JP2022530512A - Nanobarium titanate crystallite and its manufacturing method, barium titanate powder and its manufacturing method - Google Patents

Nanobarium titanate crystallite and its manufacturing method, barium titanate powder and its manufacturing method Download PDF

Info

Publication number
JP2022530512A
JP2022530512A JP2021564091A JP2021564091A JP2022530512A JP 2022530512 A JP2022530512 A JP 2022530512A JP 2021564091 A JP2021564091 A JP 2021564091A JP 2021564091 A JP2021564091 A JP 2021564091A JP 2022530512 A JP2022530512 A JP 2022530512A
Authority
JP
Japan
Prior art keywords
barium
temperature
manufacturing
barium titanate
titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021564091A
Other languages
Japanese (ja)
Inventor
瞿海▲鋒▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qu Haifeng
Suzhou Bao Shun Mei Technology Co Ltd
Original Assignee
Qu Haifeng
Suzhou Bao Shun Mei Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qu Haifeng, Suzhou Bao Shun Mei Technology Co Ltd filed Critical Qu Haifeng
Publication of JP2022530512A publication Critical patent/JP2022530512A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

ナノチタン酸バリウム微結晶及びその製造方法、チタン酸バリウム粉末及びその製造方法であって、当該ナノチタン酸バリウム微結晶の製造方法は、質量濃度が20%以上のナノ二酸化チタン水分散液を、水酸化バリウム水溶液と急速に混合し、得られた混合系の温度を両者の高速混合により水酸化バリウム水溶液の温度に比べて少なくとも2℃低くし、不活性雰囲気では、混合系を90~110℃で常圧水熱合成反応させ、反応生成物を収集して洗浄と乾燥し、ナノチタン酸バリウム微結晶を得ることを含む。当該ナノチタン酸バリウム微結晶を原料として▲か▼焼すると、高品質のチタン酸バリウム粉末を得ることができる。【選択図】図10Nanobarium titanate microcrystals and a method for producing the same, barium titanate powder and a method for producing the same, the method for producing the nanobarium titanate microcrystals is a hydroxideation of a nano-titanium dioxide aqueous dispersion having a mass concentration of 20% or more. The mixture was rapidly mixed with the barium aqueous solution, and the temperature of the obtained mixed system was lowered by at least 2 ° C. from the temperature of the barium hydroxide aqueous solution by high-speed mixing of both. It involves conducting a hydrothermal synthesis reaction, collecting the reaction products, washing and drying to obtain barium titanate microcrystals. High-quality barium titanate powder can be obtained by baking the nano-barium titanate crystallites as a raw material. [Selection diagram] FIG. 10

Description

本発明は、ナノ材料技術に関し、特にナノチタン酸バリウム微結晶及びその製造方法、チタン酸バリウム粉末及びその製造方法に関する。 The present invention relates to nanomaterial technology, and more particularly to nanobarium titanate microcrystals and a method for producing the same, barium titanate powder and a method for producing the same.

チタン酸バリウム(BaTiO)は、良好な誘電性、強誘電性、圧電性を持つため、電子セラミック工業に広く応用され、多層セラミックコンデンサ(MLCC)、正温度係数サーミスタ(PTC)、ダイナミックランダムメモリ(DRAM)などの電子部品を製造する基礎材料である。 Barium titanate (BaTIO 3 ) has good dielectric, strong dielectric, and piezoelectric properties and is widely applied in the electronic ceramic industry. Multilayer ceramic capacitors (MLCCs), temperature coefficient thermistors (PTCs), and dynamic random memories. It is a basic material for manufacturing electronic parts such as (DRAM).

現段階でナノチタン酸バリウム粉末を製造する主流プロセスは、固相焼結法と液相合成法に大きく分けられることができ、ここで、液相合成法はさらにゾル-ゲル法、共沈殿法、水熱法などに分けられることができる。固相焼結法は、チタン酸バリウムを構成する金属元素(TiとBa)の酸化物又は酸性塩を混合し、細かく磨いた後、1100℃前後の高温で▲か▼焼し、固相反応により必要な粉末を形成する。固相焼結法のプロセスは比較的簡単であるが、得られた粉末は、粒子が凝集しやすく、粒径が大きく、不純物の含有量が多く、材料の均一性が悪く、電子部品の高性能、小型化の需要を満たすことが困難である。ゾル-ゲル法と共沈殿法によって得られた粉末は、純度が高く、粒径が小さいが、複雑なプロセスで原料コストが高く、工業生産が難しい。 At this stage, the mainstream process for producing nanobarium titanate powder can be broadly divided into a solid phase sintering method and a liquid phase synthesis method. Here, the liquid phase synthesis method is further divided into a sol-gel method and a co-precipitation method. It can be divided into hydrothermal methods and the like. In the solid-phase sintering method, oxides or acid salts of metal elements (Ti and Ba) constituting barium titanate are mixed, finely polished, and then ▲ or ▼ baked at a high temperature of around 1100 ° C, and a solid-phase reaction is carried out. To form the required powder. The process of the solid phase sintering method is relatively simple, but in the obtained powder, the particles tend to aggregate, the particle size is large, the content of impurities is high, the uniformity of the material is poor, and the electronic components are expensive. It is difficult to meet the demand for performance and miniaturization. The powder obtained by the sol-gel method and the coprecipitation method has high purity and small particle size, but the raw material cost is high due to a complicated process, and industrial production is difficult.

水熱法はさらに高圧水熱法と常圧水熱法に分けられることができる。高圧水熱法とは、高圧反応釜などの密閉システムにおいて、分散したTiO細粒子を含むBa(OH)水溶液を水熱処理し、一定の温度と水の自生圧力で、チタン酸バリウム粉末を得ることである。高温、高圧水熱条件下では、常圧条件では得られない特殊な物理化学環境を提供できるため、前駆体を反応系で十分に溶解させ、一定の過飽和度に達し、これにより核形成と結晶化を行い、粉末又はナノ結晶を生成する。そのため、高圧水熱法によって得られたチタン酸バリウム粉末は、純度が高く、結晶度が高く、粒径が小さく、粒子分布が均一であるという利点があり、且つ原料が環境に優しいであることを確保する。しかし、水熱反応は、高温、高圧、且つ密閉の条件で行われるため、反応過程のエネルギー消費が大きくし、安全係数が低いだけでなく、バッチでのみ生産でき、大規模な連続生産ができない。また、反応は、アルカリ性条件、且つ高温高圧環境で行われるため、反応釜に対する要求は更に厳しくなり、機器投入や操作要求などのコストが高い。 The hydrothermal method can be further divided into a high-pressure hydrothermal method and a normal-pressure hydrothermal method. The high-pressure hydrothermal method is a closed system such as a high-pressure reaction kettle in which a Ba (OH) 2 aqueous solution containing dispersed TiO 2 fine particles is hydrothermally heat-treated, and barium titanate powder is produced at a constant temperature and the natural pressure of water. To get. Under high temperature, high pressure hydrothermal conditions, it is possible to provide a special physicochemical environment that cannot be obtained under normal pressure conditions, so the precursor is sufficiently dissolved in the reaction system to reach a certain degree of supersaturation, which leads to nucleation and crystallization. To produce powder or nanocrystals. Therefore, the barium titanate powder obtained by the high-pressure hydrothermal method has the advantages of high purity, high crystallinity, small particle size, uniform particle distribution, and the raw material is environmentally friendly. To secure. However, since the hydrothermal reaction is carried out under high temperature, high pressure and closed conditions, the energy consumption of the reaction process is large, the safety factor is low, and it can be produced only in batches, and large-scale continuous production is not possible. .. Further, since the reaction is carried out under alkaline conditions and a high temperature and high pressure environment, the requirements for the reaction kettle become more severe, and the costs such as equipment input and operation requirements are high.

常圧水熱法は一般的にチタン酸テトラブチルなどのチタン金属有機化合物をチタン源とし、水酸化バリウムをバリウム源とし、N-ブタノールなどのアルコール類物質を溶媒として、反応体系の中でチタン源の転化とチタン酸バリウムの生成を同時に行う。常圧水熱法は、常圧及び50~110℃の低温で行われるため、機器に対する要求は簡単で安全で、工業化は比較的容易に実現でき、現在は既に成熟している。しかし、従来の研究では、常圧水熱法によって製造されたチタン酸バリウムは粒径が大きく、一般的に100nm以上であり、且つ粒度分布が集中しておらず、分散性が悪いため、チタン酸バリウムに対する電子セラミック工業の高品質需要を満たすことが困難である。 In the atmospheric hydrothermal method, a titanium metal organic compound such as tetrabutyl titanate is generally used as a titanium source, barium hydroxide is used as a barium source, and an alcohol substance such as N-butanol is used as a solvent, and the titanium source is used in the reaction system. And the formation of barium titanate at the same time. Since the atmospheric pressure hydrothermal method is performed at atmospheric pressure and a low temperature of 50 to 110 ° C., the requirements for equipment are simple and safe, industrialization can be realized relatively easily, and it is already matured at present. However, in the conventional research, barium titanate produced by the atmospheric hydrothermal method has a large particle size, generally 100 nm or more, the particle size distribution is not concentrated, and the dispersibility is poor. It is difficult to meet the high quality demands of the electronic ceramic industry for barium acid acid.

従って、常圧水熱法に基づくナノチタン酸バリウム微結晶の生産プロセスを開発し、高品質のチタン酸バリウム粉末を得、より高い生産効率を持つことは、現在解決すべき問題である。 Therefore, it is a problem to be solved at present to develop a production process of nanobarium titanate microcrystals based on the atmospheric pressure hydrothermal method, obtain high quality barium titanate powder, and have higher production efficiency.

