JP2022528313A - Treatment method and treatment equipment for low resistivity substances - Google Patents

Treatment method and treatment equipment for low resistivity substances Download PDF

Info

Publication number
JP2022528313A
JP2022528313A JP2021556694A JP2021556694A JP2022528313A JP 2022528313 A JP2022528313 A JP 2022528313A JP 2021556694 A JP2021556694 A JP 2021556694A JP 2021556694 A JP2021556694 A JP 2021556694A JP 2022528313 A JP2022528313 A JP 2022528313A
Authority
JP
Japan
Prior art keywords
low resistivity
substance
electrode
conductive electrode
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021556694A
Other languages
Japanese (ja)
Inventor
万福 唐
大祥 王
志軍 段
勇 奚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Bixiufu Enterprise Management Co Ltd
Original Assignee
Shanghai Bixiufu Enterprise Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Bixiufu Enterprise Management Co Ltd filed Critical Shanghai Bixiufu Enterprise Management Co Ltd
Publication of JP2022528313A publication Critical patent/JP2022528313A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/01Pretreatment of the gases prior to electrostatic precipitation
    • B03C3/011Prefiltering; Flow controlling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • B03C3/0175Amassing particles by electric fields, e.g. agglomeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/019Post-treatment of gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/368Controlling flow of gases or vapour by other than static mechanical means, e.g. internal ventilator or recycler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/70Applications of electricity supply techniques insulating in electric separators

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrostatic Separation (AREA)
  • Treating Waste Gases (AREA)

Abstract

Figure 2022528313000001

低比抵抗物質の処理方法及び処理装置であって、処理方法は、導電極(301)を用いて電子を低比抵抗物質に伝導し、低比抵抗物質を帯電させるステップと、吸着極(302)を用いて帯電した低比抵抗物質を吸引し、帯電した低比抵抗物質を吸着極(302)に移動させるステップとを含む。電子伝導方法により低比抵抗物質を帯電させ、低比抵抗物質の帯電後に電子が失われやすくなることに起因する問題を解消し、低比抵抗物質は電子が失われた後すぐに電子を得ることができるようにし、低比抵抗物質を帯電させる確率を高め、低比抵抗物質を帯電状態に維持させ、吸着極(302)は、低比抵抗物質に吸引力を継続的に付勢することで、低比抵抗物質を吸着することができ、且つ低比抵抗物質の処理方法は低比抵抗物質に対する収集能力がより強くなり、収集効率がより高くなる。
【選択図】図1

Figure 2022528313000001

It is a treatment method and a treatment apparatus for a low resistivity substance, and the treatment method includes a step of conducting electrons to the low resistivity substance by using a conductive electrode (301) and charging the low resistivity substance, and an adsorption electrode (302). ) Is used to suck the charged low resistivity substance and move the charged low resistivity substance to the adsorption electrode (302). The low resistivity material is charged by the electron conduction method, solving the problem caused by the tendency of electrons to be lost after charging the low resistivity material, and the low resistivity material obtains electrons immediately after the electrons are lost. To be able to, increase the probability of charging the low resistivity material, keep the low resistivity material charged, and the adsorption electrode (302) continuously urges the low resistivity material to attract. Therefore, the low resistivity substance can be adsorbed, and the method for treating the low resistivity substance has a stronger collecting ability for the low resistivity substance and a higher collecting efficiency.
[Selection diagram] Fig. 1

Description

本発明は、低比抵抗物質の処理方法及び処理装置に関し、特に、低比抵抗物質を収集するためのより高い効率を有する低比抵抗物質の処理方法及び処理装置に関する。 The present invention relates to a method and a treatment device for a low resistivity substance, and more particularly to a method and a treatment device for a low resistivity substance having higher efficiency for collecting the low resistivity substance.

現在、環境保護分野では、集塵、脱硫、脱硝、ミスト除去などの段階を通って、煙突から排出された黒煙、青煙、黄煙がなくなったが、白煙が生じてしまう。白煙の成分のほとんどは水煙であり、微粒子、アンモニウム塩、カルシウム、硝酸、エアロゾルなどもその中に入り混じており、これらは緊急に解決すべき主な汚染物である。現在使用されているサイクロン集塵機、バッグ集塵機、凝縮型デミスター、湿式電気集塵機、酸霧デミスターなどは基本的に無効である。例えば、オゾン脱硝及びボイラーや焼結機からの煙道ガスの湿式処理の最後に、煙道ガス中の水分を除去するためにデミスターが使用されるが、温度差と微細なミストの特性のため、実際のデミスターは除去効果をまったく達成できない。現在、主に湿式静電集塵機が処理方法として使用されているが、構造と荷電原理との偏差により、水煙を帯電させ且つ吸着することができず、白煙の処理効率も極めて低い。このようにして大量の上記汚染物が大気中に排出されて、煙霧や酸性雨を発生させる。飛散粉塵、アンモニウム塩、脱硫剤、脱硝剤、フェン、及び高原子価重金属などが混ぜられて排出されるため、地元の人々の健康に深刻な影響を及ぼす。また、工業用水を大量に排出することで、水資源の節約に不利である。 Currently, in the field of environmental protection, black smoke, blue smoke, and yellow smoke emitted from the chimney have disappeared through steps such as dust collection, desulfurization, denitration, and mist removal, but white smoke is generated. Most of the components of white smoke are water smoke, which also contains fine particles, ammonium salts, calcium, nitric acid, aerosols, etc., which are the main pollutants to be urgently resolved. Currently used cyclone dust collectors, bag dust collectors, condensed demisters, wet electrostatic precipitators, acid fog demisters, etc. are basically invalid. For example, at the end of ozone denitration and wet treatment of flue gas from boilers and sintered machines, demisters are used to remove moisture in the flue gas, but due to temperature differences and fine mist characteristics. , The actual demister cannot achieve the removal effect at all. Currently, a wet electrostatic precipitator is mainly used as a treatment method, but due to the deviation between the structure and the charging principle, water smoke cannot be charged and adsorbed, and the treatment efficiency of white smoke is extremely low. In this way, a large amount of the above pollutants are discharged into the atmosphere, causing haze and acid rain. Fugitive dust, ammonium salts, desulfurizing agents, denitrifying agents, fen, and high valence heavy metals are mixed and discharged, which has a serious impact on the health of local people. In addition, it is disadvantageous to save water resources by discharging a large amount of industrial water.

上記排出される水煙は低比抵抗物質であり、従来の低比抵抗物質を処理する技術には、低比抵抗物質の帯電後に電子が失われやすくなることに起因する問題が存在し、空気中に排出された低比抵抗物質の除去を実現できず、例えば工業用排気中の酸霧の浄化、収集についての問題は、今日でも緊急に解決すべき技術的な問題である。 The discharged water smoke is a low resistivity substance, and there is a problem in the conventional technique for treating a low resistivity substance due to the tendency for electrons to be lost after the low resistivity substance is charged, and there is a problem in the air. It is not possible to realize the removal of low resistivity substances discharged from the resistivity, for example, the problem of purification and collection of acid fog in industrial exhaust is a technical problem that must be solved urgently even today.

上記従来技術の欠点に鑑み、本発明の解決しようとする技術的問題は、低比抵抗物質を収集することができ、収集効率が高い、低比抵抗物質の処理方法及び装置を提供することである。 In view of the above-mentioned drawbacks of the prior art, the technical problem to be solved by the present invention is to provide a method and an apparatus for treating a low resistivity substance, which can collect a low resistivity substance and has high collection efficiency. be.

上記の目的及び他の関連する目的を達成するために、本発明は以下の例を提供する。 To achieve the above and other related objectives, the invention provides the following examples.

1、本発明により提供される例1は、
導電極を用いて電子を前記低比抵抗物質に伝導し、前記低比抵抗物質を帯電させるステップと、
吸着極を用いて帯電した前記低比抵抗物質を吸引し、帯電した前記低比抵抗物質を前記吸着極に移動させるステップと、を含む低比抵抗物質の処理方法である。
1. Example 1 provided by the present invention
A step of conducting electrons to the low resistivity material using a conductive electrode to charge the low resistivity material, and a step of charging the low resistivity material.
This is a method for treating a low resistivity substance, which comprises a step of sucking the charged low resistivity substance using an adsorption electrode and moving the charged low resistivity substance to the adsorption electrode.

2、本発明により提供される例2は、例1に記載の低比抵抗物質の処理方法において、導電極を用いて電子を前記低比抵抗物質に伝導する前記ステップは、電子を前記導電極と前記吸着極との間に位置する低比抵抗物質間で伝達し、より多くの低比抵抗物質を帯電させるステップを含む、低比抵抗物質の処理方法である。 2. In Example 2 provided by the present invention, in the method for treating a low resistivity substance according to Example 1, the step of conducting an electron to the low resistivity substance using a conductive electrode is a step of conducting an electron to the conductive electrode. It is a method for treating a low resistivity substance, which comprises a step of transmitting between the low resistivity substance located between the and the adsorption electrode and charging a larger amount of the low resistivity substance.

3、本発明により提供される例3は、例1又は2に記載の低比抵抗物質の処理方法において、前記導電極と前記吸着極との間は低比抵抗物質を介して電子を伝導し、電流を形成する、低比抵抗物質の処理方法である。 3. In Example 3 provided by the present invention, in the method for treating a low resistivity substance according to Example 1 or 2, electrons are conducted between the conductive electrode and the adsorption electrode via the low resistivity substance. , A method of treating low resistivity substances that form an electric current.

4、本発明により提供される例4は、例1~3のいずれか一項に記載の低比抵抗物質の処理方法において、導電極を用いて電子を前記低比抵抗物質に伝導する前記ステップは、前記導電極は、低比抵抗物質と接触することにより低比抵抗物質を帯電させるステップを含む、低比抵抗物質の処理方法である。 4. In Example 4 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 3, the step of conducting electrons to the low resistivity substance using a conductive electrode. Is a method for treating a low resistivity substance, which comprises a step of charging the low resistivity substance by contacting the conductive electrode with the low resistivity substance.

5、本発明により提供される例5は、例1~4のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極は、面状、網状、有孔板状、板状、ツェッパ状、ボックス状、又は管状を有する、低比抵抗物質の処理方法である。 5. In Example 5 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 4, the conductive electrode is planar, net-like, perforated plate-like, or plate-like. , Tsepper-shaped, box-shaped, or tubular, is a method for treating a low resistivity substance.

6、本発明により提供される例6は、実施例1~5のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極は、固体、液体、気体分子クラスター、プラズマ、導電性混合形態物質、生体の自然混合による導電性物質又は物体の人工加工による導電性物質のうちの1つ又は複数の形態の組み合わせである、低比抵抗物質の処理方法である。 6. In Example 6 provided by the present invention, in the method for treating a low specific resistance substance according to any one of Examples 1 to 5, the conductive electrode is a solid, a liquid, a gas molecule cluster, a plasma, or a conductive substance. A method for treating a low specific resistance substance, which is a combination of one or more forms of a sex-mixed form substance, a conductive substance obtained by natural mixing of a living body, or a conductive substance obtained by artificially processing an object.

7、本発明により提供される例7は、例1~6のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極は、固体金属、グラファイト、又はイオン含有導電性液体である、低比抵抗物質の処理方法である。 7. In Example 7 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 6, the conductive electrode is a solid metal, graphite, or an ion-containing conductive liquid. There is a method for treating low resistivity substances.

8、本発明により提供される例8は、例1~7のいずれか一項に記載の低比抵抗物質の処理方法において、前記吸着極は多層網状、網状、有孔板状、管状、筒状、ツェッパ状、ボックス状、板状、粒子蓄積層状又は折り曲げ板状である、低比抵抗物質の処理方法である。 8. In Example 8 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 7, the adsorption electrode is a multilayer net-like, net-like, perforated plate-like, tubular, or cylindrical. A method for treating a low resistivity substance, which is in the form of a zipper, a box, a plate, a particle storage layer, or a bent plate.

9、本発明により提供される例9は、例1~8のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極に少なくとも1つの貫通孔が設けられる、低比抵抗物質の処理方法である。 9. In Example 9 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 8, the low resistivity substance is provided with at least one through hole in the conductive electrode. It is a processing method of.

10、本発明により提供される例10は、例9に記載の低比抵抗物質の処理方法において、導電極を用いて電子を前記低比抵抗物質に伝導する前記ステップは、前記低比抵抗物質を前記導電極の貫通孔に通し、前記低比抵抗物質を帯電させるステップを含む、低比抵抗物質の処理方法である。 10. In Example 10 provided by the present invention, in the method for treating a low resistivity substance according to Example 9, the step of conducting electrons to the low resistivity substance using a conductive electrode is the step of the low resistivity substance. Is a method for treating a low resistivity substance, which comprises a step of charging the low resistivity substance through a through hole of the conductive electrode.

11、本発明により提供される例11は、例9又は10に記載の低比抵抗物質の処理方法において、前記導電極における貫通孔の形状は多角形、円形、楕円形、正方形、長方形、台形、又は菱形である、低比抵抗物質の処理方法である。 11. In Example 11 provided by the present invention, in the method for treating a low specific resistance substance according to Example 9 or 10, the shape of the through hole in the conductive electrode is polygonal, circular, elliptical, square, rectangular, or trapezoidal. , Or a diamond-shaped, low specific resistance substance treatment method.

12、本発明により提供される例12は、例9~11のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極における貫通孔の孔径は0.1~3ミリメートルである、低比抵抗物質の処理方法である。 12. In Example 12 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 9 to 11, the hole diameter of the through hole in the conductive electrode is 0.1 to 3 mm. , A method for treating low resistivity substances.

13、本発明により提供される例13は、例1~12のいずれか一項に記載の低比抵抗物質の処理方法において、前記吸着極に少なくとも1つの貫通孔が設けられる、低比抵抗物質の処理方法である。 13. In Example 13 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 12, the low resistivity substance is provided with at least one through hole in the adsorption electrode. It is a processing method of.

14、本発明により提供される例14は、例13に記載の低比抵抗物質の処理方法において、前記吸着極における貫通孔の形状は多角形、円形、楕円形、正方形、長方形、台形、又は菱形である、低比抵抗物質の処理方法である。 14. In Example 14 provided by the present invention, in the method for treating a low specific resistance substance according to Example 13, the shape of the through hole in the adsorption electrode is polygonal, circular, elliptical, square, rectangular, trapezoidal, or It is a diamond-shaped method for treating low specific resistance substances.

15、本発明により提供される例15は、例13又は14に記載の低比抵抗物質の処理方法において、前記吸着極における貫通孔の孔径は0.1~3ミリメートルである、低比抵抗物質の処理方法である。 15. The example 15 provided by the present invention is a low resistivity substance having a pore diameter of 0.1 to 3 mm in the through hole in the adsorption electrode in the method for treating a low resistivity substance according to Example 13 or 14. It is a processing method of.

16、本発明により提供される例16は、例1~15のいずれか一項に記載の低比抵抗物質の処理方法において、前記吸着極は導電性物質で作製されるか、又は前記吸着極の表面には導電性物質がある、低比抵抗物質の処理方法である。 16. In the example 16 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 15, the adsorption electrode is made of a conductive substance or the adsorption electrode is formed. This is a method for treating a low resistivity substance, which has a conductive substance on its surface.

17、本発明により提供される例17は、例1~16のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極と前記吸着極との間に電界が形成される、低比抵抗物質の処理方法である。 17. In Example 17 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 16, an electric field is formed between the conductive electrode and the adsorption electrode. This is a method for treating low resistivity substances.

18、本発明により提供される例18は、例1~17のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極は、前記吸着極に対して垂直又は平行である、低比抵抗物質の処理方法である。 18. In Example 18 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 17, the conductive electrode is perpendicular to or parallel to the adsorption electrode. This is a method for treating low resistivity substances.

19、本発明により提供される例19は、例1~18のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極は網状であり、前記吸着極は面状であり、前記導電極は前記吸着極に平行である、低比抵抗物質の処理方法である。 19. In Example 19 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 18, the conductive electrode is reticulated and the adsorption electrode is planar. The conductive electrode is a method for treating a low resistivity substance, which is parallel to the adsorption electrode.

20、本発明により提供される例20は、例1~19のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極及び吸着極はいずれも面状であり、前記導電極は前記吸着極に平行である、低比抵抗物質の処理方法である。 20. In Example 20 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 19, both the conductive electrode and the adsorption electrode are planar, and the conductive electrode is formed. Is a method for treating a low resistivity substance parallel to the adsorption electrode.

21、本発明により提供される例21は、例1~20のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極は金網を用いる、低比抵抗物質の処理方法である。 21, Example 21 provided by the present invention is the method for treating a low resistivity substance according to any one of Examples 1 to 20, wherein the conductive electrode uses a wire mesh. ..

22、本発明により提供される例22は、例1~21のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極は平面状又は球面状である、低比抵抗物質の処理方法である。 22. In Example 22 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 21, the conductive electrode is a planar or spherical surface of the low resistivity substance. It is a processing method.

23、本発明により提供される例23は、例1~22のいずれか一項に記載の低比抵抗物質の処理方法において、前記吸着極は曲面状又は球面状である、低比抵抗物質の処理方法である。 23. In Example 23 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 22, the adsorption electrode is a curved or spherical surface of the low resistivity substance. It is a processing method.

24、本発明により提供される例24は、例1~23のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極は給電電源の1つの電極に電気的に接続され、前記吸着極は給電電源のもう1つの電極に電気的に接続される、低比抵抗物質の処理方法である。 24. In Example 24 provided by the present invention, in the method for treating a low specific resistance substance according to any one of Examples 1 to 23, the conductive electrode is electrically connected to one electrode of a power feeding power source. The adsorption electrode is a method for treating a low specific resistance substance, which is electrically connected to another electrode of a power feeding power source.

25、本発明により提供される例25は、例1~24のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極は給電電源の負極に電気的に接続され、前記吸着極は給電電源の正極に電気的に接続される、低比抵抗物質の処理方法である。 25. In Example 25 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 24, the conductive electrode is electrically connected to the negative electrode of the power feeding power supply, and the adsorption is performed. The pole is a method of treating a low resistivity substance that is electrically connected to the positive electrode of the power supply.

26、本発明により提供される例26は、例1~25のいずれか一項に記載の低比抵抗物質の処理方法において、給電電源の給電駆動電圧範囲は5~50KVである、低比抵抗物質の処理方法である。 26. In Example 26 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 25, the feed voltage range of the feed power supply is 5 to 50 KV, and the resistivity is low. It is a method of processing a substance.

27、本発明により提供される例27は、例1~26のいずれか一項に記載の低比抵抗物質の処理方法において、前記給電電源の給電駆動電圧は初期コロナ開始電圧よりも低い、低比抵抗物質の処理方法である。 27. In Example 27 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 26, the feed drive voltage of the feed power supply is lower than the initial corona start voltage. This is a method for treating resistivity substances.

28、本発明により提供される例28は、例1~27のいずれか一項に記載の低比抵抗物質の処理方法において、前記給電電源の給電駆動電圧は0.1~2kv/mmである、低比抵抗物質の処理方法である。 28. In Example 28 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 27, the feeding drive voltage of the feeding power supply is 0.1 to 2 kv / mm. , A method for treating low resistivity substances.

29、本発明により提供される例29は、例1~28のいずれか一項に記載の低比抵抗物質の処理方法において、前記給電電源の給電駆動電圧波形は直流波形、正弦波、又は変調波形である、低比抵抗物質の処理方法である。 29. In Example 29 provided by the present invention, in the method for treating a low specific resistance substance according to any one of Examples 1 to 28, the feed drive voltage waveform of the feed power supply is a DC waveform, a sine wave, or a modulation. It is a method for treating a low specific resistance substance that is a waveform.

30、本発明により提供される例30は、例1~29のいずれか一項に記載の低比抵抗物質の処理方法において、前記電源は交流電源であり、前記給電電源のインバータパルス幅は0.1Hz~5GHzである、低比抵抗物質の処理方法である。 30. In Example 30 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 29, the power source is an AC power source, and the inverter pulse width of the power supply power source is 0. . This is a method for treating a low resistivity substance having a resistivity of 1 Hz to 5 GHz.

31、本発明により提供される例31は、例1~30のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極と吸着極はともに左右方向に伸びており、前記導電極の左端は吸着極の左端の左側に位置する、低比抵抗物質の処理方法である。 31. In Example 31 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 30, both the conductive electrode and the adsorption electrode extend in the left-right direction, and the lead is described. The left end of the electrode is located on the left side of the left end of the adsorption electrode, and is a method for treating a low resistivity substance.

32、本発明により提供される例32は、例1~31のいずれか一項に記載の低比抵抗物質の処理方法において、前記吸着極は2つあり、前記導電極は2つの吸着極の間に位置する、低比抵抗物質の処理方法である。 32. In Example 32 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 31, the adsorption electrode has two adsorption electrodes and the conductive electrode has two adsorption electrodes. It is a method for treating low resistivity substances located in between.

33、本発明により提供される例33は、例1~32のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極と吸着極は吸着ユニットを構成し、前記吸着ユニットは複数ある、低比抵抗物質の処理方法である。 33. In Example 33 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 32, the conductive electrode and the adsorption electrode constitute an adsorption unit, and the adsorption unit is There are multiple methods for treating low resistivity substances.

34、本発明により提供される例34は、例1~33のいずれか一項に記載の低比抵抗物質の処理方法において、全ての吸着ユニットは縦方向、横方向、斜め方向、螺旋方向のうち1つの方向又は複数方向に分布している、低比抵抗物質の処理方法である。 34. In Example 34 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 33, all the adsorption units are in the vertical direction, the horizontal direction, the oblique direction, and the spiral direction. This is a method for treating a low resistivity substance distributed in one direction or a plurality of directions.

35、本発明により提供される例35は、例1~34のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極及び前記吸着極はいずれもハウジング内に取り付けられ、前記ハウジングは入口及び出口を有する、低比抵抗物質の処理方法である。 35. In Example 35 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 34, both the conductive electrode and the adsorption electrode are mounted in a housing and described above. The housing is a method of treating a low resistivity substance having an inlet and an outlet.

36、本発明により提供される例36は、例1~35のいずれか一項に記載の低比抵抗物質の処理方法において、流路をさらに含み、前記流路はハウジングの中に位置し、入口と出口との間に位置する、低比抵抗物質の処理方法である。 36, Example 36 provided by the present invention further comprises a flow path in the method for treating a low resistivity substance according to any one of Examples 1 to 35, wherein the flow path is located in a housing. It is a method for treating low resistivity substances located between the inlet and the outlet.

37、本発明により提供される例37は、例35又は36に記載の低比抵抗物質の処理方法において、前記入口は円形であり、且つ前記入口の直径は300~1000mm又は500mmである、低比抵抗物質の処理方法である。 37, Example 37 provided by the present invention is the method for treating a low resistivity substance according to Example 35 or 36, wherein the inlet is circular and the diameter of the inlet is 300 to 1000 mm or 500 mm. This is a method for treating resistivity substances.

38、本発明により提供される例38は、例35又は36のいずれか一項に記載の低比抵抗物質の処理方法において、前記出口は円形であり、且つ前記出口の直径は300~1000mm又は500mmである、低比抵抗物質の処理方法である。 38, in the example 38 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 35 or 36, the outlet is circular and the diameter of the outlet is 300 to 1000 mm or It is a method for treating a low resistivity substance having a resistivity of 500 mm.

39、本発明により提供される例39は、例1~38のいずれか一項に記載の低比抵抗物質の処理方法において、前記ハウジングの材質は金属、非金属、導体、非導体、水、各種導電性液体、各種多孔質材料、又は各種発泡材料である、低比抵抗物質の処理方法である。 39. In Example 39 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 38, the material of the housing is metal, non-metal, conductor, non-conductor, water, and the like. It is a method for treating a low resistivity substance, which is various conductive liquids, various porous materials, or various foaming materials.

40、本発明により提供される例40は、例1~39のいずれか一項に記載の低比抵抗物質の処理方法において、前記ハウジングの材質はステンレス、アルミニウム合金、鉄合金、導電性液体、布、スポンジ、分子ふるい、活性炭、発泡鉄、発泡炭化珪素である、低比抵抗物質の処理方法である。 40. In Example 40 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 39, the material of the housing is stainless steel, an aluminum alloy, an iron alloy, a conductive liquid, and the like. It is a method for treating a low resistivity substance such as cloth, sponge, molecular sieve, activated carbon, iron foam, and silicon foam carbide.

41、本発明により提供される例41は、例1~40のいずれか一項に記載の低比抵抗物質の処理方法において、前記ハウジングは、入口から出口方向に順次分布している第1の筒体、第2の筒体、及び第3の筒体を含み、前記入口は第1の筒体の一端に位置し、前記出口は第3の筒体の一端に位置する、低比抵抗物質の処理方法である。 41. In Example 41 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 40, the housing is first distributed sequentially from the inlet to the outlet. A low resistivity material containing a cylinder, a second cylinder, and a third cylinder, the inlet is located at one end of the first cylinder and the outlet is located at one end of the third cylinder. It is a processing method of.

42、本発明により提供される例42は、例41に記載の低比抵抗物質の処理方法において、前記第1の筒体の輪郭の大きさは入口から出口方向に徐々に大きくなる、低比抵抗物質の処理方法である。 42. In Example 42 provided by the present invention, in the method for treating a low resistivity substance according to Example 41, the size of the contour of the first tubular body gradually increases from the inlet to the outlet, and the resistivity is low. It is a method of treating a resistivity substance.

43、本発明により提供される例43は、例41又は42に記載の低比抵抗物質の処理方法において、前記第1の筒体は直管状である、低比抵抗物質の処理方法である。 43, Example 43 provided by the present invention is the method for treating a low resistivity substance according to Example 41 or 42, wherein the first cylinder is a straight tube.

44、本発明により提供される例44は、例41~43のいずれか一項に記載の低比抵抗物質の処理方法において、前記第2の筒体は直管状であり、且つ前記導電極及び前記吸着極は第2の筒体の中に取り付けられる、低比抵抗物質の処理方法である。 44. In Example 44 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 41 to 43, the second tubular body is a straight tubular body, and the conductive electrode and the conductive electrode The adsorption electrode is a method for treating a low resistivity substance, which is mounted inside a second cylinder.

