JP2022171301A - Antimicrobial molded body, food product packaging material, and in-vivo indwelling device - Google Patents

Antimicrobial molded body, food product packaging material, and in-vivo indwelling device Download PDF

Info

Publication number
JP2022171301A
JP2022171301A JP2021077878A JP2021077878A JP2022171301A JP 2022171301 A JP2022171301 A JP 2022171301A JP 2021077878 A JP2021077878 A JP 2021077878A JP 2021077878 A JP2021077878 A JP 2021077878A JP 2022171301 A JP2022171301 A JP 2022171301A
Authority
JP
Japan
Prior art keywords
antibacterial
bacteria
recesses
molded article
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021077878A
Other languages
Japanese (ja)
Inventor
渓太 高村
Keita Takamura
香代子 鬼澤
Kayoko Kizawa
昌博 山▲崎▼
Masahiro Yamazaki
恵一 柳瀬
Keiichi Yanase
英治 宮崎
Eiji Miyazaki
亜希 後藤
Aki Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Japan Aerospace Exploration Agency JAXA
Original Assignee
Kureha Corp
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp, Japan Aerospace Exploration Agency JAXA filed Critical Kureha Corp
Priority to JP2021077878A priority Critical patent/JP2022171301A/en
Priority to PCT/JP2022/014961 priority patent/WO2022230533A1/en
Publication of JP2022171301A publication Critical patent/JP2022171301A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J47/00Kitchen containers, stands or the like, not provided for in other groups of this subclass; Cutting-boards, e.g. for bread
    • A47J47/20Grids, racks or other supports removably mounted in, on or over sinks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

To provide an antimicrobial molded body capable of expressing antibacterial properties for a long term without using an antibacterial agent and silver nanoparticles.SOLUTION: An antimicrobial molded body has on a surface thereof an antibacterial region having a plurality of recesses whose depth is 0.3-3 μm and whose opening area is 12-1372 μm2. A sum of the opening areas of the recesses relative to a total area of the antibacterial region is 35-65%.SELECTED DRAWING: None

Description

本発明は、抗菌用成形体、食品用包装材、および生体内留置用装置に関する。 TECHNICAL FIELD The present invention relates to an antibacterial molded article, a food packaging material, and an in vivo indwelling device.

抗菌性を有する物品は、消費者意識の高まりから多く市場に出回っている。多くの場合、物品の表面に、抗菌剤を含むコーティングを施したり、銀ナノ粒子を包埋させたりすることで、物品に抗菌性を付与している。 Many articles with antimicrobial properties are on the market due to increased consumer awareness. In many cases, antibacterial properties are imparted to the article by applying a coating containing an antibacterial agent to the surface of the article or by embedding silver nanoparticles.

また近年、物品の表面に、微細な凹凸構造を設けることで、物理的に抗菌効果を得ようとする試みがなされている(例えば特許文献1および2)。これらの多くは、物品の表面に微細な突起を設けることで、細菌を刺殺したり、細菌の移動を抑制したりしようとするものである。したがって、細菌を刺殺するための鋭利な突起を設けたり、細菌と同程度の間隔を有する突起を設けたりしていた。 Further, in recent years, attempts have been made to physically obtain an antibacterial effect by providing a fine uneven structure on the surface of an article (for example, Patent Documents 1 and 2). Many of these are intended to sting and kill bacteria or to suppress movement of bacteria by providing fine projections on the surface of the article. Therefore, sharp protrusions for stabbing and killing bacteria are provided, and protrusions having the same distance as the bacteria are provided.

特開2019-151614号公報JP 2019-151614 A 特開2021-000702号公報Japanese Patent Application Laid-Open No. 2021-000702

ここで、上述の抗菌剤や、銀ナノ粒子を含む抗菌性の物品では、その効果が経時で消失することがあり、さらに生体への安全性等も懸念されることがあった。そのため、用途や使用環境に制限がかかる場合があった。一方、特許文献1や特許文献2のように、細菌を刺殺したり、細菌の移動を抑制したりする方法では、表面が摩耗すると効果が失われることから、耐久性の面で課題があった。 Here, with the above antibacterial agents and antibacterial articles containing silver nanoparticles, the effect may disappear over time, and furthermore, there have been concerns about the safety to the living body. Therefore, there were cases where restrictions were applied to applications and usage environments. On the other hand, the method of stabbing bacteria or suppressing the movement of bacteria as in Patent Documents 1 and 2 has problems in terms of durability because the effect is lost when the surface is worn. .

本発明は上記課題を鑑みてなされたものである。本発明は、抗菌剤や銀ナノ粒子等を使用することなく、長期間に亘って抗菌性を発現可能な抗菌用成形体や、これを含む食品用包装材、および生体内留置用装置の提供を目的とする。 The present invention has been made in view of the above problems. The present invention provides an antibacterial molded article that can exhibit antibacterial properties over a long period of time without using an antibacterial agent, silver nanoparticles, etc., a food packaging material containing the same, and an in vivo indwelling device. With the goal.

本発明は、以下の抗菌性成形体を提供する。
深さが0.3μm以上3μm以下、かつ開口面積が12μm以上1372μm以下である凹部を複数有する抗菌領域を表面に有し、前記抗菌領域の総面積に対する、前記複数の凹部の前記開口面積の合計が、35%以上65%以下である、抗菌性成形体。
The present invention provides the following antimicrobial molded article.
An antibacterial region having a plurality of recesses having a depth of 0.3 μm or more and 3 μm or less and an opening area of 12 μm 2 or more and 1372 μm 2 or less on the surface, and the opening area of the plurality of recesses with respect to the total area of the antibacterial region is 35% or more and 65% or less.

本発明は、以下の食品用包装材を提供する。
上記抗菌性成形体を含む食品用包装材であって、食品と接する面に、前記抗菌領域が配置される、食品用包装材。
The present invention provides the following food packaging materials.
A food packaging material comprising the antibacterial molded article, wherein the antibacterial region is disposed on a surface that contacts food.

本発明は、以下の生体内留置用装置を提供する。
上記抗菌性成形体を含む、生体内留置用装置。
The present invention provides the following device for indwelling in vivo.
A device for indwelling in vivo, comprising the antibacterial molded article.

本発明によれば、長期間に亘って抗菌性能を発揮可能な抗菌性成形体や、これを含む食品用包装材、生体内留置用装置等が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, an antibacterial molded article capable of exhibiting antibacterial performance over a long period of time, a food packaging material containing the same, an in vivo indwelling device, and the like are provided.

図1は、凹部の開口面積の求め方を説明するための図面である。FIG. 1 is a drawing for explaining how to obtain the opening area of a concave portion.

前述のように、各種成形体に抗菌性を付与する場合、抗菌剤や、銀ナノ粒子を塗布したりすることがあったが、この場合、その効果が経時で消失することがあり、さらには生体への安全性等が懸念されていた。一方、物理的に細菌を抑制する場合には、表面が摩耗すること等によって、効果が失われやすかった。 As mentioned above, when imparting antibacterial properties to various molded bodies, antibacterial agents and silver nanoparticles were sometimes applied, but in this case, the effect may disappear over time, and furthermore There have been concerns about the safety to the living body. On the other hand, in the case of physically suppressing bacteria, the effect is likely to be lost due to abrasion of the surface.

