JP2022151627A - Alloy material for probe pins - Google Patents

Alloy material for probe pins Download PDF

Info

Publication number
JP2022151627A
JP2022151627A JP2022019210A JP2022019210A JP2022151627A JP 2022151627 A JP2022151627 A JP 2022151627A JP 2022019210 A JP2022019210 A JP 2022019210A JP 2022019210 A JP2022019210 A JP 2022019210A JP 2022151627 A JP2022151627 A JP 2022151627A
Authority
JP
Japan
Prior art keywords
solder
mass
probe
alloy
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022019210A
Other languages
Japanese (ja)
Inventor
恭徳 江川
Yasunori Egawa
篤央 松澤
Atsuhisa Matsuzawa
浩一 長谷川
Koichi Hasegawa
庸介 今井
Yosuke Imai
賢一 佐藤
Kenichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokowo Co Ltd
Ishifuku Metal Industry Co Ltd
Original Assignee
Yokowo Co Ltd
Ishifuku Metal Industry Co Ltd
Yokowo Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokowo Co Ltd, Ishifuku Metal Industry Co Ltd, Yokowo Mfg Co Ltd filed Critical Yokowo Co Ltd
Priority to EP22775468.6A priority Critical patent/EP4317491A1/en
Priority to CN202280022334.1A priority patent/CN117015625A/en
Priority to PCT/JP2022/012690 priority patent/WO2022202681A1/en
Priority to KR1020237035355A priority patent/KR20230160852A/en
Priority to US18/284,172 priority patent/US20240167125A1/en
Priority to TW111110065A priority patent/TW202244282A/en
Publication of JP2022151627A publication Critical patent/JP2022151627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Leads Or Probes (AREA)

Abstract

To provide an alloy material for probe pins that can suppress the diffusion of components of a probe material and solder at a circuit connection to be tested during a probe test.SOLUTION: An alloy material for probe pins comprises 15-60 mass% of Pd, 3-79.9 mass% of Cu, and 0.1-75 mass% of Ni and/or Pt.SELECTED DRAWING: None

Description

本発明は,半導体ウェハ上の集積回路や液晶表示装置等の電気的特性を検査するためのプローブピン用合金材料(以下,「プローブ材」と略称する)に関する。 The present invention relates to an alloy material for probe pins (hereinafter abbreviated as "probe material") for inspecting electrical characteristics of integrated circuits on semiconductor wafers, liquid crystal display devices, and the like.

半導体ウェハ上に形成された集積回路や液晶表示装置等の電気的特性の検査には,複数のプローブが組み込まれたソケットやプローブカードが用いられている。この検査は,ソケットやプローブカードに組み込まれたプローブピンを,集積回路や液晶表示装置等の電極や端子,導電部に接触させることにより行われている。 2. Description of the Related Art Sockets and probe cards in which a plurality of probes are incorporated are used to inspect the electrical characteristics of integrated circuits, liquid crystal displays, and the like formed on semiconductor wafers. This inspection is performed by bringing probe pins incorporated in sockets or probe cards into contact with electrodes, terminals, and conductive portions of integrated circuits, liquid crystal display devices, and the like.

このようなプローブピンは,低い接触抵抗と繰り返し接触に耐える硬さが必要となる。プローブ材としては,ベリリウム銅合金やタングステン,タングステン合金,白金合金,パラジウム合金等が使用されている。 Such probe pins require low contact resistance and hardness to withstand repeated contact. Beryllium-copper alloys, tungsten, tungsten alloys, platinum alloys, palladium alloys, and the like are used as probe materials.

特許文献1には,16%以上50%以下の銅,約35%から約59%のパラジウム,および4%以上の銀で構成されたパラジウム合金(以下,AgPdCu 合金)が開示されている。 Patent Document 1 discloses a palladium alloy composed of 16% to 50% copper, about 35% to about 59% palladium, and 4% or more silver (hereinafter referred to as AgPdCu alloy).