45、本発明により提供される例45は、例41~44のいずれか一項に記載の低比抵抗物質の処理方法において、前記第3の筒体の輪郭の大きさは入口から出口方向に徐々に小さくなる、低比抵抗物質の処理方法である。 45. In Example 45 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 41 to 44, the size of the contour of the third cylinder is from the inlet to the outlet. It is a method for treating a low resistivity substance that gradually becomes smaller.

46、本発明により提供される例46は、例41~45のいずれか一項に記載の低比抵抗物質の処理方法において、前記第2の筒体の断面は矩形である、低比抵抗物質の処理方法である。 46. In Example 46 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 41 to 45, the second tubular body has a rectangular cross section, which is a low resistivity substance. It is a processing method of.

47、本発明により提供される例47は、例1~46のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極は、絶縁性部材を介してハウジングに固着される、低比抵抗物質の処理方法である。 47. In Example 47 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 46, the conductive electrode is fixed to a housing via an insulating member. This is a method for treating low resistivity substances.

48、本発明により提供される例48は、例47に記載の低比抵抗物質の処理方法において、前記絶縁体の材質は絶縁性マイカである、低比抵抗物質の処理方法である。 48. Example 48 provided by the present invention is a method for treating a low resistivity substance according to Example 47, wherein the material of the insulator is an insulating mica.

49、本発明により提供される例49は、例47又は48に記載の低比抵抗物質の処理方法において、前記絶縁部材は柱状、又は塔状である、低比抵抗物質の処理方法である。 49, Example 49 provided by the present invention is the method for treating a low resistivity substance according to Example 47 or 48, wherein the insulating member is columnar or columnar.

50、本発明により提供される例50は、例1~49のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極に第1の接続部が設けられ、前記第1の接続部は絶縁部材に固着される、低比抵抗物質の処理方法である。 50. In the example 50 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 49, the conductive electrode is provided with a first connection portion, and the first connection portion is provided. The connection portion is a method for treating a low resistivity substance that is fixed to an insulating member.

51、本発明により提供される例51は、例1~50のいずれか一項に記載の低比抵抗物質の処理方法において、前記ハウジング内壁に第2の接続部が設けられ、前記第2の接続部は絶縁部材に固着される、低比抵抗物質の処理方法である。 51. In Example 51 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 50, a second connection portion is provided on the inner wall of the housing, and the second connection portion is provided. The connection portion is a method for treating a low resistivity substance that is fixed to an insulating member.

52、本発明により提供される例52は、例1~51のいずれか一項に記載の低比抵抗物質の処理方法において、前記導電極の断面積と流路の断面積との比率は、99%~10%、又は90%~10%、又は80%~20%、又は70%~30%、又は60%~40%、又は50%である、低比抵抗物質の処理方法である。 52. In Example 52 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 51, the ratio of the cross-sectional area of the conductive electrode to the cross-sectional area of the flow path is determined. A method for treating a low resistivity substance, which is 99% to 10%, or 90% to 10%, or 80% to 20%, or 70% to 30%, or 60% to 40%, or 50%.

53、本発明により提供される例53は、例1~52のいずれか一項に記載の低比抵抗物質の処理方法において、前記低比抵抗物質は、液体、ミスト、固体、又はプラズマのうち1つ又は複数の形態の組み合わせである、低比抵抗物質の処理方法である。 53, Example 53 provided by the present invention is the method for treating a low resistivity substance according to any one of Examples 1 to 52, wherein the low resistivity substance is a liquid, a mist, a solid, or a plasma. A method for treating a low resistivity substance, which is a combination of one or a plurality of forms.

54、本発明により提供される例54は、例1~53のいずれか一項に記載の低比抵抗物質の処理方法において、前記低比抵抗物質は導電性液体、導電性ミスト、導電性粒子、帯電液体、帯電ミスト、帯電粒子、水、エマルジョン、エアロゾル、液化粉塵、多物質混合物、多形態混合物、多物質多形態混合物、水煙、エマルジョンミスト、多物質混合液体ミスト、多形態混合液体ミスト、多物質多形態混合液体ミスト、煙霧、蒸気、酸霧、含水排気ガス、含水煙道ガス、気体分子クラスター、イオンクラスター、プラズマ、導電性粉末、導電性液滴、導電性ダスト、液体中のイオンクラスター、ガス中のイオンクラスター、液体中の化合物、及びガス中の化合物のうち1つ又は複数の形態の組み合わせである、低比抵抗物質の処理方法である。 54. In Example 54 provided by the present invention, in the method for treating a low specific resistance substance according to any one of Examples 1 to 53, the low specific resistance substance is a conductive liquid, a conductive mist, or a conductive particle. , Charged liquid, charged mist, charged particles, water, emulsion, aerosol, liquefied dust, multi-material mixture, multi-form mixture, multi-material multi-form mixture, water smoke, emulsion mist, multi-material mixed liquid mist, multi-form mixed liquid mist, Multi-material multi-form mixed liquid mist, fumes, steam, acid fog, hydrous exhaust gas, hydrous fumes, gas molecule clusters, ion clusters, plasmas, conductive powders, conductive droplets, conductive dust, ions in liquids A method for treating a low specific resistance substance, which is a combination of one or more forms of clusters, ion clusters in a gas, compounds in a liquid, and compounds in a gas.

55、本発明により提供される例55は、例1~54のいずれか一項に記載の低比抵抗物質の処理方法において、前記低比抵抗物質は、水、エマルジョン、多物質混合液体、多形態混合液体、多物質多形態混合液体を含む生体である、低比抵抗物質の処理方法である。 55. In Example 55 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 54, the low resistivity substance is water, an emulsion, a multi-substance mixed liquid, or many. It is a method for treating a low resistivity substance, which is a living body including a morphologically mixed liquid and a multi-substance multi-form mixed liquid.

56、本発明により提供される例56は、例1~55のいずれか一項に記載の低比抵抗物質の処理方法において、前記低比抵抗物質は、導体又は半導体である、低比抵抗物質の処理方法である。 56. In Example 56 provided by the present invention, in the method for treating a low resistivity substance according to any one of Examples 1 to 55, the low resistivity substance is a conductor or a semiconductor, which is a low resistivity substance. It is a processing method of.

57、本発明により提供される例57は、例1~56のいずれか一項に記載の低比抵抗物質の処理方法において、
前記低比抵抗物質は入口から流路に入り、出口方向に移動するステップと、前記低比抵抗物質が前記導電極を通過する場合、前記導電極は電子を低比抵抗物質に伝導し、低比抵抗物質を帯電させるステップとを含む、低比抵抗物質の処理方法である。
57, Example 57 provided by the present invention is the method for treating a low resistivity substance according to any one of Examples 1 to 56.
The step of the low resistivity substance entering the flow path from the inlet and moving toward the exit, and when the low resistivity substance passes through the conductive electrode, the conductive electrode conducts electrons to the low resistivity substance and is low. It is a method for treating a low resistivity substance, which comprises a step of charging the resistivity substance.

58、本発明により提供される例58は、
電子を低比抵抗物質に伝導できる導電極であって、電子が低比抵抗物質に伝導されると、低比抵抗物質が帯電する導電極と、
帯電した低比抵抗物質に吸引力を付勢することができる吸着極と、を含む低比抵抗物質の処理装置である。
58, Example 58 provided by the present invention
A conductive electrode that can conduct electrons to a low resistivity material, and a conductive electrode that charges the low resistivity material when electrons are conducted to the low resistivity material.
It is a processing device for a low resistivity substance including an adsorption electrode capable of urging a charged low resistivity substance with an attractive force.

59、本発明により提供される例59は、例58に記載の低比抵抗物質の処理装置において、前記導電極は、面状、網状、有孔板状、板状、ツェッパ状、ボックス状、又は管状を有する、低比抵抗物質の処理装置である。 59, Example 59 provided by the present invention is the low resistivity substance processing apparatus according to Example 58, wherein the conductive electrode has a planar shape, a mesh shape, a perforated plate shape, a plate shape, a zepper shape, a box shape, and the like. Alternatively, it is a treatment device for a low resistivity substance having a tubular shape.

60、本発明により提供される例60は、例58又は59に記載の低比抵抗物質の処理装置において、前記導電極は、固体、液体、気体分子クラスター、プラズマ、導電性混合形態物質、生体の自然混合による導電性物質又は物体の人工加工による導電性物質のうちの1つ又は複数の形態の組み合わせである、低比抵抗物質の処理装置である。 60, Example 60 provided by the present invention is the low specific resistance substance processing apparatus according to Example 58 or 59, wherein the conductive electrode is a solid, a liquid, a gas molecular cluster, a plasma, a conductive mixed form substance, or a living body. It is a processing apparatus for a low specific resistance substance, which is a combination of one or more forms of a conductive substance produced by natural mixing of a substance or a conductive substance produced by artificial processing of an object.

61、本発明により提供される例61は、例58~60のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極は、固体金属、グラファイト、又はイオン含有導電性液体である、低比抵抗物質の処理装置である。 61, Example 61 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 60, wherein the conductive electrode is a solid metal, graphite, or an ion-containing conductive liquid. It is a processing device for low resistivity substances.

62、本発明により提供される例62は、例58~61のいずれか一項に記載の低比抵抗物質の処理装置において、前記吸着極は多層網状、網状、有孔板状、管状、筒状、ツェッパ状、ボックス状、板状、粒子蓄積層状又は折り曲げ板状である、低比抵抗物質の処理装置である。 62, Example 62 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 61, wherein the adsorption electrode is a multilayer net-like, net-like, perforated plate-like, tubular, or cylindrical. A device for treating a low resistivity substance, which is in the shape of a zipper, a box, a plate, a particle storage layer, or a bent plate.

63、本発明により提供される例63は、例58~62のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極に少なくとも1つの貫通孔が設けられる、低比抵抗物質の処理装置である。 63, Example 63 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 62, wherein the conductive electrode is provided with at least one through hole. Processing device.

64、本発明により提供される例64は、例58~63のいずれか一項に記載の低比抵抗物質の処理装置において、導電極を用いて電子を前記低比抵抗物質に伝導する前記ステップは、前記低比抵抗物質を前記導電極の貫通孔に通し、前記低比抵抗物質を帯電させるステップを含む、低比抵抗物質の処理装置である。 64, Example 64 provided by the present invention is the step of conducting electrons to the low resistivity substance using a conductive electrode in the treatment apparatus for the low resistivity substance according to any one of Examples 58 to 63. Is a treatment device for a low resistivity substance, which comprises a step of passing the low resistivity substance through a through hole of the conductive electrode and charging the low resistivity substance.

65、本発明により提供される例65は、例63又は64に記載の低比抵抗物質の処理装置において、前記導電極における貫通孔の形状は多角形、円形、楕円形、正方形、長方形、台形、又は菱形である、低比抵抗物質の処理装置である。 65, Example 65 provided by the present invention is the low specific resistance substance processing apparatus according to Example 63 or 64, wherein the shape of the through hole in the conductive electrode is polygonal, circular, elliptical, square, rectangular, or trapezoidal. , Or a diamond-shaped, low specific resistance substance processing device.

66、本発明により提供される例66は、例63~65のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極の貫通孔の孔径は0.1~3ミリメートルである、低比抵抗物質の処理装置である。 66, In Example 66 provided by the present invention, in the low resistivity substance processing apparatus according to any one of Examples 63 to 65, the hole diameter of the through hole of the conductive electrode is 0.1 to 3 mm. , A treatment device for low resistivity substances.

67、本発明により提供される例67は、例58~66のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極に少なくとも1つの貫通孔が設けられる、低比抵抗物質の処理装置である。 67, Example 67 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 66, wherein the conductive electrode is provided with at least one through hole. Processing device.

68、本発明により提供される例68は、例67に記載の低比抵抗物質の処理装置において、前記吸着極における貫通孔の形状は多角形、円形、楕円形、正方形、長方形、台形、又は菱形である、低比抵抗物質の処理装置である。 68, Example 68 provided by the present invention is the low specific resistance substance processing apparatus according to Example 67, in which the shape of the through hole at the adsorption electrode is polygonal, circular, elliptical, square, rectangular, trapezoidal, or It is a diamond-shaped processing device for low specific resistance substances.

69、本発明により提供される例69は、例67又は69に記載の低比抵抗物質の処理装置において、前記吸着極の貫通孔の孔径は0.1~3ミリメートルである、低比抵抗物質の処理装置である。 69, Example 69 provided by the present invention is the low resistivity substance having a pore diameter of 0.1 to 3 mm in the through hole of the adsorption electrode in the treatment apparatus for the low resistivity substance according to Example 67 or 69. Processing device.

70、本発明により提供される例70は、例58~69のいずれか一項に記載の低比抵抗物質の処理装置において、前記吸着極は導電性物質で作製されるか、又は吸着極の表面には導電性物質がある、低比抵抗物質の処理装置である。 70, Example 70 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 69, wherein the adsorption electrode is made of a conductive substance or is of an adsorption electrode. It is a treatment device for low resistivity substances with a conductive substance on the surface.

71、本発明により提供される例71は、例58~70のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極と吸着極との間に電界が形成される、低比抵抗物質の処理装置である。 71. In Example 71 provided by the present invention, in the low resistivity substance processing apparatus according to any one of Examples 58 to 70, an electric field is formed between the conductive electrode and the adsorption electrode. It is a treatment device for resistivity substances.

72、本発明により提供される例72は、例58~71のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極は、吸着極に対して垂直又は平行である、低比抵抗物質の処理装置である。 72, Example 72 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 71, wherein the conductive electrode is perpendicular to or parallel to the adsorption electrode. It is a treatment device for resistivity substances.

73、本発明により提供される例73は、例58~72のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極は網状であり、吸着極は面状であり、導電極は吸着極に平行である、低比抵抗物質の処理装置である。 73. In Example 73 provided by the present invention, in the processing apparatus for a low resistivity substance according to any one of Examples 58 to 72, the conductive electrode is reticulated, the adsorption electrode is planar, and the guiding electrode is directed. The electrode is a treatment device for low resistivity substances, which is parallel to the adsorption electrode.

74、本発明により提供される例74は、例58~73のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極及び吸着極はいずれも面状であり、前記導電極は吸着極に平行である、低比抵抗物質の処理装置である。 74, in Example 74 provided by the present invention, in the low resistivity substance processing apparatus according to any one of Examples 58 to 73, both the conductive electrode and the adsorption electrode are planar, and the conductive electrode is described. Is a treatment device for low resistivity substances parallel to the adsorption electrode.

75、本発明により提供される例75は、例58~74のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極は金網を用いる、低比抵抗物質の処理装置である。 75, Example 75 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 74, wherein the conductive electrode uses a wire mesh to treat the low resistivity substance. ..

76、本発明により提供される例76は、例58~75のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極は平面状又は球面状である、低比抵抗物質の処理装置である。 76, Example 76 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 75, wherein the conductive electrode is a planar or spherical surface of the low resistivity substance. It is a processing device.

77、本発明により提供される例77は、例58~76のいずれか一項に記載の低比抵抗物質の処理装置において、前記吸着極は曲面状又は球面状である、低比抵抗物質の処理装置である。 77, Example 77 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 76, wherein the adsorption electrode is a curved surface or a spherical surface, and is a low resistivity substance. It is a processing device.

78、本発明により提供される例78、例58~77のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極は給電電源の1つの電極に電気的に接続され、前記吸着極は給電電源のもう1つの電極に電気的に接続される、低比抵抗物質の処理装置である。 78, In the low specific resistance substance processing apparatus according to any one of Examples 78 and 58 to 77 provided by the present invention, the conductive electrode is electrically connected to one electrode of a power feeding power source, and the said. The adsorption electrode is a processing device for low specific resistance substances that is electrically connected to the other electrode of the power supply.

79、本発明により提供される例79は、例58~78のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極は給電電源の負極に電気的に接続され、前記吸着極は給電電源の正極に電気的に接続される、低比抵抗物質の処理装置である。 79. In Example 79 provided by the present invention, in the low specific resistance substance processing apparatus according to any one of Examples 58 to 78, the conductive electrode is electrically connected to the negative electrode of the power feeding power supply, and the adsorption is performed. The pole is a processing device for low specific resistance substances that is electrically connected to the positive electrode of the power supply.

80、本発明により提供される例80は、例58~79のいずれか一項に記載の低比抵抗物質の処理装置において、給電電源の給電駆動電圧範囲は5~50KVである、低比抵抗物質の処理装置である。 80. In Example 80 provided by the present invention, in the processing apparatus for a low resistivity substance according to any one of Examples 58 to 79, the feed voltage range of the feed power supply is 5 to 50 KV, and the resistivity is low. It is a substance processing device.

81、本発明により提供される例81は、例58~80のいずれか一項に記載の低比抵抗物質の処理装置において、前記給電電源の給電駆動電圧は初期コロナ開始電圧よりも低い、低比抵抗物質の処理装置である。 81. In Example 81 provided by the present invention, in the low resistivity substance processing apparatus according to any one of Examples 58 to 80, the feed drive voltage of the feed power supply is lower than the initial corona start voltage. It is a treatment device for resistivity substances.

82、本発明により提供される例82は、例58~81のいずれか一項に記載の低比抵抗物質の処理装置において、前記給電電源の給電駆動電圧は0.1KV/mm~2kv/mmである、低比抵抗物質の処理装置である。 82. In Example 82 provided by the present invention, in the processing apparatus for a low resistivity substance according to any one of Examples 58 to 81, the power supply drive voltage of the power supply power supply is 0.1 KV / mm to 2 kv / mm. It is a processing device for low resistivity substances.

83、本発明により提供される例82は、例58~82のいずれか一項に記載の低比抵抗物質の処理装置において、前記給電電源の給電駆動電圧波形は直流波形、正弦波、又は変調波形である、低比抵抗物質の処理装置である。 83. In Example 82 provided by the present invention, in the processing apparatus for a low specific resistance substance according to any one of Examples 58 to 82, the power supply drive voltage waveform of the power supply power supply is a DC waveform, a sine wave, or a modulation. It is a processing device for low specific resistance substances that are corrugated.

84、本発明により提供される例84は、例58~83のいずれか一項に記載の低比抵抗物質の処理装置において、前記電源は交流電源であり、前記給電電源のインバータパルス幅は0.1Hz~5GHzである、低比抵抗物質の処理装置である。 84, in Example 84 provided by the present invention, in the processing apparatus for a low resistivity substance according to any one of Examples 58 to 83, the power source is an AC power source, and the inverter pulse width of the power supply power source is 0. It is a processing device for a low resistivity substance having a resistivity of 1 Hz to 5 GHz.

85、本発明により提供される例85は、例58~84のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極と吸着極はともに左右方向に伸びており、前記導電極の左端は吸着極の左端の左側に位置する、低比抵抗物質の処理装置である。 85. In Example 85 provided by the present invention, in the processing apparatus for a low resistivity substance according to any one of Examples 58 to 84, both the conductive electrode and the adsorption electrode extend in the left-right direction, and the guiding electrode is described. The left end of the electrode is a low resistivity substance processing device located on the left side of the left end of the adsorption electrode.

86、本発明により提供される例86は、例58~85のいずれか一項に記載の低比抵抗物質の処理装置において、前記吸着極は2つあり、前記導電極は2つの吸着極の間に位置する、低比抵抗物質の処理装置である。 86, Example 86 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 85, wherein the adsorption electrode has two adsorption electrodes and the conductive electrode has two adsorption electrodes. It is a processing device for low resistivity substances located in between.

87、本発明により提供される例87は、例58~86のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極と吸着極は吸着ユニットを構成し、前記吸着ユニットは複数ある、低比抵抗物質の処理装置である。 87, in Example 87 provided by the present invention, in the processing apparatus for a low resistivity substance according to any one of Examples 58 to 86, the conductive electrode and the adsorption electrode constitute an adsorption unit, and the adsorption unit is There are multiple processing devices for low resistivity substances.

88、本発明により提供される例88は、例58~87のいずれか一項に記載の低比抵抗物質の処理装置において、全ての吸着ユニットは縦方向、横方向、斜め方向、螺旋方向のうち1つの方向又は複数方向に分布している、低比抵抗物質の処理装置である。 88. In Example 88 provided by the present invention, in the low resistivity substance processing apparatus according to any one of Examples 58 to 87, all the adsorption units are in the vertical direction, the horizontal direction, the oblique direction, and the spiral direction. It is a processing device for a low resistivity substance distributed in one direction or a plurality of directions.

89、本発明により提供される例89は、例58~88のいずれか一項に記載の低比抵抗物質の処理装置において、入口及び出口を有するハウジングをさらに含み、前記導電極及び吸着極がいずれも前記ハウジング内に取り付けられる、低比抵抗物質の処理装置である。 89, Example 89 provided by the present invention further includes a housing having an inlet and an outlet in the low resistivity substance processing apparatus according to any one of Examples 58 to 88, wherein the conductive electrode and the adsorption electrode are included. Both are processing devices for low resistivity substances installed in the housing.

90、本発明により提供される例90は、例58~89のいずれか一項に記載の低比抵抗物質の処理装置において、流路をさらに含み、前記流路は前記ハウジングにおける前記入口と前記出口との間に位置する、低比抵抗物質の処理装置である。 90, Example 90 provided by the present invention further comprises a flow path in the low resistivity material processing apparatus according to any one of Examples 58 to 89, wherein the flow path is the inlet in the housing and said. It is a treatment device for low resistivity substances located between the outlet and the outlet.

91、本発明により提供される例91は、例89又は90に記載の低比抵抗物質の処理装置において、前記入口は円形であり、且つ前記入口の直径は300~1000mm又は500mmである、低比抵抗物質の処理装置である。 91, Example 91 provided by the present invention is the low resistivity substance processing apparatus according to Example 89 or 90, wherein the inlet is circular and the diameter of the inlet is 300 to 1000 mm or 500 mm. It is a treatment device for resistivity substances.

92、本発明により提供される例92は、例89又は90に記載の低比抵抗物質の処理装置において、前記出口は円形であり、且つ前記出口の直径は300~1000mm又は500mmである、低比抵抗物質の処理装置である。 92, Example 92 provided by the present invention is the low resistivity substance processing apparatus according to Example 89 or 90, wherein the outlet is circular and the diameter of the outlet is 300 to 1000 mm or 500 mm. It is a treatment device for resistivity substances.

93、本発明により提供される例93は、例58~92のいずれか一項に記載の低比抵抗物質の処理装置において、前記ハウジングの材質は金属、非金属、導体、非導体、水、各種導電性液体、各種多孔質材料、又は各種発泡材料である、低比抵抗物質の処理装置である。 93, Example 93 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 92, wherein the material of the housing is metal, non-metal, conductor, non-conductor, water. A treatment device for low resistivity substances, which are various conductive liquids, various porous materials, or various foaming materials.

94、本発明により提供される例94は、例58~93のいずれか一項に記載の低比抵抗物質の処理装置において、前記ハウジングの材質はステンレス、アルミニウム合金、鉄合金、導電性液体、布、スポンジ、分子ふるい、活性炭、発泡鉄、発泡炭化珪素である、低比抵抗物質の処理装置である。 94, Example 94 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 93, wherein the housing is made of stainless steel, an aluminum alloy, an iron alloy, a conductive liquid, or the like. It is a treatment device for low resistivity substances such as cloth, sponge, molecular sieve, activated carbon, iron foam, and silicon foam carbide.

95、本発明により提供される例95は、例58~94のいずれか一項に記載の低比抵抗物質の処理装置において、前記ハウジングは、入口から出口方向に順次分布している第1の筒体、第2の筒体、及び第3の筒体を含み、前記入口は第1の筒体の一端に位置し、前記出口は第3の筒体の一端に位置する、低比抵抗物質の処理装置である。 95, Example 95 provided by the present invention is the first aspect of the low resistivity substance processing apparatus according to any one of Examples 58 to 94, wherein the housings are sequentially distributed from the inlet to the outlet. A low resistivity material containing a cylinder, a second cylinder, and a third cylinder, the inlet is located at one end of the first cylinder and the outlet is located at one end of the third cylinder. Processing device.

96、本発明により提供される例96は、例95に記載の低比抵抗物質の処理装置において、前記第1の筒体の輪郭の大きさは入口から出口方向に徐々に大きくなる、低比抵抗物質の処理装置である。 96, Example 96 provided by the present invention is the low resistivity substance processing apparatus according to Example 95, wherein the size of the contour of the first cylinder gradually increases from the inlet to the outlet. It is a treatment device for resistivity substances.

97、本発明により提供される例97は、例95又は96に記載の低比抵抗物質の処理装置において、前記第1の筒体は直管状である、低比抵抗物質の処理装置である。 97, Example 97 provided by the present invention is the low resistivity substance processing apparatus according to Example 95 or 96, wherein the first tubular body is a straight tube.

98、本発明により提供される例98は、例95~97のいずれか一項に記載の低比抵抗物質の処理装置において、前記第2の筒体は直管状であり、且つ前記導電極及び前記吸着極は第2の筒体の中に取り付けられる、低比抵抗物質の処理装置である。 98, Example 98 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 95 to 97, wherein the second tubular body is a straight tubular body, and the conductive electrode and the conductive electrode The adsorption electrode is a treatment device for a low resistivity substance mounted in a second cylinder.

99、本発明により提供される例99は、例95~98のいずれか一項に記載の低比抵抗物質の処理装置において、前記第3の筒体の輪郭の大きさは入口から出口方向に徐々に小さくなる、低比抵抗物質の処理装置である。 99. In Example 99 provided by the present invention, in the low resistivity substance processing apparatus according to any one of Examples 95 to 98, the size of the contour of the third cylinder is from the inlet to the outlet. It is a processing device for low resistivity substances that gradually becomes smaller.

100、本発明により提供される例100は、例95~99のいずれか一項に記載の低比抵抗物質の処理装置において、前記第2の筒体の断面は矩形である、低比抵抗物質の処理装置である。 100, Example 100 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 95 to 99, wherein the cross section of the second cylinder is rectangular. Processing device.