これに対し、本発明の抗菌性成形体は、深さが0.3μm以上3μm以下、かつ開口面積が12μm以上1372μm以下である凹部を複数有する抗菌領域を表面に有する。また、当該抗菌領域の総面積に対する、複数の凹部の前記開口面積の合計は、35%以上65%以下である。このような抗菌性成形体では、抗菌剤や銀ナノ粒子を用いることなく、細菌の増殖抑制効果が得られる。さらに、当該抗菌成形体では、ある程度の深さを有する凹部によって細菌の増殖を抑制する。つまり、細菌を刺殺したり細菌の移動を抑制したりするための微細な凸部とは異なり、摩耗等によって消失し難い。したがって、長期間に亘って、十分に、細菌の増殖抑制効果を発揮できる。上記凹部が細菌の増殖抑制効果を発揮する理由は、以下のように考えられる。 In contrast, the antibacterial molded article of the present invention has an antibacterial region having a plurality of recesses with a depth of 0.3 μm or more and 3 μm or less and an opening area of 12 μm 2 or more and 1372 μm 2 or less on the surface. Also, the total area of the openings of the plurality of recesses is 35% or more and 65% or less with respect to the total area of the antibacterial region. In such an antibacterial molded article, the effect of inhibiting bacterial growth can be obtained without using an antibacterial agent or silver nanoparticles. Furthermore, in the antibacterial molded article, the recesses having a certain depth suppress the growth of bacteria. In other words, unlike fine protrusions for stabbing bacteria or suppressing movement of bacteria, they are less likely to disappear due to abrasion or the like. Therefore, the effect of suppressing the growth of bacteria can be exhibited sufficiently over a long period of time. The reason why the recesses exhibit the effect of suppressing bacterial proliferation is considered as follows.

多くの細菌は、元来、その密度が高まると、増殖が鈍化し、死滅していく機構を備えている。また個々の細菌は、誘因物質を放出しており、当該誘因物質をセンシングすることで、その密度を認識している。つまり、誘因物質の量が多くなると、細菌の増殖が抑制され、細菌が死滅していくことにより密度が減少していく。 Many bacteria originally have a mechanism that when their density increases, their growth slows down and they die. In addition, each bacterium releases an attractant and recognizes its density by sensing the attractant. In other words, when the amount of the attractant increases, the growth of the bacteria is suppressed, and the density decreases as the bacteria die.

ここで、本発明の抗菌性成形体は、一定の密度で複数の凹部が配置された抗菌領域を表面に有する。当該抗菌性成形体に細菌が付着した場合、細菌の一部が凹部内に入り込む。このとき、各凹部の深さや開口面積が所定の範囲に設定されているため、比較的少ない細菌量でも、細菌が放出する誘因物質の濃度が十分に高まる。その結果、比較的短時間に、かつ細菌が大きく増殖する前に、増殖が停止し、死滅していく。したがって、長期間に亘って、細菌の量が一定量以上に増え難く、細菌の少ない状態を維持できる。以下、当該抗菌性成形体について、詳しく説明する。 Here, the antibacterial molded article of the present invention has an antibacterial region in which a plurality of concave portions are arranged at a constant density on its surface. When bacteria adhere to the antibacterial molding, part of the bacteria enter the recess. At this time, since the depth and opening area of each recess are set within a predetermined range, the concentration of the attractant released by the bacteria is sufficiently increased even with a relatively small amount of bacteria. As a result, the bacteria stop growing and die in a relatively short period of time and before they grow to a large extent. Therefore, over a long period of time, it is difficult for the amount of bacteria to increase beyond a certain amount, and a state of few bacteria can be maintained. The antibacterial molded article will be described in detail below.

[抗菌性成形体]
本発明の抗菌性成形体は、表面の一部に抗菌領域を有していればよく、その形状や種類は特に制限されない。当該抗菌性成形体の全面に抗菌領域を有していてもよく、一部のみに抗菌領域を有していてもよい。
[Antibacterial molding]
The antibacterial molded article of the present invention may have an antibacterial region on a part of its surface, and its shape and type are not particularly limited. The antibacterial molded article may have the antibacterial area over the entire surface, or may have the antibacterial area only partially.

ここで、本発明の抗菌性成形体は、誘因物質の高濃度化により死滅等によって密度が減少する細菌であれば、いずれの細菌に対しても増殖抑制効果を発揮可能であるが、細菌の平均投影面積が0.3μm以上15μm以下であると、その効果を非常に発現しやすい。本明細書における、細菌の平均投影面積とは、15個以上の細菌を透過型電子顕微鏡(SEM)等によって撮影し、楕円状の細菌については、各細菌の長軸の長さおよび短軸の長さから面積を計算し、円状の細菌については、直径から円の面積を計算し、これらを平均した値である。 Here, the antibacterial molded article of the present invention can exert a growth inhibitory effect on any bacteria as long as the density of the bacteria decreases due to death or the like due to a high concentration of the attractant. When the average projected area is 0.3 μm 2 or more and 15 μm 2 or less, the effect is very likely to be exhibited. As used herein, the average projected area of bacteria means that 15 or more bacteria are photographed with a transmission electron microscope (SEM) or the like, and for oval bacteria, the length of the long axis and the length of the short axis of each bacterium are The area is calculated from the length, and for circular bacteria, the area of the circle is calculated from the diameter, and these values are averaged.

上記平均投影面積を有する細菌の例には、大腸菌、黄色ブドウ球菌、乳酸菌、および緑膿菌等が含まれる。これらの中でも、抗菌性成形体は、大腸菌、黄色ブドウ球菌、および緑膿菌のうち少なくともいずれかの増殖を抑制可能であることが好ましく、少なくとも大腸菌または黄色ブドウ球菌の増殖を抑制可能であることがより好ましく、大腸菌の増殖を抑制可能であることがさらに好ましい。 Examples of bacteria having the above average projected area include Escherichia coli, Staphylococcus aureus, lactic acid bacteria, Pseudomonas aeruginosa, and the like. Among these, the antibacterial molded article is preferably capable of suppressing the growth of at least one of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, and is capable of suppressing the proliferation of at least Escherichia coli or Staphylococcus aureus. is more preferable, and it is even more preferable that it can suppress the growth of E. coli.

ここで、抗菌性成形体の抗菌領域が有する複数の凹部の形状は特に制限されず、例えば全ての凹部が同一の形状を有していてもよく、一部が異なる形状を有していてもよい。ただし、細菌の増殖を均一に抑制するとの観点から、全ての凹部が略同一の形状であることが好ましい。 Here, the shape of the plurality of recesses in the antibacterial region of the antibacterial molded article is not particularly limited. For example, all the recesses may have the same shape, or some may have different shapes. good. However, from the viewpoint of uniformly suppressing the growth of bacteria, it is preferable that all the recesses have approximately the same shape.

