JP2022161040A - Thin film-forming raw material for atomic layer deposition method and manufacturing method of zinc-containing thin film using the same - Google Patents

Thin film-forming raw material for atomic layer deposition method and manufacturing method of zinc-containing thin film using the same Download PDF

Info

Publication number
JP2022161040A
JP2022161040A JP2019167952A JP2019167952A JP2022161040A JP 2022161040 A JP2022161040 A JP 2022161040A JP 2019167952 A JP2019167952 A JP 2019167952A JP 2019167952 A JP2019167952 A JP 2019167952A JP 2022161040 A JP2022161040 A JP 2022161040A
Authority
JP
Japan
Prior art keywords
thin film
zinc
raw material
gas
forming raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019167952A
Other languages
Japanese (ja)
Inventor
雅子 畑▲瀬▼
Masako Hatase
正揮 遠津
Masaki Enzu
圭介 武田
Keisuke Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2019167952A priority Critical patent/JP2022161040A/en
Priority to PCT/JP2020/033719 priority patent/WO2021054160A1/en
Priority to TW109131648A priority patent/TWI842950B/en
Publication of JP2022161040A publication Critical patent/JP2022161040A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

To provide: a thin film-forming raw material that has a low melting point and high volatility, can react with a reactive gas at low temperature, and contains a zinc compound suitable as a material used for an atomic layer deposition method; and a manufacturing method of a zinc-containing thin film by an atomic layer deposition method, use of which enables manufacturing of a smooth thin film of good quality with good productivity.SOLUTION: The present invention relates to: a thin film forming raw material for an atomic layer deposition method that contains a zinc compound represented by formula (1) (in the formula, R1 and R2 each dependently represent a C1-5 alkyl group, a trimethylsilyl group, or a trifluoromethyl group, where R1 and R2 are different groups); and a manufacturing method of the zinc-containing thin film by the atomic layer deposition method, including the processes of: introducing a raw material gas produced by vaporizing the thin film forming raw material into a processing atmosphere and depositing the zinc composition in the raw material gas on a surface of a base body to form a precursor layer; and introducing a reactive gas into the processing atmosphere to cause the precursor layer and the reactive gas to react with each other.SELECTED DRAWING: None

Description

本発明は、特定の構造を有する亜鉛化合物を含有する原子層堆積法のための薄膜形成原料及びそれを用いた亜鉛含有薄膜の製造方法に関する。 TECHNICAL FIELD The present invention relates to a thin film-forming raw material for atomic layer deposition containing a zinc compound having a specific structure, and a method for producing a zinc-containing thin film using the raw material.

亜鉛は、化合物半導体を構成するための成分として用いられており、亜鉛を含有する薄膜を製造するための薄膜形成原料として、様々な化合物が報告されている。 Zinc is used as a component for constituting compound semiconductors, and various compounds have been reported as thin film forming raw materials for producing zinc-containing thin films.

薄膜の製造方法としては、例えばスパッタリング法、イオンプレーティング法、塗布熱分解法やゾルゲル法等のMOD法、CVD法等が挙げられる。これらの中でも、組成制御性及び段差被覆性に優れること、量産化に適すること、ハイブリッド集積が可能である等多くの長所を有しているので、原子層堆積法(以下、「ALD法」という場合もある)が最適な製造プロセスである。 Examples of methods for producing thin films include sputtering, ion plating, coating thermal decomposition, MOD such as sol-gel, and CVD. Among these, the atomic layer deposition method (hereinafter referred to as the "ALD method") has many advantages such as excellent composition controllability and step coverage, suitability for mass production, and possibility of hybrid integration. ) is the optimal manufacturing process.

CVD法及びALD法のような気相薄膜形成法に用いることができる原料は種々報告されているが、ALD法に適用可能な薄膜形成原料は、ALDウィンドウと呼ばれる温度領域が充分な広さを有することが必要である。CVD法に使用可能な薄膜形成原料であっても、ALD法に適さない場合が多くあることは当該技術分野における技術常識である。 Various reports have been made on raw materials that can be used in vapor-phase thin film formation methods such as CVD and ALD, but thin film formation raw materials applicable to ALD have a sufficiently wide temperature range called the ALD window. It is necessary to have It is common general knowledge in this technical field that even thin film forming raw materials that can be used in the CVD method are not suitable for the ALD method in many cases.

金属含有薄膜の製造方法として、例えば、特許文献1では、基板を被覆する金属酸化物の薄膜形成原料として、ビス(ジ-tert-ブチルアミノ)亜鉛等の多数の金属化合物が提案されている。特許文献2には、ジメチル亜鉛、ジエチル亜鉛、ジメチル亜鉛のトリエチルアミン付加体等の亜鉛原料と、アンモニア、一級又は二級アミンを反応させて生成したものを含有するMOCVD用原料を用いて、ZnSe膜を形成することが開示されている。非特許文献1には、亜鉛プレカーサとしてアルキル(ジアルキルアミド)亜鉛化合物を用い、MOCVD法を用いて薄膜を製造することが開示されている。 As a method for producing a metal-containing thin film, for example, Patent Document 1 proposes a large number of metal compounds such as bis(di-tert-butylamino)zinc as a raw material for forming a metal oxide thin film that coats a substrate. In Patent Document 2, a ZnSe film is formed using an MOCVD raw material containing a zinc raw material such as dimethyl zinc, diethyl zinc, and a triethylamine adduct of dimethyl zinc, which is produced by reacting ammonia, a primary or secondary amine, and the like. It is disclosed to form a Non-Patent Document 1 discloses using an alkyl(dialkylamido)zinc compound as a zinc precursor and manufacturing a thin film using the MOCVD method.

特許第5290488号公報Japanese Patent No. 5290488 特開平10-51031号公報JP-A-10-51031

Polyhedron,Vol.16,No.20,pp.3593-3599,(1997);“The Properties of some volatile alkyl(di-alkylamido)zinc(II)and bis(di-alkylamido)zinc compounds:potential zinc precursors in MOCVD”Polyhedron, Vol. 16, No. 20, pp. 3593-3599, (1997); "The Properties of some volatile alkyl (di-alkylamide) zinc (II) and bis (di-alkylamide) zinc compounds: potential zinc precursors in MOCVD."

ALD法で用いられる薄膜形成原料には、広いALDウィンドウを有すること以外に、低融点で揮発性が高く、反応性ガスと低い温度で反応し、薄膜を生産性よく製造できることが求められている。しかしながら、特許文献1にはALD法に関する記載はあるが、亜鉛化合物をALD法に適用することについて具体的に記載されていない。特許文献2及び非特許文献1には、ZnSe薄膜の亜鉛原料として、様々な亜鉛アミド化合物が開示されている。しかし、これらの文献には、MOCVD用原料として亜鉛アミド化合物を用いて薄膜を製造する方法は開示されているが、ALD法を用いて薄膜を製造することは開示されていない。 In addition to having a wide ALD window, the thin film forming raw materials used in the ALD method are required to have a low melting point and high volatility, react with reactive gases at low temperatures, and be able to produce thin films with good productivity. . However, although Patent Document 1 describes the ALD method, it does not specifically describe the application of zinc compounds to the ALD method. Patent Document 2 and Non-Patent Document 1 disclose various zinc amide compounds as zinc raw materials for ZnSe thin films. However, these documents disclose a method of producing a thin film using a zinc amide compound as a raw material for MOCVD, but do not disclose the production of a thin film using the ALD method.

従って、本発明は、低融点で揮発性が高く、反応性ガスと低い温度で反応することができるALD法に用いられる原料として好適な、亜鉛化合物を含有する薄膜形成原料と、それを用いて、生産性よく品質の良い平滑な薄膜を製造することができる亜鉛含有薄膜の製造方法を提供することを目的とする。 Accordingly, the present invention provides a thin film-forming raw material containing a zinc compound, which has a low melting point, is highly volatile, and is capable of reacting with a reactive gas at a low temperature. An object of the present invention is to provide a method for producing a zinc-containing thin film that can produce a smooth thin film of good quality with high productivity.

本発明者等は、鋭意検討を重ねた結果、特定構造を有する亜鉛化合物を含有するALD法のための薄膜形成原料が、上記課題を解決し得ることを見出し、本発明を完成するに至った。
すなわち、本発明は下記一般式(1)で表される亜鉛化合物を含有するALD法のための薄膜形成原料を提供するものである。
As a result of extensive studies, the present inventors have found that a thin film forming raw material for ALD containing a zinc compound having a specific structure can solve the above problems, and have completed the present invention. .
That is, the present invention provides a thin film forming raw material for ALD containing a zinc compound represented by the following general formula (1).

Figure 2022161040000001
Figure 2022161040000001

式中、R及びRは、各々独立に、炭素原子数1~5のアルキル基、トリメチルシリル基又はトリフルオロメチル基を表す。但し、RとRは異なる基を表す。 In the formula, R 1 and R 2 each independently represent an alkyl group having 1 to 5 carbon atoms, a trimethylsilyl group or a trifluoromethyl group. However, R 1 and R 2 represent different groups.

また、本発明の薄膜形成原料においては、上記一般式(1)において、Rは第三級アルキル基であり、Rは第二級アルキル基であることが好ましい。 In addition, in the thin film-forming raw material of the present invention, it is preferable that R 1 is a tertiary alkyl group and R 2 is a secondary alkyl group in the general formula (1).

さらに、本発明の薄膜形成原料においては、上記一般式(1)において、Rはtert-ブチル基であり、Rはイソプロピル基であることがより好ましい。 Furthermore, in the thin film-forming raw material of the present invention, it is more preferable that R 1 is a tert-butyl group and R 2 is an isopropyl group in the general formula (1).

本発明は、本発明のALD法のための薄膜形成原料を気化させた原料ガスを処理雰囲気に導入し、基体の表面に該原料ガス中の亜鉛化合物を堆積させて前駆体層を形成する第1工程と、反応性ガスを処理雰囲気に導入し、前駆体層と反応性ガスを反応させる第2工程とを含む、ALD法による亜鉛含有薄膜の製造方法を提供するものである。 According to the present invention, a source gas obtained by vaporizing a thin film forming source for the ALD method of the present invention is introduced into a processing atmosphere, and a zinc compound in the source gas is deposited on the surface of a substrate to form a precursor layer. and a second step of introducing a reactive gas into the process atmosphere and reacting the precursor layer with the reactive gas.