101、本発明により提供される例101は、例58~100のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極は、絶縁性部材を介してハウジングに固着される、低比抵抗物質の処理装置である。 101, Example 101 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 100, wherein the conductive electrode is fixed to a housing via an insulating member. It is a processing device for low resistivity substances.

102、本発明により提供される例102は、例39~101のいずれか一項に記載の低比抵抗物質の処理装置において、前記絶縁体の材質は絶縁性マイカである、低比抵抗物質の処理装置である。 102, Example 102 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 39 to 101, wherein the material of the insulator is an insulating mica. It is a processing device.

103、本発明により提供される例103は、例101又は102に記載の低比抵抗物質の処理装置において、前記絶縁部材は柱状、又は塔状である、低比抵抗物質の処理装置である。 103, Example 103 provided by the present invention is the low resistivity substance processing apparatus according to Example 101 or 102, wherein the insulating member is a columnar or tower-shaped low resistivity substance processing apparatus.

104、本発明により提供される例104は、例58~103のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極に第1の接続部が設けられ、前記第1の接続部は絶縁部材に固着される、低比抵抗物質の処理装置である。 104, Example 104 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 103, wherein the conductive electrode is provided with a first connection portion, and the first connection portion is provided. The connection portion is a processing device for a low resistivity substance fixed to an insulating member.

105、本発明により提供される例105は、例58~104のいずれか一項に記載の低比抵抗物質の処理装置において、前記ハウジング内壁に第2の接続部が設けられ、前記第2の接続部は絶縁部材に固着される、低比抵抗物質の処理装置である。 105, Example 105 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 104, wherein a second connection portion is provided on the inner wall of the housing, and the second connection portion is provided. The connection portion is a processing device for a low resistivity substance fixed to an insulating member.

106、本発明により提供される例106は、例58~105のいずれか一項に記載の低比抵抗物質の処理装置において、前記導電極の断面積と流路の断面積との比率は、99%~10%、又は90%~10%、又は80%~20%、又は70%~30%、又は60%~40%、又は50%である、低比抵抗物質の処理装置である。 106, in Example 106 provided by the present invention, in the low resistivity substance processing apparatus according to any one of Examples 58 to 105, the ratio of the cross-sectional area of the conductive electrode to the cross-sectional area of the flow path is determined. A device for treating a low resistivity substance, which is 99% to 10%, or 90% to 10%, or 80% to 20%, or 70% to 30%, or 60% to 40%, or 50%.

107、本発明により提供される例107は、例58~106のいずれか一項に記載の低比抵抗物質の処理装置において、前記低比抵抗物質は、液体、ミスト、固体、又はプラズマのうち1つ又は複数の形態の組み合わせである、低比抵抗物質の処理装置である。 107, Example 107 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 106, wherein the low resistivity substance is liquid, mist, solid, or plasma. A device for treating a low resistivity substance, which is a combination of one or a plurality of forms.

108、本発明により提供される例108は、例58~107のいずれか一項に記載の低比抵抗物質の処理装置において、前記低比抵抗物質は導電性液体、導電性ミスト、導電性粒子、帯電液体、帯電ミスト、帯電粒子、水、エマルジョン、エアロゾル、液化粉塵、多物質混合物、多形態混合物、多物質多形態混合物、水煙、エマルジョンミスト、多物質混合液体ミスト、多形態混合液体ミスト、多物質多形態混合液体ミスト、煙霧、蒸気、酸霧、含水排気ガス、含水煙道ガス、気体分子クラスター、イオンクラスター、プラズマ、導電性粉末、導電性液滴、導電性ダスト、液体中のイオンクラスター、ガス中のイオンクラスター、液体中の化合物、及びガス中の化合物のうち1つ又は複数の形態の組み合わせである、低比抵抗物質の処理装置である。 108, Example 108 provided by the present invention is the low specific resistance substance processing apparatus according to any one of Examples 58 to 107, wherein the low specific resistance substance is a conductive liquid, a conductive mist, or a conductive particle. , Charged liquid, charged mist, charged particles, water, emulsion, aerosol, liquefied dust, multi-material mixture, multi-form mixture, multi-material multi-form mixture, water smoke, emulsion mist, multi-material mixed liquid mist, multi-form mixed liquid mist, Multi-material multi-form mixed liquid mist, fumes, steam, acid fog, hydrous exhaust gas, hydrous fumes, gas molecule clusters, ion clusters, plasmas, conductive powders, conductive droplets, conductive dust, ions in liquids A device for treating low specific resistance substances, which is a combination of one or more forms of clusters, ion clusters in gas, compounds in liquid, and compounds in gas.

109、本発明により提供される例109は、例58~108のいずれか一項に記載の低比抵抗物質の処理装置において、前記低比抵抗物質は、水、エマルジョン、多物質混合液体、多形態混合液体、多物質多形態混合液体を含む生体である、低比抵抗物質の処理装置である。 109, Example 109 provided by the present invention is the treatment apparatus for a low resistivity substance according to any one of Examples 58 to 108, wherein the low resistivity substance is water, an emulsion, a multi-substance mixed liquid, or many. It is a treatment device for low resistivity substances, which is a living body including a morphologically mixed liquid and a multi-substance multi-form mixed liquid.

110、本発明により提供される例110は、例58~109のいずれか一項に記載の低比抵抗物質の処理装置において、前記低比抵抗物質は、導体又は半導体である、低比抵抗物質の処理装置である。 110, Example 110 provided by the present invention is the low resistivity substance processing apparatus according to any one of Examples 58 to 109, wherein the low resistivity substance is a conductor or a semiconductor. Processing device.

111、本発明により提供される例111は、例58~110のいずれか一項に記載の低比抵抗物質の処理装置において、入口、出口、及び入口と出口との間に位置する流路をさらに含み、前記流路には電子を低比抵抗物質に伝導できる導電極が取り付けられ、且つ前記導電極の断面積と流路の断面積との比率は99%~10%であり、前記低比抵抗物質の処理装置は、帯電した低比抵抗物質に吸引力を付勢することができる吸着極をさらに含む、低比抵抗物質の処理装置である。 111, Example 111 provided by the present invention has an inlet, an outlet, and a flow path located between the inlet and the outlet in the low resistivity substance processing apparatus according to any one of Examples 58 to 110. Further included, a conductive electrode capable of conducting electrons to a low resistivity substance is attached to the flow path, and the ratio of the cross-sectional area of the conductive electrode to the cross-sectional area of the flow path is 99% to 10%, which is low. The resistivity substance processing apparatus is a low resistivity substance processing apparatus further including an adsorption electrode capable of urging a charged low resistivity substance with an attractive force.

本発明における低比抵抗物質の処理装置の動作原理は以下のとおりである。導電極を用いて電子を低比抵抗物質に伝導し、低比抵抗物質を帯電させ、且つ吸着極を用いて帯電した低比抵抗物質に吸引力を付勢し、低比抵抗物質が吸着極に付着するまで低比抵抗物質を吸引して吸着極に移動させ、それにより吸着板への低比抵抗物質の収集を実現し、また、本発明の低比抵抗物質の処理装置は、上記電子伝導方法により低比抵抗物質を帯電させ、この方法は、低比抵抗物質の帯電後に電子が失われやすくなることに起因する問題を解消し、低比抵抗物質は電子が失われた後すぐに電子を得ることができるようにし、低比抵抗物質を帯電させる確率を高め、低比抵抗物質を帯電状態に維持させ、このように、吸着極は、低比抵抗物質に吸引力を継続的に付勢することで、低比抵抗物質を吸着し、且つ本低比抵抗物質の処理装置による低比抵抗物質に対する収集能力がより強くなり、収集効率がより高くなるようにすることができる。 The operating principle of the device for treating a low resistivity substance in the present invention is as follows. The conductive electrode is used to conduct electrons to the low specific resistance substance to charge the low specific resistance substance, and the adsorption electrode is used to urge the charged low specific resistance substance to attract the attractive force, and the low specific resistance substance is the adsorption electrode. The low specific resistance substance is sucked and moved to the adsorption electrode until it adheres to the substance, thereby collecting the low specific resistance substance on the adsorption plate. The low specific resistance material is charged by the conduction method, which solves the problem caused by the tendency of the low specific resistance material to lose electrons after being charged, and the low specific resistance material immediately after the electron is lost. It enables electrons to be obtained, increases the probability of charging the low specific resistance material, and keeps the low specific resistance material in a charged state. Thus, the adsorption electrode continuously attracts the low specific resistance material to the low specific resistance material. By urging, the low specific resistance substance can be adsorbed, and the ability of the processing device for the low specific resistance substance to collect the low specific resistance substance becomes stronger, and the collection efficiency can be made higher.

本発明により提供される低比抵抗物質の処理方法は、低比抵抗物質を収集することができ、且つ収集効率が高い。 The method for treating a low resistivity substance provided by the present invention can collect a low resistivity substance and has high collection efficiency.

要約すると、本発明に係る処理方法は、以下の有益な効果を有する。 In summary, the treatment method according to the present invention has the following beneficial effects.

本発明は上記方法に基づいて吸着板への低比抵抗物質の収集を実現し、このような処理方法は低比抵抗物質の帯電後に電子が失われやすくなることに起因する問題を解消し、低比抵抗物質は電子が失われた後すぐに電子を得ることができるようにし、それにより低比抵抗物質の帯電状態の維持を保証し、このように、吸着極は、低比抵抗物質に吸引力を継続的に付勢することで、低比抵抗物質を吸着することができ、さらに、本処理方法による低比抵抗物質に対する収集効率がより高くなるようにする。 The present invention realizes the collection of the low resistivity substance on the adsorption plate based on the above method, and such a treatment method solves the problem caused by the tendency for electrons to be lost after the low resistivity substance is charged. The low resistivity material allows electrons to be obtained immediately after the loss of electrons, thereby guaranteeing the maintenance of the charged state of the low resistivity material, and thus the adsorption electrode becomes the low resistivity material. By continuously energizing the suction force, the low resistivity substance can be adsorbed, and further, the collection efficiency for the low resistivity substance by this treatment method is made higher.

本発明は、導電極を流路に取り付け、且つ導電極の断面積と流路の断面積との比率を99%~10%とし、それにより導電極は電子を低比抵抗物質に効果的に伝導することができる。 In the present invention, the conductive electrode is attached to the flow path, and the ratio of the cross-sectional area of the conductive electrode to the cross-sectional area of the flow path is 99% to 10%, whereby the conductive electrode effectively converts electrons into a low resistivity substance. Can be conducted.

本発明の実施例1における低比抵抗物質の処理装置の構造概略図である。It is a structural schematic diagram of the processing apparatus of low resistivity substance in Example 1 of this invention. 本発明の実施例1における低比抵抗物質の処理装置の左側面図である。It is a left side view of the processing apparatus of a low resistivity substance in Example 1 of this invention. 本発明の実施例1における低比抵抗物質の処理装置の斜視図である。It is a perspective view of the processing apparatus of low resistivity substance in Example 1 of this invention. 本発明の実施例2における低比抵抗物質の処理装置の構造概略図である。It is a structural schematic diagram of the processing apparatus of low resistivity substance in Example 2 of this invention. 本発明の実施例2における低比抵抗物質の処理装置の平面図である。It is a top view of the processing apparatus of a low resistivity substance in Example 2 of this invention. 本発明の実施例20におけるエンジンに基づくガス処理システムにおける吸気装置の一実施例における構造概略図である。It is a structural schematic diagram in one Example of the intake system in the gas processing system based on the engine in Example 20 of this invention. 本発明の実施例20におけるエンジンに基づくガス処理システムにおける吸気装置内に設けられた第1の水濾過機構の別の実施例の概略構造図である。FIG. 3 is a schematic structural diagram of another embodiment of the first water filtration mechanism provided in the intake device in the gas treatment system based on the engine in the 20th embodiment of the present invention. 本発明の実施例21におけるディーゼルエンジンの排気ガス処理システムの原理と構造の概略図である。It is the schematic of the principle and structure of the exhaust gas treatment system of a diesel engine in Example 21 of this invention.

本発明者らは鋭意研究を重ねた結果、以下の低比抵抗物質の処理装置及び処理方法を提供する。前記低比抵抗物質の処理方法及び処理装置は、低比抵抗物質を収集することができ、且つ収集効率がより高い。また、本発明における低比抵抗物質とは、単位体積当たりの電気抵抗が1×10オーム未満の物質であり、ここで、単位体積は立方センチメートルを意味し、すなわち、1立方センチメートルあたりの低比抵抗物質は、その抵抗値が1×10オーム未満である。 As a result of diligent research, the present inventors provide the following treatment apparatus and treatment method for low resistivity substances. The method and apparatus for treating the low resistivity substance can collect the low resistivity substance, and the collection efficiency is higher. Further, the low specific resistance substance in the present invention is a substance having an electric resistance of less than 1 × 109 ohm per unit volume, where the unit volume means cubic centimeters, that is, low specific resistance per cubic centimeter. The material has a resistance value of less than 1 × 10 9 ohms.

本発明のいくつかの実施例は、
電子を前記低比抵抗物質に伝導できる導電極であって、電子が前記低比抵抗物質に伝導されると、低比抵抗物質が帯電する導電極と、
帯電した低比抵抗物質に吸引力を付勢することができる吸着極と、を含む、低比抵抗物質の処理装置を提供する。
Some examples of the present invention are
A conductive electrode capable of conducting electrons to the low resistivity material, and a conductive electrode charged with the low resistivity material when electrons are conducted to the low resistivity material.
Provided is a processing apparatus for a low resistivity substance, which comprises an adsorption electrode capable of urging a charged low resistivity substance with an attractive force.

本発明における低比抵抗物質の処理装置の動作原理は以下のとおりである。導電極を用いて電子を低比抵抗物質に伝導し、低比抵抗物質を帯電させ、且つ吸着極を用いて帯電した低比抵抗物質に吸引力を付勢し、低比抵抗物質が吸着極に付着するまで低比抵抗物質を吸引して吸着極に移動させ、それにより吸着板への低比抵抗物質の収集を実現し、また、本発明の低比抵抗物質の処理装置は、上記電子伝導方法により低比抵抗物質を帯電させ、この方法は、低比抵抗物質の帯電後に電子が失われやすくなることに起因する問題を解消し、低比抵抗物質は電子が失われた後すぐに電子を得ることができるようにし、低比抵抗物質を帯電させる確率を高め、低比抵抗物質を帯電状態に維持させ、このように、吸着極は、低比抵抗物質に吸引力を継続的に付勢することで、低比抵抗物質を吸着し、且つ本低比抵抗物質の処理装置による低比抵抗物質に対する収集能力がより強くなり、収集効率がより高くなるようにすることができる。 The operating principle of the device for treating a low resistivity substance in the present invention is as follows. The conductive electrode is used to conduct electrons to the low specific resistance substance to charge the low specific resistance substance, and the adsorption electrode is used to urge the charged low specific resistance substance to attract the attractive force, and the low specific resistance substance is the adsorption electrode. The low specific resistance substance is sucked and moved to the adsorption electrode until it adheres to the substance, thereby collecting the low specific resistance substance on the adsorption plate. The low specific resistance material is charged by the conduction method, which solves the problem caused by the tendency of the low specific resistance material to lose electrons after being charged, and the low specific resistance material immediately after the electron is lost. It enables electrons to be obtained, increases the probability of charging the low specific resistance material, and keeps the low specific resistance material in a charged state. Thus, the adsorption electrode continuously attracts the low specific resistance material to the low specific resistance material. By urging, the low specific resistance substance can be adsorbed, and the ability of the processing device for the low specific resistance substance to collect the low specific resistance substance becomes stronger, and the collection efficiency can be made higher.

また、本発明は、
導電極を用いて電子を前記低比抵抗物質に伝導し、前記低比抵抗物質を帯電させるステップと、
吸着極を用いて帯電した前記低比抵抗物質を吸引し、帯電した前記低比抵抗物質を前記吸着極に移動させるステップと、を含む、低比抵抗物質の処理方法を提供する。
Further, the present invention
A step of conducting electrons to the low resistivity material using a conductive electrode to charge the low resistivity material, and a step of charging the low resistivity material.
Provided is a method for treating a low resistivity substance, which comprises a step of sucking the charged low resistivity substance using an adsorption electrode and moving the charged low resistivity substance to the adsorption electrode.

本発明の処理方法は上記ステップに基づいて吸着板への低比抵抗物質の収集を実現し、このような処理方法は低比抵抗物質の帯電後に電子が失われやすくなることに起因する問題を解消し、低比抵抗物質は電子が失われた後すぐに電子を得ることができるようにし、それにより低比抵抗物質の帯電状態の維持を保証し、このように、吸着極は、低比抵抗物質に吸引力を継続的に付勢することで、低比抵抗物質を吸着することができ、さらに、本処理方法による低比抵抗物質に対する収集効率がより高くなるようにする。 The treatment method of the present invention realizes the collection of the low resistivity substance on the adsorption plate based on the above steps, and such a treatment method has a problem caused by the tendency for electrons to be lost after the low resistivity substance is charged. Eliminating, the low resistivity material allows the electron to be obtained immediately after the electron is lost, thereby guaranteeing the maintenance of the charged state of the low resistivity material, thus the adsorption electrode has a low resistivity. By continuously urging the resistance substance with an attractive force, the low resistivity substance can be adsorbed, and further, the collection efficiency for the low resistivity substance by this treatment method is made higher.

本発明のいくつかの実施例は、入口、出口、及び入口と出口との間に位置する流路を含み、流路には電子を低比抵抗物質に伝導できる導電極が取り付けられ、且つ導電極の断面積と流路の断面積との比率が99%~10%の低比抵抗物質の処理装置であって、帯電した低比抵抗物質に吸引力を付勢することができる吸着極をさらに含む低比抵抗物質の処理装置を提供する。本発明における低比抵抗物質の処理装置の動作原理は以下のとおりである。低比抵抗物質は入口から流路に入り、流路に取り付けられた導電極は電子を低比抵抗物質に伝導し、低比抵抗物質を帯電させ、吸着極は帯電した低比抵抗物質に吸引力を付勢し、低比抵抗物質が吸着極に付着するまで低比抵抗物質を吸着極に移動させ、それにより吸着板への低比抵抗物質の収集を実現し、また、本発明において導電極を流路に取り付け、且つ導電極の断面積と流路の断面積との比率を99%~10%とし、それにより導電極は電子を低比抵抗物質に効果的に伝導することができ、また、本発明における低比抵抗物質の処理装置は、上記電子伝導方法により低比抵抗物質を帯電させ、この方法は、低比抵抗物質の帯電後に電子が失われやすくなることに起因する問題を解消し、低比抵抗物質は電子が失われた後すぐに電子を得ることができるようにし、低比抵抗物質を帯電させる確率を高め、低比抵抗物質を帯電状態に維持させ、このように、吸着極は、低比抵抗物質に吸引力を継続的に付勢することで、低比抵抗物質を吸着することができ、且つ低比抵抗物質の処理装置による低比抵抗物質に対する収集能力がより強くなり、収集効率がより高くなるようにする。 Some embodiments of the present invention include an inlet, an outlet, and a flow path located between the inlet and the outlet, the flow path to which a conductive electrode capable of conducting electrons to a low resistivity material is attached and conducted. A low resistivity substance processing device in which the ratio of the cross-sectional area of the electrode to the cross-sectional area of the flow path is 99% to 10%, and an adsorption electrode capable of urging a charged low resistivity substance with an attractive force. Further provided is a treatment apparatus for a low resistivity substance including. The operating principle of the device for treating a low resistivity substance in the present invention is as follows. The low specific resistance substance enters the flow path from the inlet, the conductive electrode attached to the flow path conducts electrons to the low specific resistance substance, charges the low specific resistance substance, and the adsorption electrode is attracted to the charged low specific resistance substance. The force is urged to move the low specific resistance substance to the adsorption electrode until the low specific resistance substance adheres to the adsorption electrode, thereby realizing the collection of the low specific resistance substance on the adsorption plate, and also guiding in the present invention. The electrode is attached to the flow path, and the ratio of the cross-sectional area of the conductive electrode to the cross-sectional area of the flow path is set to 99% to 10%, whereby the conductive electrode can effectively conduct electrons to a low specific resistance substance. Further, the device for treating a low specific resistance substance in the present invention charges the low specific resistance substance by the above-mentioned electron conduction method, and this method has a problem caused by easy loss of electrons after charging the low specific resistance substance. The low specific resistance material makes it possible to obtain electrons immediately after the electron is lost, increases the probability of charging the low specific resistance material, and keeps the low specific resistance material in a charged state. In addition, the adsorption electrode can adsorb the low specific resistance substance by continuously urging the low specific resistance substance with the attractive force, and the ability to collect the low specific resistance substance by the treatment device for the low specific resistance substance. Will be stronger and the collection efficiency will be higher.

本発明のいくつかの実施例は、入口、出口、及び入口と出口との間に位置する流路を含み、流路には電子を低比抵抗物質に伝導できる導電極が取り付けられ、且つ導電極の断面積と流路の断面積との比率が99%~10%の低比抵抗物質の処理装置であって、帯電した低比抵抗物質に吸引力を付勢することができる吸着極をさらに含む低比抵抗物質の処理装置を提供する。 Some embodiments of the present invention include an inlet, an outlet, and a flow path located between the inlet and the outlet, the flow path to which a conductive electrode capable of conducting electrons to a low resistivity material is attached and conducted. A low resistivity substance processing device in which the ratio of the cross-sectional area of the electrode to the cross-sectional area of the flow path is 99% to 10%, and an adsorption electrode capable of urging a charged low resistivity substance with an attractive force. Further provided is a treatment apparatus for a low resistivity substance including.

本発明のいくつかの実施例により提供される前記低比抵抗物質の処理方法は、
低比抵抗物質は入口から流路に入り、出口方向に移動するステップと、低比抵抗物質が導電極を通過する場合、導電極は電子を低比抵抗物質に伝導し、低比抵抗物質を帯電させるステップと、吸着極を用いて帯電した前記低比抵抗物質を吸引し、帯電した前記低比抵抗物質を前記吸着極に移動させるステップと、を含む。
The method for treating the low resistivity substance provided by some examples of the present invention is
When the low resistivity material enters the flow path from the inlet and moves toward the exit, and when the low resistivity material passes through the conductive electrode, the conductive electrode conducts electrons to the low resistivity material and conducts the low resistivity material. It includes a step of charging and a step of sucking the charged low resistivity substance using the adsorption electrode and moving the charged low resistivity substance to the adsorption electrode.

本発明における低比抵抗物質の処理方法は、上記ステップに基づいて吸着板への低比抵抗物質の収集を実現し、また、本発明において導電極を流路に取り付け、且つ導電極の断面積と流路の断面積との比率を99~10%とし、低比抵抗物質を導電極に通して、低比抵抗物質と導電極の接触面積を拡大し、それにより導電極は電子を低比抵抗物質に効果的に伝導することができ、且つこの処理方法は、低比抵抗物質の帯電後に電子が失われやすくなることに起因する問題を解消し、低比抵抗物質は電子が失われた後すぐに電子を得ることができるようにし、それにより低比抵抗物質の帯電状態の維持を保証し、このように、吸着極は、低比抵抗物質に吸引力を継続的に付勢することで、低比抵抗物質を吸着することができ、さらに、本処理方法による低比抵抗物質に対する収集効率がより高くなるようにする。 The method for treating a low specific resistance substance in the present invention realizes the collection of the low specific resistance substance on the adsorption plate based on the above steps, and in the present invention, the conductive electrode is attached to the flow path and the cross-sectional area of the conductive electrode. The ratio of the low specific resistance substance to the cross-sectional area of the flow path is set to 99 to 10%, and the low specific resistance substance is passed through the conductive electrode to expand the contact area between the low specific resistance substance and the conductive electrode, whereby the conductive electrode has a low ratio of electrons. This treatment method can effectively conduct to the resistance material, and this treatment method solves the problem caused by the tendency of the low specific resistance material to lose electrons after being charged, and the low specific resistance material loses electrons. The electron can be obtained immediately afterwards, thereby guaranteeing the maintenance of the charged state of the low specific resistance material, and thus the adsorption electrode continuously urges the low specific resistance material with the attractive force. Therefore, the low specific resistance substance can be adsorbed, and further, the collection efficiency for the low specific resistance substance by this treatment method is made higher.

本発明の一実施例において、導電極は流路に位置する。本発明において、導電極の断面積は、断面に沿った導電極の固形部分の面積の合計である。さらに、本発明のいくつかの実施例では、導電極の断面積と流路の断面積との比率は、99~10%、又は90~10%、又は80~20%、又は70~30%、又は60~40%、又は50%であってもよい。 In one embodiment of the invention, the conductive electrode is located in the flow path. In the present invention, the cross-sectional area of the conductive electrode is the total area of the solid portion of the conductive electrode along the cross section. Further, in some embodiments of the present invention, the ratio of the cross-sectional area of the conductive electrode to the cross-sectional area of the flow path is 99 to 10%, or 90 to 10%, or 80 to 20%, or 70 to 30%. , Or 60-40%, or 50%.

