JP2022166663A - Thin film laminate - Google Patents

Thin film laminate Download PDF

Info

Publication number
JP2022166663A
JP2022166663A JP2021072025A JP2021072025A JP2022166663A JP 2022166663 A JP2022166663 A JP 2022166663A JP 2021072025 A JP2021072025 A JP 2021072025A JP 2021072025 A JP2021072025 A JP 2021072025A JP 2022166663 A JP2022166663 A JP 2022166663A
Authority
JP
Japan
Prior art keywords
layer
thickness
thin film
fcc
bcc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021072025A
Other languages
Japanese (ja)
Inventor
宏文 伊藤
Hirofumi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2021072025A priority Critical patent/JP2022166663A/en
Publication of JP2022166663A publication Critical patent/JP2022166663A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a thin film laminate that can be used for a tunnel magnetoresistive element or the like.SOLUTION: A thin film laminate according to the present invention includes a base portion formed on a substrate and a function portion formed on the base portion. The base portion is formed by alternately stacking a bcc layer having a body-centered cubic lattice crystal structure and an fcc layer having a face-centered cubic lattice crystal structure at least two times in order from the substrate side. The bcc layer consists of either Ta, V, W, Mo or Ti. The fcc layer consists of either Ni, Co or Fe as a base element or alloy. The thickness ratio (Y/X), which is the ratio of the thickness (Y) of the fcc layer to the thickness (X) of the bcc layer, is 0.2 to 3. In such a base portion, at least the fcc layer closest to the function portion is (111) oriented in the stacking direction and has a surface roughness (Ra) of 0.15 nm or less to contribute to the improvement of the characteristics of the function portion formed thereon.SELECTED DRAWING: Figure 4A

Description

本発明は、複数の薄膜が積層されてなる構造体等に関する。 The present invention relates to a structure or the like formed by laminating a plurality of thin films.

巨大磁気抵抗効果(GMR:Giant Magneto Resistive effect)やトンネル磁気抵抗効果(TMR:Tunnel Magneto Resistance effect)等のように、ナノメートル領域(量子レベル)における電荷の流れ(電流)と磁気の流れ(スピン流)の相互作用から生み出される物理現象を、電子デバイスへ応用する研究開発(スピンエレクトロニクス/スピントロニクス)が盛んになされている。 Charge flow (current) and magnetic flow (spin Research and development (spin electronics/spintronics) for applying physical phenomena generated from the interaction of currents to electronic devices has been actively carried out.

例えば、数nm程度の極薄の絶縁層(トンネル障壁)を(強)磁性体層(電極)で挟んでなる磁気トンネル接合部(MTJ:Magnetic tunnel junction)は、一対の磁性層の磁化(スピン)の向き(平行/反平行)によって電気抵抗が大きく変化し得る(トンネル磁気抵抗効果/下記の非特許文献1参照)。このようなMTJを有するトンネル磁気抵抗素子(TMR素子)は、例えば、不揮発性メモリの一種である磁気抵抗メモリ(MRAM:Magnetoresistive Random Access Memory)に利用される。MRAMは、従来の不揮発性メモリであるフラッシュ(Flash)メモリや揮発性メモリであるDRAM(Dynamic Random Access Memory)と比較して、低消費電力、高速動作または大容量化等が期待される。 For example, a magnetic tunnel junction (MTJ) consisting of an ultra-thin insulating layer (tunnel barrier) of several nanometers sandwiched between (ferro)magnetic layers (electrodes) consists of a pair of magnetic layers with magnetization (spin ) (parallel/anti-parallel), the electrical resistance can vary greatly (tunnel magnetoresistive effect/see Non-Patent Document 1 below). A tunnel magnetoresistive element (TMR element) having such an MTJ is used, for example, in a magnetoresistive memory (MRAM: Magnetoresistive Random Access Memory), which is a type of nonvolatile memory. MRAM is expected to have low power consumption, high-speed operation, large capacity, etc., as compared with conventional flash memory, which is a non-volatile memory, and DRAM (Dynamic Random Access Memory), which is a volatile memory.

MRAMの高集積化には、TMR素子の磁気抵抗変化率(MR比:MagnetoResistance ratio)の向上や電圧特性の改善が求められる。MR比は、磁性層の磁化の向きが平行なときの電気抵抗(Rp)と磁性層の磁化の向きが反平行なときの電気抵抗(Ra)とから、MR比=100×(Ra-Rp)/Rp(%)として求まる。電圧特性は、TMR素子への電圧印加により磁気抵抗(MR比)が減少する度合であり、この減少度合が少ないことが望まれる。 In order to increase the integration density of MRAM, it is required to improve the magnetoresistance ratio (MR ratio) and voltage characteristics of the TMR element. The MR ratio is calculated from the electrical resistance (Rp) when the magnetization directions of the magnetic layers are parallel and the electrical resistance (Ra) when the magnetization directions of the magnetic layers are antiparallel, MR ratio = 100 x (Ra-Rp )/Rp (%). The voltage characteristic is the degree of reduction in magnetoresistance (MR ratio) due to voltage application to the TMR element, and it is desired that the degree of reduction is small.

MgOをトンネル障壁に用いたFe(001)/MgO(001)/Fe(001)からなるエピタキシャルなMTJのMR比は、1000%超となり得ることが、非特許文献2、3により理論的に示されている。非特許文献2は、CoFeB/MgO/CoFeBからなるMTJのMR比が、室温で300%を超えることも実証している。但し、MR比が1000%を超えるMTJ(TMR素子)は未だ実現されてはいない。 Non-Patent Documents 2 and 3 theoretically show that the MR ratio of an epitaxial MTJ composed of Fe(001)/MgO(001)/Fe(001) using MgO as a tunnel barrier can exceed 1000%. It is Non-Patent Document 2 also demonstrates that the MR ratio of MTJs composed of CoFeB/MgO/CoFeB exceeds 300% at room temperature. However, an MTJ (TMR element) with an MR ratio exceeding 1000% has not yet been realized.

MR比の向上には、MTJにおける高い平坦性と配向性が必要であることが、非特許文献4により明らかにされている。MTJの平坦性は、結晶配向の乱れ、粒界の発生による電子のトンネル散乱等を抑制させるために必要である。MTJの高配向性は、トンネル障壁(絶縁層)と強磁性層の界面整合に必要である。 Non-Patent Document 4 clarifies that high planarity and orientation in the MTJ are necessary for improving the MR ratio. Flatness of the MTJ is necessary to suppress disturbance of crystal orientation, tunnel scattering of electrons due to generation of grain boundaries, and the like. The high orientation of the MTJ is necessary for interface matching between the tunnel barrier (insulating layer) and the ferromagnetic layer.