また、本発明の製造方法において、反応性ガスが酸化性ガスであり、亜鉛含有薄膜が酸化亜鉛薄膜であることが好ましい。 Moreover, in the production method of the present invention, it is preferable that the reactive gas is an oxidizing gas and the zinc-containing thin film is a zinc oxide thin film.

さらに、本発明の製造方法において、反応性ガスが、オゾン又は水蒸気を含有するガスであることが好ましい。 Furthermore, in the production method of the present invention, the reactive gas is preferably ozone or a gas containing water vapor.

また、本発明の製造方法において、前駆体層と反応性ガスを反応させる温度が50℃~200℃の範囲であることがより好ましい。 Further, in the manufacturing method of the present invention, it is more preferable that the temperature at which the precursor layer and the reactive gas are reacted is in the range of 50°C to 200°C.

さらに、第1工程と第2工程の間及び第2工程の後の少なくとも一方に、処理雰囲気のガスを排気する工程を含むことが好ましい。 Furthermore, it is preferable that at least one of between the first step and the second step and after the second step includes a step of exhausting the gas in the processing atmosphere.

本発明によれば、特定の亜鉛化合物を含有することで、低融点で揮発性が高く、反応性ガスと低い温度で反応することができるALD法のための薄膜形成原料を提供することができる。また、本発明の薄膜形成原料を用いることで、ALD法により、生産性よく品質の良い平滑な亜鉛含有薄膜を製造する方法を提供することができる。 According to the present invention, by containing a specific zinc compound, it is possible to provide a thin film forming raw material for ALD that has a low melting point, high volatility, and is capable of reacting with a reactive gas at a low temperature. . Moreover, by using the thin film forming raw material of the present invention, it is possible to provide a method for producing a smooth zinc-containing thin film with high productivity and good quality by the ALD method.

本発明に係る亜鉛含有薄膜の製造方法に用いられるALD装置の一例を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows an example of the ALD apparatus used for the manufacturing method of the zinc containing thin film which concerns on this invention. 本発明に係る亜鉛含有薄膜の製造方法に用いられるALD装置の別の例を示す概略図である。FIG. 4 is a schematic diagram showing another example of an ALD apparatus used in the method for producing a zinc-containing thin film according to the present invention; 本発明に係る亜鉛含有薄膜の製造方法に用いられるALD装置の更に別の例を示す概略図である。FIG. 4 is a schematic diagram showing still another example of an ALD apparatus used in the method for producing a zinc-containing thin film according to the present invention; 本発明に係る亜鉛含有薄膜の製造方法に用いられるALD装置の更に別の例を示す概略図である。FIG. 4 is a schematic diagram showing still another example of an ALD apparatus used in the method for producing a zinc-containing thin film according to the present invention;

<薄膜形成原料>
まず、本発明のALD法のための薄膜形成原料について説明する。
本発明の薄膜形成原料は、上記一般式(1)で表される亜鉛化合物を含有することを特徴とするものであり、ALD法による薄膜形成の際のプレカーサ(前駆体)として用いられるものである。
<Thin film forming raw material>
First, thin film forming raw materials for the ALD method of the present invention will be described.
The thin film forming raw material of the present invention is characterized by containing a zinc compound represented by the above general formula (1), and is used as a precursor for thin film formation by ALD. be.

上記一般式(1)において、R及びRは、各々独立に、炭素原子数1~5のアルキル基、トリメチルシリル基又はトリフルオロメチル基を表す。但し、RとRは異なる基である。 In general formula (1) above, R 1 and R 2 each independently represent an alkyl group having 1 to 5 carbon atoms, a trimethylsilyl group or a trifluoromethyl group. However, R 1 and R 2 are different groups.

上記亜鉛化合物は、ALD法による薄膜形成の際のプレカーサとして用いられるため、常圧25℃で液体であり、減圧熱重量示差熱分析装置(TG-DTA)による50質量%減少時の温度は100℃以下であることが好ましい。 Since the zinc compound is used as a precursor for thin film formation by the ALD method, it is liquid at normal pressure of 25 ° C., and the temperature when it is reduced by 50% by mass by a reduced pressure thermogravimetric differential thermal analyzer (TG-DTA) is 100. °C or less.

ここで、上記一般式(1)において、R及びRで表される炭素原子数1~5のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基等が挙げられる。 Here, in the above general formula (1), examples of alkyl groups having 1 to 5 carbon atoms represented by R 1 and R 2 include methyl group, ethyl group, propyl group, isopropyl group and n-butyl group. , isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group and the like.

本発明において、Rが第三級アルキル基、Rが第二級アルキル基である亜鉛化合物は、低融点で揮発性が高く、反応性ガスと低温で反応し、生産性よく亜鉛含有薄膜を形成することができるので好ましく、Rが、tert-ブチル基、Rがイソプロピル基である亜鉛化合物は、さらにその効果が顕著であるので、より好ましい。 In the present invention, the zinc compound in which R 1 is a tertiary alkyl group and R 2 is a secondary alkyl group has a low melting point and high volatility, reacts with reactive gases at low temperatures, and is highly productive. A zinc compound in which R 1 is a tert-butyl group and R 2 is an isopropyl group is more preferable because the effect is more pronounced.

上記一般式(1)で表される亜鉛化合物の具体例としては、下記No.1~No.20が挙げられるが、本発明はこれらの化合物によって限定されるものではない。なお、下記化合物No.1~No.20において、「Me」は、「メチル基」を表し、「Et」は、「エチル基」を表し、「iPr」は、「イソプロピル基」を表し、「tBu」は、「tert-ブチル基」を表し、「sBu」は、「sec-ブチル基」を表し、「iBu」は、「イソブチル基」を表し、「tAm」は、「tert-ペンチル基」を表し、「SiMe」は、「トリメチルシリル基」を表し、「CF」は、「トリフルオロメチル基」を表す。 Specific examples of the zinc compound represented by the general formula (1) include the following Nos. 1 to No. 20, but the invention is not limited to these compounds. In addition, the following compound No. 1 to No. In 20, "Me" represents a "methyl group", "Et" represents an "ethyl group", "iPr" represents an "isopropyl group", and "tBu" represents a "tert-butyl group". , "sBu" represents "sec-butyl group", "iBu" represents "isobutyl group", "tAm" represents "tert-pentyl group", "SiMe 3 " represents ""trimethylsilylgroup", and "CF 3 " represents a "trifluoromethyl group".

Figure 2022161040000002
Figure 2022161040000002

上記一般式(1)で表される化合物の製造方法は特に制限されることはなく、当該化合物は周知の反応を応用して製造される。製造方法としては、例えば、Rが第三級アルキル基、Rが第二級アルキル基である場合、これらのアルキル基を有するジアルキルアミンをテトラヒドロフラン(THF)に溶解し、n-ブチルリチウム(nBuLi)と反応させて、リチウムジアルキルアミド化合物のTHF溶液を調製した後、この溶液を塩化亜鉛のエチルエーテル溶液に滴下することにより、リチウムジアルキルアミド化合物と塩化亜鉛を反応させて、溶媒を除去し、得られた残渣にヘキサンを加えて濾過し、濾液から溶媒を留去した後、蒸留精製することで得ることができる。 The method for producing the compound represented by the general formula (1) is not particularly limited, and the compound is produced by applying well-known reactions. As a production method, for example, when R 1 is a tertiary alkyl group and R 2 is a secondary alkyl group, a dialkylamine having these alkyl groups is dissolved in tetrahydrofuran (THF), and n-butyllithium ( nBuLi) to prepare a THF solution of the lithium dialkylamide compound, and then the solution is added dropwise to an ethyl ether solution of zinc chloride to react the lithium dialkylamide compound with zinc chloride to remove the solvent. can be obtained by adding hexane to the resulting residue, filtering, distilling off the solvent from the filtrate, and then purifying by distillation.

本発明のALD法のための薄膜形成原料は、上記一般式(1)で表される亜鉛化合物を含有して、薄膜のプレカーサとするものであればよく、その組成は目的とする薄膜の種類によって異なる。例えば、金属として亜鉛のみを含む薄膜を製造する場合、本発明の薄膜形成原料は、亜鉛以外の金属化合物、半金属化合物は非含有である。一方、亜鉛金属と、亜鉛以外の金属及び/又は半金属とを含む薄膜を製造する場合、本発明の薄膜形成原料は、一般式(1)で表される亜鉛化合物に加えて、所望の金属を含む化合物及び/又は半金属を含む化合物(以下、「他のプレカーサ」と称する)を含有することができる。 The thin film-forming raw material for the ALD method of the present invention contains the zinc compound represented by the above general formula (1) and can be used as a precursor for a thin film. Varies depending on For example, when producing a thin film containing only zinc as a metal, the thin film-forming raw material of the present invention does not contain metal compounds other than zinc and metalloid compounds. On the other hand, when producing a thin film containing a zinc metal and a metal other than zinc and/or a semimetal, the thin film-forming raw material of the present invention includes the zinc compound represented by the general formula (1) and the desired metal and/or a compound containing a metalloid (hereinafter referred to as "another precursor").

また、複数のプレカーサを用いる多成分系のALD法において、上記一般式(1)で表される亜鉛化合物と用いることができる他のプレカーサとしては、特に制限を受けず、ALD法のための薄膜形成原料に用いられている周知一般のプレカーサを用いることができる。 In addition, in the multi-component ALD method using a plurality of precursors, other precursors that can be used with the zinc compound represented by the general formula (1) are not particularly limited, and thin films for the ALD method are not particularly limited. Well-known general precursors used for forming raw materials can be used.