本発明における低比抵抗物質の形態は、液体、ミスト、固体、又はプラズマのうち1つ又は複数の形態の組み合わせであってもよい。例えば、本発明における低比抵抗物質は、導電性液体、導電性ミスト、導電性粒子、帯電液体、帯電ミスト、帯電粒子、水、エマルジョン、エアロゾル、液化粉塵、多物質混合物、多形態混合物、多物質多形態混合物、水煙、エマルジョンミスト、多物質混合液体ミスト、多形態混合液体ミスト、多物質多形態混合液体ミスト、煙霧、蒸気、酸霧、含水排気ガス、含水煙道ガス、気体分子クラスター、イオンクラスター、プラズマ、導電性粉末、導電性液滴、導電性ダスト、液体中のイオンクラスター、ガス中のイオンクラスター、液体中の化合物、及びガス中の化合物であってもよい。本発明における低比抵抗物質は、水、エマルジョン、多物質混合液体、多形態混合液体、多物質多形態混合液体を含む生体であってもよい。本発明における低比抵抗物質は導体又は半導体であってもよい。本発明は上記処理方法により、低比抵抗物質を吸着極に収集することができる。本発明における処理装置は、電気凝固型デミスターとして使用することができ、且つオゾンによる脱硝が行われた排気ガスの回収、湿式脱硫が行われた排煙の脱水、湿式集塵による逃し水の回収、工業用排気ガス用のデミスター、エマルジョン清浄機、オイルミストコレクター、電子タバコ、核融合抑制装置に適用することができる。例えば、本処理装置をオゾンによる脱硝が行われた排気ガスの回収に適用した場合、オゾンによる脱硝が行われた排気ガス中に発生する酸霧は低比抵抗物質であり、酸霧を含む排気ガスの1立方センチメートルあたりの抵抗は0.1~1000オームであり、この場合、本低比抵抗物質の処理方法は、具体的には、オゾンによる脱硝が行われた排気ガスが導電極を流れ、導電極はオゾンによる脱硝が行われた排気ガス中の酸霧に電子を伝導し、酸霧を帯電させるステップと、吸着極は帯電した酸霧に吸引力を付勢するステップと、酸霧が吸着極に移動して吸着極に付着するステップと、を含み、それにより、オゾンによる脱硝が行われた排気ガス中の酸霧の回収を実現し、オゾンによる脱硝が行われた排気ガス中の酸霧が大気中に直接排出されて大気への汚染を引き起こすのを防ぐ。この場合の上記処理方法は酸霧の静電回収方法とも呼ばれる。本発明における処理装置及び処理方法は発電所、ガラス工場、製鋼所、化学工場の煙突から排出された逃しミスト、エアロゾルなどの白煙除去処理に用いることができる。本発明は、従来の湿式電気集塵機は排気ガスに含まれる、水煙、酸霧、エアロゾル、エマルジョン、液化粉塵などを含む低比抵抗物質を除去することができないという問題を解決し、且つ空間伝送型給電方式を採用し、電界を直接利用して、排気ガスに含まれる低抵抗物質を吸着及び回収する。また、本発明における処理方法及び装置は、目標物質である低比抵抗物質を、気相、液相、又はゾルから分離又は濃縮することができる。 The form of the low resistivity substance in the present invention may be a combination of one or more forms of liquid, mist, solid, or plasma. For example, the low specific resistance substance in the present invention includes a conductive liquid, a conductive mist, a conductive particle, a charged liquid, a charged mist, a charged particle, water, an emulsion, an aerosol, a liquefied dust, a multi-material mixture, a multi-form mixture, and many. Material polymorphic mixture, water smoke, emulsion mist, multi-material mixed liquid mist, multi-form mixed liquid mist, multi-material multi-form mixed liquid mist, smoke, steam, acid mist, hydrated exhaust gas, hydrated flue gas, gas molecule cluster, It may be an ion cluster, a plasma, a conductive powder, a conductive droplet, a conductive dust, an ion cluster in a liquid, an ion cluster in a gas, a compound in a liquid, and a compound in a gas. The low resistivity substance in the present invention may be a living body including water, an emulsion, a multi-substance mixed liquid, a multi-form mixed liquid, and a multi-substance multi-form mixed liquid. The low resistivity material in the present invention may be a conductor or a semiconductor. In the present invention, the low resistivity substance can be collected on the adsorption electrode by the above treatment method. The treatment apparatus in the present invention can be used as an electrocoagulation type demister, and recovers exhaust gas deniturized by ozone, dehydration of exhaust gas subjected to wet desulfurization, and recovery of escaped water by wet dust collection. It can be applied to demisters for industrial exhaust gases, emulsion purifiers, oil mist collectors, electronic cigarettes, and nuclear fusion suppressors. For example, when this treatment device is applied to the recovery of exhaust gas denitrated by ozone, the acid fog generated in the exhaust gas denitrated by ozone is a low specific resistance substance, and the exhaust containing the acid fog. The resistance of the gas per cubic centimeter is 0.1 to 1000 ohms. In this case, the method for treating the low specific resistance substance is specifically that the exhaust gas deniturized by ozone flows through the conductive electrode. The conductive electrode conducts electrons to the acid fog in the exhaust gas denitrated by ozone to charge the acid fog, and the adsorption electrode has the step of encouraging the charged acid fog with attractive force. Including the step of moving to the adsorption electrode and adhering to the adsorption electrode, thereby realizing the recovery of the acid mist in the exhaust gas denitrated by ozone, and in the exhaust gas denitrated by ozone. Prevents acid fog from being discharged directly into the atmosphere and causing pollution to the atmosphere. The above treatment method in this case is also called an electrostatic recovery method of acid fog. The treatment apparatus and treatment method in the present invention can be used for white smoke removal treatment such as escape mist and aerosol discharged from the chimneys of power plants, glass factories, steel mills and chemical factories. The present invention solves the problem that the conventional wet electrostatic collector cannot remove low specific resistance substances including water smoke, acid fog, aerosol, emulsion, liquefied dust, etc. contained in the exhaust gas, and is a spatial transmission type. A power feeding method is adopted, and the low resistance substance contained in the exhaust gas is adsorbed and recovered by directly using the electric field. Further, the treatment method and apparatus in the present invention can separate or concentrate the low resistivity substance, which is the target substance, from the gas phase, the liquid phase, or the sol.

本発明の一実施例では、導電極は電源の一電極に電気的に接続され、吸着極は、電源のもう1つの電極に電気的に接続される。本発明の一実施例では、導電極は具体的に電源の負極に電気的に接続され、吸着極は具体的に電源の正極に電気的に接続される。 In one embodiment of the invention, the conductive electrode is electrically connected to one electrode of the power supply and the adsorption electrode is electrically connected to the other electrode of the power source. In one embodiment of the present invention, the conductive electrode is specifically electrically connected to the negative electrode of the power source, and the adsorption electrode is specifically electrically connected to the positive electrode of the power source.

本発明における低比抵抗物質の給電方法は導電極を用いて正電子又は負電子を低比抵抗物質に導入し、このような給電方法は、低比抵抗物質は電子が失われた後すぐに電子を得ることができるようにし、低比抵抗物質を帯電状態に維持させ、さらに上記吸着極は、低比抵抗物質に吸引力を継続的に付勢することで、低比抵抗物質を吸着することができるようにする。また、本発明において、導電極は、正又は負の電位を有することができ、導電極が正の電位を有する場合、吸着極は負の電位を有し、導電極が負の電位を有する場合、吸着極は正の電位を有し、本発明において、導電極及び吸着極は両方とも給電電源に電気的に接続され、具体的には、導電極及び吸着極は、それぞれ給電電源の正極及び負極に電気的に接続することができる。当該給電電源の電圧は給電駆動電圧と呼ばれ、給電駆動電圧の大きさの選択は環境温度や媒体の温度などに関する。例えば、給電電圧の給電駆動電圧範囲は5~50KV、10~50KV、5~10KV、10~20KV、20~30KV、30~40KV、又は40~50KVであってもよく、生体電気から空間煙霧の処理用電気にわたる。給電電源は直流電源又は交流電源であってもよく、その給電駆動電圧の波形は直流、正弦波、変調波形であってもよい。直流電源は吸着の基本的な用途で使用され、正弦波は移動のために使用され、例えば、正弦波の給電駆動電圧が導電電極と吸着極の間に作用し、発生した電界は電界における霧粒などの帯電した粒子を駆動して吸着極に移動させ、斜め波は引っ張るために使用され、引っ張り力の度合いに応じて波形を変調し、例えば、非対称電界の両端のエッジでは、その中の媒体に対して発生する引っ張り力は明らかな方向性を持つことで、電界内の媒体を駆動して当該方向に沿って移動させる。給電電源は交流電源を用いる場合、その周波数変換パルスの範囲は0.1Hz~5GHz、0.1Hz~1Hz、0.5Hz~10Hz、5Hz~100Hz、50Hz~1KHz、1KHz~100KHz、50KHz~1MHz、1MHz~100MHz、50MHz~1GHz、500MHz~2GHz、又は1GHz~5GHzであってもよく、生体から汚染物質粒子までの吸着に適用される。本発明の導電極は導線として使用することができ、低比抵抗物質と接触する場合、正及び負の電子を低比抵抗物質に直接導入し、この場合、低比抵抗物質そのものは電極とすることができる。本発明において、低比抵抗物質は導電極から吸着極への移動プロセスにおいて、電子の獲得と喪失を繰り返すとともに、導電極と吸着極との間にある複数の低比抵抗物質間に多数の電子が伝達され、最終的に吸着極に到達することにより、電流を形成し、当該電流は給電駆動電流とも呼ばれる。給電駆動電流の大きさは、環境温度、媒体温度、電子量、被吸着物質量、逃し量に関する。例えば、電子量の増加、霧粒などの移動可能な粒子の増加につれて、移動する帯電粒子によって形成される電流が大きくなる。単位時間当たりに吸着される霧粒などの帯電物質が多ければ多いほど、電流が大きくなる。逃した霧粒は帯電しているだけで、吸着極には到達しておらず、すなわち有効な電気的中和を形成しておらず、それにより、同じ条件では、逃した霧粒が多ければ多いほど、電流が小さくなる。同じ条件では、環境温度が高いほど、ガス粒子と霧粒の速度が速いほど、それ自体の運動エネルギーも高くなり、それ自体と導電極及び吸着極との衝突確率が高くなり、吸着極に吸着されにくくなることで、逃しが発生し、ただし、その逃しは電気的中和の後に発生し、且つ電気的中和を繰り返した後に発生する可能性があるため、それに応じて電子伝導速度が速くなり、それに応じて電流も大きくなる。また、環境温度が高いほど、ガス分子や霧粒などの運動量が高くなり、且つ吸着極に吸着されにくくなるため、吸着極に吸着されても、再び吸着極から逃げ、すなわち電気的中和の後に逃げる確率が高くなり、したがって、導電極と吸着極との間隔が変わらない場合、上記給電駆動電圧を上げる必要があり、当該給電駆動電圧の限界は空気破壊の効果を達成するほどである。また、媒体温度による影響は、環境温度による影響にほぼ相当する。媒体温度が低いほど、霧粒などの媒体の帯電を励起する必要があるエネルギーが小さく、それ自体が有する運動エネルギーも小さくなり、同様の電界力の作用で、吸着極に吸着されやすくなることで、形成される電流が大きい。本発明における処理装置は低温物質に対してより優れた吸着効果を有する。また、霧粒などの媒体の濃度が高くなるにつれて、帯電した媒体が吸着極に衝突する前に他の媒体と電子を伝達した確率が高いほど、効果的な電気的中和を形成する機会が大きくなり、形成される電流もそれに応じて大きくなり、そのため、媒体濃度が高いほど、形成される電流が大きくなる。給電駆動電圧と媒体温度との関係は、給電駆動電圧と環境温度との関係とほぼ同じである。 In the power feeding method of the low specific resistance substance in the present invention, positive electrons or negative electrons are introduced into the low specific resistance material by using a conductive electrode, and in such a feeding method, the low specific resistance material is immediately after the electrons are lost. The low specific resistance substance is adsorbed by making it possible to obtain electrons, keeping the low specific resistance substance in a charged state, and continuously urging the low specific resistance substance with an attractive force. To be able to. Further, in the present invention, the conductive electrode can have a positive or negative potential, and when the conductive electrode has a positive potential, the adsorption electrode has a negative potential, and the conductive electrode has a negative potential. , The adsorption electrode has a positive potential, and in the present invention, both the conductive electrode and the adsorption electrode are electrically connected to the feeding power source, and specifically, the conductive electrode and the adsorption electrode are the positive electrode and the positive electrode of the feeding power source, respectively. It can be electrically connected to the negative electrode. The voltage of the power supply is called the power supply drive voltage, and the selection of the size of the power supply drive voltage is related to the environmental temperature, the temperature of the medium, and the like. For example, the feed drive voltage range of the feed voltage may be 5 to 50 KV, 10 to 50 KV, 5 to 10 KV, 10 to 20 KV, 20 to 30 KV, 30 to 40 KV, or 40 to 50 KV, from bioelectricity to space fumes. Over processing electricity. The feeding power supply may be a DC power supply or an AC power supply, and the waveform of the feeding drive voltage may be a DC, a sine wave, or a modulation waveform. DC power supplies are used in the basic application of adsorption, sine waves are used for movement, for example, the feeding drive voltage of a sine wave acts between the conductive electrode and the adsorption electrode, and the generated electric field is a fog in the electric field. Charged particles such as grains are driven to the adsorption pole, and diagonal waves are used to pull and modulate the waveform according to the degree of pulling force, for example, at the edges at both ends of an asymmetric electric field, in it. The tensile force generated with respect to the medium has a clear direction, so that the medium in the electric field is driven and moved along the direction. When an AC power supply is used as the power supply, the frequency conversion pulse range is 0.1 Hz to 5 GHz, 0.1 Hz to 1 Hz, 0.5 Hz to 10 Hz, 5 Hz to 100 Hz, 50 Hz to 1 KHz, 1 KHz to 100 KHz, 50 KHz to 1 MHz. It may be 1 MHz to 100 MHz, 50 MHz to 1 GHz, 500 MHz to 2 GHz, or 1 GHz to 5 GHz, and is applied to adsorption from a living body to contaminant particles. The conductive electrode of the present invention can be used as a conducting wire, and when it comes into contact with a low resistivity substance, positive and negative electrons are directly introduced into the low resistivity substance, and in this case, the low resistivity substance itself is used as an electrode. be able to. In the present invention, the low specific resistance substance repeats the acquisition and loss of electrons in the process of moving from the conductive electrode to the adsorption electrode, and a large number of electrons are generated between the plurality of low specific resistance substances between the conductive electrode and the adsorption electrode. Is transmitted and finally reaches the adsorption electrode to form a current, which is also called a feed drive current. The magnitude of the feed drive current relates to the environmental temperature, the medium temperature, the amount of electrons, the amount of the substance to be adsorbed, and the amount of escape. For example, as the amount of electrons increases and the number of movable particles such as mist particles increases, the current formed by the moving charged particles increases. The more charged substances such as mist particles adsorbed per unit time, the higher the current. The missed fog particles are only charged and have not reached the adsorption poles, i.e., have not formed effective electrical neutralization, so that under the same conditions, if there are many missed fog particles. The larger the number, the smaller the current. Under the same conditions, the higher the environmental temperature and the faster the speed of the gas particles and the mist particles, the higher the kinetic energy of itself, the higher the collision probability between itself and the conductive electrode and the adsorption electrode, and the adsorption to the adsorption electrode. By making it difficult to do so, an escape occurs, but since the escape occurs after electrical neutralization and may occur after repeated electrical neutralization, the electron conduction velocity is correspondingly high. And the current increases accordingly. Further, the higher the environmental temperature, the higher the momentum of gas molecules and mist particles, and the more difficult it is to be adsorbed by the adsorption electrode. Therefore, even if the gas molecule is adsorbed by the adsorption electrode, it escapes from the adsorption electrode again, that is, it is electrically neutralized. Therefore, when the distance between the conductive electrode and the adsorption electrode does not change, the feeding drive voltage needs to be increased, and the limit of the feeding drive voltage is enough to achieve the effect of air destruction. Further, the influence of the medium temperature is almost equivalent to the influence of the environmental temperature. The lower the medium temperature, the smaller the energy that needs to excite the charge of the medium such as mist particles, and the smaller the kinetic energy that it has, and the action of the same electric field force makes it easier to be adsorbed by the adsorption electrode. , The current formed is large. The processing apparatus in the present invention has a better adsorption effect on low temperature substances. Also, as the concentration of a medium such as mist particles increases, the higher the probability that the charged medium has transferred electrons to another medium before it collides with the adsorption electrode, the more chances of forming effective electrical neutralization. As the medium concentration increases, the current formed also increases accordingly, so the higher the medium concentration, the greater the current formed. The relationship between the feed drive voltage and the medium temperature is almost the same as the relationship between the feed drive voltage and the environmental temperature.

本発明の一実施例では、給電電源の給電駆動電圧は、コロナ開始電源の初期コロナ開始電圧よりも低くすることができ、コロナ放電がない場合でも、本発明の導電極は、低比抵抗物質を帯電させることもでき、イオン化してなくても導電も可能であり、給電駆動電圧はコロナ開始電源の初期コロナ開始電圧より大きい場合、コロナ放電と導電極により電子を前記低比抵抗物質に伝導することにより、前記低比抵抗物質を帯電させる。当該コロナ開始電源は導電極及び吸着極がいずれもコロナ開始電源に電気的に接続されると想定した場合に導電極又は吸着極に放電を発生させることができる電源であり、且つ導電極又は吸着極に放電が発生する時にガスをイオン化し、ガス中の煙塵粒子などの物質が負の電荷を得るようにする。当該コロナ開始電源の電圧をコロナ開始電圧と呼び、コロナ開始電圧の最小値を初期コロナ開始電圧と呼び、すなわち、導電極と吸着極が共にコロナ開始電源に電気的に接続される場合では、導電極又は吸着極に放電を発生させてガスをイオン化する最小電圧値を初期コロナ開始電圧と呼ぶ。異なるガス、及び異なる動作環境などに対して、初期コロナ開始電圧の大きさが異なる可能性がある。しかし当業者であれば、確定されたガス、及び動作環境に対して、対応する初期コロナ開始電圧は確定されたものである。また、本発明のいくつかの実施例では、給電駆動電圧は具体的には0.1~2kv/mmであってもよい。給電電源の給電駆動電圧はエアコロナ開始電圧より小さい。また、本発明における低比抵抗物質の処理方法は、エンジンの排気ガスの処理に適用することができ、特に、本発明における低比抵抗物質の処理装置及び処理方法により、エンジンの排気ガス中の水煙などの低比抵抗物質を処理することができる。 In one embodiment of the invention, the feed drive voltage of the feed power supply can be lower than the initial corona start voltage of the corona start power supply, and even in the absence of corona discharge, the conductive electrode of the present invention is a low specific resistance material. Can be charged, and can be conducted even if it is not ionized. By doing so, the low specific resistance substance is charged. The corona starting power source is a power source capable of generating a discharge in the conductive electrode or the adsorption electrode when it is assumed that both the conductive electrode and the adsorption electrode are electrically connected to the corona start power source, and the conductive electrode or the adsorption electrode is used. It ionizes the gas when a discharge occurs at the poles, allowing substances such as dust particles in the gas to obtain a negative charge. The voltage of the corona starting power supply is called the corona starting voltage, and the minimum value of the corona starting voltage is called the initial corona starting voltage. The minimum voltage value at which a discharge is generated in the electrode or the adsorption electrode to ionize the gas is called the initial corona starting voltage. The magnitude of the initial corona starting voltage may differ for different gases, different operating environments, and so on. However, those skilled in the art have determined the corresponding initial corona starting voltage for the determined gas and operating environment. Further, in some embodiments of the present invention, the feeding drive voltage may be specifically 0.1 to 2 kv / mm. The feeding drive voltage of the feeding power supply is smaller than the air corona starting voltage. Further, the method for treating a low specific resistance substance in the present invention can be applied to the treatment of exhaust gas of an engine, and in particular, the method for treating a low specific resistance substance and the treatment method in the present invention can be applied to the exhaust gas of an engine. It can treat low specific resistance substances such as water smoke.

本発明の一実施例における導電極と吸着極はともに左右方向に伸びており、導電極の左端は吸着極の左端の左側に位置する。 Both the conductive electrode and the adsorption electrode in one embodiment of the present invention extend in the left-right direction, and the left end of the conductive electrode is located on the left side of the left end of the adsorption electrode.

本発明の一実施例では、吸着極は2つあり、導電極は2つの吸着極の間に位置する。 In one embodiment of the invention, there are two adsorption electrodes and the conductive electrode is located between the two adsorption electrodes.

本発明における導電極と吸着極との間の距離は、両者間の給電駆動電圧の大きさ、低比抵抗物質の流速、及び低比抵抗物質の帯電能力などに応じて設定することができる。例えば、導電極と吸着極との間隔は、5~50mm、5~10mm、10~20mm、20~30mm、30~40mm、又は40~50mmであってもよい。導電極と吸着極との間隔が大きいほど、必要な給電駆動電圧が高くなることで、十分に強い電界を形成し、媒体の逃しを防止するように帯電した媒体を駆動して吸着極に速やかに移動させるために用いる。同様の条件では、導電極と吸着極との間隔が大きいほど、気流方向に沿って中央に近いほど物質の流速が速くなり、吸着極に近いほど物質の流速が遅くなり、また、気流方向と直交する方向に沿って、霧粒などの帯電媒体は、導電極と吸着極の間の距離の拡大につれて、衝突がない場合、電界によって加速される時間が長くなり、その結果、物質は吸着極に近づく前に垂直方向に沿う移動速度が大きくなる。同じ条件では、給電駆動電圧が変わらない場合、距離の拡大につれて、電界強度が絶えず低下し、電界における媒体の帯電能力が弱くなる。 The distance between the conductive electrode and the adsorption electrode in the present invention can be set according to the magnitude of the feeding drive voltage between the two, the flow velocity of the low resistivity substance, the charging ability of the low resistivity substance, and the like. For example, the distance between the conductive electrode and the adsorption electrode may be 5 to 50 mm, 5 to 10 mm, 10 to 20 mm, 20 to 30 mm, 30 to 40 mm, or 40 to 50 mm. The larger the distance between the conductive electrode and the adsorption electrode, the higher the required feed drive voltage, which forms a sufficiently strong electric field and drives the charged medium to prevent the medium from escaping, so that the adsorption electrode is swift. Used to move to. Under the same conditions, the larger the distance between the conductive electrode and the adsorption electrode, the faster the flow velocity of the substance as it is closer to the center along the air flow direction, and the closer it is to the adsorption electrode, the slower the flow velocity of the substance, and also the air flow direction. Along the orthogonal direction, charged media such as fog particles will take longer to be accelerated by the electric field in the absence of collision as the distance between the conductive and adsorbing electrodes increases, resulting in the material adsorbing electrode. The moving speed along the vertical direction increases before approaching. Under the same conditions, if the feed drive voltage does not change, the electric field strength constantly decreases as the distance increases, and the charging capacity of the medium in the electric field weakens.

本発明のいくつかの実施例における導電極は、固体、液体、気体分子クラスター、プラズマのうち1つ又は複数の形態の組み合わせであってもよい。導電性が固体である場合、導電極は、304鋼などの固体金属、又はグラファイトなどの他の固体導体を採用してもよく、導電性が液体である場合、導電極はイオン含有導電性液体であってもよい。また、本発明のいくつかの実施例では導電極は導電性混合形態物質、生体の自然混合による導電性物質又は物体の人工加工による導電性物質であってもよい。本発明において吸着極は導電性物質で作製されるか、又は吸着極の表面には導電性物質がある。 The conductive electrode in some embodiments of the present invention may be a combination of one or more forms of solid, liquid, gas molecular clusters, plasma. When the conductivity is solid, the conductive electrode may employ a solid metal such as 304 steel, or another solid conductor such as graphite, and when the conductivity is liquid, the conductive electrode is an ion-containing conductive liquid. May be. Further, in some embodiments of the present invention, the conductive electrode may be a conductive mixed form substance, a conductive substance by natural mixing of living organisms, or a conductive substance by artificial processing of an object. In the present invention, the adsorption electrode is made of a conductive substance, or the surface of the adsorption electrode has a conductive substance.

本発明のいくつかの実施例における導電極は、面状、網状、有孔板状、板状、ツェッパ状、ボックス状、又は管状であってもよい。本発明において、網状は、任意の有孔構造を含む形状である。導電極が板状、ツェッパ状、ボックス状、又は管状である場合、導電極は無孔構造であってもよく、有孔構造であってもよい。導電極が有孔構造である場合、導電極に1つ又は複数の貫通孔が設けられていてもよく、当該導電極における貫通孔の形状は多角形、円形、楕円形、正方形、長方形、台形、又は菱形などであってもよい。導電極の貫通孔の大きさは、0.1~3mm、0.1~0.3mm、0.3~0.5mm、0.5~0.8mm、0.8~1.0mm、1.0~1.2mm、1.2~1.0mm、1.0~1.5mm、1.5~1.8mm、1.8~2.0mm、2.0~2.3mm、2.3~2.5mm、2.5~2.8mm、又は2.8~3.0mmであってもよい。また、本発明のいくつかの実施例では、導電極の形状はまた、他の物質の自然な形態又は物質の加工形態であってもよい。本発明において低比抵抗物質が導電極上の貫通孔を通過する場合、低比抵抗物質が前記導電極を貫通し、低比抵抗物質と導電極との接触面積を拡大し、帯電効率を向上させる。本発明における導電極上の貫通孔は、物質が導電極を流れることを可能にする任意の孔である。 The conductive electrode in some embodiments of the present invention may be planar, net-like, perforated plate-like, plate-like, zepper-like, box-like, or tubular. In the present invention, the net shape is a shape including an arbitrary perforated structure. When the conductive electrode is plate-shaped, zipper-shaped, box-shaped, or tubular, the conductive electrode may have a non-perforated structure or a perforated structure. When the conductive electrode has a perforated structure, the conductive electrode may be provided with one or more through holes, and the shape of the through holes in the conductive electrode is polygonal, circular, elliptical, square, rectangular, or trapezoidal. , Or a rhombus or the like. The sizes of the through holes of the conductive electrode are 0.1 to 3 mm, 0.1 to 0.3 mm, 0.3 to 0.5 mm, 0.5 to 0.8 mm, 0.8 to 1.0 mm, and 1. 0 to 1.2 mm, 1.2 to 1.0 mm, 1.0 to 1.5 mm, 1.5 to 1.8 mm, 1.8 to 2.0 mm, 2.0 to 2.3 mm, 2.3 to It may be 2.5 mm, 2.5 to 2.8 mm, or 2.8 to 3.0 mm. Also, in some embodiments of the invention, the shape of the conductive electrode may also be a natural form of another substance or a processed form of the substance. In the present invention, when the low resistivity substance passes through the through hole on the conductive electrode, the low resistivity substance penetrates the conductive electrode, the contact area between the low resistivity substance and the conductive electrode is expanded, and the charging efficiency is improved. .. The through hole on the conductive electrode in the present invention is an arbitrary hole that allows a substance to flow through the conductive electrode.