米国特許第1935897号明細書U.S. Pat. No. 1,935,897

従来,塑性加工性に優れ,析出硬化するAgPdCu 合金は,その硬さに由来する形状安定性と低い比抵抗特性からプローブ材として使用されてきた。しかし,はんだ(例えば,Sn-Bi系はんだ)が使用されている回路接続部に関して使用される場合に,以下の課題が存在していた。すなわち,検査時にプローブピンとはんだが繰り返し接触し,通電することで,そのジュール熱等によって,Snなどのはんだ成分とプローブ材の成分が相互に拡散し,プローブピン先端の消耗が速くなる傾向にあった。そのような場合,突発的又は経時的に接触抵抗が変動し,検査不良が発生するため,接触する先端部のクリーニングや交換が必要になり,検査工程の稼働率を低下させてしまうことが問題であった。 Conventionally, AgPdCu alloy, which has excellent plastic workability and precipitation hardening, has been used as a probe material because of its hardness and its shape stability and low resistivity. However, when solder (for example, Sn-Bi solder) is used for circuit connection parts, the following problems exist. In other words, when the probe pin and the solder repeatedly come into contact with each other during inspection, the joule heat caused by the contact causes the solder components such as Sn and the probe material components to mutually diffuse, which tends to accelerate the wear of the probe pin tip. rice field. In such cases, the contact resistance fluctuates suddenly or over time, resulting in inspection failures, which necessitates cleaning or replacement of the tip that comes into contact, which lowers the operating rate of the inspection process. Met.

そこで,はんだ成分の拡散を抑制する耐はんだ性を有するプローブ材の開発が強く求められている。 Therefore, there is a strong demand for the development of a solder-resistant probe material that suppresses the diffusion of solder components.

本発明の目的は,プローブ検査時に検査対象の回路接続部のはんだとプローブ材の成分が拡散することを抑制することができるプローブ材を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide a probe material capable of suppressing diffusion of components of the probe material and solder in a circuit connection portion to be inspected during probe inspection.

Pd 15~60mass%,Cu 3~79.9mass%,Niおよび/またはPt 0.1~75mass%からなることを特徴とするプローブ材を見出し,本発明を完了するにいたった。 A probe material characterized by comprising 15-60 mass% of Pd, 3-79.9 mass% of Cu, and 0.1-75 mass% of Ni and/or Pt was found, and the present invention was completed.

本発明に従うと,検査時に検査対象の回路接続部のはんだとプローブ材の成分が拡散することを抑制したプローブ材を提供することができる。 According to the present invention, it is possible to provide a probe material that suppresses diffusion of components of the solder and the probe material in the circuit connection portion to be inspected during inspection.

本発明は,Pd 15~60mass%,Cu 3~79.9mass%,Niおよび/またはPt 0.1~75mass%(NiおよびPtを含有する場合には合計で0.1~75mass%)からなることを特徴とするプローブ材である。 The present invention is characterized by comprising Pd 15-60 mass%, Cu 3-79.9 mass%, Ni and/or Pt 0.1-75 mass% (when Ni and Pt are contained, the total is 0.1-75 mass%) probe material.

Pdは 耐食性が優れているが,15mass%未満ではその耐食性が不十分になる。一方,Pdは60mass%を超えると,はんだとプローブ材の成分の拡散を十分抑制できないため適さない。 Pd has excellent corrosion resistance, but if it is less than 15 mass%, its corrosion resistance becomes insufficient. On the other hand, if Pd exceeds 60 mass%, it is not suitable because the diffusion of the components of the solder and probe material cannot be sufficiently suppressed.

別の態様として、Pd含有量は17~55mass%であることができる。また、別の態様として、Pdの含有量は20~50mass%であることができる。 Alternatively, the Pd content can be 17-55 mass%. In another aspect, the Pd content can be 20 to 50 mass%.

Cuは比抵抗が低いことに加え,Pdと合金にすることで,硬さを向上させる効果がある。一方で,多量に添加すると耐食性が低下してしまう。そのため,3mass%未満では十分な硬さが得られなくなり,79.9mass%を超えると耐食性が低下してしまう。 In addition to its low resistivity, Cu has the effect of improving hardness when alloyed with Pd. On the other hand, if a large amount of Ni is added, the corrosion resistance decreases. Therefore, if the content is less than 3 mass%, sufficient hardness cannot be obtained, and if it exceeds 79.9 mass%, the corrosion resistance decreases.

別の態様として、Cu含有量は5~74mass%であることができる。 As another aspect, the Cu content can be 5 to 74 mass%.