既存の技術における上記の欠陥に対して、本発明は、ナノチタン酸バリウム微結晶の製造方法を提供し、常圧水熱合成プロセスに基づいて、製造したナノチタン酸バリウム微結晶は、粒径が小さく、粒径分布が均一で、純度が高いという特徴を持ち、非常に高い収率を持ち、高品質のチタン酸バリウム粉末の原料とすることができる。 For the above-mentioned defects in the existing technique, the present invention provides a method for producing nanobarium titanate microcrystals, and the produced nanobarium titanate microcrystals produced based on the atmospheric pressure hydrothermal synthesis process have a small particle size. It has the characteristics of uniform particle size distribution and high purity, has a very high yield, and can be used as a raw material for high-quality barium titanate powder.

本発明はさらに、上記の製造方法を用いて製造されるナノチタン酸バリウム微結晶を提供し、当該ナノチタン酸バリウム微結晶は、粒径が小さく、粒径分布が均一で、純度が高いという特徴を持ち、高品質のチタン酸バリウム粉末を生産する原料とすることができる。 The present invention further provides barium titanate microcrystals produced by the above-mentioned production method, which are characterized by having a small particle size, a uniform particle size distribution, and high purity. It can be used as a raw material for producing high-quality barium titanate powder.

本発明は、前述のナノチタン酸バリウム微結晶を原料とするチタン酸バリウム粉末の製造方法を提供し、純度が高く、結晶性と分散性が良く、粒径が小さいナノチタン酸バリウム粉末を製造することができ、非常に高い収量を持つ。 The present invention provides a method for producing barium titanate powder using the above-mentioned barium titanate microcrystals as a raw material, and produces nanobarium titanate powder having high purity, good crystallinity and dispersibility, and a small particle size. And has a very high yield.

本発明はさらに、上記の製造方法を用いて製造されるチタン酸バリウム粉末を提供し、当該チタン酸バリウム粉末は、粒径が小さく且つ制御可能で、純度が高く、結晶性と分散性が良いという特徴があり、非常に高い収量を持つ。 The present invention further provides barium titanate powder produced by the above production method, wherein the barium titanate powder has a small particle size and is controllable, has high purity, and has good crystallinity and dispersibility. It has a very high yield.

上記の目的を達成するために、本発明は、ナノチタン酸バリウム微結晶の製造方法を提供し、前記方法は、
より低い温度のナノ二酸化チタン水分散液をより高い温度の水酸化バリウム水溶液と急速に混合し、得られた混合系の温度を両者の高速混合により水酸化バリウム水溶液の温度に比べて少なくとも2℃低くし、ここで、ナノ二酸化チタンの水分散液の質量濃度は20%以上であることと、
不活性雰囲気では、混合系を90~110℃で常圧水熱合成反応させ、反応生成物を収集して洗浄と乾燥し、ナノチタン酸バリウム微結晶を得ることと、を含む。
In order to achieve the above object, the present invention provides a method for producing a barium titanate microcrystal, which is described in the above-mentioned method.
The lower temperature nanotitanium dioxide aqueous dispersion was rapidly mixed with the higher temperature barium hydroxide aqueous solution, and the temperature of the obtained mixing system was at least 2 ° C. compared to the temperature of the barium hydroxide aqueous solution by high-speed mixing of both. Lower it, and here, the mass concentration of the aqueous dispersion of nanotitanium dioxide is 20% or more.
In the Inactive atmosphere, the mixed system is subjected to a hydrothermal synthesis reaction under atmospheric pressure at 90 to 110 ° C., the reaction product is collected, washed and dried to obtain barium nanotitarate crystallites.

現在、常圧水熱合成法を用いてナノチタン酸バリウム粉末を製造する場合、チタン源としてのTiOの濃度が高いと、ナノチタン酸バリウム粉末は粒径が大きく、粒度分布が集中しておらず、粒子間の凝集現象が非常に深刻になりやすいが、TiOの濃度が低すぎると、生産効率が低下するだけでなく、チタン酸バリウム粒子の粒径も大きい。この現状に対して、本発明は解決策を提供し、高濃度(質量濃度≧20%)のナノ二酸化チタン水分散液を原料として、まず、ナノ二酸化チタン水分散液を水酸化バリウム水溶液と急速に混合し、次に常圧水熱合成を実施することで、常圧水熱合成反応過程での溶媒量を低減し、生産効率を向上させ、大規模な連続生産を実現するだけでなく、得られたナノチタン酸バリウム微結晶粒子は、粒径が小さく、均一で、純度が高いという利点があり、当該ナノチタン酸バリウム微結晶を原料として、▲か▼焼又は他の手段により、結晶の成長がより良いチタン酸バリウム粉末を得ることができ、且つ当該チタン酸バリウム粉末も同様に粒径が小さく、粒径分布が均一で、純度が高く、分散性が良いという特徴を持つ。 Currently, when producing nanobarium titanate powder using the atmospheric pressure hydrothermal synthesis method, if the concentration of TiO 2 as a titanium source is high, the nanobarium titanate powder has a large particle size and the particle size distribution is not concentrated. The aggregation phenomenon between particles tends to be very serious, but if the concentration of TiO 2 is too low, not only the production efficiency is lowered, but also the particle size of the barium titanate particles is large. The present invention provides a solution to this situation. Using a high-concentration (mass concentration ≥ 20%) nano-titanium dioxide aqueous dispersion as a raw material, first, the nano-titanium dioxide aqueous dispersion is rapidly mixed with a barium titanate aqueous solution. By mixing with barium titanate and then performing atmospheric pressure hydrothermal synthesis, the amount of solvent in the atmospheric pressure hydrothermal synthesis reaction process is reduced, production efficiency is improved, and large-scale continuous production is realized. The obtained barium titanate microcrystal particles have the advantages of small particle size, uniformness, and high purity, and the crystals can be grown by ▲ or ▼ baking or other means using the nanobarium titanate microcrystals as a raw material. It is possible to obtain a better barium titanate powder, and the barium titanate powder also has the characteristics that the particle size is small, the particle size distribution is uniform, the purity is high, and the dispersibility is good.

上記のナノ二酸化チタン水分散液と水酸化バリウム水溶液との間の急速な混合、或いはチタン源とバリウム源の急速な混合は、混合系の温度低下の程度によって具現され、即ち、両者の急速な混合によって直接引き起こされる明らかな温度低下によって具現され、混合過程における外部冷却などの手段による明らかな温度低下を含まない。一般工業生産では、両者の急速な混合は加熱機器の加熱によって行われても、低い温度の二酸化チタン水分散液の添加量が大きく、添加速度が速いため、加熱機器がシステムの急速な昇温を維持するのに十分ではないため、混合系の温度は混合前の水酸化バリウム水溶液の温度に比べて少なくとも2℃低い。本発明の具体的な実施過程では、混合過程において、混合系の温度が2℃以上低下することを監視することは、いわゆる「急速な混合」を実現したことを表す。例えば、ナノ二酸化チタン水分散液を急速に水酸化バリウム水溶液に加えることにより、水酸化バリウム水溶液混合系の温度が大幅に低下し、温度が2℃以上低下すると、両者の「急速な混合」が達成されると考えられる。 The rapid mixing of the nanotitanium dioxide aqueous dispersion and the barium hydroxide aqueous solution, or the rapid mixing of the titanium source and the barium source, is embodied by the degree of temperature decrease of the mixing system, that is, the rapid mixing of both. It is embodied by the apparent temperature drop directly caused by mixing and does not include the apparent temperature drop by means such as external cooling in the mixing process. In general industrial production, even if the rapid mixing of the two is performed by heating the heating equipment, the heating equipment rapidly raises the temperature of the system because the addition amount of the low temperature titanium dioxide aqueous dispersion is large and the addition speed is fast. The temperature of the mixing system is at least 2 ° C. lower than the temperature of the aqueous barium hydroxide solution before mixing because it is not sufficient to maintain. In the specific implementation process of the present invention, monitoring that the temperature of the mixing system drops by 2 ° C. or more in the mixing process indicates that so-called "rapid mixing" has been realized. For example, by rapidly adding a nano-titanium dioxide aqueous dispersion to a barium hydroxide aqueous solution, the temperature of the barium hydroxide aqueous solution mixing system drops significantly, and when the temperature drops by 2 ° C or more, "rapid mixing" of the two occurs. It is believed to be achieved.

もちろん、後続のチタン酸バリウム粒子の成長サイズの一致を確保するために、原料添加又は混合速度は、混合溶液全体の温度が早くバランス及び安定になることを確保すべきである。実際の工業生産において、一般的に高効率の混合機器と高速の液体添加機器を使用し、又はオンラインの連続混合機器を使用して、ナノ二酸化チタン水分散液を水酸化バリウム水溶液と急速、均一に混合させる。急速な混合過程では、一般的に、代表的な監視点をいくつか選んで混合過程中の温度変化をテストし、各監視点の温度が2℃以上低下し、低下範囲は基本的に同じであることが適切である。 Of course, in order to ensure the matching of the growth sizes of the subsequent barium titanate particles, the raw material addition or mixing rate should ensure that the temperature of the entire mixed solution is fast balanced and stable. In actual industrial production, the nanotitanium dioxide aqueous dispersion is rapidly and uniformly with barium hydroxide aqueous solution, generally using high efficiency mixing equipment and high speed liquid addition equipment, or using online continuous mixing equipment. To mix. In a rapid mixing process, in general, some typical monitoring points are selected and the temperature change during the mixing process is tested, and the temperature of each monitoring point drops by 2 ° C or more, and the range of drop is basically the same. It is appropriate to have.

