減することを容易にし、効率的なビーム管理を容易にする。
図2Aは、5G/NRフレーム構造内の第1のサブフレームの例を示す図200である。図2Bは、5G/NRサブフレーム内のDLチャネルの例を示す図230である。図2Cは、5G/NRフレーム構造内の第2のサブフレームの例を示す図250である。図2Dは、5G/NRサブフレーム内のULチャネルの例を示す図280である。5G/NRフレーム構造は、サブキャリアの特定のセット(キャリアシステム帯域幅)に対して、サブキャリアのセット内のサブフレームがDLもしくはULのいずれかにとって専用であるFDDであってもよく、またはサブキャリアの特定のセット(キャリアシステム帯域幅)に対して、サブキャリアのセット内のサブフレームがDLとULの両方にとって専用であるTDDであってもよい。図2A、図2Cによって与えられる例では、5G/NRフレーム構造はTDDであると想定され、サブフレーム4はスロットフォーマット28を有して(大抵はDLを有して)構成され、ここでDはDLであり、UはULであり、Xは、DL/ULの間での使用に柔軟であり、サブフレーム3はスロットフォーマット34を伴って(大抵はULを伴って)構成される。サブフレーム3、4は、それぞれ、スロットフォーマット34、28を伴って示されるが、いずれの特定のサブフレームも、様々な利用可能なスロットフォーマット0~61のうちのいずれを伴って構成されてもよい。スロットフォーマット0、1は、それぞれ、すべてDL、ULである。他のスロットフォーマット2~61は、DL、UL、および柔軟なシンボルの混合を含む。UEは、受信されたスロットフォーマットインジケータ(SFI)を通して、スロットフォーマットを伴って(DL制御情報(DCI)を通じて動的に、または無線リソース制御(RRC)シグナリングを通じて半静的に/静的に)構成される。以下の説明はTDDである5G/NRフレーム構造にも当てはまることに留意されたい。
他のワイヤレス通信技術は、異なるフレーム構造および/または異なるチャネルを有することがある。フレーム(10ms)は、10個の等しいサイズのサブフレーム(1ms)に分割され得る。各サブフレームは、1つまたは複数のタイムスロットを含み得る。サブフレームは、7、4、または2つのシンボルを含み得るミニスロットも含むことがある。各スロットは、スロット構成に応じて7個または14個のシンボルを含むことがある。スロット構成0では、各スロットは14個のシンボルを含むことがあり、スロット構成1では、各スロットは7個のシンボルを含むことがある。DL上のシンボルは、サイクリックプレフィックス(CP)OFDM(CP-OFDM)シンボルであってもよい。UL上のシンボルは、CP-OFDMシンボル(高スループットのシナリオのための)または離散フーリエ変換(DFT)拡散OFDM(DFT-s-OFDM)シンボル(シングルキャリア周波数分割多元接続(SC-FDMA)シンボルとも呼ばれる)(電力が制限されるシナリオのための、単一のストリーム送信に限定される)であってもよい。サブフレーム内のスロットの数は、スロット構成およびヌメロロジーに基づく。スロット構成0では、異なるヌメロロジーμ0~5がそれぞれ、サブフレーム当たり1個、2個、4個、8個、16個、および32個のスロットを許容する。スロット構成1では、異なるヌメロロジー0~2がそれぞれ、サブフレーム当たり2個、4個、および8個のスロットを許容する。したがって、スロット構成0およびヌメロロジーμのために、14個のシンボル/スロットおよび2μ個のスロット/サブフレームがある。サブキャリア間隔およびシンボル長/持続時間は、ヌメロロジーに依存する。サブキャリア間隔は2μ*15kHzに等しくてもよく、μはヌメロロジー0~5である。したがって、ヌメロロジーμ=0は15kHzのサブキャリア間隔を有し、ヌメロロジーμ=5は480kHzのサブキャリア間隔を有する。シンボル長/持続時間は、サブキャリア間隔とは逆の関係にある。図2A-2Dは、スロット当たり14個のシンボルがあるスロット構成0およびサブフレーム当たり4個のスロットがあるヌメロロジーμ=2の例を与える。スロット持続時間は0.25msであり、サブキャリア間隔は60kHzであり、シンボル持続時間は約16.67μsである。
リソースグリッドは、フレーム構造を表すために使用され得る。各タイムスロットは、12個の連続するサブキャリアに及ぶリソースブロック(RB)(物理RB(PRB)とも呼ばれる)を含む。リソースグリッドは複数のリソース要素(RE)に分割される。各REによって搬送されるビット数は、変調方式に依存する。
図2Aに示されるように、REのうちのいくつかは、UEのための基準(パイロット)信号(RS)を搬送する。RSは、UEにおけるチャネル推定のために、復調RS(DM-RS)(100xがポート番号である、ある特定の構成のためにRxとして示されるが、他のDM-RS構成が可能である)と、チャネル状態情報基準信号(CSI-RS)とを含み得る。RSはまた、ビーム測定RS(BRS)、ビーム改善RS(BRRS)、および位相追跡RS(PT-RS)を含み得る。
図2Bは、フレームのサブフレーム内の様々なDLチャネルの例を示す。物理ダウンリンク制御チャネル(PDCCH)は、1つまたは複数の制御チャネル要素(CCE)内でDCIを搬送し、各CCEは9つのREグループ(REG)を含み、各REGはOFDMシンボルに4つの連続するREを含む。1次同期信号(PSS)は、フレームの特定のサブフレームのシンボル2内にあり得る。PSSは、サブフレーム/シンボルタイミングおよび物理レイヤ識別情報を決定するためにUE104によって使用される。2次同期信号(SSS)は、フレームの特定のサブフレームのシンボル4内にあり得る。SSSは、物理レイヤセル識別情報グループ番号および無線フレームタイミングを決定するためにUEによって使用される。物理レイヤ識別情報および物理レイヤセル識別情報グループ番号に基づいて、UEは物理セル識別子(PCI)を決定することができる。PCIに基づいて、UEは上述のDM-RSの位置を決定することができる。マスター情報ブロック(MIB)を搬送する物理ブロードキャストチャネル(PBCH)は、PSSおよびSSSと論理的にグループ化されて、同期信号(SS)/PBCHブロックを形成し得る。MIBは、システム帯域幅の中のRBの数およびシステムフレーム番号(SFN)を提供する。物理ダウンリンク共有チャネル(PDSCH)は、ユーザデータと、システム情報ブロック(SIB)などのPBCHを通して送信されないブロードキャストシステム情報と、ページングメッセージとを搬送する。
図2Cに示されるように、REのうちのいくつかが、基地局におけるチャネル推定のためのDM-RS(1つの特定の構成のためにRとして示されるが、他のDM-RS構成が可能である)を搬送する。UEは、物理アップリンク制御チャネル(PUCCH)のためにDM-RSを、および物理アップリンク共有チャネル(PUSCH)のためにDM-RSを送信し得る。PUSCH DM-RSは、PUSCHの最初の1つまたは2つのシンボルにおいて送信され得る。PUCCH DM-RSは、短いPUCCHが送信されるか、または長いPUCCHが送信されるかに応じて、および使用される特定のPUCCHフォーマットに応じて、異なる構成で送信され得る。UEは、サウンディング基準信号(SRS)を送信し得る。SRSは、サブフレームの最後のシンボルにおいて送信され得る。SRSはコム構造を有することがあり、UEはコムのうちの1つでSRSを送信することがある。SRSは、UL上での周波数依存スケジューリングを可能にするために、チャネル品質推定のために基地局によって使用され得る。
図2Dは、フレームのサブフレーム内の様々なULチャネルの例を示す。PUCCHは、一構成では、図示されるように配置され得る。PUCCHは、スケジューリング要求、チャネル品質インジケータ(CQI)、プリコーディング行列インジケータ(PMI)、ランクインジケータ(RI)、およびHARQ ACK/NACKフィードバックなどのアップリンク制御情報(UCI)を搬送する。PUSCHは、データを搬送し、バッファステータス報告(BSR)、パワーヘッドルーム報告(PHR)、および/またはUCIを搬送するためにさらに使用されることがある。
図3は、アクセスネットワークにおいてUE350と通信している基地局310のブロック図である。DLでは、EPC160からのIPパケットがコントローラ/プロセッサ375に提供され得る。コントローラ/プロセッサ375は、レイヤ3機能およびレイヤ2機能を実装する。レイヤ3は無線リソース制御(RRC)レイヤを含み、レイヤ2は、サービスデータ適応プロトコル(SDAP)レイヤ、パケットデータコンバージェンスプロトコル(PDCP)レイヤ、無線リンク制御(RLC)レイヤ、および媒体アクセス制御(MAC)レイヤを含む。コントローラ/プロセッサ375は、システム情報(たとえば、MIB、SIB)のブロードキャスティング、RRC接続制御(たとえば、RRC接続ページング、RRC接続確立、RRC接続修正、およびRRC接続解放)、無線アクセス技術(RAT)間モビリティ、ならびにUE測定報告のための測定構成と関連付けられるRRCレイヤ機能と、ヘッダ圧縮/解凍、セキュリティ(暗号化、解読、完全性保護、完全性検証)、およびハンドオーバサポート機能と関連付けられるPDCPレイヤ機能と、上位レイヤパケットデータユニット(PDU)の転送、ARQを介した誤り訂正、RLCサービスデータユニット(SDU)の連結、セグメンテーション、およびリアセンブリ、RLCデータPDUの再セグメンテーション、ならびにRLCデータPDUの並べ替えと関連付けられるRLCレイヤ機能と、論理チャネルとトランスポートチャネルとの間のマッピング、トランスポートブロック(TB)上へのMAC SDUの多重化、TBからのMAC SDUの逆多重化、スケジューリング情報報告、HARQを通じた誤り訂正、優先度処理、および論理チャネル優先順位付けと関連付けられるMACレイヤ機能とを提供する。
送信(TX)プロセッサ316および受信(RX)プロセッサ370は、様々な信号処理機能と関連付けられるレイヤ1の機能を実装する。物理(PHY)レイヤを含むレイヤ1は、トランスポートチャネル上の誤り検出、トランスポートチャネルの前方誤り訂正(FEC)コーディング/復号、インターリービング、レートマッチング、物理チャネル上へのマッピング、物理チャネルの変調/復調、およびMIMOアンテナ処理を含み得る。TXプロセッサ316は、様々な変調方式(たとえば、2位相シフトキーイング(BPSK)、4位相シフトキーイング(QPSK)、M位相シフトキーイング(M-PSK)、M相直交振幅変調(M-QAM))に基づく信号コンスタレーションへのマッピングを扱う。コーディングされ変調されたシンボルは、次いで、並列ストリームに分割されることがある。各ストリームは、次いで、時間領域OFDMシンボルストリームを搬送する物理チャネルを生成するために、OFDMサブキャリアにマッピングされ、時間領域および/または周波数領域において基準信号(たとえば、パイロット)と多重化され、次いで、逆高速フーリエ変換(IFFT)を使用して一緒に合成されることがある。OFDMストリームは、複数の空間ストリームを生成するために空間的にプリコーディングされる。チャネル推定器374からのチャネル推定値は、コーディングおよび変調方式を決定するために、かつ空間処理のために使用され得る。チャネル推定値は、UE350によって送信された基準信号および/またはチャネル状態フィードバックから導出され得る。各空間ストリームは、次いで、別個の送信機318TXを介して異なるアンテナ320に提供され得る。各送信機318TXは、送信のためにそれぞれの空間ストリームを用いてRFキャリアを変調し得る。
UE350において、各受信機354RXは、そのそれぞれのアンテナ352を通じて信号を受信する。各受信機354RXは、RFキャリア上に変調された情報を復元し、その情報を受信(RX)プロセッサ356に提供する。TXプロセッサ368およびRXプロセッサ356は、様々な信号処理機能と関連付けられるレイヤ1機能を実装する。RXプロセッサ356は、UE350に向けられた任意の空間ストリームを復元するために、情報に対して空間処理を実行し得る。複数の空間ストリームは、UE350に向けられている場合、RXプロセッサ356によって単一のOFDMシンボルストリームへと合成され得る。RXプロセッサ356は、次いで、高速フーリエ変換(FFT)を使用して、OFDMシンボルストリームを時間領域から周波数領域に変換する。周波数領域信号は、OFDM信号の各サブキャリアに対して別々のOFDMシンボルストリームを備える。各サブキャリア上のシンボル、および基準信号は、基地局310によって送信された最も可能性の高い信号コンスタレーションポイントを決定することによって、復元および復調される。これらの軟判定は、チャネル推定器358によって算出されたチャネル推定値に基づいてよい。軟判定は、次いで、復号およびデインターリーブされて、物理チャネル上で基地局310によって当初送信されたデータおよび制御信号を復元する。データおよび制御信号は、次いで、レイヤ3機能およびレイヤ2機能を実装するコントローラ/プロセッサ359に提供される。
コントローラ/プロセッサ359は、プログラムコードとデータとを記憶するメモリ360と関連付けられ得る。メモリ360は、コンピュータ可読媒体と呼ばれることがある。ULでは、コントローラ/プロセッサ359は、トランスポートチャネルと論理チャネルとの間の逆多重化、パケットリアセンブリ、解読、ヘッダ解凍、および制御信号処理を行って、EPC160からのIPパケットを復元する。コントローラ/プロセッサ359はまた、HARQ動作をサポートするために、ACKおよび/またはNACKプロトコルを使用する誤り検出を担う。
