JP2022181374A - Rotary electric machine in which magnetic force of rotor is variably controlled - Google Patents

Rotary electric machine in which magnetic force of rotor is variably controlled Download PDF

Info

Publication number
JP2022181374A
JP2022181374A JP2021088291A JP2021088291A JP2022181374A JP 2022181374 A JP2022181374 A JP 2022181374A JP 2021088291 A JP2021088291 A JP 2021088291A JP 2021088291 A JP2021088291 A JP 2021088291A JP 2022181374 A JP2022181374 A JP 2022181374A
Authority
JP
Japan
Prior art keywords
movable plate
rotor
magnetic
field
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021088291A
Other languages
Japanese (ja)
Inventor
宏之 服部
Hiroyuki Hattori
武志 北山
Takeshi Kitayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021088291A priority Critical patent/JP2022181374A/en
Publication of JP2022181374A publication Critical patent/JP2022181374A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

To provide a rotary electric machine 1 that generates a magnetic field by a permanent magnet 4 carried on a rotor 3 with a configuration as simple as possible for controlling a position of a magnetic member that selectively short-circuits a magnetic flux of the permanent magnet.SOLUTION: The rotary electric machine includes: a movable plate 8 made of a magnetic material which is movable between a position d away from an end face 3a of a rotor and a position p close to the end face; and separation force providing means 9 for providing a separating force to separate the movable plate from the end face. When the movable plate is at the position d, the voltage applied to stator windings is controlled in a direction of weakening the magnetic field, and the movable plate is moved to the position p by increasing the attractive magnetic force that attracts the movable plate to the end face to be larger than the separation force to short-circuit the magnetic flux of the permanent magnet. When the movable plate is at the position p, the voltage applied to the stator windings is controlled in a direction of strengthening the magnetic field, and the movable plate is moved to the position d by making the magnetic attraction force to be smaller than the separation force, to thereby maintain a state in which the magnetic flux of the permanent magnet is not short-circuited. A position of the movable plate is controlled according to the number of rotations of the rotor.SELECTED DRAWING: Figure 1

Description

本発明は、回転電機に係り、より詳細には、永久磁石により界磁を発生する回転子の磁力が可変に制御される構成を有する回転電機に係る。 TECHNICAL FIELD The present invention relates to a rotating electrical machine, and more particularly, to a rotating electrical machine having a configuration in which the magnetic force of a rotor that generates a magnetic field by permanent magnets is variably controlled.

回転電機に於いて、回転子に永久磁石が担持され、界磁を発生する形式の同期機の場合、回転子が回転し、永久磁石からなる磁極が動くことで、固定子巻線へ電源から印加されている電圧と逆方向に発生する逆起電圧(又は逆起電力)が発生し、その逆起電圧は、回転子の回転数の増大と共に高くなるところ、回転子の永久磁石からの磁束が実質的に不変であるので、回転子の回転数が高くなり過ぎると、逆起電圧が固定子巻線への印加電圧と等しくなり、回転子の回転数を、それ以上、上げられなくなる。そこで、回転子の高回転時に上記の逆起電圧を低減するための構成が種々提案されている。例えば、特許文献1に於いては、回転子の回転軸線方向の端面上に、アクチュエータにより回転子までの距離が制御される磁性体からなる部材を配置し、回転数が高いときには、アクチュエータにより磁性体部材を回転子の磁石に近接して、磁石からの磁束を短絡し、界磁を低減する構成が提案されている。 In a rotating electrical machine, in the case of a synchronous machine in which the rotor carries permanent magnets and generates a magnetic field, the rotor rotates and the magnetic poles made up of the permanent magnets move, causing the power supply to the stator windings to move. A counter-electromotive force (or counter-electromotive force) is generated in the opposite direction to the applied voltage, and the counter-electromotive force increases as the rotor speed increases. is substantially unchanged, when the rotor speed becomes too high, the back electromotive voltage becomes equal to the voltage applied to the stator windings, and the rotor speed cannot be increased any further. Therefore, various configurations have been proposed to reduce the back electromotive force when the rotor rotates at high speed. For example, in Patent Document 1, a member made of a magnetic material whose distance to the rotor is controlled by an actuator is arranged on the end face of the rotor in the rotation axis direction. A configuration has been proposed in which the body member is placed close to the magnets of the rotor to short-circuit the magnetic flux from the magnets and reduce the magnetic field.

特開2019-146422JP 2019-146422

上記の如き回転電機に於いて、回転子回転数に応じて回転子磁極の磁力又は界磁を増減するために、回転子の永久磁石に対して磁性体部材を近接又は離間して選択的に永久磁石の磁束を短絡するための機構は、できるだけコンパクトであることが好ましい。例えば、従来の技術の如く、磁性体部材を回転子の永久磁石に対して近接又は離間するための専用のアクチュエータなどの装置を装備すると、その分、回転電機が大型化し、コストも増大し得る。もし回転子の永久磁石の磁束を選択的に短絡するための磁性体部材の位置の制御が専用のアクチュエータ等を用いずに、できるだけ簡単な構成にて達成できれば、有利である。 In the rotating electric machine as described above, in order to increase or decrease the magnetic force or magnetic field of the rotor magnetic poles in accordance with the number of rotations of the rotor, the magnetic members are selectively moved closer to or away from the permanent magnets of the rotor. The mechanism for short-circuiting the flux of permanent magnets is preferably as compact as possible. For example, if a device such as a dedicated actuator for bringing the magnetic member closer to or away from the permanent magnet of the rotor is installed as in the conventional technology, the size of the rotating electric machine will increase accordingly, and the cost will also increase. . It would be advantageous if control of the position of the magnetic member for selectively short-circuiting the magnetic flux of the permanent magnets of the rotor could be achieved with as simple a configuration as possible without using a dedicated actuator or the like.

かくして、本発明の一つの課題は、回転子に担持された永久磁石により界磁を発生する形式の回転電機に於いて、永久磁石の磁束を選択的に短絡するための磁性体部材の位置を制御するための機構をできるだけ簡単な構成にて達成することである。 Thus, one object of the present invention is to determine the position of magnetic members for selectively short-circuiting the magnetic flux of the permanent magnets in a rotating electrical machine of the type in which a magnetic field is generated by permanent magnets carried by a rotor. It is to achieve a mechanism for control with the simplest possible configuration.