上記の他のプレカーサとしては、例えば、アルコール化合物、グリコール化合物、β-ジケトン化合物、シクロペンタジエン化合物、有機アミン化合物等の有機配位子として用いられる化合物からなる群から選択される一種類又は二種類以上と、珪素や金属との化合物が挙げられる。また、プレカーサの金属種としては、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタニウム、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、オスミウム、ルテニウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、銀、金、亜鉛、アルミニウム、ガリウム、インジウム、ゲルマニウム、鉛、アンチモン、ビスマス、ラジウム、スカンジウム、ルテニウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム又はルテチウムが挙げられる。 As the above other precursors, for example, one or two types selected from the group consisting of compounds used as organic ligands such as alcohol compounds, glycol compounds, β-diketone compounds, cyclopentadiene compounds, organic amine compounds, etc. Compounds of the above with silicon and metals can be mentioned. Precursor metal species include lithium, sodium, potassium, magnesium, calcium, strontium, barium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, osmium, ruthenium, and cobalt. , rhodium, iridium, nickel, palladium, platinum, copper, silver, gold, zinc, aluminum, gallium, indium, germanium, lead, antimony, bismuth, radium, scandium, ruthenium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium , samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium or lutetium.

上記の他のプレカーサの有機配位子として用いられるアルコール化合物としては、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、sec-ブチルアルコール、イソブチルアルコール、tert-ブチルアルコール、ペンチルアルコール、イソペンチルアルコール、tert-ペンチルアルコール等のアルキルアルコール類;2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、2-(2-メトキシエトキシ)エタノール、2-メトキシ-1-メチルエタノール、2-メトキシ-1,1-ジメチルエタノール、2-エトキシ-1,1-ジメチルエタノール、2-イソプロポキシ-1,1-ジメチルエタノール、2-ブトキシ-1,1-ジメチルエタノール、2-(2-メトキシエトキシ)-1,1-ジメチルエタノール、2-プロポキシ-1,1-ジエチルエタノール、2-sec-ブトキシ-1,1-ジエチルエタノール、3-メトキシ-1,1-ジメチルプロパノール等のエーテルアルコール類;ジメチルアミノエタノール、エチルメチルアミノエタノール、ジエチルアミノエタノール、ジメチルアミノ-2-ペンタノール、エチルメチルアミノ-2-ペンタノール、ジメチルアミノ-2-メチル-2-ペンタノール、エチルメチルアミノ-2-メチル-2-ペンタノール、ジエチルアミノ-2-メチル-2-ペンタノール等のジアルキルアミノアルコール類等が挙げられる。 Examples of alcohol compounds used as organic ligands for the other precursors mentioned above include methanol, ethanol, propanol, isopropyl alcohol, butanol, sec-butyl alcohol, isobutyl alcohol, tert-butyl alcohol, pentyl alcohol, and isopentyl alcohol. , tert-pentyl alcohol and other alkyl alcohols; 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, 2-(2-methoxyethoxy)ethanol, 2-methoxy-1-methylethanol, 2-methoxy-1 , 1-dimethylethanol, 2-ethoxy-1,1-dimethylethanol, 2-isopropoxy-1,1-dimethylethanol, 2-butoxy-1,1-dimethylethanol, 2-(2-methoxyethoxy)-1 , 1-dimethylethanol, 2-propoxy-1,1-diethylethanol, 2-sec-butoxy-1,1-diethylethanol, 3-methoxy-1,1-dimethylpropanol and other ether alcohols; dimethylaminoethanol, ethylmethylaminoethanol, diethylaminoethanol, dimethylamino-2-pentanol, ethylmethylamino-2-pentanol, dimethylamino-2-methyl-2-pentanol, ethylmethylamino-2-methyl-2-pentanol, dialkylaminoalcohols such as diethylamino-2-methyl-2-pentanol;

上記の他のプレカーサの有機配位子として用いられるグリコール化合物としては、例えば、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、2,4-ヘキサンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,3-ブタンジオール、2,4-ブタンジオール、2,2-ジエチル-1,3-ブタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2,4-ペンタンジオール、2-メチル-1,3-プロパンジオール、2-メチル-2,4-ペンタンジオール、2,4-ヘキサンジオール、2,4-ジメチル-2,4-ペンタンジオール等が挙げられる。 Glycol compounds used as organic ligands for other precursors include, for example, 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 2,4-hexanediol, 2, 2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,3-butanediol, 2,4-butanediol, 2,2-diethyl-1,3-butanediol , 2-ethyl-2-butyl-1,3-propanediol, 2,4-pentanediol, 2-methyl-1,3-propanediol, 2-methyl-2,4-pentanediol, 2,4-hexane diol, 2,4-dimethyl-2,4-pentanediol and the like.

上記の他のプレカーサの有機配位子として用いられるβ-ジケトン化合物としては、例えば、アセチルアセトン、ヘキサン-2,4-ジオン、5-メチルヘキサン-2,4-ジオン、ヘプタン-2,4-ジオン、2-メチルヘプタン-3,5-ジオン、5-メチルヘプタン-2,4-ジオン、6-メチルヘプタン-2,4-ジオン、2,2-ジメチルヘプタン-3,5-ジオン、2,6-ジメチルヘプタン-3,5-ジオン、2,2,6-トリメチルヘプタン-3,5-ジオン、2,2,6,6-テトラメチルヘプタン-3,5-ジオン、オクタン-2,4-ジオン、2,2,6-トリメチルオクタン-3,5-ジオン、2,6-ジメチルオクタン-3,5-ジオン、2,9-ジメチルノナン-4,6-ジオン、2-メチル-6-エチルデカン-3,5-ジオン、2,2-ジメチル-6-エチルデカン-3,5-ジオン等のアルキル置換β-ジケトン類;1,1,1-トリフルオロペンタン-2,4-ジオン、1,1,1-トリフルオロ-5,5-ジメチルヘキサン-2,4-ジオン、1,1,1,5,5,5-ヘキサフルオロペンタン-2,4-ジオン、1,3-ジパーフルオロヘキシルプロパン-1,3-ジオン等のフッ素置換アルキルβ-ジケトン類;1,1,5,5-テトラメチル-1-メトキシヘキサン-2,4-ジオン、2,2,6,6-テトラメチル-1-メトキシヘプタン-3,5-ジオン、2,2,6,6-テトラメチル-1-(2-メトキシエトキシ)ヘプタン-3,5-ジオン等のエーテル置換β-ジケトン類等が挙げられる。 Examples of the β-diketone compound used as the organic ligand of the other precursors mentioned above include acetylacetone, hexane-2,4-dione, 5-methylhexane-2,4-dione, and heptane-2,4-dione. , 2-methylheptane-3,5-dione, 5-methylheptane-2,4-dione, 6-methylheptane-2,4-dione, 2,2-dimethylheptane-3,5-dione, 2,6 -dimethylheptane-3,5-dione, 2,2,6-trimethylheptane-3,5-dione, 2,2,6,6-tetramethylheptane-3,5-dione, octane-2,4-dione , 2,2,6-trimethyloctane-3,5-dione, 2,6-dimethyloctane-3,5-dione, 2,9-dimethylnonane-4,6-dione, 2-methyl-6-ethyldecane- Alkyl-substituted β-diketones such as 3,5-dione and 2,2-dimethyl-6-ethyldecane-3,5-dione; 1,1,1-trifluoropentane-2,4-dione, 1,1, 1-trifluoro-5,5-dimethylhexane-2,4-dione, 1,1,1,5,5,5-hexafluoropentane-2,4-dione, 1,3-diperfluorohexylpropane- Fluorine-substituted alkyl β-diketones such as 1,3-dione; 1,1,5,5-tetramethyl-1-methoxyhexane-2,4-dione, 2,2,6,6-tetramethyl-1- and ether-substituted β-diketones such as methoxyheptane-3,5-dione and 2,2,6,6-tetramethyl-1-(2-methoxyethoxy)heptane-3,5-dione.

上記の他のプレカーサの有機配位子として用いられるシクロペンタジエン化合物としては、例えば、シクロペンタジエン、メチルシクロペンタジエン、エチルシクロペンタジエン、プロピルシクロペンタジエン、イソプロピルシクロペンタジエン、ブチルシクロペンタジエン、第2ブチルシクロペンタジエン、イソブチルシクロペンタジエン、tert-ブチルシクロペンタジエン、ジメチルシクロペンタジエン、テトラメチルシクロペンタジエン、ペンタメチルシクロペンタジエン等が挙げられ、上記の有機配位子として用いられる有機アミン化合物としては、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、sec-ブチルアミン、tert-ブチルアミン、イソブチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、エチルメチルアミン、プロピルメチルアミン、イソプロピルメチルアミン等が挙げられる。 Examples of cyclopentadiene compounds used as organic ligands for the other precursors mentioned above include cyclopentadiene, methylcyclopentadiene, ethylcyclopentadiene, propylcyclopentadiene, isopropylcyclopentadiene, butylcyclopentadiene, sec-butylcyclopentadiene, Examples include isobutylcyclopentadiene, tert-butylcyclopentadiene, dimethylcyclopentadiene, tetramethylcyclopentadiene, pentamethylcyclopentadiene, etc. Examples of organic amine compounds used as the above organic ligands include methylamine, ethylamine, and propylamine. , isopropylamine, butylamine, sec-butylamine, tert-butylamine, isobutylamine, dimethylamine, diethylamine, dipropylamine, diisopropylamine, ethylmethylamine, propylmethylamine, isopropylmethylamine and the like.

上記の他のプレカーサは、当該技術分野において公知のものであり、その製造方法も公知である。製造方法の一例を挙げれば、例えば、有機配位子としてアルコール化合物を用いた場合には、先に述べた金属の無機塩又はその水和物と、該アルコール化合物のアルカリ金属アルコキシドとを反応させることによって、プレカーサを製造することができる。ここで、金属の無機塩又はその水和物としては、例えば、金属のハロゲン化物、硝酸塩等を挙げることができ、アルカリ金属アルコキシドとしては、例えば、ナトリウムアルコキシド、リチウムアルコキシド、カリウムアルコキシド等を挙げることができる。 Other precursors mentioned above are known in the art and methods for their preparation are also known. To give an example of the production method, for example, when an alcohol compound is used as the organic ligand, the aforementioned inorganic salt of the metal or its hydrate is reacted with the alkali metal alkoxide of the alcohol compound. Thereby, a precursor can be manufactured. Examples of metal inorganic salts or hydrates thereof include metal halides and nitrates, and examples of alkali metal alkoxides include sodium alkoxide, lithium alkoxide, and potassium alkoxide. can be done.