基地局310によるDL送信に関して説明された機能と同様に、コントローラ/プロセッサ359は、システム情報(たとえば、MIB、SIB)収集、RRC接続、および測定報告と関連付けられるRRCレイヤ機能と、ヘッダ圧縮/解凍およびセキュリティ(暗号化、解読、完全性保護、完全性検証)と関連付けられるPDCPレイヤ機能と、上位レイヤPDUの転送、ARQを介した誤り訂正、RLC SDUの連結、セグメンテーション、およびリアセンブリ、RLCデータPDUの再セグメンテーション、ならびにRLCデータPDUの並べ替えと関連付けられるRLCレイヤ機能と、論理チャネルとトランスポートチャネルとの間のマッピング、TB上へのMAC SDUの多重化、TBからのMAC SDUの逆多重化、スケジューリング情報報告、HARQを通じた誤り訂正、優先度処理、および論理チャネル優先順位付けと関連付けられるMACレイヤ機能とを提供する。
基地局310によって送信された基準信号またはフィードバックからチャネル推定器358によって導出されるチャネル推定値は、適切なコーディングおよび変調方式を選択して空間処理を容易にするために、TXプロセッサ368によって使用され得る。TXプロセッサ368によって生成された空間ストリームは、別個の送信機354TXを介して異なるアンテナ352に提供され得る。各送信機354TXは、送信のためにそれぞれの空間ストリームでRFキャリアを変調し得る。
UL送信は、UE350における受信機機能に関して説明されたものと同様の方式で基地局310において処理される。各受信機318RXは、受信機のそれぞれのアンテナ320を通じて信号を受信する。各受信機318RXは、RFキャリア上に変調された情報を復元し、その情報をRXプロセッサ370に提供する。
コントローラ/プロセッサ375は、プログラムコードとデータとを記憶するメモリ376と関連付けられ得る。メモリ376は、コンピュータ可読媒体と呼ばれることがある。ULでは、コントローラ/プロセッサ375は、トランスポートチャネルと論理チャネルとの間の逆多重化、パケットリアセンブリ、解読、ヘッダ解凍、制御信号処理を行って、UE350からのIPパケットを復元する。コントローラ/プロセッサ375からのIPパケットは、EPC160に提供され得る。コントローラ/プロセッサ375はまた、HARQ動作をサポートするために、ACKおよび/またはNACKプロトコルを使用する誤り検出を担う。
TXプロセッサ368、RXプロセッサ356、およびコントローラ/プロセッサ359のうちの少なくとも1つが、図1のUE空間関係コンポーネント198に関連した態様を実行するように構成され得る。
TXプロセッサ316、RXプロセッサ370、およびコントローラ/プロセッサ375のうちの少なくとも1つが、図1の基地局TCIコンポーネント199に関連した態様を実行するように構成され得る。
本明細書で開示される例示的な技法は、アップリンク送信のために基地局によってアップリンク送信ビームが構成されていないとき(たとえば、基地局によってアップリンク送信ビームが明示的に構成されていないとき)、アップリンク送信を送信するためのデフォルトアップリンク送信ビームをUEが決定することを可能にする。たとえば、シグナリングオーバーヘッドを低減するために、空間関係情報はアップリンク送信(たとえば、PUCCHおよび/またはSRS)のための随意のパラメータであってもよく、したがって、たとえば、RRCシグナリングの中で、UEのために基地局によって明示的に構成されないことがある。基地局からの空間関係情報の明示的な構成がない場合、本明細書で開示される技法は、アップリンク送信を送信するためのデフォルトアップリンク送信ビームをUEが暗黙的に決定することを可能にする。たとえば、UEは、アップリンク送信を送信するためのデフォルトアップリンク送信ビームを決定するために1つまたは複数の規則を適用し得る。UEは、次いで、デフォルトアップリンク送信ビーム上でアップリンク送信を送信し得る。デフォルトアップリンク送信ビームに対する構成を用いずにUEがデフォルトアップリンク送信ビームを決定するための方法を提供することは、ワイヤレスリソースのより効率的な使用のために、(たとえば、UEと基地局との間の)シグナリングオーバーヘッドを低減する助けとなり得る。
図4は、本明細書で提示するような、基地局402とUE404との間の例示的なワイヤレス通信400を示す。基地局402の1つまたは複数の態様は、図1の基地局102/180および/または図3の基地局310によって実施され得る。UE404の1つまたは複数の態様は、図1のUE104および/または図3のUE350によって実施され得る。
図4のワイヤレス通信400は1つのUE404と通信している1つの基地局402を含むが、追加または代替の例では、基地局402が、任意の好適な数量のUEおよび/または他の基地局と通信していてもよく、かつ/あるいはUE404が、任意の好適な数量の基地局および/または他のUEと通信していてもよい。したがって、基地局402とUE404との間の送信のうちのいくつかは、アップリンク送信およびダウンリンク送信として説明されるが、他の例では、送信のうちのいずれかが、追加または代替として、サイドリンク送信であってもよい。
図示の例では、基地局402およびUE404は通信している。たとえば、基地局402は、UE404によって受信されるダウンリンク送信410を送信してもよい。ダウンリンク送信410は、ダウンリンク共有チャネル(たとえば、PDSCH)および/またはダウンリンク制御チャネル(たとえば、PDCCH)であってもよい。図示の例では、基地局402は、ダウンリンク送信(たとえば、ダウンリンク送信410)を送信するために使用されるダウンリンクビーム412上でダウンリンク送信410を送信する。UE404は、基地局402からダウンリンク送信(たとえば、ダウンリンク送信410)を受信するために使用されるビーム414を介してダウンリンク送信410を受信し得る。
420において、UE404は、アップリンク送信を送信すべきと決定してもよい。たとえば、UE404は、アップリンク制御チャネル(たとえば、PUCCH)、SRS、および/またはスケジューリング要求(SR:scheduling request)を送信すべきと決定してもよい。図4の図示の例では、アップリンク送信のためのアップリンク送信ビームは、基地局402によって構成されていない。たとえば、シグナリングオーバーヘッドを低減するために、空間関係情報はPUCCHおよび/またはSRSのための随意のパラメータであってもよく、したがって、たとえば、RRCの中で(たとえば、「PUCCH-config」および/または「SRS-config」を介して)、UE404のために基地局402によって明示的に構成されないことがある。
したがって、本明細書で開示される技法は、各アップリンク送信に対して明示的な構成を用いずに、アップリンク送信を送信するためのアップリンク送信ビームをUEが決定することを可能にする。たとえば、430において、UE404は、アップリンク送信を送信するためのデフォルトアップリンク送信ビームを決定する。以下で説明されるように、UE404は、基地局402からダウンリンク送信を受信するために使用されるビームに関連する1つまたは複数のパラメータ(たとえば、ダウンリンク送信410を受信するために使用されるビーム414に関連する1つまたは複数のパラメータ)に基づいて、デフォルトアップリンク送信ビームを決定してもよい。
440において、基地局402は、アップリンク送信を受信するために監視すべきビームを選択する。以下で説明されるように、基地局402は、ダウンリンク送信をUE404へ送信するために使用されるビームに関連する1つまたは複数のパラメータ(たとえば、ダウンリンク送信410を送信するために使用されるビーム412に関連する1つまたは複数のパラメータ)に基づいて、アップリンク送信を受信するために監視すべきビームを選択してもよい。
(たとえば、430において)デフォルトアップリンク送信ビームを決定した後、UE404は、基地局402によって受信されるアップリンク送信450を送信する。図示の例では、UE404は、アップリンク送信(たとえば、アップリンク送信450)を送信するために使用される決定されたデフォルトアップリンク送信ビーム(たとえば、ビーム452)上でアップリンク送信450を送信する。基地局402は、UE404からアップリンク送信(たとえば、アップリンク送信450)を受信するために使用されるビーム454を介してアップリンク送信450を受信し得る。図示の例では、基地局402は、440においてビーム454を決定してもよい。
図4の例示的なワイヤレス通信400は、UE404がデフォルトアップリンク送信ビームを430において決定し、かつ実質的に同時に、基地局402が監視すべきビームを440において選択することを示すが、相対的タイミングは例である。たとえば、いくつかの例では、基地局402は、UE404がデフォルトアップリンク送信ビームの決定を(たとえば、430において)実行する前に、監視すべきビームの選択を(たとえば、440において)実行してもよいが、他の例では、基地局402は、UE404がデフォルトアップリンク送信ビームの決定を(たとえば、430において)実行した後、監視すべきビームの選択を(たとえば、440において)実行してもよい。
いくつかの例では、UE404は、デフォルトアップリンク送信ビームの1つまたは複数のパラメータが、ダウンリンク送信を受信するために使用されるビームに対応し得る、ビーム対応を使用して動作するように構成され得る。たとえば、UE404がビーム対応を使用して動作しているとき、デフォルトアップリンク送信ビーム452の1つまたは複数のパラメータは、ダウンリンク送信410を受信するために使用されるビーム414に対応し得る。さらなる例として、デフォルトアップリンク送信ビームを送信するための、アンテナアレイの中のアンテナ素子に対して、UE404によって使用される位相オフセットおよび/または利得は、ダウンリンク送信を受信するために使用される位相オフセットおよび/または利得と同じであってもよく、またはそれに基づいてもよい。
いくつかの例では、ダウンリンク送信410は、ダウンリンク共有チャネル(たとえば、PDSCH)であってもよい。いくつかのそのような例では、UE404は、ダウンリンク共有チャネルに関連する送信構成表示(TCI)状態識別子に対応するビームを選択することによって、デフォルトアップリンク送信ビーム452を430において決定してもよい。たとえば、UE404は、ダウンリンク共有チャネルに関連するアクティブ化されたTCI状態の最小TCI状態識別子に対応するビームを選択してもよい。いくつかの例では、UE404は、ダウンリンク共有チャネルに関連するTCI状態の特定のTCI状態識別子に対応するビームを選択してもよい。
同様に、いくつかの例では、基地局402は、ダウンリンク共有チャネルに関連するTCI状態識別子に基づいて、アップリンク送信450を受信するために監視すべきビーム454を440において選択してもよい。たとえば、基地局402は、ダウンリンク共有チャネルに関連するアクティブ化されたTCI状態の最小TCI状態識別子に対応するビームを選択してもよい。いくつかの例では、基地局402は、ダウンリンク共有チャネルに関連するTCI状態の特定のTCI状態識別子に対応するビームを選択してもよい。
いくつかの例では、UE404は、しきい値期間の後、最後に首尾よく受信されたダウンリンク共有チャネルビームに対応するビームを選択してもよい。同様に、いくつかの例では、基地局402は、しきい値期間の後、最後に首尾よく受信されたダウンリンク共有チャネルビームに対応するビームを選択してもよい。たとえば、ダウンリンク共有チャネル送信がUE404によって首尾よく受信されると、UE404は、ダウンリンク共有チャネル送信が首尾よく受信されたことを示すACK信号を基地局402へ送信してもよい。ダウンリンク共有チャネル送信の送信とACK信号の受信との間に遅延(たとえば、ラウンドトリップ時間+送信/信号の復号、処理などのための追加の時間)があり得るので、UE404は、ダウンリンク共有チャネルを首尾よく受信した後、しきい値期間だけ待ってから、受信されたダウンリンク共有ビームに対応するビームを使用して選択および/または送信してもよい。同様に、基地局402は、しきい値期間だけ待ってから、首尾よく受信されたダウンリンク共有チャネルに対応するビームを選択および/または監視してもよい。選択および/または送信する前のUE待ち時間に関連するしきい値期間は、選択および/または監視する前の基地局待ち時間に関連するしきい値期間と同じかまたは異なってもよい。
いくつかの例では、ダウンリンク送信410は、ダウンリンク制御チャネル(たとえば、PDCCH)であってもよい。いくつかの例では、UE404は、PDCCHおよび/またはDCIを搬送するために使用されるリソースおよび/またはパラメータのセットを含む特定の制御リソースセット(control resource set:CORESET)に関連するビームを選択することによって、デフォルトアップリンク送信ビーム452を430において決定してもよい。いくつかのそのような例では、特定のCORESETは、UE404によって最後に監視されたスロットの中の、最小CORESET識別子を有するCORESETに対応し得る。いくつかの例では、特定のCORESETは、構成されたCORESETのセットのうちの、最小CORESET識別子を有するCORESETに対応し得る。いくつかの例では、UE404は、RRCシグナリングおよび/または媒体アクセス制御-制御要素(MAC-CE:medium access control-control element)を介して特定のCORESETに対するCORESET識別子を受信し得る。
