JP2022525460A - How to grow a thick oxide film with high thermal oxidation quality at low temperature - Google Patents

How to grow a thick oxide film with high thermal oxidation quality at low temperature Download PDF

Info

Publication number
JP2022525460A
JP2022525460A JP2021555610A JP2021555610A JP2022525460A JP 2022525460 A JP2022525460 A JP 2022525460A JP 2021555610 A JP2021555610 A JP 2021555610A JP 2021555610 A JP2021555610 A JP 2021555610A JP 2022525460 A JP2022525460 A JP 2022525460A
Authority
JP
Japan
Prior art keywords
silicon
oxide film
film
silicon oxide
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021555610A
Other languages
Japanese (ja)
Inventor
カーティス レシュキーズ,
ヨハネス エフ. スウェンバーグ,
ベンジャミン コロンボー,
スティーヴン ヴァハヴェルベク,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2022525460A publication Critical patent/JP2022525460A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本明細書に記載の実施形態は、概して、半導体基板上に低誘電材料を形成する方法に関する。より具体的には、本明細書に記載の実現は、高圧かつ低温で酸化ケイ素膜を形成する方法に関する。酸化ケイ素膜を形成する方法は、ケイ素含有膜が形成された基板を高圧容器の処理領域内にロードすることを含む。本方法は、ケイ素含有膜上に酸化ケイ素膜を形成することをさらに含む。ケイ素含有膜上に酸化ケイ素膜を形成することは、約1バールより高い圧力で、アミン添加物を含む酸化媒体にケイ素含有膜を曝露することと、約100℃と約550℃との間との温度に高圧容器を維持することを含む。【選択図】図2BThe embodiments described herein generally relate to a method of forming a low dielectric material on a semiconductor substrate. More specifically, the realization described herein relates to a method of forming a silicon oxide film at high pressure and low temperature. The method of forming the silicon oxide film comprises loading the substrate on which the silicon-containing film is formed into the processing area of the high pressure vessel. The method further comprises forming a silicon oxide film on the silicon-containing film. Forming a silicon oxide film on a silicon-containing film involves exposing the silicon-containing film to an oxidation medium containing an amine additive at a pressure above about 1 bar and between about 100 ° C and about 550 ° C. Includes maintaining a high pressure vessel at the temperature of. [Selection diagram] FIG. 2B

Description

本明細書に記載の実施形態は、概して、半導体基板上に低誘電材料を形成する方法に関する。より具体的には、本明細書に記載の実施形態は、添加物を含む酸化媒体を用いて、高圧かつ低温で酸化ケイ素膜を形成する方法に関する。 The embodiments described herein generally relate to a method of forming a low dielectric material on a semiconductor substrate. More specifically, the embodiments described herein relate to a method of forming a silicon oxide film at high pressure and low temperature using an oxidation medium containing additives.

メモリ素子、論理素子、マイクロプロセッサ等といった半導体素子の形成には、半導体基板の上に低誘電率誘電体膜を堆積させることが含まれる。低誘電率誘電体膜は、上記素子の製造のための回路を作製するために使用される。現在の乾式又は湿式のケイ素酸化技術は、800℃より高い温度で実施されることが多い。しかしながら、半導体基板上に堆積させられる材料は、800℃より高い温度には耐えられない可能性がある。その結果、低誘電率誘電体膜を、800℃の熱バジェットよりも高い温度では堆積させることができず、熱バジェットの範囲内で堆積された膜の劣悪な品質に悩まされることが多い。加えて、現在の乾式又は湿式のケイ素酸化技術では、厚さが100オングストロームよりも大きくて品質の高い低誘電率誘電体膜を堆積させることができない。 The formation of semiconductor devices such as memory devices, logic devices, microprocessors, and the like includes depositing a low dielectric constant dielectric film on a semiconductor substrate. The low dielectric constant dielectric film is used to make circuits for the manufacture of the above devices. Current dry or wet silicon oxidation techniques are often performed at temperatures above 800 ° C. However, the material deposited on the semiconductor substrate may not withstand temperatures above 800 ° C. As a result, the low dielectric constant dielectric film cannot be deposited at temperatures higher than the thermal budget of 800 ° C. and often suffers from poor quality of the deposited film within the thermal budget. In addition, current dry or wet silicon oxidation techniques are unable to deposit high quality low dielectric constant dielectric films with thicknesses greater than 100 angstroms.

従って、熱バジェット目標を満たす温度で、高品質の低誘電率誘電体膜を堆積させる方法が必要とされている。 Therefore, there is a need for a method of depositing high quality low dielectric constant dielectric films at temperatures that meet the thermal budget target.

本明細書に記載の実施形態は、概して、半導体基板上に低誘電率誘電材料を形成する方法に関する。より具体的には、本明細書に記載の実施形態は、高圧及び低温で酸化ケイ素膜を形成する方法に関する。酸化ケイ素膜を形成する方法は、ケイ素含有膜が形成された基板を、高圧容器の処理領域内にロードすることを含む。本方法は、ケイ素含有膜上に酸化ケイ素膜を形成することをさらに含む。ケイ素含有膜上に酸化ケイ素膜を形成することは、約1バールより高い圧力で、アミン添加物を含む酸化媒体にケイ素含有膜を曝露することと、約100℃と約550℃との間の温度に高圧容器を維持することを含む。 The embodiments described herein generally relate to a method of forming a low dielectric constant dielectric material on a semiconductor substrate. More specifically, the embodiments described herein relate to a method of forming a silicon oxide film at high pressure and low temperature. The method of forming a silicon oxide film comprises loading the substrate on which the silicon-containing film is formed into the processing area of the high pressure vessel. The method further comprises forming a silicon oxide film on the silicon-containing film. Forming a silicon oxide film on a silicon-containing film involves exposing the silicon-containing film to an oxidation medium containing an amine additive at a pressure greater than about 1 bar and between about 100 ° C and about 550 ° C. Includes maintaining a high pressure vessel at temperature.

酸化ケイ素膜を形成する方法は、ケイ素含有膜が堆積された基板を高圧容器の処理領域内にロードすることと、ケイ素含有膜上に酸化ケイ素膜を形成することを含む。ケイ素含有膜上に酸化ケイ素膜を形成することは、約1バールより高い圧力で、アミン添加物を含む酸化媒体にケイ素含有膜を曝露することと、約100℃と約550℃との間の温度に高圧容器を維持することを含む。 The method for forming the silicon oxide film includes loading the substrate on which the silicon-containing film is deposited into the processing region of the high-pressure container and forming the silicon oxide film on the silicon-containing film. Forming a silicon oxide film on a silicon-containing film involves exposing the silicon-containing film to an oxidation medium containing an amine additive at a pressure greater than about 1 bar and between about 100 ° C and about 550 ° C. Includes maintaining a high pressure vessel at temperature.

コンフォーマルな酸化ケイ素膜を形成する方法は、複数のビアを含む基板上にケイ素含有膜を堆積させることを含む。ケイ素含有膜が、基板の各露出表面及び複数のビアの上に堆積させられる。本方法は、ケイ素含有膜が堆積された基板を、高圧容器の処理領域内にロードすることと、ケイ素含有膜上にコンフォーマルな酸化ケイ素膜を形成することをさらに含む。ケイ素含有膜上にコンフォーマルな酸化ケイ素膜を形成することは、アミン添加物を含む酸化媒体にケイ素含有膜を曝露することであって、酸化媒体が約1,000ppm~約20,000ppmのアミン添加物を含む、ケイ素含有膜を曝露すること、及び、約100℃と約550℃との間の温度かつ約1バールと約65バールの間の圧力に高圧容器を維持することを含む。 A method of forming a conformal silicon oxide film comprises depositing a silicon-containing film on a substrate containing a plurality of vias. A silicon-containing film is deposited on each exposed surface of the substrate and on multiple vias. The method further comprises loading the substrate on which the silicon-containing film is deposited into the processing area of the high pressure vessel and forming a conformal silicon oxide film on the silicon-containing film. Forming a conformal silicon oxide film on a silicon-containing film is the exposure of the silicon-containing film to an oxidation medium containing an amine additive, where the oxide medium is about 1,000 ppm to about 20,000 ppm of amine. It involves exposing a silicon-containing membrane containing additives and maintaining a high pressure vessel at a temperature between about 100 ° C and about 550 ° C and a pressure between about 1 bar and about 65 bar.

酸化ケイ素膜を形成する方法は、ケイ素含有膜が堆積された基板を、高圧容器の処理領域内にロードすることと、ケイ素含有膜上に酸化ケイ素膜を形成することを含む。ケイ素含有膜上に酸化ケイ素膜を形成することは、アンモニアを含む酸化媒体にケイ素含有膜を曝露することであって、酸化媒体が蒸気、酸素、及び過酸化物の群から選択される、ケイ素含有膜を曝露することと、約400℃と約505℃との間の温度かつ約10バールより高い圧力に高圧容器を維持することと、を含む。酸化ケイ素膜は、約100オングストロームと約400オングストロームの間の均一な厚さを有する。 The method for forming the silicon oxide film includes loading the substrate on which the silicon-containing film is deposited into the processing area of the high-pressure container and forming the silicon oxide film on the silicon-containing film. Forming a silicon oxide film on a silicon-containing film is exposing the silicon-containing film to an oxidizing medium containing ammonia, wherein the oxidizing medium is selected from the group of steam, oxygen, and peroxides, silicon. It involves exposing the containing membrane and maintaining the high pressure vessel at a temperature between about 400 ° C. and about 505 ° C. and a pressure above about 10 bar. The silicon oxide film has a uniform thickness between about 100 angstroms and about 400 angstroms.