本発明によれば、上記の課題は、界磁を発生する永久磁石を担持した回転子と、固定子巻線を担持した固定子にしてその内側の空間に前記回転子が回転可能に支持される固定子と、電源から前記固定子巻線へ印加される電圧の大きさと位相とを制御する巻線電圧制御手段とを含む回転電機であって、
前記回転子の回転軸線方向の端面に沿って該端面との間の距離が可変に配置され磁性体から成り前記回転子の前記永久磁石から生ずる磁束の一部を短絡可能な可動板にして、第一の位置と、該第一の位置よりも前記端面に近接した第二の位置との間にて移動可能であり、前記第二の位置にあるときに、前記第一の位置にあるときよりも、前記磁束をより多く短絡するよう構成された可動板と、
前記可動板を前記第二の位置から前記第一の位置の方向へ変位させる方向に前記可動板に対して前記端面から離隔させる離隔力を付与する離隔力付与手段と、
を含み、
前記可動板が前記第一の位置にあるときに、前記巻線電圧制御手段が前記回転子の永久磁石による界磁を弱める方向に前記固定子巻線に印加する電圧の大きさと位相とを制御する弱め界磁処理を実行すると、前記可動板を前記端面に引き付ける引付磁力が前記離隔力を凌駕して、前記可動板が前記第二の位置へ移動し、前記巻線電圧制御手段が前記弱め界磁処理の解除後に於いても前記回転子の永久磁石による界磁が弱められた状態が維持され、
前記可動板が前記第二の位置にあるときに、前記巻線電圧制御手段が前記回転子の永久磁石による界磁を強める方向に前記固定子巻線に印加する電圧の大きさと位相とを制御する強め界磁処理を実行すると、前記離隔力が前記引付磁力を凌駕して、前記可動板が前記第一の位置へ移動し、前記巻線電圧制御手段が前記強め界磁処理の解除後に於いても前記回転子の永久磁石による界磁が強められた状態が維持されるよう構成され、
前記可動板の位置が前記回転子の回転数に応じて前記巻線電圧制御手段の前記弱め界磁処理又は前記強め界磁処理を実行することにより制御される回転電機によって達成される。
According to the present invention, the above problem is solved by providing a rotor carrying permanent magnets for generating a magnetic field and a stator carrying stator windings so that the rotor is rotatably supported in the inner space thereof. and winding voltage control means for controlling the magnitude and phase of voltage applied to the stator winding from a power supply,
a movable plate that is arranged along the end face of the rotor in the direction of the rotational axis and that is made of a magnetic material so that the distance between the end face and the end face is variable and that is capable of short-circuiting part of the magnetic flux generated from the permanent magnet of the rotor; It is movable between a first position and a second position closer to the end face than the first position, and when in the first position when in the second position a movable plate configured to short-circuit the magnetic flux more than
a separation force applying means for applying a separation force to separate the movable plate from the end face in a direction of displacing the movable plate from the second position toward the first position;
including
When the movable plate is at the first position, the winding voltage control means controls the magnitude and phase of the voltage applied to the stator winding in the direction of weakening the magnetic field generated by the permanent magnet of the rotor. When the field weakening process is executed, the attractive magnetic force that attracts the movable plate to the end face overcomes the separating force, the movable plate moves to the second position, and the winding voltage control means is controlled by the maintaining the weakened state of the magnetic field generated by the permanent magnet of the rotor even after the field-weakening process is canceled;
When the movable plate is at the second position, the winding voltage control means controls the magnitude and phase of the voltage applied to the stator winding in a direction to strengthen the magnetic field generated by the permanent magnet of the rotor. When the field-strengthening process is executed, the separation force exceeds the attractive magnetic force, the movable plate moves to the first position, and the winding voltage control means is operated after releasing the field-strengthening process. The magnetic field generated by the permanent magnets of the rotor is maintained to be strengthened even at this time,
This is achieved by a rotary electric machine in which the position of the movable plate is controlled by executing the field-weakening process or the field-strengthening process of the winding voltage control means according to the rotation speed of the rotor.

上記の装置の構成に於いて、「回転電機」は、回転子の担持する永久磁石により界磁を生成される形式の同期機であってよい。「巻線電圧制御手段」は、同期機の固定子巻線の電圧の制御に通常用いられる形式の電圧制御装置であってよい。かかる巻線電圧制御手段は、通常の状態にて回転電機を運転するときには、電源から固定子巻線へ電圧を通常の態様の大きさと位相にて印加するところ、弱め界磁処理を実行するときには、印加電圧の大きさと位相を、回転子の永久磁石によって固定子と回転子との間に発生させる界磁を弱めるように、即ち、巻線電流による磁束が永久磁石からの磁束と逆向きに発生するように制御し、強め界磁処理を実行するときには、印加電圧の大きさと位相を、回転子の永久磁石によって固定子と回転子との間に発生させる界磁を強めるように、即ち、巻線電流による磁束が永久磁石からの磁束と同じ方向に発生するように制御できるよう構成される。「可動板」は、上記の如く、回転子の永久磁石からの磁場の作用によりその方向に磁化する任意の磁性体材料にて形成されてよい。可動板は、上記の如く、回転子の端面から離隔した第一の位置とその端面に近接した第二の位置との間で変位可能に構成され、これにより、第二の位置にあるときの方が、第一の位置よりも強く、回転子の永久磁石からの磁場を受け、より強く磁化することとなる。典型的には、可動板は、回転子の端面に沿って配置される円盤状であってよいが、これに限定されない。「離隔力付与手段」は、任意の態様にて、可動板にそれを回転子端面から離隔する方向に、即ち、可動板を第二の位置から第一の位置への方向へ変位させる方向に、力を作用する手段であってよく、典型的には、例えば、後の実施形態の欄にて例示されている如く、ばね又は弾性体から形成され、離隔力は、ばね又は弾性体の弾性力であってよい。そして、可動板の位置は、巻線電圧制御手段に於ける回転子の回転数に応じた弱め界磁処理又は強め界磁処理の実行を通じて制御される。 In the configuration of the apparatus described above, the "rotating electric machine" may be a synchronous machine in which a magnetic field is generated by permanent magnets carried by the rotor. The "winding voltage control means" may be a voltage control device of the type normally used to control the voltage of the stator windings of a synchronous machine. When the rotating electrical machine is operated in a normal state, the winding voltage control means applies a voltage from the power supply to the stator winding in a normal manner in magnitude and phase. , the magnitude and phase of the applied voltage are adjusted to weaken the magnetic field generated between the stator and the rotor by the permanent magnets of the rotor, i.e., the magnetic flux due to the winding current is in the opposite direction to the magnetic flux from the permanent magnets. When performing the field-strengthening process, the magnitude and phase of the applied voltage are adjusted to strengthen the field generated between the stator and the rotor by the permanent magnets of the rotor, i.e., It is configured to be controllable such that the magnetic flux due to the winding current is generated in the same direction as the magnetic flux from the permanent magnet. The "movable plate", as described above, may be made of any magnetic material that is magnetized in that direction by the action of the magnetic field from the rotor's permanent magnets. As described above, the movable plate is configured to be displaceable between a first position spaced apart from the end face of the rotor and a second position close to the end face of the rotor. At this position, the magnetic field from the permanent magnets of the rotor is stronger than at the first position, resulting in stronger magnetization. Typically, the movable plate may have a disc shape arranged along the end face of the rotor, but is not limited to this. The "separating force applying means" can be used in any manner to move the movable plate in a direction to separate it from the rotor end face, i.e., in a direction to displace the movable plate from the second position to the first position. , may be means for exerting a force, typically formed from a spring or an elastic body, for example, as exemplified later in the section on Embodiments, and the separating force is the elastic force of the spring or elastic body. It can be power. The position of the movable plate is controlled through execution of field-weakening or field-strengthening processing according to the number of revolutions of the rotor in the winding voltage control means.