Niおよび/またはPtは,合金へ添加することで,合金の耐はんだ性を向上させる効果がある。実験によると,0.1 mass%未満でははんだとプローブ材の成分の拡散を十分抑制できなくなり,75mass%を超えると比抵抗が増加するため適当ではない。 Adding Ni and/or Pt to the alloy has the effect of improving the solder resistance of the alloy. According to experiments, if the content is less than 0.1 mass%, the diffusion of the components of the solder and the probe material cannot be sufficiently suppressed, and if it exceeds 75 mass%, the resistivity increases and is not suitable.

別の態様として、Niおよび/またはPtの含有量は0.3~70mass%(NiおよびPtを含有する場合には合計で0.3~70mass%)であることができる。また、別の態様として、Niおよび/またはPtの含有量は0.5~65mass%(NiおよびPtを含有する場合には合計で0.5~65mass%)であることができる。 As another embodiment, the content of Ni and/or Pt can be 0.3 to 70 mass% (0.3 to 70 mass% in total when Ni and Pt are contained). In another embodiment, the content of Ni and/or Pt can be 0.5 to 65 mass% (0.5 to 65 mass% in total when Ni and Pt are included).

本発明の合金は,はんだとプローブ材の成分の拡散により,プローブピン先端が消耗する現象を抑えることが重要であり,硬さは既存のAgPdCu合金ほど必要とはされない。すなわち,プローブピンが接触するはんだ(例えば,Sn-Bi系はんだ)は比較的硬さが低いため,プローブ材として必要な硬さは,200HV以上あれば良い。 It is important for the alloy of the present invention to suppress the phenomenon that the tip of the probe pin is worn out due to the diffusion of the components of the solder and the probe material, and hardness is not required as much as the existing AgPdCu alloy. That is, since the solder with which the probe pin is in contact (for example, Sn-Bi solder) has a relatively low hardness, the hardness required for the probe material should be 200 HV or more.

本発明の合金において,はんだとプローブ材の成分の拡散が抑制されるのは以下の理由によると推定する。すなわち,プローブ材に添加されたNiおよび/またはPtが,はんだとプローブピンの接触した界面にSn-Niおよび/またはSn-Ptなどの薄く緻密な金属間化合物層を形成することで,この金属間化合物層が,はんだとプローブ材の成分の拡散を妨げる効果を発揮し,プローブピン先端を容易に消耗させることを抑制すると考えられる。 In the alloy of the present invention, it is presumed that the diffusion of the components of the solder and the probe material is suppressed for the following reasons. In other words, the Ni and/or Pt added to the probe material forms a thin and dense intermetallic compound layer such as Sn-Ni and/or Sn-Pt at the interface between the solder and the probe pin, and this metal It is thought that the intercompound layer exerts the effect of preventing the diffusion of the components of the solder and the probe material, and suppresses the tip of the probe pin from being easily worn.

本発明の実施例について説明する。実施例及び比較例の合金の組成とそれぞれの特性を表1に示す。 An embodiment of the present invention will be described. Table 1 shows the compositions and properties of the alloys of Examples and Comparative Examples.

先ず,Pd,Cu,Ni,Pt を表1の組成となるように配合した後,アルゴン雰囲気中でアーク溶解法にて溶解し,各合金インゴットを作製した。 First, Pd, Cu, Ni, and Pt were blended so as to have the composition shown in Table 1, and then melted by the arc melting method in an argon atmosphere to produce each alloy ingot.

上記合金インゴットを,圧延,熱処理を繰り返し,圧延率[=((圧延前の厚さ-圧延後の厚さ)/圧延前の厚さ)×100]が75%の板材を作製し,硬さ及び耐はんだ性を評価するための試験片とした。また,比抵抗は,圧延率[=((圧延前の厚さ-圧延後の厚さ)/圧延前の厚さ)×100]が90%まで加工した板材を試験片とした。 The above alloy ingot is repeatedly rolled and heat treated to produce a plate with a rolling rate of 75% [= ((thickness before rolling - thickness after rolling)/thickness before rolling) x 100]. and a test piece for evaluating solder resistance. For the resistivity, the test pieces were processed to a rolling rate of 90% [=((thickness before rolling - thickness after rolling)/thickness before rolling) x 100].