本開示の上記の特徴を詳細に理解することができるように、上記で簡単に要約した本開示のより具体的な説明を、実施形態を参照することによって行うことができ、その幾つかを添付の図面に示す。しかしながら、添付の図面は例示的な実施形態を示しているのにすぎず、従って、その範囲を限定するものと見做すべきではなく、他の同等に有効な実施形態を許容しうることに注意されたい。 More specific description of the present disclosure briefly summarized above can be provided by reference to embodiments, some of which are attached, so that the above features of the present disclosure can be understood in detail. Shown in the drawing. However, the accompanying drawings merely illustrate exemplary embodiments and should therefore not be considered limiting their scope and allow other equally effective embodiments. Please be careful.

本明細書に記載の1つ以上の実現を実施するために使用されうる高圧容器の一例の簡略化された正面断面図を示す。Shown is a simplified front sectional view of an example of a high pressure vessel that may be used to carry out one or more of the realizations described herein. 本明細書に開示された実施形態に係る、ケイ素含有膜が堆積された半導体素子を示す。A semiconductor device on which a silicon-containing film is deposited according to an embodiment disclosed in the present specification is shown. 本明細書に開示された実施形態に係る、コンフォーマルで均一な酸化ケイ素膜が形成された半導体素子の一図を示す。FIG. 6 shows a diagram of a semiconductor device on which a conformal and uniform silicon oxide film is formed according to an embodiment disclosed in the present specification. 本明細書に開示された実施形態に係る、コンフォーマルで均一な酸化ケイ素膜が形成された半導体素子の一図を示す。FIG. 6 shows a diagram of a semiconductor device on which a conformal and uniform silicon oxide film is formed according to an embodiment disclosed in the present specification. 本明細書に開示された実施形態に係る、コンフォーマルで均一な酸化ケイ素膜が形成された半導体素子の一図を示す。FIG. 6 shows a diagram of a semiconductor device on which a conformal and uniform silicon oxide film is formed according to an embodiment disclosed in the present specification. 一実施形態に係る、コンフォーマルな酸化ケイ素膜を形成する方法を示すフローチャートである。It is a flowchart which shows the method of forming a conformal silicon oxide film which concerns on one Embodiment.

理解を容易にするため、可能な場合には、複数の図に共通する同一の要素を示すのに同一の参照番号を使用した。1の実施形態の構成要素及び特徴が、更なる記載がなくとも、他の実施形態に有益に組み込まれうることが想定されている。 For ease of understanding, the same reference numbers were used to indicate the same elements common to multiple figures, where possible. It is envisioned that the components and features of one embodiment may be beneficially incorporated into other embodiments without further description.

本明細書に記載の実施形態は、概して、半導体基板上に低誘電率誘電材料を形成する方法に関する。より具体的には、本明細書に記載の実施形態は、高圧かつ低温で酸化ケイ素膜を形成する方法に関する。酸化ケイ素膜を形成する方法は、ケイ素含有膜が形成された基板を、高圧容器の処理領域内にロードすることを含む。本方法は、ケイ素含有膜上に酸化ケイ素膜を形成することをさらに含む。ケイ素含有膜上に酸化ケイ素膜を形成することは、約1バールより高い圧力で、アミン添加物を含む酸化媒体にケイ素含有膜を曝露することと、約100℃と約550℃との間の温度に高圧容器を維持することを含む。 The embodiments described herein generally relate to a method of forming a low dielectric constant dielectric material on a semiconductor substrate. More specifically, the embodiments described herein relate to a method of forming a silicon oxide film at high pressure and low temperature. The method of forming a silicon oxide film comprises loading the substrate on which the silicon-containing film is formed into the processing area of the high pressure vessel. The method further comprises forming a silicon oxide film on the silicon-containing film. Forming a silicon oxide film on a silicon-containing film involves exposing the silicon-containing film to an oxidation medium containing an amine additive at a pressure greater than about 1 bar and between about 100 ° C and about 550 ° C. Includes maintaining a high pressure vessel at temperature.

本明細書に記載の実現を、以下では、高圧酸化システムを用いて実施することが可能な高圧酸化プロセスを参照しながら説明することにする。図1における本明細書に記載の装置の説明は例示的なものであり、本明細書に記載の実施形態の範囲を限定するものとして理解又は解釈されるべきではない。 The realizations described herein will be described below with reference to high pressure oxidation processes that can be carried out using a high pressure oxidation system. The description of the apparatus described herein in FIG. 1 is exemplary and should not be understood or construed as limiting the scope of the embodiments described herein.

図1は、高圧アニーリングプロセスための高圧容器100の簡略化された正面断面図である。高圧容器100は、外面112と、処理領域115を取り囲む内面113とを含む本体110を有する。図1におけるような幾つかの実現において、本体110は、環状の断面を有しているが、他の実施形態において、本体110の断面は矩形又は任意の閉じた形状であってよい。本体110の外面112は、例えば、限定するものではないが、ステンレス鋼といった耐食鋼(CRS:corrosion resistant steel)で作製されうる。一実現において、本体110の内面113は、例えば、限定するものではないが、Hastelloy(登録商標)といった、腐食に対して高い耐性を示すニッケル系合金鋼から作製される。 FIG. 1 is a simplified front sectional view of a high pressure vessel 100 for a high pressure annealing process. The high pressure container 100 has a main body 110 including an outer surface 112 and an inner surface 113 surrounding the processing area 115. In some realizations as in FIG. 1, the body 110 has an annular cross section, but in other embodiments, the cross section of the body 110 may be rectangular or any closed shape. The outer surface 112 of the main body 110 can be made of corrosion resistant steel (CRS: corrosion resistant steel) such as, for example, but not limited to stainless steel. In one realization, the inner surface 113 of the body 110 is made of, for example, but not limited to, a nickel-based alloy steel that exhibits high resistance to corrosion, such as Hastelloy®.

高圧容器100は、本体110内の処理領域115を密閉するよう構成されたドア120を有しており、これにより、ドア120が開かれていると、処理領域115にアクセスすることが可能である。高圧シール部122が、ドア120を本体110に対してシールするために利用され、従って、処理のために処理領域115がシールされる。高圧シール部122は、例えば、限定するものではないが、ペルフロウロエラストマーといったポリマーから作製されうる。冷却チャネル124が、高圧シール部122の近傍のドア120上に配置されており、従って、処理中に高圧シール部122が、高圧シール部122の最大安全動作温度を下回る温度で維持される。高圧シール部122を約150℃と約250℃との間の温度に維持するために、冷却チャネル124の中を、冷却剤(例えば、限定するものではないが、不活性の、誘電性の、及び/又は高性能の熱伝達流体など)が循環しうる。冷却チャネル124の中の冷却剤の流れが、コントローラ180によって、温度センサ116又は流量センサ(図示せず)から受信されるフィードバックを介して制御される。 The high pressure container 100 has a door 120 configured to seal the processing area 115 in the main body 110, whereby the processing area 115 can be accessed when the door 120 is open. .. A high pressure seal 122 is used to seal the door 120 against the body 110, thus sealing the processing area 115 for processing. The high pressure seal portion 122 can be made of, for example, but not limited to, a polymer such as a perfulo-roelastomer. The cooling channel 124 is located on the door 120 in the vicinity of the high pressure seal portion 122 so that the high pressure seal portion 122 is maintained at a temperature below the maximum safe operating temperature of the high pressure seal portion 122 during the process. In order to maintain the high pressure seal 122 at a temperature between about 150 ° C and about 250 ° C, the cooling channel 124 is filled with a coolant (eg, but not limited to, inert, dielectric. And / or high performance heat transfer fluids, etc.) can circulate. The flow of coolant in the cooling channel 124 is controlled by the controller 180 via feedback received from a temperature sensor 116 or a flow rate sensor (not shown).

高圧容器100は、本体110を貫通するポート117を有している。ポート117は、それを通るパイプ118であって、ヒータ119に連結されたパイプ118を有する。パイプ118の一端が、処理領域115に接続されている。パイプ118の他端が、入口導管157と出口導管161に分岐している。入口導管157は、遮断バルブ155を介してガスパネル150に流体接続されている。入口導管157は、ヒータ158に連結されている。出口導管161は、遮断バルブ165を介して凝縮器(condenser)160に流体接続されている。出口導管161は、ヒータ162に連結されている。ヒータ119、158、及び162は、パイプ118、入口導管157、及び出口導管161のそれぞれを通る処理ガス、例えば酸化媒体を、当該処理ガスの凝縮点と約250℃との間の温度に維持するよう構成されている。ヒータ119、158、及び162は、電源145によって電力供給される。 The high-pressure container 100 has a port 117 that penetrates the main body 110. Port 117 is a pipe 118 through which it has a pipe 118 connected to a heater 119. One end of the pipe 118 is connected to the processing area 115. The other end of the pipe 118 branches into an inlet conduit 157 and an outlet conduit 161. The inlet conduit 157 is fluidly connected to the gas panel 150 via a shutoff valve 155. The inlet conduit 157 is connected to the heater 158. The outlet conduit 161 is fluidly connected to the condenser 160 via a shutoff valve 165. The outlet conduit 161 is connected to the heater 162. The heaters 119, 158, and 162 maintain the processing gas, eg, an oxidation medium, passing through each of the pipe 118, the inlet conduit 157, and the outlet conduit 161 at a temperature between the condensation point of the processing gas and about 250 ° C. It is configured as. The heaters 119, 158, and 162 are powered by a power source 145.