MTJを有する代表的な薄膜積層体(TMR素子)を図6に示した。MTJが基板に近い方がトップタイプ、MTJが基板から遠い方がボトムタイプと呼ばれる。いずれのタイプでも、MTJは、単結晶基板上に設けられた下地部上に形成されている。MTJで高平坦性と高配向性を得るためには、先ずその下地部において、高平坦性と高配向性を確保することが必要となる。これらに関連する記載が、例えば、下記の非特許文献5の他、特許文献1~4にある。 A typical thin film laminate (TMR element) having MTJs is shown in FIG. An MTJ closer to the substrate is called a top type, and an MTJ farther from the substrate is called a bottom type. In either type, the MTJ is formed on an underlayer provided on a single crystal substrate. In order to obtain high flatness and high orientation in the MTJ, it is first necessary to ensure high flatness and high orientation in the underlying portion. Descriptions related to these can be found, for example, in Patent Documents 1 to 4 in addition to Non-Patent Document 5 below.

特開2004-253807JP 2004-253807 特開2001-267658JP 2001-267658 特開2002-171012Japanese Patent Application Laid-Open No. 2002-171012 特開2020-43165JP 2020-43165

M. Julliere, Phys Lett., 54A-3 (1975), pp. 225-226M. Julliere, Phys Lett., 54A-3 (1975), pp. 225-226 W.H. Butler, X.-G. Zhang, T.C. Schulthess and J.M. Maclaren: Phys. Rev. B 63, 054416 (2001).W.H. Butler, X.-G. Zhang, T.C. Schulthess and J.M. Maclaren: Phys. Rev. B 63, 054416 (2001). J. Mathon and A. Umerski: Phys. Rev. B 63, 220403 R (2001).J. Mathon and A. Umerski: Phys. Rev. B 63, 220403 R (2001). Y. M. Lee et al, Appl. Phys. Lett., 89, 042506 (2006).Y. M. Lee et al, Appl. Phys. Lett., 89, 042506 (2006). Y. Sakuraba, J. J. Appl. Phys. 44-9A (2005), pp.6535-6537Y. Sakuraba, J. J. Appl. Phys. 44-9A (2005), pp.6535-6537 M. Tsunoda and K. Takahashi,J. Vac. Soc. Jpn., 51, 9, (2008).M. Tsunoda and K. Takahashi, J. Vac. Soc. Jpn., 51, 9, (2008). II-Jae Shin et al, Appl. Phys. Lett. 95 222501 (2009).II-Jae Shin et al, Appl. Phys. Lett. 95 222501 (2009). H. Maehara et al, Appl. Phys. Express, 4 033002, (2011).H. Maehara et al, Appl. Phys. Express, 4 033002, (2011).

特許文献1(および非特許文献4、6~8)は、MTJの下地層にRuを用いている。Ru(001)は、六方最密充填構造(hcp)の柱面方向に成長するため、凹凸の少ない平坦な下地層を形成し得る。しかし、Ruは稀少で高価な貴金属であるため、資源リスクや電子デバイスの高コスト化を招く。 Patent Document 1 (and Non-Patent Documents 4, 6-8) use Ru for the underlayer of the MTJ. Since Ru (001) grows in the direction of the prismatic surfaces of the hexagonal close-packed structure (hcp), it is possible to form a flat underlying layer with little unevenness. However, since Ru is a rare and expensive noble metal, it causes resource risk and increases the cost of electronic devices.

特許文献2は、NiCr合金からなる下地層を有する磁気交換素子を提案している。特許文献3は、Cu膜とNiFe合金膜またはCoFe合金膜とからなる下地層を有する交換結合素子を提案している。特許文献4は、NiAlまたはCoAlからなる下地層を有する磁気抵抗素子を提案している。これらの下地層では、平坦性と配向性を高次元で両立することは難しい。 Patent Document 2 proposes a magnetic exchange element having an underlying layer made of a NiCr alloy. Patent Document 3 proposes an exchange coupling element having an underlying layer composed of a Cu film and a NiFe alloy film or a CoFe alloy film. Patent Document 4 proposes a magnetoresistive element having an underlying layer made of NiAl or CoAl. In these underlayers, it is difficult to achieve both flatness and orientation at a high level.

本発明は、このような事情に鑑みて為されたものであり、平坦性と配向性を高次元で両立した下地部を有する薄膜積層体等を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a thin film laminate or the like having an underlayer that achieves both flatness and orientation at a high level.

本発明者がその課題を解決すべく鋭意研究した結果、特定のbcc層とfcc層を交互に積層してなる下地部は、優れた平坦性と配向性を発揮することを新たに見出した。この成果を発展させることにより、以降に述べるような本発明を完成するに至った。 As a result of intensive research to solve the problem, the present inventors have newly discovered that an underlayer formed by alternately stacking specific bcc layers and fcc layers exhibits excellent flatness and orientation. Developing this result led to the completion of the present invention as described below.

《薄膜積層体》
(1)本発明の薄膜積層体は、基板上に形成された下地部と該下地部上に形成された機能部とを備える薄膜積層体であって、該下地部は、該基板側から順に、結晶構造が体心立方格子であるbcc層と結晶構造が面心立方格子であるfcc層とが交互に少なくとも2回以上積層されてなり、該bcc層は、Ta、V、W、MoまたはTiのいずれかからなり、該fcc層は、Ni、Co、NiとFeの合金またはCoとFeの合金のいずれかからなり、該bcc層の厚さ(X)に対する該fcc層の厚さ(Y)の比率である厚さ比(Y/X)が0.2~3であり、少なくとも該機能部に最も近い該fcc層は、積層方向に(111)配向していると共に表面粗さ(Ra)が0.15nm以下である薄膜積層体である。
《Thin film laminate》
(1) A thin film laminate of the present invention is a thin film laminate comprising a base portion formed on a substrate and a functional portion formed on the base portion, wherein the base portion is sequentially formed from the substrate side. , a bcc layer whose crystal structure is a body-centered cubic lattice and an fcc layer whose crystal structure is a face-centered cubic lattice are alternately laminated at least two times, and the bcc layer is made of Ta, V, W, Mo or The fcc layer is made of either Ni, Co, an alloy of Ni and Fe or an alloy of Co and Fe, and the thickness of the fcc layer (X) relative to the thickness of the bcc layer ( The thickness ratio (Y/X), which is the ratio of Y), is 0.2 to 3, and at least the fcc layer closest to the functional portion is (111) oriented in the stacking direction and has a surface roughness ( It is a thin film laminate having Ra) of 0.15 nm or less.