上述したような多成分系のALD法においては、薄膜形成原料を各成分独立で気化、供給する方法(以下、「シングルソース法」と称する)と、多成分原料を予め所望の組成で混合した混合原料を気化、供給する方法(以下、「カクテルソース法」と称する)がある。
シングルソース法の場合、上記の他のプレカーサとしては、上記一般式(1)で表される亜鉛化合物と、熱及び/又は酸化分解の挙動が類似している化合物が好ましい。
カクテルソース法の場合、上記の他のプレカーサとしては、上記一般式(1)で表される亜鉛化合物と、熱及び/又は酸化分解の挙動が類似していることに加え、混合時に化学反応等による変質を起こさないものが好ましい。
In the multi-component ALD method as described above, there is a method of vaporizing and supplying each component of the thin film forming raw material independently (hereinafter referred to as a "single source method"), and a method of mixing the multi-component raw material in advance with a desired composition. There is a method of vaporizing and supplying a mixed raw material (hereinafter referred to as "cocktail sauce method").
In the case of the single-source method, the other precursor is preferably a compound having similar thermal and/or oxidative decomposition behavior to the zinc compound represented by the general formula (1).
In the case of the cocktail sauce method, the above-mentioned other precursors are similar to the zinc compound represented by the general formula (1) in terms of thermal and/or oxidative decomposition behavior, and chemical reactions, etc. during mixing. It is preferable to use one that does not cause deterioration due to

また、多成分系のALD法におけるカクテルソース法の場合、上記一般式(1)で表される亜鉛化合物と他のプレカーサとの混合物又は該混合物を有機溶剤に溶解した混合溶液を薄膜形成原料とすることができる。 In the case of the cocktail source method in the multi-component ALD method, a mixture of the zinc compound represented by the general formula (1) and other precursors or a mixed solution obtained by dissolving the mixture in an organic solvent is used as the thin film forming raw material. can do.

上記の有機溶剤としては、特に制限を受けることはなく周知一般の有機溶剤を用いることができる。該有機溶剤としては、例えば、酢酸エチル、酢酸ブチル、酢酸メトキシエチル等の酢酸エステル類;テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジブチルエーテル、ジオキサン等のエーテル類;メチルブチルケトン、メチルイソブチルケトン、エチルブチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン類;ヘキサン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン、トルエン、キシレン等の炭化水素類;1-シアノプロパン、1-シアノブタン、1-シアノヘキサン、シアノシクロヘキサン、シアノベンゼン、1,3-ジシアノプロパン、1,4-ジシアノブタン、1,6-ジシアノヘキサン、1,4-ジシアノシクロヘキサン、1,4-ジシアノベンゼン等のシアノ基を有する炭化水素類;ピリジン、ルチジン等が挙げられる。これらの有機溶剤は、溶質の溶解性、使用温度と沸点、引火点の関係等により、単独で用いてもよいし、又は二種類以上を混合して用いてもよい。 As the organic solvent described above, any well-known general organic solvent can be used without any particular limitation. Examples of the organic solvent include acetic esters such as ethyl acetate, butyl acetate and methoxyethyl acetate; ethers such as tetrahydrofuran, tetrahydropyran, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether and dioxane; Ketones such as butyl ketone, methyl isobutyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, methylcyclohexanone; hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, heptane, octane, toluene, Hydrocarbons such as xylene; 1-cyanopropane, 1-cyanobutane, 1-cyanohexane, cyanocyclohexane, cyanobenzene, 1,3-dicyanopropane, 1,4-dicyanobutane, 1,6-dicyanohexane, 1, hydrocarbons having a cyano group such as 4-dicyanocyclohexane and 1,4-dicyanobenzene; and pyridine, lutidine and the like. These organic solvents may be used alone or in combination of two or more depending on the solubility of the solute, the relationship between the use temperature, boiling point, and flash point.

本発明のALD法のための薄膜形成原料が上記の有機溶剤と混合溶液である場合、薄膜形成原料中におけるプレカーサ全体の量が0.01モル/リットル~2.0モル/リットル、特に0.05モル/リットル~1.0モル/リットルとなるように調製することが好ましい。 When the thin film-forming raw material for the ALD method of the present invention is a mixed solution with the above organic solvent, the total amount of the precursor in the thin film-forming raw material is 0.01 mol/liter to 2.0 mol/liter, particularly 0.01 mol/liter. 05 mol/liter to 1.0 mol/liter.

また、本発明のALD法のための薄膜形成原料は、必要に応じて、上記一般式(1)で表される亜鉛化合物及び他のプレカーサの安定性を向上させるため、求核性試薬を含有してもよい。該求核性試薬としては、例えば、グライム、ジグライム、トリグライム、テトラグライム等のエチレングリコールエーテル類、18-クラウン-6、ジシクロヘキシル-18-クラウン-6、24-クラウン-8、ジシクロヘキシル-24-クラウン-8、ジベンゾ-24-クラウン-8等のクラウンエーテル類、エチレンジアミン、N,N’-テトラメチルエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、1,1,4,7,7-ペンタメチルジエチレントリアミン、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン、トリエトキシトリエチレンアミン等のポリアミン類、サイクラム、サイクレン等の環状ポリアミン類、ピリジン、ピロリジン、ピペリジン、モルホリン、N-メチルピロリジン、N-メチルピペリジン、N-メチルモルホリン、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン、オキサゾール、チアゾール、オキサチオラン等の複素環化合物類、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸-2-メトキシエチル等のβ-ケトエステル類又はアセチルアセトン、2,4-ヘキサンジオン、2,4-ヘプタンジオン、3,5-ヘプタンジオン、ジピバロイルメタン等のβ-ジケトン類が挙げられる。これら求核性試薬の使用量は、プレカーサ全体の量1モルに対して0.1モル~10モルの範囲が好ましく、1モル~4モルの範囲がより好ましい。 In addition, the thin film forming raw material for the ALD method of the present invention optionally contains a nucleophilic reagent in order to improve the stability of the zinc compound represented by the general formula (1) and other precursors. You may Examples of the nucleophilic reagent include ethylene glycol ethers such as glyme, diglyme, triglyme and tetraglyme, 18-crown-6, dicyclohexyl-18-crown-6, 24-crown-8 and dicyclohexyl-24-crown. -8, crown ethers such as dibenzo-24-crown-8, ethylenediamine, N,N'-tetramethylethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 1,1,4,7, Polyamines such as 7-pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetramine and triethoxytriethyleneamine; cyclic polyamines such as cyclam and cyclene; pyridine, pyrrolidine, piperidine, morpholine , N-methylpyrrolidine, N-methylpiperidine, N-methylmorpholine, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, oxazole, thiazole, heterocyclic compounds such as oxathiolane, methyl acetoacetate, ethyl acetoacetate, acetoacetate- β-ketoesters such as 2-methoxyethyl or β-diketones such as acetylacetone, 2,4-hexanedione, 2,4-heptanedione, 3,5-heptanedione and dipivaloylmethane. The amount of these nucleophilic reagents to be used is preferably in the range of 0.1 mol to 10 mol, more preferably in the range of 1 mol to 4 mol, per 1 mol of the total precursor.

プレカーサ全体の量とは、本発明のALDのための薄膜形成原料が、亜鉛化合物以外の金属化合物及び半金属化合物を非含有である場合、上記一般式(1)で表される亜鉛化合物及び亜鉛を含む他のプレカーサの合計量であり、本発明の薄膜形成原料が、他のプレカーサを含有する場合、上記一般式(1)で表される亜鉛化合物及び他のプレカーサの合計量である。 When the thin film forming raw material for ALD of the present invention does not contain metal compounds and metalloid compounds other than the zinc compound, the total amount of the precursor means the zinc compound represented by the above general formula (1) and zinc When the thin film forming raw material of the present invention contains other precursors, it is the total amount of the zinc compound represented by the general formula (1) and other precursors.

本発明のALDのための薄膜形成原料には、これを構成する成分以外の不純物金属元素分、不純物塩素などの不純物ハロゲン分、及び不純物有機分が極力含まれないようにすることが望ましい。不純物金属元素分は、元素毎では100ppb以下が好ましく、10ppb以下がより好ましく、総量では、1ppm以下が好ましく、100ppb以下がより好ましい。特に、LSIのゲート絶縁膜、ゲート膜、バリア層として用いる場合は、得られる薄膜の電気的特性に影響のあるアルカリ金属元素及びアルカリ土類金属元素の含有量を少なくすることが必要である。不純物ハロゲン分は、100ppm以下が好ましく、10ppm以下がより好ましく、1ppm以下がさらに好ましい。不純物有機分は、総量で500ppm以下が好ましく、50ppm以下がより好ましく、10ppm以下がさらに好ましい。また、水分は、薄膜形成原料中でのパーティクル発生や、薄膜形成中におけるパーティクル発生の原因となるので、プレカーサ、有機溶剤及び求核性試薬については、それぞれの水分の低減のために、使用の際にあらかじめできる限り水分を取り除いた方がよい。プレカーサ、有機溶剤及び求核性試薬それぞれの水分量は、10ppm以下が好ましく、1ppm以下がより好ましい。 It is desirable that the thin film forming raw material for ALD of the present invention should contain as little as possible impurity metal elements, impurity halogens such as impurity chlorine, and impurity organic components other than the constituent components. The impurity metal element content is preferably 100 ppb or less for each element, more preferably 10 ppb or less, and the total amount is preferably 1 ppm or less, more preferably 100 ppb or less. In particular, when used as an LSI gate insulating film, gate film, or barrier layer, it is necessary to reduce the content of alkali metal elements and alkaline earth metal elements that affect the electrical characteristics of the resulting thin film. The impurity halogen content is preferably 100 ppm or less, more preferably 10 ppm or less, and even more preferably 1 ppm or less. The total amount of organic impurities is preferably 500 ppm or less, more preferably 50 ppm or less, and even more preferably 10 ppm or less. Moisture causes particle generation in thin film forming materials and during thin film formation. It is better to remove as much moisture as possible in advance. The water content of each of the precursor, organic solvent and nucleophilic reagent is preferably 10 ppm or less, more preferably 1 ppm or less.