ガスパネル150は、酸化媒体といった処理流体を、パイプ118を通じて処理領域115内に転送するために、加圧下で入口導管157内に供給するよう構成されている。酸化媒体は、アミン添加物を含む。処理領域115に導入される処理ガスの圧力は、本体110に連結された圧力センサ114によって監視されている。凝縮器160が、冷却流体と流体的に接続されており、パイプ118を介して処理領域115から除去された後に出口導管161を流過する気体生成物を凝結させるよう構成されている。凝縮器160は、気体生成物を気相から液相に変える。ポンプ170が、凝縮器160に流体接続されており、液化した生成物を凝縮器160から排出する。ガスパネル150、凝縮器160、及びポンプ170の動作は、コントローラ180によって制御される。 The gas panel 150 is configured to supply a processing fluid, such as an oxidation medium, into the inlet conduit 157 under pressure to transfer it through the pipe 118 into the processing area 115. Oxidation medium contains amine additives. The pressure of the processing gas introduced into the processing area 115 is monitored by the pressure sensor 114 connected to the main body 110. The condenser 160 is fluidly connected to the cooling fluid and is configured to condense the gas product that flows through the outlet conduit 161 after being removed from the processing area 115 via the pipe 118. The condenser 160 changes the gas product from a gas phase to a liquid phase. A pump 170 is fluidly connected to the condenser 160 and ejects the liquefied product from the condenser 160. The operation of the gas panel 150, the condenser 160, and the pump 170 is controlled by the controller 180.

遮断バルブ155及び165は、一度に一流体のみがパイプ118を介して処理領域115に流入するように構成されている。遮断バルブ155が開いているときには、遮断バルブ165が閉じられており、これにより、入口導管157を通る処理流体が処理領域115の中へと進入し、処理ガスの流れが凝縮器160に入ることが防止される。その一方で、遮断バルブ165が開いているときには、遮断バルブ155が閉じられており、これにより、気体生成物が処理領域115から除去されて出口導管161を通って流れ、気体生成物の流れがガスパネル150に入ることが防止される。 The shutoff valves 155 and 165 are configured such that only one fluid flows into the processing region 115 through the pipe 118 at a time. When the shutoff valve 155 is open, the shutoff valve 165 is closed so that the processing fluid passing through the inlet conduit 157 enters the processing area 115 and the flow of processing gas enters the condenser 160. Is prevented. On the other hand, when the shutoff valve 165 is open, the shutoff valve 155 is closed, which removes the gas product from the processing region 115 and flows through the outlet conduit 161 to allow the flow of the gas product. It is prevented from entering the gas panel 150.

1つ以上のヒータ140a、140b(総称140)が、本体110に載置されており、高圧容器100内の処理領域115を加熱するよう構成されている。幾つかの実現において、図1に示すように、ヒータ140が本体110の外面112に載置されているが、他の実施形態では、ヒータ140が本体110の内面113に載置されてよい。各ヒータ140は、抵抗コイル、ランプ、セラミックヒータ、グラファイト系CFC(carbon fiber composite、炭素繊維複合材)ヒータ、ステンレス鋼ヒータ、又はアルミヒータでありうる。ヒータ140は、電源145により電力供給されている。ヒータ140への電力は、温度センサ116から受け取ったフィードバックを介してコントローラ180によって制御される。温度センサ116が本体110に結合されており、処理領域115の温度を監視する。 One or more heaters 140a and 140b (generally referred to as 140) are mounted on the main body 110 and are configured to heat the processing region 115 in the high-pressure container 100. In some realizations, as shown in FIG. 1, the heater 140 is mounted on the outer surface 112 of the main body 110, but in other embodiments, the heater 140 may be mounted on the inner surface 113 of the main body 110. Each heater 140 may be a resistance coil, a lamp, a ceramic heater, a graphite-based CFC (carbon fiber composite) heater, a stainless steel heater, or an aluminum heater. The heater 140 is powered by the power supply 145. The power to the heater 140 is controlled by the controller 180 via the feedback received from the temperature sensor 116. The temperature sensor 116 is coupled to the main body 110 and monitors the temperature of the processing region 115.

アクチュエータ(図示せず)に結合されたカセット130が、処理領域115の中へと及び処理領域115から外へ移動させられる。カセット130は、上面132と、底面134と、壁部136とを有している。カセット130の壁部136は、複数の基板ストレージスロット138を有している。各基板ストレージスロット138は、カセット130の壁部136に沿って均等に間隔が置かれている。各基板ストレージスロット138は、基板135をその中で保持するよう構成される。カセット130は、基板135を保持するための50個ものストレージスロット138を有しうる。カセット130は、高圧容器100の中へと、及び高圧容器100から外へ複数の基板135を移送するための、並びに、処理領域115内で複数の基板135を処理するための有効な移送手段を提供する。 The cassette 130 coupled to the actuator (not shown) is moved into and out of the processing area 115. The cassette 130 has an upper surface 132, a bottom surface 134, and a wall portion 136. The wall portion 136 of the cassette 130 has a plurality of board storage slots 138. The board storage slots 138 are evenly spaced along the wall 136 of the cassette 130. Each board storage slot 138 is configured to hold the board 135 therein. The cassette 130 may have as many as 50 storage slots 138 for holding the substrate 135. The cassette 130 provides an effective transfer means for transferring the plurality of substrates 135 into and out of the high pressure vessel 100 and for processing the plurality of substrates 135 within the processing area 115. offer.

コントローラ180が、高圧容器100の動作を制御する。コントローラ180は、ガスパネル150、凝縮器160、ポンプ170、遮断バルブ155及び165、並びに電源145の動作を制御する。コントローラ180はまた、温度センサ116、圧力センサ114、及び冷却チャネル124に通信可能に接続されている。コントローラ180は、中央処理装置(CPU)182、メモリ184、及び補助回路186を含む。CPU182は、産業用設定で使用されうる任意の形態の汎用コンピュータプロセッサでありうる。メモリ184は、ランダムアクセスメモリ、読み出し専用メモリ、フロッピィ、又は、ハードディスクドライブ、又は、他の形態によるデジタルストレージでありうる。補助回路186が、従来ではCPU182に接続されており、キャッシュ、クロック回路、入力/出力システム、電源等を含みうる。 The controller 180 controls the operation of the high pressure container 100. The controller 180 controls the operation of the gas panel 150, the condenser 160, the pump 170, the shutoff valves 155 and 165, and the power supply 145. The controller 180 is also communicably connected to the temperature sensor 116, the pressure sensor 114, and the cooling channel 124. The controller 180 includes a central processing unit (CPU) 182, a memory 184, and an auxiliary circuit 186. The CPU 182 can be any form of general purpose computer processor that can be used in industrial settings. The memory 184 can be a random access memory, a read-only memory, a floppy, or a hard disk drive, or other form of digital storage. The auxiliary circuit 186 is conventionally connected to the CPU 182 and may include a cache, a clock circuit, an input / output system, a power supply, and the like.

高圧容器100は、550℃以下の温度で、複数の基板135上に酸化ケイ素膜を形成する方法を実施するための利便性の高いチャンバを提供する。高圧容器100を予加熱して、処理領域115を約550℃以下の温度に維持するために、ヒータ140に電源が入れられる。同時に、パイプ118、入口導管157、及び出口導管161をそれぞれ予加熱するために、ヒータ119、158、及び162に電源が入れられる。 The high pressure vessel 100 provides a highly convenient chamber for carrying out a method of forming a silicon oxide film on a plurality of substrates 135 at a temperature of 550 ° C. or lower. The heater 140 is powered on to preheat the high pressure vessel 100 and keep the processing area 115 at a temperature of about 550 ° C. or lower. At the same time, the heaters 119, 158, and 162 are powered on to preheat the pipe 118, the inlet conduit 157, and the outlet conduit 161 respectively.

複数の基板135が、カセット130にロードされる。カセット130を処理領域115内へと移動させるために、高圧容器100のドア120が開けられる。次いで、ドア120が密閉されて、高圧容器100が高圧容器に変わる。ドア120が一旦閉じられると、処理領域115からの圧力のリークが無いことが、高圧シール部122によって保証される。 A plurality of boards 135 are loaded into the cassette 130. The door 120 of the high pressure vessel 100 is opened to move the cassette 130 into the processing area 115. The door 120 is then sealed and the high pressure container 100 is transformed into a high pressure container. Once the door 120 is closed, the high pressure seal portion 122 ensures that there is no pressure leak from the processing area 115.

処理ガス(すなわち、アミン添加物を含む酸化媒体)が、ガスパネル150によって高圧容器100の内部の処理領域115内に供給される。遮断バルブ155が、コントローラ180によって開放され、処理ガスが入口導管157及びパイプ118を介して処理領域115に流込することが可能となる。処理ガスが、例えば、約500sccm~約2000sccmの流量で導入される。この時点では、遮断バルブ165は閉じられたままになっている。幾つかの実現において、高圧容器100内の圧力が徐々に上げられる。高圧は、特にトレンチのより深い部分では、ケイ素含有膜中に酸素を送り込んでより完全な酸化状態とするために効果的である。 The processing gas (ie, the oxidation medium containing the amine additive) is supplied by the gas panel 150 into the processing area 115 inside the high pressure vessel 100. The shutoff valve 155 is opened by the controller 180, allowing the processing gas to flow into the processing region 115 via the inlet conduit 157 and the pipe 118. The treatment gas is introduced, for example, at a flow rate of about 500 sccm to about 2000 sccm. At this point, the shutoff valve 165 remains closed. In some realizations, the pressure in the high pressure vessel 100 is gradually increased. High pressure is effective for pumping oxygen into the silicon-containing membrane for a more complete oxidation state, especially in the deeper parts of the trench.