上記の本発明の回転電機に於いては、端的に述べれば、固定子巻線への通電制御を通じて回転子に対する可動板の位置が変位されることで、可動板によって短絡される回転子の永久磁石からの磁束の量が変更され、これにより、回転子の発生する界磁の大きさが調整される。後の実施形態の欄に於いて詳細に説明される如く、永久磁石から出る磁束量は変わらないので、巻線電圧制御手段が印加電圧の大きさと位相とを制御して、弱め界磁処理を実行すると、永久磁石からの磁束のうち、回転子の半径方向からはずれて回転軸線方向へ進む磁束が多くなる。一方、可動板は離隔力により第一の位置に偏倚されているところ、上記の巻線電圧制御手段による弱め界磁処理によって、回転軸線方向へ進んで磁性体の可動板に流れ込む磁束が多くなり、可動板をより大きく磁化するので、可動板を回転子の端面へ引き寄せる磁力(引付磁力)が大きくなり、離隔力を凌駕して、可動板を第二の位置へ変位することとなる。そうなると、可動板には、永久磁石から更に多くの磁束が流入して、磁化の程度が大きくなるので、巻線電圧制御手段が印加電圧を通常の状態に戻しても(弱め界磁処理を終了)、引付磁力が離隔力よりも大きい状態が保持され、かくして、回転子の永久磁石の磁束のうち可動板に短絡される磁束が多くなり、界磁が低減された状態となる。また、上記の処理によって、可動板が第二の位置にあるときに、巻線電圧制御手段が印加電圧の大きさと位相とを制御して、強め界磁処理を実行すると、永久磁石からの磁束は、より多く回転子の半径方向に進むこととなり、その分、可動板への磁束の流入量が低下することとなる。そうすると、可動板の磁化の程度が小さくなり、引付磁力が小さくなるので、離隔力によって、可動板は、第一の位置へ変位されることとなる。この位置に於いて、可動板へ流入する永久磁石からの磁束は更に低下するので、巻線電圧制御手段が印加電圧を通常の状態に戻しても(強め界磁処理を終了)、離隔力が引付磁力よりも大きい状態が保持され、かくして、回転子の永久磁石の磁束のうち可動板に短絡される磁束が低減され、界磁が増大された状態(低減される前の状態)となる。そして、上記の巻線電圧制御手段による固定子巻線への印加電圧の大きさと位相とを制御する固定子巻線への通電制御を回転子の回転数に応じて実行することにより、回転子の回転数に応じて固定子と回転子との間の界磁の大きさを可変に制御することが可能となる。 In the rotating electric machine of the present invention described above, in short, the position of the movable plate relative to the rotor is displaced by controlling the energization of the stator windings, so that the rotor is permanently short-circuited by the movable plate. The amount of magnetic flux from the magnets is changed, thereby adjusting the magnitude of the field generated by the rotor. As will be explained in detail later in the paragraphs of embodiments, since the amount of magnetic flux emitted from the permanent magnet does not change, the winding voltage control means controls the magnitude and phase of the applied voltage to perform the field weakening process. When this is done, of the magnetic flux from the permanent magnets, the magnetic flux that deviates from the radial direction of the rotor and travels in the rotation axis direction increases. On the other hand, when the movable plate is biased to the first position by the separating force, the magnetic field weakening process by the winding voltage control means increases the amount of magnetic flux that advances in the direction of the rotation axis and flows into the magnetic movable plate. Since the movable plate is magnetized to a greater extent, the magnetic force (attracting magnetic force) that attracts the movable plate to the end face of the rotor increases, overcomes the separating force, and displaces the movable plate to the second position. As a result, even more magnetic flux flows into the movable plate from the permanent magnets and the degree of magnetization increases. ), a state in which the attracting magnetic force is greater than the separation force is maintained, and thus the magnetic flux short-circuited to the movable plate increases among the magnetic fluxes of the permanent magnets of the rotor, resulting in a reduced magnetic field. Further, according to the above process, when the movable plate is at the second position, the winding voltage control means controls the magnitude and phase of the applied voltage to perform the field strengthening process, the magnetic flux from the permanent magnet will travel more in the radial direction of the rotor, and the amount of magnetic flux flowing into the movable plate will decrease accordingly. As a result, the degree of magnetization of the movable plate is reduced and the attractive magnetic force is reduced, so that the separation force displaces the movable plate to the first position. At this position, the magnetic flux from the permanent magnet flowing into the movable plate is further reduced. The state of being greater than the attractive magnetic force is maintained, and thus the magnetic flux short-circuited to the movable plate, out of the magnetic flux of the permanent magnets of the rotor, is reduced, and the magnetic field is increased (the state before being reduced). . By controlling the magnitude and phase of the voltage applied to the stator winding by the winding voltage control means, the energization control to the stator winding is executed according to the number of rotations of the rotor. It is possible to variably control the magnitude of the magnetic field between the stator and the rotor according to the number of revolutions.

上記の可動板の第一の位置と第二の位置、並びに、離隔力付与手段による離隔力は、適合により設定されてよい。可動板が第一の位置にあるときには、固定子巻線に通常の電圧が印加されている状態で、回転子の永久磁石から可動板に流入する磁束が少なく、離隔力よりも大きな引付磁力が発生しないようにする一方、可動板が第二の位置にあるときには、固定子巻線に通常の電圧が印加されている状態で、回転子の永久磁石から可動板に流入する磁束が多く、引付磁力が離隔力よりも大きくなるように、可動板の第一の位置と第二の位置並びに離隔力が調整される。 The first position and second position of the movable plate and the separating force by the separating force applying means may be set by adaptation. When the movable plate is in the first position, with normal voltage applied to the stator windings, less magnetic flux flows into the movable plate from the permanent magnets of the rotor, and the attractive magnetic force is greater than the separation force. on the other hand, when the movable plate is in the second position, with normal voltage applied to the stator windings, there is more magnetic flux flowing into the movable plate from the permanent magnets of the rotor, The first and second positions of the movable plate and the separating force are adjusted so that the magnetic attraction force is greater than the separating force.

上記の可動板の位置を変位させる巻線電圧制御手段の通電制御について、具体的には、巻線電圧制御手段は、回転子の回転数が所定の回転数を上回ると、弱め界磁処理を実行し、回転子の回転数が所定の回転数を下回ると、強め界磁処理を実行するよう構成されていてよい。弱め界磁処理又は強め界磁処理の実行は、可動板が第一の位置から第二の位置へ移動するまでの間又は第二の位置から第一の位置へ移動するまでの間に於いて継続される。この点に関し、可動板の第一の位置と第二の位置との間の移動に要する時間は、実験等により把握できるので、一度の弱め界磁処理又は強め界磁処理は、可動板の第一の位置と第二の位置との間の移動に要する時間に相当する予め設定された所定の時間に亙って実行されてよい。或いは、可動板の位置を監視して、弱め界磁処理又は強め界磁処理の開始後、可動板の位置の移動が完了したことを確認して、弱め界磁処理又は強め界磁処理が終了されるようになっていてもよい。更に、可動板の位置によって界磁の大きさが変化し、界磁の大きさにより固定子巻線に発生する逆起電圧が変化するので、固定子巻線の電圧を監視して、弱め界磁処理又は強め界磁処理の開始後、可動板の位置の移動が完了したことを確認して、弱め界磁処理又は強め界磁処理が終了されるようになっていてもよい。なお、固定子巻線の通電制御は、通常の態様の通電制御を実行しているときと、弱め界磁処理又は強め界磁処理を実行している間に亙って、出力トルクが維持されるよう実行されてよい。 Regarding the energization control of the winding voltage control means for displacing the position of the movable plate, specifically, the winding voltage control means performs field weakening processing when the number of rotations of the rotor exceeds a predetermined number of rotations. and when the number of rotations of the rotor falls below a predetermined number of rotations, the field-strengthening process may be performed. The field-weakening process or the field-strengthening process is performed until the movable plate moves from the first position to the second position or from the second position to the first position. Continued. In this regard, the time required for the movement of the movable plate between the first position and the second position can be grasped by experiments, etc. It may be performed over a preset predetermined time period corresponding to the time required to move between the first position and the second position. Alternatively, the position of the movable plate is monitored, and after the field weakening process or the field strengthening process is started, it is confirmed that the movement of the position of the movable plate is completed, and the field weakening process or the field strengthening process is completed. It may be designed to be Furthermore, since the magnitude of the magnetic field changes depending on the position of the movable plate, and the magnitude of the magnetic field changes the back electromotive force generated in the stator winding, the voltage of the stator winding is monitored to reduce the field strength. After the start of the magnetic field processing or the strong field processing, the weak field processing or the strong field processing may be terminated after confirming that the movement of the position of the movable plate is completed. In the energization control of the stator winding, the output torque is maintained while the normal mode energization control is being executed and while the field-weakening process or the field-strengthening process is being executed. may be executed as follows:

上記の構成に於いて、可動板と離隔力付与手段とは、ハウジング内に収納されていてよく、回転子と共に回転されてよい。 In the above configuration, the movable plate and the separation force imparting means may be accommodated in the housing and rotated together with the rotor.

かくして、上記の本発明による回転電機の構成に於いては、回転子の磁力、即ち、界磁を可変にするための機構の構成要素として、永久磁石の磁束を短絡する可動板と離隔力付与手段とを追加するだけでよく、通常の回転電機に備えられている固定子巻線への通電制御を通じて、可動板の位置が変位され、界磁を可変に制御可能である。従って、界磁を可変にするための機構は、コンパクトであり、専用のアクチュエータなどの装置を要しないので、回転電機の寸法及びコストが抑えられることとなる。本発明の構成は、種々の永久磁石により界磁を発生する回転子を有する回転電機に適用されてよい。 Thus, in the structure of the rotating electric machine according to the present invention, the movable plate for short-circuiting the magnetic flux of the permanent magnet and the separation force imparting force are provided as constituent elements of the mechanism for varying the magnetic force of the rotor, that is, the magnetic field. The position of the movable plate is displaced and the magnetic field can be variably controlled by controlling the energization of the stator windings provided in a normal rotating electric machine. Therefore, the mechanism for making the magnetic field variable is compact and does not require a device such as a dedicated actuator, so the size and cost of the rotating electric machine can be suppressed. The configuration of the present invention may be applied to a rotating electric machine having a rotor that generates a magnetic field with various permanent magnets.

本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明により明らかになるであろう。 Other objects and advantages of the present invention will become apparent from the following description of preferred embodiments of the invention.

図1(A)は、本発明による回転電機の好ましい実施形態の回転軸線の方向に対して垂直な方向から見た回転子と固定子の側面(上半分のみ)の模式図である。図1(B)は、界磁可変機構の構造を表わした図1(A)の拡大図である。FIG. 1A is a schematic side view (upper half only) of a rotor and a stator of a preferred embodiment of a rotating electric machine according to the present invention, viewed from a direction perpendicular to the direction of the rotation axis. FIG. 1(B) is an enlarged view of FIG. 1(A) showing the structure of the variable field mechanism. 図2は、本実施形態による回転電機の固定子巻線の通電制御を行う制御装置の構成をブロック図の形式で表わした図である。FIG. 2 is a diagram showing, in the form of a block diagram, the configuration of the control device that controls the energization of the stator windings of the rotary electric machine according to the present embodiment. 図3は、本実施形態による回転電機に於いて、固定子巻線への通電制御により、可動板が移動し、界磁が可変に制御されることを説明する図である。3A and 3B are diagrams for explaining how the movable plate is moved and the magnetic field is variably controlled by controlling the energization of the stator windings in the rotating electric machine according to the present embodiment. 図4は、本実施形態による回転電機に於いて、回転子の回転数に応じて、可動板の位置を制御する処理をフローチャートの形式にて表わした図である。FIG. 4 is a diagram showing, in the form of a flow chart, the process of controlling the position of the movable plate according to the number of revolutions of the rotor in the rotary electric machine according to this embodiment.

1…回転電機
2…固定子
3…回転子
4…永久磁石
5…回転軸
6…界磁可変機構
7…ハウジング
8…可動板
9…ばね(離隔力付与手段)
c…回転軸線
…引付磁力
…ばね力(離隔力)
…磁石磁束
MX…可動板へ流入した磁石磁束
…電流磁束
DESCRIPTION OF SYMBOLS 1... Rotating electric machine 2... Stator 3... Rotor 4... Permanent magnet 5... Rotating shaft 6... Variable field mechanism 7... Housing 8... Movable plate 9... Spring (separation force imparting means)
c... Rotational axis FM ... Attractive magnetic force FE ... Spring force (separation force)
B M … Magnet magnetic flux B MX … Magnet magnetic flux that has flowed into the movable plate BI … Current magnetic flux

回転電機の構成
図1(A)を参照して、本発明の好ましい実施形態の回転電機1の基本的な構成は、固定子巻線(図示せず)を担持した固定子2と、その内側の空間に於いて回転軸線c周りに回転可能に支持され界磁を発生する永久磁石4を担持した回転子3とから成る通常の態様の同期機の構造であってよい。固定子巻線の通電制御は、後に説明される図2に例示されている如き制御装置により実行される。
Configuration of Rotating Electric Machine Referring to FIG. 1(A), the basic configuration of a rotating electric machine 1 according to a preferred embodiment of the present invention consists of a stator 2 carrying stator windings (not shown), and and a rotor 3 carrying field-generating permanent magnets 4 supported rotatably about a rotation axis c in space. The energization control of the stator windings is executed by a control device as illustrated in FIG. 2, which will be described later.