ここで、各凹部の開口面積は、12μm以上1372μm以下であればよく、200μm以上1372μm以下が好ましく、200μm以上650μm以下がより好ましい。本明細書において、凹部の開口面積とは、抗菌性成形体の表面における凹部の開口部の面積をいい、適宜プロファイル解析と組み合わせて、抗菌性成形体表面の平面視顕微鏡写真から測定することができる。なお、プロファイル解析は、例えば、レーザー顕微鏡や三次元光学プロファイラーを用いて行うことができる。より具体的には、形状解析レーザー顕微鏡(キーエンス社製VKX-250)での計測データに対して、マルチファイル解析アプリケーション(キーエンス社製VK-H1XM)の「プロファイル」機能を用い、高さ方向に切断した凹部の断面の形状を複数特定する。そして、各断面において、図1に示すように、凹部10が形成されていない表面(抗菌性成形体の表面)を通る線L1と、凹部10の側面の接線Lxとを引き、L1と凹部の側面の接線Lxとのなす角αが、5°以上で且つ最も小さい値となる接線LxとL1との交点を開口部の輪郭を形成する点とする。このようにして、各凹部の全周に亘って開口部の輪郭を決定する。次に「平面計測」機能で開口部が円の場合は円の半径、楕円の場合は長軸と短軸の長さ、多角形の場合は辺の長さと辺のなす角を計測して凹部の開口面積を求める。凹部の開口面積が12μm以上であると、例えば大腸菌等がスムーズに凹部内に入り込みやすい。一方で、開口面積が広すぎると、凹部の内部で、上述の誘因物質の濃度が高まるまでに時間がかかりやすい。これに対し、凹部の開口面積が1372μm以下であれば、効率よく細菌の濃度、ひいては誘因物質の濃度を高められる。 Here, the opening area of each recess may be 12 μm 2 or more and 1372 μm 2 or less, preferably 200 μm 2 or more and 1372 μm 2 or less, and more preferably 200 μm 2 or more and 650 μm 2 or less. In this specification, the opening area of the recess refers to the area of the opening of the recess on the surface of the antibacterial molded article, which can be measured from a plan view micrograph of the surface of the antibacterial molded article in combination with profile analysis as appropriate. can. Profile analysis can be performed using, for example, a laser microscope or a three-dimensional optical profiler. More specifically, for the measurement data with a shape analysis laser microscope (Keyence VKX-250), using the "profile" function of the multi-file analysis application (Keyence VK-H1XM), in the height direction A plurality of cross-sectional shapes of the cut concave portion are specified. Then, in each cross section, as shown in FIG. 1, a line L1 passing through the surface on which the recess 10 is not formed (the surface of the antibacterial molded body) and a tangent line Lx to the side surface of the recess 10 are drawn. The intersection of the tangent line Lx and the tangent line L1 at which the angle α formed with the tangent line Lx of the side surface is 5° or more and the smallest value is defined as the point forming the outline of the opening. In this way, the contour of the opening is determined over the entire circumference of each recess. Next, use the "planar measurement" function to measure the radius of the circle if the opening is a circle, the lengths of the major and minor axes if it is an ellipse, and the length and angle of the sides if it is a polygon. Find the opening area of When the opening area of the concave portion is 12 μm 2 or more, for example, E. coli easily enter the concave portion. On the other hand, if the opening area is too wide, it tends to take a long time for the concentration of the above-mentioned attractant to increase inside the recess. On the other hand, if the opening area of the concave portion is 1372 μm 2 or less, it is possible to efficiently increase the concentration of bacteria and, in turn, the concentration of the attractant.

また、凹部の上記開口面積は、所望の細菌の平均投影面積の24倍以上2663倍以下であることが好ましく、388倍以上2663倍以下がより好ましく、388倍以上1262倍以下がさらに好ましい。凹部の開口面積が、細菌の平均投影面積の24倍未満であると、凹部に入りこんだ細菌から放出される誘因物質の濃度が十分に高まる前に、凹部から細菌が溢れてしまい、凹部内で細菌が死滅し難くなる。これに対し、凹部の開口面積が、細菌の平均投影面積の24倍以上であると、凹部内に細菌や、細菌が発する誘因物質が溜まりやすくなり、細菌の死滅が促進されやすくなる。一方、凹部の開口面積が、細菌の平均投影面積の2663倍超であると、凹部内での誘因物質の濃度上昇に時間がかかりやすく、細菌の増殖抑制効果が得られるまでに時間がかかりやすい。これに対し、凹部の開口面積が細菌の平均投影面積の2663倍以下であると、短時間で効率よく細菌の増殖を抑制しやすくなる。 The opening area of the recess is preferably 24 to 2663 times, more preferably 388 to 2663 times, and even more preferably 388 to 1262 times the average projected area of the desired bacteria. If the opening area of the concave portion is less than 24 times the average projected area of the bacteria, the bacteria will overflow from the concave portion before the concentration of the attractant released from the bacteria that has entered the concave portion is sufficiently increased. Bacteria are hard to kill. On the other hand, if the opening area of the recesses is 24 times or more the average projected area of the bacteria, the bacteria and the attractant substances produced by the bacteria tend to accumulate in the recesses, which facilitates the extinction of the bacteria. On the other hand, when the opening area of the recesses is more than 2663 times the average projected area of the bacteria, it tends to take time to increase the concentration of the attractant in the recesses, and it tends to take time to obtain the effect of suppressing the growth of bacteria. . On the other hand, when the opening area of the concave portion is 2663 times or less the average projected area of bacteria, it becomes easier to suppress the growth of bacteria efficiently in a short period of time.

また、凹部の深さは、0.3μm以上3μm以下であればよく、0.5μm以上3μm以下が好ましく、1μm以上2μm以下がより好ましい。凹部の深さが0.3μm以上であると、凹部内に侵入した細菌が増殖しても溢れ出し難く、凹部の内部で誘因物質の濃度が高まりやすい。一方、凹部の深さが深すぎる場合には、細菌が凹部の壁面に付着して散在しやすくなり、上記誘因物質の濃度が高まり難くなる。これに対し、凹部の深さが3μm以下であると、凹部内で細菌が密集しやすく、効率よく細菌が死滅する。なお、本明細書における凹部の深さとは、抗菌性成形体の表面から底面までの深さをいう。なお、凹部の底面が平坦でない場合等には、抗菌性成形体の表面から最も深い部分までの距離をいう。例えば、凹部の深さは、当該凹部における最も高さの小さな点(最深部)と、開口部の輪郭上の任意の点(開口部端点)との垂直距離のうち、最も大きな垂直距離から特定される。より具体的には前記計測データと前記解析アプリケーションを使用して、「プロファイル」機能で開口部端点と最深部との垂直距離を測定して凹部の深さを測定することができる。 Moreover, the depth of the recess may be 0.3 μm or more and 3 μm or less, preferably 0.5 μm or more and 3 μm or less, and more preferably 1 μm or more and 2 μm or less. When the depth of the recesses is 0.3 μm or more, even if the bacteria that have entered the recesses grow, they are less likely to overflow, and the concentration of the attractant is likely to increase inside the recesses. On the other hand, if the depth of the recess is too deep, the bacteria tend to adhere to the wall surface of the recess and scatter, making it difficult to increase the concentration of the above-mentioned inducing substance. On the other hand, when the depth of the concave portion is 3 μm or less, the bacteria tend to congregate in the concave portion, and the bacteria are killed efficiently. In this specification, the depth of the recess means the depth from the surface to the bottom of the antibacterial molded article. In addition, when the bottom surface of the concave portion is not flat, the distance from the surface of the antibacterial molded article to the deepest portion is referred to. For example, the depth of the recess is specified from the largest vertical distance between the point with the smallest height (deepest point) in the recess and any point on the contour of the opening (end point of the opening). be done. More specifically, using the metrology data and the analysis application, the "Profile" function can measure the vertical distance between the opening endpoint and the deepest point to measure the depth of the recess.

また、凹部の断面形状は特に制限されない。断面形状は矩形状であってもよく、三角形状であってもよく、台形状であってもよく、半楕円状や不定形状等であってもよい。また、凹部を真上から垂直にみたときの凹部の形状は、円形状や楕円状、多角形状、不定形状等、いずれであってもよい。つまり、凹部は、円柱状や角柱状の窪みであってもよく、円錐状や角錐状の窪みであってもよく、円錐台状や角錐台状の窪みであってもよく、半球状や半長球状の窪み等であってもよい。これらの中でも、容積が大きく、かつ凹部内で細菌が増殖してもあふれ出し難いとの観点で、凹部は、円柱状の窪みであることが好ましい。 Also, the cross-sectional shape of the recess is not particularly limited. The cross-sectional shape may be rectangular, triangular, trapezoidal, semielliptical, irregular, or the like. Further, the shape of the recess when viewed vertically from directly above may be circular, elliptical, polygonal, irregular, or the like. That is, the concave portion may be a cylindrical or prismatic depression, a conical or pyramidal depression, a truncated conical or truncated pyramidal depression, or a hemispherical or semispherical depression. It may be a spheroidal depression or the like. Among these, the concave portion is preferably a columnar hollow from the viewpoint that it has a large volume and does not easily overflow even if the bacteria proliferate in the concave portion.