同様に、いくつかの例では、基地局402は、特定のCORESETに関連するビームに基づいて、アップリンク送信450を受信するために監視すべきビーム454を440において選択してもよい。そのような例では、特定のCORESETは、UE404によって最後に監視されたスロットの中の、最小CORESET識別子を有するCORESETに対応し得る。いくつかの例では、特定のCORESETは、構成されたCORESETのセットのうちの、最小CORESET識別子を有するCORESETに対応し得る。いくつかの例では、基地局402は、RRCシグナリングおよび/またはMAC-CEを介して特定のCORESETに対するCORESET識別子を送信してもよい。
図4の図示の例は、UE404が、ダウンリンク送信410を受信した後、デフォルトアップリンク送信ビーム452を430において決定し得ることを表すが、いくつかの例では、UE404は、ダウンリンク送信410を受信する前に、かつ/またはダウンリンク送信410を受信することなく、デフォルトアップリンク送信ビーム452を決定してもよい。たとえば、いくつかの例では、CORESETが構成されてもよく、UE404は、最小CORESET IDに関連する受信ビームに基づいてデフォルトアップリンク送信ビーム452を430において決定してもよい。したがって、CORESET構成を提供するダウンリンク送信が、ダウンリンク送信410であってもよいこと、および/または基地局402からUE404への任意の他の先行するダウンリンク送信であってもよいことを諒解されたい。したがって、いくつかの例では、UE404が、UE404に対してCORESETが構成されているかどうかを最初に決定してもよく、次いで、それに応じてデフォルトアップリンク送信ビーム452を決定してもよいことが諒解され得る。たとえば、CORESETが構成されていることをUE404が決定する場合、UE404は、特定のCORESETに関連するビームを選択してもよい。いくつかのそのような例では、CORESETが構成されていないことをUE404が決定する場合、UE404は、PDSCHに基づいてビームを選択してもよい。
いくつかの例では、UE404は、DCIの中で示されるビームを選択することによって、デフォルトアップリンク送信ビーム452を430において決定してもよい。同様に、基地局402は、DCIの中で示されるビームに基づいて、アップリンク送信450を受信するために監視すべきビーム454を440において選択してもよい。
いくつかの例では、UE404は、複数の送受信ポイント(TRP)と通信してもよい。いくつかのそのような例では、UE404は、それぞれのダウンリンク送信を受信するために使用される対応するビームに基づいて、TRPの各々に対してデフォルトアップリンク送信ビーム452を430において決定してもよい。同様に、基地局402は、対応するダウンリンクビーム(たとえば、ダウンリンク送信410をUE404へ送信するために使用されるビーム412)に基づいて、TRPの各々に対して監視すべきビームを440において選択してもよい。
図4の図示の例は、アップリンク送信を送信するためのデフォルトアップリンク送信ビームを決定することを表すが、いくつかの例では、UE404は、アップリンク送信のタイプに基づいてデフォルトアップリンク送信ビームを決定してもよい。たとえば、UE404は、アップリンク制御チャネルを送信するための第1のデフォルトアップリンク送信ビーム、SRSを送信するための第2のデフォルトアップリンク送信ビーム、およびSRを送信するための第3のデフォルトアップリンク送信ビームを決定してもよい。いくつかの例では、第1のデフォルトアップリンク送信ビーム、第2のデフォルトアップリンク送信ビーム、および/または第3のデフォルトアップリンク送信ビームは、同じデフォルトアップリンク送信ビームであってもよい。他の例では、第1のデフォルトアップリンク送信ビーム、第2のデフォルトアップリンク送信ビーム、および第3のデフォルトアップリンク送信ビームのうちの少なくとも1つは、デフォルトアップリンク送信ビームのうちの別のビームとは異なってもよい。
いくつかの例では、UE404は、ビーム対応を使用して動作していないことがある。いくつかのそのような例では、UE404は、デフォルトアップリンク送信ビームを決定するためのデフォルトアップリンク空間関係情報を基地局402から受信し得る。いくつかの例では、UE404は、RRCシグナリング、MAC-CEシグナリング、および/またはDCIシグナリングを介してデフォルトアップリンク空間関係情報を基地局402から受信し得る。UE404は、次いで、後続の複数のアップリンク送信を送信するために、デフォルトアップリンク送信ビームを使用してもよい。このようにして、アップリンク送信のためにアップリンク送信ビームが構成されていないとき、UE404は、それぞれのアップリンク送信の各々に対してシグナリングを受信することなく、1つまたは複数のアップリンク送信のためのデフォルトアップリンク送信ビームを決定できる場合がある。
図5~図9は、本明細書で開示されるような、ワイヤレス通信の方法のフローチャートである。方法は、UE(たとえば、UE104、UE350、UE404、UE1350、装置1002/1002'、処理システム1114、これはメモリ360を含んでもよく、UE350全体であってもよく、または、TXプロセッサ368、RXプロセッサ356、および/もしくはコントローラ/プロセッサ359などのUE350のコンポーネントであってもよい)によって実行され得る。随意の態様は破線を用いて図示される。図5~図9の例示的なフローチャートは、(たとえば、アップリンク送信のためにアップリンクビームが構成されていないとき)アップリンク送信を送信するための高速かつ効率的なビーム選択をUEが実行することを容易にし、そのことは、UEと基地局との間の低減されたオーバーヘッドシグナリングをもたらし得る。
図5は、本明細書で開示される教示に従って説明されるような、ワイヤレス通信の方法のフローチャート500である。502において、UEは、たとえば図4の430に関して説明されたように、アップリンク送信のために基地局によってアップリンク送信ビームが構成されていないとき、アップリンク送信を送信するためのデフォルトアップリンク送信ビームを規則に基づいて決定する。たとえば、デフォルトアップリンク送信ビーム決定コンポーネント1018が、アップリンク送信を送信するためのデフォルトアップリンク送信ビームの決定を容易にし得る。たとえば、シグナリングオーバーヘッドを低減するために、アップリンク送信(たとえば、アップリンク送信ビーム)に対する空間関係情報は随意のパラメータであってもよく、したがって、たとえば、RRCシグナリングの中で、UEのために基地局によって明示的に構成されないことがある。基地局からの空間関係情報の明示的な構成がない場合(たとえば、基地局によってアップリンク送信ビームが構成されていない場合)、UEは、アップリンク送信を送信するためのデフォルトアップリンク送信ビームを暗黙的に決定する。いくつかの例では、UEは、デフォルトアップリンク送信ビームが、ダウンリンク送信を受信するために使用されるビームに対応することを決定してもよく、ここで、デフォルトアップリンク送信ビームのためのパラメータは、そのビームに対応し得る。いくつかの例では、UEは複数のTRPと通信し得る。いくつかのそのような例では、各TRPに対して、UEは、ダウンリンク送信を受信するために使用される対応するビームに基づいてデフォルトアップリンク送信ビームを決定し得る。
いくつかの例では、503において、UEは、図4の430に関して説明されたように、CORESETが構成されているかどうかを決定し得る。たとえば、デフォルトアップリンク送信ビーム決定コンポーネント1018が、CORESETが構成されているかどうかの決定を容易にし得る。いくつかのそのような例では、UEは、CORESETが構成されているかどうかに基づいてビームを選択し得る。たとえば、UEは、CORESETが構成されているとき、最小CORESET識別子に対応するCORESETを使用してもよく、CORESETが構成されていないとき、PDSCHを使用してもよい。
いくつかの例では、504において、UEは、異なるアップリンク送信に基づいて、対応するアップリンク送信のためのそれぞれのデフォルトアップリンク送信ビームを決定し得る。たとえば、デフォルトアップリンク送信ビーム決定コンポーネント1018が、アップリンク制御チャネルを送信するための第1のデフォルトアップリンク送信ビーム、SRSを送信するための第2のデフォルトアップリンク送信ビーム、およびSRを送信するための第3のデフォルトアップリンク送信ビームの決定を容易にし得る。いくつかの例では、それぞれのデフォルトアップリンク送信ビームのうちの1つまたは複数は、同じデフォルトアップリンク送信ビームであってもよい。
506において、UEは、たとえば図4のアップリンク送信450に関して説明されたように、デフォルトアップリンク送信ビーム上でアップリンク送信を基地局へ送信する。たとえば、送信コンポーネント1006が、デフォルトアップリンク送信ビーム上でアップリンク送信を送信することを容易にし得る。いくつかの例では、アップリンク送信は、アップリンク制御チャネル(たとえば、PUCCH)、SRS、またはSRのうちの少なくとも1つを含む。
図6~図9は、ワイヤレス通信の方法のフローチャートである。図6~図9の例示的な方法は、デフォルトアップリンク送信ビームを決定するために使用され得る。たとえば、図6~図9の例示的な方法は、図5の502を実施することを容易にし得る。
図6は、本明細書で開示される教示に従って説明されるような、ワイヤレス通信の方法のフローチャート600である。図6の例では、UEは、デフォルトアップリンク送信ビームのためのパラメータが、ダウンリンク送信を受信するために使用されるビームに対応するように、ビーム対応を使用して動作している。
602において、UEは、たとえば図4のダウンリンク送信410に関して説明されたように、基地局からダウンリンク共有チャネルを受信し得る。たとえば、受信コンポーネント1004が、ダウンリンク共有チャネルの受信を容易にし得る。
604において、UEは、たとえば図4の430に関して説明されたように、ダウンリンク送信(たとえば、ダウンリンク共有チャネル)を受信するために使用されるビームに基づいてデフォルトアップリンク送信ビームを決定し得る。たとえば、TCI状態識別子コンポーネント1008および/または共有チャネルビームコンポーネント1010が、ダウンリンク送信を受信するために使用されるビームに基づくデフォルトアップリンク送信ビームの決定を容易にし得る。
いくつかの例では、606において、UEは、ダウンリンク共有チャネルに関連するアクティブ化されたTCI状態の最小TCI状態識別子に対応するビームを選択し得る。たとえば、TCI状態識別子コンポーネント1008が、ダウンリンク共有チャネルに関連するアクティブ化されたTCI状態の最小TCI状態識別子に対応するビームの選択を容易にし得る。
いくつかの例では、608において、UEは、ダウンリンク共有チャネルに関連するTCI状態の特定のTCI状態識別子に対応するビームを選択し得る。たとえば、TCI状態識別子コンポーネント1008が、ダウンリンク共有チャネルに関連するTCI状態の特定のTCI状態識別子に対応するビームの選択を容易にし得る。
いくつかの例では、610において、UEは、しきい値期間の後、最後に首尾よく受信されたダウンリンク共有チャネルビームに対応するビームを選択し得る。たとえば、共有チャネルビームコンポーネント1010が、しきい値期間の後の、最後に首尾よく受信されたダウンリンク共有チャネルビームに対応するビームの選択を容易にし得る。
図7は、本明細書で開示される教示に従って説明されるような、ワイヤレス通信の方法のフローチャート700である。図7の例では、UEは、デフォルトアップリンク送信ビームのためのパラメータが、ダウンリンク送信を受信するために使用されるビームに対応するように、ビーム対応を使用して動作している。
702において、UEは、図4のダウンリンク送信410に関して説明されたように、RRCまたはMAC-CEのうちの少なくとも1つを介して特定のCORESETに対するCORESET識別子を受信し得る。たとえば、受信コンポーネント1004が、特定のCORESETに対するCORESET識別子の受信を容易にし得る。
704において、UEは、たとえば図4の430に関して説明されたように、特定のCORESETに関連するビームを選択し得る。たとえば、CORESET処理コンポーネント1012が、特定のCORESETに関連するビームの選択を容易にし得る。いくつかの例では、特定のCORESETは、UEによって最後に監視されたスロットの中の、最小CORESET識別子を有するCORESETに対応し得る。いくつかの例では、特定のCORESETは、構成されたCORESETのセットのうちの、最小CORESET識別子を有するCORESETに対応し得る。