また、本発明のALD法のための薄膜形成原料には、形成される薄膜のパーティクル汚染を低減又は防止するために、パーティクルが極力含まれないようにするのが好ましい。具体的には、液相での光散乱式液中粒子検出器によるパーティクル測定において、0.3μmより大きい粒子の数が液相1ml中に100個以下であることが好ましく、0.2μmより大きい粒子の数が液相1ml中に100個以下であることがより好ましい。 In addition, it is preferable that the thin film forming raw materials for the ALD method of the present invention contain as little particles as possible in order to reduce or prevent particle contamination of the thin film to be formed. Specifically, the number of particles larger than 0.3 μm in 1 ml of the liquid phase is preferably 100 or less, and larger than 0.2 μm, in particle measurement using a light scattering type in-liquid particle detector in the liquid phase. More preferably, the number of particles per 1 ml of liquid phase is 100 or less.

<亜鉛含有薄膜の製造方法>
次に、上記ALD法のための薄膜形成原料を用いた本発明の亜鉛含有薄膜の製造方法について説明する。
<Method for producing zinc-containing thin film>
Next, a method for producing a zinc-containing thin film of the present invention using the thin film-forming raw material for the ALD method will be described.

本発明のALD法により亜鉛含有薄膜を製造する方法に用いられる装置には、周知のALD装置を用いることができる。具体的な装置の例としては、図1及び図3のようなプレカーサをバブリング供給することのできる装置や、図2及び図4のように気化室を有する装置が挙げられる。また、図3及び図4のように反応性ガスに対してプラズマ処理を行うことのできる装置が挙げられる。なお、図1~図4のような成膜チャンバー(以下、「堆積反応部」と称する)を備えた枚葉式装置に限らず、バッチ炉を用いた多数枚同時処理可能な装置を用いることもできる。 A well-known ALD apparatus can be used for the apparatus used in the method for producing a zinc-containing thin film by the ALD method of the present invention. Specific examples of the apparatus include an apparatus capable of supplying the precursor by bubbling as shown in FIGS. 1 and 3, and an apparatus having a vaporization chamber as shown in FIGS. 3 and 4, there is also an apparatus capable of performing plasma processing on reactive gases. It should be noted that not only a single-wafer type apparatus equipped with a film formation chamber (hereinafter referred to as a "deposition reaction section") as shown in FIGS. can also

本発明のALD法による亜鉛含有薄膜の製造方法は、上記薄膜形成原料を気化させた原料ガスを堆積反応部(処理雰囲気)に導入し、基体の表面に該原料ガス中の亜鉛化合物を堆積させて前駆体層を形成する工程(第1工程)と、反応性ガスを堆積反応部(処理雰囲気)に導入し、前記前駆体層と該反応性ガスを反応させる工程(第2工程)とを含むことを特徴とするものである。
また、第1工程と第2工程の間及び第2工程の後の少なくとも一方に、堆積反応部(処理雰囲気)のガスを排気する工程(排気工程)を有することが好ましい。
In the method for producing a zinc-containing thin film by the ALD method of the present invention, a raw material gas obtained by vaporizing the above thin film forming raw material is introduced into a deposition reaction section (processing atmosphere), and a zinc compound in the raw material gas is deposited on the surface of a substrate. forming a precursor layer (first step); and introducing a reactive gas into a deposition reaction section (processing atmosphere) to react the precursor layer with the reactive gas (second step). It is characterized by comprising
Moreover, it is preferable to include a step (exhaust step) of exhausting gas in the deposition reaction section (processing atmosphere) between the first step and the second step and/or after the second step.

本発明における亜鉛含有薄膜の製造方法の一実施形態として、第1工程、排気工程、第2工程及び排気工程を順に行う、一連の操作による堆積を1サイクルとし、このサイクルを複数回繰り返して、亜鉛含有薄膜を製造する方法について説明する。
以下、各工程について、詳細に説明する。
As one embodiment of the method for producing a zinc-containing thin film according to the present invention, the first step, the evacuation step, the second step, and the evacuation step are sequentially performed, and the deposition by a series of operations is defined as one cycle. A method for producing a zinc-containing thin film is described.
Each step will be described in detail below.

(第1工程)
第1工程は、上述したALD法のための薄膜形成原料を気化させて蒸気(以下、「原料ガス」と称する)とし、該原料ガスを基体が設置された成膜チャンバーへ導入する原料ガス導入工程と、該原料ガス中の亜鉛化合物を堆積反応部に設置された基体の表面に堆積させて前駆体層を形成する前駆体層形成工程とを有する。
(First step)
The first step is to vaporize the thin film forming raw material for the ALD method described above into vapor (hereinafter referred to as "raw material gas"), and introduce the raw material gas into the film formation chamber in which the substrate is installed. and a precursor layer forming step of depositing the zinc compound in the source gas on the surface of the substrate placed in the deposition reaction section to form the precursor layer.

・原料ガス導入工程
原料ガス導入工程におけるALD法のための薄膜形成原料の輸送供給方法としては、図1及び図3に示すように、薄膜形成原料が貯蔵される容器(以下、「原料容器」と称する)中で加熱及び/又は減圧することにより気化させて蒸気とし、必要に応じてアルゴン、窒素、ヘリウム等のキャリアガスと共に、該蒸気を基体が設置された堆積反応部と導入する気体輸送法、及び図2及び図4に示すように、薄膜形成原料を液体又は溶液の状態で気化室まで輸送し、気化室で加熱及び/又は減圧することにより気化させて蒸気とし、該蒸気を原料ガスとして堆積反応部へと導入する液体輸送法がある。
気体輸送法の場合、上記一般式(1)で表される亜鉛化合物そのものを薄膜形成原料とすることができる。
液体輸送法の場合、上記一般式(1)で表される亜鉛化合物、又は該化合物を有機溶剤に溶解した溶液を薄膜形成原料とすることができる。この混合物や混合溶液は求核性試薬等を更に含んでいてもよい。
Raw material gas introduction step As a method for transporting and supplying the thin film forming raw material for the ALD method in the raw material gas introducing step, a container in which the thin film forming raw material is stored (hereinafter referred to as "raw material container") gas transport in which the vapor is vaporized by heating and/or pressure reduction in a gaseous atmosphere, and the vapor is introduced into the deposition reaction chamber in which the substrate is installed, optionally together with a carrier gas such as argon, nitrogen, helium, etc. 2 and 4, a thin film forming raw material is transported in a liquid or solution state to a vaporization chamber, heated and/or decompressed in the vaporization chamber to vaporize into vapor, and the vapor is used as a raw material. There is a liquid delivery method that introduces it as a gas into the deposition reactor.
In the case of the gas transport method, the zinc compound represented by the general formula (1) itself can be used as the raw material for forming the thin film.
In the case of the liquid transportation method, the zinc compound represented by the general formula (1) or a solution obtained by dissolving the compound in an organic solvent can be used as the raw material for forming the thin film. This mixture or mixed solution may further contain a nucleophilic reagent or the like.

また、上記気体輸送法及び液体輸送法以外にも、原料ガス導入工程に用いられる方法としては、複数のプレカーサを含む多成分系のALD法として、薄膜形成原料の欄に記載したようなシングルソース法とカクテルソース法があるが、いずれの導入方法を用いた場合においても、本発明のALD法のための薄膜形成原料は0℃~200℃で気化させることが好ましい。また、原料容器内または気化室内で薄膜形成原料を気化させて蒸気とする場合の原料容器内の圧力及び気化室内の圧力は、1Pa~10,000Paの範囲内であることが好ましい。 In addition to the above gas transport method and liquid transport method, the method used in the raw material gas introduction step is a multi-component ALD method including a plurality of precursors, as described in the column of raw materials for thin film formation. However, it is preferable to vaporize the thin film forming raw material for the ALD method of the present invention at 0° C. to 200° C. regardless of which introduction method is used. In addition, when the thin film forming material is vaporized in the material container or the vaporization chamber, the pressure in the material container and the pressure in the vaporization chamber are preferably in the range of 1 Pa to 10,000 Pa.

ここで、堆積反応部に設置される上記基体の材質としては、例えば、シリコン;窒化ケイ素、窒化チタン、窒化タンタル、酸化チタン、窒化チタン、酸化ルテニウム、酸化ジルコニウム、酸化ハフニウム、酸化ランタン等のセラミックス;ガラス;金属コバルト、金属ルテニウム等の金属が挙げられる。基体の形状としては、板状、球状、繊維状、鱗片状が挙げられる。基体表面は、平面であってもよく、トレンチ構造等の三次元構造となっていてもよい。 Here, examples of materials for the substrate provided in the deposition reaction section include silicon; ceramics such as silicon nitride, titanium nitride, tantalum nitride, titanium oxide, titanium nitride, ruthenium oxide, zirconium oxide, hafnium oxide, and lanthanum oxide. glass; and metals such as metallic cobalt and metallic ruthenium. Examples of the shape of the substrate include plate-like, spherical, fibrous, and scale-like. The substrate surface may be flat or may have a three-dimensional structure such as a trench structure.

・前駆体層形成工程
前駆体層形成工程では、基体が設置された堆積反応部に導入した原料ガス中の上記一般式(1)で表される亜鉛化合物を基体表面に堆積させて、基体表面に前駆体層を形成する。このとき、基体を加熱するか、又は堆積反応部を加熱して熱を加えてもよい。前駆体層を形成する際の条件は、特に限定されず、例えば、反応温度(基体温度)、反応圧力、堆積速度等を所望の前駆体層の厚さや薄膜形成原料の種類に応じて適宜決めることができる。反応温度については、本発明のALD法のための薄膜形成原料が充分に基体表面と反応する温度である100℃以上が好ましく、100℃~200℃がより好ましい。反応圧力は1Pa~1,0000Paが好ましく、10Pa~1,000Paがより好ましい。
Precursor Layer Forming Step In the precursor layer forming step, the zinc compound represented by the above general formula (1) in the raw material gas introduced into the deposition reaction section where the substrate is installed is deposited on the substrate surface, to form a precursor layer. At this time, heat may be applied by heating the substrate or by heating the deposition reaction section. The conditions for forming the precursor layer are not particularly limited, and for example, the reaction temperature (substrate temperature), reaction pressure, deposition rate, etc. are appropriately determined according to the desired thickness of the precursor layer and the type of thin film forming raw material. be able to. The reaction temperature is preferably 100.degree. C. or higher, more preferably 100.degree. C. to 200.degree. The reaction pressure is preferably 1 Pa to 1,000 Pa, more preferably 10 Pa to 1,000 Pa.