(2)本発明の薄膜積層体(単に「積層体」ともいう。)によれば、下地部の少なくとも最上面(機能部との界面側)において、優れた平坦性と配向性が確保される。これにより、下地部上に形成される機能部でも、優れた平坦性および/または配向性が得られ、積層体の性能向上が期待できる。 (2) According to the thin film laminate (also simply referred to as "laminate") of the present invention, excellent flatness and orientation are ensured at least on the uppermost surface of the underlying portion (on the side of the interface with the functional portion). . As a result, excellent flatness and/or orientation can be obtained even in the functional portion formed on the underlying portion, and an improvement in the performance of the laminate can be expected.

本発明に係る下地部は、稀少なRuを用いずに形成されるため、積層体(ひいては電子デバイス等)の低コスト化や原料供給不安(資源リスク)の回避等も図られる。 Since the base portion according to the present invention is formed without using Ru, which is scarce, it is possible to reduce the cost of the laminate (and thus the electronic device, etc.) and avoid the instability of raw material supply (resource risk).

《薄膜積層体の製造方法》
本発明は、積層体としてのみならず、その製造方法として把握される。例えば、本発明は、基板上(例えば平坦な単結晶面上)に、該基板側から順に、結晶構造が体心立方格子であるbcc層と結晶構造が面心立方格子であるfcc層とが交互に少なくとも2回以上積層した下地部を形成する下地部形成工程と、該下地部上に機能部を形成する機能部形成工程とを備え、上述した薄膜積層体が得られる製造方法でもよい。
<<Manufacturing method of thin film laminate>>
The present invention is grasped not only as a laminate but also as a method for manufacturing the same. For example, in the present invention, a bcc layer whose crystal structure is a body-centered cubic lattice and an fcc layer whose crystal structure is a face-centered cubic lattice are sequentially formed on a substrate (for example, on a flat single crystal surface) from the substrate side. The manufacturing method may include a base portion forming step of forming a base portion that is alternately laminated at least two times, and a functional portion forming step of forming a functional portion on the base portion, so that the thin film laminate described above can be obtained.

《その他》
(1)本明細書では、特に断らない限り、一般的なミラー指数や格子定数(a軸、b軸、c軸等)を用いて配向性や結晶構造等を示す。また便宜上、代表的なミラー指数を用いて表記しているが、特に断らない限り、それらは等価な面または方向も含む。
"others"
(1) In this specification, unless otherwise specified, general Miller indices and lattice constants (a-axis, b-axis, c-axis, etc.) are used to indicate orientation, crystal structure, and the like. Also, for convenience, representative Miller indices are used, but they also include equivalent planes or directions unless otherwise specified.

本明細書でいう「平坦(性)」とは、幾何学的な平面度に優れることではなく、表面の凹凸が少ないこと、または層の厚さ変化が少ないことを意味する。具体的な指標として、少なくとも機能部に最も近いfcc層の表面粗さ(Ra)が、0.15nm以下、0.14nm以下さらには0.13nm以下であるとよい。この表面粗さが確保される限り、各部または各層は、全体的に観て、平面に限らず、湾曲面等でもよい。 The term "flatness" as used herein does not mean excellent geometrical flatness, but means less irregularities on the surface or less variation in layer thickness. As a specific index, the surface roughness (Ra) of at least the fcc layer closest to the functional portion is preferably 0.15 nm or less, 0.14 nm or less, or 0.13 nm or less. As long as this surface roughness is ensured, each part or each layer is not limited to a flat surface as a whole, and may be a curved surface or the like.

「配向(性)」は、例えば、X線回折したときに、fcc単層から得られるピーク強度(I)と、bcc層上に積層されたfcc層から得られるピーク強度(I)とを比較して判断できる。より具体的にいえば、それらの強度比(I/I)が15以上、20以上さらには30以上であると好ましい。 “Orientation (property)” means, for example, when X-ray diffraction is performed, the peak intensity (I 0 ) obtained from the fcc single layer and the peak intensity (I) obtained from the fcc layer laminated on the bcc layer. can be determined by comparison. More specifically, their intensity ratio (I/I 0 ) is preferably 15 or more, 20 or more, or even 30 or more.

(2)特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を、新たな下限値または上限値として「a~b」のような範囲を新設し得る。また、本明細書でいう「x~ynm」はxnm~ynmを意味する。他の単位系についても同様である。 (2) Unless otherwise specified, "x to y" as used herein includes the lower limit value x and the upper limit value y. Any numerical value included in any numerical value or numerical range described herein may be used as a new lower or upper limit to establish a new range such as “a to b”. Also, "x to ynm" as used herein means xnm to ynm. The same applies to other unit systems.

実施例で製作した各試料(下地部)の模式図である。It is a schematic diagram of each sample (backing part) produced in the example. AFMによる各試料表面の観察像と表面粗さ(Ra)である。It is an observation image and surface roughness (Ra) of each sample surface by AFM. 試料Aに係るXRDである。3 is XRD of sample A; 試料Bに係るXRDである。3 is XRD of sample B; 試料Cと試料Dに係るXRDである。3 is XRD of sample C and sample D; bcc層に対するfcc層の厚さ比(Y/X)と表面粗さ(Ra)との関係を試料Aについて示した散布図である。4 is a scatter diagram showing the relationship between the thickness ratio (Y/X) of the fcc layer to the bcc layer and the surface roughness (Ra) for Sample A. FIG. その厚さ比と表面粗さとの関係を試料Bについて示した散布図である。3 is a scatter diagram showing the relationship between the thickness ratio and surface roughness for sample B. FIG. その厚さ比とXRDピークの強度比(I(111)/I)との関係を試料Aについて示した散布図である。4 is a scatter diagram showing the relationship between the thickness ratio and the XRD peak intensity ratio (I(111)/I 0 ) for Sample A. FIG. その厚さ比とその強度比との関係を試料Bについて示した散布図である。FIG. 10 is a scatter diagram showing the relationship between the thickness ratio and the intensity ratio for sample B; 従来のトンネル磁気抵抗素子に係る積層構造を示す模式図である。FIG. 3 is a schematic diagram showing a laminated structure of a conventional tunnel magnetoresistive element;

本明細書で説明する内容は、積層体のみならずその製造方法にも該当し得る。本明細書中から任意に選択した一以上の構成要素を本発明の構成要素として付加し得る。製造方法に関する構成要素は、物の構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 The content described in this specification may apply not only to the laminate but also to the manufacturing method thereof. Any one or more components selected from this specification may be added as components of the present invention. A component related to a manufacturing method can also be a component of a product. Which embodiment is the best depends on the target, required performance, and the like.