上記の如き同期機の基本構成を有する回転電機1に於いて、本実施形態の場合には、更に、回転子3の永久磁石4から固定子巻線への界磁磁束の量を可変に制御するための界磁可変機構6が、回転子3の回転軸線方向の端面3aに配置される(界磁可変機構6は、両方の端面3aに配置されてよく、一方の端面3aにのみ配置されてもよい。)。界磁可変機構6に於いては、図1(B)に模式的に描かれている如く、ハウジング7の内部にて、磁性体材料にて形成された可動板8が、回転子3の回転軸線方向端面3aの方向に沿って、回転子3の端面3aから離隔した位置d(第一の位置)と、回転子3の端面3aに近接した位置p(第二の位置)との間にて移動可能に配置され、更に、可動板8を位置dの方向へ偏倚する力(離隔力)を付与する離隔力付与手段として、ばね9等が配置される。なお、可動板8は、永久磁石4からの磁束の一部が流入することにより磁化し、流入した磁束が回転子の外部に流出せずに永久磁石4に戻るように、磁束を短絡するよう構成され配置される。また、離隔力付与手段は、ばね9に限らず、可動板8を位置pから位置dへ偏倚する力を付与できるものであれば、任意の形態のものが採用されてよく、ばね9の場合には、図示の如く、可動板8を回転子3側から押し出す力を付与するように配置されてもよく、或いは、可動板8を回転子3の軸線方向外側から引張る力を付与するように配置されてもよい。可動板8の位置dと位置p並びにばね9の離隔力との関係は、後に説明される如く、可動板8が位置dにあるとき、固定子巻線の通電制御に於いて通常の電圧制御が実行されている場合には、可動板8に流入する磁束量が少なく、従って、永久磁石4が可動板8を引き付ける磁力(引付磁力)よりもばね9による離隔力が大きく、可動板8が位置dに保持されるところ、固定子巻線の通電制御に於いて弱め界磁処理が実行されて永久磁石4から回転子の回転軸線方向に漏れる磁束量が多くなると、引付磁力が離隔力よりも大きくなり、可動板8が位置pへ移動し、一方、可動板8が位置pにあるとき、固定子巻線の通電制御に於いて通常の電圧制御が実行されている場合には、可動板8に流入する磁束量が多く、従って、引付磁力が離隔力よりも大きく、可動板8が位置pに保持されるところ、固定子巻線の通電制御に於いて強め界磁処理が実行されて永久磁石4から回転子の回転軸線方向に漏れる磁束量が少なくなると、引付磁力よりも離隔力が大きくなり、可動板8が位置dへ移動するように、設定される。 In the rotating electrical machine 1 having the basic configuration of the synchronous machine as described above, in the case of this embodiment, the amount of field magnetic flux from the permanent magnets 4 of the rotor 3 to the stator windings is further variably controlled. A magnetic field variable mechanism 6 is arranged on the end surface 3a of the rotor 3 in the rotation axis direction (the magnetic field variable mechanism 6 may be arranged on both end surfaces 3a, or may be arranged on only one end surface 3a. may be used.). In the variable field mechanism 6, as schematically shown in FIG. Along the direction of the axial end face 3a, between a position d (first position) spaced from the end face 3a of the rotor 3 and a position p (second position) close to the end face 3a of the rotor 3 Further, a spring 9 or the like is arranged as a separation force applying means for applying a force (separation force) to bias the movable plate 8 in the direction of the position d. The movable plate 8 is magnetized by the inflow of a part of the magnetic flux from the permanent magnet 4, and short-circuits the magnetic flux so that the inflowing magnetic flux returns to the permanent magnet 4 without flowing out of the rotor. constructed and arranged. Further, the separating force imparting means is not limited to the spring 9, and may be of any form as long as it can impart a force to bias the movable plate 8 from the position p to the position d. may be arranged so as to apply a force to push the movable plate 8 from the side of the rotor 3, or to apply a force to pull the movable plate 8 from the outside in the axial direction of the rotor 3. may be placed. As will be explained later, the relationship between the position d and position p of the movable plate 8 and the separating force of the spring 9 is such that when the movable plate 8 is at the position d, normal voltage control is performed in the energization control of the stator winding. is executed, the amount of magnetic flux flowing into the movable plate 8 is small. is held at position d, the magnetic field weakening process is executed in the energization control of the stator winding, and the amount of magnetic flux leaking from the permanent magnet 4 in the rotation axis direction of the rotor increases. force, and the movable plate 8 moves to position p. , the amount of magnetic flux flowing into the movable plate 8 is large, and therefore the attracting magnetic force is greater than the separation force, and the movable plate 8 is held at the position p. is executed to reduce the amount of magnetic flux leaking from the permanent magnets 4 in the rotation axis direction of the rotor, the separation force becomes greater than the attractive magnetic force, and the movable plate 8 is set to move to the position d.

固定子2の固定子巻線の通電制御は、コンピュータ制御装置(図1に於いて図示せず)により実行される。コンピュータ制御装置は、通常の形式の、双方向コモン・バスにより相互に連結されたCPU、ROM、RAM及び入出力ポート装置を有するコンピュータ及び駆動回路を含んでいてよい。後に説明される本実施形態の装置の各部の構成及び作動は、それぞれ、プログラムに従ったコンピュータ装置の作動により実現されてよい。図2を参照して、コンピュータ装置に於ける本実施形態に於ける固定子巻線の通電制御を実行する制御装置のシステム構成に於いては、固定子巻線に印加されるべき電圧の大きさと位相とを制御する固定子巻線電圧制御部と、かかる制御部の指令に従って電源からの固定子巻線へ電圧を印加する駆動回路とが設けられてよい。 The energization control of the stator windings of the stator 2 is executed by a computer controller (not shown in FIG. 1). The computer control system may include a computer and drive circuits of conventional type having a CPU, ROM, RAM and input/output port devices interconnected by a bi-directional common bus. The configuration and operation of each part of the device of this embodiment, which will be described later, may be realized by the operation of a computer device according to a program. Referring to FIG. 2, in the system configuration of the control device that executes the energization control of the stator windings in the present embodiment in the computer device, the magnitude of the voltage to be applied to the stator windings is There may be provided a stator winding voltage control section for controlling the phase and voltage, and a drive circuit for applying a voltage from the power supply to the stator windings in accordance with instructions from the control section.

固定子巻線電圧制御部は、基本的には、任意の態様にて提供されてよいトルクの要求値が達成されるように、そのトルクの要求値の大きさを表わす要求トルク信号又は更に回転子位置若しくは回転子回転数を参照して、任意の態様にて固定子巻線への印加電圧の大きさと位相とを決定し、駆動回路へ制御指令を付与するよう構成されていてよい。また、固定子巻線電圧制御部は、後に説明される如く、回転子の回転数の大きさに応じて、回転子から生ずる界磁の大きさを変更するために、回転子回転数と回転子位置とを参照して、回転子と固定子との間に生成される界磁の大きさを低減すべく、回転子からの界磁と逆向きに磁束(電流磁束)が発生するように電圧の大きさと位相とを制御する弱め界磁処理と、回転子と固定子との間に生成される界磁の大きさを増大すべく、回転子からの界磁と同じ向きに磁束(電流磁束)が発生するように電圧の大きさと位相とを制御する強め界磁処理とを実行するよう構成される。駆動回路は、固定子巻線電圧制御部からの制御指令に従って、通常の態様にて電源から固定子巻線へ電圧を印加するよう構成されていてよい。 The stator winding voltage control is basically a demand torque signal representing the magnitude of the torque demand, or even the rotation speed, so that the torque demand is achieved, which may be provided in any manner. It may be configured to determine the magnitude and phase of the voltage applied to the stator windings in any manner with reference to the child position or the rotor speed, and to give control instructions to the drive circuit. In addition, the stator winding voltage control section changes the magnitude of the magnetic field generated from the rotor in accordance with the magnitude of the rotor rotation speed, as will be described later. In order to reduce the magnitude of the magnetic field generated between the rotor and stator, the magnetic flux (current magnetic flux) is generated in the opposite direction to the magnetic field from the rotor. Field-weakening treatment, which controls the magnitude and phase of the voltage, and the magnetic flux (current and a field-strengthening process that controls the magnitude and phase of the voltage so that a magnetic flux is generated. The drive circuit may be configured to apply voltage from the power supply to the stator windings in the normal manner according to control instructions from the stator winding voltage controller.