本明細書に記載の幾つかの実現において、処理ガスは、約1バールと約65バールとの間(例えば、約35バールと約65バールとの間、又は約40バールと60バールとの間)の圧力下にある、アミン添加物を含む蒸気である。しかしながら、他の実現において、他の酸化媒体(例えば、限定するものではないが、オゾン、酸素、過酸化物、又は水酸化物を含有する化合物)が、蒸気と共に、又は蒸気の代わりに使用されうる。酸化媒体に添加されるアミン添加物は、アンモニウム又はアンモニアでありうる。ガスパネル150によって十分な蒸気が放出されたときには、遮断バルブ155が、コントローラ180によって閉じられる。 In some of the implementations described herein, the processing gas is between about 1 bar and about 65 bar (eg, between about 35 bar and about 65 bar, or between about 40 bar and 60 bar). ) Is a vapor containing an amine additive under pressure. However, in other realizations, other oxidizing media (eg, but not limited to, compounds containing ozone, oxygen, peroxides, or hydroxides) are used with or in place of the vapor. sell. The amine additive added to the oxidation medium can be ammonium or ammonia. When sufficient steam is released by the gas panel 150, the shutoff valve 155 is closed by the controller 180.

基板135の処理中に、処理領域115、並びに、入口導管157、出口導管161、及びパイプ118が、処理ガスが気相のまま保たれるような温度及び圧力に維持される。処理領域115、並びに、入口導管157、出口導管161、及びパイプ118の温度も、印加されている圧力において処理ガスの凝縮点(例えば、100℃)より高いが550℃以下の温度に維持される。処理領域115、並びに、入口導管157、出口導管161、及びパイプ118も、適用されている温度において処理ガスの凝縮圧力を下回る圧力に維持される。これに対応して、処理ガスが選択される。本書に記載の実現において、高圧容器が約100℃と約550℃との間の温度に維持されているときには、約1バールと約65バールとの間の圧力下にある蒸気が、有効な処理ガスとなる。これにより、蒸気が凝縮して水になる(このことは、基板135に堆積されたケイ素膜にとって有害である)ことが起こらないことが保証される。 During the processing of the substrate 135, the processing area 115, as well as the inlet conduit 157, the outlet conduit 161 and the pipe 118, are maintained at a temperature and pressure such that the treated gas remains in gas phase. The temperature of the treatment area 115, as well as the inlet conduit 157, the outlet conduit 161 and the pipe 118, is also maintained at temperatures above the condensation point of the treated gas (eg, 100 ° C.) but below 550 ° C. at the applied pressure. .. The treatment area 115, as well as the inlet conduit 157, the outlet conduit 161 and the pipe 118, are also maintained at a pressure below the condensation pressure of the treatment gas at the applied temperature. Correspondingly, the processing gas is selected. In the implementation described herein, when the high pressure vessel is maintained at a temperature between about 100 ° C and about 550 ° C, steam under pressures between about 1 bar and about 65 bar is an effective treatment. It becomes gas. This ensures that the vapor does not condense into water, which is detrimental to the silicon film deposited on the substrate 135.

膜が、当該膜の湿式エッチング速度と、漏電及び絶縁破壊の特徴と、を試験することによって検証される、目標とする密度を有することが確認されると、処理が完了する。次いで、遮断バルブ165が開放されて、処理ガスが、処理領域115からパイプ118及び出口導管161を介して凝縮器160に流入する。処理ガスが、凝縮器160において凝縮されて液相になる。次いで、液化した処理ガスが、ポンプ170によって除去される。液化した処理ガスが完全に除去されると、遮断バルブ165が閉じられる。次いで、ヒータ140、119、158、及び162の電源がオフにされる。次に、高圧容器100のドア120が開放されて、処理領域115からカセット130が取り出される。 The process is complete when it is confirmed that the film has the target density, which is verified by testing the wet etching rate of the film and the characteristics of leakage and dielectric breakdown. The shutoff valve 165 is then opened and the treated gas flows from the treated area 115 into the condenser 160 via the pipe 118 and the outlet conduit 161. The processing gas is condensed in the condenser 160 to become a liquid phase. The liquefied processing gas is then removed by the pump 170. When the liquefied processing gas is completely removed, the shutoff valve 165 is closed. The heaters 140, 119, 158, and 162 are then turned off. Next, the door 120 of the high-pressure container 100 is opened, and the cassette 130 is taken out from the processing area 115.

図2Aは、本明細書に記載の1つ以上の実現に係る、基板202と、基板202上に堆積されたケイ素含有膜208と、を含む半導体素子200を示す。基板202は、図1に示したように、カセット130にロードされるときに、基板135のそれぞれの代わりに使用されうる。1つ以上の開口又はビア204が、基板202に形成されうる。半導体素子200にはビア204が1つだけ示されているが、複数のビア204が含まれうる。そのような実施形態において、複数のビアの各ビア204は、例えば約10μmの深さを有するなど、同じ寸法を有しうる。加えて、ビア204の側面214及び底面216がパターンニングされ得、示されるように平らでなくてよい。ケイ素含有膜208が、基板202の各露出表面(すなわち、上面212、側面214、及び底面216)及びビア204の上に堆積されうる。ケイ素含有膜208は、原子層堆積(ALD:atomic layer deposition)を用いて堆積されうる。ケイ素含有膜208は、ケイ素又は窒化ケイ素で構成されうる。 FIG. 2A shows a semiconductor device 200 comprising a substrate 202 and a silicon-containing film 208 deposited on the substrate 202, according to one or more realizations described herein. The substrate 202 can be used in place of each of the substrates 135 when loaded into the cassette 130, as shown in FIG. One or more openings or vias 204 may be formed on the substrate 202. Although only one via 204 is shown in the semiconductor device 200, a plurality of vias 204 may be included. In such an embodiment, each via 204 of the plurality of vias may have the same dimensions, for example having a depth of about 10 μm. In addition, the sides 214 and bottom 216 of the via 204 can be patterned and do not have to be flat as shown. The silicon-containing film 208 may be deposited on each exposed surface of the substrate 202 (ie, top surface 212, side surface 214, and bottom surface 216) and via 204. The silicon-containing membrane 208 can be deposited using atomic layer deposition (ALD). The silicon-containing film 208 may be composed of silicon or silicon nitride.

基板202は、半導体素子、例えば、金属コンタクト、トレンチ隔離、ゲート、ビット線、又は他の任意の相互接続フィーチャの形成時に使用される1つ以上の材料を含みうる。基板202は、半導体素子を製造するために利用される、1つ以上の金属層、1つ以上の誘電材料、半導体材料、及びこれらの組み合わせを含みうる。例えば、基板202は、用途に従って、酸化物材料、窒化物材料、ポリシリコン材料などを含みうる。メモリ用途が目標とされる一実現において、基板202が、ケイ素基板材料、酸化物材料、及び窒化物材料(これらの間にポリシリコンが存在することも存在しないこともある)を含みうる。 The substrate 202 may include one or more materials used in the formation of semiconductor devices such as metal contacts, trench isolation, gates, bit wires, or any other interconnect feature. The substrate 202 may include one or more metal layers, one or more dielectric materials, semiconductor materials, and combinations thereof, which are used to manufacture semiconductor devices. For example, the substrate 202 may include oxide materials, nitride materials, polysilicon materials, etc., depending on the application. In one realization targeted for memory applications, the substrate 202 may include silicon substrate materials, oxide materials, and nitride materials (polysilicon may or may not be present between them).

他の実現において、基板202が、基板の表面上に複数の酸化物材料と窒化物材料とが交互に堆積されたもの(すなわち、酸化物―窒化物―酸化物(ONO:oxide-nitride-oxide))を含みうる(図示せず)。様々な実現において、基板202は、複数の酸化物材料と窒化物材料とが交互になったもの、1つ以上の酸化物材料若しくは窒化物材料、ポリシリコン材料若しくはアモルファスシリコン材料、アモルファスカーボンと交互になっている酸化物、ポリシリコンと交互になっている酸化物、ドープされたシリコンと交互になっているドープされていないシリコン、ドープされたポリシリコンと交互になっているドープされていないポリシリコン、又は、ドープされたアモルファスシリコンと交互になっているドープされていないアモルファスシリコンを含みうる。基板202は、膜処理が実施される任意の基板又は材料表面でありうる。例えば、基板202は、結晶シリコン、酸化ケイ素、シリコンオキシナイトライド、窒化ケイ素、ストレインドシリコン、シリコンゲルマニウム、タングステン、窒化チタン、ドープされた又はドープされていないポリシリコン、ドープされた又はドープされていないシリコンウエハ及びパターニングされた又はパターニングされていないウエハ、シリコンオンインシュレータ(SOI:silicon on insulator)、炭素がドープされた酸化ケイ素、窒化ケイ素、ドープされたケイ素、ゲルマニウム、ヒ化ガリウム、ガラス、サファイア、低誘電率誘電体、及びこれらの組み合わせといった材料でありうる。 In another realization, the substrate 202 is one in which a plurality of oxide materials and nitride materials are alternately deposited on the surface of the substrate (that is, oxide-nitride-oxide (ONO)). )) Can be included (not shown). In various realizations, the substrate 202 alternates between a plurality of oxide and nitride materials, one or more oxide or nitride materials, a polysilicon or amorphous silicon material, and amorphous carbon. Oxides that alternate with polysilicon, oxides that alternate with polysilicon, undoped silicon that alternates with doped silicon, and undoped poly that alternates with doped polysilicon. It may include silicon, or undoped amorphous silicon that alternates with doped amorphous silicon. The substrate 202 can be any substrate or material surface on which the film treatment is performed. For example, substrate 202 is crystalline silicon, silicon oxide, silicon oxynitride, silicon nitride, strained silicon, silicon germanium, tungsten, titanium nitride, doped or undoped polysilicon, doped or doped. No silicon wafers and patterned or unpatterned wafers, silicon on insulator (SOI), carbon-doped silicon oxide, silicon nitride, doped silicon, germanium, gallium arsenide, glass, sapphire , Low dielectric constant, and combinations thereof.