また、本発明のいくつかの実施例では、吸着極の形状は、多層網状、網状、有孔板状、管状、筒状、ツェッパ状、ボックス状、板状、粒子蓄積層状、折り曲げ板状、又はパネル状であってもよい。吸着極が板状、ツェッパ状、ボックス状又は管状である場合、吸着極は無孔構造、又は有孔構造であってもよい。吸着極が有孔構造である場合、吸着極に1つ又は複数の貫通孔が設けられていてもよく、当該吸着極における貫通孔の形状は多角形、円形、楕円形、正方形、長方形、台形、又は菱形などであってもよい。吸着極の貫通孔の大きさは、0.1~3mm、0.1~0.3mm、0.3~0.5mm、0.5~0.8mm、0.8~1.0mm、1.0~1.2mm、1.2~1.0mm、1.0~1.5mm、1.5~1.8mm、1.8~2.0mm、2.0~2.3mm、2.3~2.5mm、2.5~2.8mm、又は2.8~3.0mmであってもよい。本発明における吸着極の貫通孔は、物質が吸着極を流れることを可能にする任意の孔である。 Further, in some embodiments of the present invention, the shape of the adsorption electrode is multi-layered net-like, net-like, perforated plate-like, tubular, tubular, zeppa-like, box-like, plate-like, particle accumulation layer-like, bent plate-like, Alternatively, it may be in the form of a panel. When the adsorption electrode is plate-shaped, zipper-shaped, box-shaped or tubular, the adsorption electrode may have a non-perforated structure or a perforated structure. When the suction pole has a perforated structure, the suction pole may be provided with one or more through holes, and the shape of the through holes in the suction pole is polygonal, circular, elliptical, square, rectangular, or trapezoidal. , Or a rhombus or the like. The sizes of the through holes of the suction electrode are 0.1 to 3 mm, 0.1 to 0.3 mm, 0.3 to 0.5 mm, 0.5 to 0.8 mm, 0.8 to 1.0 mm, and 1. 0 to 1.2 mm, 1.2 to 1.0 mm, 1.0 to 1.5 mm, 1.5 to 1.8 mm, 1.8 to 2.0 mm, 2.0 to 2.3 mm, 2.3 to It may be 2.5 mm, 2.5 to 2.8 mm, or 2.8 to 3.0 mm. The through hole of the adsorption electrode in the present invention is an arbitrary hole that allows a substance to flow through the adsorption electrode.

本発明のいくつかの実施例では、導電極と吸着極との間に電界が形成され、当該電界は網面電界又は網筒電界などさまざまな電界であってもよい。例えば、導電極は網状であり、吸着極は面状であり、導電極は吸着極に平行し、それにより網面電界が形成され、或いは導電極は網状であり、且つワイヤ又は金属針によって固定され、吸着極は筒状であり、導電極は吸着極の幾何学的対称中心に位置し、それにより網筒電界が形成される。吸着極が面状である場合、具体的には、平面状、曲面状、又は球面状であってもよい。導電極が網状である場合、具体的には平面状、球面状、又は他の幾何学的面状であってもよく、また長方形又は不規則な形状であってもよい。吸着極が筒状である場合、吸着極はさらに様々なボックス状に変化することができる。導電極もそれに応じて変化し、電極と電界の嵌めを形成することができる。 In some embodiments of the present invention, an electric field is formed between the conductive electrode and the adsorption electrode, and the electric field may be various electric fields such as a mesh surface electric field or a mesh tube electric field. For example, the conductive electrode is reticulated, the adsorption electrode is planar, the conductive electrode is parallel to the adsorption electrode, thereby forming a reticulated electric field, or the conductive electrode is reticulated and fixed by a wire or metal needle. The adsorption electrode is tubular, and the conductive electrode is located at the center of geometrical symmetry of the adsorption electrode, thereby forming a net tube electric field. When the adsorption electrode is planar, specifically, it may be planar, curved, or spherical. When the conductive electrode is reticulated, it may be specifically planar, spherical, or other geometrically planar, and may be rectangular or irregularly shaped. When the adsorption electrode is cylindrical, the adsorption electrode can be further changed into various box shapes. The conductive electrode also changes accordingly, and an electric field fit can be formed between the electrode and the electric field.

本発明の一実施例では、導電極は吸着極に垂直である。本発明の一実施例では、導電極は吸着極に平行である。本発明の一実施例では、導電極と吸着極はいずれも面状であり、且つ導電極は吸着極に平行である。本発明の一実施例では、導電極は金網を用いる。本発明の一実施例では、導電極は平面状又は球面状である。本発明の一実施例では、吸着極は曲面状又は球面状である。本発明の一実施例では、導電極は網状であり、吸着極は筒状であり、導電極は吸着極の内部に位置し、且つ導電極は吸着極の中心対称軸上に位置する。 In one embodiment of the invention, the conductive electrode is perpendicular to the adsorption electrode. In one embodiment of the invention, the conductive electrode is parallel to the adsorption electrode. In one embodiment of the present invention, both the conductive electrode and the adsorption electrode are planar, and the conductive electrode is parallel to the adsorption electrode. In one embodiment of the present invention, a wire mesh is used as the conductive electrode. In one embodiment of the present invention, the conductive electrode is planar or spherical. In one embodiment of the present invention, the adsorption electrode is curved or spherical. In one embodiment of the present invention, the conductive electrode is reticulated, the adsorption electrode is tubular, the conductive electrode is located inside the adsorption electrode, and the conductive electrode is located on the axis of central symmetry of the adsorption electrode.

本発明において導電極及び吸着極は吸着ユニットを構成する。前記吸着ユニットは1つ又は複数であってもよく、具体的な数は実際の必要に応じて決定される。一実施例では、吸着ユニットは1つある。他の実施例では、吸着ユニットは複数あることで、複数の吸着ユニットを用いてより多くの低比抵抗物質を吸着し、それにより、低比抵抗物質を収集する効率を向上させる。吸着ユニットは複数ある場合、全ての吸着ユニットの分布形態は必要に応じて柔軟に調整することができ、全ての吸着ユニットは同一であってもよいし、異なるものであってもよい。例えば、全ての吸着ユニットは異なる風量の要求を満たすように、縦方向、横方向、斜め方向、螺旋方向のうちの一方向又は複数の方向に沿って分布することができる。全ての吸着ユニットは矩形アレイ状に分布してもよいし、ピラミッド状に分布してもよい。上記種々の形状の導電極と吸着極は自由に組み合わせて吸着ユニットを形成することができる。例えば、線状の導電極を管状の吸着極に挿入して吸着ユニットを形成し、そして、線状の導電極と組み合わせて新たな吸着ユニットを形成し、この場合、2つの線状の導電極は電気的に接続することができ、そして、新たな吸着ユニットはさらに縦方向、横方向、斜め方向、螺旋方向のうちの一方向又は複数の方向に沿って分布する。また、例えば、線状の導電極を管状の吸着極に挿入して吸着ユニットを形成し、この吸着ユニットは、縦方向、横方向、斜め方向、螺旋方向のうちの一方向又は複数の方向に沿って分布して新たな吸着ユニットを形成し、当該新たな吸着ユニットは、さらに、上記の様々な形状の導電極と組み合わせて新たな吸着ユニットを形成する。本発明において吸着ユニットにおける導電極と吸着極との間の距離は異なる動作電圧と吸着対象の要求に適応するように任意に調整することができる。本発明において異なる吸着ユニットの間は組み合わせることができる。本発明において異なる吸着ユニットは同一の給電電源を用いてもよく、異なる給電電源を用いてもよい。異なる給電電源を用いる場合、各給電電源の給電駆動電圧は同じものであってもよいし、異なるものであってもよい。また、本発明における処理装置は複数あってもよく、全ての処理装置は縦方向、横方向、斜め方向、螺旋方向のうちの一方向又は複数の方向に沿って分布してもよい。 In the present invention, the conductive electrode and the adsorption electrode constitute an adsorption unit. The number of the adsorption units may be one or more, and the specific number is determined according to the actual needs. In one embodiment, there is one adsorption unit. In another embodiment, the plurality of adsorption units allows the plurality of adsorption units to adsorb more low resistivity substances, thereby improving the efficiency of collecting the low resistivity substances. When there are a plurality of adsorption units, the distribution form of all the adsorption units can be flexibly adjusted as needed, and all the adsorption units may be the same or different. For example, all adsorption units can be distributed along one or more of the longitudinal, lateral, diagonal, and spiral directions to meet different airflow requirements. All adsorption units may be distributed in a rectangular array or in a pyramid. The conductive electrode and the adsorption electrode having various shapes can be freely combined to form an adsorption unit. For example, a linear conductive electrode is inserted into a tubular adsorption electrode to form an adsorption unit, and then combined with a linear conductive electrode to form a new adsorption unit, in which case two linear conductive electrodes. Can be electrically connected, and the new adsorption units are further distributed along one or more of the longitudinal, lateral, diagonal, and spiral directions. Further, for example, a linear conductive pole is inserted into a tubular suction pole to form a suction unit, and the suction unit can be used in one or more of the vertical direction, the horizontal direction, the diagonal direction, and the spiral direction. It is distributed along the line to form a new adsorption unit, and the new adsorption unit is further combined with the above-mentioned various shapes of conductive electrodes to form a new adsorption unit. In the present invention, the distance between the conductive electrode and the adsorption electrode in the adsorption unit can be arbitrarily adjusted to meet the different operating voltages and the requirements of the adsorption target. In the present invention, different adsorption units can be combined. In the present invention, different suction units may use the same power supply power source or may use different power supply power supplies. When different power supplies are used, the power supply drive voltage of each power supply power supply may be the same or different. Further, there may be a plurality of processing devices in the present invention, and all the processing devices may be distributed along one or more of the vertical direction, the horizontal direction, the diagonal direction, and the spiral direction.

本発明の一実施例では、低比抵抗物質の処理装置はさらにハウジングを含み、当該ハウジングは入口、出口及び流路を含み、流路の両端はそれぞれ入口及び出口に連通する。本発明の一実施例では、入口は円形であり、且つ入口の直径は300~1000mmであり、又は500mmである。本発明の一実施例では、出口は円形であり、且つ出口の直径は300~1000mmであり、又は500mmである。本発明の一実施例では、ハウジングは入口から出口方向に順次分布する第1の筒体、第2の筒体、及び第3の筒体を含み、入口は第1の筒体の一端に位置し、出口は第3の筒体の一端に位置する。本発明の一実施例では、第1の筒体の輪郭の大きさは入口から出口方向に沿って徐々に大きくなる。本発明の一実施例では、第1の筒体は直管状である。本発明の一実施例では、第2の筒体は直管状であり、且つ導電極及び吸着極が第2の筒体の中に取り付けられる。本発明の一実施例では、第3の筒体の輪郭の大きさは入口から出口方向に向かって徐々に小さくなる。本発明の一実施例では、第1の筒体、第2の筒体、及び第3の筒体の断面はいずれも矩形であり、本発明の一実施例では、第2の筒体の断面は矩形である。本発明の一実施例では、ハウジングの材質はステンレス、アルミニウム合金、鉄合金、布、スポンジ、分子ふるい、活性炭、発泡鉄、発泡炭化珪素である。本発明の一実施例では、導電極は絶縁部材を介してハウジングに接続される。本発明の一実施例では、絶縁部材の材質は絶縁マイカである。本発明の一実施例では、絶縁部材は柱状、又は塔状である。本発明の一実施例では、導電極に円筒形の前接続部が設けられ、且つ前接続部が絶縁部材に固着される。本発明の一実施例では、吸着極又はハウジング内壁に円筒形の後接続部が設けられ、且つ後接続部が絶縁部材に固着される。 In one embodiment of the invention, the low resistivity material processing apparatus further comprises a housing, which includes an inlet, an outlet and a flow path, with both ends of the flow path communicating with the inlet and outlet, respectively. In one embodiment of the invention, the inlet is circular and the diameter of the inlet is 300-1000 mm, or 500 mm. In one embodiment of the invention, the outlet is circular and the diameter of the outlet is 300-1000 mm, or 500 mm. In one embodiment of the invention, the housing includes a first cylinder, a second cylinder, and a third cylinder that are sequentially distributed from the inlet to the exit, and the inlet is located at one end of the first cylinder. However, the exit is located at one end of the third cylinder. In one embodiment of the present invention, the size of the contour of the first cylinder gradually increases from the inlet to the exit. In one embodiment of the present invention, the first tubular body is a straight tube. In one embodiment of the present invention, the second cylinder is a straight tube, and the conductive electrode and the adsorption electrode are mounted in the second cylinder. In one embodiment of the present invention, the size of the contour of the third cylinder gradually decreases from the inlet to the exit. In one embodiment of the present invention, the cross sections of the first cylinder, the second cylinder, and the third cylinder are all rectangular, and in one embodiment of the present invention, the cross section of the second cylinder. Is a rectangle. In one embodiment of the present invention, the material of the housing is stainless steel, aluminum alloy, iron alloy, cloth, sponge, molecular sieve, activated carbon, ferroalloy, and foamed silicon carbide. In one embodiment of the invention, the conductive electrode is connected to the housing via an insulating member. In one embodiment of the present invention, the material of the insulating member is insulating mica. In one embodiment of the present invention, the insulating member is columnar or tower-shaped. In one embodiment of the present invention, the conductive electrode is provided with a cylindrical front connecting portion, and the front connecting portion is fixed to the insulating member. In one embodiment of the present invention, a cylindrical rear connecting portion is provided on the suction electrode or the inner wall of the housing, and the rear connecting portion is fixed to the insulating member.

本発明のいくつかの実施例では、低比抵抗物質の処理装置はさらに入口及び出口を有するハウジングを含み、上記導電極及び吸着極はいずれもハウジングの中に取り付けられる。低比抵抗物質を収集するプロセスでは、低比抵抗物質は入口からハウジングに入り、出口に向かって移動し、低比抵抗物質が出口に向かって移動するプロセスでは、低比抵抗物質は導電極を経て、帯電しており、吸着極は帯電した低比抵抗物質を吸着することで低比抵抗物質を吸着極に収集する。本発明は、ハウジングを用いて、導電性板を流れるように低比抵抗物質を誘導することで、導電極によって低比抵抗物質を帯電させ、且つ吸着極によって低比抵抗物質を収集し、それにより出口から流出する低比抵抗物質の量を効果的に低減する。本発明のいくつかの実施例では、ハウジングの材質は金属、非金属、導体、非導体、水、各種導電性液体、各種多孔質材料、又は各種発泡材料などであってもよい。ハウジングの材質が金属である場合、その材質は、具体的には、ステンレス、又はアルミニウム合金などであってもよい。ハウジングの材質が非金属である場合、その材質は、具体的には、布、又はスポンジなどであってもよい。ハウジングの材質が導体である場合、その材質は、具体的には、鉄合金などであってもよい。ハウジングの材質が非導体である場合、その表面に水層が形成され、水が電極になり、例えば水を吸収した後の砂層が挙げられる。ハウジングの材質が水や各種導電性液体である場合、ハウジングは静止又は流動するものである。ハウジングの材質が各種多孔質材料である場合、その材質は具体的には分子ふるい又は活性炭であってもよい。ハウジングの材質が各種発泡材料である場合、その材質は具体的に発泡鉄、発泡炭化珪素などである。本発明の一実施例では、導電極は絶縁部材を介してハウジングに固着され、絶縁部材の材質は絶縁マイカであってもよい。また、本発明の一実施例では吸着極がハウジングに直接電気的に接続され、このような接続方式により、ハウジングが吸着極と同じ電位を有し、このようにハウジングも帯電した低比抵抗物質を吸着することができ、ハウジングも吸着極を構成する。ハウジングの中に上記流路が設けられ、導電極が流路の中に取り付けられる。 In some embodiments of the invention, the low resistivity material treatment apparatus further comprises a housing with inlets and outlets, both of which are conductive and adsorbent electrodes mounted within the housing. In the process of collecting low resistivity material, the low resistivity material enters the housing from the inlet and moves toward the outlet, and in the process of moving the low resistivity material toward the outlet, the low resistivity material has a conductive electrode. After that, it is charged, and the adsorption electrode collects the low resistivity substance at the adsorption electrode by adsorbing the charged low resistivity substance. The present invention uses a housing to induce a low resistivity substance to flow through a conductive plate, thereby charging the low resistivity substance with a conductive electrode and collecting the low resistivity substance with an adsorption electrode. Effectively reduces the amount of low resistivity material flowing out from the outlet. In some embodiments of the invention, the housing material may be metal, non-metal, conductor, non-conductor, water, various conductive liquids, various porous materials, various foam materials and the like. When the material of the housing is metal, the material may be specifically stainless steel, an aluminum alloy, or the like. When the material of the housing is non-metal, the material may be, specifically, cloth, sponge, or the like. When the material of the housing is a conductor, the material may be specifically an iron alloy or the like. When the material of the housing is non-conductor, an aqueous layer is formed on the surface thereof, and water becomes an electrode, for example, a sand layer after absorbing water. When the material of the housing is water or various conductive liquids, the housing is stationary or fluid. When the material of the housing is various porous materials, the material may be specifically molecular sieves or activated carbon. When the material of the housing is various foam materials, the material is specifically foamed iron, foamed silicon carbide, or the like. In one embodiment of the present invention, the conductive electrode is fixed to the housing via the insulating member, and the material of the insulating member may be insulating mica. Further, in one embodiment of the present invention, the adsorption electrode is directly electrically connected to the housing, and by such a connection method, the housing has the same potential as the adsorption electrode, and the housing is also charged in this way. Can be adsorbed, and the housing also constitutes an adsorption electrode. The flow path is provided in the housing, and the conductive electrode is mounted in the flow path.

吸着極に水煙などの低抵抗物質が付着すると、結露が発生する。本発明のいくつかの実施例では、吸着極は上下方向に沿って伸びることができ、このように吸着極に堆積された結露が一定の重量に達すると、重力の作用で吸着極に沿って下向きに流れ、最終的に設定位置又は装置に集まり、それにより吸着極に付着した低比抵抗物質に対する回収を実現する。本処理装置は冷蔵によるミストの除去に用いることができる。また、外部電界を使用して、吸着板に付着した物質を収集することもできる。吸着板上の物質に対する収集方向は気流方向と同じであってもよく、気流方向とは異なっていてもよい。具体的に実施する時に、重力を最大限に活用して、吸着極上の水滴又は水層をできるだけ速く収集タンクに流入させ、また、気流方向とその力を可能な限り使用して、吸着極での水の流れの速度を加速する。そのため、異なる取り付け条件、並びに絶縁の利便性、経済性、及びフィージビリティなどに応じて、上記目的をできるだけ達成し、特定の方向に制限されない。 When a low resistance substance such as water smoke adheres to the adsorption electrode, dew condensation occurs. In some embodiments of the present invention, the adsorption electrode can extend along the vertical direction, and when the dew deposited on the adsorption electrode reaches a certain weight in this way, gravity acts along the adsorption electrode. It flows downward and finally gathers at the set position or device, thereby realizing recovery of the low specific resistance substance adhering to the adsorption electrode. This processing device can be used for removing mist by refrigeration. It is also possible to use an external electric field to collect substances adhering to the adsorption plate. The collection direction for the substance on the adsorption plate may be the same as the air flow direction, or may be different from the air flow direction. When concretely implemented, make the best use of gravity to allow water droplets or layers on the adsorption pole to flow into the collection tank as quickly as possible, and use the airflow direction and its force as much as possible at the adsorption pole. Accelerate the speed of water flow. Therefore, the above objectives are achieved as much as possible and are not restricted in a specific direction according to different mounting conditions, convenience, economy, feasibility and the like of insulation.

本発明のいくつかの実施例では、上記処理装置は、低比抵抗物質の吸着装置として独立して使用することができる。また、本発明のいくつかの実施例では、上記の処理装置は、結露、触媒、コロナ、加熱、遠心、スクリーニングなどの機能を実現するように冷凍装置、触媒装置、コロナ装置、加熱装置、遠心装置、スクリーニング装置、電磁装置、照射装置などと組み合わせて使用することができる。また、上記装置は、現場の必要に応じて任意に組み合わせることができる。 In some embodiments of the present invention, the processing apparatus can be used independently as an adsorption device for a low resistivity substance. Further, in some embodiments of the present invention, the above-mentioned processing apparatus is a refrigerating apparatus, a catalyst apparatus, a corona apparatus, a heating apparatus, and a centrifuge so as to realize functions such as dew condensation, catalyst, corona, heating, centrifugation, and screening. It can be used in combination with a device, a screening device, an electromagnetic device, an irradiation device, and the like. In addition, the above-mentioned devices can be arbitrarily combined according to the needs of the site.

また、既存の静電界荷電理論では、コロナ放電を利用して酸素をイオン化し、多数の負の酸素イオンを生成し、負の酸素イオンは粉塵と接触し、粉塵が荷電し、荷電した粉塵がヘテロポーラに吸着される。しかしながら、水煙、金属粒子、導体塵埃などの低抵抗物質に遇った場合、既存の電界はほとんど吸着効果がない。低比抵抗物質は、電子を得た後に電子を失いやすいため、移動する負の酸素イオンが低比抵抗物質を荷電させた後、低比抵抗物質はすぐに電子を失い、負の酸素イオンは1回だけ移動するため、電子を失った後の低比抵抗の再荷電が困難になるか、或いは、この帯電方法は、低比抵抗物質を帯電させる可能性を大幅に低減するため、低比抵抗物質全体が帯電していない状態になり、このように、ヘテロポーラが低比抵抗物質に吸着力を継続的に付勢することは困難であり、最終的には、既存の電界による低比抵抗物質に対する吸着率が非常に低くなる。本発明のいくつかの実施例では、上記処理装置及び処理方法は、荷電方法を使用してこれらの低比抵抗物質を帯電させるのではなく、電子を低比抵抗物質に直接伝達してそれらを帯電させ、ある低比抵抗物質が帯電してから電子を失った後、新たな電子は導電極から他の低比抵抗物質を介して当該電子を失った低比抵抗材料にすばやく伝達されることで、低比抵抗物質は電子を失った後、すぐに電気を得ることができ、低比抵抗物質の帯電確率を大幅に向上させ、このように繰り返すと、低比抵抗物質全体は電子を得た状態になり、吸着極は、低比抵抗物質を吸着するまで低比抵抗物質に吸引力を継続的に付勢することができ、それにより、本処理装置による低比抵抗物質に対する収集効率がより高いことを確保する。本発明で採用された低比抵抗物質を帯電させる上記方法は、コロナワイヤ、コロナ電極、又はコロナ板などを使用する必要がなく、本処理装置全体の構造を簡素化し、本処理装置の製造コストを削減する。また、本発明は上記給電方式を採用することにより、導電極上の大量の電子を、低比抵抗物質を介して吸着極に伝達し、且つ電流を形成する。本処理装置を流れる低比抵抗物質の濃度が大きいほど、導電極上の電子が低比抵抗物質を介して吸着極に伝達されやすく、より多くの電子が低比抵抗物質間に伝達されることにより、導電極と吸着極との間に形成される電流がより大きくなり、低比抵抗物質の帯電確率がより高くなり、本処理装置による低比抵抗物質に対する収集効率がより高くなる。本発明における上記処理方法は煙突からの白煙の除去、ミストの除去の新方法とすることができる。本発明における処理装置は湿式電気集塵器に増設されてもよい。 In the existing electrostatic field charging theory, corona discharge is used to ionize oxygen to generate a large number of negative oxygen ions, and the negative oxygen ions come into contact with the dust, the dust is charged, and the charged dust is generated. Adsorbed by heteropolar. However, when treated with low resistance substances such as water smoke, metal particles, and conductor dust, the existing electric field has almost no adsorption effect. Since a low specific resistance substance tends to lose an electron after obtaining an electron, the low specific resistance substance immediately loses an electron after the moving negative oxygen ion charges the low specific resistance substance, and the negative oxygen ion becomes a negative oxygen ion. Since it moves only once, it becomes difficult to recharge the low specific resistance after losing an electron, or this charging method greatly reduces the possibility of charging the low specific resistance substance, so that the low ratio is low. The entire resistance material becomes uncharged, and thus it is difficult for the heteropolar to continuously urge the low specific resistance material with the adsorption force, and finally, the low specific resistance due to the existing electric field. The adsorption rate for substances is very low. In some embodiments of the invention, the processing apparatus and method described do not use a charging method to charge these low specific resistance materials, but instead transfer electrons directly to the low specific resistance materials to transfer them. After being charged and a low specific resistance material is charged and then loses electrons, new electrons are quickly transferred from the conductive electrode to the low specific resistance material that has lost the electrons via another low specific resistance material. So, the low specific resistance material can get electricity immediately after losing electrons, greatly improving the charging probability of the low specific resistance material, and when repeated in this way, the whole low specific resistance material gets electrons. The adsorption electrode can continuously urge the low specific resistance substance to attract the low specific resistance substance until it adsorbs the low specific resistance substance, whereby the collection efficiency of the low specific resistance substance by this processing device is improved. Ensure higher. The above method of charging the low specific resistance substance adopted in the present invention does not require the use of corona wires, corona electrodes, corona plates, etc., simplifies the structure of the entire processing apparatus, and manufactures the processing apparatus. To reduce. Further, in the present invention, by adopting the above-mentioned power feeding method, a large amount of electrons on the conductive electrode are transmitted to the adsorption electrode via the low resistivity substance, and a current is formed. The higher the concentration of the low resistivity substance flowing through this processing device, the easier it is for electrons on the conductive electrode to be transferred to the adsorption electrode via the low resistivity substance, and more electrons are transferred between the low resistivity substances. The current formed between the conductive electrode and the adsorption electrode becomes larger, the charging probability of the low resistivity substance becomes higher, and the collection efficiency of the low resistivity substance by this processing apparatus becomes higher. The above-mentioned treatment method in the present invention can be a new method for removing white smoke from a chimney and removing mist. The processing apparatus in the present invention may be added to the wet electrostatic precipitator.