界磁可変制御について
既に述べた如く、永久磁石が担持された回転子によって界磁を発生する形式の同期機に於いて、回転子の回転数が高くなり過ぎると、永久磁石が動くことにより生ずる逆起電圧が固定子巻線への印加電圧と等しくなり、回転子の回転数を、それ以上、上げられなくなるので、この現象を回避するための構成の一つのとして、回転子の永久磁石に対して磁性体から成る部材を近接又は離隔して選択的に永久磁石の磁束を部材を通して短絡し、界磁を選択的に低減できるようにするする機構が提案されている。そのような機構として、本実施形態に於いては、上記の如く、回転子3の回転軸線c方向の端面3aの近傍に磁性体から成る可動板8と、可動板8を回転子3の端面3aから離隔する方向に力を付与するばね9とを配置し、固定子巻線に対する通電制御によって、可動板8を回転子3の端面3aに対して離隔した位置dと、近接した位置pとの間にて移動可能とし、可動板8が位置pにあるときには、永久磁石の磁束をより多くの量にて短絡できるようにする界磁可変機構が設けられる。かかる機構は、上記の如き同期機に於ける通常の構成要素である回転子3、固定子2並びに固定子巻線の通電制御装置に追加する構成要素として、実質的には、可動板8、ばね9及びそれらを組み付けるハウジング7から構成され、可動板8の変位させるための専用のアクチュエータの如き装備を用いないので、コンパクトであり、回転電機1の寸法をさほどに増大せずに、比較的簡単な構成にて界磁を可変に制御できる点で有利である。以下、本実施形態に於ける界磁を変更するために固定子巻線に対する通電制御により可動板8の位置を変位する作動について説明する。
As described above with respect to variable field control , in a synchronous machine of the type in which a magnetic field is generated by a rotor carrying permanent magnets, if the number of rotations of the rotor becomes too high, the permanent magnets will move. The back electromotive voltage becomes equal to the voltage applied to the stator windings, and the rotation speed of the rotor cannot be increased any more. On the other hand, there has been proposed a mechanism for selectively short-circuiting the magnetic flux of a permanent magnet through a member made of a magnetic material by bringing it close to or separating it, so that the magnetic field can be selectively reduced. As such a mechanism, in the present embodiment, as described above, the movable plate 8 made of a magnetic material is provided near the end surface 3a of the rotor 3 in the direction of the rotational axis c, and the movable plate 8 is disposed on the end surface of the rotor 3. A spring 9 that applies a force in a direction away from the rotor 3a is arranged, and the energization control of the stator windings allows the movable plate 8 to be separated from the end face 3a of the rotor 3 at a position d and at a position p close to it. A variable field mechanism is provided which is movable between and allows a greater amount of short-circuiting of the magnetic flux of the permanent magnets when the movable plate 8 is at position p. Such a mechanism substantially includes a movable plate 8, It is composed of the springs 9 and the housing 7 in which they are assembled, and does not use a device such as a dedicated actuator for displacing the movable plate 8. This is advantageous in that the magnetic field can be variably controlled with a simple configuration. The operation of displacing the position of the movable plate 8 by controlling the energization of the stator windings in order to change the magnetic field in this embodiment will be described below.

図3を参照して、まず、回転子の回転数が過大ではなく、回転電機1を通常の状態にて運転すべく固定子巻線の印加電圧が与えられている状態に於いては、図3(a)の如く、回転子3の永久磁石4の磁束Bは、実質的には、回転子3の半径方向を向き、また、可動板8は、ばね9によるばね力(離隔力)Fにより、回転子3の端面3aに対して離隔した位置dへ偏倚させられた状態となっている。この状態に於いては、可動板8は永久磁石4から離隔されており、磁束Bによる磁化が殆ど生じておらず、永久磁石4が可動板8を引き付ける磁力(引付磁力)Fは小さいので、F>Fが成立し、可動板8は回転子3の端面3aから離隔した位置dに保持されることとなる。 Referring to FIG. 3, first, when the rotor speed is not excessive and the voltage applied to the stator windings is applied to operate the rotating electric machine 1 in a normal state, as shown in FIG. As shown in 3(a), the magnetic flux B M of the permanent magnets 4 of the rotor 3 is substantially directed in the radial direction of the rotor 3, and the movable plate 8 is subjected to a spring force (separation force) by the spring 9. Due to FE , it is in a state of being biased to a position d away from the end face 3a of the rotor 3. As shown in FIG. In this state, the movable plate 8 is separated from the permanent magnet 4 and is hardly magnetized by the magnetic flux BM . Since it is small, F E >F M holds true, and the movable plate 8 is held at the position d away from the end face 3 a of the rotor 3 .

次に、図3(b)を参照して、回転子の回転数は高くなり、回転子3の界磁を低減すべき状態となったときには、固定子巻線の電流によって永久磁石4の磁束Bに対して逆向きの磁束(電流磁束)Bが生ずるように、固定子巻線への印加電圧の大きさと位相とが(通常の状態から)変化させられる(弱め界磁処理)。そうすると、永久磁石4から流出する磁束Bの総量は変化しないので、図示の如く、磁束Bの一部BMXは、回転子3の回転軸線c方向に湾曲して進み、回転子3の端面3aから回転軸線c方向に存在する可動板8へ流入することとなる。すると、可動板8が磁束BMXにより磁化されるので、引付磁力Fが大きくなり、F<Fが成立し、引付磁力Fが離隔力Fを凌駕して、可動板8が、回転子3の端面3aに近接した位置pへ移動することとなる。 Next, referring to FIG. 3(b), when the rotation speed of the rotor increases and the magnetic field of the rotor 3 should be reduced, the magnetic flux of the permanent magnet 4 is reduced by the current of the stator winding. The magnitude and phase of the voltage applied to the stator windings are changed (from the normal state) so that a magnetic flux (current flux) BI is generated in the opposite direction to BM (field weakening treatment). Then, since the total amount of the magnetic flux BM flowing out from the permanent magnet 4 does not change, as shown in the figure, a portion BMX of the magnetic flux BM travels while curving in the direction of the rotational axis c of the rotor 3, From the end surface 3a, it flows into the movable plate 8 existing in the direction of the rotational axis c. Then, since the movable plate 8 is magnetized by the magnetic flux BMX , the attracting magnetic force FM becomes large, FE < FM is established, the attracting magnetic force FM exceeds the separation force FE , and the movable plate 8 moves to a position p close to the end face 3a of the rotor 3. As shown in FIG.

上記の固定子巻線の通電制御による弱め界磁処理によって、可動板8が位置pへ移動すると、図3(c)の如く、可動板8は永久磁石4に近接した状態となるので、弱め界磁処理を終了して、固定子巻線の印加電圧を通常状態に戻しても、可動板8に永久磁石4の磁束Bの一部BMXが流入して可動板8が磁化されたままとなり、引付磁力Fが離隔力Fを凌駕した状態が維持された状態となるので、可動板8は回転子3の端面3aに近接した位置pに保持されることとなる。この状態に於いては、永久磁石4の磁束Bの一部BMXが可動板8に直接流入して短絡された状態となっており、BMXは、界磁として寄与しないので、かくして、回転子3からの界磁が低減されることとなり、回転子の回転数を更に上昇させることが可能となる。 When the movable plate 8 is moved to the position p by the field weakening process by controlling the energization of the stator windings, the movable plate 8 comes close to the permanent magnet 4 as shown in FIG. Even after the field treatment was completed and the voltage applied to the stator windings was returned to the normal state, part of the magnetic flux BMX of the permanent magnet 4 flowed into the movable plate 8 and the movable plate 8 was magnetized. Since the state in which the attracting magnetic force FM exceeds the separating force FE is maintained, the movable plate 8 is held at the position p close to the end face 3a of the rotor 3. In this state, part BMX of the magnetic flux BM of the permanent magnet 4 directly flows into the movable plate 8 and is short-circuited, and BMX does not contribute to the magnetic field. Since the magnetic field from the rotor 3 is reduced, it becomes possible to further increase the rotational speed of the rotor.