図2Bは、本明細書に記載の1つ以上の実現に係る、コンフォーマルな酸化ケイ素膜206がビア204内に形成された半導体素子200を示す。酸化ケイ素膜206が、基板202及びケイ素含有膜208の上に、550℃以下の温度で、例えば350℃~505℃の温度で形成される。酸化ケイ素膜206は、アミン添加物を含む酸化媒体中で、1バールより高い圧力下で、例えば約35バール~約65バールの圧力下で、高圧アニーリングを用いて形成される。 FIG. 2B shows a semiconductor device 200 in which a conformal silicon oxide film 206 is formed in a via 204, according to one or more realizations described herein. The silicon oxide film 206 is formed on the substrate 202 and the silicon-containing film 208 at a temperature of 550 ° C or lower, for example, 350 ° C to 505 ° C. The silicon oxide film 206 is formed using high pressure annealing in an oxidation medium containing an amine additive at a pressure higher than 1 bar, for example at a pressure of about 35 bar to about 65 bar.

酸化媒体は、蒸気、酸素、過酸化物等を含むことができ、アミン添加物は、アンモニウム(NH)又はアンモニア(NH)を含むことができる。酸化媒体は、約1,000ppm~約20,000ppmのアミン添加物、例えば約7,000ppmのアミン添加物を含みうる。一実施形態において、蒸気が、アミン添加物として約7,000ppmのNHを含む酸化媒体として使用される。窒化ケイ素を含む膜を反応させる際に、水素系添加物が、酸化媒体に添加されうる。水素系添加物は、窒化ケイ素を含む膜を反応させる際に、アミン添加物に加えて又はその代わりとして添加することができる。水素系添加物は、純粋な水素(H2)、又は微量の水素を不活性ガスの成分として含みうる。酸化媒体に添加されるアミン添加物及び/又は水素系添加物は、高温急速熱酸化膜と比較して、酸化速度を約2~3倍上げることができる。一実施形態において、酸化ケイ素膜206を形成するために使用されるアニーリングプロセスは、約40バール~約60バールの圧力で約1時間にわたって行われる。 The oxidation medium can contain vapors, oxygen, peroxides and the like, and the amine additive can include ammonium (NH 4 ) or ammonia (NH 3 ). The oxidation medium may contain from about 1,000 ppm to about 20,000 ppm of amine additives, such as about 7,000 ppm of amine additives. In one embodiment, the vapor is used as an oxidation medium containing about 7,000 ppm NH 3 as an amine additive. Hydrogen-based additives can be added to the oxidation medium when reacting the membrane containing silicon nitride. Hydrogen-based additives can be added in addition to or in place of amine additives when reacting membranes containing silicon nitride. The hydrogen-based additive may contain pure hydrogen (H2) or a trace amount of hydrogen as a component of the inert gas. The amine additive and / or the hydrogen-based additive added to the oxidation medium can increase the oxidation rate by about 2 to 3 times as compared with the high temperature rapid thermal oxide film. In one embodiment, the annealing process used to form the silicon oxide film 206 is carried out at a pressure of about 40 bar to about 60 bar for about 1 hour.

ケイ素含有膜208が、基板202と酸化ケイ素膜206との間に配置されているが、ケイ素含有膜208は、酸化ケイ素膜206の形成の後には厚さがより薄くなりうる。一実施形態において、ケイ素含有膜208が完全に酸化され、これにより、酸化ケイ素膜206と基板202との間には、ケイ素含有膜208がもはや配置されない(すなわち、酸化ケイ素膜206は、基板202と接触しうる)。図示されていないが、酸化ケイ素膜206及び/又はケイ素含有膜208が、基板202の表面212上に配置されてよい。 Although the silicon-containing film 208 is disposed between the substrate 202 and the silicon oxide film 206, the silicon-containing film 208 may be thinner after the formation of the silicon oxide film 206. In one embodiment, the silicon-containing film 208 is completely oxidized so that the silicon-containing film 208 is no longer located between the silicon oxide film 206 and the substrate 202 (ie, the silicon oxide film 206 is the substrate 202). Can come in contact with). Although not shown, the silicon oxide film 206 and / or the silicon-containing film 208 may be placed on the surface 212 of the substrate 202.

図2Cは、2C-2C線における半導体素子200の上部を切った拡大断面図を示している。2C-2C線は、半導体素子200の表面212より下方に約500nmのところにありうる。図2Dは、2D-2D線における半導体素子200の底部を切った拡大断面図を示している。2D-2D線は、半導体素子200の底部216より上方に約500nmのところにありうる。図2Cの上部の酸化ケイ素膜206の厚さは210Aであり、図2Dの底部の酸化ケイ素膜206の厚さは210Bである(総称して210)。 FIG. 2C shows an enlarged cross-sectional view of the semiconductor element 200 on the 2C-2C line with the upper portion cut off. The 2C-2C wire may be located approximately 500 nm below the surface 212 of the semiconductor device 200. FIG. 2D shows an enlarged cross-sectional view of the bottom of the semiconductor device 200 on the 2D-2D line. The 2D-2D line may be located approximately 500 nm above the bottom 216 of the semiconductor device 200. The thickness of the silicon oxide film 206 at the top of FIG. 2C is 210A, and the thickness of the silicon oxide film 206 at the bottom of FIG. 2D is 210B (collectively 210).

図2C及び図2Dに示すように、酸化ケイ素膜206の上部の厚さ210Aは、酸化ケイ素膜206の底部の厚さ210Bとほぼ同じである。酸化ケイ素膜206は、ビア204の上部と底部の双方においてほぼ均一な厚さ210を有し、酸化ケイ素層206の約100%(すなわち、上部の厚さ210Aと底部の厚さ210Bとの比)のコンフォーマリティ(共形性)を示している。約550℃未満の温度で、かつ1バールより高い圧力で、アミン添加物を含む酸化媒体を用いて形成された酸化ケイ素膜206は、ビア204の側面214及び底部216でのほぼ均一なコンフォーマリティであって、約90%よりも高いコンフォーマリティを有しうる。酸化ケイ素膜206は、約20オングストローム~約400オングストローム、例えば約150オングストローム~400オングストロームの均一な厚さ210を有する。 As shown in FIGS. 2C and 2D, the thickness 210A at the top of the silicon oxide film 206 is substantially the same as the thickness 210B at the bottom of the silicon oxide film 206. The silicon oxide film 206 has a substantially uniform thickness 210 at both the top and bottom of the via 204 and is about 100% of the silicon oxide layer 206 (ie, the ratio of the top thickness 210A to the bottom thickness 210B). ) Shows the conformality. The silicon oxide film 206 formed using an oxidation medium containing an amine additive at a temperature below about 550 ° C. and at a pressure above 1 bar is a nearly uniform conform at the sides 214 and bottom 216 of the via 204. It is a ritual and can have a conformality higher than about 90%. The silicon oxide film 206 has a uniform thickness of 210 from about 20 angstroms to about 400 angstroms, for example about 150 angstroms to 400 angstroms.

図3は、本明細書に記載の1つ以上の実現に係る、基板上に酸化ケイ素膜を形成する方法300の処理フロー図を示す。基板は、図1に記載された基板135であっても、図2A~図2Dに示された基板202であってもよい。分かりやすくするために、方法300を、図2A~図2Dの半導体素子200の構成要素を参照しながら説明する。 FIG. 3 shows a processing flow diagram of a method 300 for forming a silicon oxide film on a substrate according to one or more of the realizations described herein. The substrate may be the substrate 135 shown in FIG. 1 or the substrate 202 shown in FIGS. 2A-2D. For the sake of clarity, the method 300 will be described with reference to the components of the semiconductor device 200 of FIGS. 2A-2D.

方法300は、動作310において、(図2Aに示すように)ケイ素含有膜208が堆積された基板202を、高圧容器の中にロードすることによって開始される。高圧容器は、図1に示した高圧容器100でありうる。基板202が、図1に示すようなカセット130といったカセット内に配置されうる。基板202を高圧容器内にロードする前に、ケイ素含有膜208が、基板202の各露出した側面又は表面212、214、216及びビア204の上に堆積される。ケイ素含有膜208は、ALDを用いて堆積させることができる。ケイ素含有膜208は、ケイ素又は窒化ケイ素で構成されうる。基板202は、先に図2A~図2Dにおいて述べた材料のいずれかで構成されうる。 Method 300 is initiated in operation 310 by loading the substrate 202 on which the silicon-containing membrane 208 is deposited (as shown in FIG. 2A) into a high pressure vessel. The high pressure container can be the high pressure container 100 shown in FIG. The substrate 202 may be placed in a cassette such as a cassette 130 as shown in FIG. Prior to loading the substrate 202 into the high pressure vessel, a silicon-containing film 208 is deposited on each exposed side or surface 212, 214, 216 and via 204 of the substrate 202. The silicon-containing membrane 208 can be deposited using ALD. The silicon-containing film 208 may be composed of silicon or silicon nitride. The substrate 202 may be constructed of any of the materials previously described in FIGS. 2A-2D.

一実現において、基板202の表面212は、パターニングされた構造を含み、例えば、トレンチ、孔、又は、図2A~図2Dに示すようなビア204が形成された表面を含む。このような実施形態において、ケイ素含有膜208は、ビア204の側面214上及び底部216上に配置される。代替的に、基板202の表面212は実質的に平らでありうる。基板202はまた、目標とする段差がついた構造が形成された実質的に平らな表面212も有しうる。基板202の表面212は、トレンチ、孔、ビア、又は段差を含むことができ、表面212のパターンは全体を通してビアと称されるが、この「ビア」という用語に限定することは意図されていない。 In one implementation, the surface 212 of the substrate 202 comprises a patterned structure, including, for example, a trench, a hole, or a surface on which a via 204 as shown in FIGS. 2A-2D is formed. In such an embodiment, the silicon-containing film 208 is placed on the side surface 214 and the bottom 216 of the via 204. Alternatively, the surface 212 of the substrate 202 can be substantially flat. The substrate 202 may also have a substantially flat surface 212 on which a structure with a target step is formed. The surface 212 of the substrate 202 can include trenches, holes, vias, or steps, and the pattern of the surface 212 is referred to throughout as vias, but is not intended to be limited to this term "via". ..