図8は、本明細書で開示される教示に従って説明されるような、ワイヤレス通信の方法のフローチャート800である。図8の例では、UEは、デフォルトアップリンク送信ビームのためのパラメータが、ダウンリンク送信を受信するために使用されるビームに対応するように、ビーム対応を使用して動作している。
802において、UEは、たとえば図4のダウンリンク送信410に関して説明されたように、基地局からDCIを受信し得る。たとえば、受信コンポーネント1004が、基地局からのDCIの受信を容易にし得る。
804において、UEは、たとえば図4の430に関して説明されたように、DCIの中で示されるビームを選択し得る。たとえば、DCI処理コンポーネント1014が、DCIの中で示されるビームの選択を容易にし得る。いくつかの例では、DCIは、(たとえば、DCIが、PDSCHをスケジュールしており、かつ対応するTCI状態情報を搬送するとき)TCI状態情報を搬送し得る。いくつかのそのような例では、TCI状態情報がUEにとって利用可能であるとき、UEは、そのビーム上でダウンリンク送信を受信するためにどの受信ビームを使用すべきかを決定してもよく、それはTCI状態情報とのQCLであってもよい。たとえば、CORESETにおいて、スケジュールされた共有チャネルのTCI状態情報をDCIが搬送するかどうかを示す、RRCの中の「tci-PresentInDCI」パラメータを有効化または無効化するためのオプションがあってもよい。いくつかの例では、TCI状態は、1つまたは複数のDL基準信号および対応するQCL(擬似コロケーション)タイプに関連し得る。たとえば、QCLタイプDが受信ビームパラメータに関係してもよい。そのような例では、UEは、DCIによって構成されたダウンリンクビームを受信するために使用される受信ビームパラメータに基づいてビームを選択し得る。
図9は、本明細書で開示される教示に従って説明されるような、ワイヤレス通信の方法のフローチャート900である。902において、UEは、たとえば図4のダウンリンク送信410に関して説明されたように、アップリンク送信のためのアップリンク送信ビームが構成されていないとき、アップリンク送信を送信するためのデフォルトアップリンク送信ビームを決定するためのデフォルトアップリンク空間関係情報を基地局から受信し得る。たとえば、受信コンポーネント1004が、デフォルトアップリンク空間関係情報の受信を容易にし得る。いくつかの例では、UEは、RRCシグナリング、MAC-CEシグナリング、および/またはDCIシグナリングのうちの少なくとも1つを介してデフォルトアップリンク空間関係情報を受信し得る。
904において、UEは、たとえば図4の430に関して説明されたように、デフォルトアップリンク空間関係情報に基づいて、後続の複数のアップリンク送信のためのデフォルトアップリンク送信ビームを決定し得る。たとえば、空間関係情報処理コンポーネント1016が、デフォルトアップリンク空間関係情報に基づくデフォルトアップリンク送信ビームの決定を容易にし得る。
図10は、基地局1050と通信している例示的な装置1002の中の異なる手段/コンポーネントの間のデータフローを示す概念的なデータフロー図1000である。装置1002は、UEまたはUEのコンポーネントであってもよい。装置1002は、受信コンポーネント1004、送信コンポーネント1006、TCI状態識別子コンポーネント1008、共有チャネルビームコンポーネント1010、CORESET処理コンポーネント1012、DCI処理コンポーネント1014、空間関係情報処理コンポーネント1016、およびデフォルトアップリンク送信ビーム決定コンポーネント1018を含む。基地局1050は、図1の基地局102/180、図3の基地局310、図4の基地局402、および/または図13/図14の装置1302/1302'に関して示すような、同じかまたは類似のコンポーネントを含み得る。
受信コンポーネント1004は、たとえば、基地局1050を含む他のデバイスから、様々なタイプの信号/メッセージおよび/または他の情報を受信するように構成され得る。メッセージ/情報は、受信コンポーネント1004を介して受信されてもよく、様々な動作を実行する際のさらなる処理および/または使用のために装置1002の1つまたは複数のコンポーネントに提供されてもよい。たとえば、受信コンポーネント1004は、(たとえば、602、702、802、および/または902に関して説明されたように)たとえば、ダウンリンク共有チャネル、CORESET、DCIシグナリング、デフォルト空間関係情報、MAC-CEシグナリング、および/またはRRCシグナリングを含むダウンリンク送信を受信するように構成され得る。
送信コンポーネント1006は、様々なタイプの信号/メッセージおよび/または他の情報を、たとえば、基地局1050を含む他のデバイスへ送信するように構成され得る。たとえば、送信コンポーネント1006は、(たとえば、506に関して説明されたように)デフォルトアップリンク送信ビーム上でアップリンク送信を送信するように構成され得る。
TCI状態識別子コンポーネント1008は、(たとえば、604、606、および/または608に関して説明されたように)ダウンリンク共有チャネルに関連するアクティブ化されたTCI状態の最小TCI状態識別子に対応するビームを選択し、かつ/またはダウンリンク共有チャネルに関連するTCI状態の特定のTCI状態識別子に対応するビームを選択するように構成され得る。
共有チャネルビームコンポーネント1010は、(たとえば、604および/または610に関して説明されたように)しきい値期間の後、最後に首尾よく受信されたダウンリンク共有チャネルビームに対応するビームを選択するように構成され得る。
CORESET処理コンポーネント1012は、(たとえば、704に関して説明されたように)特定のCORESETに関連するビームを選択するように構成され得る。いくつかの例では、特定のCORESETは、UEによって最後に監視されたスロットの中の最小CORESET識別子を含む。いくつかの例では、特定のCORESETは、構成されたCORESETのセットのうちの最小CORESET識別子を含む。
DCI処理コンポーネント1014は、(たとえば、804に関して説明されたように)DCIの中で示されるビームを選択するように構成され得る。
空間関係情報処理コンポーネント1016は、(たとえば、904に関して説明されたように)デフォルトアップリンク空間関係情報に基づいて、後続の複数のアップリンク送信のためのデフォルトアップリンク送信ビームを決定するように構成され得る。
デフォルトアップリンク送信ビーム決定コンポーネント1018は、(たとえば、502および/または504に関して説明されたように)アップリンク送信のために基地局によってアップリンク送信ビームが構成されていないとき、アップリンク送信を送信するためのデフォルトアップリンク送信ビームを規則に基づいて決定するように構成され得る。たとえば、デフォルトアップリンク送信ビーム決定コンポーネント1018は、デフォルトアップリンク送信ビームを決定するために、TCI状態識別子コンポーネント1008、共有チャネルビームコンポーネント1010、CORESET処理コンポーネント1012、DCI処理コンポーネント1014、および/または空間関係情報処理コンポーネント1016によって提供されるビーム表示を使用し得る。いくつかの例では、デフォルトアップリンク送信ビーム決定コンポーネント1018は、(たとえば、504に関して説明されたように)対応するアップリンク送信タイプ(たとえば、SRS、アップリンク制御チャネル、および/またはSR)のための、それぞれのデフォルトアップリンク送信ビームを決定し得る。
装置は、上述の図5~図9のフローチャートにおけるアルゴリズムのブロックの各々を実行する追加のコンポーネントを含み得る。したがって、上述の図5~図9のフローチャートにおける各ブロックはコンポーネントによって実行されてもよく、装置はそれらのコンポーネントのうちの1つまたは複数を含んでもよい。コンポーネントは、述べられたプロセス/アルゴリズムを実行するように特に構成された1つもしくは複数のハードウェアコンポーネントであるか、述べられたプロセス/アルゴリズムを実行するように構成されたプロセッサによって実装されるか、プロセッサによる実装のためにコンピュータ可読媒体内に記憶されるか、またはそれらの何らかの組合せであってもよい。
図11は、処理システム1114を利用する装置1002'のハードウェア実装形態の例を示す図1100である。処理システム1114は、バス1124によって概略的に表されるバスアーキテクチャを用いて実装され得る。バス1124は、処理システム1114の具体的な適用例および全体的な設計制約に応じて、任意の数の相互接続バスとブリッジとを含み得る。バス1124は、プロセッサ1104、コンポーネント1004、1006、1008、1010、1012、1014、1016、1018、およびコンピュータ可読媒体/メモリ1106によって表される1つまたは複数のプロセッサおよび/またはハードウェアコンポーネントを含む、様々な回路を一緒につなぐ。バス1124はまた、タイミングソース、周辺装置、電圧調整器、および電力管理回路などの、様々な他の回路をつなぎ得るが、それらは当技術分野においてよく知られており、したがって、これ以上説明されない。
処理システム1114は、トランシーバ1110に結合され得る。トランシーバ1110は1つまたは複数のアンテナ1120に結合される。トランシーバ1110は、送信媒体を介して様々な他の装置と通信するための手段を提供する。トランシーバ1110は、1つまたは複数のアンテナ1120から信号を受信し、受信された信号から情報を抽出し、抽出された情報を処理システム1114に、特に受信コンポーネント1004に提供する。加えて、トランシーバ1110は、処理システム1114から、特に送信コンポーネント1006から情報を受信し、受信された情報に基づいて、1つまたは複数のアンテナ1120に印加されるべき信号を生成する。処理システム1114は、コンピュータ可読媒体/メモリ1106に結合されたプロセッサ1104を含む。プロセッサ1104は、コンピュータ可読媒体/メモリ1106に記憶されたソフトウェアの実行を含む一般的な処理を担う。ソフトウェアは、プロセッサ1104によって実行されると、任意の特定の装置に対して上で説明された様々な機能を処理システム1114に実行させる。コンピュータ可読媒体/メモリ1106はまた、ソフトウェアを実行するときにプロセッサ1104によって操作されるデータを記憶するために使用され得る。処理システム1114は、コンポーネント1004、1006、1008、1010、1012、1014、1016、1018のうちの少なくとも1つをさらに含む。それらのコンポーネントは、プロセッサ1104内で動作し、コンピュータ可読媒体/メモリ1106に存在する/記憶されたソフトウェアコンポーネント、プロセッサ1104に結合された1つまたは複数のハードウェアコンポーネント、またはそれらの何らかの組合せであり得る。処理システム1114はUE350のコンポーネントであってもよく、メモリ360、ならびに/またはTXプロセッサ368、RXプロセッサ356、およびコントローラ/プロセッサ359のうちの少なくとも1つを含んでもよい。代替として、処理システム1114はUE全体(たとえば、図3のUE350を参照)であってもよい。
一構成では、ワイヤレス通信のための装置1002/1002'は、アップリンク送信のために基地局によってアップリンク送信ビームが構成されていないとき、アップリンク送信を送信するためのデフォルトアップリンク送信ビームを規則に基づいて決定するための手段、およびデフォルトアップリンク送信ビーム上でアップリンク送信を基地局へ送信するための手段を含む。別の態様では、装置1002/1002'は、デフォルトアップリンク送信ビームが、ダウンリンク送信を受信するために使用されるビームに対応すること、およびデフォルトアップリンク送信ビームのためのパラメータが、そのビームに対応し得ることを決定するための手段を含んでもよい。別の態様では、装置1002/1002'は、基地局からダウンリンク共有チャネルを受信するための手段を含んでもよく、デフォルトアップリンク送信ビームを規則に基づいて決定するための手段は、ダウンリンク送信を受信するために使用されるビームに基づいてデフォルトアップリンク送信ビームを決定するように構成され得る。別の態様では、装置1002/1002'は、ダウンリンク共有チャネルに関連するアクティブ化されたTCI状態の最小TCI状態識別子に対応するビームを選択するための手段を含んでもよい。別の態様では、装置1002/1002'は、ダウンリンク共有チャネルに関連するTCI状態のTCI状態識別子に対応するビームを選択するための手段を含んでもよい。別の態様では、装置1002/1002'は、しきい値期間の後、最後に首尾よく受信されたダウンリンク共有チャネルビームに対応するビームを選択するための手段を含んでもよい。別の態様では、装置1002/1002'は、CORESETに関連するビームを選択するための手段を含んでもよい。別の態様では、装置1002/1002'は、RRCシグナリングまたはMAC-CEのうちの少なくとも1つを介してCORESETに対するCORESET識別子を受信するための手段を含んでもよい。別の態様では、装置1002/1002'は、DCIの中で示されるビームを選択するための手段を含んでもよい。別の態様では、装置1002/1002'は、ダウンリンク送信を受信するために使用される対応するビームに基づいて、複数のTRPの各TRPに対してデフォルトアップリンク送信ビームを決定するための手段を含んでもよい。別の態様では、装置1002/1002'は、アップリンク制御チャネルを送信するための第1のデフォルトアップリンク送信ビームを決定するための手段、SRSを送信するための第2のデフォルトアップリンク送信ビームを決定するための手段、および/またはSRを送信するための第3のデフォルトアップリンク送信ビームを決定するための手段を含んでもよい。別の態様では、装置1002/1002'は、デフォルトアップリンク送信ビームを決定するためのデフォルトアップリンク空間関係情報を基地局から受信するための手段、およびデフォルトアップリンク空間関係情報に基づいて、後続の複数のアップリンク送信のためのデフォルトアップリンク送信ビームを決定するための手段を含んでもよい。別の態様では、装置1002/1002'は、RRCシグナリング、MAC-CEシグナリング、およびDCIシグナリングのうちの少なくとも1つを介してデフォルトアップリンク空間関係情報を受信するための手段を含んでもよい。