さらに、後続のチタン酸バリウム粒子の成長サイズの一貫性を確保するために、混合系の温度と水酸化バリウム水溶液との温度差も大きすぎるべきではなく、一般的に2~20℃に制御され、通常は2~10℃に制御される。このようにして、温度の突然低下によるバリウム源の析出をも効果的に回避することができる。 Furthermore, in order to ensure the consistency of the growth size of the subsequent barium titanate particles, the temperature difference between the temperature of the mixing system and the barium hydroxide aqueous solution should not be too large, and is generally controlled to 2 to 20 ° C. , Usually controlled at 2-10 ° C. In this way, precipitation of the barium source due to a sudden drop in temperature can be effectively avoided.

上記混合系の調製は大気環境下で行うことができる。もちろん、副反応の発生をさらに回避するために、混合系の調製は不活性雰囲気で行うこともでき、例えば、窒素、アルゴンなどの不活性ガスの保護下で行われてもよい。 The above mixed system can be prepared in an atmospheric environment. Of course, in order to further avoid the occurrence of side reactions, the mixed system can be prepared in an inert atmosphere, and may be carried out under the protection of an inert gas such as nitrogen or argon.

具体的に、上記混合系の調製は、ナノ二酸化チタン水分散液を水酸化バリウム水溶液に加えて実現することができ、水酸化バリウム水溶液をナノ二酸化チタン水分散液に加えて実現することもでき、また、ナノ二酸化チタン水分散液を水酸化バリウム水溶液と並流形態で混合して実現することもできる。 Specifically, the preparation of the above-mentioned mixed system can be realized by adding a nano-titanium dioxide aqueous dispersion to a barium hydroxide aqueous solution, or by adding a nano-titanium barium hydroxide aqueous solution to a nano-titanium hydroxide aqueous solution. Further, it can also be realized by mixing the nanotitanium dioxide aqueous dispersion with the barium hydroxide aqueous solution in a parallel flow form.

本発明の好ましい実施形態では、より低い温度のナノ二酸化チタン水分散液をより高い温度の水酸化バリウム水溶液に加えて急速に混合させ、得られた混合系の温度を水酸化バリウム水溶液の温度に比べて少なくとも2℃、例えば2~20℃、さらに例えば2~10℃低くする。このような形態で混合系を調製することにより、高温の水酸化バリウム水溶液の投入、輸送に関係なく、プロセスと機器に対する要求が低く、より実現しやすい。 In a preferred embodiment of the present invention, a lower temperature nanotitanium dioxide aqueous dispersion is added to a higher temperature barium hydroxide aqueous solution and rapidly mixed, and the temperature of the obtained mixed system is set to the temperature of the barium hydroxide aqueous solution. The temperature is lowered by at least 2 ° C., for example, 2 to 20 ° C., and further, for example, 2 to 10 ° C. By preparing the mixed system in such a form, the requirements for the process and the equipment are low regardless of the input and transportation of the high-temperature barium hydroxide aqueous solution, and it is easier to realize.

理解できるものとして、原料としてのナノ二酸化チタンは、より小さい粒径のナノチタン酸バリウム微結晶及びチタン酸バリウム粉末を得るのに役立つよう、より小さい粒径を持った方がいい。一般に、使用されたナノ二酸化チタン水分散液において、ナノ二酸化チタンは体積計でメジアン粒径D50≦30nmである。対応して製造されたナノチタン酸バリウム微結晶の平均粒径は、一般に10~30nmであり、且つ粒径分布は比較的均一である。そして当該ナノチタン酸バリウム微結晶は立方晶相を主相とし、立方晶相含有量は100%にも達することができる。なお、当該ナノチタン酸バリウム微結晶は純度が高く、分散性が良いという特徴もある。 As is understandable, nanotitanium dioxide as a raw material should have a smaller particle size to help obtain smaller particle size nanobarium titanate microcrystals and barium titanate powder. Generally, in the nanotitanium dioxide aqueous dispersion used, the nanotitanium dioxide has a median particle size D50 ≦ 30 nm on a volume meter. The correspondingly produced barium titanate microcrystals have an average particle size of generally 10 to 30 nm and a relatively uniform particle size distribution. The barium nanotitanium microcrystals have a cubic phase as the main phase, and the cubic phase content can reach 100%. The nanobarium titanate crystallites are also characterized by high purity and good dispersibility.

本発明で使用されるナノ二酸化チタン水分散液は、ナノ二酸化チタン粉末を水に分散させて形成される。本発明は、ナノ二酸化チタン粉末又はナノ二酸化チタン水分散液のソースについては特に限定されず、市販又は自体で製造することができる。例えば特許出願201610879270.3又は201610879701.6に記載されたプロセスに従って、ナノ二酸化チタン粉末を製造して、それを比例的に脱イオン水に分散させ、ナノ二酸化チタン水分散液を得ることができる。 The nano-titanium dioxide aqueous dispersion used in the present invention is formed by dispersing nano-titanium dioxide powder in water. The present invention is not particularly limited as to the source of the nano-titanium dioxide powder or the nano-titanium dioxide aqueous dispersion, and can be commercially available or produced by itself. For example, according to the process described in patent application 2016108279270.3 or 2016108779701.6, nanotitanium dioxide powder can be produced and proportionally dispersed in deionized water to obtain a nanotitanium dioxide aqueous dispersion.

ナノ二酸化チタン水分散液の濃度を合理的に制御することにより、合成過程中のナノチタン酸バリウム微結晶の凝集などの問題を回避するのに役立つので、一般的にナノ二酸化チタン水分散液の質量濃度を20~50%と制御する。このようにして、ナノチタン酸バリウム微結晶を分散性に優れているだけでなく、粒径が小さく、粒径が比較的均一で、純度が高いという利点がある。なお、ナノチタン酸バリウム微結晶は非常に高い収率を有し、特に工業化の連続生産に適していることを確保することができる。 By rationally controlling the concentration of the nano-titanium dioxide aqueous dispersion, it helps to avoid problems such as aggregation of nano-barium titanate microcrystals during the synthesis process, so the mass of the nano-titanium dioxide aqueous dispersion is generally used. The concentration is controlled to 20 to 50%. In this way, not only is the nanobarium titanate microcrystals excellent in dispersibility, but it also has the advantages of a small particle size, a relatively uniform particle size, and a high purity. The nanobarium titanate crystallites have a very high yield, and it can be ensured that they are particularly suitable for continuous industrial production.

本発明は、ナノ二酸化チタン水分散液の温度については特に限定されず、常温(25℃)で調製して得ることができ、適切に加熱してナノ二酸化チタンの質量濃度を向上させることもできるが、温度は水酸化バリウム水溶液の温度より低い必要がある。本発明の具体的な実施過程において、ナノ二酸化チタン水分散液の温度は50℃を超えず、一般に20~50℃である。 The present invention is not particularly limited in temperature of the nanotitanium dioxide aqueous dispersion, and can be prepared and obtained at room temperature (25 ° C.), and can be appropriately heated to improve the mass concentration of nanotitanium dioxide. However, the temperature needs to be lower than the temperature of the aqueous barium hydroxide solution. In the specific implementation process of the present invention, the temperature of the nanotitanium dioxide aqueous dispersion does not exceed 50 ° C, and is generally 20 to 50 ° C.

説明すべきものとして、ナノ二酸化チタン水分散液におけるナノ二酸化チタンは非常に高い濃度(≧20%)を持っているので、ナノチタン酸バリウム粉末の高収率を実現するために、水酸化バリウム水溶液にも高濃度のバリウムイオンを含む必要があり、バリウムイオンとチタン原子のモル比及びバリウム源とチタン源の間の急速な混合を確保し、通常、水酸化バリウム水溶液において、バリウム源の濃度は飽和溶解度に近いほうがいいであり、例えばバリウム源の質量濃度は20%以上で、さらに50%から70%以上に達することができ、よって、水酸化バリウム水溶液にバリウム源の析出がほとんどないことを確保するために、一般的に水酸化バリウム水溶液の温度が70℃以上で、一般的に70~110℃で、さらに90~110℃であるように制御することで、バリウム源とチタン源の比率を確保することができる。 It should be explained that since nanotitanium dioxide in the nanotitanium dioxide aqueous dispersion has a very high concentration (≧ 20%), in order to realize a high yield of the nanobarium barium titanate powder, the aqueous solution of barium hydroxide is used. Must also contain high concentrations of barium ions, ensuring a molar ratio of barium ions to titanium atoms and rapid mixing between the barium source and the titanium source, usually in a barium hydroxide aqueous solution, the concentration of the barium source is saturated. It is better to be close to the solubility, for example, the mass concentration of the barium source is 20% or more, and can reach 50% to 70% or more, thus ensuring that the barium hydroxide aqueous solution has almost no precipitation of the barium source. Therefore, the ratio of the barium source to the titanium source is adjusted by controlling the temperature of the barium hydroxide aqueous solution to be generally 70 ° C. or higher, generally 70 to 110 ° C., and further 90 to 110 ° C. Can be secured.

水酸化バリウム水溶液の調製は、不活性雰囲気で行われ、例えば窒素などの不活性ガスの保護下で行われる必要がある。 The preparation of the barium hydroxide aqueous solution needs to be carried out in an inert atmosphere and under the protection of an inert gas such as nitrogen.