次いで、図3(c)に示された界磁の低減された状態に於いて、回転子の回転数が低くなり、回転子3の界磁を通常の状態に戻すべきときには、固定子巻線の電流によって永久磁石4の磁束Bに対して同じ向きの電流磁束Bが生ずるように(図3(d)参照)、固定子巻線への印加電圧の大きさと位相とが(通常の状態から)変化させられる(強め界磁処理)。そうすると、可動板8に流入していた永久磁石4の磁束Bの一部BMXが電流磁束Bの方向、即ち、回転子3の半径方向に戻されることとなる。これにより、可動板8の磁化の程度が低くなり、引付磁力Fが小さくなって、F>Fが成立し、離隔力Fが引付磁力Fを凌駕して、可動板8が、回転子3の端面3aから離隔した位置dへ戻ることとなる。そして、図3(a)の状態に於いては、上記の如く、可動板8は永久磁石4から離隔されており、磁束Bによる磁化が殆ど生じないので、強め界磁処理を終了して、固定子巻線の印加電圧を通常状態に戻しても、永久磁石4が可動板8を引き付ける磁力(引付磁力)Fは小さいままであり、F>Fが成立し、可動板8は回転子3の端面3aから離隔した位置dに保持されることとなる。 Next, in the state of reduced field shown in FIG. The magnitude and phase of the voltage applied to the stator winding (normal state) is changed (field-strengthening treatment). Then, part BMX of the magnetic flux BM of the permanent magnet 4 flowing into the movable plate 8 is returned in the direction of the current magnetic flux BI , that is, in the radial direction of the rotor 3. As a result, the degree of magnetization of the movable plate 8 decreases, the attractive magnetic force FM decreases, F E > FM is established, the separation force FE exceeds the attractive magnetic force FM , and the movable plate 8 returns to the position d away from the end face 3a of the rotor 3. In the state shown in FIG. 3(a), as described above, the movable plate 8 is separated from the permanent magnet 4, and magnetization by the magnetic flux BM is scarcely generated. , the magnetic force (attractive magnetic force) FM with which the permanent magnet 4 attracts the movable plate 8 remains small even when the applied voltage to the stator winding is returned to the normal state, and F E > FM holds true, and the movable plate 8 is held at a position d away from the end face 3a of the rotor 3. As shown in FIG.

可動板8の位置dと位置pとの間の移動は、既に述べた如く、回転子の回転数の高さに応じて実行されてよい。具体的には、回転子の回転数が所定値を上回ったときに、弱め界磁処理を実行して、可動板8を位置dから位置pへ移動し、回転子の回転数が所定値を下回ったときに、強め界磁処理を実行して、可動板8を位置pから位置dへ移動するように、固定子巻線の通電制御が実行されてよい。なお、可動板8を位置dから位置pへ移動するときの回転数の所定値と、可動板8を位置pから位置dへ移動するときの回転数の所定値とは、同一であってもよいが、制御のチャタリングを防ぐために、ヒステリシスが付与できるように、前者の所定値が後者よりも高く設定されてよい。 The movement of the movable plate 8 between positions d and p may be carried out according to the height of the rotor speed, as already mentioned. Specifically, when the number of rotations of the rotor exceeds a predetermined value, the field weakening process is executed to move the movable plate 8 from position d to position p so that the number of rotations of the rotor exceeds the predetermined value. When it falls below, the energization control of the stator winding may be executed so that the field strengthening process is executed and the movable plate 8 is moved from the position p to the position d. Even if the predetermined value of the number of rotations when moving the movable plate 8 from the position d to the position p and the predetermined value of the number of rotations when moving the movable plate 8 from the position p to the position d are the same. However, in order to prevent control chattering, the former predetermined value may be set higher than the latter so that hysteresis can be provided.

また、上記の説明から理解される如く、弱め界磁処理と強め界磁処理とは、それぞれ、可動板8の位置dと位置pとの間の移動が完了すると終了される。この点に関し、可動板8の移動完了は、可動板8の位置を直接に検出して確認されてもよく、又は、移動のための処理の開始から所定時間の経過後をもって移動完了と判断されてもよく、或いは、固定子巻線の電圧の変化を参照して判断されてもよい。 Further, as understood from the above description, the field-weakening process and the field-strengthening process are terminated when the movement of the movable plate 8 between the position d and the position p is completed. Regarding this point, the completion of the movement of the movable plate 8 may be confirmed by directly detecting the position of the movable plate 8, or the completion of the movement may be determined after a predetermined time has elapsed from the start of processing for movement. Alternatively, it may be determined with reference to changes in the voltage of the stator windings.

処理過程
図4を参照して、本実施形態に於ける界磁可変制御に関わる固定子巻線電圧の制御は、以下の如く実行されてよい。まず、処理に於いては、回転子の回転が開始された後、回転数が所定値1(可動板を位置dから位置pへ移動する際の閾値)を上回っているか否かが判定される(ステップ1)。回転子の回転開始後から回転数が所定値1を超える前に於いては、可動板が図3(a)の如く位置dにあるので(ステップ2-ノー判定)、通常の通電制御が実行される(ステップ3)。その後、回転子の回転数が高くなり、回転数が所定値1を上回ったときは(ステップ1)、可動板がまだ位置dにあるので(ステップ4)、上記の弱め界磁処理が実行される(ステップ5)。かくして、弱め界磁処理が開始されると、可動板が位置pへ移動し始めるところ、サイクルを繰返すうちに、可動板の位置pへの移動が完了すると(ステップ4-ノー判定)、通常の通電制御が実行される(ステップ3)。しかる後、回転数が低くなって所定値1を下回っても(ステップ1)、可動板が位置pにある状態では(ステップ2)、回転数が(所定値1より低い)所定値2(可動板を位置pから位置dへ移動する際の閾値)を下回るまでは(ステップ6)、通常の通電制御が実行される(ステップ3)。そして、回転数が更に低くなり所定値2を下回ると(ステップ6)、上記の強め界磁処理が実行される(ステップ7)。かくして、強め界磁処理が開始されると、可動板が位置dへ戻り始めるところ、サイクルを繰返すうちに、可動板の位置dへの移動が完了すると(ステップ2)、通常の通電制御が実行される(ステップ3)。なお、弱め界磁処理及び強め界磁処理に於いて、固定子巻線の電は出力トルクが変動しないように制御されてよい。
Processing Process Referring to FIG. 4, the stator winding voltage control related to the variable field control in this embodiment may be executed as follows. First, in the process, after the rotor starts to rotate, it is determined whether or not the number of revolutions exceeds a predetermined value 1 (threshold value for moving the movable plate from position d to position p). (Step 1). Since the movable plate is at position d as shown in FIG. 3(a) after the rotor starts to rotate and before the number of revolutions exceeds the predetermined value 1 (step 2—no judgment), normal energization control is executed. (step 3). After that, when the number of rotations of the rotor increases and exceeds the predetermined value 1 (step 1), the movable plate is still at the position d (step 4), so the field weakening process is executed. (step 5). Thus, when the field-weakening process is started, the movable plate begins to move to position p, and as the cycle is repeated, when the movement of the movable plate to position p is completed (step 4—no judgment), normal operation is performed. Power supply control is executed (step 3). After that, even if the number of rotations decreases and falls below the predetermined value 1 (step 1), when the movable plate is at the position p (step 2), the number of rotations is a predetermined value 2 (lower than the predetermined value 1) (movable Until the threshold for moving the plate from position p to position d) falls below (step 6), normal energization control is performed (step 3). Then, when the number of revolutions further decreases and falls below the predetermined value 2 (step 6), the above-described field-strengthening process is executed (step 7). Thus, when the field-strengthening process is started, the movable plate begins to return to position d, and when the movement of the movable plate to position d is completed in the course of repeating the cycle (step 2), normal energization control is executed. (step 3). In the field-weakening process and the field-strengthening process, the power of the stator winding may be controlled so that the output torque does not fluctuate.