また、抗菌領域は、複数の上記凹部を有するが、その個数は、抗菌領域の面積および各凹部の開口面積に応じて適宜選択される。具体的には、抗菌領域の総面積に対して、凹部の開口面積の合計の割合が、35%以上65%以下となるように、凹部の個数を設定する。抗菌領域の総面積に対する、凹部の開口面積の合計の割合は、35%以上50%以下が好ましく、35%以上40%以下がより好ましい。抗菌領域の面積に対して凹部の開口面積の合計が35%以上であると、細菌が凹部内に入り込みやすく、細菌の増殖抑制効果が得られやすくなる。一方で、凹部の開口面積の合計の割合が65%以下であると、凹部の形成されていない領域の面積が十分に大きくなりやすく、抗菌領域が摩耗し難くなる。本明細書において抗菌領域は、隣接する凹部との最も短い距離が互いに1mm以下である、開口面積が12μm以上1372μm以下の凹部の集合において、すべての凹部が含まれる領域を1つの抗菌領域とし、抗菌領域の面積とは、当該抗菌領域に含まれる凹部のうち、最外周にある凹部群に外接する多角形の面積をいう。また、凹部の開口面積の合計とは、開口面積が12μm以上1372μm以下である凹部の開口面積の合計をいう。 Also, the antibacterial region has a plurality of recesses, and the number thereof is appropriately selected according to the area of the antibacterial region and the opening area of each recess. Specifically, the number of recesses is set so that the ratio of the total opening area of the recesses to the total area of the antibacterial region is 35% or more and 65% or less. The ratio of the total opening area of the recesses to the total area of the antibacterial region is preferably 35% or more and 50% or less, more preferably 35% or more and 40% or less. When the total opening area of the recesses is 35% or more of the area of the antibacterial region, bacteria are likely to enter the recesses, and the effect of suppressing the growth of bacteria is likely to be obtained. On the other hand, when the ratio of the total opening area of the recesses is 65% or less, the area of the region where the recesses are not formed tends to be sufficiently large, and the antibacterial region is less likely to wear out. In this specification, the antibacterial region is a set of recesses with an opening area of 12 μm 2 or more and 1372 μm 2 or less, where the shortest distance between adjacent recesses is 1 mm or less. The area of the antibacterial region refers to the area of the polygon circumscribing the recessed portion group on the outermost periphery among the recessed portions included in the antimicrobial region. Further, the total opening area of the recesses means the total opening area of the recesses having an opening area of 12 μm 2 or more and 1372 μm 2 or less.

さらに、上記凹部どうしの間隔は、1.0μm以上15μm以下が好ましく、1.2μm以上7.4μm以下がより好ましく、1.5μm以上5.5μm以下がさらに好ましい。凹部どうしの間隔が、当該範囲であると、凹部どうしの間に位置する領域が、摩耗し難く、長期間に亘って、抗菌性が得られやすくなる。なお、凹部どうしの間隔とは、隣り合う凹部の最も短い距離をいう。 Furthermore, the interval between the concave portions is preferably 1.0 μm or more and 15 μm or less, more preferably 1.2 μm or more and 7.4 μm or less, and even more preferably 1.5 μm or more and 5.5 μm or less. When the distance between the recesses is within this range, the regions located between the recesses are less likely to be worn, making it easier to obtain antibacterial properties over a long period of time. In addition, the space|interval of a recessed part means the shortest distance of an adjacent recessed part.

また、抗菌領域は、複数の凹部が、規則的に配置された領域であってもよく、複数の凹部がランダムに配置された領域であってもよい。ただし、ムラなく細菌の増殖を抑制するとの観点で、複数の凹部が規則的に配置されていることが好ましい。 Further, the antibacterial region may be a region in which a plurality of recesses are arranged regularly, or may be a region in which a plurality of recesses are arranged at random. However, from the viewpoint of suppressing the growth of bacteria evenly, it is preferable that the plurality of concave portions be arranged regularly.

本発明の抗菌性成形体の材料は特に制限されず、抗菌性成形体の用途に応じて適宜選択される。上記抗菌領域を有していれば、抗菌性成形体の材料に関わらず、同様の効果が得られる。ここで、抗菌性成形体の材料は、例えば金属やセラミック等の無機材料であってもよく、樹脂等の有機材料であってもよく、これらの複合体であってもよい。なお、その表面には抗菌材や銀ナノ粒子を含まないことが好ましい。 The material of the antibacterial molded article of the present invention is not particularly limited, and is appropriately selected according to the use of the antibacterial molded article. As long as it has the antibacterial region, the same effect can be obtained regardless of the material of the antibacterial molded article. Here, the material of the antibacterial molding may be, for example, an inorganic material such as metal or ceramic, an organic material such as resin, or a composite of these. In addition, it is preferable that the surface does not contain an antibacterial agent or silver nanoparticles.

金属の例には、ステンレス鋼や、アルミニウム、銅、銀、鉄、チタン等が含まれる。また、セラミックの例には、炭化ケイ素、ジルコル酸チタン酸鉛等が含まれる。一方、樹脂は、熱可塑性樹脂であってもよいし、熱硬化性樹脂であってもよい。また、上記樹脂は、結晶性の樹脂であってもよいし、非結晶性の樹脂であってもよい。また、樹脂は、合成ゴムおよび天然ゴムなどのゴムであってもよい。 Examples of metals include stainless steel, aluminum, copper, silver, iron, titanium, and the like. Examples of ceramics include silicon carbide, lead zircolate titanate, and the like. On the other hand, the resin may be a thermoplastic resin or a thermosetting resin. Further, the resin may be a crystalline resin or an amorphous resin. The resin may also be rubber such as synthetic rubber and natural rubber.

上記樹脂の例には、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂;環状オレフィン系樹脂;ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)、パーフルオロエチレンプロペンコポリマー(FEP)、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)等のハロゲン化炭化水素;ポリアミド;ポリイミド;ポリアセタール(POM);ポリウレタン;エチレン-ビニルアルコール共重合体(EVOH);アクリル系重合体;エチレン・酢酸ビニル共重合体(EVA);ポリ乳酸(PLA);ポリカプロラクトン(PCL);ポリグリコール酸(PGA);ポリスチレン(PS);ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、およびポリブチレンナフタレート(PBN)等のポリエステル;ポリフェニレンスルフィド(PPS);ポリエーテルエーテルケトン(PEEK);アクリルニトリル・スチレン共重合体(AS);アクリルニトリル・ブタジエン・スチレン共重合体(ABS);ポリカーボネート(PC);ポリアリレート(PAR);ポリフェニレンエーテル(PPE);ポリフェノール系樹脂;エポキシ樹脂;イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン・ブタジエンゴム(SBR)、ニトリルゴム(NBR)、エチレン・プロピレンゴム(EPM)等のゴム;等が含まれる。 Examples of the above resins include polyolefin resins such as polyethylene and polypropylene; cyclic olefin resins; polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), perfluoroethylene propene copolymer (FEP), polyvinylidene fluoride ( PVDF), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC) and other halogenated hydrocarbons; polyamide; polyimide; polyacetal (POM); polyurethane; ethylene-vinyl alcohol copolymer (EVOH); polylactic acid (PLA); polycaprolactone (PCL); polyglycolic acid (PGA); polystyrene (PS); polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and poly polyester such as butylene naphthalate (PBN); polyphenylene sulfide (PPS); polyether ether ketone (PEEK); acrylonitrile-styrene copolymer (AS); acrylonitrile-butadiene-styrene copolymer (ABS); PC); polyarylate (PAR); polyphenylene ether (PPE); polyphenolic resin; epoxy resin; rubber such as propylene rubber (EPM);

上記の中でも、加工性や汎用性等の観点で、ステンレス鋼、ポリカーボネートおよび環状オレフィン系樹脂が好ましい。また、ポリカーボネートおよび環状オレフィン系樹脂は透明のフィルムを形成することができ、包装材や電子機器の保護シートとして良好な外観を得られるので好ましい。 Among the above, stainless steel, polycarbonate and cyclic olefin resins are preferred from the viewpoint of workability and versatility. Polycarbonate and cyclic olefin-based resins are also preferable because they can form a transparent film and provide a good appearance as a packaging material or as a protective sheet for electronic devices.