理想的な状態では、BaとTiのモル比が1である場合、両者を十分に反応させてチタン酸バリウムを生成し、原料の残留を避けることができる。理解できるものとして、過剰なチタン源又はバリウム源は、チタン酸バリウムの合成に向ける方向に反応を進行することに有利であり、例えば過剰なBaは、反応生成物における二酸化チタン不純物の含有量を低減するのに役立つが、バリウムの大量の残量は、バリウム源原料の浪費をもたらすだけでなく、反応生成物を収集する時、空気に接触すると、炭酸バリウム不純物を導入する可能性もある。水熱反応効率及び経済的要因を総合的に考慮して、一般的にBaとTiのモル比を1~4:1、さらに1.5~2:1に制御することにより、二酸化チタンの十分な反応を確保し、最終的に得られたナノチタン酸バリウム微結晶はより高い純度を有している。 In an ideal state, when the molar ratio of Ba and Ti is 1, the two can be sufficiently reacted to form barium titanate and the residue of the raw material can be avoided. As is understandable, an excess of titanium or barium source is advantageous in advancing the reaction in the direction towards the synthesis of barium titanate, for example, excess Ba determines the content of titanium dioxide impurities in the reaction product. Although helpful in reducing, large amounts of barium residue not only result in wasted barium source material, but can also introduce barium carbonate impurities when in contact with air when collecting reaction products. Sufficient titanium dioxide is generally obtained by controlling the molar ratio of Ba to Ti to 1 to 4: 1 and further to 1.5 to 2: 1 in consideration of the hydrothermal reaction efficiency and economic factors. The finally obtained barium titanate microcrystals have a higher purity.

混合系の調製が完了した後、混合系は常圧水熱合成反応を行うことができる。通常、まず混合系を撹拌し、その温度を90~110℃に達して、バリウム源とチタン源の効果的な混合を維持し、そしてこの温度でしばらく保温する。具体的に、常圧水熱合成反応の時間は30分間以上が好ましい。 After the preparation of the mixed system is completed, the mixed system can carry out a hydrothermal synthesis reaction under atmospheric pressure. Usually, the mixing system is first agitated to reach its temperature 90-110 ° C. to maintain an effective mixture of barium and titanium sources, and then keep warm at this temperature for some time. Specifically, the time of the atmospheric pressure hydrothermal synthesis reaction is preferably 30 minutes or more.

発明者の研究によると、保温時間が24時間を超えると、常圧水熱合成の反応時間を延長し続け、ナノチタン酸バリウム微結晶のサイズにはあまり影響がないので、実際の生産効率と製品品質を考慮して、通常、常圧水熱合成反応の時間が24時間を超えないように制御し、さらに、例えば3~24時間を超えない。 According to the inventor's research, when the heat retention time exceeds 24 hours, the reaction time of hydrothermal synthesis under atmospheric pressure continues to be extended, and the size of barium nanotitanium microcrystals is not significantly affected, so that the actual production efficiency and product In consideration of quality, the time of the hydrothermal synthesis reaction under atmospheric pressure is usually controlled so as not to exceed 24 hours, and further, for example, it does not exceed 3 to 24 hours.

常圧水熱合成反応が完了した後、温度を下げて反応生成物を収集し、洗浄や乾燥などの処理を経て、高品質のナノチタン酸バリウム微結晶を得ることができる。本発明の具体的な実施過程では、まず吸引濾過などの手段を用いて反応生成物を固液分離し、そして脱イオン水、又は脱イオン水及びエタノールを用いて反応生成物を洗浄し、最後に60~90℃の乾燥を経て、ナノチタン酸バリウム微結晶を取得する。 After the atmospheric pressure hydrothermal synthesis reaction is completed, the temperature is lowered to collect the reaction products, and the reaction products are subjected to treatments such as washing and drying to obtain high-quality barium titanate crystallites. In the specific implementation process of the present invention, the reaction product is first solid-liquid separated by means such as suction filtration, and then the reaction product is washed with deionized water or deionized water and ethanol, and finally. After drying at 60 to 90 ° C., nanonitrate barium microcrystals are obtained.

本発明は、上記の製造方法を用いて製造されるナノチタン酸バリウム微結晶を提供する。本発明で提供されるナノチタン酸バリウム微結晶は、非常に小さい粒径を有し、その平均粒径は100nm以下であり、5~30nmにも達することができ、一般的に10~30nmである。当該ナノチタン酸バリウム微結晶の粒径は、基本的に正規分布であり、粒径分布は比較的狭く、当該ナノチタン酸バリウム微結晶の格子定数比(c/a)はいずれも約1.0000であり、XRD図では、2θ角が44°~46°の間の回折ピークは、明らかな***のない単一ピークとして現れ、ナノチタン酸バリウム微結晶が標準の立方晶相であり、成長が比較的完全で、結晶型が比較的良好であることを示す。バリウムとチタンの比率(Ba/Ti比)はいずれも約1であり、当該ナノチタン酸バリウム微結晶は非常に高い純度を持つと意味する。 The present invention provides barium titanate microcrystals produced by using the above production method. The barium nanotitanium crystallites provided in the present invention have a very small particle size, the average particle size of which is 100 nm or less, can reach 5 to 30 nm, and is generally 10 to 30 nm. .. The particle size of the nanotidium barium microcrystals is basically a normal distribution, the particle size distribution is relatively narrow, and the lattice constant ratio (c / a) of the nanotitanium barium microcrystals is about 10000. Yes, in the XRD diagram, diffraction peaks with a 2θ angle between 44 ° and 46 ° appear as single peaks with no apparent splitting, and barium nanotitanium crystallites are the standard cubic phase and grow relatively. It is complete and shows a relatively good crystalline form. The ratio of barium to titanium (Ba / Ti ratio) is about 1, which means that the barium titanate microcrystals have very high purity.

本発明はまた、チタン酸バリウム粉末の製造方法を提供し、以下のようなステップを含み、
まず、前述の製造方法に従ってナノチタン酸バリウム微結晶を製造し、
200~1300℃で、ナノチタン酸バリウム微結晶を▲か▼焼し、▲か▼焼時間は1~10時間であり、チタン酸バリウム粉末を得る。
The present invention also provides a method for producing barium titanate powder, which comprises the following steps.
First, nanobarium titanate crystallites are produced according to the above-mentioned production method, and then
Barium titanate crystallites are ▲ or ▼ baked at 200 to 1300 ° C., and ▲ or ▼ baking time is 1 to 10 hours to obtain barium titanate powder.

本発明では、ナノチタン酸バリウム微結晶を原料として、高温で▲か▼焼することにより、粒径が小さく且つ均一で、純度が高く、分散性が良く、結晶型の成長が非常に良好なチタン酸バリウム粉末を得る。 In the present invention, by using nanobarium titanate microcrystals as a raw material and baking at high temperature, the particle size is small and uniform, the purity is high, the dispersibility is good, and the crystal type growth is very good. Obtain barium acid acid powder.

具体的に、チタン酸バリウム粉末の粒子サイズは▲か▼焼温度と密接に関係している。発明者の研究によると、500℃以下の低温▲か▼焼による結晶粒成長は明らかではないが、500~1300℃の高温▲か▼焼によりチタン酸バリウムの結晶粒が徐々に成長し、▲か▼焼温度の上昇に伴い、結晶粒の増大がより顕著になるので、実際に製品の粒径需要に応じて適切な▲か▼焼温度を選ぶことができる。 Specifically, the particle size of barium titanate powder is closely related to the firing temperature. According to the research of the inventor, the crystal grain growth by low temperature ▲ or ▼ baking of 500 ℃ or less is not clear, but the crystal grain of barium titanate gradually grows by high temperature ▲ or ▼ baking of 500 to 1300 ℃, and ▲ Since the increase in crystal grains becomes more remarkable as the baking temperature rises, it is possible to actually select an appropriate firing temperature according to the particle size demand of the product.

また、▲か▼焼温度が1100℃以下であると、▲か▼焼温度の上昇に伴い、チタン酸バリウム粉末の結晶化の程度はますます良くなるが、▲か▼焼温度が高すぎると、例えば1100℃以上であると、高温▲か▼焼は結晶型の成長に悪影響を与えるので、一般的に▲か▼焼温度が200~1100℃であり、さらに300~1300℃であるように制御する。 Also, if the ▲ or ▼ baking temperature is 1100 ° C or less, the degree of crystallization of barium titanate powder will increase as the ▲ or ▼ baking temperature rises, but if the ▲ or ▼ baking temperature is too high. For example, when the temperature is 1100 ° C. or higher, the high temperature ▲ or ▼ firing adversely affects the growth of the crystalline form, so that the ▲ or ▼ firing temperature is generally 200 to 1100 ° C, and further 300 to 1300 ° C. Control.

本発明はさらに、上記の製造方法を用いて製造されるチタン酸バリウム粉末を提供する。具体的には、前述のナノチタン酸バリウム微結晶を原料として、高温で▲か▼焼して得る。 The present invention further provides barium titanate powder produced using the above production method. Specifically, it is obtained by baking the above-mentioned barium titanate microcrystals at high temperature as a raw material.

当該チタン酸バリウム粉末はより小さい粒径を持ち、粒径分布が均一で、分散性が良好であり、さらに、当該チタン酸バリウム粉末はさらに結晶粒の成長が良く、純度が高いという特徴があり、よって、高品質のチタン酸バリウム製品に対する電子セラミック工業のニーズを満たすことができる。 The barium titanate powder has a smaller particle size, a uniform particle size distribution, and good dispersibility, and the barium titanate powder is characterized by further good growth of crystal grains and high purity. Therefore, the needs of the electronic ceramic industry for high quality barium titanate products can be met.