以上の説明は、本発明の実施の形態に関連してなされているが、当業者にとつて多くの修正及び変更が容易に可能であり、本発明は、上記に例示された実施形態のみに限定されるものではなく、本発明の概念から逸脱することなく種々の装置に適用されることは明らかであろう。 Although the above description has been made with respect to the embodiments of the present invention, many modifications and changes can be easily made by those skilled in the art, and the present invention is limited only to the above-exemplified embodiments. It will be clear that the invention is non-limiting and can be applied to a variety of devices without departing from the concept of the invention.

Claims (1)

界磁を発生する永久磁石を担持した回転子と、固定子巻線を担持した固定子にしてその内側の空間に前記回転子が回転可能に支持される固定子と、電源から前記固定子巻線へ印加される電圧の大きさと位相とを制御する巻線電圧制御手段とを含む回転電機であって、
前記回転子の回転軸線方向の端面に沿って該端面との間の距離が可変に配置され磁性体から成り前記回転子の前記永久磁石から生ずる磁束の一部を短絡可能な可動板にして、第一の位置と、該第一の位置よりも前記端面に近接した第二の位置との間にて移動可能であり、前記第二の位置にあるときに、前記第一の位置にあるときよりも、前記磁束をより多く短絡するよう構成された可動板と、
前記可動板を前記第二の位置から前記第一の位置の方向へ変位させる方向に前記可動板に対して前記端面から離隔させる離隔力を付与する離隔力付与手段と、
を含み、
前記可動板が前記第一の位置にあるときに、前記巻線電圧制御手段が前記回転子の永久磁石による界磁を弱める方向に前記固定子巻線に印加する電圧の大きさと位相とを制御する弱め界磁処理を実行すると、前記可動板を前記端面に引き付ける引付磁力が前記離隔力を凌駕して、前記可動板が前記第二の位置へ移動し、前記巻線電圧制御手段が前記弱め界磁処理の解除後に於いても前記回転子の永久磁石による界磁が弱められた状態が維持され、
前記可動板が前記第二の位置にあるときに、前記巻線電圧制御手段が前記回転子の永久磁石による界磁を強める方向に前記固定子巻線に印加する電圧の大きさと位相とを制御する強め界磁処理を実行すると、前記離隔力が前記引付磁力を凌駕して、前記可動板が前記第一の位置へ移動し、前記巻線電圧制御手段が前記強め界磁処理の解除後に於いても前記回転子の永久磁石による界磁が強められた状態が維持されるよう構成され、
前記可動板の位置が前記回転子の回転数に応じて前記巻線電圧制御手段の前記弱め界磁処理又は前記強め界磁処理を実行することにより制御される回転電機。
a rotor carrying permanent magnets that generate a magnetic field; a stator carrying stator windings, the rotor being rotatably supported in a space inside the stator; and winding voltage control means for controlling the magnitude and phase of the voltage applied to the line,
a movable plate that is arranged along the end face of the rotor in the direction of the rotational axis and that is made of a magnetic material so that the distance between the end face and the end face is variable and that is capable of short-circuiting part of the magnetic flux generated from the permanent magnet of the rotor; It is movable between a first position and a second position closer to the end face than the first position, and when in the first position when in the second position a movable plate configured to short-circuit the magnetic flux more than
a separation force applying means for applying a separation force to separate the movable plate from the end face in a direction of displacing the movable plate from the second position toward the first position;
including
When the movable plate is at the first position, the winding voltage control means controls the magnitude and phase of the voltage applied to the stator winding in the direction of weakening the magnetic field generated by the permanent magnet of the rotor. When the field weakening process is executed, the attractive magnetic force that attracts the movable plate to the end face overcomes the separating force, the movable plate moves to the second position, and the winding voltage control means is controlled by the maintaining the weakened state of the magnetic field generated by the permanent magnet of the rotor even after the field-weakening process is canceled;
When the movable plate is at the second position, the winding voltage control means controls the magnitude and phase of the voltage applied to the stator winding in a direction to strengthen the magnetic field generated by the permanent magnet of the rotor. When the field-strengthening process is executed, the separation force exceeds the attractive magnetic force, the movable plate moves to the first position, and the winding voltage control means is operated after releasing the field-strengthening process. The magnetic field generated by the permanent magnets of the rotor is maintained to be strengthened even at this time,
A rotary electric machine in which the position of the movable plate is controlled by executing the field-weakening process or the field-strengthening process of the winding voltage control means in accordance with the number of revolutions of the rotor.
JP2021088291A 2021-05-26 2021-05-26 Rotary electric machine in which magnetic force of rotor is variably controlled Pending JP2022181374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021088291A JP2022181374A (en) 2021-05-26 2021-05-26 Rotary electric machine in which magnetic force of rotor is variably controlled

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021088291A JP2022181374A (en) 2021-05-26 2021-05-26 Rotary electric machine in which magnetic force of rotor is variably controlled

Publications (1)

Publication Number Publication Date
JP2022181374A true JP2022181374A (en) 2022-12-08

Family

ID=84328166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021088291A Pending JP2022181374A (en) 2021-05-26 2021-05-26 Rotary electric machine in which magnetic force of rotor is variably controlled

Country Status (1)

Country Link
JP (1) JP2022181374A (en)

Similar Documents

Publication Publication Date Title
JP2011505785A (en) Method and apparatus for detecting step loss of stepping motor
JPS5950760A (en) Self-starting dc motor with permanent magnet varying in magnetic intensity
KR101091444B1 (en) Flux shunt control rotary electric machine system
JP2002254268A5 (en)
US20180109166A1 (en) Rotatable electric machines
JP6091002B2 (en) Rotary actuator
JP5224372B2 (en) Magnetic pole position detection method for permanent magnet synchronous motor
JP6643980B2 (en) Improved switch reluctance motor and switch reluctance device for hybrid vehicles
US3715643A (en) Electrically driven motor
JP5649203B1 (en) Stepping motor
JP4663871B2 (en) Switched reluctance motor and its sensorless drive circuit
JP2022181374A (en) Rotary electric machine in which magnetic force of rotor is variably controlled
CN104919687B (en) With the magnetic brake for reducing tooth socket magnetic hysteresis
JP6177269B2 (en) Solenoid device
TW201601422A (en) Ironless stepper motor and method thereof
JP7039322B2 (en) Variable field motor
JP3850845B2 (en) Commutator motor
CA3132668A1 (en) Electric motors and methods of controlling thereof
JP4311156B2 (en) Motor drive device
JPH07337060A (en) Toque ripple suppression system for switched reluctance motor
JP2009303361A (en) Magnetic flux shunt control rotary electric machine system
JP2005094932A (en) Motor driving device
JPS5914975B2 (en) step motor
JPS6188784A (en) Controller of brushless motor
JP2005333753A (en) Control device of three-phase brushless motor