《経緯と機序》
本発明の完成に至る経緯とその機序について、薄膜積層体の応用形態であるトンネル磁気抵抗素子(TMR素子)を例示しつつ説明する。
《Background and Mechanism》
The process and mechanism leading to the completion of the present invention will be described by exemplifying a tunneling magnetoresistive element (TMR element), which is an application form of a thin film laminate.

TMR素子は、極薄の絶縁層(トンネル障壁)を一対の磁性層(電極)で挟んだ磁気トンネル接合部(MTJ)を少なくとも一つ有する。TMR素子の磁気抵抗変化率(MR比)等の向上を図るためには、MTJの結晶配向(単に「配向性」という。)と平坦性とを高次元で両立する必要がある(既述の非特許文献5参照)。 A TMR element has at least one magnetic tunnel junction (MTJ) in which a very thin insulating layer (tunnel barrier) is sandwiched between a pair of magnetic layers (electrodes). In order to improve the magnetoresistive change rate (MR ratio) of the TMR element, it is necessary to achieve both crystal orientation (simply referred to as “orientation”) and flatness of the MTJ at a high level (as described above). See Non-Patent Document 5).

MTJの配向性は、絶縁層と磁性層の界面整合に必要となる。MgOからなる絶縁層の場合なら、例えば、各結晶の(001)面(c軸)を積層方向(厚さ方向)に揃えるとよい。 The orientation of the MTJ is required for interface matching between the insulating layer and the magnetic layer. In the case of an insulating layer made of MgO, for example, the (001) plane (c-axis) of each crystal should be aligned in the stacking direction (thickness direction).

MTJの平坦性は、結晶配向の乱れ、粒界で発生する電子のトンネル散乱の抑制等に必要である。MTJの平坦性は、例えば、その表面粗さでいうなら、Ra≦0.2nmが求められる。 Flatness of the MTJ is necessary to suppress disturbance of crystal orientation, tunnel scattering of electrons generated at grain boundaries, and the like. The flatness of the MTJ is required to be Ra≦0.2 nm in terms of surface roughness, for example.

このようなMTJの実現には、その下地部にも、MTJと同等かそれ以上の配向性や平坦性が求められる。また、TMR素子の普及を図るためには、資源リスクの少ない原料を用いて、低コストで安定した生産を可能にする必要もある。そこで本発明者は、磁気抵抗素子に用いられる安価な材料であるパーマロイ(Ni-Fe合金)からなる薄膜を微結晶なTa膜(bcc層)上に積層することを着想した。 In order to realize such an MTJ, the underlying portion of the MTJ is required to have orientation and flatness equal to or greater than those of the MTJ. In addition, in order to promote the spread of TMR elements, it is also necessary to use raw materials with little resource risk and to enable stable production at low cost. Accordingly, the present inventors conceived the idea of laminating a thin film of permalloy (Ni--Fe alloy), which is an inexpensive material used for magnetoresistive elements, on a microcrystalline Ta film (bcc layer).

これにより、Ta膜上のNi-Fe合金膜を、NiFe(111)に優先配向させることが実現できた。但し、Ni-Fe合金の結晶粒は成長し易いため、Ni-Fe合金膜は厚くなるほど平坦性が劣化した。またTa膜も厚くなると、結晶配向の乱れや欠陥が発生し易くなり、平坦性の確保が困難となった。 As a result, the Ni—Fe alloy film on the Ta film could be preferentially oriented to NiFe (111). However, since the crystal grains of the Ni--Fe alloy tend to grow, the flatness deteriorated as the thickness of the Ni--Fe alloy film increased. Also, when the Ta film is thick, disorder of crystal orientation and defects are likely to occur, making it difficult to ensure flatness.

そこで、Ta膜とNi-Fe合金膜を交互に2回以上積層することを着想した。これにより、各膜厚を薄くして高い配向性や平坦性と共に、所望の厚さの下地部の形成に成功した。 Therefore, the idea of stacking the Ta film and the Ni—Fe alloy film alternately two or more times was conceived. As a result, it was possible to reduce each film thickness and successfully form an underlayer having a desired thickness along with high orientation and flatness.

Ta単体の結晶構造は体心立方格子(bcc)であり、Ni-Fe合金(例えばNi80Fe20合金)の結晶構造は面心立方格子(fcc)である。下地部の平坦性と配向性は、下地部を構成する各層の結晶構造と厚さとにより主に定まると考えられる。こうして、既述した本発明が完成されるに至った。以下、本発明の具体的な形態について詳述する。 The crystal structure of simple Ta is body-centered cubic (bcc), and the crystal structure of Ni—Fe alloys (eg, Ni 80 Fe 20 alloy) is face-centered cubic (fcc). It is considered that the flatness and orientation of the underlying portion are mainly determined by the crystal structure and thickness of each layer forming the underlying portion. Thus, the present invention described above has been completed. Specific embodiments of the present invention will be described in detail below.

《積層体》
積層体は、基板と、基板上に形成された下地部と、下地部上に形成された機能部とを少なくとも有する。基板と下地部の間、下地部と機能部の間、機能部の上面側(基板の反対側)等には、一以上の層(インサート層)が介在していてもよい。また機能部は、直列または並列に、複数配置(配列)されていてもよい。
《Laminate》
The laminate has at least a substrate, a base portion formed on the substrate, and a functional portion formed on the base portion. One or more layers (insert layers) may be interposed between the substrate and the underlying portion, between the underlying portion and the functional portion, on the upper surface side of the functional portion (opposite side of the substrate), and the like. Also, the functional units may be arranged (arranged) in series or in parallel.