動作320では、基板202が、酸化媒体の凝縮点(例えば、約100℃)と約550℃との間の目標温度で、かつ1バールより高い圧力で、アミン添加物を含む酸化媒体に曝露される。一実現において、目標温度が、約100℃と約550℃の間(例えば、約350℃と約520℃との間、又は、約400℃と約505℃との間)である。温度は、ヒータ140a、140bを用いて目標温度まで上げることができる。温度を上げることに加えて、圧力を目標圧力まで上げることができる。一実現において、圧力が、約1バールと約65バールとの間(例えば、約30バールと約65バールとの間、又は約40バールと約60バールとの間)である。 In operation 320, the substrate 202 is exposed to the oxidation medium containing the amine additive at a target temperature between the condensation point of the oxide medium (eg, about 100 ° C.) and about 550 ° C. and at a pressure greater than 1 bar. To. In one realization, the target temperature is between about 100 ° C and about 550 ° C (eg, between about 350 ° C and about 520 ° C, or between about 400 ° C and about 505 ° C). The temperature can be raised to the target temperature by using the heaters 140a and 140b. In addition to raising the temperature, the pressure can be raised to the target pressure. In one realization, the pressure is between about 1 bar and about 65 bar (eg, between about 30 bar and about 65 bar, or between about 40 bar and about 60 bar).

一実現において、酸化媒体が、蒸気、オゾン、酸素、水蒸気、重水、過酸化物、水酸化物を含有する化合物、酸素同位体(14、15、15、17、18など)、及び水素同位体(1、2、3)、及びこれらの組み合わせから成る群から選択される。過酸化物は、気相の過酸化水素でありうる。幾つかの実現において、酸化媒体は水酸化物イオンを含み、例えば、限定するものではないが、水蒸気、又は蒸気の形態による重水を含む。アミン添加物は、アンモニウム又はアンモニアで構成されうる。酸化媒体は、約1,000ppm~約20,000ppmのアミン添加物、例えば約7,000ppmのアミン添加物を含みうる。一実施形態において、蒸気が、アミン添加物として約7,000ppmのNH3を含む酸化媒体として使用される。窒化ケイ素を含む膜を反応させる際に、水素系添加物が、酸化媒体に添加されうる。水素系添加物は、窒化ケイ素を含む膜を反応させる際に、アミン添加物に加えて又はその代わりとして添加することができる。水素系添加物は、純粋な水素(H)、又は微量の水素を不活性ガスの成分として含みうる。酸化媒体に添加されるアミン添加物及び/又は水素系添加物は、高温急速熱酸化膜と比較して、酸化速度を約2~3倍上げることができる。 In one realization, the oxidation medium is steam, ozone, oxygen, steam, heavy water, peroxides, compounds containing hydroxides, oxygen isotopes (14, 15, 15, 17, 18, etc.), and hydrogen isotopes. It is selected from the group consisting of (1, 2, 3), and combinations thereof. The peroxide can be hydrogen peroxide in the gas phase. In some realizations, the oxidation medium comprises hydroxide ions, eg, but not limited to, steam, or heavy water in the form of steam. Amine additives can be composed of ammonium or ammonia. The oxidation medium may contain from about 1,000 ppm to about 20,000 ppm of amine additives, such as about 7,000 ppm of amine additives. In one embodiment, the vapor is used as an oxidation medium containing about 7,000 ppm NH3 as an amine additive. Hydrogen-based additives can be added to the oxidation medium when reacting the membrane containing silicon nitride. Hydrogen-based additives can be added in addition to or in place of amine additives when reacting membranes containing silicon nitride. The hydrogen-based additive may contain pure hydrogen (H 2 ) or a trace amount of hydrogen as a component of the inert gas. The amine additive and / or the hydrogen-based additive added to the oxidation medium can increase the oxidation rate by about 2 to 3 times as compared with the high temperature rapid thermal oxide film.

幾つかの実現において、基板202、又は複数の基板が、約5バールと約60バールの間の圧力で蒸気に曝露され、ここで、圧力は、約5バールから約60バールまで徐々に増大させられうる。幾つかの実現において、アミン添加物を含む蒸気が、例えば、約500sccmと約5,000sccmとの間(例えば、約500sccmと約5,000sccmとの間、又は約500sccmと約2,000sccmとの間)の流量で、高圧容器に導入される。一実現において、アミン添加物を含む水蒸気が高圧容器に注入され、水蒸気が、高圧容器内で加熱されると、アミン添加物を含む蒸気を形成する。他の実現において、アミン添加物を含む水又は水蒸気が、目標温度に加熱する前の高圧容器内に存在する。高圧容器内に存在する水又は水蒸気は、高圧容器が目標温度に加熱されるのにつれて、アミン添加物を含む蒸気を形成する。 In some realizations, the substrate 202, or multiple substrates, is exposed to steam at a pressure between about 5 bar and about 60 bar, where the pressure is gradually increased from about 5 bar to about 60 bar. Can be done. In some realizations, the vapor containing the amine additive is, for example, between about 500 sccm and about 5,000 sccm (eg, between about 500 sccm and about 5,000 sccm, or between about 500 sccm and about 2,000 sccm). Introduced into the high pressure vessel at a flow rate of (between). In one realization, steam containing an amine additive is injected into a high pressure vessel and when the steam is heated in the high pressure vessel, it forms a vapor containing the amine additive. In another realization, water or steam containing the amine additive is present in the high pressure vessel before heating to the target temperature. The water or steam present in the high pressure vessel forms steam containing the amine additive as the high pressure vessel is heated to the target temperature.

ブロック330において、酸化ケイ素膜206が基板202上に形成される。酸化ケイ素膜206は、コンフォーマルな(conformal)又は均一な層として形成される。酸化ケイ素膜206は、ビア204の側面214上及び底面216上、並びに、基板202の表面212上に均一に形成される。酸化ケイ素膜206は、図2A~図2Dに示すように、ビア204の側面214及び底面216で、約90%より高いコンフォーマリティ(conformality、共形性)を有するように堆積させることができる。酸化ケイ素膜206は、約20オングストローム~約400オングストローム、例えば約150オングストローム~約400オングストロームの厚さ210を有しうる。 In the block 330, the silicon oxide film 206 is formed on the substrate 202. The silicon oxide film 206 is formed as a conformal or uniform layer. The silicon oxide film 206 is uniformly formed on the side surface 214 and the bottom surface 216 of the via 204 and on the surface 212 of the substrate 202. The silicon oxide film 206 can be deposited on the sides 214 and bottom 216 of the via 204 to have formality greater than about 90%, as shown in FIGS. 2A-2D. .. The silicon oxide film 206 can have a thickness of 210 angstroms to about 400 angstroms, eg, about 150 angstroms to about 400 angstroms.

動作330において、ケイ素含有膜208を有する基板202が、アミン添加物を含む酸化媒体に曝されて、酸化ケイ素膜206を形成する間に、高圧容器が、酸化媒体の凝縮点と約550℃との間の温度に維持される。約40バールと約60バールとの間の圧力において、アミン添加物を含む蒸気が使用される一実現において、高圧容器の温度が、約400℃と約505℃との間に維持される。幾つかの実現において、動作330の基板202上に酸化ケイ素膜206を形成することは、約5分~約150分の時間にわたって、例えば約30分~約120分間実施される。少なくとも1つの実現において、アミン添加物を含む酸化媒体を、約400℃と約505℃との間の温度で、かつ約60バールの圧力で約120分間利用すると、ケイ素含有膜208が完全に酸化され、これにより、基板202と酸化ケイ素層206との間には、ケイ素含有膜208がもはや配置されない。 In operation 330, while the substrate 202 having the silicon-containing film 208 is exposed to an oxidation medium containing an amine additive to form the silicon oxide film 206, the high pressure vessel is at about 550 ° C. with the condensation point of the oxide medium. Maintained at a temperature between. At pressures between about 40 bar and about 60 bar, in one realization where steam containing amine additives is used, the temperature of the high pressure vessel is maintained between about 400 ° C and about 505 ° C. In some realizations, forming the silicon oxide film 206 on the substrate 202 of operation 330 is carried out over a period of about 5 minutes to about 150 minutes, for example about 30 minutes to about 120 minutes. In at least one realization, the oxidation medium containing the amine additive is utilized at a temperature between about 400 ° C. and about 505 ° C. and at a pressure of about 60 bar for about 120 minutes to completely oxidize the silicon-containing membrane 208. As a result, the silicon-containing film 208 is no longer arranged between the substrate 202 and the silicon oxide layer 206.

高圧下で、アンモニアを含む蒸気といったアミン添加物を含む酸化媒体を適用すると、酸化媒体からの高濃度の酸化種が、ケイ素含有膜に深く浸透することが可能となり、これにより、酸化種が、酸化を介してより多くの酸化ケイ素膜材料を生成することが可能である。理論に束縛されるものではないが、高圧容器内の高圧が、より深いビアへの酸化種の拡散を促進すると考えられる。加えて、蒸気中にアミン添加物が存在することで、高温急速熱酸化膜と比較して、はるかに速い速度で目標圧力に達成することが可能となり、酸化速度を2~3倍上げると考えられる。 Applying an oxidizing medium containing an amine additive, such as steam containing ammonia, under high pressure allows high concentrations of oxidized species from the oxidizing medium to penetrate deeply into the silicon-containing film, thereby allowing the oxidized species to penetrate deeply into the silicon-containing film. It is possible to produce more silicon oxide film material through oxidation. Without being bound by theory, it is believed that the high pressure in the high pressure vessel promotes the diffusion of oxidized species into deeper vias. In addition, the presence of amine additives in the steam makes it possible to reach the target pressure at a much faster rate than the high temperature rapid thermal oxide film, which is thought to increase the oxidation rate by 2 to 3 times. Be done.