本発明の一実施例により提供される低比抵抗物質の処理方法は、
低比抵抗物質が導電極を流れるようにするステップと、
低比抵抗物質が導電極を流れた場合、導電極は低比抵抗物質を帯電させ、吸着極は帯電した低比抵抗物質に吸引力を付勢することで、低比抵抗物質が吸着極に付着するまで低比抵抗物質を吸着極に移動させるステップと、を含む。
The method for treating a low resistivity substance provided by an embodiment of the present invention is as follows.
Steps to allow low resistivity material to flow through the conductive electrode,
When the low resistivity substance flows through the conductive electrode, the conductive electrode charges the low resistivity substance, and the adsorption electrode urges the charged low resistivity substance with an attractive force, so that the low resistivity substance becomes the adsorption electrode. Includes the step of moving the resistivity material to the adsorption electrode until it adheres.

本発明の一実施例では、低比抵抗物質が導電極を流れるようにする前記ステップは、電子を導電極と吸着極との間にある低比抵抗物質間に伝達し、より多くの低比抵抗物質を帯電させるステップを含む。 In one embodiment of the invention, the step of allowing the low resistivity material to flow through the conductive electrode transfers electrons between the low resistivity material between the conductive electrode and the adsorption electrode, resulting in more low resistivity. Includes the step of charging the resistivity material.

本発明の一実施例では、導電極と吸着極との間は低比抵抗物質を介して電子を伝導し、且つ電流を形成する。 In one embodiment of the present invention, electrons are conducted between the conductive electrode and the adsorption electrode via a low resistivity substance, and an electric current is formed.

本発明の一実施例では、低比抵抗物質が導電極を流れるようにする前記ステップは、導電極は、低比抵抗物質と接触することにより、低比抵抗物質を帯電させるステップを含む。 In one embodiment of the present invention, the step of allowing the low resistivity substance to flow through the conductive electrode includes a step of charging the low resistivity substance by contacting the conductive electrode with the low resistivity substance.

本発明の一実施例では、吸着極に付着した低比抵抗物質は1カ所に集まる。 In one embodiment of the present invention, the low resistivity substance adhering to the adsorption electrode gathers in one place.

本発明の一実施例では、硝酸ミスト付きのガスが導電極を流れるようにし、硝酸ミスト付きのガスが導電極を流れると、導電極はガス中の硝酸ミストを帯電させ、吸着極は帯電した硝酸ミストに吸引力を付勢し、硝酸ミストが吸着極に付着するまで、硝酸ミストを吸着極に移動させる。 In one embodiment of the present invention, the gas with nitric acid mist is allowed to flow through the conductive electrode, and when the gas with nitric acid mist flows through the conductive electrode, the conductive electrode charges the nitric acid mist in the gas, and the adsorption electrode is charged. A suction force is applied to the nitric acid mist to move the nitric acid mist to the adsorption electrode until the nitric acid mist adheres to the adsorption electrode.

本発明の一実施例では、導電極は電子を硝酸ミストに導入するステップは、電子を導電極と吸着極との間にある霧粒間で伝達することで、より多くの霧粒を帯電させるステップを含む。 In one embodiment of the invention, the conductive electrode charges more fog particles by transmitting electrons between the fog particles between the conductive electrode and the adsorption electrode in the step of introducing electrons into the nitric acid mist. Including steps.

本発明の一実施例では、導電極と吸着極との間は硝酸ミストを介して電子を伝導し、且つ電流を形成する。 In one embodiment of the present invention, electrons are conducted between the conductive electrode and the adsorption electrode via nitric acid mist, and an electric current is formed.

本発明の一実施例では、導電極は電子を硝酸ミストに導入するステップは、導電極は、硝酸ミストと接触することにより、硝酸ミストを帯電させるステップを含む。 In one embodiment of the present invention, the step of introducing electrons into the nitric acid mist by the conductive electrode includes a step of charging the nitric acid mist by contacting the conductive electrode with the nitric acid mist.

本発明の上記実施例では、さらにハウジングを含み、前記入口と前記出口はいずれもハウジング上に設けられ、前記導電極と吸着極はいずれもハウジングの中に取り付けられ、前記流路はハウジングの中に位置し、入口と出口との間に位置する。 In the above embodiment of the present invention, the housing is further included, the inlet and the outlet are both provided on the housing, the conductive electrode and the suction electrode are both mounted in the housing, and the flow path is in the housing. It is located between the entrance and the exit.

本発明の一実施例により提供される低比抵抗物質の処理方法は、
導電極を用いて電子を前記低比抵抗物質に伝導し、前記低比抵抗物質を帯電させるステップと、
吸着極を用いて帯電した前記低比抵抗物質を吸引し、帯電した前記低比抵抗物質を前記吸着極に移動させるステップと、を含み、
前記導電極に少なくとも1つの貫通孔が設けられ、前記低比抵抗物質が前記導電極上の貫通孔を通過する場合、前記低比抵抗物質が前記導電極を貫通し、前記低比抵抗物質を帯電させる。
The method for treating a low resistivity substance provided by an embodiment of the present invention is as follows.
A step of conducting electrons to the low resistivity material using a conductive electrode to charge the low resistivity material, and a step of charging the low resistivity material.
It comprises a step of sucking the charged low resistivity substance using the adsorption electrode and moving the charged low resistivity substance to the adsorption electrode.
When the conductive electrode is provided with at least one through hole and the low resistivity substance passes through the through hole on the conductive electrode, the low resistivity substance penetrates the conductive electrode and charges the low resistivity substance. Let me.

本発明の上記実施例では、導電極を用いて電子を前記低比抵抗物質に伝導する前記ステップは、電子を前記導電極と前記吸着極の間に位置する低比抵抗物質間で伝達することで、より多くの低比抵抗物質を帯電させるステップを含む。 In the above embodiment of the present invention, the step of conducting electrons to the low resistivity material using a conductive electrode is to transfer electrons between the low resistivity material located between the conductive electrode and the adsorption electrode. Including the step of charging more low resistivity material.

本発明の上記実施例では、前記導電極と前記吸着極との間は低比抵抗物質を介して電子を伝導し、且つ導電極放電電流である電流を形成する。 In the above embodiment of the present invention, electrons are conducted between the conductive electrode and the adsorption electrode via a low resistivity substance, and a current which is a conductive electrode discharge current is formed.

本発明の上記実施例では、導電極を用いて電子を前記低比抵抗物質に伝導する前記ステップは、前記導電極は、低比抵抗物質と接触することにより低比抵抗物質を帯電させるステップを含む。 In the above embodiment of the present invention, the step of conducting electrons to the low resistivity substance using a conductive electrode is a step of charging the low resistivity substance by contacting the conductive electrode with the low resistivity substance. include.

本発明の一実施例では、前記導電極及び前記吸着極はいずれもハウジング内に取り付けられ、前記ハウジングは入口及び出口を有する。 In one embodiment of the invention, both the conductive electrode and the adsorption electrode are mounted within a housing, which has an inlet and an outlet.

本発明の上記実施例では、前記ハウジングは流路をさらに含み、前記流路はハウジングの中に位置し、入口と出口との間に位置する。 In the above embodiment of the invention, the housing further comprises a flow path, which is located within the housing and between an inlet and an outlet.

本発明の上記実施例では、前記導電極の断面積と流路の断面積との比率は99%~10%である。 In the above embodiment of the present invention, the ratio of the cross-sectional area of the conductive electrode to the cross-sectional area of the flow path is 99% to 10%.

本発明の一実施例により提供される低比抵抗物質の処理装置は、
電子を低比抵抗物質に伝導できる導電極であって、電子が低比抵抗物質に伝導されると、低比抵抗物質が帯電する導電極と、
帯電した低比抵抗物質に吸引力を付勢することができる吸着極とを含み、
前記導電極に少なくとも1つの貫通孔が設けられる。
The low resistivity substance processing apparatus provided by one embodiment of the present invention is
A conductive electrode that can conduct electrons to a low resistivity material, and a conductive electrode that charges the low resistivity material when electrons are conducted to the low resistivity material.
Including an adsorption electrode that can urge a suction force to a charged low resistivity material,
At least one through hole is provided in the conductive electrode.

本発明の上記実施例では、前記低比抵抗物質が前記導電極上の貫通孔を通過する場合、前記低比抵抗物質が前記導電極を貫通し、前記低比抵抗物質を帯電させる。 In the above embodiment of the present invention, when the low resistivity substance passes through the through hole on the conductive electrode, the low resistivity substance penetrates the conductive electrode and charges the low resistivity substance.

本発明の上記実施例では、入口及び出口を有するハウジングをさらに含み、前記導電極及び吸着極はいずれも前記ハウジング内に取り付けられる。 In the above embodiment of the present invention, a housing having an inlet and an outlet is further included, and both the conductive electrode and the suction electrode are mounted in the housing.

本発明の上記実施例では、前記ハウジングは流路をさらに含み、前記流路は前記ハウジングの中に位置し、前記入口と前記出口との間に位置する。 In the above embodiment of the present invention, the housing further includes a flow path, which is located within the housing and between the inlet and the outlet.

本発明の上記実施例では、前記導電極の断面積と流路の断面積との比率は99%~10%である。 In the above embodiment of the present invention, the ratio of the cross-sectional area of the conductive electrode to the cross-sectional area of the flow path is 99% to 10%.

本発明の一実施例により提供される低比抵抗物質の処理方法は、
前記低比抵抗物質は入口から流路に入り、出口方向に移動するステップと、導電極を用いて電子を前記低比抵抗物質に伝導し、前記低比抵抗物質を帯電させるステップと、
吸着極を用いて帯電した前記低比抵抗物質を吸引し、帯電した前記低比抵抗物質を吸着極に移動させるステップとを含み、
前記導電極の断面積と流路の断面積との比率は99%~10%である。
The method for treating a low resistivity substance provided by an embodiment of the present invention is as follows.
The step of the low resistivity substance entering the flow path from the inlet and moving toward the exit, and the step of conducting electrons to the low resistivity substance using a conductive electrode to charge the low resistivity substance.
The step includes a step of sucking the charged low resistivity substance using the adsorption electrode and moving the charged low resistivity substance to the adsorption electrode.
The ratio of the cross-sectional area of the conductive electrode to the cross-sectional area of the flow path is 99% to 10%.

本発明の上記実施例では、導電極を用いて電子を前記低比抵抗物質に伝導する前記ステップは、電子を前記導電極と前記吸着極の間に位置する低比抵抗物質間で伝達することで、より多くの低比抵抗物質を帯電させるステップを含む。 In the above embodiment of the present invention, the step of conducting electrons to the low resistivity material using a conductive electrode is to transfer electrons between the low resistivity material located between the conductive electrode and the adsorption electrode. Including the step of charging more low resistivity material.

本発明の上記実施例では、前記導電極と前記吸着極との間は低比抵抗物質を介して電子を伝導し、且つ導電極放電電流である電流を形成する。 In the above embodiment of the present invention, electrons are conducted between the conductive electrode and the adsorption electrode via a low resistivity substance, and a current which is a conductive electrode discharge current is formed.

本発明の上記実施例では、導電極を用いて電子を前記低比抵抗物質に伝導する前記ステップは、前記導電極は、低比抵抗物質と接触することにより低比抵抗物質を帯電させるステップを含む。 In the above embodiment of the present invention, the step of conducting electrons to the low resistivity substance using a conductive electrode is a step of charging the low resistivity substance by contacting the conductive electrode with the low resistivity substance. include.

本発明の上記実施例では、前記導電極及び前記吸着極はいずれもハウジング内に取り付けられ、前記ハウジングは入口及び出口を有する。 In the above embodiment of the present invention, both the conductive electrode and the adsorption electrode are mounted in a housing, and the housing has an inlet and an outlet.

本発明の上記実施例では、前記流路はハウジングの中に位置し、入口と出口との間に位置する。 In the above embodiment of the present invention, the flow path is located in the housing and is located between the inlet and the outlet.

本発明の一実施例により提供される低比抵抗物質の処理装置は、
入口、出口、及び入口と出口との間に位置する流路を含み、
流路に位置し、電子を低比抵抗物質に伝導でき、電子が低比抵抗物質に伝導されると、低比抵抗物質が帯電する導電極と、
流路に位置し、帯電した低比抵抗物質に吸引力を付勢することができる吸着極とを含み、
前記導電極の断面積と流路の断面積との比率は99%~10%である。
The low resistivity substance processing apparatus provided by one embodiment of the present invention is
Includes inlets, outlets, and channels located between inlets and outlets.
Located in the flow path, electrons can be conducted to the low resistivity material, and when the electrons are conducted to the low resistivity material, the low resistivity material is charged with the conductive electrode.
It contains an adsorption electrode located in the flow path and capable of urging a charged low resistivity substance with an attractive force.
The ratio of the cross-sectional area of the conductive electrode to the cross-sectional area of the flow path is 99% to 10%.

本発明のいくつかの実施例では、導電極を用いて電子を前記低比抵抗物質に伝導するステップに記載の「伝導」とは、導電極が帯電しない低比抵抗物質と接触する時に、導電極上の電子が低比抵抗物質に伝達され、低比抵抗物質に導電極と同じ電荷を帯びさせ、帯電した低比抵抗物質は電荷を他の帯電しない低比抵抗物質に伝達し、より多くの低比抵抗物質を帯電させる。 In some embodiments of the present invention, the "conduction" described in the step of conducting electrons to the low specific resistance substance using a conductive electrode means that the conductive electrode is conductive when it comes into contact with an uncharged low specific resistance substance. The finest electrons are transferred to the low specific resistance material, causing the low specific resistance material to carry the same charge as the conductive electrode, and the charged low specific resistance material transfers the charge to other uncharged low specific resistance material, and more. Charges low specific resistance substances.

以下に特定の具体的な実施例によって本発明の実施形態を説明し、当業者は本明細書に開示された内容から本発明の他の利点及び効果を容易に理解することができる。 Hereinafter, embodiments of the present invention will be described by specific specific embodiments, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in the present specification.

なお、本明細書の図面に示されている構造、比率、サイズなどは、当業者の理解及び閲覧のために、本明細書に開示されている内容と組み合わせることのみに使用されており、本発明の実施を限定するための限定条件ではないため、技術上に本質的な意味はなく、任意の構造の補正、比例関係の変更、又はサイズの調整は、本発明によって生じられる効果及び達成される目的に影響を与えることなく、本発明に開示された技術的内容がカバーできる範囲内に含まれるべきである。また、本明細書において引用された「上」、「下」、「左」、「右」、「中間」及び「一」などの用語は、明確にな説明の便宜上に記載されたものにすぎず、本発明の実施可能な範囲を限定するものではなく、その相対的な関係の変更又は調整は、技術的内容を実質的に変更することなく、本発明の実施可能な範囲と見なされるべきである。 It should be noted that the structures, ratios, sizes, etc. shown in the drawings of this specification are used only in combination with the contents disclosed in this specification for the understanding and viewing of those skilled in the art. Since it is not a limiting condition for limiting the practice of the invention, it has no technical significance and any structural corrections, proportional changes, or size adjustments can be achieved with the effects produced by the present invention. It should be included within the scope of the technical content disclosed in the present invention without affecting the above purpose. In addition, terms such as "top," "bottom," "left," "right," "middle," and "one" cited herein are for the sake of clarity and explanation only. However, it does not limit the practicable scope of the present invention, and changes or adjustments thereof in relative relations should be regarded as the practicable scope of the present invention without substantially changing the technical contents. Is.

(実施例1)
図1から図3に示すように、本実施例により提供される低比抵抗物質の処理装置は、
電子を低比抵抗物質に伝導できる導電極であって、電子が低比抵抗物質に伝導されると、低比抵抗物質が帯電する導電極301と、
帯電した低比抵抗物質に吸引力を付勢することができる吸着極302とを含む。
(Example 1)
As shown in FIGS. 1 to 3, the low resistivity substance processing apparatus provided by this embodiment is
A conductive electrode that can conduct electrons to a low resistivity material, and a conductive electrode 301 that charges the low resistivity material when electrons are conducted to the low resistivity material.
It includes an adsorption electrode 302 capable of urging a charged low resistivity substance with an attractive force.

また、図1に示すように、本実施例における低比抵抗物質の処理装置は、入口3031及び出口3032を有するハウジング303を含み、導電極301及び吸着極302はいずれもハウジング303内に取り付けられる。また、導電極301は絶縁部材304を介してハウジング303の内壁に固着され、吸着極302はハウジング303に直接固着される。本実施例における絶縁部材304は柱状であり、絶縁柱とも呼ばれる。他の実施例では絶縁部材304はさらに塔状などであってもよい。本絶縁部材304は主に汚染防止及び漏電防止のためのものである。本実施例では導電極301と吸着極302はいずれも網状であり(すなわち導電極と吸着極にはいずれも複数の貫通孔が設けられる)、且つ両者はいずれも入口3031と出口3032との間にある。導電極301は負の電位を有し、吸着極302は正の電位を有する。また、本実施例では、ハウジング303は吸着極302と同じ電位を有し、当該ハウジング303は同様に、帯電した低比抵抗物質を吸着することができる。本実施例では、ハウジングに流路3036が設けられ、導電極301と吸着極302はいずれも流路3036に取り付けられ、且つ導電極301の断面積と流路3036の断面積との比率は70%である。 Further, as shown in FIG. 1, the device for treating a low resistivity substance in this embodiment includes a housing 303 having an inlet 3031 and an outlet 3032, and both the conductive electrode 301 and the adsorption electrode 302 are mounted in the housing 303. .. Further, the conductive electrode 301 is fixed to the inner wall of the housing 303 via the insulating member 304, and the suction electrode 302 is directly fixed to the housing 303. The insulating member 304 in this embodiment has a columnar shape and is also called an insulating column. In another embodiment, the insulating member 304 may be further tower-shaped or the like. The insulating member 304 is mainly for preventing contamination and electric leakage. In this embodiment, both the conductive electrode 301 and the adsorption electrode 302 are reticulated (that is, the conductive electrode and the adsorption electrode are both provided with a plurality of through holes), and both are between the inlet 3031 and the outlet 3032. It is in. The conductive electrode 301 has a negative potential, and the adsorption electrode 302 has a positive potential. Further, in this embodiment, the housing 303 has the same potential as the adsorption electrode 302, and the housing 303 can also adsorb a charged low resistivity substance. In this embodiment, the flow path 3036 is provided in the housing, both the conductive electrode 301 and the suction electrode 302 are attached to the flow path 3036, and the ratio of the cross-sectional area of the conductive pole 301 to the cross-sectional area of the flow path 3036 is 70. %.

本実施例はさらに、酸霧を含む工業用排気ガス(本実施例における工業用排気ガスはエンジンの排気ガスである)を処理するために用いられる低比抵抗物質の処理方法であって、導電極301を用いて電子を工業用排気ガス中の酸霧に伝導し、酸霧を帯電させるステップと、吸着極302を用いて帯電した酸霧を吸引し、帯電した酸霧を前記吸着極302に移動させるステップとを含む低比抵抗物質の処理方法を提供する。具体的には、本実施例では、入口3031は、工業用排気ガスを排出するための口に接続され、図1に示すように、動作プロセス及び動作原理は以下のとおりである。工業用排気ガスは、入口3031からハウジング303に流入し、出口3032を通って流出し、このプロセスでは、工業用排気ガスは導電極301を流れ、工業用排気ガス中の酸霧が導電極301と接触するか、又は導電極301との間の距離が一定の値に達すると、導電極301は電子を酸霧に伝達し、酸霧を帯電させ、吸着極302は帯電した酸霧に吸引力を付勢し、酸霧を吸着極302に移動させて吸着極302に付着させ、酸霧は電子を帯びやすく且つ電子を失いやすいという特徴を有するため、ある帯電した霧粒は、吸着極302に移動するプロセスで再び電子を失い、この場合、他の帯電した霧粒は、当該電子を失った霧粒に電子を速く伝達し、このように繰り返すと、霧粒は連続的に帯電した状態にあり、吸着極302は霧粒に吸着力を継続的に付勢し、且つ霧粒を吸着極302に付着させることができ、それにより、工業用排気ガス中の酸霧の除去を実現し、酸霧が大気中に直接排出されて大気汚染を引き起こすのを防ぐ。 The present embodiment is further a method for treating a low specific resistance substance used for treating an industrial exhaust gas containing an acid fog (the industrial exhaust gas in the present embodiment is an engine exhaust gas). The step of conducting electrons to the acid fog in the industrial exhaust gas using the electrode 301 to charge the acid fog, and the step of sucking the charged acid fog using the adsorption electrode 302, and the charged acid fog to the adsorption electrode 302. Provided is a method of treating a low specific resistance substance including a step of moving to. Specifically, in this embodiment, the inlet 3031 is connected to a port for discharging industrial exhaust gas, and as shown in FIG. 1, the operating process and operating principle are as follows. The industrial exhaust gas flows into the housing 303 from the inlet 3031 and flows out through the outlet 3032. In this process, the industrial exhaust gas flows through the conductive electrode 301, and the acid mist in the industrial exhaust gas flows through the conductive electrode 301. When the contact with the gas or the distance between the conductive electrode 301 reaches a certain value, the conductive electrode 301 transmits electrons to the acid fog and charges the acid fog, and the adsorption electrode 302 attracts the charged acid fog. A certain charged mist particle has a characteristic that it is liable to carry an electron and lose an electron because the acid fog is urged to move to the adsorption electrode 302 and adhere to the adsorption electrode 302. The process of moving to 302 lost electrons again, in which case the other charged fog particles quickly transferred the electrons to the lost electrons, and when repeated in this way, the fog particles were continuously charged. In the state, the adsorption electrode 302 continuously urges the mist particles with the adsorption force, and the mist particles can be attached to the adsorption electrode 302, thereby realizing the removal of the acid mist in the industrial exhaust gas. However, it prevents the acid fog from being discharged directly into the atmosphere and causing air pollution.

本実施例により提供される処理方法及び処理装置における各パラメータを表1に示す。 Table 1 shows each parameter in the processing method and processing apparatus provided by this embodiment.

Figure 2022528313000002
Figure 2022528313000002

本実施例では導電極301と吸着極302は吸着ユニットを構成する。且つ吸着ユニットが1つだけある場合、本実施例における低比抵抗物質の処理装置及び処理方法は工業用排気ガス中の酸霧を80%除去することができ、酸霧の排出量を大幅に削減し、環境保護効果が顕著である。 In this embodiment, the conductive electrode 301 and the adsorption electrode 302 form an adsorption unit. Moreover, when there is only one adsorption unit, the low specific resistance substance treatment apparatus and treatment method in this embodiment can remove 80% of the acid fog in the industrial exhaust gas, and the amount of acid fog discharged is significantly reduced. It is reduced and the environmental protection effect is remarkable.

図2に示すように、本実施例では導電極301に3つの第1の接続部3011が設けられ、3つの第1の接続部3011はそれぞれ3つの絶縁部材304を介してハウジング303の内壁上の3つの第2の接続部に固着され、このような接続形態は導電極301とハウジング303との間の接続強度を効果的に向上させることができる。本実施例では第1の接続部3011は円柱状であり、他の実施例では第1の接続部3011は塔状などであってもよい。本実施例では絶縁部材304は円柱状であり、他の実施例において絶縁部材304はさらに塔状などであってもよい。本実施例では第2の接続部は円柱状であり、他の実施例において絶縁部材304はさらに塔状などであってもよい。図1に示すように、本実施例ではハウジング303は入口3031から出口3032の方向に沿って順に分布している第1の筒体3033、第2の筒体3034、及び第3の筒体3035を含む。入口3031は第1の筒体3033の一端にあり、出口3032は第3の筒体3035の一端にある。第1の筒体3033の輪郭の大きさは入口3031から出口3032への方向に沿って徐々に大きくなり、第3の筒体3035の輪郭の大きさは入口3031から出口3032への方向に沿って徐々に小さくなる。本実施例では第2の筒体3034の断面は矩形である。本実施例ではハウジング303は上記構造設計を採用することにより、排気ガスが入口3031で一定の入口流速に達するようにし、より主要なのは、空気流分布をより均一にすることができ、さらに、霧粒など排気ガス中の媒体が導電極301の励起作用によってより帯電しやすくなるようにする。また、本ハウジング303はよりパッケージしやすく、材料の使用量を低減し、且つスペースを節約し、パイプで接続することができ、さらに、絶縁を考慮することに有利である。上記の効果を達成できる任意のハウジング303が許容される。 As shown in FIG. 2, in this embodiment, the conductive electrode 301 is provided with three first connecting portions 3011, and the three first connecting portions 3011 are each provided on the inner wall of the housing 303 via three insulating members 304. It is fixed to the three second connecting portions of the above, and such a connection form can effectively improve the connection strength between the conductive electrode 301 and the housing 303. In this embodiment, the first connecting portion 3011 may be columnar, and in other embodiments, the first connecting portion 3011 may be tower-shaped or the like. In this embodiment, the insulating member 304 is columnar, and in other embodiments, the insulating member 304 may be further tower-shaped. In this embodiment, the second connecting portion is columnar, and in another embodiment, the insulating member 304 may be further tower-shaped or the like. As shown in FIG. 1, in this embodiment, the housing 303 has a first cylinder 3033, a second cylinder 3034, and a third cylinder 3035 which are sequentially distributed along the direction from the inlet 3031 to the outlet 3032. including. The inlet 3031 is at one end of the first cylinder 3033 and the exit 3032 is at one end of the third cylinder 3035. The size of the contour of the first cylinder 3033 gradually increases along the direction from the inlet 3031 to the exit 3032, and the size of the contour of the third cylinder 3035 is along the direction from the inlet 3031 to the exit 3032. Gradually becomes smaller. In this embodiment, the cross section of the second cylinder 3034 is rectangular. In this embodiment, the housing 303 adopts the above structural design so that the exhaust gas reaches a constant inlet flow velocity at the inlet 3031, and more importantly, the air flow distribution can be made more uniform, and further, the mist. The medium in the exhaust gas, such as particles, is made more likely to be charged by the exciting action of the conductive electrode 301. Further, the housing 303 is easier to package, reduces the amount of material used, saves space, can be connected by pipes, and is advantageous in considering insulation. Any housing 303 capable of achieving the above effects is acceptable.