また、抗菌性成形体の形状は、上述の抗菌領域を有していれば特に制限されず、抗菌性成形体の用途等に応じて任意の形状とすることができる。抗菌性成形体は、例えば、フィルム状、シート状、チューブ状、リング状、バルク状(立方体、直方体、円柱状、および球状等)、板状、袋状、ならびにこれらを加工して得られる3次元立体構造等、所望の形状とすることができる。 Also, the shape of the antibacterial molded article is not particularly limited as long as it has the above-described antibacterial region, and can be of any shape depending on the application of the antibacterial molded article. Antibacterial molded articles are, for example, film-shaped, sheet-shaped, tube-shaped, ring-shaped, bulk-shaped (cubic, rectangular parallelepiped, cylindrical, spherical, etc.), plate-shaped, bag-shaped, and obtained by processing these 3 It can have any desired shape, such as a dimensional conformation.

[抗菌性成形体の用途]
上述の抗菌性成形体の用途は特に制限されず、包装材、医療器具、家電、建築物の設備、宇宙服、宇宙船内装、電子機器およびその周辺機器、自動車用部品、農業用品、文房具ならびに身体装具等を含む、広汎な用途に使用可能である。なお、上記抗菌性成形体の使用の態様には、上記抗菌性成形体がこれらの用途に使用される物品であることや、上記抗菌性成形体をこれらの物品の一部として組み入れること等が含まれる。
[Use of antibacterial molded product]
Applications of the above-mentioned antibacterial molded product are not particularly limited, and include packaging materials, medical instruments, home appliances, building equipment, space suits, spacecraft interiors, electronic devices and their peripherals, automotive parts, agricultural supplies, stationery, and the like. It can be used in a wide variety of applications, including body wear and the like. The use of the antibacterial molded article includes the use of the antibacterial molded article as an article used for these purposes, and the incorporation of the antibacterial molded article as a part of these articles. included.

包装材の例には、フィルムやシート、箱、ケース、装飾品等が含まれる。またこのとき、上記抗菌性成形体の抗菌領域は、被包装物に接する面、または被包装物に接しない面のいずれに配置してもよい。包装材に上記抗菌性成形体を使用することで、包装される物品の細菌の増殖を予防し、その保存性を高めることもできる。 Examples of packaging materials include films, sheets, boxes, cases, ornaments, and the like. Moreover, at this time, the antibacterial region of the antibacterial molded article may be arranged either on the surface in contact with the item to be packaged or on the surface not in contact with the item to be packaged. By using the above antibacterial molded article in the packaging material, it is possible to prevent the proliferation of bacteria in the packaged article and improve the storage stability of the article.

ここで、包装材の中でも、食品用包装材には、高い抗菌性が求められる。そこで、上記抗菌性成形体は、食品用包装材として特に好適であり、この場合、食品に接する面に抗菌領域を配置することが好ましい。上述のように、抗菌性成形体は、抗菌剤や銀ナノ粒子を含む必要がないため、安全性が高い。さらに、上記抗菌性成形体は、細菌が放出する誘因物質を濃化させることによって、細菌を死滅させる。したがって、多数の種類の細菌が存在する環境下より、特定の種類の細菌が存在する環境下のほうが、より効果を発揮しやすい。したがって、例えば、食品の密閉に使用される食品用包装材の内側に当該抗菌性成形体を使用すると、特定の細菌の増殖を抑え、消費期限を延ばしたりすることが可能となる。 Among packaging materials, food packaging materials are required to have high antibacterial properties. Therefore, the antibacterial molded article is particularly suitable as a packaging material for food, and in this case, it is preferable to arrange the antibacterial region on the surface that comes into contact with food. As described above, the antibacterial molded article is highly safe because it does not need to contain an antibacterial agent or silver nanoparticles. Furthermore, the antibacterial molded body kills bacteria by concentrating the attractants released by the bacteria. Therefore, the effect is more likely to be exhibited in an environment where a specific type of bacteria exists than in an environment where many types of bacteria exist. Therefore, for example, when the antibacterial molding is used inside food packaging materials used for sealing food, it is possible to suppress the growth of specific bacteria and extend the expiration date.

一方、医療器具の例には、鉗子、シリンジ、ステント、人工血管、カテーテル、創傷被覆材、再生医療用足場材、癒着防止材、およびペースメーカーなどが含まれる。特に、これらの中でも、上記抗菌性成形体は、ペースメーカー等の生体内留置用装置の部材として、非常に有用である。生体では通常、細菌の出入りがないが、手術器具等を経由して生体内に細菌が入り込んでしまうことがある。これに対し、上述の抗菌性成形体を生体内留置用装置の一部に使用することで、生体内での細菌の増殖を抑制できる。 On the other hand, examples of medical instruments include forceps, syringes, stents, artificial blood vessels, catheters, wound dressings, scaffolds for regenerative medicine, anti-adhesion materials, and pacemakers. In particular, among these, the antibacterial molded article is very useful as a member of an indwelling device such as a pacemaker. Bacteria do not normally enter or leave the living body, but bacteria may enter the living body via surgical instruments or the like. In contrast, by using the above-described antibacterial molded article as part of an indwelling device, it is possible to suppress the growth of bacteria in vivo.

また、上記家電の例には、炊飯器、電子レンジ、冷蔵庫、アイロン、ヘアードライヤー、エアコンおよび空気清浄機のフィルター部位等が含まれる。 Examples of the home appliances include rice cookers, microwave ovens, refrigerators, irons, hair dryers, air conditioners, air purifiers, and the like.

上記建築物の設備の例には、トイレおよび便座シート、洗面化粧台、上下水の配管、足拭きマット、内装材、浴槽の手すりや外装部、浴槽本体、浴槽カバー、扉等の把手、手すりおよびスイッチ等の日常的に人の手が触れる物品などが含まれる。 Examples of the facilities of the above buildings include toilets and toilet seat sheets, bathroom vanities, water and sewage pipes, foot wiping mats, interior materials, handrails and exterior parts of bathtubs, bathtub bodies, bathtub covers, handles such as doors, and handrails. and items that people touch on a daily basis, such as switches.

また、宇宙服や宇宙船の内装、宇宙船に持ち込まれる電子機器、各種装置等にも、上記抗菌性成形体は有用である。宇宙空間では、地上からの持ち込み物や人体を介して持ち込まれた細菌しか存在しない。ただし、宇宙空間では、人の免疫が低下するため、細菌の増殖が大きなリスクとなる。そこで、上記抗菌性成形体を各種部材に使用することで、細菌の増殖を効果的に抑制できる。 In addition, the above antibacterial moldings are also useful for space suits, spacecraft interiors, electronic devices carried on spaceships, various devices, and the like. In outer space, there are only bacteria brought in from the ground or brought in through the human body. However, since human immunity is weakened in outer space, the multiplication of bacteria poses a major risk. Therefore, by using the above antibacterial molded article for various members, it is possible to effectively suppress the growth of bacteria.

電子機器およびその周辺機器の例には、ノートパソコン、スマートフォン、タブレット、デジタルカメラ、医療用電子機器、POSシステム、プリンター、テレビ、マウスおよびキーボード等が含まれる。 Examples of electronic devices and their peripherals include laptops, smart phones, tablets, digital cameras, medical electronic devices, POS systems, printers, televisions, mice and keyboards, and the like.

上記自動車用部品の例には、ハンドル、シート、シフトレバーおよび各種配管が含まれる。 Examples of the automotive parts include steering wheels, seats, shift levers and various types of piping.