上述の手段は、上述の手段によって列挙された機能を実行するように構成された、装置1002の上述のコンポーネントおよび/または装置1002'の処理システム1114のうちの1つまたは複数であってもよい。上で説明されたように、処理システム1114は、TXプロセッサ368と、RXプロセッサ356と、コントローラ/プロセッサ359とを含み得る。したがって、一構成では、上述の手段は、上述の手段によって列挙される機能を実行するように構成された、TXプロセッサ368、RXプロセッサ356、およびコントローラ/プロセッサ359であってもよい。
図12は、ワイヤレス通信の方法のフローチャート1200である。方法は、基地局(たとえば、102/180、基地局310、基地局402、基地局1050、装置1302/1302'、処理システム1414、これはメモリ376を含んでもよく、基地局310全体であってもよく、または、TXプロセッサ316、RXプロセッサ370、および/もしくはコントローラ/プロセッサ375などの基地局310のコンポーネントであってもよい)によって実行され得る。随意の態様は破線を用いて図示される。図12の例示的なフローチャート1200は、(たとえば、アップリンク送信のためにアップリンクビームが構成されていないとき)アップリンク送信を送信するための、UEによる高速かつ効率的なアップリンクビーム選択を基地局が可能にすることを容易にし、そのことは、たとえば、基地局とUEとの間のオーバーヘッドシグナリングを低減することによる、改善されたセルカバレッジをもたらし得る。
1202において、基地局は、たとえば図4のダウンリンク送信410に関して説明されたように、ダウンリンクビーム上でダウンリンク送信をUEへ送信する。たとえば、送信コンポーネント1306が、ダウンリンク送信の送信を容易にし得る。いくつかの例では、ダウンリンク送信は、ダウンリンク共有チャネル、CORESET、DCIシグナリング、および/またはデフォルト空間関係情報のうちの1つまたは複数を備え得る。いくつかの例では、ダウンリンク送信は、RRCシグナリングまたはMAC-CEシグナリングを介して送信され得る。
1204において、基地局は、たとえば図4の440に関して説明されたように、アップリンク送信を受信するために監視すべきビームを選択し得る。たとえば、ビーム選択コンポーネント1308が、アップリンク送信を受信するために監視すべきビームの選択を容易にし得る。いくつかの例では、選択されたビームのパラメータは、ダウンリンクビームに対応し得る。
いくつかの例では、ダウンリンク送信は、ダウンリンク共有チャネルであり得、基地局は、ダウンリンク共有チャネルに関連するパラメータに基づいてビームを選択し得る。たとえば、1206において、基地局は、ダウンリンク共有チャネルに関連するアクティブ化されたTCI状態の最小TCI状態識別子に対応するビームを選択し得る。たとえば、ダウンリンク共有チャネル処理コンポーネント1310が、ダウンリンク共有チャネルに関連するアクティブ化されたTCI状態の最小TCI状態識別子に対応するビームの選択を容易にし得る。
いくつかの例では、1208において、基地局は、ダウンリンク共有チャネルに関連するTCI状態の特定のTCI状態識別子に対応するビームを選択し得る。たとえば、ダウンリンク共有チャネル処理コンポーネント1310が、ダウンリンク共有チャネルに関連するTCI状態の特定のTCI状態識別子に対応するビームの選択を容易にし得る。
いくつかの例では、1210において、基地局は、しきい値期間の後、最後に首尾よく受信されたダウンリンク共有チャネルビームに対応するビームを選択し得る。たとえば、ダウンリンク共有チャネル処理コンポーネント1310が、しきい値期間の後の、最後に首尾よく受信されたダウンリンク共有チャネルビームに対応するビームの選択を容易にし得る。
いくつかの例では、ダウンリンク送信は、特定のCORESETに関連するCORESET識別子を含んでもよく、基地局は、特定のCORESETに基づいてビームを選択し得る。たとえば、1212において、基地局は、特定のCORESETに関連するビームに対応するビームを選択し得る。たとえば、CORESET処理コンポーネント1312が、特定のCORESETに関連するビームに対応するビームの選択を容易にし得る。いくつかの例では、特定のCORESETは、UEによって最後に監視されたスロットの中の最小CORESET識別子を含む。いくつかの例では、特定のCORESETは、構成されたCORESETのセットのうちの最小CORESET識別子を含む。いくつかの例では、基地局は、RRCシグナリングまたはMAC-CEシグナリングのうちの少なくとも1つを介してCORESET識別子を送信し得る。
いくつかの例では、ダウンリンク送信は、DCIシグナリングを含んでもよく、基地局は、DCIシグナリングに基づいてビームを選択し得る。たとえば、1214において、基地局は、DCIシグナリングの中で示されるビームを選択し得る。たとえば、DCI処理コンポーネント1314が、DCIシグナリングに基づくビームの選択を容易にし得る。
いくつかの例では、1216において、基地局は、対応するアップリンク送信のためのそれぞれのビームを選択し得る。たとえば、ビーム選択コンポーネント1308が、アップリンク制御チャネルを受信するための第1のビーム、SRSを受信するための第2のビーム、およびSRを受信するための第3のビームの選択を容易にし得る。いくつかの例では、ビームのうちの2つ以上が同じビームであってもよい。
いくつかの例では、ダウンリンク送信は、デフォルトアップリンク空間関係情報を備えてもよく、基地局は、デフォルトアップリンク空間関係情報に基づいて、監視すべきビームを選択し得る。たとえば、1218において、基地局は、デフォルトアップリンク空間関係情報に基づいて、複数のアップリンク送信を受信するためのビームを選択し得る。たとえば、空間関係情報処理コンポーネント1316が、デフォルトアップリンク空間関係情報に基づくビームの選択を容易にし得る。
1220において、基地局は、たとえば図4のアップリンク送信450およびビーム454に関して説明されたように、アップリンク送信のために基地局によってアップリンク送信ビームが構成されていないとき、デフォルトアップリンク送信ビーム上でアップリンク送信をUEから受信する。たとえば、受信コンポーネント1304が、アップリンク送信を受信し得る。上で説明されたように、シグナリングオーバーヘッドを低減するために、アップリンク送信(たとえば、アップリンク送信ビーム)に対する空間関係情報は随意のパラメータであってもよく、したがって、UEのために基地局によって明示的に構成されないことがある。基地局からの空間関係情報の明示的な構成がない場合(たとえば、基地局によってアップリンク送信ビームが構成されていない場合)、UEは、アップリンク送信を送信するためのデフォルトアップリンク送信ビームを暗黙的に決定し得る。
図13は、UE1350と通信している例示的な装置1302の中の異なる手段/コンポーネントの間のデータフローを示す概念的なデータフロー図1300である。装置1302は、基地局または基地局のコンポーネントであり得る。装置1302は、受信コンポーネント1304、送信コンポーネント1306、ビーム選択コンポーネント1308、ダウンリンク共有チャネル処理コンポーネント1310、CORESET処理コンポーネント1312、DCI処理コンポーネント1314、および空間関係情報処理コンポーネント1316を含む。UE1350は、図1のUE104、図3のUE350、図4のUE404、および/または図10/図11の装置1002/1002'に関して示すような、同じかまたは類似のコンポーネントを含み得る。
受信コンポーネント1304は、たとえば、UE1350を含む他のデバイスから、様々なタイプの信号/メッセージおよび/または他の情報を受信するように構成され得る。メッセージ/情報は、受信コンポーネント1304を介して受信されてもよく、様々な動作を実行する際のさらなる処理および/または使用のために装置1302の1つまたは複数のコンポーネントに提供されてもよい。たとえば、受信コンポーネント1304は、(たとえば、1220に関して説明されたように)アップリンク送信のために基地局によってアップリンク送信ビームが構成されていないとき、デフォルトアップリンク送信ビーム上で送信されたアップリンク送信を受信するように構成され得る。
送信コンポーネント1306は、様々なタイプの信号/メッセージおよび/または他の情報を、たとえば、UE1350を含む他のデバイスへ送信するように構成され得る。たとえば、送信コンポーネント1306は、(たとえば、1202に関して説明されたように)ダウンリンク送信を送信するために使用されるダウンリンクビーム上でダウンリンク送信を送信し、ダウンリンク共有チャネルを送信し、RRCシグナリングまたはMAC-CEシグナリングを介してCORESET識別子を送信し、DCIシグナリングを送信し、かつ/あるいはRRCシグナリング、MAC-CEシグナリング、またはDCIシグナリングを介してデフォルトアップリンク空間関係情報を送信するように構成され得る。
ビーム選択コンポーネント1308は、(たとえば、1204および/または1216に関して説明されたように)アップリンク送信を受信するために監視すべきビームを選択し、かつ/または対応するアップリンク送信のためのそれぞれのビームを選択するように構成され得る。
ダウンリンク共有チャネル処理コンポーネント1310は、(たとえば、1206、1208、および/または1210に関して説明されたように)ダウンリンク共有チャネルに関連するアクティブ化されたTCI状態の最小TCI状態識別子に対応するビームを選択し、ダウンリンク共有チャネルに関連するTCI状態の特定のTCI状態識別子に対応するビームを選択し、かつ/またはしきい値期間の後、最後に首尾よく受信されたダウンリンク共有チャネルビームに対応するビームを選択するように構成され得る。
CORESET処理コンポーネント1312は、(たとえば、1212に関して説明されたように)特定のCORESETに関連するビームに対応するビームを選択するように構成され得る。
DCI処理コンポーネント1314は、(たとえば、1214に関して説明されたように)DCIシグナリングの中で示されるビームを選択するように構成され得る。
空間関係情報処理コンポーネント1316は、(たとえば、1218に関して説明されたように)デフォルトアップリンク空間関係情報に基づいて、複数のアップリンク送信を受信するためのビームを選択するように構成され得る。
装置は、上述の図12のフローチャートにおけるアルゴリズムのブロックの各々を実行する追加のコンポーネントを含み得る。したがって、上述の図12のフローチャートにおける各ブロックはコンポーネントによって実行されてもよく、装置はそれらのコンポーネントのうちの1つまたは複数を含んでもよい。コンポーネントは、述べられたプロセス/アルゴリズムを実行するように特に構成された1つもしくは複数のハードウェアコンポーネントであるか、述べられたプロセス/アルゴリズムを実行するように構成されたプロセッサによって実装されるか、プロセッサによる実装のためにコンピュータ可読媒体内に記憶されるか、またはそれらの何らかの組合せであってもよい。
図14は、処理システム1414を利用する装置1302'のハードウェア実装形態の例を示す図1400である。処理システム1414は、バス1424によって概略的に表されるバスアーキテクチャを用いて実装され得る。バス1424は、処理システム1414の具体的な適用例および全体的な設計制約に応じて、任意の数の相互接続バスとブリッジとを含み得る。バス1424は、プロセッサ1404、コンポーネント1304、1306、1308、1310、1312、1314、1316、およびコンピュータ可読媒体/メモリ1406によって表される1つまたは複数のプロセッサおよび/またはハードウェアコンポーネントを含む、様々な回路を一緒につなぐ。バス1424はまた、タイミングソース、周辺装置、電圧調整器、および電力管理回路などの、様々な他の回路をつなぎ得るが、それらは当技術分野においてよく知られており、したがって、これ以上説明されない。