また、上記堆積速度は、薄膜形成原料の供給条件(気化温度、気化圧力)、反応温度、反応圧力によりコントロールすることができる。堆積速度が大きいと得られる薄膜の特性が悪化する場合があり、小さいと生産性に問題を生じる場合があるので、0.01nm/分~100nm/分が好ましく、1nm/分~50nm/分がより好ましい。 Moreover, the deposition rate can be controlled by the supply conditions (vaporization temperature, vaporization pressure) of the thin film forming raw material, the reaction temperature, and the reaction pressure. If the deposition rate is high, the properties of the resulting thin film may deteriorate, and if it is low, problems may occur in productivity. more preferred.

なお、薄膜形成原料が、一般式(1)で表される亜鉛化合物以外の他のプレカーサを含む場合は、亜鉛化合物とともに他のプレカーサも基体の表面に堆積される。 When the thin film forming raw material contains a precursor other than the zinc compound represented by the general formula (1), the other precursor is also deposited on the surface of the substrate together with the zinc compound.

(排気工程)
上記第1工程の後に、基体の表面に堆積しなかった亜鉛化合物を含む原料ガスを堆積反応部から排気する。この際、原料ガスが堆積反応部から完全に排気されるのが理想的であるが、必ずしも完全に排気する必要はない。排気方法としては、例えば、ヘリウム、窒素、アルゴン等の不活性ガスにより堆積反応部の系内をパージする方法、系内を減圧することで排気する方法、これらを組み合わせた方法等が挙げられる。減圧する場合の減圧度は、0.01Pa~300Paの範囲が好ましく、0.01Pa~100Paの範囲がより好ましい。
(Exhaust process)
After the first step, the raw material gas containing the zinc compound not deposited on the surface of the substrate is exhausted from the deposition reaction section. At this time, it is ideal that the raw material gas is completely exhausted from the deposition reaction section, but it is not always necessary to exhaust it completely. Exhaust methods include, for example, a method of purging the inside of the deposition reaction unit with an inert gas such as helium, nitrogen, or argon, a method of evacuating the inside of the system by reducing the pressure, and a method of combining these methods. When reducing the pressure, the degree of pressure reduction is preferably in the range of 0.01 Pa to 300 Pa, more preferably in the range of 0.01 Pa to 100 Pa.

(第2工程)
第2工程では、排気工程後、堆積反応部に反応性ガスを導入して、反応性ガスの作用又は反応性ガスの作用と熱の作用により、反応性ガスを、前駆体層、すなわち基体の表面に堆積させた亜鉛化合物と反応させる。
上記反応性ガスとしては、例えば、酸素、オゾン、二酸化窒素、一酸化窒素、水蒸気、過酸化水素、ギ酸、酢酸、無水酢酸等の酸化性ガス、水素等の還元性ガス、モノアルキルアミン、ジアルキルアミン、トリアルキルアミン、アルキレンジアミン等の有機アミン化合物、ヒドラジン、アンモニア等の窒化性ガスなどが挙げられる。これらの反応性ガスは、単独で用いてもよいし、又は二種類以上を混合して用いてもよい。これらの中でも、本発明のALD法のための薄膜形成原料は、酸化性ガスと特異的に低い温度で反応する性質を有しており、特にオゾン及び水蒸気と低い温度で反応する。1サイクル当たりに得られる膜厚が厚く、生産性よく薄膜を製造することができるという点で、反応性ガスとしてオゾン又は水蒸気を含有するガスを用いることが好ましく、水蒸気を含有するガスを用いることがより好ましい。反応性ガスが酸化性ガスである場合は、酸化亜鉛含有薄膜が形成される。
(Second step)
In the second step, after the exhaust step, the reactive gas is introduced into the deposition reaction zone, and the reactive gas is caused to form the precursor layer, that is, the substrate by the action of the reactive gas or the action of the reactive gas and the action of heat. React with zinc compounds deposited on the surface.
Examples of the reactive gas include oxygen, ozone, nitrogen dioxide, nitrogen monoxide, water vapor, hydrogen peroxide, formic acid, acetic acid, oxidizing gases such as acetic anhydride, reducing gases such as hydrogen, monoalkylamines, dialkyl Examples include organic amine compounds such as amines, trialkylamines and alkylenediamines, and nitriding gases such as hydrazine and ammonia. These reactive gases may be used alone or in combination of two or more. Among these, the thin film forming material for the ALD method of the present invention has the property of specifically reacting with oxidizing gas at low temperature, and particularly reacting with ozone and water vapor at low temperature. Ozone or a gas containing water vapor is preferably used as the reactive gas in that a thick film can be obtained per cycle and a thin film can be produced with good productivity, and a gas containing water vapor is preferably used. is more preferred. When the reactive gas is an oxidizing gas, a zinc oxide-containing thin film is formed.

熱を用いて作用させる場合の温度は、50℃~200℃が好ましく、100℃~200℃がより好ましい。本発明のALD法のための薄膜形成原料と反応性ガスとを組み合わせて使用した場合のALDウィンドウは概ね100℃~150℃の範囲であるため、100℃~150℃の範囲で前駆体層と反応性ガスを反応させることがさらに好ましい。また、本工程が行われる際の堆積反応部における圧力は1Pa~10,000Paが好ましく、10Pa~1,000Paがより好ましい。 The temperature for the action using heat is preferably 50°C to 200°C, more preferably 100°C to 200°C. Since the ALD window in the case of using a combination of the thin film forming raw material and the reactive gas for the ALD method of the present invention is generally in the range of 100°C to 150°C, the precursor layer and the It is more preferable to react reactive gases. Also, the pressure in the deposition reaction section when this step is performed is preferably 1 Pa to 10,000 Pa, more preferably 10 Pa to 1,000 Pa.

本発明のALD法のための薄膜形成原料は、上記反応性ガスとの反応性が良好であり、残留炭素含有量が少ない高品質な亜鉛含有薄膜を生産性よく製造することができる。 The thin film-forming raw material for the ALD method of the present invention has good reactivity with the reactive gas, and can produce a high-quality zinc-containing thin film with low residual carbon content with good productivity.

(排気工程)
上記第2工程の後に、未反応の反応性ガス及び副生ガスを堆積反応部から排気する。この際、反応性ガス及び副生ガスが堆積反応部から完全に排気されるのが理想的であるが、必ずしも完全に排気する必要はない。排気方法及び減圧する場合の減圧度は、上述した第1工程と第2工程の間に行う排気工程と同様である。
(Exhaust process)
After the second step, unreacted reactive gas and by-product gas are exhausted from the deposition reaction part. At this time, it is ideal that the reactive gas and the by-product gas are completely exhausted from the deposition reaction part, but it is not always necessary to exhaust them completely. The evacuation method and the degree of pressure reduction when reducing the pressure are the same as in the evacuation step performed between the first step and the second step described above.

以上説明したように、第1工程、排気工程、第2工程及び排気工程を順に行い、一連の操作による堆積を1サイクルとし、このサイクルを必要な膜厚の薄膜が得られるまで複数回繰り返すことで、所望の膜厚を有する亜鉛含有薄膜を製造する。ALD法による薄膜の製造方法によれば、形成される亜鉛含有薄膜の膜厚を、上記サイクルの回数でコントロールすることができる。 As described above, the first step, the evacuation step, the second step, and the evacuation step are performed in order, and deposition by a series of operations constitutes one cycle, and this cycle is repeated multiple times until a thin film having a required thickness is obtained. to produce a zinc-containing thin film having the desired thickness. According to the method for producing a thin film by the ALD method, the film thickness of the zinc-containing thin film formed can be controlled by the number of cycles.

また、本発明の亜鉛含有薄膜の製造方法においては、図3及び図4に示すように、堆積反応部にプラズマ、光、電圧などのエネルギーを印加してもよく、触媒を用いてもよい。該エネルギーを印加する時期及び触媒を用いる時期は、特には限定されず、例えば、第1工程におけるALD法のための薄膜形成原料の原料ガスの導入時、前駆体層を形成する際の加熱時、又は第2工程における反応性ガスの導入時又は反応性ガスと前駆体層を反応させる際の加熱時、排気工程における系内の排気時でもよく、上記の各工程の間でもよい。 In the method for producing a zinc-containing thin film of the present invention, as shown in FIGS. 3 and 4, energy such as plasma, light, or voltage may be applied to the deposition reaction section, or a catalyst may be used. The timing of applying the energy and the timing of using the catalyst are not particularly limited. Alternatively, during the introduction of the reactive gas in the second step, during heating during the reaction between the reactive gas and the precursor layer, during the evacuation of the system in the evacuation step, or between the above steps.

また、本発明の薄膜の製造方法においては、亜鉛含有薄膜の形成後に、より良好な電気特性を得るために不活性雰囲気下、酸化性雰囲気下又は還元性雰囲気下でアニール処理を行ってもよく、段差埋め込みが必要な場合には、リフロー工程を設けてもよい。この場合の温度は、200℃~1,000℃が好ましく、250℃~500℃がより好ましい。 Further, in the method for producing a thin film of the present invention, after forming the zinc-containing thin film, annealing may be performed in an inert atmosphere, an oxidizing atmosphere, or a reducing atmosphere in order to obtain better electrical characteristics. , a reflow process may be provided when step embedding is required. The temperature in this case is preferably 200°C to 1,000°C, more preferably 250°C to 500°C.