本実施例では入口3031及び出口3032はいずれも円形であり、入口3031は吸気口と呼ばれてもよく、出口3032は排気口と呼ばれてもよい。本実施例における入口3031の直径は300mm~1000mmであり、具体的には500mmである。また、本実施例では出口3032の直径は300mm~1000mmであり、具体的には500mmである。 In this embodiment, both the inlet 3031 and the outlet 3032 are circular, the inlet 3031 may be referred to as an intake port, and the outlet 3032 may be referred to as an exhaust port. The diameter of the inlet 3031 in this embodiment is 300 mm to 1000 mm, specifically 500 mm. Further, in this embodiment, the diameter of the outlet 3032 is 300 mm to 1000 mm, specifically 500 mm.

(実施例2)
図4及び図5に示すように、本実施例は、
電子を低比抵抗物質に伝導できる導電極であって、電子が低比抵抗物質に伝導されると、低比抵抗物質が帯電する導電極301と、
帯電した低比抵抗物質に吸引力を付勢することができる吸着極302とを含む低比抵抗物質の処理装置を提供する。
(Example 2)
As shown in FIGS. 4 and 5, this embodiment is
A conductive electrode that can conduct electrons to a low resistivity material, and a conductive electrode 301 that charges the low resistivity material when electrons are conducted to the low resistivity material.
Provided is a treatment apparatus for a low resistivity substance including an adsorption electrode 302 capable of urging a charged low resistivity substance with an attractive force.

図4及び図5に示すように、本実施例では導電極301は2つあり、2つの導電極301はいずれも網状であり且つツェッパ状である。本実施例では吸着極302は1つあり、当該吸着極302は網状であり且つツェッパ状である。吸着極302は、2つの導電極301の間に位置する。また、図4に示すように、本実施例における低比抵抗物質の処理装置は、入口3031及び出口3032を有するハウジング303をさらに含み、導電極301及び吸着極302はいずれもハウジング303内に取り付けられる。また、導電極301は絶縁部材304を介してハウジング303の内壁に固着され、吸着極302はハウジング303に直接固着される。本実施例における絶縁部材304は柱状であり、絶縁柱とも呼ばれる。本実施例では導電極301は負の電位を有し、吸着極302は正の電位を有する。また、本実施例では、ハウジング303と吸着極302は同じ電位を有し、当該ハウジング303は同様に、帯電した物質を吸着することができる。 As shown in FIGS. 4 and 5, in this embodiment, there are two conductive electrodes 301, and both of the two conductive electrodes 301 are reticulated and zipper-shaped. In this embodiment, there is one suction pole 302, and the suction pole 302 is reticulated and zepper-shaped. The adsorption electrode 302 is located between the two conductive electrodes 301. Further, as shown in FIG. 4, the device for treating a low resistivity substance in this embodiment further includes a housing 303 having an inlet 3031 and an outlet 3032, and both the conductive electrode 301 and the adsorption electrode 302 are mounted in the housing 303. Be done. Further, the conductive electrode 301 is fixed to the inner wall of the housing 303 via the insulating member 304, and the suction electrode 302 is directly fixed to the housing 303. The insulating member 304 in this embodiment has a columnar shape and is also called an insulating column. In this embodiment, the conductive electrode 301 has a negative potential and the adsorption electrode 302 has a positive potential. Further, in this embodiment, the housing 303 and the adsorption electrode 302 have the same potential, and the housing 303 can similarly adsorb a charged substance.

本実施例は酸霧を含む工業的排気ガスを処理するために用いられる、上記低比抵抗物質の処理装置を用いる処理方法であって、導電極301を用いて工業用排気中の酸霧に電子を伝導し、酸霧を帯電させるステップと、吸着極302を用いて帯電した酸霧を吸引し、帯電した酸霧を前記吸着極302に移動させるステップとを含む処理方法をさらに提供する。具体的には、本実施例では、入口3031は、工業用排気ガスを排出するための口に接続され、図4に示すように、動作プロセス及び動作原理は以下のとおりである。工業用排気ガスは、入口3031からハウジング303に流入し、出口3032を通って流出し、このプロセスでは、工業用排気ガスは先に1つの導電極301を流れ、工業用排気ガス中の酸霧が当該導電極301と接触するか、又は当該導電極301との間の距離が一定の値に達すると、導電極301は電子を酸霧に伝達し、一部の酸霧を帯電させ、吸着極302は帯電した酸霧に吸引力を付勢し、酸霧を吸着極302に移動させて吸着極302に付着させ、他の部分の酸霧が吸着極302に吸着されず、当該部分の酸霧は出口3032に向かって流れ続け、当該部分の酸霧がもう1つの導電極301と接触するか、又はもう1つの導電極301との間の距離が一定の値に達すると、当該部分の酸霧が帯電し、ハウジング303は当該部分の帯電した酸霧に吸引力を付勢し、当該部分の帯電した酸霧をハウジング303の内壁に付着させ、それにより、工業用排気ガス中の酸霧の排出量が大幅に削減され、本実施例における処理装置及び処理方法は、工業用排気中の酸霧を90%除去することができ、酸霧を除去する効果が非常に顕著である。また、本実施例では入口3031及び出口3032はいずれも円形であり、入口3031は吸気口と呼ばれてもよく、出口3032は排気口と呼ばれてもよい。 This embodiment is a treatment method using the above-mentioned low specific resistance substance treatment apparatus used for treating an industrial exhaust gas containing an acid mist, and uses a conductive electrode 301 to form an acid mist in the industrial exhaust. Further provided is a processing method including a step of conducting electrons to charge the acid fog and a step of sucking the charged acid fog using the adsorption electrode 302 and moving the charged acid fog to the adsorption electrode 302. Specifically, in this embodiment, the inlet 3031 is connected to a port for discharging industrial exhaust gas, and as shown in FIG. 4, the operating process and operating principle are as follows. The industrial exhaust gas flows into the housing 303 from the inlet 3031 and flows out through the outlet 3032, and in this process, the industrial exhaust gas first flows through one conductive electrode 301, and the acid mist in the industrial exhaust gas. When the gas comes into contact with the conductive electrode 301 or the distance between the conductive electrode 301 reaches a certain value, the conductive electrode 301 transmits electrons to the acid fog, charges a part of the acid fog, and adsorbs the gas. The pole 302 urges the charged acid mist with an attractive force, moves the acid mist to the adsorption pole 302 and attaches it to the adsorption pole 302, and the acid mist in other parts is not adsorbed by the adsorption pole 302, and the acid mist in the portion concerned is not adsorbed. The acid fog continues to flow toward the outlet 3032, and when the acid fog in the portion comes into contact with another conductive pole 301 or the distance between the portion reaches a certain value, the portion The acid mist of the above is charged, and the housing 303 urges the charged acid mist of the portion with an attractive force to adhere the charged acid mist of the portion to the inner wall of the housing 303, whereby in the industrial exhaust gas. The amount of acid fog discharged is significantly reduced, and the treatment apparatus and treatment method in this embodiment can remove 90% of the acid fog in industrial exhaust, and the effect of removing the acid fog is very remarkable. .. Further, in this embodiment, the inlet 3031 and the outlet 3032 are both circular, the inlet 3031 may be referred to as an intake port, and the outlet 3032 may be referred to as an exhaust port.

本実施例により提供される処理方法及び処理装置における各パラメータを表2に示す。 Table 2 shows each parameter in the processing method and processing apparatus provided by this embodiment.

Figure 2022528313000003
Figure 2022528313000003

(実施例3)
本実施例は、
電子を低比抵抗物質に伝導できる導電極であって、電子が低比抵抗物質に伝導されると、低比抵抗物質が帯電する導電極と、
帯電した低比抵抗物質に吸引力を付勢することができる吸着極とを含む低比抵抗物質の処理装置を提供する。
(Example 3)
This embodiment is
A conductive electrode that can conduct electrons to a low resistivity material, and a conductive electrode that charges the low resistivity material when electrons are conducted to the low resistivity material.
Provided is a processing apparatus for a low resistivity substance including an adsorption electrode capable of urging a charged low resistivity substance with an attractive force.

本実施例では導電極は網状であり、且つ導電極は負の電位を有する。また、本実施例では吸着極は面状であり、且つ吸着極は正の電位を有し、当該吸着極は収集極とも呼ばれる。本実施例では吸着極は具体的には平面状であり、且つ導電極は吸着極に平行である。本実施例では導電極と吸着極との間に網面電界が形成される。また、本実施例では、導電極はワイヤで作られた網状構造であり、当該導電極は金網で構成される。本実施例では吸着極の面積は導電極の面積より大きい。 In this embodiment, the conductive electrode is reticulated and the conductive electrode has a negative potential. Further, in this embodiment, the adsorption electrode is planar, the adsorption electrode has a positive potential, and the adsorption electrode is also called a collection electrode. In this embodiment, the adsorption electrode is specifically planar, and the conductive electrode is parallel to the adsorption electrode. In this embodiment, a net electric field is formed between the conductive electrode and the adsorption electrode. Further, in this embodiment, the conductive electrode has a network structure made of wire, and the conductive electrode is composed of a wire mesh. In this embodiment, the area of the adsorption electrode is larger than the area of the conductive electrode.

(実施例4)
本実施例は、
電子を低比抵抗物質に伝導できる導電極であって、電子が低比抵抗物質に伝導されると、低比抵抗物質が帯電する導電極と、
帯電した低比抵抗物質に吸引力を付勢することができる吸着極とを含む低比抵抗物質の処理装置を提供する。
(Example 4)
This embodiment is
A conductive electrode that can conduct electrons to a low resistivity material, and a conductive electrode that charges the low resistivity material when electrons are conducted to the low resistivity material.
Provided is a processing apparatus for a low resistivity substance including an adsorption electrode capable of urging a charged low resistivity substance with an attractive force.

本実施例では導電極は網状であり、且つ導電極は負の電位を有する。また、本実施例では吸着極は筒状であり、且つ吸着極は正の電位を有し、当該吸着極は収集極とも呼ばれる。本実施例における導電極はワイヤ又は金属針によって固定される。本実施例では導電極は筒状の吸着極の幾何学的対称中心に位置する。本実施例では導電極と吸着極との間は網筒電界を形成する。 In this embodiment, the conductive electrode is reticulated and the conductive electrode has a negative potential. Further, in this embodiment, the adsorption electrode has a cylindrical shape, the adsorption electrode has a positive potential, and the adsorption electrode is also referred to as a collection electrode. The conductive electrode in this embodiment is fixed by a wire or a metal needle. In this embodiment, the conductive electrode is located at the center of geometric symmetry of the cylindrical adsorption electrode. In this embodiment, a net tube electric field is formed between the conductive electrode and the adsorption electrode.

(実施例5)
本実施例は、
電子を低比抵抗物質に伝導できる導電極であって、電子が低比抵抗物質に伝導されると、低比抵抗物質が帯電する導電極と、
帯電した低比抵抗物質に吸引力を付勢することができる吸着極とを含む低比抵抗物質の処理装置を提供する。
(Example 5)
This embodiment is
A conductive electrode that can conduct electrons to a low resistivity material, and a conductive electrode that charges the low resistivity material when electrons are conducted to the low resistivity material.
Provided is a processing apparatus for a low resistivity substance including an adsorption electrode capable of urging a charged low resistivity substance with an attractive force.

本実施例では、吸着極は2つあり、導電極は2つの吸着極の間に位置し、左右方向における導電極の長さは、左右方向における吸着極の長さよりも長く、導電極がある左端は、吸着極の左側に位置する。導電極の左端と吸着極の左端は斜めに延びる電力線を形成する。本実施例では導電極と吸着極との間には非対称電界が形成される。使用時には、霧粒などの低比抵抗物質は左から2つの吸着極の間に入る。一部の霧粒が帯電した後、導電極の左端から斜め方向に沿って吸着極の左端に向かって移動し、それにより霧粒を引っ張る効果を形成する。 In this embodiment, there are two adsorption electrodes, the conductive electrode is located between the two adsorption electrodes, the length of the conductive electrode in the left-right direction is longer than the length of the adsorption electrode in the left-right direction, and there is a conductive electrode. The left end is located on the left side of the adsorption electrode. The left end of the conductive electrode and the left end of the adsorption electrode form a power line extending diagonally. In this embodiment, an asymmetric electric field is formed between the conductive electrode and the adsorption electrode. At the time of use, a low resistivity substance such as mist particles enters between the two adsorption poles from the left. After some of the mist particles are charged, they move diagonally from the left end of the conductive electrode toward the left end of the adsorption electrode, thereby forming the effect of pulling the mist particles.

(実施例6)
本実施例は、
電子を低比抵抗物質に伝導できる導電極であって、電子が低比抵抗物質に伝導されると、低比抵抗物質が帯電する導電極と、
帯電した低比抵抗物質に吸引力を付勢することができる吸着極とを含む低比抵抗物質の処理装置を提供する。
(Example 6)
This embodiment is
A conductive electrode that can conduct electrons to a low resistivity material, and a conductive electrode that charges the low resistivity material when electrons are conducted to the low resistivity material.
Provided is a processing apparatus for a low resistivity substance including an adsorption electrode capable of urging a charged low resistivity substance with an attractive force.

本実施例では、導電極と吸着極は吸着ユニットを構成する。本実施例では吸着ユニットは複数あり、且つ全ての吸着ユニットは横方向に沿って分布する。本実施例では全ての吸着ユニットは具体的には左右方向に沿って分布する。 In this embodiment, the conductive electrode and the adsorption electrode form an adsorption unit. In this embodiment, there are a plurality of adsorption units, and all the adsorption units are distributed along the lateral direction. In this embodiment, all the adsorption units are specifically distributed along the left-right direction.

(実施例7)
本実施例は、
電子を低比抵抗物質に伝導できる導電極であって、電子が低比抵抗物質に伝導されると、低比抵抗物質が帯電する導電極と、
帯電した低比抵抗物質に吸引力を付勢することができる吸着極とを含む低比抵抗物質の処理装置を提供する。
(Example 7)
This embodiment is
A conductive electrode that can conduct electrons to a low resistivity material, and a conductive electrode that charges the low resistivity material when electrons are conducted to the low resistivity material.
Provided is a processing apparatus for a low resistivity substance including an adsorption electrode capable of urging a charged low resistivity substance with an attractive force.

本実施例では、導電極と吸着極は吸着ユニットを構成する。本実施例における吸着ユニットは複数あり、且つ全ての吸着ユニットは縦方向に沿って分布する。 In this embodiment, the conductive electrode and the adsorption electrode form an adsorption unit. There are a plurality of adsorption units in this embodiment, and all the adsorption units are distributed along the vertical direction.

(実施例8)
本実施例は、
電子を低比抵抗物質に伝導できる導電極であって、電子が低比抵抗物質に伝導されると、低比抵抗物質が帯電する導電極と、
帯電した低比抵抗物質に吸引力を付勢することができる吸着極とを含む低比抵抗物質の処理装置を提供する。
(Example 8)
This embodiment is
A conductive electrode that can conduct electrons to a low resistivity material, and a conductive electrode that charges the low resistivity material when electrons are conducted to the low resistivity material.
Provided is a processing apparatus for a low resistivity substance including an adsorption electrode capable of urging a charged low resistivity substance with an attractive force.

本実施例では、導電極と吸着極は吸着ユニットを構成する。本実施例では吸着ユニットは複数あり、且つ全ての吸着ユニットは斜め方向に沿って分布する。 In this embodiment, the conductive electrode and the adsorption electrode form an adsorption unit. In this embodiment, there are a plurality of adsorption units, and all the adsorption units are distributed along the diagonal direction.

(実施例9)
本実施例は、
電子を低比抵抗物質に伝導できる導電極であって、電子が低比抵抗物質に伝導されると、低比抵抗物質が帯電する導電極と、
帯電した低比抵抗物質に吸引力を付勢することができる吸着極とを含む低比抵抗物質の処理装置を提供する。
(Example 9)
This embodiment is
A conductive electrode that can conduct electrons to a low resistivity material, and a conductive electrode that charges the low resistivity material when electrons are conducted to the low resistivity material.
Provided is a processing apparatus for a low resistivity substance including an adsorption electrode capable of urging a charged low resistivity substance with an attractive force.

本実施例では、導電極と吸着極は吸着ユニットを構成する。本実施例では吸着ユニットは複数あり、且つ全ての吸着ユニットは螺旋方向に沿って分布する。 In this embodiment, the conductive electrode and the adsorption electrode form an adsorption unit. In this embodiment, there are a plurality of adsorption units, and all the adsorption units are distributed along the spiral direction.

(実施例10)
本実施例は、
電子を低比抵抗物質に伝導できる導電極であって、電子が低比抵抗物質に伝導されると、低比抵抗物質が帯電する導電極と、
帯電した低比抵抗物質に吸引力を付勢することができる吸着極とを含む低比抵抗物質の処理装置を提供する。
(Example 10)
This embodiment is
A conductive electrode that can conduct electrons to a low resistivity material, and a conductive electrode that charges the low resistivity material when electrons are conducted to the low resistivity material.
Provided is a processing apparatus for a low resistivity substance including an adsorption electrode capable of urging a charged low resistivity substance with an attractive force.

本実施例では、導電極と吸着極は吸着ユニットを構成する。本実施例における吸着ユニットは複数あり、且つ全ての吸着ユニットは横方向、縦方向及び斜め方向に沿って分布する。 In this embodiment, the conductive electrode and the adsorption electrode form an adsorption unit. There are a plurality of adsorption units in this embodiment, and all the adsorption units are distributed along the horizontal direction, the vertical direction, and the diagonal direction.

(実施例11)
本実施例は、上記低比抵抗物質の処理装置及びベンチュリプレートを含むエンジンに基づくガス処理システムを提供する。本実施例では低比抵抗物質の処理装置はベンチュリプレートと組み合わせて使用される。
(Example 11)
The present embodiment provides an engine-based gas treatment system including the low resistivity substance treatment apparatus and a Venturi plate. In this embodiment, the treatment device for the low resistivity substance is used in combination with the Venturi plate.

(実施例12)
本実施例は、上記低比抵抗物質の処理装置と、ベンチュリプレートと、NO酸化触媒装置と、オゾン分解装置とを含むエンジンに基づくガス処理システムを提供する。本実施例では、低比抵抗物質の処理装置及びベンチュリプレートはNO酸化触媒装置とオゾン分解装置との間に位置する。且つNO酸化触媒装置にNO酸化触媒があり、オゾン分解装置にオゾン分解触媒がある。
(Example 12)
The present embodiment provides an engine-based gas treatment system including the low specific resistance substance treatment device, a Venturi plate, a NO x oxidation catalyst device, and an ozone decomposition device. In this embodiment, the low resistivity substance treatment device and the venturi plate are located between the NO x oxidation catalyst device and the ozone decomposition device. Moreover, the NO x oxidation catalyst device has a NO x oxidation catalyst, and the ozone decomposition device has an ozone decomposition catalyst.

(実施例13)
本実施例は、上記低比抵抗物質の処理装置と、コロナ装置と、ベンチュリプレートとを含み、そのうち、低比抵抗物質の処理装置はコロナ装置とベンチュリプレートとの間に位置するエンジンに基づくガス処理システムを提供する。
(Example 13)
This embodiment includes the low specific resistance substance processing device, the corona device, and the Venturi plate, of which the low specific resistance substance processing device is an engine-based gas located between the corona device and the Venturi plate. Provides a processing system.

(実施例14)
本実施例は、上記低比抵抗物質の処理装置と、加熱装置と、オゾン分解装置とを含み、そのうち、加熱装置は低比抵抗物質の処理装置とオゾン分解装置との間に位置するエンジンに基づくガス処理システムを提供する。
(Example 14)
This embodiment includes the above-mentioned low resistivity substance processing device, a heating device, and an ozone decomposition device, of which the heating device is an engine located between the low resistivity substance processing device and the ozone decomposition device. Provides a gas treatment system based on.

(実施例15)
本実施例は、上記低比抵抗物質の処理装置と、遠心装置と、ベンチュリプレートとを含み、そのうち、低比抵抗物質の処理装置は遠心装置とベンチュリプレートとの間に位置するエンジンに基づくガス処理システムを提供する。
(Example 15)
This embodiment includes the low specific resistance substance processing device, the centrifugal device, and the Venturi plate, of which the low specific resistance substance processing device is an engine-based gas located between the centrifugal device and the Venturi plate. Provides a processing system.

(実施例16)
本実施例は、上記低比抵抗物質の処理装置と、コロナ装置と、ベンチュリプレートと、分子ふるいとを含み、そのうち、ベンチュリプレート及び低比抵抗物質の処理装置はコロナ装置と分子ふるいとの間に位置するエンジンに基づくガス処理システムを提供する。
(Example 16)
This embodiment includes the low specific resistance substance processing device, the corona device, the venturi plate, and the molecular sieve, of which the venturi plate and the low specific resistance substance processing device are between the corona device and the molecular sieve. Provides an engine-based gas treatment system located in.

(実施例17)
本実施例は、上記低比抵抗物質の処理装置と、コロナ装置と、電磁装置とを含み、そのうち、低比抵抗物質の処理装置はコロナ装置と電磁装置との間に位置するエンジンに基づくガス処理システムを提供する。
(Example 17)
This embodiment includes the low resistivity substance processing device, the corona device, and the electromagnetic device, of which the low resistivity substance processing device is an engine-based gas located between the corona device and the electromagnetic device. Provides a processing system.

(実施例18)
本実施例は、上記低比抵抗物質の処理装置と、コロナ装置と、照射装置とを含み、そのうち、照射装置はコロナ装置と低比抵抗物質の処理装置との間に位置するエンジンに基づくガス処理システムを提供する。
(Example 18)
This embodiment includes the low resistivity substance processing device, the corona device, and the irradiation device, of which the irradiation device is an engine-based gas located between the corona device and the low resistivity substance processing device. Provides a processing system.

(実施例19)
本実施例は、上記低比抵抗物質の処理装置と、コロナ装置と、湿式電気集塵装置とを含み、そのうち、湿式電気集塵装置はコロナ装置と低比抵抗物質の処理装置との間に位置するエンジンに基づくガス処理システム。
(Example 19)
The present embodiment includes the above-mentioned low specific resistance substance processing device, a corona device, and a wet electrostatic precipitator, of which the wet electrostatic precipitator is between the corona device and the low specific resistance substance processing device. A gas treatment system based on the engine located.

(実施例20)
図6に示すように、本実施例は、吸気装置を含むエンジンに基づくガス処理システムを提供し、図1は吸気装置の構造概略図である。前記吸気装置101は吸気口1011と、分離機構1012と、第1の水濾過機構1013と、静電集塵機構1014と、絶縁機構1015と、空気分散機構と、第2の水濾過機構1017及び/又はオゾン機構1018とを含む。本実施例では、第1の水濾過機構1013は本発明により提供される低比抵抗物質の処理装置である。
(Example 20)
As shown in FIG. 6, the present embodiment provides an engine-based gas treatment system including an intake device, and FIG. 1 is a schematic structural diagram of the intake device. The intake device 101 includes an intake port 1011, a separation mechanism 1012, a first water filtration mechanism 1013, an electrostatic dust collection mechanism 1014, an insulation mechanism 1015, an air dispersion mechanism, a second water filtration mechanism 1017 and /. Alternatively, it includes an ozone mechanism 1018. In this embodiment, the first water filtration mechanism 1013 is a treatment device for a low resistivity substance provided by the present invention.

図6に示すように、前記吸気口1011は、粒子物質を有するガスを受けるために前記分離機構1012の吸気壁に設けられる。 As shown in FIG. 6, the intake port 1011 is provided on the intake wall of the separation mechanism 1012 in order to receive a gas having particulate matter.

前記静電集塵機構1014は、アノードダスト収集部10141と、アノードダスト収集部10141内に設けられたカソード放電部10142とを含み、アノードダスト収集部10141とカソード放電部10142との間に非対称な静電界が形成される。 The electrostatic precipitator mechanism 1014 includes an anode dust collecting unit 10141 and a cathode discharge unit 10142 provided in the anode dust collecting unit 10141, and is asymmetrical static electricity between the anode dust collecting unit 10141 and the cathode discharge unit 10142. An electric field is formed.

前記分離機構1012内に設けられた第1の水濾過機構1013は、導電性網板である、前記吸気口1011に設けられた導電極を含み、前記導電性網板は、給電後に、電子を低比抵抗物質に伝導するために用いられる。帯電した低比抵抗物質を吸着するための吸着極は、本実施例では、前記静電集塵機構1014のアノードダスト収集部10141である。 The first water filtration mechanism 1013 provided in the separation mechanism 1012 includes a conductive electrode provided in the intake port 1011 which is a conductive net plate, and the conductive net plate transfers electrons after feeding. It is used to conduct to low resistivity materials. In this embodiment, the adsorption electrode for adsorbing the charged low resistivity substance is the anode dust collecting unit 10141 of the electrostatic precipitator 1014.