(1)基板
基板は、下地部が形成される表面(成膜面)が単結晶面であるとよい。その単結晶面は、単結晶からなる基板自体の表面でもよいし、基板に形成された別な層(膜)でもよい。成膜面は、例えば、Siの単結晶面でも、その表面に形成された酸化膜等でもよい。
(1) Substrate It is preferable that the surface (film formation surface) of the substrate on which the underlying portion is formed be a single crystal surface. The single crystal plane may be the surface of the single crystal substrate itself, or may be another layer (film) formed on the substrate. The film formation surface may be, for example, a single crystal surface of Si, or an oxide film or the like formed on the surface thereof.

(2)下地部
下地部は、bcc層とfcc層とが交互に少なくとも2回以上積層されてなる。bcc層は、Ta、V、W、MoまたはTiのいずれか(金属単体)からなる。fcc層は、Ni単体、Co単体、NiとFeの合金(Ni-Fe合金)、CoとFeの合金(Co-Fe合金)のいずれかからなる。Ni-Fe合金やCo-Fe合金は、薄膜の結晶構造がfccとなる限り、具体的な組成は問わない。敢えていうと、例えば、合金全体100at%に対して、Feが5~40at%さらには10~30at%含まれるとよい。なお、本明細書でいう合金には、金属間化合物も含まれる。
(2) Underlayer The underlayer is formed by alternately stacking bcc layers and fcc layers at least twice. The bcc layer is made of Ta, V, W, Mo or Ti (single metal). The fcc layer is made of Ni alone, Co alone, an alloy of Ni and Fe (Ni--Fe alloy), or an alloy of Co and Fe (Co--Fe alloy). Ni--Fe alloys and Co--Fe alloys may have any specific composition as long as the crystal structure of the thin film is fcc. Suffice it to say, for example, Fe should be contained in an amount of 5 to 40 at%, further 10 to 30 at%, with respect to 100 at% of the entire alloy. The alloys referred to in this specification also include intermetallic compounds.

bcc層やfcc層は、単結晶でも多結晶でもよい。多結晶の場合、微細な結晶粒が規則的に配列した擬似単結晶状であるとよい。例えば、bcc層は微細な多結晶層であり、fcc層はエピタキシャル成長した単結晶層となる。 The bcc and fcc layers may be monocrystalline or polycrystalline. In the case of polycrystal, it is preferable that it is a pseudo-single crystal in which fine crystal grains are regularly arranged. For example, the bcc layer is a fine polycrystalline layer and the fcc layer is an epitaxially grown single crystal layer.

bcc層の厚さ(X)に対するfcc層の厚さ(Y)の比率である厚さ比(Y/X)は、例えば、0.2~3、0.4~2.5さらには0.6~2であるとよい。厚さ比が過小では下地部の配向性が低下し得る。厚さ比が過大では、配向性に加えて平坦性も低下し得る。 The thickness ratio (Y/X), which is the ratio of the thickness (Y) of the fcc layer to the thickness (X) of the bcc layer, is, for example, 0.2 to 3, 0.4 to 2.5 or even 0.5. 6 to 2 is preferable. If the thickness ratio is too small, the orientation of the underlying portion may deteriorate. If the thickness ratio is too large, the orientation as well as the flatness may be degraded.

各層または下地部の厚さは、積層体(素子)の仕様に応じて調整され得る。敢えていうと、bcc層の厚さ(X)は、例えば、5~25nm、7~20nmさらには9~18nmである。fcc層の厚さ(Y)は、例えば、3~20nm、6~18nmさらには9~16nmである。下地部全体の厚さは、例えば、30~80nmさらには40~60nmである。 The thickness of each layer or underlayer can be adjusted according to the specifications of the laminate (device). I dare say that the thickness (X) of the bcc layer is, for example, 5-25 nm, 7-20 nm or even 9-18 nm. The thickness (Y) of the fcc layer is, for example, 3-20 nm, 6-18 nm or even 9-16 nm. The thickness of the entire underlying portion is, for example, 30 to 80 nm, further 40 to 60 nm.

各bcc層または各fcc層は、それぞれの厚さが略同じでもよいし、異なっていてもよい。上述した厚さ比は、基板に近い側のbcc層とそれに隣接するfcc層(基板に遠い側)との各ペア間で算出する。いずれのペア間の厚さ比も、上述した範囲内にあるとよい。 Each bcc layer or each fcc layer may have approximately the same thickness or may have different thicknesses. The thickness ratios mentioned above are calculated between each pair of a bcc layer closer to the substrate and an adjacent fcc layer (away from the substrate). The thickness ratio between any pair should also be within the range described above.

なお、本明細書でいう各層の厚さは、断面を電子顕微鏡(TEM等)で観察した画像(写真)に基づいて、厚さが安定している範囲で測定される最大厚さと最小厚さの算術平均値(中央値)として特定される。 The thickness of each layer referred to in this specification is the maximum thickness and minimum thickness measured in a range in which the thickness is stable based on an image (photograph) of a cross section observed with an electron microscope (TEM, etc.) is specified as the arithmetic mean (median) of

一対のbcc層とfcc層の積層回数は、2回でも3回以上でもよい。積層回数は、下地部の所望厚さに応じて調整され得る。但し、通常、交互に2回積層(bcc層/fcc層/bcc層/fcc層)されていれば足る。 A pair of bcc layer and fcc layer may be stacked two times or three times or more. The number of lamination times can be adjusted according to the desired thickness of the underlying portion. However, it is usually sufficient to alternately stack the layers twice (bcc layer/fcc layer/bcc layer/fcc layer).