本発明で提供されるナノチタン酸バリウム微結晶の製造方法では、高濃度ナノ二酸化チタン水分散液をチタン源として、常圧水熱合成プロセスに基づいて、粒径が小さく、均一で、純度が高く、分散性が良いナノチタン酸バリウム微結晶を製造する。特に、反応原料の合理的な選択及び常圧水熱合成反応条件の制御により、平均粒径が50nmを超えず、さらに10~20nmであるナノチタン酸バリウム微結晶を得ることができ、且つ立方晶相又はほとんどが立方晶相である。当該製造方法を用いて得られたナノチタン酸バリウム微結晶を原料として、さらに▲か▼焼又は他の処理をすると、予想される粒径を持つチタン酸バリウム粉末を得、当該チタン酸バリウム粉末は非常に高い純度と結晶性、及び優れた分散性を持ち、チタン酸バリウムに対する電子セラミック工業の需要を満たすことができる。 In the method for producing nanobarium titanate microcrystals provided in the present invention, a high-concentration nano-titanium dioxide aqueous dispersion is used as a titanium source, and the particle size is small, uniform, and high in purity based on a hydrothermal synthesis process under normal pressure. , Manufacture nanobarium titanate microcrystals with good dispersibility. In particular, by rational selection of reaction raw materials and control of atmospheric pressure hydrothermal synthesis reaction conditions, nanobarium titanate crystallites having an average particle size of 10 nm and 10 to 20 nm can be obtained and cubic crystals. The phase or mostly cubic phase. When barium titanate microcrystals obtained by the production method are used as a raw material and further subjected to ▲ or ▼ baking or other treatment, barium titanate powder having an expected particle size is obtained, and the barium titanate powder is obtained. With very high purity, crystallinity and excellent dispersibility, it can meet the demands of the electronic ceramic industry for barium titanate.

同時に、ナノチタン酸バリウム微結晶の合成は常圧で行われ、高温を必要としないため、生産の安全性を確保し、生産エネルギー消費と機器コストを削減するだけでなく、ナノチタン酸バリウム微結晶ひいてはチタン酸バリウム粉末の連続生産を実現することができ、生産効率の向上にも役立つ。また、使用したナノ二酸化チタンの水分散液の質量濃度は20%以上であるため、生産効率をさらに向上させる。 At the same time, the synthesis of barium titanate microcrystals is carried out at normal pressure and does not require high temperature, which not only ensures production safety and reduces production energy consumption and equipment cost, but also nanobarium titanate microcrystals. It is possible to realize continuous production of barium titanate powder, which also helps to improve production efficiency. Further, since the mass concentration of the aqueous dispersion of nanotitanium dioxide used is 20% or more, the production efficiency is further improved.

本発明で提供されるナノチタン酸バリウム微結晶は、粒径が小さく、分布区間が狭く、純度が高く、分散性が良いという特徴があり、当該ナノチタン酸バリウム微結晶を原料として、予想される粒径を持つチタン酸バリウム粉末を得ることができ、当該チタン酸バリウム粉末は非常に高い純度と結晶性、及び優れた分散性を持ち、チタン酸バリウムに対する電子セラミック工業の需要を満たすことができる。 The nanobarium titanate microcrystals provided in the present invention are characterized by a small particle size, a narrow distribution section, high purity, and good dispersibility, and are expected grains made from the nanobarium titanate microcrystals. Barium titanate powder having a diameter can be obtained, and the barium titanate powder has very high purity, crystallinity, and excellent dispersibility, and can meet the demand of the electronic ceramic industry for barium titanate.

本発明で提供されるチタン酸バリウム粉末の製造方法は、上記のナノチタン酸バリウム微結晶を原料として、簡単な高温▲か▼焼により、純度が高くて分散性がよいチタン酸バリウム粉末を得ることができ、且つチタン酸バリウム粉末は高温▲か▼焼過程中に結晶粒の良好な成長、及び粒径の効果的な制御を実現できるため、チタン酸バリウムに対する電子セラミック工業の需要を満たすことができる。 The method for producing barium titanate powder provided in the present invention is to obtain barium titanate powder having high purity and good dispersibility by simple high-temperature ▲ or ▼ baking using the above-mentioned barium titanate microcrystals as a raw material. And because barium titanate powder can achieve good growth of crystal grains and effective control of particle size during the high temperature ▲ or ▼ baking process, it can meet the demand of the electronic ceramic industry for barium titanate. can.

また、当該チタン酸バリウム粉末の製造方法は、プロセスが簡単で信頼できる特徴があり、工業化量産に適している。 Further, the method for producing the barium titanate powder has a feature that the process is simple and reliable, and is suitable for industrial mass production.

本発明で提供されるチタン酸バリウム粉末は、高純度、高分散性、結晶粒の成長に優れた特徴があり、且つ粒径の大きさが制御できるので、チタン酸バリウムに対する電子セラミック工業の需要を満たすことができる。 The barium titanate powder provided in the present invention is characterized by high purity, high dispersibility, excellent crystal grain growth, and the size of the particle size can be controlled. Therefore, there is a demand in the electronic ceramic industry for barium titanate. Can be met.

本発明の実施例1~5で使用したナノ二酸化チタンを1%の質量濃度で脱イオン水に分散させて測定した粒径分布曲線である。6 is a particle size distribution curve measured by dispersing the nanotitanium dioxide used in Examples 1 to 5 of the present invention in deionized water at a mass concentration of 1%. 本発明の実施例1~5で使用したナノ二酸化チタンを10%の質量濃度で脱イオン水に分散させて測定した粒径分布曲線である。It is a particle size distribution curve measured by dispersing the nanotitanium dioxide used in Examples 1 to 5 of the present invention in deionized water at a mass concentration of 10%. 本発明の実施例1~5で使用したナノ二酸化チタンを50%の質量濃度で脱イオン水に分散させて測定した粒径分布曲線である。6 is a particle size distribution curve measured by dispersing the nanotitanium dioxide used in Examples 1 to 5 of the present invention in deionized water at a mass concentration of 50%. 本発明の実施例1において製造されたナノチタン酸バリウム微結晶のXRDパターンである。It is an XRD pattern of the nanobarium titanate crystallites produced in Example 1 of this invention. 本発明の実施例3において製造されたナノチタン酸バリウム微結晶のXRDパターンである。It is an XRD pattern of the nanobarium titanate crystallites produced in Example 3 of this invention. 本発明の実施例4において製造されたナノチタン酸バリウム微結晶のXRDパターンである。It is an XRD pattern of the nanobarium titanate crystallites produced in Example 4 of this invention. 本発明の実施例5において製造されたナノチタン酸バリウム微結晶のXRDパターンである。It is an XRD pattern of the nanobarium titanate crystallites produced in Example 5 of this invention. 本発明の実施例6において製造されたナノチタン酸バリウム微結晶のXRDパターンである。It is an XRD pattern of the nanobarium titanate crystallites produced in Example 6 of this invention. 本発明の実施例7において製造されたナノチタン酸バリウム微結晶のXRDパターンである。It is an XRD pattern of the barium titanate microcrystal manufactured in Example 7 of this invention. 本発明の実施例2において製造されたナノチタン酸バリウム微結晶のTEM写真である。3 is a TEM photograph of barium titanate microcrystals produced in Example 2 of the present invention. 本発明の実施例8において製造されたチタン酸バリウム粉末のTEM写真である。It is a TEM photograph of the barium titanate powder produced in Example 8 of this invention. 本発明の実施例9において製造されたチタン酸バリウム粉末のTEM写真である。It is a TEM photograph of the barium titanate powder produced in Example 9 of this invention. 本発明の実施例10において製造されたチタン酸バリウム粉末のSEM写真である。It is an SEM photograph of the barium titanate powder produced in Example 10 of this invention. 本発明の実施例11において製造されたチタン酸バリウム粉末のSEM写真である。It is an SEM photograph of the barium titanate powder produced in Example 11 of this invention. 本発明の実施例12において製造されたチタン酸バリウム粉末のSEM写真である。It is an SEM photograph of the barium titanate powder produced in Example 12 of this invention. 本発明の実施例2において製造されたナノチタン酸バリウム微結晶、実施例8~13において製造されたチタン酸バリウム粉末のXRDパターンである。It is an XRD pattern of the nanobarium titanate crystallites produced in Example 2 of the present invention and the barium titanate powder produced in Examples 8 to 13. 図16の部分拡大図である。It is a partially enlarged view of FIG. 本発明の比較例1において製造されたチタン酸バリウム微結晶のXRDパターンである。It is an XRD pattern of barium titanate crystallites produced in the comparative example 1 of this invention. 本発明の比較例2において製造されたチタン酸バリウム微結晶のXRDパターンである。It is an XRD pattern of barium titanate crystallites produced in the comparative example 2 of this invention.

本発明の実施例の目的、技術的解決策及び利点をより明確にするために、以下では、本発明の実施例における図面を組み合わせて、本発明の実施例における技術的解決策を明確完全に説明する。明らかに、説明した実施例は、本発明の実施例の全てではなく、一部である。本発明の実施例に基づいて、当業者は創造的な労働がない前提で取得される他のすべての実施例は、本発明の保護の範囲に属する。 In order to further clarify the objectives, technical solutions and advantages of the embodiments of the present invention, the drawings of the embodiments of the present invention are combined in the following to clarify and completely clarify the technical solutions of the embodiments of the present invention. explain. Obviously, the examples described are not all, but some of the examples of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art on the premise of no creative labor fall within the scope of protection of the present invention.