図7に示すのは、前記吸気装置内に設けられた第1の水濾過機構の他の実施例の構造概略図である。前記第1の水濾過機構の導電極10131は前記吸気口に設けられ、前記導電極10131は負の電位を有する導電性網板である。また、吸着極10132は前記吸気装置内に配置されて平面網状であり、且つ吸着極10132は正の電位を有し、当該吸着極10132は収集極とも呼ばれる。本実施例では吸着極10132は具体的に平面網状であり、且つ導電極10131は吸着極10132に平行である。本実施例では導電極10131と吸着極10132との間に網面電界が形成される。また、導電極10131は、ワイヤで作られた網状構造であり、当該導電極10131は金網で構成される。当該吸着極10132の面積は、導電極10131の面積よりも大きい。 FIG. 7 is a schematic structural diagram of another embodiment of the first water filtration mechanism provided in the intake device. The conductive electrode 10131 of the first water filtration mechanism is provided at the intake port, and the conductive electrode 10131 is a conductive net plate having a negative potential. Further, the adsorption pole 10132 is arranged in the intake device and has a planar network shape, the suction pole 10132 has a positive potential, and the suction pole 10132 is also referred to as a collection pole. In this embodiment, the adsorption electrode 10132 is specifically a plane network, and the conductive electrode 10131 is parallel to the adsorption electrode 10132. In this embodiment, a mesh electric field is formed between the conductive electrode 10131 and the adsorption electrode 10132. Further, the conductive electrode 10131 has a network structure made of wires, and the conductive electrode 10131 is composed of a wire mesh. The area of the adsorption electrode 10132 is larger than the area of the conductive electrode 10131.

エンジンに基づくガス処理システムはさらに排気ガス処理装置をさらに含み、前記排気ガス処理装置は第3の水濾過機構を含み、本実施例における第1の水濾過機構は、エンジンに基づくガス処理システムの排気ガス処理装置の第3の水濾過機構にも適用される。 The engine-based gas treatment system further includes an exhaust gas treatment device, the exhaust gas treatment device includes a third water filtration mechanism, and the first water filtration mechanism in the present embodiment is of an engine-based gas treatment system. It is also applied to the third water filtration mechanism of the exhaust gas treatment device.

(実施例21)
ディーゼルエンジンの排気ガス処理システムは、図8に示すように、
ディーゼルエンジンの排気ガス中の窒素酸化物(NO)を除去するために用いられる窒素酸化物(NO)除去装置を含み、前記窒素酸化物(NO)除去装置は、例えばオゾン発生器201であって、オゾンを供給するために用いられるオゾン源と、ディーゼルエンジンの排気ガスとオゾンとの混合反応に用いられる反応場202と、窒素酸化物(NO)除去装置によって処理された後のディーゼルエンジンの排気ガス中の硝酸を除去するために用いられる脱硝装置203であって、低抵抗物質処理装置であってオゾン処理後のエンジン排気ガスを電気的凝固し、硝酸を含む水煙を低抵抗物質処理装置の吸着極に蓄積するために用いられる電気凝固ミスト除去ユニット2031と、排気ガスから除去された硝酸水溶液及び/又は硝酸塩水溶液を貯蔵するために用いられる脱硝液収集ユニット2032とを含む脱硝装置203と、脱硝装置によって処理されたディーゼルエンジンの排気ガス中のオゾンを分解するために用いられるオゾンダイジェスター204とを含む。オゾンダイジェスターは紫外線、触媒などの方式によりオゾンを分解することができる。
(Example 21)
The exhaust gas treatment system of a diesel engine is as shown in FIG.
A nitrogen oxide (NO x ) removing device used for removing nitrogen oxides (NO x ) in the exhaust gas of a diesel engine is included, and the nitrogen oxide (NO x ) removing device is, for example, an ozone generator 201. After being treated with an ozone source used to supply ozone, a reaction field 202 used for a mixed reaction of exhaust gas of a diesel engine and ozone, and a nitrogen oxide (NO x ) removing device. A denitration device 203 used to remove nitrogen in the exhaust gas of a diesel engine, which is a low-resistance substance treatment device that electrically solidifies the engine exhaust gas after ozone treatment and has low resistance to water smoke containing nitric acid. Denitration including an electrocoagulation mist removal unit 2031 used to accumulate in the adsorption electrode of a material treatment apparatus and a denitration liquid collection unit 2032 used to store an aqueous nitrate and / or an aqueous nitrate removed from exhaust gas. The apparatus 203 includes an ozone digester 204 used for decomposing ozone in the exhaust gas of the diesel engine treated by the denitration device. The ozone digester can decompose ozone by means of ultraviolet rays, catalysts, and the like.

本実施例では、前記低比抵抗物質の処理装置である電気凝固ミスト除去ユニット2031は、電子を低比抵抗物質に伝導できる導電極であって、電子が低比抵抗物質に伝導されると、低比抵抗物質が帯電する導電極301と、帯電した低比抵抗物質に吸引力を付勢することができる吸着極302とを含む。 In this embodiment, the electrocoagulation mist removing unit 2031 which is the treatment device for the low resistivity substance is a conductive electrode capable of conducting electrons to the low resistivity substance, and when the electrons are conducted to the low resistivity substance, It includes a conductive electrode 301 charged with a low resistivity substance and an adsorption electrode 302 capable of urging an attractive force to the charged low resistivity substance.

本実施例では導電極301は2つあり、2つの導電極301はいずれも網状であり且つツェッパ状である。本実施例では吸着極302は1つあり、当該吸着極302は網状であり且つツェッパ状である。吸着極302は、2つの導電極301の間に位置する。また、図4に示すように、本実施例における低比抵抗物質の処理装置は、入口3031及び出口3032を有するハウジング303をさらに含み、導電極301及び吸着極302はいずれもハウジング303内に取り付けられる。また、導電極301は絶縁部材304を介してハウジング303の内壁に固着され、吸着極302はハウジング303に直接固着される。本実施例における絶縁部材304は柱状であり、絶縁柱とも呼ばれる。本実施例では導電極301は負の電位を有し、吸着極302は正の電位を有する。また、本実施例では、ハウジング303と吸着極302は同じ電位を有し、当該ハウジング303は同様に、帯電した低比抵抗物質を吸着することができる。 In this embodiment, there are two conductive electrodes 301, and both of the two conductive electrodes 301 are reticulated and zipper-shaped. In this embodiment, there is one suction pole 302, and the suction pole 302 is reticulated and zepper-shaped. The adsorption electrode 302 is located between the two conductive electrodes 301. Further, as shown in FIG. 4, the device for treating a low resistivity substance in this embodiment further includes a housing 303 having an inlet 3031 and an outlet 3032, and both the conductive electrode 301 and the adsorption electrode 302 are mounted in the housing 303. Be done. Further, the conductive electrode 301 is fixed to the inner wall of the housing 303 via the insulating member 304, and the suction electrode 302 is directly fixed to the housing 303. The insulating member 304 in this embodiment has a columnar shape and is also called an insulating column. In this embodiment, the conductive electrode 301 has a negative potential and the adsorption electrode 302 has a positive potential. Further, in this embodiment, the housing 303 and the adsorption electrode 302 have the same potential, and the housing 303 can similarly adsorb a charged low resistivity substance.

本実施例はさらに、酸霧を含む工業用排気ガスを処理するために用いられる、上記低比抵抗物質の処理装置を用いる処理方法であって、導電極301を用いて工業用排気ガス中の酸霧に電子を伝導し、酸霧を帯電させるステップと、吸着極302を用いて帯電した酸霧を吸引し、帯電した酸霧を前記吸着極302に移動させるステップとを含む処理方法を提供する。具体的には、本実施例では、入口3031は、工業用排気ガスを排出するための口に接続され、動作プロセス及び動作原理は以下のとおりである。工業用排気ガスは、入口3031からハウジング303に流入し、出口3032を通って流出し、このプロセスでは、工業用排気は先に1つの導電極301を流れ、工業用排気ガス中の酸霧が当該導電極301と接触するか、又は当該導電極301との間の距離が一定の値に達すると、導電極301は電子を酸霧に伝達し、一部の酸霧を帯電させ、吸着極302は帯電した酸霧に吸引力を付勢し、酸霧を吸着極302に移動させて吸着極302に付着させ、他の部分の酸霧が吸着極302に吸着されず、当該部分の酸霧は出口3032に向かって流れ続け、当該部分の酸霧がもう1つの導電極301と接触するか、又は当該導電極301との間の距離が一定の値に達すると、当該部分の酸霧が帯電し、ハウジング303は当該部分の帯電した酸霧に吸引力を付勢し、当該部分の帯電した酸霧をハウジング303の内壁に付着させ、それにより、工業用排気ガス中の酸霧の排出量が大幅に削減され、本実施例における処理装置及び処理方法は、工業用排気ガス中の酸霧を90%除去することができ、酸霧を除去する効果が非常に顕著である。また、本実施例では入口3031及び出口3032はいずれも円形であり、入口3031は吸気口と呼ばれてもよく、出口3032は排気口と呼ばれてもよい。 Further, this embodiment is a treatment method using the above-mentioned low specific resistance substance treatment apparatus used for treating industrial exhaust gas containing acid mist, and is in industrial exhaust gas using a conductive electrode 301. Provided is a processing method including a step of conducting electrons to the acid fog to charge the acid fog and a step of sucking the charged acid fog using the adsorption electrode 302 and moving the charged acid fog to the adsorption electrode 302. do. Specifically, in this embodiment, the inlet 3031 is connected to a port for discharging industrial exhaust gas, and the operating process and operating principle are as follows. The industrial exhaust gas flows into the housing 303 from the inlet 3031 and flows out through the outlet 3032. In this process, the industrial exhaust gas first flows through one conductive electrode 301, and the acid mist in the industrial exhaust gas is discharged. When the conductive electrode 301 comes into contact with the conductive electrode 301 or the distance between the conductive electrode 301 reaches a certain value, the conductive electrode 301 transmits electrons to the acid mist, charges a part of the acid mist, and causes an adsorption electrode. The 302 urges the charged acid mist with an attractive force, moves the acid mist to the adsorption electrode 302 and attaches it to the adsorption electrode 302, and the acid mist in another portion is not adsorbed by the adsorption electrode 302, and the acid in the portion concerned. The fog continues to flow toward the outlet 3032, and when the acid fog in the portion comes into contact with another conductive electrode 301 or the distance from the conductive electrode 301 reaches a certain value, the acid fog in the portion is reached. Charges, and the housing 303 urges the charged acid mist of the portion to attract the charged acid mist of the portion to the inner wall of the housing 303, whereby the acid mist in the industrial exhaust gas is charged. The amount of emissions is significantly reduced, and the treatment apparatus and treatment method in this embodiment can remove 90% of the acid fog in the industrial exhaust gas, and the effect of removing the acid fog is very remarkable. Further, in this embodiment, the inlet 3031 and the outlet 3032 are both circular, the inlet 3031 may be referred to as an intake port, and the outlet 3032 may be referred to as an exhaust port.

本実施例により提供される処理方法及び処理装置における各パラメータを表3に示す。 Table 3 shows each parameter in the processing method and processing apparatus provided by this embodiment.

Figure 2022528313000004
Figure 2022528313000004

要約すると、本発明は、先行技術における様々な欠点を効果的に解消し、高い工業的価値を有する。 In summary, the present invention effectively eliminates various shortcomings in the prior art and has high industrial value.

上記の実施例は、本発明の原理及び効果を例示的に説明するものにすぎず、本発明を限定するために用いられるものではない。当業者であれば、本発明の精神及び範囲から逸脱することなく、上記の実施例を補正又は変更することができる。したがって、本発明に開示された精神及び技術的アイデアから逸脱することなく、当業者によって行われたすべての同等の補正又は変更は、依然として本発明の特許請求の範囲によってカバーされるべきである。 The above examples merely illustrate the principles and effects of the present invention and are not used to limit the present invention. Those skilled in the art may modify or modify the above embodiments without departing from the spirit and scope of the invention. Accordingly, all equivalent amendments or modifications made by one of ordinary skill in the art, without departing from the spiritual and technical ideas disclosed in the invention, should still be covered by the claims of the invention.

301 導電極、
3011 第1の接続部、
302 吸着極、
303 ハウジング、
3031 入口、
3032 出口、
3033 第1の筒体部、
3034 第2の筒体部、
3035 第3の筒体部、
3036 流路、
304 絶縁部材、
101 吸気装置、
1011 吸気口、
1012 分離機構、
1013 第1の水濾過機構、
1014 静電集塵機構、
10141 アノードダスト収集部、
10142 カソード放電部、
1015 第1の絶縁機構、
1016 空気分散機構、
1017 第2の水濾過機構、
1018 オゾン機構、
201 オゾン発生器、
202 反応場、
2021 ハニカム状キャビティ、
2022 隙間、
203 脱硝装置、
2031 電気凝固ミスト除去ユニット、
2032 脱硝液収集ユニット、
204 オゾン分解器。
301 Conductive electrode,
3011 First connection,
302 adsorption pole,
303 housing,
3031 entrance,
Exit 3032,
3033 First tubular body,
3034 Second tubular part,
3035 Third tubular body,
3036 flow path,
304 Insulation member,
101 Intake device,
1011 intake port,
1012 Separation mechanism,
1013 First water filtration mechanism,
1014 electrostatic precipitator,
10141 Anode dust collector,
10142 Cathode discharge part,
1015 First insulation mechanism,
1016 Air Dispersion Mechanism,
1017 Second water filtration mechanism,
1018 Ozone mechanism,
201 Ozone generator,
202 reaction field,
2021 Honeycomb cavity,
2022 gap,
203 denitration device,
2031 Electrocoagulation mist removal unit,
2032 denitration liquid collection unit,
204 Ozonolyzer.

Claims (16)

導電極を用いて電子を低比抵抗物質に伝導し、前記低比抵抗物質を帯電させるステップと、
吸着極を用いて帯電した前記低比抵抗物質を吸引し、帯電した前記低比抵抗物質を前記吸着極に移動させるステップとを含む、
低比抵抗物質の処理方法。
The step of conducting electrons to a low resistivity substance using a conductive electrode and charging the low resistivity substance,
The step includes a step of sucking the charged low resistivity substance using the adsorption electrode and moving the charged low resistivity substance to the adsorption electrode.
How to treat low resistivity substances.
導電極を用いて電子を前記低比抵抗物質に伝導する前記ステップは、電子を前記導電極と前記吸着極の間に位置する低比抵抗物質間で伝送することで、より多くの低比抵抗物質を帯電させるステップを含む、ことを特徴とする請求項1に記載の低比抵抗物質の処理方法。 The step of conducting electrons to the low resistivity material using a conductive electrode is to transfer electrons between the low resistivity material located between the conductive electrode and the adsorption electrode to obtain more low resistivity. The method for treating a low resistivity substance according to claim 1, further comprising a step of charging the substance. 前記導電極と前記吸着極との間は低比抵抗物質を介して電子を伝導し、電流を形成する、ことを特徴とする請求項1又は2に記載の低比抵抗物質の処理方法。 The method for treating a low resistivity substance according to claim 1 or 2, wherein electrons are conducted between the conductive electrode and the adsorption electrode via a low resistivity substance to form an electric current. 導電極を用いて電子を前記低比抵抗物質に伝導する前記ステップは、
前記導電極は、前記低比抵抗物質と接触することにより前記低比抵抗物質を帯電させるステップを含む、ことを特徴とする請求項1~3のいずれか一項に記載の低比抵抗物質の処理方法。
The step of conducting electrons to the low resistivity material using a conductive electrode is
The low resistivity material according to any one of claims 1 to 3, wherein the conductive electrode includes a step of charging the low resistivity material by contacting with the low resistivity material. Processing method.
前記導電極に少なくとも1つの貫通孔が設けられる、ことを特徴とする請求項1~4のいずれか一項に記載の低比抵抗物質の処理方法。 The method for treating a low resistivity substance according to any one of claims 1 to 4, wherein the conductive electrode is provided with at least one through hole. 導電極を用いて電子を前記低比抵抗物質に伝導する前記ステップは、前記低比抵抗物質を前記導電極の貫通孔に通し、前記低比抵抗物質を帯電させるステップを含む、ことを特徴とする請求項5に記載の低比抵抗物質の処理方法。 The step of conducting electrons to the low resistivity material using a conductive electrode is characterized by including a step of passing the low resistivity substance through a through hole of the conductive electrode and charging the low resistivity substance. The method for treating a low resistivity substance according to claim 5. 前記導電極及び前記吸着極はいずれもハウジング内に取り付けられ、前記ハウジングは入口及び出口を有する、ことを特徴とする請求項1~6のいずれか一項に記載の低比抵抗物質の処理方法。 The method for treating a low resistivity substance according to any one of claims 1 to 6, wherein both the conductive electrode and the adsorption electrode are mounted in a housing, and the housing has an inlet and an outlet. .. 前記ハウジングは流路をさらに含み、前記流路は前記ハウジングの中に位置し、前記入口と前記出口との間に位置する、ことを特徴とする請求項1~7のいずれか一項に記載の低比抵抗物質の処理方法。 The one according to any one of claims 1 to 7, wherein the housing further includes a flow path, the flow path is located in the housing, and is located between the inlet and the outlet. How to treat low resistivity substances. 前記低比抵抗物質は入口から流路に入り、出口方向に移動するステップと、前記低比抵抗物質が前記導電極を通過する場合、前記導電極は電子を低比抵抗物質に伝導し、低比抵抗物質を帯電させるステップとを含む、
ことを特徴とする請求項1~8のいずれか一項に記載の低比抵抗物質の処理方法。
The step of the low resistivity substance entering the flow path from the inlet and moving toward the exit, and when the low resistivity substance passes through the conductive electrode, the conductive electrode conducts electrons to the low resistivity substance and is low. Including the step of charging the resistivity material,
The method for treating a low resistivity substance according to any one of claims 1 to 8.
前記導電極の断面積と流路の断面積との比率は99%~10%であることを特徴とする請求項1~9のいずれかに記載の低比抵抗物質の処理方法。 The method for treating a low resistivity substance according to any one of claims 1 to 9, wherein the ratio of the cross-sectional area of the conductive electrode to the cross-sectional area of the flow path is 99% to 10%. 電子を前記低比抵抗物質に伝導できる導電極であって、電子が前記低比抵抗物質に伝導されると、前記低比抵抗物質が帯電する導電極と、
帯電した低比抵抗物質に吸引力を付勢することができる吸着極とを含む、
低比抵抗物質の処理装置。
A conductive electrode capable of conducting electrons to the low resistivity material, and a conductive electrode charged with the low resistivity material when electrons are conducted to the low resistivity material.
Including an adsorption electrode capable of urging a charged low resistivity material with an attractive force,
A device for processing low resistivity substances.
前記導電極に少なくとも1つの貫通孔が設けられる、ことを特徴とする請求項11に記載の低比抵抗物質の処理装置。 The device for treating a low resistivity substance according to claim 11, wherein the conductive electrode is provided with at least one through hole. 前記低比抵抗物質が前記導電極上の貫通孔を通過する場合、前記低比抵抗物質を帯電させる、ことを特徴とする請求項11又は12に記載の低比抵抗物質の処理装置。 The device for treating a low resistivity substance according to claim 11 or 12, wherein when the low resistivity substance passes through a through hole on the conductive electrode, the low resistivity substance is charged. 入口及び出口を有するハウジングをさらに含み、前記導電極及び前記吸着極はいずれも前記ハウジング内に取り付けられる、ことを特徴とする請求項11~13のいずれか一項に記載の低比抵抗物質の処理装置。 The low resistivity material according to any one of claims 11 to 13, further comprising a housing having an inlet and an outlet, wherein both the conductive electrode and the adsorption electrode are mounted in the housing. Processing device. 前記ハウジング内はさらに流路を含み、前記流路は前記ハウジングの中に位置し、前記入口と前記出口との間に位置する、ことを特徴とする請求項11~14のいずれか一項に記載の低比抵抗物質の処理装置。 13. The device for treating a low resistivity substance according to the above. 前記導電極の断面積と前記流路の断面積との比率は99%~10%である、ことを特徴とする請求項11~15のいずれか一項に記載の低比抵抗物質の処理装置。 The device for treating a low resistivity substance according to any one of claims 11 to 15, wherein the ratio of the cross-sectional area of the conductive electrode to the cross-sectional area of the flow path is 99% to 10%. ..
JP2021556694A 2019-03-20 2020-03-19 Treatment method and treatment equipment for low resistivity substances Pending JP2022528313A (en)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
CN201910211284.1 2019-03-20
CN201910211284 2019-03-20
CN201910340443 2019-04-25
CN201910340443.8 2019-04-25
CN201910340445 2019-04-25
CN201910340445.7 2019-04-25
CN201910452169 2019-05-28
CN201910452169.3 2019-05-28
CN201910605156.5 2019-07-05
CN201910605156 2019-07-05
CN201910636710 2019-07-15
CN201910636710.6 2019-07-15
PCT/CN2020/080276 WO2020187305A1 (en) 2019-03-20 2020-03-19 Low specific resistance substance treatment method and treatment device

Publications (1)

Publication Number Publication Date
JP2022528313A true JP2022528313A (en) 2022-06-10

Family

ID=72518958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021556694A Pending JP2022528313A (en) 2019-03-20 2020-03-19 Treatment method and treatment equipment for low resistivity substances

Country Status (4)

Country Link
EP (1) EP3943195A1 (en)
JP (1) JP2022528313A (en)
CN (2) CN113692317A (en)
WO (3) WO2020187305A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114260100A (en) * 2021-12-20 2022-04-01 南京正凡工业科技有限公司 High-temperature and high-dust SCR denitration system for flue gas in cement industry
CN114522021B (en) * 2022-04-21 2022-08-19 江苏江翔光电科技有限公司 Antifog ventilation type becomes optical welding face guard

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2506350Y (en) * 2001-08-27 2002-08-21 兰州电力修造厂 Trough type dust collecting board for electric dust remover
US7141098B2 (en) * 2004-01-22 2006-11-28 3M Innovative Properties Company Air filtration system using point ionization sources
CN100418637C (en) * 2004-06-10 2008-09-17 中钢集团天澄环保科技股份有限公司 Electric dust collector and method thereof
JP2006043550A (en) * 2004-08-03 2006-02-16 Mitsubishi Electric Corp Air cleaner
CN1970162A (en) * 2005-11-23 2007-05-30 陈鑑波 Electrostatic dust catcher
EP1864840A1 (en) * 2006-06-09 2007-12-12 Mario Besi Air filtration device for closed environments
CN201623365U (en) * 2010-03-29 2010-11-03 马骧彬 Compound electrode for oxygen anion generators
CN102794232A (en) * 2011-05-25 2012-11-28 吴福吉 Labyrinth type dust collection box
CN102671763A (en) * 2012-04-30 2012-09-19 莱芜钢铁集团有限公司 Pipeline type high wind speed double charged area electro coagulation device
US9468935B2 (en) * 2012-08-31 2016-10-18 Donald H. Hess System for filtering airborne particles
CN103357504B (en) * 2013-05-08 2015-09-30 王颖鹏 Electrostatic precipitator
CN104437872A (en) * 2013-09-22 2015-03-25 珠海格力电器股份有限公司 Purifying dust removal device and air conditioner
CN104324807B (en) * 2014-10-10 2017-05-17 宁波聚益工具有限公司 Graphite machining center dust removal device
CN105833993A (en) * 2015-01-13 2016-08-10 袁野 Electric-arc-type demister
CN105983486B (en) * 2015-01-28 2018-11-20 上海思奈环保科技有限公司 A kind of air cleaning high-pressure ion electret purification device and air cleaning unit
CN204816887U (en) * 2015-01-28 2015-12-02 上海思奈环保科技有限公司 Air purification high pressure ion electret purifier and air purification device
CN204865391U (en) * 2015-06-25 2015-12-16 中国人民解放军理工大学 Static smoke abatement ware for fire control
CN105689138A (en) * 2016-03-03 2016-06-22 福建紫荆环境工程技术有限公司 Wet-type electric precipitator with multiple layers of cylinder electrodes
CN205701044U (en) * 2016-05-05 2016-11-23 青岛金创环保设备有限公司 A kind of workshop electrostatic dust collection equipment
CN205949064U (en) * 2016-08-15 2017-02-15 中冶京诚工程技术有限公司 Vertical wet -type electrostatic precipitator and hierarchical washing unit thereof
CN106238207A (en) * 2016-08-31 2016-12-21 河南龙成煤高效技术应用有限公司 A kind of electro dust removing method of high temperature height innage dust and gas body
CN106907215A (en) * 2017-02-27 2017-06-30 上海必修福企业管理有限公司 A kind of apparatus and method for processing engine discharging tail gas
CN108620236A (en) * 2017-03-21 2018-10-09 区诗婷 A kind of automatically cleaning plasma air Opsonizing method and device

Also Published As

Publication number Publication date
EP3943195A1 (en) 2022-01-26
CN113692317A (en) 2021-11-23
WO2020187303A1 (en) 2020-09-24
CN114072236A (en) 2022-02-18
WO2020187305A1 (en) 2020-09-24
WO2020187304A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
Jaworek et al. Two-stage electrostatic precipitators for the reduction of PM2. 5 particle emission
EP1232013B1 (en) Method and apparatus for particle agglomeration
WO2005105315A1 (en) Gas treatment equipment
US7597750B1 (en) Hybrid wet electrostatic collector
RU179145U1 (en) Electrostatic air filter
JP2022528313A (en) Treatment method and treatment equipment for low resistivity substances
AU2012336492B2 (en) Apparatus with conductive strip for dust removal
JP2010069360A (en) Electrostatic dust collector
WO2020083165A1 (en) Engine exhaust ozone purification system and method
JP2003144841A (en) Apparatus and method for decomposing hazardous gas by microwave
CN208679458U (en) A kind of combination wet electrical dust precipitator
US20120103184A1 (en) Electrostatic filtration system
CN210211977U (en) Vehicle-mounted air purifier
JP2004193091A (en) Aqueous ion generating device
KR101522902B1 (en) Harmful gas removal device to remove harmful gases at room temperature using induced voltage and plasma and catalyst.
JP3502969B2 (en) Structure of ionization electrode for gas cleaning equipment
RU2762132C1 (en) Electrostatic filtration apparatus and electrostatic charging unit
JP2835480B2 (en) Gas purifier
WO2023180627A1 (en) Collection unit for an air filtration system, air filtration system and method of producing a collection element
AU758932B2 (en) Method and apparatus for particle agglomeration
JPH0631201A (en) Electric precipitator and dust collecting electrode
JP3559356B2 (en) Gas purifier
JPS59154151A (en) Air filter device
KR20210110115A (en) Air cleaning apparatus