処理システム1414は、トランシーバ1410に結合され得る。トランシーバ1410は、1つまたは複数のアンテナ1420に結合される。トランシーバ1410は、送信媒体を介して様々な他の装置と通信するための手段を提供する。トランシーバ1410は、1つまたは複数のアンテナ1420から信号を受信し、受信された信号から情報を抽出し、抽出された情報を処理システム1414に、特に受信コンポーネント1304に提供する。加えて、トランシーバ1410は、処理システム1414から、特に送信コンポーネント1306から情報を受信し、受信された情報に基づいて、1つまたは複数のアンテナ1420に印加されるべき信号を生成する。処理システム1414は、コンピュータ可読媒体/メモリ1406に結合されたプロセッサ1404を含む。プロセッサ1404は、コンピュータ可読媒体/メモリ1406に記憶されたソフトウェアの実行を含む一般的な処理を担う。ソフトウェアは、プロセッサ1404によって実行されると、任意の特定の装置に対して上で説明された様々な機能を処理システム1414に実行させる。コンピュータ可読媒体/メモリ1406はまた、ソフトウェアを実行するときにプロセッサ1404によって操作されるデータを記憶するために使用され得る。処理システム1414は、コンポーネント1304、1306、1308、1310、1312、1314、1316のうちの少なくとも1つをさらに含む。それらのコンポーネントは、プロセッサ1404内で動作し、コンピュータ可読媒体/メモリ1406に存在する/記憶されたソフトウェアコンポーネント、プロセッサ1404に結合された1つまたは複数のハードウェアコンポーネント、またはそれらの何らかの組合せであり得る。処理システム1414は、基地局310のコンポーネントであってもよく、メモリ376、ならびに/またはTXプロセッサ316、RXプロセッサ370、およびコントローラ/プロセッサ375のうちの少なくとも1つを含み得る。代替として、処理システム1414は、基地局(たとえば、図3の基地局310を参照)全体であってもよい。
一構成では、ワイヤレス通信のための装置1302/1302'は、ダウンリンク送信を送信するために使用されるダウンリンクビーム上でダウンリンク送信をUEへ送信するための手段、およびアップリンク送信のために基地局によってアップリンク送信ビームが構成されていないとき、デフォルトアップリンク送信ビーム上でアップリンク送信をUEから受信するための手段を含む。別の態様では、装置1302/1302'は、アップリンク送信を受信するために監視すべきビームを選択するための手段を含んでもよく、ここで、選択されたビームのパラメータは、ダウンリンクビームに対応する。別の態様では、装置1302/1302'は、ダウンリンク共有チャネルに関連するアクティブ化されたTCI状態の最小TCI状態識別子に対応するビームを選択するための手段を含んでもよい。別の態様では、装置1302/1302'は、ダウンリンク共有チャネルに関連するTCI状態のTCI状態識別子に対応するビームを選択するための手段を含んでもよい。別の態様では、装置1302/1302'は、しきい値期間の後、最後に首尾よく受信されたダウンリンク共有チャネルビームに対応するビームを選択するための手段を含んでもよい。別の態様では、装置1302/1302'は、CORESETに関連するビームに基づいて、アップリンク送信を受信するために監視すべきビームを選択するための手段を含んでもよい。別の態様では、装置1302/1302'は、RRCまたはMAC-CEのうちの少なくとも1つを介してCORESETに対するCORESET識別子を送信するための手段を含んでもよい。別の態様では、装置1302/1302'は、DCIの中で示されるビームに基づいて、アップリンク送信を受信するために監視すべきビームを選択するための手段を含んでもよい。別の態様では、装置1302/1302'は、複数のTRPを使用して通信するための手段を含んでもよく、ここで、各TRPに対して、アップリンク送信を受信するために監視すべきビームの選択は、対応するダウンリンクビームに基づく。別の態様では、装置1302/1302'は、アップリンク制御チャネルを受信するための第1のビームを選択するための手段、およびSRSを受信するための第2のビームを選択するための手段を含んでもよい。別の態様では、装置1302/1302'は、デフォルトアップリンク空間関係情報に基づいて、複数のアップリンク送信を受信するために監視すべきビームを選択するための手段を含んでもよい。別の態様では、装置1302/1302'は、RRCシグナリング、MAC-CEシグナリング、およびDCIシグナリングのうちの少なくとも1つを介してデフォルトアップリンク空間関係情報をUEへ送信するための手段を含んでもよい。
上述の手段は、上述の手段によって列挙された機能を実行するように構成された、装置1302の上述のコンポーネントおよび/または装置1302'の処理システム1414のうちの1つまたは複数であってもよい。上で説明されたように、処理システム1414は、TXプロセッサ316、RXプロセッサ370、およびコントローラ/プロセッサ375を含み得る。したがって、一構成では、上述の手段は、上述の手段によって列挙される機能を実行するように構成された、TXプロセッサ316、RXプロセッサ370、およびコントローラ/プロセッサ375であってもよい。
開示されたプロセス/フローチャートにおけるブロックの特定の順序または階層は、例示的な手法の示すものであることを理解されたい。設計選好に基づいて、プロセス/フローチャートにおけるブロックの特定の順序または階層が、並べ替えられてもよいことを理解されたい。さらに、いくつかのブロックが組み合わせられてもよく、または省略されてもよい。添付の方法クレームは、様々なブロックの要素を例示的な順序で提示したものであり、提示された特定の順序または階層に限定されるものでない。
以下の例は、例示的なものにすぎず、限定なしで、本明細書で説明される他の実施形態または教示の態様と組み合わされてもよい。
例1は、UEにおけるワイヤレス通信の方法であり、この方法は、アップリンク送信のために基地局によってアップリンク送信ビームが構成されていないとき、アップリンク送信を送信するためのデフォルトアップリンク送信ビームを規則に基づいて決定するステップと、デフォルトアップリンク送信ビーム上でアップリンク送信を基地局へ送信するステップとを備える。
例2において、例1の方法はさらに、デフォルトアップリンク送信ビームが、ダウンリンク送信を受信するために使用されるビームに対応することを、UEが決定することを含み、デフォルトアップリンク送信ビームのためのパラメータは、そのビームに対応する。
例3において、例1または例2のいずれかの方法はさらに、基地局からダウンリンク共有チャネルを受信するステップを含み、規則に基づくデフォルトアップリンク送信ビームの決定は、ダウンリンク送信を受信するために使用されるビームに基づいてデフォルトアップリンク送信ビームを決定するステップを含む。
例4において、例1~例3のいずれかの方法はさらに、ダウンリンク送信を受信するために使用されるビームに基づくデフォルトアップリンク送信ビームの決定が、ダウンリンク共有チャネルに関連するアクティブ化されたTCI状態の最小TCI状態識別子に対応するビームを選択するステップを含むことを含む。
例5において、例1~例4のいずれかの方法はさらに、ダウンリンク送信を受信するために使用されるビームに基づくデフォルトアップリンク送信ビームの決定が、ダウンリンク共有チャネルに関連するTCI状態のTCI状態識別子に対応するビームを選択するステップを含むことを含む。
例6において、例1~例5のいずれかの方法はさらに、ダウンリンク送信を受信するために使用されるビームに基づくデフォルトアップリンク送信ビームの決定が、しきい値期間の後、最後に首尾よく受信されたダウンリンク共有チャネルビームに対応するビームを選択するステップを含むことを含む。
例7において、例1~例6のいずれかの方法はさらに、規則に基づくデフォルトアップリンク送信ビームの決定が、最小CORESET識別子を有する制御リソースセット(CORESET)に関連するビームを選択するステップを含むことを含む。
例8において、例1~例7のいずれかの方法はさらに、CORESETが、UEによって最後に監視されたスロットの中の最小CORESET識別子を含むことを含む。
例9において、例1~例8のいずれかの方法はさらに、CORESETが、構成されたCORESETのセットのうちの最小CORESET識別子を含むことを含む。
例10において、例1~例9のいずれかの方法はさらに、RRCまたはMAC-CEのうちの少なくとも1つを介してCORESETに対するCORESET識別子をUEにおいて受信するステップを含む。
例11において、例1~例10のいずれかの方法はさらに、規則に基づくデフォルトアップリンク送信ビームの決定が、DCIの中で示されるビームを選択するステップを含むことを含む。
例12において、例1~例11のいずれかの方法はさらに、UEが複数のTRPと通信することを含み、各TRPに対して、デフォルトアップリンク送信ビームの決定は、ダウンリンク送信を受信するために使用される対応するビームに基づく。
例13において、例1~例12のいずれかの方法はさらに、アップリンク送信が、アップリンク制御チャネル、SRS、またはSRのうちの少なくとも1つを備えることを含む。
例14において、例1~例13のいずれかの方法はさらに、アップリンク送信を送信するためのデフォルトアップリンク送信ビームの決定が、アップリンク制御チャネルを送信するための第1のデフォルトアップリンク送信ビームを決定するステップを備えることを含み、例はさらに、SRSを送信するための第2のデフォルトアップリンク送信ビームを決定するステップを備える。
例15において、例1~例14のいずれかの方法はさらに、第1のデフォルトアップリンク送信ビームが第2のデフォルトアップリンク送信ビームと同じであることを含む。
例16において、例1~例15のいずれかの方法はさらに、デフォルトアップリンク送信ビームを決定するためのデフォルトアップリンク空間関係情報を基地局から受信するステップと、デフォルトアップリンク空間関係情報に基づいて、後続の複数のアップリンク送信のためのデフォルトアップリンク送信ビームを決定するステップとを含む。
例17において、例1~例16のいずれかの方法はさらに、RRCシグナリング、MAC-CEシグナリング、およびDCIシグナリングのうちの少なくとも1つを介してデフォルトアップリンク空間関係情報を受信するステップを含む。
例18は、例1~17のいずれかの方法を実施するか、または装置を実現するための手段を含むシステムまたは装置である。
例19は、1つまたは複数のプロセッサと、命令を記憶する、1つまたは複数のプロセッサと電子的に通信している1つまたは複数のメモリとを含むデバイスであり、命令は、システムまたは装置に、例1~17のいずれかの方法を実施させるように、1つまたは複数のプロセッサによって実行可能である。
例20は、命令を記憶する非一時的コンピュータ可読媒体であり、命令は、1つまたは複数のプロセッサに、例1~17のいずれかの方法を実施させるように、1つまたは複数のプロセッサによって実行可能である。
例21は、基地局におけるワイヤレス通信の方法であり、この方法は、ダウンリンクビーム上でダウンリンク送信をUEへ送信するステップと、アップリンク送信のために基地局によってアップリンク送信ビームが構成されていないとき、デフォルトアップリンク送信ビームを使用してアップリンク送信をUEから受信するステップとを備える。
例22において、例21の方法はさらに、アップリンク送信を受信するために監視すべきビームを選択するステップを含み、選択されたビームのパラメータは、ダウンリンクビームに対応する。
例23において、例21または例22のいずれかの方法はさらに、ダウンリンク送信がダウンリンク共有チャネルであることを含み、選択されたビームは、ダウンリンク共有チャネルに関連するアクティブ化されたTCI状態の最小TCI状態識別子に対応する。
例24において、例21~例23のいずれかの方法はさらに、ダウンリンク送信がダウンリンク共有チャネルであることを含み、選択されたビームは、ダウンリンク共有チャネルに関連するTCI状態のTCI状態識別子に対応する。
例25において、例21~例24のいずれかの方法はさらに、ダウンリンク送信がダウンリンク共有チャネルであることを含み、選択されたビームは、しきい値期間の後、最後に首尾よく受信されたダウンリンク共有チャネルビームに対応する。
例26において、例21~例25のいずれかの方法はさらに、アップリンク送信を受信するために監視すべきビームの選択が、最小CORESET識別子を有する制御リソースセット(CORESET)に関連するビームに基づくことを含む。
例27において、例21~例26のいずれかの方法はさらに、CORESETが、UEによって最後に監視されたスロットの中の最小CORESET識別子を含むことを含む。
例28において、例21~例27のいずれかの方法はさらに、CORESETが、構成されたCORESETのセットのうちの最小CORESET識別子を含むことを含む。
例29において、例21~例28のいずれかの方法はさらに、RRCまたはMAC-CEのうちの少なくとも1つを介してCORESETに対するCORESET識別子を送信するステップを含む。
例30において、例21~例29のいずれかの方法はさらに、アップリンク送信を受信するために監視すべきビームの選択が、DCIの中で示されるビームに基づくことを含む。
例31において、例21~例30のいずれかの方法はさらに、基地局が複数のTRPを使用して通信することを含み、各TRPに対して、アップリンク送信を受信するために監視すべきビームの選択は、対応するダウンリンクビームに基づく。