酸化ケイ素膜206の品質は、アミン添加物を含む酸化媒体を用いて550℃未満の温度でかつ1バールより高い圧力で形成される酸化ケイ素膜206の湿式エッチング速度と、アミン添加物を用いずに800℃を超える温度でかつ低圧で形成される酸化ケイ素膜(すなわち、高温急速熱酸化膜)の湿式エッチング速度と、を比較することによって検証することが可能である。約20オングストロームより大きい厚さを有する酸化ケイ素膜206と、同じ厚さの高温急速熱酸化膜と、の双方に対して湿式エッチングが行われるときに、湿式エッチング速度は、双方の膜についてほぼ同じである。一実施形態において、酸化ケイ素膜206と高温急速熱酸化膜の双方は、湿式エッチング速度が、約26オングストローム/分~約32オングストローム/分であった。 The quality of the silicon oxide film 206 is the wet etching rate of the silicon oxide film 206 formed at a temperature of less than 550 ° C. and a pressure of more than 1 bar using an oxidation medium containing an amine additive, and without the amine additive. It can be verified by comparing the wet etching rate of the silicon oxide film (that is, the high temperature rapid thermal oxide film) formed at a temperature exceeding 800 ° C. and at a low pressure. When wet etching is performed on both a silicon oxide film 206 having a thickness greater than about 20 angstroms and a high temperature rapid thermal oxide film of the same thickness, the wet etching rate is about the same for both films. Is. In one embodiment, both the silicon oxide film 206 and the high temperature rapid thermal oxide film had wet etching rates of about 26 angstroms / min to about 32 angstroms / min.

追加的に、酸化ケイ素膜206の品質は、550℃未満の温度でかつ1バールより高い圧力で、アミン添加物を含む酸化媒体を用いて形成された酸化ケイ素膜206の漏れ及び容量等価な膜厚を、高温急速熱酸化膜と比較することによって、さらに検証することができる。約20オングストロームより大きな厚さを有する酸化ケイ素膜206の漏れと、同じ厚さの高温急速熱酸化膜の漏れと、を比較したときに、双方の酸化ケイ素膜が、漏れ電圧対厚さのグラフの熱トレンド線又は外挿された熱トレンド線に沿って配置された。このように、酸化ケイ素膜206の漏れ及び容量等価な膜厚は、高温急速熱酸化膜とほぼ同じか、又は同程度である。一実施形態において、酸化ケイ素膜206と高温急速熱酸化膜との双方が、漏れ対容量等価な膜厚が、約0.22V/オングストローム~約0.25V/オングストロームであった。 In addition, the quality of the silicon oxide film 206 is a leakage and capacity equivalent film of the silicon oxide film 206 formed using an oxide medium containing an amine additive at a temperature below 550 ° C and a pressure above 1 bar. The thickness can be further verified by comparing it with the high temperature rapid thermal oxide film. When comparing the leakage of the silicon oxide film 206 having a thickness larger than about 20 angstrom and the leakage of the high temperature rapid thermal oxide film of the same thickness, both silicon oxide films have a graph of leakage voltage vs. thickness. It was placed along the thermal trend line or the extrapolated thermal trend line. As described above, the leakage and the capacity-equivalent film thickness of the silicon oxide film 206 are substantially the same as or similar to those of the high-temperature rapid thermal oxide film. In one embodiment, both the silicon oxide film 206 and the high temperature rapid thermal oxide film had a leak-to-capacity equivalent film thickness of about 0.22 V / angstrom to about 0.25 V / angstrom.

従って、550℃以下の比較的低い温度で実施されるプロセスについて、膜品質の改善における成果は、800℃で、かつより低い圧力で実施されるプロセスと実質的に同様のものとなる。アミン添加物を含む酸化媒体を用いて、550℃以下の比較的低い温度で実施されるプロセスによって、酸化ケイ素層を均一に堆積させることが可能となり、このことには、難しい構造又は不均一な構造を有する基板上への堆積が含まれる。 Therefore, for processes performed at relatively low temperatures below 550 ° C, the results in improving film quality are substantially similar to processes performed at 800 ° C and at lower pressures. A process carried out at a relatively low temperature of 550 ° C. or lower using an oxidation medium containing an amine additive allows uniform deposition of the silicon oxide layer, which can be difficult to structure or non-uniform. Includes deposition on structural substrates.

さらに、アミン添加物及び/又は水素系添加物を含む酸化媒体を用いて、550℃未満の温度でかつ1バールより高い圧力で、酸化ケイ素膜を形成することで、酸化ケイ素膜は、高品質を維持しながら、高温急速熱酸化プロセスの能力を超える厚さを実現すること可能となる。このように、550℃未満の温度でかつ1バールより高い圧力で、アミン添加物を含む酸化媒体を利用して酸化ケイ素膜を堆積させると、酸化速度が上がり、高温急速熱酸化膜と同じ品質を有するコンフォーマルな又は均一な酸化ケイ素膜が得られる。 Further, by forming a silicon oxide film at a temperature of less than 550 ° C. and a pressure of more than 1 bar using an oxidation medium containing an amine additive and / or a hydrogen-based additive, the silicon oxide film is of high quality. It is possible to achieve a thickness that exceeds the capacity of the high temperature rapid thermal oxidation process while maintaining. Thus, when a silicon oxide film is deposited at a temperature of less than 550 ° C. and at a pressure higher than 1 bar using an oxidation medium containing an amine additive, the oxidation rate increases and the quality is the same as that of the high temperature rapid thermal oxide film. A conformal or uniform silicon oxide film having the above can be obtained.

さらに、約550℃未満の温度で、アミン添加物を含む酸化媒体を利用して酸化ケイ素膜を堆積させると、プロセスウィンドウがもはや約800℃以上の温度に制限されないため、酸化ケイ素膜を形成するためのプロセスウィンドウが拡大される。プロセスウィンドウを拡大することにより、酸化ケイ素膜を形成するために使用する現在のツールの能力が上がり、全体的な資源をより少なく縮小する。 Further, when the silicon oxide film is deposited using an oxidation medium containing an amine additive at a temperature of less than about 550 ° C., the process window is no longer limited to a temperature of about 800 ° C. or higher, thus forming a silicon oxide film. The process window for is enlarged. Enlarging the process window increases the capabilities of current tools used to form silicon oxide films and reduces overall resources to a lesser extent.

以上の説明は本開示の実施形態を対象としているが、本開示の基本的な範囲から逸脱することなく本開示の他の実施形態及び更なる実施形態が考案されてもよく、本開示の範囲は、以下の特許請求の範囲によって規定される。 Although the above description is intended for embodiments of the present disclosure, other embodiments and further embodiments of the present disclosure may be devised without departing from the basic scope of the present disclosure, and the scope of the present disclosure. Is defined by the following claims.

Claims (15)