上記農業用品の例には、農業ハウス用の展張フィルムなどが含まれる。 Examples of the agricultural products include spread films for agricultural greenhouses.

上記身体装具の例には、上着および下着などを含む衣類、帽子、靴、手袋、おむつ、ならびにナプキンおよびその収納袋などが含まれる。 Examples of the body accessories include clothes including outerwear and underwear, hats, shoes, gloves, diapers, napkins and their storage bags, and the like.

上記の中でも、食品に接する面の少なくとも一部が上記抗菌領域である食品用包装材、またはペースメーカー等の生体内留置用の装置が好ましい。 Among the above, preferred is a food packaging material in which at least a portion of the food-contacting surface is the antibacterial region, or an indwelling device such as a pacemaker.

[抗菌性成形体の製造方法]
上述の抗菌性成形体の形成方法は特に制限されず、抗菌性成形体の材料や用途、形状等に合わせて適宜選択される。
[Manufacturing method of antibacterial molded product]
The method for forming the above antibacterial molded article is not particularly limited, and is appropriately selected according to the material, application, shape, and the like of the antibacterial molded article.

例えば、抗菌性成形体の金属を含む表面に上記抗菌領域を形成する場合には、レーザー加工等によって、所望の深さおよび開口面積を有する凹部を、所望の間隔で形成することができる。各凹部を形成するとき、レーザー照射は、複数回にわけて行ってもよく、一度に行ってもよい。 For example, when the antibacterial region is formed on the metal-containing surface of the antibacterial molded article, recesses having a desired depth and opening area can be formed at desired intervals by laser processing or the like. When forming each concave portion, the laser irradiation may be performed in a plurality of times or may be performed at once.

また、抗菌性成形体の樹脂を含む表面に上記抗菌領域を形成する場合には、樹脂を例えば、内表面に凸部を有する金型を用いて射出成形し、上記抗菌領域を形成してもよい。一方、樹脂を用途に合わせて成形後、その表面にナノインプリント等によって抗菌領域を形成してもよい。 Further, when forming the antibacterial region on the surface containing the resin of the antibacterial molded article, the resin may be injection-molded using a mold having convex portions on the inner surface to form the antibacterial region. good. On the other hand, an antibacterial region may be formed on the surface of the resin by nanoimprinting or the like after molding the resin according to the application.

以下、本発明の具体的な実施例を比較例とともに説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Specific examples of the present invention will be described below together with comparative examples, but the present invention is not limited to these.

1.抗菌性成形体の作製
[実施例1]
略平板状の成形体を成形可能な射出成型用の金型であって、10mm×4mmの領域に、直径4μm、高さ0.5μmの円柱状の凸部が規則的に、1.5μm間隔で132万個(1818個×727列)配置された金型を準備した。なお、上記間隙とは、隣り合う円柱間の最も短い部分の長さをいう。そして、当該金型を用いて、ポリカーボネート樹脂を射出成形し、一方の表面に直径4μm(開口面積12.6μm)、深さ0.5μmの円柱状の凹部を132万個有する、厚み1.2mmの平板状の抗菌性成形体を作製した。当該抗菌性成形体の抗菌領域全体の面積は、0.4cmであり、当該面積に対する、凹部の開口面積の合計の割合は、41.5%であった。
抗菌領域の面積、凹部の開口面積、および凹部の深さは、形状解析レーザー顕微鏡(キーエンス社製VK-X250)を使用し、測定倍率500倍で抗菌性成形体の表面を測定し、得られたデータをマルチファイル解析アプリケーション(キーエンス社製VK-H1Xm)を用いて解析した。
1. Preparation of antibacterial molded body [Example 1]
A mold for injection molding capable of molding a substantially flat plate-shaped molded body, in which cylindrical projections with a diameter of 4 μm and a height of 0.5 μm are regularly arranged at intervals of 1.5 μm in an area of 10 mm × 4 mm. A mold with 1,320,000 pieces (1818×727 rows) was prepared. In addition, the said gap|interval means the length of the shortest part between adjacent cylinders. Then, using the mold, a polycarbonate resin is injection-molded, and one surface has 1.32 million cylindrical concave portions with a diameter of 4 μm (opening area of 12.6 μm 2 ) and a depth of 0.5 μm. A 2 mm flat plate-like antibacterial molded body was produced. The total area of the antibacterial region of the antibacterial molding was 0.4 cm 2 , and the ratio of the total open area of the recesses to the area was 41.5%.
The area of the antibacterial region, the opening area of the recess, and the depth of the recess are obtained by measuring the surface of the antibacterial molded body at a measurement magnification of 500 using a shape analysis laser microscope (Keyence VK-X250). The obtained data was analyzed using a multi-file analysis application (VK-H1Xm manufactured by Keyence Corporation).

[実施例2]
厚み1.5mm、20mm×20mmのステンレス鋼(SUS304)を準備した。当該ステンレス鋼の一方の面の全面に、直径12.5μm(開口部面積122.9μm)、深さ1.6μm、5.2μm間隔の円柱状の凹部を、直径10μmに設定したレーザーを1.5μm間隔で照射することによって、127万個(1126個×1126列)作製した。ここでいう間隔は、隣り合う凹部間の最も短い部分の長さをいう。抗菌領域の面積、凹部の開口面積、および凹部の深さは、実施例1と同様に特定した。
[Example 2]
A stainless steel (SUS304) having a thickness of 1.5 mm and a size of 20 mm×20 mm was prepared. 12.5 μm in diameter (opening area: 122.9 μm 2 ), 1.6 μm in depth, 1.6 μm in depth, and 5.2 μm intervals of cylindrical recesses were formed on one surface of the stainless steel with a diameter of 10 μm. 1,270,000 (1,126 x 1,126 rows) were produced by irradiating at intervals of 0.5 μm. The interval here refers to the length of the shortest portion between adjacent recesses. The area of the antibacterial region, the opening area of the recess, and the depth of the recess were determined in the same manner as in Example 1.

[実施例3~6、および比較例1]
表1に示すように、凹部の直径、深さ、および間隔を変更した以外は、実施例2と同様にステンレス鋼に複数の凹部を形成した。
[Examples 3 to 6 and Comparative Example 1]
As shown in Table 1, a plurality of recesses were formed in stainless steel in the same manner as in Example 2, except that the diameter, depth, and spacing of the recesses were changed.

[比較例2]
厚み100μm、140mm×110mmの環状オレフィンポリマーフィルムを準備した。一方、直径(最大径)3.0μm、高さ1.0μmの六角柱状の凸部がハニカム状に配置された金型を準備した。なお、隣り合う六角柱の間隔は、0.7μmであった。そして、上記環状オレフィンポリマーフィルムに、金型を加熱しながら押し付け、120mm×80mm(96cm)の領域に、87億個の直径3.0μm(開口面積7.5μm)、深さ1.0μmの六角柱状の凹部を作成した。
[Comparative Example 2]
A cyclic olefin polymer film having a thickness of 100 μm and a size of 140 mm×110 mm was prepared. On the other hand, a mold was prepared in which hexagonal columnar projections with a diameter (maximum diameter) of 3.0 μm and a height of 1.0 μm were arranged in a honeycomb pattern. The interval between adjacent hexagonal columns was 0.7 μm. Then, a mold was pressed against the cyclic olefin polymer film while being heated, and 8.7 billion pieces with a diameter of 3.0 μm (opening area of 7.5 μm 2 ) and a depth of 1.0 μm were formed in an area of 120 mm×80 mm (96 cm 2 ). A hexagonal prism-shaped recess was created.