本発明では、以下の検出技術又は手段を用いてナノチタン酸バリウム微結晶とチタン酸バリウム粉末の特性を示す。
(1)走査型電子顕微鏡と透過型電子顕微鏡を用いて試料の表面形態を観察し、約200個の粒子の粒径を統計し、チタン酸バリウムの一次粒子の平均粒径を得る。
(2)X線回折計(D8 Advance)を用いて、ステップ長が0.02°、積分時間が2sのパラメータで20-80°の範囲でX線回折パターンを収集し、TopasソフトウェアでRietveid法を用いて構造を精密化して格子定数比(c/a)を計算する。
(3)BET法を用いて材料の比表面積を解析する。
(4)ICP-MSを用いてチタン酸バリウム粉末のバリウムとチタンの比率を検出する。
In the present invention, the characteristics of nanobarium titanate microcrystals and barium titanate powder are shown using the following detection techniques or means.
(1) Observe the surface morphology of the sample using a scanning electron microscope and a transmission electron microscope, statistics the particle size of about 200 particles, and obtain the average particle size of the primary particles of barium titanate.
(2) Using an X-ray diffractometer (D8 Advance), X-ray diffraction patterns are collected in the range of 20-80 ° with a parameter having a step length of 0.02 ° and an integration time of 2s, and the Rietveid method using Topas software. The lattice constant ratio (c / a) is calculated by refining the structure using.
(3) The specific surface area of the material is analyzed using the BET method.
(4) ICP-MS is used to detect the ratio of barium to titanium in the barium titanate powder.

[実施例1]
室温で、ナノ二酸化チタン粉末を脱イオン水に均一に分散し、均一に混合されるまでゆっくりと攪拌し、質量濃度48%のナノ二酸化チタン水分散液100gを得て、予備とする。
常圧窒素雰囲気の保護で、355gの水酸化バリウム八水和物と150mLの脱イオン水を三口丸底フラスコに加え、水酸化バリウムが完全に溶解するまで100℃で加熱攪拌する。
ナノ二酸化チタン水分散液を急速に上記の三口丸底フラスコに加え、加える過程において三口丸底フラスコへの元の加熱電力を維持し、得られた混合系の温度を97±2℃と測定した後、撹拌を続け、温度を100℃に上げて、5hの還流反応を行う。反応が完了した後、反応生成物を取り出して、濾過、洗浄、乾燥して、ナノチタン酸バリウム微結晶を得る。
[Example 1]
At room temperature, the nanotitanium dioxide powder is uniformly dispersed in deionized water and slowly stirred until the mixture is uniformly mixed to obtain 100 g of the nanotitanium dioxide aqueous dispersion having a mass concentration of 48%, which is used as a reserve.
To protect the atmosphere of atmospheric nitrogen, 355 g of barium hydroxide octahydrate and 150 mL of deionized water are added to the three-necked round bottom flask, and the mixture is heated and stirred at 100 ° C. until the barium hydroxide is completely dissolved.
The nanotitanium dioxide aqueous dispersion was rapidly added to the above-mentioned three-necked round-bottomed flask, the original heating power to the three-necked round-bottomed flask was maintained in the process of addition, and the temperature of the obtained mixed system was measured as 97 ± 2 ° C. After that, stirring is continued, the temperature is raised to 100 ° C., and a reflux reaction is carried out for 5 hours. After the reaction is complete, the reaction product is removed and filtered, washed and dried to give barium nanotitanate crystallites.

本実施例で使用されるナノ二酸化チタン粉末は、体積計でD50≦10nmであり、当該ナノ二酸化チタン粉末を1%、10%及び50%の濃度で脱イオン水に分散させて測定された粒径分布曲線はそれぞれ図1、図2及び図3に示される。 The nano-titanium dioxide powder used in this example has a D50 ≦ 10 nm on a volume meter, and the particles are measured by dispersing the nano-titanium dioxide powder in deionized water at concentrations of 1%, 10% and 50%. The diameter distribution curves are shown in FIGS. 1, 2 and 3, respectively.

[実施例2~3]
還流反応時間をそれぞれ10hと20hに変更する以外に、実施例2~3における他の操作ステップは実施例1と同じであり、ナノチタン酸バリウム微結晶を得る。
[Examples 2 to 3]
Other than changing the reflux reaction time to 10 h and 20 h, respectively, the other operating steps in Examples 2 to 3 are the same as in Example 1 to obtain nanobarium titanate crystallites.

[実施例4]
脱イオン水の体積を変えずに、二酸化チタンと水酸化バリウムの質量を元の半分に減らし、さらに51gの水酸化ナトリウムを加え、他の操作ステップは実施例2と同じであり、ナノチタン酸バリウム微結晶を得る。
[Example 4]
Without changing the volume of deionized water, the mass of titanium dioxide and barium hydroxide was reduced to half of the original, and 51 g of sodium hydroxide was added, the other operating steps were the same as in Example 2, barium nanotitanium acid. Obtain microcrystals.

[実施例5]
ナノ二酸化チタン水分散液の質量濃度を48%に維持し、ナノ二酸化チタン水分散液の質量を元の半分、即ち50gに減らして、二酸化チタンと水酸化バリウムのモル比を変更し、他の操作ステップは実施例2と同じであり、ナノチタン酸バリウム微結晶を得る。
[Example 5]
Maintain the mass concentration of the nano-titanium dioxide aqueous dispersion at 48%, reduce the mass of the nano-titanium dioxide aqueous dispersion to half of the original, that is, 50 g, change the molar ratio of titanium dioxide to barium hydroxide, and use other materials. The operation step is the same as in Example 2 to obtain barium hydroxide microcrystals.

[実施例6~7]
実施例6~7の製造プロセスは、実施例2とほぼ同じであり、相違点は、実施例6におけるナノ二酸化チタンのメジアン粒径D50は体積計で約17nmであり、実施例7におけるナノ二酸化チタンのメジアン粒径D50は体積計で約29nmであることのみである。
[Examples 6 to 7]
The production process of Examples 6 to 7 is almost the same as that of Example 2, and the difference is that the median particle size D50 of the nanotitanium dioxide in Example 6 is about 17 nm on a volumetric scale, and the nanodioxide in Example 7 is obtained. The median particle size D50 of titanium is only about 29 nm on a volumetric scale.

上記実施例1~7の反応条件は具体的に表1を参照し、合成されたナノチタン酸バリウム微結晶の生成物形状は表2を参照する。 For the reaction conditions of Examples 1 to 7, specifically refer to Table 1, and for the product shape of the synthesized barium titanate microcrystal, refer to Table 2.

Figure 2022530512000002
Figure 2022530512000002

Figure 2022530512000003
Figure 2022530512000003

図4は実施例1で得られたナノチタン酸バリウム微結晶のX線回折(XRD)パターンであり、図5、図6、図7、図8及び図9はそれぞれ、実施例3~7で得られたナノチタン酸バリウム微結晶のXRDパターンであり、実施例2のXRDパターンは図4と類似である。上記のXRDパターンから分かるように、実施例1~7で得られたナノチタン酸バリウム微結晶2θ角が44°~46°の間の回折ピークは、明らかな***のない単一ピークとして現れ、格子の成長が良好であると意味する。 FIG. 4 is an X-ray diffraction (XRD) pattern of barium nanotitanium crystallites obtained in Example 1, and FIGS. 5, 6, 7, 8 and 9 are obtained in Examples 3 to 7, respectively. It is an XRD pattern of the obtained nanotidium barium microcrystal, and the XRD pattern of Example 2 is similar to FIG. As can be seen from the above XRD pattern, the diffraction peaks obtained in Examples 1 to 7 with a barium titanate microcrystal 2θ angle between 44 ° and 46 ° appear as a single peak without obvious splitting and are latticed. Means good growth.

表2における格子定数比(c/a)と組み合わせて分かるように、実施例1~7において製造されたナノチタン酸バリウム微結晶の格子定数比(c/a)はいずれも約1.0000であり、典型的な立方晶相である。 As can be seen in combination with the lattice constant ratio (c / a) in Table 2, the lattice constant ratio (c / a) of the barium nanotitanium microcrystals produced in Examples 1 to 7 is about 1.0000. , A typical cubic phase.

表2におけるBa/Ti比のデータから分かるように、実施例1~7で得られたナノチタン酸バリウム微結晶は、Ba/Ti比がいずれも約1であり、ほとんどが0.990~1.001の間に集中しており、よって、当該ナノチタン酸バリウム微結晶は非常に高い純度を持つ。 As can be seen from the data of the Ba / Ti ratio in Table 2, the barium titanate microcrystals obtained in Examples 1 to 7 have a Ba / Ti ratio of about 1, and most of them have a Ba / Ti ratio of 0.990 to 1. Concentrated between 001, therefore the barium titanate crystallites concerned have a very high purity.

図10は実施例2で得られたナノチタン酸バリウム微結晶の透過型電子顕微鏡(TEM)写真であり、実施例1のナノチタン酸バリウム微結晶の形態はこれと類似している。図1を表2と組み合わせてから分かるように、実施例1~2で製造されたナノチタン酸バリウム微結晶の平均粒径はいずれも約15nmであり、分散性が良く、明確な凝集が見られず、粒径が比較的均一であり、実施例3~7のナノチタン酸バリウム微結晶の一次粒子の平均粒径はいずれも約50nm以下である。 FIG. 10 is a transmission electron microscope (TEM) photograph of the barium nanotitanium microcrystals obtained in Example 2, and the morphology of the barium nanotitanium microcrystals of Example 1 is similar to this. As can be seen by combining FIG. 1 with Table 2, the average particle size of the barium nanotitanium microcrystals produced in Examples 1 and 2 is about 15 nm, the dispersibility is good, and clear aggregation is observed. However, the particle size is relatively uniform, and the average particle size of the primary particles of barium nanotitate microcrystals of Examples 3 to 7 is about 50 nm or less.

[実施例8~13]
実施例2で得られたナノチタン酸バリウム微結晶をマッフル炉で約3hを▲か▼焼して、チタン酸バリウム粉末を得、ここで、実施例8~13の▲か▼焼温度はそれぞれ300℃、500℃、700℃、900℃、1100℃、1300℃である。具体的な▲か▼焼プロセス及び生成物形状は具体的には、表3を参照してもよい。
[Examples 8 to 13]
The nanobarium titanate microcrystals obtained in Example 2 were ▲ or ▼ baked in a muffle furnace for about 3 hours to obtain barium titanate powder, where the ▲ or ▼ baking temperatures of Examples 8 to 13 were 300, respectively. ° C., 500 ° C., 700 ° C., 900 ° C., 1100 ° C., 1300 ° C. Specifically, Table 3 may be referred to for the specific ▲ or ▼ firing process and product shape.