酸化ケイ素膜を形成する方法であって、
ケイ素含有膜が堆積された基板を、高圧容器の処理領域内にロードすることと、
前記ケイ素含有膜上に酸化ケイ素膜を形成することであって、
約1バールより高い圧力で、アミン添加物を含む酸化媒体に前記ケイ素含有膜を曝露すること、及び
約100℃と約550℃との間の温度に前記高圧容器を維持すること
を含む、酸化ケイ素膜を形成することと、
を含む、方法。
It is a method of forming a silicon oxide film.
Loading the substrate on which the silicon-containing membrane is deposited into the processing area of the high-pressure vessel,
By forming a silicon oxide film on the silicon-containing film,
Oxidation comprising exposing the silicon-containing membrane to an oxidation medium containing an amine additive at a pressure greater than about 1 bar and maintaining the high pressure vessel at temperatures between about 100 ° C and about 550 ° C. Forming a silicon film and
Including, how.
前記アミン添加物が、アンモニウム又はアンモニアを含み、前記酸化媒体が、約1,000ppm~約20,000ppmの前記アミン添加物を含む、請求項1に記載の方法。 The method of claim 1, wherein the amine additive comprises ammonium or ammonia and the oxidation medium comprises from about 1,000 ppm to about 20,000 ppm of the amine additive. 前記酸化媒体が、蒸気、過酸化物、酸素、オゾン、水蒸気、重水、水酸化物を含有する化合物、酸素同位体、水素同位体、及びこれらの組み合わせからなる群から選択される、請求項1に記載の方法。 Claim 1 in which the oxidation medium is selected from the group consisting of steam, peroxides, oxygen, ozone, steam, heavy water, compounds containing hydroxides, oxygen isotopes, hydrogen isotopes, and combinations thereof. The method described in. 前記ケイ素含有膜が窒化ケイ素膜であり、前記酸化媒体が水素系添加物をさらに含む、請求項1に記載の方法。 The method according to claim 1, wherein the silicon-containing film is a silicon nitride film, and the oxidation medium further contains a hydrogen-based additive. 前記酸化ケイ素膜が、約20オングストロームと約400オングストロームの間の均一な厚さを有し、前記温度が、約400℃と約505℃との間である、請求項1に記載の方法。 The method of claim 1, wherein the silicon oxide film has a uniform thickness between about 20 angstroms and about 400 angstroms, and the temperature is between about 400 ° C and about 505 ° C. 前記ケイ素含有膜上に前記酸化ケイ素膜を形成することが、約5分~約150分の時間にわたって実施される、請求項1に記載の方法。 The method according to claim 1, wherein forming the silicon oxide film on the silicon-containing film is carried out for a time of about 5 minutes to about 150 minutes. コンフォーマルな酸化ケイ素膜を形成する方法であって、
複数のビアを含む基板上にケイ素含有膜を堆積させることであって、前記ケイ素含有膜が、前記基板の各露出表面及び前記複数のビアの上に堆積させられる、ケイ素含有膜を堆積させることと、
前記ケイ素含有膜が堆積された前記基板を、高圧容器の処理領域内にロードすることと、
前記ケイ素含有膜上にコンフォーマルな酸化ケイ素膜を形成することであって、
アミン添加物を含む酸化媒体に前記ケイ素含有膜を曝露することであって、前記酸化媒体が約1,000ppm~約20,000ppmの前記アミン添加物を含む、前記ケイ素含有膜を曝露すること、及び
約100℃と約550℃との間の温度、かつ約1バールと約65バールの間の圧力に前記高圧容器を維持すること
を含む、コンフォーマルな酸化ケイ素膜を形成することと、
を含む、方法。
A method of forming a conformal silicon oxide film,
To deposit a silicon-containing film on a substrate containing a plurality of vias, wherein the silicon-containing film deposits a silicon-containing film to be deposited on each exposed surface of the substrate and the plurality of vias. When,
By loading the substrate on which the silicon-containing film is deposited into the processing area of the high-pressure container,
By forming a conformal silicon oxide film on the silicon-containing film,
Exposing the silicon-containing membrane to an oxidizing medium containing an amine additive, wherein the oxidizing medium contains the amine additive of about 1,000 ppm to about 20,000 ppm. And to form a conformal silicon oxide film, including maintaining the high pressure vessel at a temperature between about 100 ° C. and about 550 ° C., and a pressure between about 1 bar and about 65 bar.
Including, how.
前記アミン添加物が、アンモニウム又はアンモニアを含み、前記酸化媒体が、約7,000ppmの前記アミン添加物を含む、請求項7に記載の方法。 The method of claim 7, wherein the amine additive comprises ammonium or ammonia and the oxidation medium comprises about 7,000 ppm of the amine additive. 前記酸化媒体が、蒸気、過酸化物、酸素、オゾン、水蒸気、重水、水酸化物を含有する化合物、酸素同位体、水素同位体、及びこれらの組み合わせからなる群から選択され、前記ケイ素含有膜が、ケイ素又は窒化ケイ素を含む、請求項7に記載の方法。 The oxidation medium is selected from the group consisting of steam, peroxides, oxygen, ozone, steam, heavy water, compounds containing hydroxides, oxygen isotopes, hydrogen isotopes, and combinations thereof, and the silicon-containing film. 7. The method of claim 7, wherein the method comprises silicon or silicon nitride. 前記酸化媒体が蒸気であり、前記アミン添加物がアンモニアであり、前記ケイ素含有膜が窒化ケイ素膜であり、前記酸化媒体が水素系添加物をさらに含む、請求項7に記載の方法。 The method according to claim 7, wherein the oxidation medium is vapor, the amine additive is ammonia, the silicon-containing film is a silicon nitride film, and the oxidation medium further contains a hydrogen-based additive. 前記ケイ素含有膜上に前記酸化ケイ素膜を形成することが、約400℃と約505℃との間との温度で、約5分~約150分の時間にわたって実施され、前記コンフォーマルな酸化ケイ素膜が、約20オングストロームと約400オングストロームとの間の均一な厚さを有する、請求項7に記載の方法。 The formation of the silicon oxide film on the silicon-containing film is carried out at a temperature between about 400 ° C. and about 505 ° C. for a time of about 5 minutes to about 150 minutes, and the conformal silicon oxide is formed. The method of claim 7, wherein the membrane has a uniform thickness between about 20 angstroms and about 400 angstroms. 酸化ケイ素膜を形成する方法であって、
ケイ素含有膜が堆積された基板を、高圧容器の処理領域内にロードすることと、
前記ケイ素含有膜上に酸化ケイ素膜を形成することであって、
アンモニアを含む酸化媒体に前記ケイ素含有膜を曝露することであって、前記酸化媒体が蒸気、酸素、及び過酸化物の群から選択される、前記ケイ素含有膜を曝露すること、及び
約400℃と約505℃との間の温度、かつ約10バールより高い圧力に前記高圧容器を維持することであって、前記酸化ケイ素膜が、約100オングストロームと約400オングストロームとの間の均一な厚さを有する、前記高圧容器を維持すること
を含む、酸化ケイ素膜を形成することと、
を含む、方法。
It is a method of forming a silicon oxide film.
Loading the substrate on which the silicon-containing membrane is deposited into the processing area of the high-pressure vessel,
By forming a silicon oxide film on the silicon-containing film,
Exposing the silicon-containing film to an oxidizing medium containing ammonia, wherein the oxidizing medium is selected from the group of steam, oxygen, and peroxide, exposing the silicon-containing film, and about 400 ° C. By maintaining the high pressure vessel at a temperature between and about 505 ° C. and above a pressure of about 10 bar, the silicon oxide film has a uniform thickness between about 100 ongstroms and about 400 ongstroms. To form a silicon oxide film, which comprises maintaining the high pressure vessel.
Including, how.
前記酸化媒体が、約1,000ppm~約20,000ppmの前記アンモニアを含む、請求項12に記載の方法。 12. The method of claim 12, wherein the oxidation medium comprises from about 1,000 ppm to about 20,000 ppm of the ammonia. 前記ケイ素含有膜が、ケイ素又は窒化ケイ素を含み、前記圧力が、約10バールと約60バールとの間である、請求項12に記載の方法。 12. The method of claim 12, wherein the silicon-containing film comprises silicon or silicon nitride and the pressure is between about 10 bar and about 60 bar. 前記ケイ素含有膜上に前記酸化ケイ素膜を形成することが、約5分~約120分の時間にわたって実施される、請求項12に記載の方法。 The method according to claim 12, wherein forming the silicon oxide film on the silicon-containing film is carried out for a time of about 5 minutes to about 120 minutes.
JP2021555610A 2019-03-20 2020-02-23 How to grow a thick oxide film with high thermal oxidation quality at low temperature Pending JP2022525460A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962821298P 2019-03-20 2019-03-20
US62/821,298 2019-03-20
PCT/US2020/019394 WO2020190449A1 (en) 2019-03-20 2020-02-23 Method of growing thick oxide films at low temperature of thermal oxide quality

Publications (1)

Publication Number Publication Date
JP2022525460A true JP2022525460A (en) 2022-05-16

Family

ID=72520372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021555610A Pending JP2022525460A (en) 2019-03-20 2020-02-23 How to grow a thick oxide film with high thermal oxidation quality at low temperature

Country Status (6)

Country Link
EP (1) EP3942596A4 (en)
JP (1) JP2022525460A (en)
KR (1) KR20210130247A (en)
CN (1) CN113557589A (en)
TW (1) TW202104662A (en)
WO (1) WO2020190449A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140541A1 (en) * 2022-01-24 2023-07-27 주식회사 에이치피에스피 Insulation film manufacturing method of semiconductor process

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265297B1 (en) * 1999-09-01 2001-07-24 Micron Technology, Inc. Ammonia passivation of metal gate electrodes to inhibit oxidation of metal
TW520453B (en) * 1999-12-27 2003-02-11 Seiko Epson Corp A method to fabricate thin insulating films
EP1124252A2 (en) * 2000-02-10 2001-08-16 Applied Materials, Inc. Apparatus and process for processing substrates
US6818250B2 (en) * 2000-06-29 2004-11-16 The Regents Of The University Of Colorado Method for forming SIO2 by chemical vapor deposition at room temperature
US6835630B2 (en) * 2002-06-19 2004-12-28 Promos Technologies, Inc. Capacitor dielectric structure of a DRAM cell and method for forming thereof
JP2006261434A (en) * 2005-03-17 2006-09-28 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Method for forming silicon oxide film
US20110256734A1 (en) * 2010-04-15 2011-10-20 Hausmann Dennis M Silicon nitride films and methods

Also Published As

Publication number Publication date
EP3942596A4 (en) 2022-12-07
KR20210130247A (en) 2021-10-29
EP3942596A1 (en) 2022-01-26
CN113557589A (en) 2021-10-26
WO2020190449A1 (en) 2020-09-24
TW202104662A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
JP7184810B2 (en) Improving the quality of films deposited on substrates
US10636669B2 (en) Seam healing using high pressure anneal
TWI803507B (en) Method of forming a barrier layer for through via applications
TWI713551B (en) Method for forming aluminum nitride-based film by peald
US20190259625A1 (en) Method for depositing and reflow of a high quality etch resistant gapfill dielectric film
TWI636501B (en) Methods of removing a material layer from a substrate using water vapor treatment
TWI436428B (en) Method for forming ruthenium metal cap layers
TW201943075A (en) Method to fabricate thermally stable low k-FinFET spacer
TW201207939A (en) Method of improving oxide growth rate of selective oxidation processes
JP2009004608A (en) Method for manufacturing semiconductor device
KR101678266B1 (en) Device for producing and method for producing semiconductor device
KR20170074766A (en) Conformal doping using dopant gas on hydrogen plasma treated surface
JP2010177382A (en) Film formation method, and plasma film formation apparatus
JP2017147417A (en) Substrate processing method
JP3578155B2 (en) Oxidation method of the object
JP2022525460A (en) How to grow a thick oxide film with high thermal oxidation quality at low temperature
KR102184690B1 (en) Method of filling recess and processing apparatus
US20200251340A1 (en) Methods and apparatus for filling a feature disposed in a substrate
US10818490B2 (en) Controlled growth of thin silicon oxide film at low temperature
JP6318744B2 (en) Manufacturing method of semiconductor device
JP2008047752A (en) Method and apparatus of manufacturing semiconductor device
JP2005302892A (en) Semiconductor device and its manufacturing method
JP2006128288A (en) Film forming method, semiconductor device, manufacturing method thereof, program, and recording medium
US20090087995A1 (en) Method of substrate treatment, process for producing semiconductor device, substrate treating apparatus, and recording medium
JP3639142B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240319