(3)機能部
機能部は、積層体の中核(素子の作動部)を構成する。機能部は、下地部上に積層された薄膜からなり、平坦性や配向性に優れるとよい。機能部の一例として、磁気により電気抵抗が変化する磁気抵抗部がある。磁気抵抗部の具体例として、例えば、巨大磁気抵抗部(GMR)やトンネル磁気抵抗部(TMR)等がある。巨大磁気抵抗部は、例えば、強磁性薄膜(F層)と非強磁性薄膜(NF層)を積層した多層膜からなる。トンネル磁気抵抗部は、例えば、絶縁層(トンネル障壁)を(強)磁性体層(電極)で挟んだ磁気トンネル接合部(MTJ)からなる。それらを構成する各層は、いずれも、通常、厚さが1~20nmさらには2~10nm程度の極薄膜からなる。
(3) Functional part The functional part constitutes the core of the laminate (the operating part of the element). The functional portion is preferably made of a thin film laminated on the base portion and has excellent flatness and orientation. As an example of the functional portion, there is a magnetic resistance portion whose electrical resistance changes due to magnetism. Specific examples of the magnetoresistive section include a giant magnetoresistive section (GMR) and a tunnel magnetoresistive section (TMR). The giant magnetoresistive section is made of, for example, a multilayer film in which a ferromagnetic thin film (F layer) and a non-ferromagnetic thin film (NF layer) are laminated. The tunnel magnetoresistive section is composed of, for example, a magnetic tunnel junction (MTJ) in which an insulating layer (tunnel barrier) is sandwiched between (ferro)magnetic layers (electrodes). Each of the layers constituting them is usually made of an ultra-thin film with a thickness of about 1 to 20 nm, further 2 to 10 nm.

《製造方法》
下地部を形成する下地部形成工程や機能部を形成する機能部形成工程などの積層工程は、例えば、物理気相蒸着法(PVD)、化学気相蒸着法(CVD)等の公知な薄膜法により行える。なかでも、PVDの一種である各種の真空蒸着法(スパッタリング、真空加熱蒸着、パルスレーザ蒸着等)を利用すれば、成分組成(ターゲット材質)の異なる各層の成膜が容易となる。真空蒸着は、例えば、10-5~10-9Paさらには10-6~10-8Pa程度の高真空下でなされるとよい。このときの基板温度は、例えば、室温付近(60℃以下さらには40℃以下)である。
"Production method"
Lamination processes such as a base portion forming step for forming a base portion and a functional portion forming step for forming a functional portion are performed by known thin film methods such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). can be done by Among them, various vacuum vapor deposition methods (sputtering, vacuum heating vapor deposition, pulse laser vapor deposition, etc.), which are a type of PVD, can be used to easily form layers having different component compositions (target materials). Vacuum deposition is preferably performed under a high vacuum of about 10 -5 to 10 -9 Pa, further 10 -6 to 10 -8 Pa, for example. The substrate temperature at this time is, for example, around room temperature (60° C. or lower, or 40° C. or lower).

《用途》
本発明の積層体は、各種の電子デバイス(素子)等に用いることができる。例えば、磁気抵抗部(GMR、TMR等)を有する積層体は、磁気抵抗メモリ(MRAM)、磁気ヘッド等の記録媒体、心磁計や脳磁計等の磁気センサに利用され得る。
《Application》
The laminate of the present invention can be used for various electronic devices (elements). For example, a laminate having a magnetoresistive portion (GMR, TMR, etc.) can be used for magnetoresistive memories (MRAM), recording media such as magnetic heads, and magnetic sensors such as magnetocardiographs and magnetoencephalographs.

薄膜法により製作した種々の試料(薄膜積層体)の特性を評価した。これらに基づいて本発明をより具体的に説明する。 The properties of various samples (thin film laminates) fabricated by the thin film method were evaluated. Based on these, the present invention will be described more specifically.

《薄膜法》
(1)基板
基板には、酸化膜付きシリコン(Si)単結晶基板を用いた。この酸化膜上に後述する各層(薄膜)を成膜した。本実施例では、この基板を適宜「酸化膜付きSi基板」という。
《Thin film method》
(1) Substrate A silicon (Si) single crystal substrate with an oxide film was used as the substrate. Each layer (thin film) described later was formed on this oxide film. In this embodiment, this substrate is appropriately called "Si substrate with oxide film".

(2)成膜
成膜には、超高真空多元スパッタ装置(MPS-2000-C8 株式会社アルバック製)を用いた。基板の成膜面(酸化膜)は、予め、真空下で加熱クリーニング(600℃)した後、50℃以下まで冷却した。成膜前の到達真空度は1×10-7Paとした。ターゲット(原料)には、Ta(純金属)とNi80Fe20(Ni-20at%Fe合金/パーマロイ)を用意した。
(2) Film formation An ultra-high vacuum multi-source sputtering apparatus (MPS-2000-C8, manufactured by ULVAC, Inc.) was used for film formation. The film-forming surface (oxide film) of the substrate was previously heated and cleaned (600° C.) under vacuum, and then cooled to 50° C. or lower. The ultimate vacuum degree before film formation was 1×10 −7 Pa. Ta (pure metal) and Ni 80 Fe 20 (Ni-20 at % Fe alloy/permalloy) were prepared as targets (raw materials).

いずれの試料でも、成膜する厚さ(合計)は50nmとした。各層(膜)の厚さは、成膜速度と成膜時間の積から算出した。なお、成膜速度は0.1nm/sec以下とした。いずれの試料も、室温下で成膜した。 The thickness (total) of the films formed was 50 nm for all samples. The thickness of each layer (film) was calculated from the product of film formation rate and film formation time. Note that the film formation rate was set to 0.1 nm/sec or less. All samples were deposited at room temperature.

《試料の製作》
図1に示す4タイプの試料を製作した。試料Aは、順に、Ta膜(bcc層/厚さ:Xnm)とNi80Fe20膜(fcc層/厚さ:Ynm)とが交互に2回積層されてなる。試料Bは、Ta膜(bcc層/厚さ:Xnm)とNi80Fe20膜(fcc層/厚さ:Ynm)とが順に1層ずつ積層されてなる。試料Cは、Ta膜(bcc層/厚さ:50nm)の単層からなる。試料Dは、Ni80Fe20膜(fcc層/厚さ:50nm)の単層からなる。
《Production of samples》
Four types of samples shown in FIG. 1 were produced. Sample A is formed by alternately stacking a Ta film (bcc layer/thickness: X nm) and a Ni 80 Fe 20 film (fcc layer/thickness: Y nm) twice in order. Sample B is formed by laminating a Ta film (bcc layer/thickness: X nm) and a Ni 80 Fe 20 film (fcc layer/thickness: Y nm) one by one in this order. Sample C consists of a single layer of Ta film (bcc layer/thickness: 50 nm). Sample D consists of a single layer of Ni 80 Fe 20 film (fcc layer/thickness: 50 nm).