例32において、例21~例31のいずれかの方法はさらに、アップリンク送信が、アップリンク制御チャネル、SRS、またはSRのうちの少なくとも1つを備えることを含む。
例33において、例21~例32のいずれかの方法はさらに、アップリンク送信を受信するために監視すべきビームの選択が、アップリンク制御チャネルを受信するための第1のビームを選択するステップを含むことを含み、例はさらに、SRSを受信するための第2のビームを選択するステップを備える。
例34において、例21~例33のいずれかの方法はさらに、第1のビームが第2のビームと同じであることを含む。
例35において、例21~例34のいずれかの方法はさらに、ダウンリンク送信が、デフォルトアップリンク送信ビームを決定するためのデフォルトアップリンク空間関係情報を含むことを含み、例はさらに、デフォルトアップリンク空間関係情報に基づいて、複数のアップリンク送信を受信するために監視すべきビームを選択するステップを備える。
例36において、例21~例35のいずれかの方法はさらに、RRCシグナリング、MAC-CEシグナリング、およびDCIシグナリングのうちの少なくとも1つを介してデフォルトアップリンク空間関係情報をUEへ送信するステップを含む。
例37は、例21~36のいずれかの方法を実施するか、または装置を実現するための手段を含むシステムまたは装置である。
例38は、1つまたは複数のプロセッサと、命令を記憶する、1つまたは複数のプロセッサと電子的に通信している1つまたは複数のメモリとを含むデバイスであり、命令は、システムまたは装置に、例21~36のいずれかの方法を実施させるように、1つまたは複数のプロセッサによって実行可能である。
例39は、命令を記憶する非一時的コンピュータ可読媒体であり、命令は、1つまたは複数のプロセッサに、例21~36のいずれかの方法を実施させるように、1つまたは複数のプロセッサによって実行可能である。
前述の説明は、本明細書で説明された様々な態様を任意の当業者が実践できるようにするために提供される。これらの態様に対する様々な修正は当業者には容易に明らかであり、本明細書で定義される一般原理は他の態様に適用され得る。したがって、特許請求の範囲は、本明細書に示される態様に限定されるものではなく、クレーム文言に矛盾しない最大の範囲を与えられるべきであり、単数形の要素への言及は、そのように明記されていない限り、「唯一無二の」を意味するものではなく、「1つまたは複数の」を意味するものである。「例示的」という語は、本明細書では「例、事例、または例示として機能すること」を意味するために使用される。「例示的」として本明細書で説明されたいかなる態様も、必ずしも他の態様よりも好ましいかまたは有利であると解釈されるべきではない。別段に明記されていない限り、「いくつかの」という用語は1つまたは複数を指す。「A、B、またはCのうちの少なくとも1つ」、「A、B、またはCのうちの1つまたは複数」、「A、B、およびCのうちの少なくとも1つ」、「A、B、およびCのうちの1つまたは複数」、および「A、B、C、またはそれらの任意の組合せ」などの組合せは、A、B、および/またはCの任意の組合せを含み、複数のA、複数のB、または複数のCを含み得る。具体的には、「A、B、またはCのうちの少なくとも1つ」、「A、B、またはCのうちの1つまたは複数」、「A、B、およびCのうちの少なくとも1つ」、「A、B、およびCのうちの1つまたは複数」、および「A、B、C、またはそれらの任意の組合せ」などの組合せは、Aのみ、Bのみ、Cのみ、AおよびB、AおよびC、BおよびC、またはAおよびBおよびCであってもよく、任意のそのような組合せは、A、B、またはCのうちの1つまたは複数のメンバーを含み得る。当業者に知られているか、または後に知られることになる、本開示全体を通じて説明された様々な態様の要素に対するすべての構造的および機能的均等物が、参照により本明細書に明確に組み込まれ、特許請求の範囲によって包含されることが意図される。その上、本明細書で開示されたものはいずれも、そのような開示が特許請求の範囲において明示的に列挙されているかどうかにかかわらず、公に供されるものではない。「モジュール」、「機構」、「要素」、「デバイス」などの
語は、「手段」という語の代用ではないことがある。したがって、いかなるクレーム要素も、その要素が「のための手段」という句を使用して明確に記載されていない限り、ミーンズプラスファンクションとして解釈されるべきではない。
102 基地局
104 UE
110 地理的カバレッジエリア
120 通信リンク
132 第1のバックホールリンク
134 第3のバックホールリンク
150 Wi-Fiアクセスポイント
152 Wi-Fi局
154 通信リンク
158 デバイス間通信リンク
160 EPC
162 MME
164 他のMME
166 サービングゲートウェイ
168 MBMS GW
170 BM-SC
172 PDNゲートウェイ
174 HSS
176 IPサービス
180 gNB、基地局
182 ビームフォーミング
184 第2のバックホールリンク
190 コアネットワーク
192 AMF
193 他のAMF
194 SMF
195 UPF
196 UDM
197 IPサービス
198 UE空間関係コンポーネント
199 基地局送信構成表示コンポーネント
310 基地局
316 TXプロセッサ
318RX 受信機
318TX 送信機
320 アンテナ
350 UE
352 アンテナ
354RX 受信機
354TX 送信機
356 RXプロセッサ
358 チャネル推定器
359 コントローラ/プロセッサ
360 メモリ
368 TXプロセッサ
370 RXプロセッサ
374 チャネル推定器
375 コントローラ/プロセッサ
376 メモリ
400 ワイヤレス通信
402 基地局
404 UE
410 ダウンリンク送信
450 アップリンク送信
1002 装置
1004 受信コンポーネント
1006 送信コンポーネント
1008 TCI状態識別子コンポーネント
1010 共有チャネルビームコンポーネント
1012 CORESET処理コンポーネント
1014 DCI処理コンポーネント
1016 空間関係情報処理コンポーネント
1018 デフォルトアップリンク送信ビーム決定コンポーネント
1050 基地局
1104 プロセッサ
1106 コンピュータ可読媒体/メモリ
1110 トランシーバ
1114 処理システム
1120 アンテナ
1124 バス
1302 装置
1304 受信コンポーネント
1306 送信コンポーネント
1308 ビーム選択コンポーネント
1310 ダウンリンク共有チャネル処理コンポーネント
1312 CORESET処理コンポーネント
1314 DCI処理コンポーネント
1316 空間関係情報処理コンポーネント
1350 UE
1404 プロセッサ
1406 コンピュータ可読媒体/メモリ
1410 トランシーバ
1414 処理システム
1420 アンテナ
1424 バス

Claims (30)

  1. ユーザ機器(UE)におけるワイヤレス通信の方法であって、
    アップリンク送信のために基地局によってアップリンク送信ビームが構成されていないとき、前記アップリンク送信を送信するためのデフォルトアップリンク送信ビームを規則に基づいて決定するステップと、
    前記デフォルトアップリンク送信ビーム上で前記アップリンク送信を前記基地局へ送信するステップと
    を備える、方法。
  2. 前記アップリンク送信が、アップリンク制御チャネル、サウンディング基準信号(SRS)、またはスケジューリング要求(SR)のうちの少なくとも1つを備える、請求項1に記載の方法。
  3. 前記アップリンク送信を送信するための前記デフォルトアップリンク送信ビームの前記決定が、前記アップリンク制御チャネルを送信するための第1のデフォルトアップリンク送信ビームを決定するステップを備え、前記方法が、
    前記SRSを送信するための第2のデフォルトアップリンク送信ビームを決定するステップをさらに備える、請求項2に記載の方法。
  4. 前記デフォルトアップリンク送信ビームが、ダウンリンク送信を受信するために使用されるビームに対応することを、前記UEが決定し、前記デフォルトアップリンク送信ビームのためのパラメータが、前記ビームに対応する、請求項1に記載の方法。
  5. 前記規則に基づく前記デフォルトアップリンク送信ビームの前記決定が、最小制御リソースセット(CORESET)識別子を有するCORESETに関連するビームを選択するステップを含む、請求項4に記載の方法。
  6. 前記CORESETが、前記UEによって最後に監視されたスロットの中の前記最小CORESET識別子を含む、請求項5に記載の方法。
  7. 前記CORESETが、構成されたCORESETのセットのうちの前記最小CORESET識別子を含む、請求項5に記載の方法。
  8. 前記基地局からダウンリンク共有チャネルを受信するステップをさらに備え、
    前記規則に基づく前記デフォルトアップリンク送信ビームの前記決定が、前記ダウンリンク送信を受信するために使用される前記ビームに基づいて前記デフォルトアップリンク送信ビームを決定するステップを含む、請求項4に記載の方法。
  9. 前記ダウンリンク送信を受信するために使用される前記ビームに基づく前記デフォルトアップリンク送信ビームの前記決定が、前記ダウンリンク共有チャネルに関連するアクティブ化された送信構成表示(TCI)状態の最小TCI状態識別子に対応する前記ビームを選択するステップを含む、請求項8に記載の方法。
  10. 前記ダウンリンク送信を受信するために使用される前記ビームに基づく前記デフォルトアップリンク送信ビームの前記決定が、前記ダウンリンク共有チャネルに関連する送信構成表示(TCI)状態のTCI状態識別子に対応する前記ビームを選択するステップを含む、請求項8に記載の方法。
  11. 前記ダウンリンク送信を受信するために使用される前記ビームに基づく前記デフォルトアップリンク送信ビームの前記決定が、しきい値期間の後、最後に首尾よく受信されたダウンリンク共有チャネルビームに対応する前記ビームを選択するステップを含む、請求項8に記載の方法。
  12. 前記規則に基づく前記デフォルトアップリンク送信ビームの前記決定が、ダウンリンク制御情報(DCI)の中で示される前記ビームを選択するステップを含む、請求項4に記載の方法。
  13. 前記UEが複数の送受信ポイント(TRP)と通信し、各TRPに対して、前記デフォルトアップリンク送信ビームの前記決定が、ダウンリンク送信を受信するために使用される前記対応するビームに基づく、請求項4に記載の方法。
  14. 第1のユーザ機器(UE)におけるワイヤレス通信のための装置であって、
    メモリと、
    前記メモリに結合された少なくとも1つのプロセッサと
    を備え、前記少なくとも1つのプロセッサが、
    アップリンク送信のためのアップリンク送信ビームが構成されていないとき、前記アップリンク送信を送信するためのデフォルトアップリンク送信ビームを規則に基づいて決定することと、
    前記デフォルトアップリンク送信ビーム上で前記アップリンク送信を基地局へ送信することと
    を行うように構成される、装置。
  15. 基地局におけるワイヤレス通信の方法であって、
    ダウンリンクビーム上でダウンリンク送信をユーザ機器(UE)へ送信するステップと、
    アップリンク送信のために前記基地局がアップリンク送信ビームを構成していないとき、デフォルトアップリンク送信ビーム上で前記アップリンク送信を前記UEから受信するステップと
    を備える、方法。
  16. 前記アップリンク送信が、アップリンク制御チャネル、サウンディング基準信号(SRS)、またはスケジューリング要求(SR)のうちの少なくとも1つを備える、請求項15に記載の方法。
  17. 前記アップリンク送信を受信するために監視すべきビームの選択が、前記アップリンク制御チャネルを受信するための第1のビームを選択するステップを含み、前記方法が、
    前記SRSを受信するための第2のビームを選択するステップをさらに備える、請求項16に記載の方法。
  18. 前記第1のビームが前記第2のビームと同じである、請求項17に記載の方法。
  19. 前記アップリンク送信を受信するために監視すべきビームを選択するステップをさらに備え、前記選択されたビームのパラメータが、前記ダウンリンクビームに対応する、請求項15に記載の方法。
  20. 前記アップリンク送信を受信するために監視すべき前記ビームの前記選択が、最小制御リソースセット(CORESET)識別子を有するCORESETに関連するビームに基づく、請求項19に記載の方法。
  21. 前記CORESETが、前記UEによって最後に監視されたスロットの中の前記最小CORESET識別子を含む、請求項20に記載の方法。
  22. 前記CORESETが、構成されたCORESETのセットのうちの前記最小CORESET識別子を含む、請求項20に記載の方法。
  23. 無線リソース制御(RRC)または媒体アクセス制御-制御要素(MAC-CE)のうちの少なくとも1つを介して前記CORESETに対するCORESET識別子を送信するステップをさらに備える、請求項20に記載の方法。
  24. 前記ダウンリンク送信がダウンリンク共有チャネルであり、前記選択されたビームが、前記ダウンリンク共有チャネルに関連するアクティブ化された送信構成表示(TCI)状態の最小TCI状態識別子に対応する、請求項19に記載の方法。