Figure 2022530512000004
Figure 2022530512000004

図11と図12はそれぞれ実施例8~9で得られたチタン酸バリウム粉末のTEM写真である。図11~12及び表3の結果から分かるように、実施例8~9で得られたチタン酸バリウム粉末の粒子分散度が良く、明確な凝集が見られず、その一次粒子の平均粒径はいずれも約20nmであり、これにより、300℃~500℃で行われる低温▲か▼焼による結晶粒成長は明らかではないと推測できる。 11 and 12 are TEM photographs of the barium titanate powder obtained in Examples 8 to 9, respectively. As can be seen from the results of FIGS. 11 to 12 and Table 3, the barium titanate powders obtained in Examples 8 to 9 have good particle dispersity, no clear agglomeration is observed, and the average particle size of the primary particles is Both are about 20 nm, and it can be inferred that the crystal grain growth due to low temperature ▲ or ▼ baking performed at 300 ° C to 500 ° C is not clear.

図13、図14及び図15はそれぞれ実施例10~12におけるチタン酸バリウム粉末の走査型電子顕微鏡(SEM)写真である。図13~15と表3を組み合わせて分かるように、▲か▼焼温度を500℃から1300℃に上げると、チタン酸バリウム結晶粒は徐々に成長し、粒径は約20nmから約200nmに増加し、500℃~1300℃での高温▲か▼焼は結晶粒の著しい増大をもたらすと意味する。 13, 14 and 15 are scanning electron microscope (SEM) photographs of barium titanate powder in Examples 10 to 12, respectively. As can be seen by combining FIGS. 13 to 15 and Table 3, when the firing temperature is raised from 500 ° C to 1300 ° C, barium titanate crystal grains gradually grow and the grain size increases from about 20 nm to about 200 nm. However, high temperature calcination at 500 ° C to 1300 ° C means that the crystal grains are significantly increased.

図16は本発明の実施例2において製造されたナノチタン酸バリウム微結晶、実施例8~13において製造されたチタン酸バリウム粉末のXRDパターンであり、図17は図16の2θ角が45°である回折ピークでの拡大図である。図16と図17から分かるように、ナノチタン酸バリウム微結晶は▲か▼焼を経た後、晶体成長がより良くなり、且つ▲か▼焼温度の上昇に伴い、当該チタン酸バリウム粉末の結晶化程度はますます良くなり、特に▲か▼焼温度が300℃~1100℃(実施例8~12)である場合、45°付近の2θ角の回折ピークは、明らかな***がなく、単一ピークとして現れ、▲か▼焼温度が1300℃(実施例13)である場合、45°での回折ピークは***した。 FIG. 16 is an XRD pattern of the nanobarium titanate crystallites produced in Example 2 of the present invention and the barium titanate powder produced in Examples 8 to 13, and FIG. 17 shows the 2θ angle of FIG. 16 at 45 °. It is an enlarged view at a certain diffraction peak. As can be seen from FIGS. 16 and 17, the nanobarium titanate microcrystals undergo better crystal growth after being ▲ or ▼ baked, and as the ▲ or ▼ baking temperature rises, the barium titanate powder crystallizes. The degree is getting better and better, especially when the firing temperature is 300 ° C to 1100 ° C (Examples 8 to 12), the diffraction peak at 2θ angle near 45 ° has no obvious splitting and is a single peak. When the firing temperature was 1300 ° C (Example 13), the diffraction peak at 45 ° was split.

表4の試験結果から分かるように、300℃~500℃で行われる低温▲か▼焼による結晶粒成長は明らかではないが、▲か▼焼温度が500℃から1300℃に上げると、チタン酸バリウム結晶粒は徐々に成長し、粒径が20nmから約300nmに増加し、500℃~1300℃での高温▲か▼焼は結晶粒の著しい増大をもたらすと意味する。 As can be seen from the test results in Table 4, the grain growth due to low-temperature ▲ or ▼ baking performed at 300 ° C to 500 ° C is not clear, but when the ▲ or ▼ baking temperature is raised from 500 ° C to 1300 ° C, barium titanate Barium crystal grains grow gradually, the grain size increases from 20 nm to about 300 nm, which means that high temperature calcination at 500 ° C to 1300 ° C results in a significant increase in grain.

[比較例1]
比較例1の製造プロセスは実施例2とほぼ同じであり、相違点は、混合系を調製する場合、水酸化バリウム水溶液を入れた三口フラスコに二酸化チタン水分散液をゆっくりとと加えて、加えながら急速に攪拌して混合し、混合系全体の温度を100℃で一定に維持することのみである。
[Comparative Example 1]
The production process of Comparative Example 1 is almost the same as that of Example 2, and the difference is that when preparing the mixed system, the titanium dioxide aqueous dispersion is slowly added to the three-necked flask containing the barium hydroxide aqueous solution. It is only necessary to keep the temperature of the whole mixing system constant at 100 ° C. by stirring and mixing rapidly while stirring.

当該ナノチタン酸バリウム微結晶の具体的な物理的試験結果は表4を参照し、そのXRDパターンは図18で示される。 The specific physical test results of the barium titanate microcrystals are shown in Table 4, and the XRD pattern thereof is shown in FIG.

[比較例2]
比較例2の製造プロセスは実施例2とほぼ同じであり、相違点は、混合系を調製する場合、ナノ二酸化チタン粉末の質量が変わらないが、ナノ二酸化チタンの質量濃度が8%であることのみである。
[Comparative Example 2]
The manufacturing process of Comparative Example 2 is almost the same as that of Example 2, and the difference is that the mass concentration of the nanotitanium dioxide powder does not change when the mixed system is prepared, but the mass concentration of the nanotitanium dioxide is 8%. Only.

当該ナノチタン酸バリウム微結晶の具体的な物理的試験結果は表4を参照し、そのXRDパターンは図19で示される。 The specific physical test results of the barium titanate microcrystals are shown in Table 4, and the XRD pattern thereof is shown in FIG.

図18と図19から分かるように、比較例1~2において、ナノ二酸化チタン水分散液をゆっくりと加える又はナノ二酸化チタン水分散液の濃度を低下させる形態を用いて、同様に結晶粒成長が良好なナノチタン酸バリウム微結晶を得ることができる。 As can be seen from FIGS. 18 and 19, in Comparative Examples 1 and 2, crystal grain growth was similarly carried out by using a form in which the nanotitanium dioxide aqueous dispersion was slowly added or the concentration of the nanotitanium dioxide aqueous dispersion was reduced. Good barium nanotitanium microcrystals can be obtained.

しかし、比較例1~2と実施例2の試験結果の比較によれば、二酸化チタン水分散液をゆっくりと加えて混合系をほぼ一定に維持し、又は低濃度ナノ二酸化チタン水分散液を用いる場合、得られたナノチタン酸バリウム微結晶の平均粒径はいずれも大きくなる。また、ナノ二酸化チタン水分散液の濃度を低下させると、ナノチタン酸バリウム微結晶の生産効率が著しく低下する。 However, according to the comparison of the test results of Comparative Examples 1 and 2, the titanium dioxide aqueous dispersion is slowly added to keep the mixed system substantially constant, or a low-concentration nanotitanium dioxide aqueous dispersion is used. In this case, the average particle size of the obtained barium nanotitanium microcrystals becomes large. Further, when the concentration of the nano-titanium dioxide aqueous dispersion is lowered, the production efficiency of the nano-barium titanate microcrystals is remarkably lowered.

Figure 2022530512000005
Figure 2022530512000005

最後に説明すべきものとして、上記の各実施例は、本発明の技術的手段を説明するためにのみ使用され、これに限定されるものではない。上記の各実施例を参照して本発明を詳細に説明したが、当業者は、依然として上記の各実施例に記載された技術的手段を修正し、又はその一部又は全部の技術的特徴を均等に置換することができ、これらの修正又は置換は、対応する技術的手段の本質を本発明の各実施例の技術的手段の範囲から逸脱させないことを理解すべきである。
Last but not least, each of the above embodiments is used only, but is not limited to, to illustrate the technical means of the invention. Although the present invention has been described in detail with reference to each of the above embodiments, those skilled in the art will still modify the technical means described in each of the above embodiments, or some or all of the technical features thereof. It should be understood that these modifications or substitutions can be replaced equally and do not deviate from the essence of the corresponding technical means within the scope of the technical means of each embodiment of the invention.