本発明のALD法のための薄膜形成原料を用いて製造される亜鉛含有薄膜は、他のプレカーサ、反応性ガス及び製造条件を適宜選択することにより、メタル、酸化物セラミックス、窒化物セラミックス、ガラス等の所望の種類の薄膜とすることができる。該薄膜は電気特性及び光学特性等を示すことが知られており、種々の用途に応用されている。例えば、これらの薄膜は、例えばDRAM素子に代表されるメモリー素子の電極材料、抵抗膜、ハードディスクの記録層に用いられる反磁性膜及び固体高分子形燃料電池用の触媒材料等の製造に広く用いられている。 The zinc-containing thin film produced using the thin film-forming raw material for the ALD method of the present invention can be produced from metals, oxide ceramics, nitride ceramics, glass by appropriately selecting other precursors, reactive gases and production conditions. It can be a desired type of thin film such as. The thin film is known to exhibit electrical properties, optical properties, etc., and is applied to various uses. For example, these thin films are widely used in the production of electrode materials for memory elements such as DRAM elements, resistive films, diamagnetic films used in recording layers of hard disks, catalyst materials for polymer electrolyte fuel cells, and the like. It is

以下、製造例、実施例等を用いて本発明を更に詳細に説明する。しかしながら、本発明は以下の実施例等によって制限を受けるものではない。 Hereinafter, the present invention will be described in more detail using Production Examples, Examples, and the like. However, the present invention is not limited by the following examples and the like.

〔製造例1〕化合物No.6の合成
200mLの3つ口フラスコに、N-イソプロピル-2-メチルプロパン-2-アミン5g(43.43mmol)とTHF(150mL)を入れ、-78℃に冷却した後、nBuLi(1.57Mヘキサン溶液)27.7mL(43.47mmol)を30分かけて滴下した。室温までゆっくりと昇温後、18時間撹拌し、リチウム-tert-ブチル(イソプロピル)アミドのTHF溶液を調製した。500mLの4つ口フラスコに塩化亜鉛(6.5%エチルエーテル溶液)43.4g(20.7mmol)、THF30mLを入れ、その中へ上記の工程により調整したリチウム-tert-ブチル(イソプロピル)アミドのTHF溶液を氷冷下、1時間かけて滴下した。室温まで昇温し18時間撹拌後、バス温度64℃、減圧下で溶媒を除去した。得られた残渣にヘキサン100mLを加えて撹拌後、ろ過を行った。バス温度64℃、減圧下で溶媒を除去し、得られた黄色液体をバス温度79℃、51Paの条件下で蒸留して無色透明液体(収量3.8g、収率63%)を得た。得られた無色透明液体は、1H-NMRによる分析結果及びICP発光分光法による元素分析の結果、目的化合物の化合物No.6であることを確認した。得られた無色透明液体のH-NMRによる分析結果を以下に示す。
[Production Example 1] Compound No. Synthesis of 6
5 g (43.43 mmol) of N-isopropyl-2-methylpropan-2-amine and THF (150 mL) were placed in a 200 mL three-necked flask, cooled to −78° C., and then nBuLi (1.57 M hexane solution). 27.7 mL (43.47 mmol) was added dropwise over 30 minutes. After the temperature was slowly raised to room temperature, the mixture was stirred for 18 hours to prepare a THF solution of lithium-tert-butyl(isopropyl)amide. 43.4 g (20.7 mmol) of zinc chloride (6.5% ethyl ether solution) and 30 mL of THF were placed in a 500 mL four-necked flask, and lithium-tert-butyl (isopropyl) amide prepared by the above process was added thereto. The THF solution was added dropwise over 1 hour under ice-cooling. After heating to room temperature and stirring for 18 hours, the solvent was removed under reduced pressure at a bath temperature of 64°C. 100 mL of hexane was added to the resulting residue, and the mixture was stirred and then filtered. The solvent was removed under reduced pressure at a bath temperature of 64°C, and the resulting yellow liquid was distilled under conditions of a bath temperature of 79°C and 51 Pa to obtain a colorless transparent liquid (yield: 3.8 g, yield: 63%). The resulting colorless transparent liquid was identified as compound No. 1 of the target compound by the results of 1H-NMR analysis and elemental analysis by ICP emission spectroscopy. Confirmed to be 6. The results of 1 H-NMR analysis of the obtained colorless transparent liquid are shown below.

(1)H-NMR(重ベンゼン)による分析結果)
1.15ppm(12H,doublet)、1.18ppm(18H,singlet)、3.09ppm(2H,septet)
(1) Analysis results by 1 H-NMR (heavy benzene))
1.15ppm (12H, doublet), 1.18ppm (18H, singlet), 3.09ppm (2H, septet)

(2)元素分析(理論値)
Zn:22.3%(22.25%)
(2) Elemental analysis (theoretical value)
Zn: 22.3% (22.25%)

上記製造例1で得られた化合物No.6及び、下記の比較化合物No.1~No.4を用いて下記の評価を行った。なお、下記比較化合物No.1~No.4において、「iPr」は、「イソプロピル基」を表し、「tBu」は、「tert-ブチル基」を表し、「sBu」は、「sec-ブチル基」を表し、「iBu」は、「イソブチル基」を表す。 Compound No. obtained in Production Example 1 above. 6 and Comparative Compound No. 6 below. 1 to No. 4 was used to make the following evaluations. In addition, the following comparative compound No. 1 to No. 4, "iPr" represents "isopropyl group", "tBu" represents "tert-butyl group", "sBu" represents "sec-butyl group", "iBu" represents "isobutyl represents the base.

Figure 2022161040000003
Figure 2022161040000003

(1)状態及び融点の評価
目視によって、常圧25℃における化合物の状態を観察し、固体化合物については微小融点測定装置を用いて融点を測定した。これらの結果について、それぞれ表1に示す。
(1) Evaluation of State and Melting Point The state of the compound was visually observed at 25° C. under normal pressure, and the melting point of the solid compound was measured using a micromelting point measuring device. These results are shown in Table 1, respectively.

(2)減圧TG-DTAによる50質量%減少時の温度(℃)
TG-DTAを用いて、10 Torr、アルゴン流量:50mL/分、昇温速度10℃/分、走査温度範囲を30℃~600℃として測定し、試験化合物の質量が50質量%減少した時の温度(℃)を「減圧TG-DTA50質量%減少時の温度(℃)」として評価した。減圧TG-DTA50質量%減少時の温度(℃)が低いほど、低温で蒸気が得られることを示す。これらの結果について、それぞれ表1に示す。
(2) Temperature at 50 mass% reduction by reduced pressure TG-DTA (°C)
Measured using TG-DTA at 10 Torr, argon flow rate: 50 mL/min, temperature increase rate of 10°C/min, scanning temperature range from 30°C to 600°C, and the mass of the test compound decreased by 50% by mass. The temperature (° C.) was evaluated as “the temperature (° C.) at which TG-DTA was reduced by 50% by mass under reduced pressure”. The lower the temperature (° C.) at which TG-DTA is reduced by 50 mass % under reduced pressure, the lower the temperature at which steam can be obtained. These results are shown in Table 1, respectively.

Figure 2022161040000004
Figure 2022161040000004

〔実施例2〕亜鉛含有薄膜の製造
化合物No.6を薄膜形成原料として、図1のALD装置を用いて下記の条件で、シリコンウェハ上に亜鉛含有薄膜を製造した。得られた薄膜をX線電子分光法による薄膜組成を確認したところ、得られた薄膜は酸化亜鉛薄膜であり、残留炭素は検出されなかった。また、走査型電子顕微鏡による膜厚測定を行ったところ、膜厚が約6nmの平滑な膜であり、1サイクル当たりに得られる膜厚は、約0.04nmであった。
[Example 2] Production of zinc-containing thin film Compound no. Using No. 6 as a thin film forming raw material, a zinc-containing thin film was produced on a silicon wafer under the following conditions using the ALD apparatus shown in FIG. When the film composition of the obtained thin film was confirmed by X-ray electron spectroscopy, the obtained thin film was a zinc oxide thin film and residual carbon was not detected. Further, the film thickness was measured by a scanning electron microscope, and it was found to be a smooth film with a film thickness of about 6 nm, and the film thickness obtained per cycle was about 0.04 nm.

(ALD装置条件)
基体:シリコンウェハ
反応温度(基体温度):100℃
反応性ガス:水蒸気
(工程)
下記(1)~(4)からなる一連の工程を1サイクルとして、150サイクル繰り返した。
(1)原料容器温度:50℃、原料容器内圧力100Paの条件で気化された薄膜形成原料の蒸気(原料ガス)を堆積反応部に導入し、系圧100Paで10秒間、シリコンウェハの表面に亜鉛化合物を堆積させて、前駆体層を形成する。
(2)15秒間のアルゴンパージにより、堆積しなかった亜鉛化合物を含む原料ガスを系内から排気する。
(3)反応性ガスを堆積反応部に導入し、系圧力100Paで0.2秒間、前駆体層と反応性ガスを反応させる。
(4)60秒間のアルゴンパージにより、未反応の反応性ガス及び副生ガスを系内から排気する。
(ALD equipment conditions)
Substrate: silicon wafer Reaction temperature (substrate temperature): 100°C
Reactive gas: water vapor (process)
A series of steps (1) to (4) below was defined as one cycle, and 150 cycles were repeated.
(1) Raw material container temperature: 50 ° C., vaporized thin film forming raw material vapor (raw material gas) under the conditions of raw material container internal pressure of 100 Pa is introduced into the deposition reaction part, and the surface of the silicon wafer is heated at the system pressure of 100 Pa for 10 seconds. A zinc compound is deposited to form a precursor layer.
(2) By purging with argon for 15 seconds, the raw material gas containing the undeposited zinc compound is exhausted from the system.
(3) A reactive gas is introduced into the deposition reaction section, and reacted with the precursor layer for 0.2 seconds at a system pressure of 100 Pa.
(4) Exhaust unreacted reactive gas and by-product gas from the system by purging with argon for 60 seconds.

〔比較例5〕
化合物No.6を比較化合物No.1に変更した以外は、実施例2と同様の方法で、シリコンウェハ上に亜鉛含有薄膜を製造したが、平滑な膜を得ることができなかった。また、得られた膜に残留炭素が検出された。
[Comparative Example 5]
compound no. 6 as comparative compound no. A zinc-containing thin film was produced on a silicon wafer in the same manner as in Example 2, except that it was changed to 1, but a smooth film could not be obtained. Also, residual carbon was detected in the resulting film.