  25. 前記ダウンリンク送信がダウンリンク共有チャネルであり、前記選択されたビームが、前記ダウンリンク共有チャネルに関連する送信構成表示(TCI)状態のTCI状態識別子に対応する、請求項19に記載の方法。
  26. 前記ダウンリンク送信がダウンリンク共有チャネルであり、前記選択されたビームが、しきい値期間の後、最後に首尾よく受信されたダウンリンク共有チャネルビームに対応する、請求項19に記載の方法。
  27. 前記アップリンク送信を受信するために監視すべき前記ビームの前記選択が、ダウンリンク制御情報(DCI)の中で示される前記ビームに基づく、請求項19に記載の方法。
  28. 前記基地局が複数の送受信ポイント(TRP)を使用して通信し、各TRPに対して、前記アップリンク送信を受信するために監視すべき前記ビームの前記選択が、前記対応するダウンリンクビームに基づく、請求項19に記載の方法。
  29. 前記ダウンリンク送信が、前記デフォルトアップリンク送信ビームを決定するためのデフォルトアップリンク空間関係情報を含み、前記方法が、
    前記デフォルトアップリンク空間関係情報に基づいて、複数のアップリンク送信を受信するために監視すべきビームを選択するステップをさらに備える、請求項15に記載の方法。
  30. 基地局におけるワイヤレス通信のための装置であって、
    メモリと、
    前記メモリに結合された少なくとも1つのプロセッサと
    を備え、前記少なくとも1つのプロセッサが、
    ダウンリンクビーム上でダウンリンク送信をユーザ機器(UE)へ送信することと、
    アップリンク送信のために前記基地局がアップリンク送信ビームを構成していないとき、デフォルトアップリンク送信ビーム上で前記アップリンク送信を前記UEから受信することと
    を行うように構成される、装置。
JP2021573243A 2019-06-14 2020-05-13 アップリンク制御チャネルおよびサウンディング基準信号に対する空間関係表示を容易にするための方法および装置 Pending JP2022536339A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962861882P 2019-06-14 2019-06-14
US62/861,882 2019-06-14
US16/781,784 2020-02-04
US16/781,784 US10897752B2 (en) 2019-06-14 2020-02-04 Methods and apparatus to facilitate spatial relation indication for uplink control channel and sounding reference signals
PCT/US2020/032746 WO2020251718A1 (en) 2019-06-14 2020-05-13 Methods and apparatus to facilitate spatial relation indication for uplink control channel and sounding reference signals

Publications (2)

Publication Number Publication Date
JP2022536339A true JP2022536339A (ja) 2022-08-15
JPWO2020251718A5 JPWO2020251718A5 (ja) 2023-04-27

Family

ID=73745362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021573243A Pending JP2022536339A (ja) 2019-06-14 2020-05-13 アップリンク制御チャネルおよびサウンディング基準信号に対する空間関係表示を容易にするための方法および装置

Country Status (9)

Country Link
US (2) US10897752B2 (ja)
EP (1) EP3984142A1 (ja)
JP (1) JP2022536339A (ja)
KR (1) KR20220020811A (ja)
CN (1) CN113940023A (ja)
AU (1) AU2020292176A1 (ja)
BR (1) BR112021024388A2 (ja)
SG (1) SG11202112615UA (ja)
WO (1) WO2020251718A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200083589A (ko) * 2018-01-11 2020-07-08 후지쯔 가부시끼가이샤 업링크 신호 전송 방법, 업링크 신호 수신 방법, 디바이스, 및 시스템
CN114642054A (zh) * 2019-11-01 2022-06-17 汉尼拔Ip有限责任公司 用于预设空间关系信息确定的方法和装置
US11943777B2 (en) * 2019-12-20 2024-03-26 Qualcomm Incorporated Determining a default uplink (UL) transmission configuration indicator (TCI) state
US11824613B2 (en) * 2020-03-26 2023-11-21 Samsung Electronics Co., Ltd. Method and apparatus for a multi-beam downlink and uplink wireless system
US11515927B2 (en) * 2020-10-30 2022-11-29 Qualcomm Incorporated Beam management with backtracking and dithering
US20230396396A1 (en) * 2021-01-14 2023-12-07 Apple Inc. Method for enhanced direct secondary cell activation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY191809A (en) * 2016-05-11 2022-07-16 Idac Holdings Inc Systems and methods for beamformed uplink transmission
US10779273B2 (en) * 2017-03-10 2020-09-15 Qualcomm Incorporated NR uplink transmit beam selection based on PDCCH/PDSCH receive beams
CN110582947B (zh) * 2017-05-01 2023-08-01 株式会社Ntt都科摩 用户终端以及无线通信方法
US10506587B2 (en) * 2017-05-26 2019-12-10 Samsung Electronics Co., Ltd. Method and apparatus for beam indication in next generation wireless systems
PL3713314T3 (pl) * 2017-09-07 2023-08-14 Beijing Xiaomi Mobile Software Co., Ltd. Zarządzanie wiązką łącza wysyłania
US11277301B2 (en) * 2017-09-07 2022-03-15 Comcast Cable Communications, Llc Unified downlink control information for beam management
US20190103908A1 (en) * 2017-10-02 2019-04-04 Mediatek Inc. Method for Uplink Beam Indication for Wireless Communication System with Beamforming
EP4243325A3 (en) * 2017-11-15 2023-10-25 InterDigital Patent Holdings, Inc. Beam management in a wireless network
CN116112050A (zh) * 2017-11-17 2023-05-12 华为技术有限公司 一种波束配置方法和装置
US10863494B2 (en) * 2018-01-22 2020-12-08 Apple Inc. Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration

Also Published As

Publication number Publication date
WO2020251718A9 (en) 2021-04-22
EP3984142A1 (en) 2022-04-20
WO2020251718A1 (en) 2020-12-17
US20210045106A1 (en) 2021-02-11
KR20220020811A (ko) 2022-02-21
CN113940023A (zh) 2022-01-14
US10897752B2 (en) 2021-01-19
US20200396731A1 (en) 2020-12-17
SG11202112615UA (en) 2021-12-30
BR112021024388A2 (pt) 2022-01-18
AU2020292176A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
US11464008B2 (en) Determination rule of PDSCH scheduled slot with PDCCH repetition
CN113196838A (zh) 针对功率节省配置的ue辅助信息
CN114303403A (zh) 移动iab网络的分布式pci管理
CN115211195A (zh) 减轻跨毫米波段的用户设备之间的交叉链路干扰
JP2022539715A (ja) Rrc状態の間でのue支援型高速遷移
US10897752B2 (en) Methods and apparatus to facilitate spatial relation indication for uplink control channel and sounding reference signals
CN112970295B (zh) 对ne-dc中的潜在nr ul传输的指示
CN114467265A (zh) 默认pdsch波束选择
US11330617B2 (en) Scheduling threshold report for multi-transmit/receive points
WO2022035604A2 (en) Transmission of group handover message
JP2022538574A (ja) グループコンポーネントキャリアベースの更新
CN113924796A (zh) 用于促进用于快速上行链路波束切换的路径损耗参考和空间关系的自动关联的方法和装置
US20210258993A1 (en) Overlapping pucch and pusch transmission
CN114731625A (zh) 侧链路中的资源重选
CN112514437A (zh) 动态资源复用
KR20230073192A (ko) 단일 빔 및 다중 빔 pucch에 대한 주파수 및 빔 홉핑의 상이한 구성들 사이의 스위칭
KR20230048510A (ko) 사이드링크 CA(carrier aggregation) 및 SCI(sidelink control information) 내의 크로스-캐리어 스케줄링 표시를 위한 기법들
WO2021173328A1 (en) Enhancements for provided guard signals in iab network
US11601937B2 (en) Gap enhancement for flexible symbols
WO2021211877A1 (en) Time domain resource allocation-based harq-ack feedback generation
WO2020238572A1 (en) Enhanced mac-ce and rrc ie for multi-carrier configurations
CN114402691A (zh) 集成式接入和回程网络随机接入参数优化
CN115280698A (zh) 用于被撤销的取消的接收规则
US20230300837A1 (en) Ue behavior in receiving aperiodic reference signals
JP2024514068A (ja) 統一されたtci指示を使用したdciにおけるダミー指示

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240624