Claims (10)

ナノチタン酸バリウム微結晶の製造方法であって、
より低い温度のナノ二酸化チタン水分散液をより高い温度の水酸化バリウム水溶液と急速に混合し、得られた混合系の温度を両者の急速な混合により、前記水酸化バリウム水溶液の温度に比べて少なくとも2℃低くし、ここで、前記ナノ二酸化チタンの水分散液の質量濃度は20%以上であることと、
不活性雰囲気では、前記混合系を90~110℃で常圧水熱合成反応させ、反応生成物を収集して洗浄と乾燥し、ナノチタン酸バリウム微結晶を得ることと、を含む、
ことを特徴とするナノチタン酸バリウム微結晶の製造方法。
It is a method for producing nano-barium titanate crystallites.
The lower temperature nanotitanium dioxide aqueous dispersion was rapidly mixed with the higher temperature barium hydroxide aqueous solution, and the temperature of the obtained mixing system was compared with the temperature of the above barium hydroxide aqueous solution by rapid mixing of both. The temperature should be lowered by at least 2 ° C., where the mass concentration of the aqueous dispersion of the nanotitanium dioxide is 20% or more.
In the Inactive atmosphere, the mixed system is subjected to a hydrothermal synthesis reaction under atmospheric pressure at 90 to 110 ° C., the reaction product is collected, washed and dried to obtain barium nanotitanate crystallites.
A method for producing nanobarium titanate crystallites, which is characterized by the above.
前記より低い温度のナノ二酸化チタン水分散液を前記より高い温度の水酸化バリウム水溶液に加えて急速に混合し、前記混合系を得る、
ことを特徴とする請求項1に記載の製造方法。
The lower temperature nanotitanium dioxide aqueous dispersion is added to the higher temperature barium hydroxide aqueous solution and rapidly mixed to obtain the mixed system.
The manufacturing method according to claim 1.
前記ナノ二酸化チタン水分散液の温度は50℃以下であり、急速混合の間に、前記水酸化バリウム水溶液の温度は70℃以上であるように制御する、
ことを特徴とする請求項1又は請求項2に記載の製造方法。
The temperature of the nanotitanium dioxide aqueous dispersion is controlled to be 50 ° C. or lower, and the temperature of the barium hydroxide aqueous solution is controlled to be 70 ° C. or higher during rapid mixing.
The manufacturing method according to claim 1 or 2, wherein the manufacturing method is characterized by the above.
前記ナノ二酸化チタン水分散液において、ナノ二酸化チタンのメジアン粒径は体積計で30nm以下である、
ことを特徴とする請求項1~3のいずれか1項に記載の製造方法。
In the nano-titanium dioxide aqueous dispersion, the median particle size of the nano-titanium dioxide is 30 nm or less by volumetric.
The manufacturing method according to any one of claims 1 to 3, wherein the manufacturing method is characterized by the above.
前記混合系において、BaイオンとTi原子のモル比は1~4:1である、
ことを特徴とする請求項1又は請求項2に記載の製造方法。
In the mixed system, the molar ratio of Ba ion to Ti atom is 1 to 4: 1.
The manufacturing method according to claim 1 or 2, wherein the manufacturing method is characterized by the above.
前記水酸化バリウム水溶液の質量濃度は20%以上である、
ことを特徴とする請求項1又は請求項5に記載の製造方法。
The mass concentration of the barium hydroxide aqueous solution is 20% or more.
The manufacturing method according to claim 1 or 5.
前記常圧水熱合成反応の時間は30分間以上である、
ことを特徴とする請求項1又は請求項2に記載の製造方法。
The time of the atmospheric pressure hydrothermal synthesis reaction is 30 minutes or more.
The manufacturing method according to claim 1 or 2, wherein the manufacturing method is characterized by the above.
請求項1~7のいずれか1項に記載の製造方法を用いて製造される、
ことを特徴とするナノチタン酸バリウム微結晶。
It is manufactured by the manufacturing method according to any one of claims 1 to 7.
Nano barium titanate crystallites characterized by this.
チタン酸バリウム粉末の製造方法であって、
請求項1~7のいずれか1項に記載の製造方法に従ってナノチタン酸バリウム微結晶を製造することと、
200~1300℃で、前記ナノチタン酸バリウム微結晶を▲か▼焼し、チタン酸バリウム粉末を得ることと、を含む
ことを特徴とするチタン酸バリウム粉末の製造方法。
A method for producing barium titanate powder.
To produce nanobarium titanate microcrystals according to the production method according to any one of claims 1 to 7.
A method for producing barium titanate powder, which comprises baking the nanobarium titanate microcrystals at 200 to 1300 ° C. to obtain barium titanate powder.
請求項9に記載の製造方法によって製造される、
ことを特徴とするチタン酸バリウム粉末。
Manufactured by the manufacturing method according to claim 9.
Barium titanate powder characterized by that.
JP2021564091A 2019-04-25 2019-08-14 Nanobarium titanate crystallite and its manufacturing method, barium titanate powder and its manufacturing method Pending JP2022530512A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910338387.4 2019-04-25
CN201910338387.4A CN110092657B (en) 2019-04-25 2019-04-25 Nano barium titanate microcrystal and preparation method thereof, and barium titanate powder and preparation method thereof
PCT/CN2019/100606 WO2020215536A1 (en) 2019-04-25 2019-08-14 Nano-barium titanate microcrystal and preparation method therefor, and barium titanate powder and preparation method therefor

Publications (1)

Publication Number Publication Date
JP2022530512A true JP2022530512A (en) 2022-06-29

Family

ID=67445845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021564091A Pending JP2022530512A (en) 2019-04-25 2019-08-14 Nanobarium titanate crystallite and its manufacturing method, barium titanate powder and its manufacturing method

Country Status (4)

Country Link
JP (1) JP2022530512A (en)
KR (1) KR102590443B1 (en)
CN (1) CN110092657B (en)
WO (1) WO2020215536A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110092657B (en) * 2019-04-25 2021-01-26 苏州宝顺美科技有限公司 Nano barium titanate microcrystal and preparation method thereof, and barium titanate powder and preparation method thereof
TW202116682A (en) * 2019-09-30 2021-05-01 日商日揮觸媒化成股份有限公司 Barium titanate particles, method for producing same, and dispersion of barium titanate particles
CN113753944A (en) * 2021-10-14 2021-12-07 福建贝思科电子材料股份有限公司 Superfine barium titanate powder and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374915A (en) * 1986-07-14 1988-04-05 キヤボツト コ−ポレ−シヨン Manufacture of diatomic cation titanate
JP2014024750A (en) * 2012-07-27 2014-02-06 Samsung Electro-Mechanics Co Ltd Method for manufacturing barium titanate and barium titanate powder manufactured by the same method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970001125B1 (en) * 1993-10-29 1997-01-28 요시히로 이와타 Device for purifying fuel
KR20000001995A (en) * 1998-06-16 2000-01-15 이형도 Process for preparing ceramic powder of barium titanate
CN1451607A (en) * 2002-04-16 2003-10-29 唐应吉 Process for preparing high-purity superfine barium titanate by liquid phase chemical reaction
JP4252508B2 (en) * 2004-07-20 2009-04-08 Tdk株式会社 Method for producing barium titanate powder, powder and multilayer ceramic electronic component using the same
KR101218979B1 (en) * 2010-12-10 2013-01-04 삼성전기주식회사 A manufacturing method of perovskite powder, perovskite powder and laminated ceramic electronic part manufactured by the same
KR20130038695A (en) * 2011-10-10 2013-04-18 삼성전기주식회사 Perovskite powder, fabricating method thereof and multi-layer ceramic electronic parts fabricated by using the same
CN110092657B (en) * 2019-04-25 2021-01-26 苏州宝顺美科技有限公司 Nano barium titanate microcrystal and preparation method thereof, and barium titanate powder and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374915A (en) * 1986-07-14 1988-04-05 キヤボツト コ−ポレ−シヨン Manufacture of diatomic cation titanate
JP2014024750A (en) * 2012-07-27 2014-02-06 Samsung Electro-Mechanics Co Ltd Method for manufacturing barium titanate and barium titanate powder manufactured by the same method

Also Published As

Publication number Publication date
WO2020215536A1 (en) 2020-10-29
KR20210153705A (en) 2021-12-17
KR102590443B1 (en) 2023-10-16
CN110092657B (en) 2021-01-26
CN110092657A (en) 2019-08-06

Similar Documents

Publication Publication Date Title
JP7382083B2 (en) Nano barium titanate powder and its manufacturing method, ceramic dielectric layer and its manufacturing method
JP2022530512A (en) Nanobarium titanate crystallite and its manufacturing method, barium titanate powder and its manufacturing method
WO2014077176A2 (en) Coated barium titanate particulate and production method for same
Hwang et al. Low‐temperature synthesis of fully crystallized spherical BaTiO3 particles by the gel–sol method
JP2002519298A (en) Hot water production method of barium titanate powder
CN114477273A (en) Hydrothermal preparation process of tetragonal phase nano barium titanate powder
US11542172B1 (en) Methods for preparing high-purity boehmite and porous gamma-alumina nano-powder
JP3314388B2 (en) Method for producing indium hydroxide, indium oxide and ITO sintered body
CN113292097A (en) Method for preparing high-tetragonality barium titanate powder
CN115142115B (en) Powder coprecipitation preparation method special for magnesia-alumina spinel large single crystal
CN1283587C (en) Process for preparing tetra phase barium titanate powder
CN115924963A (en) Preparation method for synthesizing tetragonal nano barium titanate by hydrothermal method, tetragonal nano barium titanate and application thereof
JP3198238B2 (en) Fine powder of titanium oxide and method for producing the same
CN115380008B (en) Method for producing perovskite compound, and perovskite compound
CN115246653A (en) Nanometer dysprosium oxide and preparation method and application thereof
KR101288194B1 (en) A manufacturing method of highly crystalline Barium-Titanate and highly crystalline Barium-Titanate powder manufactured by the same
JP3878867B2 (en) Indium hydroxide and oxide
JP2005289737A (en) Barium titanate minute particle and its manufacturing method
JPH085667B2 (en) Method for producing divalent cation titanate
CN115477324B (en) Preparation method of tetragonal phase nano barium titanate
CN116692935A (en) Cubic phase conversion tetragonal phase BaTiO 3 Method for producing crystals
CN116639972B (en) Tetragonal phase nano barium titanate powder and preparation method and application thereof
KR20060102928A (en) Manufacturing method of barium titanate powder
CN116022841A (en) Preparation method and application of barium calcium titanate powder
CN117466329A (en) Nanometer barium titanate and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220810

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230828

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240527