〔比較例6〕
化合物No.6を比較化合物No.2に変更した以外は、実施例2と同様の方法で、シリコンウェハ上に亜鉛含有薄膜を製造したが、平滑な膜を得ることができなかった。また、得られた膜に残留炭素が検出された。
[Comparative Example 6]
compound no. 6 as comparative compound no. A zinc-containing thin film was produced on a silicon wafer in the same manner as in Example 2, except that the method was changed to 2, but a smooth film could not be obtained. Also, residual carbon was detected in the resulting film.

〔比較例7〕
化合物No.6を比較化合物No.3に変更した以外は、実施例2と同様の方法で、シリコンウェハ上に亜鉛含有薄膜を製造したが、平滑な膜を得ることができなかった。また、得られた膜に残留炭素が検出された。
[Comparative Example 7]
compound no. 6 as comparative compound no. A zinc-containing thin film was produced on a silicon wafer in the same manner as in Example 2, except that it was changed to 3, but a smooth film could not be obtained. Also, residual carbon was detected in the resulting film.

〔比較例8〕
化合物No.6を比較化合物No.4に変更した以外は、実施例2と同様の方法で、シリコンウェハ上に亜鉛含有薄膜を製造したが、平滑な膜を得ることができなかった。また、得られた膜に残留炭素が検出された。
[Comparative Example 8]
compound no. 6 as comparative compound no. A zinc-containing thin film was produced on a silicon wafer in the same manner as in Example 2, except that it was changed to 4, but a smooth film could not be obtained. Also, residual carbon was detected in the resulting film.

以上より、特定の亜鉛化合物をALD法のための薄膜形成原料に用いることで、低融点で揮発性が高く、反応性ガスと低い温度で反応し、生産性よく酸化亜鉛薄膜である亜鉛含有薄膜を製造することができることを確認できた。 From the above, by using a specific zinc compound as a thin film forming raw material for the ALD method, a zinc-containing thin film that has a low melting point and high volatility, reacts with a reactive gas at a low temperature, and is a zinc oxide thin film with high productivity. It was confirmed that it is possible to manufacture

Claims (8)

下記一般式(1)で表される亜鉛化合物を含有する原子層堆積法のための薄膜形成原料。
Figure 2022161040000005
(式中、R及びRは、各々独立に、炭素原子数1~5のアルキル基、トリメチルシリル基又はトリフルオロメチル基を表す。但し、RとRは異なる基である。)
A thin film forming raw material for atomic layer deposition containing a zinc compound represented by the following general formula (1).
Figure 2022161040000005
(In the formula, R 1 and R 2 each independently represent an alkyl group having 1 to 5 carbon atoms, a trimethylsilyl group or a trifluoromethyl group. However, R 1 and R 2 are different groups.)
上記一般式(1)において、Rは第三級アルキル基であり、Rは第二級アルキル基である請求項1に記載の薄膜形成原料。 2. The thin film forming material according to claim 1, wherein in the general formula (1), R1 is a tertiary alkyl group and R2 is a secondary alkyl group. 上記一般式(1)において、Rはtert-ブチル基であり、Rはイソプロピル基である請求項1又は2に記載の薄膜形成原料。 3. The thin film forming material according to claim 1, wherein in the general formula (1), R 1 is a tert-butyl group and R 2 is an isopropyl group. 請求項1~3のいずれか一項に記載の薄膜形成原料を気化させた原料ガスを処理雰囲気に導入し、基体の表面に該原料ガス中の亜鉛化合物を堆積させて前駆体層を形成する第1工程と、
反応性ガスを処理雰囲気に導入し、前記前駆体層と前記反応性ガスを反応させる第2工程とを含む、
原子層堆積法による亜鉛含有薄膜の製造方法。
A raw material gas obtained by vaporizing the thin film forming raw material according to any one of claims 1 to 3 is introduced into a processing atmosphere, and a zinc compound in the raw material gas is deposited on the surface of a substrate to form a precursor layer. a first step;
a second step of introducing a reactive gas into the process atmosphere and reacting the precursor layer with the reactive gas;
A method for producing a zinc-containing thin film by atomic layer deposition.
前記反応性ガスが酸化性ガスであり、前記亜鉛含有薄膜が酸化亜鉛薄膜である請求項4に記載の亜鉛含有薄膜の製造方法。 5. The method for producing a zinc-containing thin film according to claim 4, wherein said reactive gas is an oxidizing gas, and said zinc-containing thin film is a zinc oxide thin film. 前記反応性ガスが、オゾン又は水蒸気を含有するガスである請求項4又は5に記載の亜鉛含有薄膜の製造方法。 6. The method for producing a zinc-containing thin film according to claim 4, wherein said reactive gas is a gas containing ozone or water vapor. 前記前駆体層と前記反応性ガスを反応させる温度が50℃~200℃の範囲である請求項4~6のいずれか一項に記載の亜鉛含有薄膜の製造方法。 The method for producing a zinc-containing thin film according to any one of claims 4 to 6, wherein the temperature at which the precursor layer and the reactive gas are reacted is in the range of 50°C to 200°C. 前記第1工程と前記第2工程の間及び前記第2工程の後の少なくとも一方に、前記処理雰囲気のガスを排気する工程を有する請求項4~7のいずれか一項に記載の亜鉛含有薄膜の製造方法。 8. The zinc-containing thin film according to any one of claims 4 to 7, further comprising a step of exhausting the gas in the processing atmosphere between the first step and the second step and/or after the second step. manufacturing method.
JP2019167952A 2019-09-17 2019-09-17 Thin film-forming raw material for atomic layer deposition method and manufacturing method of zinc-containing thin film using the same Pending JP2022161040A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019167952A JP2022161040A (en) 2019-09-17 2019-09-17 Thin film-forming raw material for atomic layer deposition method and manufacturing method of zinc-containing thin film using the same
PCT/JP2020/033719 WO2021054160A1 (en) 2019-09-17 2020-09-07 Raw material for forming thin film for atomic layer deposition and method for producing zinc-containing thin film using same
TW109131648A TWI842950B (en) 2019-09-17 2020-09-15 Thin-film-forming raw material for atomic-layer deposition method, and method for producing zinc-containing thin film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019167952A JP2022161040A (en) 2019-09-17 2019-09-17 Thin film-forming raw material for atomic layer deposition method and manufacturing method of zinc-containing thin film using the same

Publications (1)

Publication Number Publication Date
JP2022161040A true JP2022161040A (en) 2022-10-21

Family

ID=74883789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019167952A Pending JP2022161040A (en) 2019-09-17 2019-09-17 Thin film-forming raw material for atomic layer deposition method and manufacturing method of zinc-containing thin film using the same

Country Status (2)

Country Link
JP (1) JP2022161040A (en)
WO (1) WO2021054160A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19717178A1 (en) * 1997-04-24 1998-10-29 Hoechst Ag Direct synthesis of organorhenium (VII) oxides from rhenium-containing compounds
JP5063074B2 (en) * 2006-10-03 2012-10-31 株式会社Adeka Thin film forming raw material, thin film manufacturing method, and zinc compound
US8871304B2 (en) * 2010-11-02 2014-10-28 Ube Industries, Ltd. (Amide amino alkane) metal compound, method of manufacturing metal-containing thin film using said metal compound

Also Published As

Publication number Publication date
WO2021054160A1 (en) 2021-03-25
TW202124396A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP6184030B2 (en) Aluminum compound, thin film forming raw material, and thin film manufacturing method
WO2019203035A1 (en) Source material for thin film formation for atomic layer deposition and method for producing thin film
WO2020071175A1 (en) Raw material for thin film formation use for use in atomic layer deposition method, raw material for thin film formation use, method for producing thin film, and compound
WO2022190877A1 (en) Thin film-forming starting material for use in atomic layer deposition method, thin film, method for producing thin film, and zinc compound
JP6735163B2 (en) Vanadium compound, thin film forming raw material, and thin film manufacturing method
KR20220088907A (en) A novel compound, a raw material for forming a thin film containing the compound, and a method for manufacturing a thin film
WO2015174173A1 (en) Copper compound, starting material for forming thin film and method for producing thin film
WO2019097768A1 (en) Ruthenium compound, raw material for forming thin film, and method for producing thin film
WO2022014344A1 (en) Thin film-forming material, thin film, and thin film producing method
JP7418349B2 (en) Thin film forming raw material for atomic layer deposition method, thin film manufacturing method, and alkoxide compound
WO2018235530A1 (en) Metal alkoxide compound, thin-film-forming raw material, and method for producing thin film
WO2013105310A1 (en) Aluminum compound, starting material for forming thin film, and method for producing thin film
WO2020170853A1 (en) Starting material for forming gallium nitride-containing thin film for atomic layer deposition method, and method for producing gallium nitride-containing thin film
KR20220161372A (en) Zinc compound, raw material for thin film formation, thin film and manufacturing method thereof
WO2021054160A1 (en) Raw material for forming thin film for atomic layer deposition and method for producing zinc-containing thin film using same
WO2023171489A1 (en) Starting material for thin film formation by atomic layer deposition, thin film, and method for producing thin film
TWI824133B (en) Raw material for forming thin film, method for manufacturing thin film, and scandium compound
TWI842950B (en) Thin-film-forming raw material for atomic-layer deposition method, and method for producing zinc-containing thin film using the same
WO2021200218A1 (en) Material for formation of thin film for use in atomic layer deposition and method for producing thin film
WO2023090179A1 (en) Thin film-forming material for use in atomic layer deposition, thin film, method for producing thin film, and ruthenium compound
WO2022196491A1 (en) Tin compound, starting material for forming thin film, thin film, method for producing thin film, and halogen compound
WO2023054066A1 (en) Thin film-forming material, thin film manufacturing method, thin film, and molybdenum compound
WO2022059571A1 (en) Raw material for formation of thin film for use in atomic layer deposition, and method for producing thin film
WO2023276716A1 (en) Starting material for forming thin film, thin film and method for producing thin film
WO2022220153A1 (en) Thin film-forming feedstock for use in atomic layer deposition, thin film, method for producing thin film, and ruthenium compound