試料Aと試料Bについては、表1に示すように、Ta膜の厚さ(X)とNi80Fe20膜の厚さ(Y)を種々変更して、試料A1~A7と試料B1~B8を製作した。 As for the samples A and B, as shown in Table 1, the thickness (X) of the Ta film and the thickness (Y) of the Ni 80 Fe 20 film were variously changed to obtain samples A1 to A7 and samples B1 to B8. made.

《観察・測定》
(1)表面状態と表面粗さ
各試料(下地部)の最表面を、原子間力顕微鏡(AFM:Atomic Force Microscope/株式会社日立ハイテクサイエンス社製E-SWEEP /Nano Navi Real)を用いて観察した。各試料の観察像を図2に示した。
《Observation/Measurement》
(1) Surface state and surface roughness Observe the outermost surface of each sample (substrate) using an atomic force microscope (AFM: Atomic Force Microscope/E-SWEEP manufactured by Hitachi High-Tech Science Co., Ltd./Nano Navi Real). did. Observed images of each sample are shown in FIG.

また、各試料の表面粗さ(Ra:算術平均粗さ)を同じ原子間力顕微鏡を用いて測定した。得られた結果を表1と図2に併記した。なお、走査エリアは500×500nmとした。 Also, the surface roughness (Ra: arithmetic mean roughness) of each sample was measured using the same atomic force microscope. The obtained results are shown in Table 1 and FIG. The scanning area was 500×500 nm.

(2)測定・解析
各試料の結晶構造を、X線回折装置(株式会社リガク製RINT-TTR II /使用X線:Cu-Kα線、θ/2θ:20~80°)を用いて最上面側から解析した。
(2) Measurement and analysis The crystal structure of each sample is analyzed using an X-ray diffractometer (RINT-TTR II manufactured by Rigaku Co., Ltd. / X-ray used: Cu-Kα ray, θ/2θ: 20 to 80 °). analyzed from the side.

各試料について得られたX線回折パターン(単に「XRD」という。)を図3A~3C(これらを併せて単に「図3」という。)にそれぞれ示した。また、各XRDに基づいて、試料DのNiFe(111)のピーク強度(I)と、試料A1~A7および試料B1~B8の各NiFe(111)のピーク強度(I)との比である強度比(I/I)を求めた。得られた結果を表1に併記した。 The X-ray diffraction patterns (simply referred to as "XRD") obtained for each sample are shown in FIGS. 3A to 3C (simply referred to as "FIG. 3"). Also, based on each XRD, the ratio of the peak intensity (I 0 ) of NiFe (111) of sample D to the peak intensity (I) of each NiFe (111) of samples A1 to A7 and samples B1 to B8 An intensity ratio (I/I 0 ) was determined. The obtained results are also shown in Table 1.

《評価》
表1および図2に示した試料A1~A7(これらを併せて単に「試料A」という。)と試料B1~B8(これらを併せて単に「試料B」という。)について、厚さ比(Y/X)と表面粗さ(Ra)の関係を図4A、4B(両者を併せて単に「図4」という。)に示した。また、表1および図3に示した試料A1~A7、B1~B8について、厚さ比(Y/X)と強度比(I/I)の関係を図5A、5B(両者を併せて単に「図5」という。)に示した。
"evaluation"
Regarding samples A1 to A7 (collectively referred to as "sample A") and samples B1 to B8 (collectively referred to as "sample B") shown in Table 1 and FIG. 2, the thickness ratio (Y /X) and the surface roughness (Ra) are shown in FIGS. 4A and 4B (both are simply referred to as "FIG. 4"). 5A and 5B (both are simply (referred to as "Fig. 5").

(1)表面状態
図2から明らかなように、試料B~Dの表面では、数十nm程度の結晶粒の分布が観られた。一方、試料Aの表面には、そのような大きな結晶粒の分布は殆ど観られなかった。
(1) Surface Condition As is clear from FIG. 2, a distribution of crystal grains of about several tens of nanometers was observed on the surfaces of samples B to D. FIG. On the other hand, on the surface of sample A, such a distribution of large crystal grains was scarcely observed.

また表1、図2および図4から明らかなように、試料C、Dの表面粗さ(Ra)はいずれも0.2nm以上であり、試料Bの表面粗さはいずれも0.16nm以上であった。一方、試料Aの表面粗さは、厚さ比(Y/X)が3以下ならいずれも0.15nm以下となった。 As is clear from Table 1, FIGS. 2 and 4, the surface roughnesses (Ra) of samples C and D are both 0.2 nm or more, and the surface roughness of sample B is 0.16 nm or more. there were. On the other hand, the surface roughness of sample A was 0.15 nm or less when the thickness ratio (Y/X) was 3 or less.

これらから、厚さ比(Y/X)が3以下である4層構造の積層体(下地部)は、平坦性に優れることがわかった。これは、fcc層の厚さ(Y)を相対的に小さくすることにより、fcc層(Ni80Fe20膜)の粒成長が抑制されたためと考えられる。 From these, it was found that the four-layer structure laminate (underlying portion) having a thickness ratio (Y/X) of 3 or less has excellent flatness. This is probably because grain growth of the fcc layer (Ni 80 Fe 20 film) was suppressed by making the thickness (Y) of the fcc layer relatively small.

(2)配向
表1、図3および図5から明らかなように、試料DにはNiFe(111)の弱いピークしか観られなかった。つまり、Ni80Fe20膜のみ(単層)の場合、NiFe(111)の配向は僅かであることがわかった。なお、試料CにNiFe(111)のピークがないことは当然である。
(2) Orientation As is clear from Table 1, FIGS. 3 and 5, only weak peaks of NiFe(111) were observed in sample D. That is, in the case of the Ni 80 Fe 20 film only (single layer), it was found that the orientation of NiFe (111) was slight. Needless to say, Sample C does not have a NiFe(111) peak.

一方、試料A、Bのように、bcc層(Ta膜)上にfcc層(Ni80Fe20膜)を積層すると、NiFe(111)の強いピークが現れた。つまり、そのfcc層はNiFe(111)方向に高い配向性を有することがわかった。この傾向は、厚さ比(Y/X)が3以下となる範囲で顕著であった。 On the other hand, when the fcc layer (Ni 80 Fe 20 film) was laminated on the bcc layer (Ta film) as in samples A and B, a strong peak of NiFe (111) appeared. That is, it was found that the fcc layer had a high orientation in the NiFe (111) direction. This tendency was remarkable when the thickness ratio (Y/X) was 3 or less.