[比較例3]
厚み100μm、210mm×270mmのSUS基板を準備した。一方、レーザープロッターにて、95μm×95μmの正方形が105μm間隔で141万7500個(1050個×1350列)配置された描画パターンを作製したフォトマスクを準備した。脱脂洗浄を行ったSUS基板の両面にレジストを均一付着させ、フォトマスクを被せて両面を露光し、描画パターンをレジスト上に転写した。感光しなかった部分のレジストを除去し、SUS基板を露出させた。エッチングマシーンにてSUS基板の露出部を薬液で溶解除去し、95μm×95μm、深さ25μmの直方体状の凹部が105μm間隔で141万7500個(1050個×1350列)存在する、厚み100μmの平板上の抗菌性成形体を作製した。当該抗菌性成形体の抗菌領域全体の面積は567cmであり、当該面積に対する凹部の開口面積の合計の割合は47.5%であった。
[Comparative Example 3]
A SUS substrate having a thickness of 100 μm and a size of 210 mm×270 mm was prepared. On the other hand, a photomask having a drawing pattern of 1,417,500 squares of 95 μm×95 μm arranged at intervals of 105 μm (1,050 squares×1,350 rows) was prepared using a laser plotter. Both surfaces of the degreased and cleaned SUS substrate were uniformly coated with a resist, covered with a photomask, and exposed to light to transfer a drawing pattern onto the resist. The resist was removed from non-exposed areas to expose the SUS substrate. The exposed portion of the SUS substrate is dissolved and removed with a chemical solution using an etching machine, and a flat plate with a thickness of 100 μm has 1,417,500 (1,050 x 1,350 rows) rectangular recesses of 95 μm x 95 μm and 25 μm deep at intervals of 105 μm. The above antibacterial molding was produced. The total area of the antibacterial region of the antibacterial molding was 567 cm 2 , and the ratio of the total opening area of the recesses to the area was 47.5%.

[比較例4]
厚み100μm、210mm×270mmのSUS基板を準備した。一方、レーザープロッターにて、90μm×90μmの正方形が110μm間隔で141万7500個(1050個×1350列)配置された描画パターンを作製したフォトマスクを準備した。脱脂洗浄を行ったSUS基板の両面にレジストを均一付着させ、フォトマスクを被せて両面を露光し、描画パターンをレジスト上に転写した。感光しなかった部分のレジストを除去し、SUS基板を露出させた。エッチングマシーンにてSUS基板の露出部を薬液で溶解除去し、90μm×90μm、深さ15μmの直方体状の凹部が110μm間隔で141万7500個(1050個×1350列)存在する、厚み100μmの平板上の抗菌性成形体を作製した。当該抗菌性成形体の抗菌領域全体の面積は567cmであり、当該面積に対する凹部の開口面積の合計の割合は38.5%であった。
[Comparative Example 4]
A SUS substrate having a thickness of 100 μm and a size of 210 mm×270 mm was prepared. On the other hand, a photomask having a drawing pattern of 1,417,500 squares of 90 μm×90 μm arranged at intervals of 110 μm (1,050 squares×1,350 rows) was prepared using a laser plotter. Both surfaces of the degreased and cleaned SUS substrate were uniformly coated with a resist, covered with a photomask, and exposed to light to transfer a drawing pattern onto the resist. The resist was removed from non-exposed areas to expose the SUS substrate. The exposed part of the SUS substrate is dissolved and removed with a chemical solution using an etching machine, and a flat plate with a thickness of 100 μm has 1,417,500 (1,050 x 1,350 rows) rectangular parallelepiped recesses of 90 μm x 90 μm and a depth of 15 μm at intervals of 110 μm. The above antibacterial molding was produced. The total area of the antibacterial region of the antibacterial molding was 567 cm 2 , and the ratio of the total opening area of the recesses to the area was 38.5%.

[評価方法]
JIS Z 2801(2012年)に記載の方法に準じて、上述の抗菌性成形体の大腸菌に対する抗菌性を評価した。具体的には、上述の抗菌性成形体の抗菌領域上に、以下の大腸菌を接種し、以下の条件で24時間培養した。
[Evaluation method]
According to the method described in JIS Z 2801 (2012), the antibacterial activity of the above antibacterial molded article against Escherichia coli was evaluated. Specifically, the following E. coli was inoculated onto the antibacterial region of the antibacterial molded article described above, and cultured for 24 hours under the following conditions.

(菌種)
Escherichia coli, NBRC No. 3972
(培養条件)
温度: 35℃±1℃
(生菌数の測定)
使用培地: 標準寒天培地
(Bacterial species)
Escherichia coli, NBRC No. 3972
(Culture conditions)
Temperature: 35°C ± 1°C
(Measurement of viable count)
Medium used: Standard agar medium

接種直後および接種から24時間後に、JIS Z 2801(2012年)に記載の方法に準じて生菌数を測定し、Δlog菌数(比較用サンプルの24時間後の生菌数の対数値-評価用サンプルの24時間後の生菌数の対数値)を求めた。 Immediately after inoculation and 24 hours after inoculation, the viable count was measured according to the method described in JIS Z 2801 (2012), and the Δlog count (the logarithmic value of the viable count after 24 hours of the comparative sample-evaluation The logarithmic value of the number of viable bacteria after 24 hours of the sample was obtained.

表1に、それぞれの抗菌性成形体のΔlog菌数(抗菌活性)および抗菌性の評価結果を示す。高い抗菌性が認められるもの(Δlog菌数が2.0以上)を「〇」、十分な抗菌性が認められないもの(Δlog菌数が2.0未満)を「×」とする。 Table 1 shows the Δlog bacteria count (antibacterial activity) and antibacterial evaluation results of each antibacterial molded article. Those with high antibacterial properties (Δlog bacteria count of 2.0 or more) are evaluated as “◯”, and those with insufficient antibacterial properties (Δlog bacteria count of less than 2.0) are evaluated as “×”.

Figure 2022171301000001
Figure 2022171301000001

上記表1に示されるように、深さが0.3μm以上3μm以下であり、開口面積が12μm以上1372μm以下である凹部を複数有し、かつ抗菌領域の面積に対して、凹部の開口面積の合計が35%以上65%以下である場合には、良好な抗菌活性が見られた(実施例1~6)。 As shown in Table 1 above, there are a plurality of recesses having a depth of 0.3 μm or more and 3 μm or less and an opening area of 12 μm 2 or more and 1372 μm 2 or less. Good antibacterial activity was observed when the total area was 35% or more and 65% or less (Examples 1-6).

一方、凹部の開口面積が狭すぎる場合には(比較例2)、抗菌活性が見られなかった。開口面積が小さいと、十分に誘因物質の濃度が高まる前に細菌が凹部のから溢れてしまったため、細菌が死滅し難かったと考えられる。さらに、抗菌領域の面積に対する、開口面積の合計が低い場合には(比較例1)、凹部以外の領域に付着する細菌の数が多く、十分な効果が得られなかったと考えられる。さらに、抗菌領域の総面積に対して、複数の凹部の開口面積の合計が35%以上であったとしても、深さが3μm超であり、かつ開口面積が1372μmを超える場合(比較例3、4)にも、十分な効果が得られなかった。この場合、深さが深すぎるため、細菌が凹部の壁面に付着して散在しやすくなり、また凹部の面積が大きすぎて細菌が底面でも散在しやすくなるため、上記誘因物質の濃度が高まり難かったと考えられる。 On the other hand, when the opening area of the recess was too narrow (Comparative Example 2), no antibacterial activity was observed. It is thought that when the opening area was small, the bacteria overflowed from the concave portion before the concentration of the attractant increased sufficiently, making it difficult for the bacteria to die. Furthermore, when the total opening area with respect to the area of the antibacterial area was low (Comparative Example 1), it is considered that the number of bacteria adhering to areas other than the concave portions was large, and a sufficient effect was not obtained. Furthermore, even if the total opening area of the plurality of recesses is 35% or more with respect to the total area of the antibacterial region, the depth is more than 3 μm and the opening area is more than 1372 μm 2 (Comparative Example 3 , 4) also failed to provide a sufficient effect. In this case, since the depth is too deep, bacteria tend to adhere to the walls of the recesses and scatter, and the area of the recesses is too large, so bacteria tend to scatter even on the bottom surface, making it difficult to increase the concentration of the above-mentioned attractants. It is thought that

本発明の抗菌性成形体によれば、高い抗菌性が得られる。また、抗菌剤や銀ナノ粒子等を使用する必要がなく、安全性にも優れる。さらに、表面に凸部を設ける必要がなく、抗菌領域が摩耗することも少ない。したがって、長期間に亘って、高い抗菌性が発揮されることから、食品用包装材や、生体内留置用装置等、種々の用途に適用可能である。 According to the antibacterial molded article of the present invention, high antibacterial properties can be obtained. In addition, there is no need to use antibacterial agents, silver nanoparticles, etc., and it is excellent in safety. Furthermore, there is no need to provide protrusions on the surface, and the antibacterial area is less likely to wear. Therefore, since high antibacterial properties are exhibited over a long period of time, it can be applied to various uses such as food packaging materials and devices for indwelling in vivo.

10 凹部
L1 凹部10が形成されていない表面を通る線
Lx 凹部10の側面の接線
α L1およびLxがなす角度
10 recess L1 line passing through the surface where recess 10 is not formed Lx tangent to side surface of recess 10 α angle formed by L1 and Lx

Claims (5)

深さが0.3μm以上3μm以下、かつ開口面積が12μm以上1372μm以下である凹部を複数有する抗菌領域を表面に有し、
前記抗菌領域の総面積に対する、前記複数の凹部の前記開口面積の合計が、35%以上65%以下である、
抗菌性成形体。
An antibacterial region having a plurality of recesses with a depth of 0.3 μm or more and 3 μm or less and an opening area of 12 μm 2 or more and 1372 μm 2 or less on the surface,
The total opening area of the plurality of recesses is 35% or more and 65% or less with respect to the total area of the antibacterial region.
Antibacterial molding.
前記抗菌領域が、大腸菌、黄色ブドウ球菌、緑膿菌、および乳酸菌からなる群から選ばれる一種以上の細菌の増殖を抑制する、
請求項1に記載の抗菌性成形体。
The antibacterial region suppresses the growth of one or more bacteria selected from the group consisting of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and lactic acid bacteria,
The antibacterial molded article according to claim 1.
前記抗菌領域が、前記大腸菌の増殖を抑制する、
請求項2に記載の抗菌性成形体。
The antibacterial region suppresses the growth of the E. coli,
The antibacterial molded article according to claim 2.
請求項1~3のいずれか一項に記載の抗菌性成形体を含む食品用包装材であって、
食品と接する面に、前記抗菌領域が配置される、
食品用包装材。
A food packaging material comprising the antibacterial molded article according to any one of claims 1 to 3,
The antibacterial region is arranged on the surface in contact with food,
Food packaging.
請求項1~3のいずれか一項に記載の抗菌性成形体を含む、
生体内留置用装置。
Containing the antibacterial molded article according to any one of claims 1 to 3,
Device for indwelling in vivo.
JP2021077878A 2021-04-30 2021-04-30 Antimicrobial molded body, food product packaging material, and in-vivo indwelling device Pending JP2022171301A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021077878A JP2022171301A (en) 2021-04-30 2021-04-30 Antimicrobial molded body, food product packaging material, and in-vivo indwelling device
PCT/JP2022/014961 WO2022230533A1 (en) 2021-04-30 2022-03-28 Antimicrobial molded body, food packaging material, and in vivo indwelling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021077878A JP2022171301A (en) 2021-04-30 2021-04-30 Antimicrobial molded body, food product packaging material, and in-vivo indwelling device

Publications (1)

Publication Number Publication Date
JP2022171301A true JP2022171301A (en) 2022-11-11

Family

ID=83848039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021077878A Pending JP2022171301A (en) 2021-04-30 2021-04-30 Antimicrobial molded body, food product packaging material, and in-vivo indwelling device

Country Status (2)

Country Link
JP (1) JP2022171301A (en)
WO (1) WO2022230533A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6427106B2 (en) * 2013-11-12 2018-11-21 株式会社シンク・ラボラトリー Method of manufacturing nonconductive antibacterial sheet
EP2979844B1 (en) * 2014-04-22 2018-08-15 Sharp Kabushiki Kaisha Sterilization method by using the surface of a synthetic polymer film and method for reactivating this surface
JP6206623B1 (en) * 2015-11-27 2017-10-04 大日本印刷株式会社 Mold breeding suppression member
JP2017145210A (en) * 2016-02-16 2017-08-24 大日本印刷株式会社 Antibacterial metal article
WO2017168893A1 (en) * 2016-03-30 2017-10-05 大日本印刷株式会社 Mold propagation inhibition member
JP7099123B2 (en) * 2018-03-05 2022-07-12 大日本印刷株式会社 A mold release sheet for manufacturing articles having at least one of antibacterial and antifungal properties, and articles having at least one of antibacterial and antifungal properties.
JP2020032542A (en) * 2018-08-27 2020-03-05 大日本印刷株式会社 Member suppressing proliferation of fungi
JP6695558B1 (en) * 2019-06-22 2020-05-20 株式会社サーフテクノロジー Antibacterial surface treatment method and antibacterial member
JP7185882B2 (en) * 2019-09-05 2022-12-08 株式会社サーフテクノロジー Food processing parts that come into contact with food or humans, parts or members used for food handling, and production methods thereof
JP7236077B2 (en) * 2019-09-05 2023-03-09 株式会社サーフテクノロジー Parts or components for medical equipment
US20220331460A1 (en) * 2019-10-04 2022-10-20 Kureha Corporation Antibacterial molded article and method for manufacturing same

Also Published As

Publication number Publication date
WO2022230533A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
Kelleher et al. Cicada wing surface topography: an investigation into the bactericidal properties of nanostructural features
Desrousseaux et al. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation
US20170100332A1 (en) Surface topographies for non-toxic bioadhesion control
WO2013003373A1 (en) Microstructured surfaces for reducing bacterial adhesion
US20030091612A1 (en) Antimicrobial polyolefin articles and methods for their preparation
Sedlarik Antimicrobial modifications of polymers
ATE273719T1 (en) DISINFECTING PLASTIC FOAM MATERIAL
JP2023101548A (en) Antibacterial molded article and method for manufacturing the same
Heckmann et al. Spatially organized nanopillar arrays dissimilarly affect the antifouling and antibacterial activities of Escherichia coli and Staphylococcus aureus
EP4017401A1 (en) Medical articles with microstructured surface having increased microorganism removal when cleaned and methods thereof
WO2022230533A1 (en) Antimicrobial molded body, food packaging material, and in vivo indwelling device
Catley et al. Designing effective antimicrobial nanostructured surfaces: Highlighting the lack of consensus in the literature
Palza et al. An overview for the design of antimicrobial polymers: From standard antibiotic-release systems to topographical and smart materials
US20230071252A1 (en) Antibacterial molded article and method for producing same
JP2023148934A (en) Antibacterial molding and manufacturing method thereof
JP7205022B2 (en) RESIN MOLDED PRODUCT, RESIN MOLDED PRODUCT MANUFACTURING METHOD, AND STERILIZATION METHOD
Montazer et al. Antibacterial nanocoatings
KR200388593Y1 (en) Silver Nano Sanitary Gloves
CN217065496U (en) Glove with micro-nano structure on surface
CN213771877U (en) Texture structure for antibiosis and product
Rodríguez-Hernández Antimicrobial micro/nanostructured functional polymer surfaces
CN214049893U (en) Antibacterial product with antibacterial effect on object surface
WO2020121632A1 (en) Antibacterial molded article and use thereof
CN114573848A (en) Texture structure for antibiosis and product
KR101259814B1 (en) Porous sheet with a function and method thereof