また試料Aのように、4層構造の積層体(下地部)の場合、厚さ比(Y/X)が3以下となる範囲で、安定した強度比(I/I)ひいては配向性が得られることもわかった。この理由は、一層あたりのNiFe層を薄くすることで結晶配向の乱れが抑制されたためと考えられる。 In the case of a four-layer structure laminate (underlying portion) as in sample A, a stable strength ratio (I/I 0 ) and thus orientation can be achieved within a range where the thickness ratio (Y/X) is 3 or less. I also found that I could get The reason for this is thought to be that the disorder of crystal orientation was suppressed by making the thickness of each NiFe layer thinner.

このように、本発明の薄膜積層体は平坦性と配向性に優れた下地部を有し、その下地部上に形成される機能部の特性(性能)を向上させ得ることが確認された。 As described above, it was confirmed that the thin film laminate of the present invention has an underlying portion with excellent flatness and orientation, and that the characteristics (performance) of the functional portion formed on the underlying portion can be improved.

Figure 2022166663000002
Figure 2022166663000002

Claims (4)

基板上に形成された下地部と該下地部上に形成された機能部とを備える薄膜積層体であって、
該下地部は、該基板側から順に、結晶構造が体心立方格子であるbcc層と結晶構造が面心立方格子であるfcc層とが交互に少なくとも2回以上積層されてなり、
該bcc層は、Ta、V、W、MoまたはTiのいずれかからなり、
該fcc層は、Ni、Co、NiとFeの合金またはCoとFeの合金のいずれかからなり、
該bcc層の厚さ(X)に対する該fcc層の厚さ(Y)の比率である厚さ比(Y/X)が0.2~3であり、
少なくとも該機能部に最も近い該fcc層は、積層方向に(111)配向していると共に表面粗さ(Ra)が0.15nm以下である薄膜積層体。
A thin film laminate comprising an underlying portion formed on a substrate and a functional portion formed on the underlying portion,
The underlying portion is formed by alternately stacking a bcc layer having a body-centered cubic lattice crystal structure and an fcc layer having a face-centered cubic crystal structure in order from the substrate side at least two times,
the bcc layer consists of either Ta, V, W, Mo or Ti,
the fcc layer consists of either Ni, Co, an alloy of Ni and Fe or an alloy of Co and Fe,
the thickness ratio (Y/X), which is the ratio of the thickness (Y) of the fcc layer to the thickness (X) of the bcc layer, is 0.2 to 3;
A thin film laminate, wherein at least the fcc layer closest to the functional portion is (111) oriented in the lamination direction and has a surface roughness (Ra) of 0.15 nm or less.
前記bcc層はTaからなり、
前記fcc層はNiとFeの合金からなる請求項1に記載の薄膜積層体。
The bcc layer is made of Ta,
2. The thin film stack of claim 1, wherein said fcc layer comprises an alloy of Ni and Fe.
前記基板は、Siの単結晶からなる請求項1または2に記載の薄膜積層体。 3. The thin film laminate according to claim 1, wherein the substrate is made of Si single crystal. 前記機能部は、磁気により電気抵抗が変化する磁気抵抗部である請求項1~3のいずれかに記載の薄膜積層体。 The thin film laminate according to any one of claims 1 to 3, wherein the functional portion is a magnetoresistive portion whose electrical resistance changes due to magnetism.
JP2021072025A 2021-04-21 2021-04-21 Thin film laminate Pending JP2022166663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021072025A JP2022166663A (en) 2021-04-21 2021-04-21 Thin film laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021072025A JP2022166663A (en) 2021-04-21 2021-04-21 Thin film laminate

Publications (1)

Publication Number Publication Date
JP2022166663A true JP2022166663A (en) 2022-11-02

Family

ID=83851660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021072025A Pending JP2022166663A (en) 2021-04-21 2021-04-21 Thin film laminate

Country Status (1)

Country Link
JP (1) JP2022166663A (en)

Similar Documents

Publication Publication Date Title
JP5988019B2 (en) Ferromagnetic tunnel junction, magnetoresistive effect element and spintronic device using the same
US8934290B2 (en) Magnetoresistance effect device and method of production of the same
JP5674297B2 (en) TMR element and method for forming the same
EP2434556B1 (en) Ferromagnetic tunnel junction structure and magnetoresistive element using same
US6862158B2 (en) Exchange coupling film having improved wettability of seed layer
JP2017103419A (en) Single crystal magnetoresistive element, method for manufacturing the same, and method for using the same
KR102067442B1 (en) Underlayer for perpendicularly magnetized film, perpendicularly magnetized film structure, perpendicular mtj element, and perpendicular magnetic recording medium using same
CN1343016A (en) Magnetoresistance element, its manufacturing method and forming method for compound ferromagnet film
US20030030434A1 (en) Exchange coupling film having improved wettability of seed layer
US20220238799A1 (en) Magnetoresistive element having a composite recording structure
JP2011138954A (en) Method of manufacturing magnetic tunnel junction device using perpendicular magnetization of ferromagnetic layer
Dong et al. L1 FePt-ZrO2 (001) nanostructured films with high aspect ratio columnar grains
JP2023014198A (en) Magnetoresistive effect element and manufacturing method thereof
Takeuchi et al. Crystallization of amorphous CoFeB ferromagnetic layers in CoFeB/MgO/CoFeB magnetic tunnel junctions
WO2018042732A1 (en) Magnetic tunnel junction element and method for manufacturing same
JP2004179668A (en) Magnetoresistive element
JP2022166663A (en) Thin film laminate
WO2014034639A1 (en) Magnetic multilayer film and tunneling magnetoresistance element
JP7375858B2 (en) magnetoresistive element
Yu et al. Magnetic tunnel junctions with high magnetoresistance and small bias voltage dependence using epitaxial NiFe (111) ferromagnetic bottom electrodes
TWI421353B (en) Magnetic material with nanometer-scaled pinning effect
Abugri et al. Structural and Magnetic Properties of CoPd Alloys for Non-Volatile Memory Applications
WO2020110360A1 (en) Magnetoresistive element, magnetic sensor, reproducing head, and magnetic recording and reproducing device
JP2023105503A (en) Magnetic thin film and manufacturing method thereof
Lu et al. Studies on interfacial and crystalline structures of spin valve multilayers