作製した各合金の試験片に関して,下記の評価を行い,その結果を表2に示す。 Table 2 shows the results of the following evaluations of the test pieces of each alloy produced.

硬さは,試験片の断面の中心をマイクロビッカース硬さ試験機で,荷重200gf,保持時間10秒の条件で測定した。 The hardness was measured at the center of the cross section of the test piece with a micro Vickers hardness tester under the conditions of a load of 200 gf and a holding time of 10 seconds.

耐はんだ性はSn-Bi系はんだを作製した試験片の上に乗せ,N2雰囲気中,250℃,1hの条件で熱処理し,試験片上ではんだを溶融させた。熱処理後,試験片を樹脂に埋め込んで断面を出し,EPMAにてはんだと試験片の界面を垂直方向に線分析を行った。はんだからSnが、合金からPdが相互に拡散することにより、SnおよびPdが共に存在する層を拡散層とし,その厚さを測定した。 Solder resistance was evaluated by placing a test piece prepared with Sn-Bi solder and heat-treating it at 250°C for 1 hour in a N 2 atmosphere to melt the solder on the test piece. After heat treatment, the test piece was embedded in resin and a cross section was exposed, and line analysis was performed in the vertical direction on the interface between the solder and the test piece using EPMA. A layer in which both Sn and Pd are present was defined as a diffusion layer by mutual diffusion of Sn from the solder and Pd from the alloy, and its thickness was measured.

測定した拡散層の厚さが薄いほど,耐はんだ性が高いと判断し,拡散層の厚さが100μm未満の合金を◎,100~200μmの合金を〇,200μm~500μmの合金を△,500μmを超える合金を×と評価した。評価の結果を表2に示す。ただし,拡散層の厚さが800μm以上の場合は,試験したはんだのほぼ全体に拡散層が形成されたため,一義的に800μmとして記載した。 The thinner the measured diffusion layer thickness, the higher the solder resistance. was evaluated as x. Table 2 shows the evaluation results. However, when the thickness of the diffusion layer was 800 μm or more, the diffusion layer was formed on almost the entire solder tested, so it was univocally described as 800 μm.

比抵抗は,室温で各試料の電気抵抗を測定し,式1に従い算出した。
式1:比抵抗=(電気抵抗×断面積)/測定長
The resistivity was calculated according to Equation 1 after measuring the electrical resistance of each sample at room temperature.
Formula 1: Specific resistance = (electrical resistance x cross-sectional area) / measurement length

Figure 2022151627000001
Figure 2022151627000001

Figure 2022151627000002
Figure 2022151627000002

以上の結果から,本発明により作製した合金は,高い耐はんだ性を有しつつ,プローブ材に求められる硬さ及び比抵抗を併せ持つことが分かる。よって,本発明によって,耐はんだ性を有するプローブ材として好適な材料を提供することが可能となる。 From the above results, it can be seen that the alloy produced according to the present invention has both hardness and specific resistance required for probe materials while having high solder resistance. Therefore, according to the present invention, it is possible to provide a material suitable as a probe material having solder resistance.

Claims (1)

Pd 15~60mass%,Cu 3~79.9mass%,Niおよび/またはPt 0.1~75mass%からなることを特徴とするプローブピン用合金材料。 An alloy material for a probe pin comprising 15-60 mass% Pd, 3-79.9 mass% Cu, 0.1-75 mass% Ni and/or Pt.
JP2022019210A 2021-03-26 2022-02-10 Alloy material for probe pins Pending JP2022151627A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP22775468.6A EP4317491A1 (en) 2021-03-26 2022-03-18 Alloy material for probe pins
CN202280022334.1A CN117015625A (en) 2021-03-26 2022-03-18 Alloy material for probe
PCT/JP2022/012690 WO2022202681A1 (en) 2021-03-26 2022-03-18 Alloy material for probe pins
KR1020237035355A KR20230160852A (en) 2021-03-26 2022-03-18 Alloy material for probe pins
US18/284,172 US20240167125A1 (en) 2021-03-26 2022-03-18 Alloy material for probe pins
TW111110065A TW202244282A (en) 2021-03-26 2022-03-18 Alloy material for probe pins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021053271 2021-03-26
JP2021053271 2021-03-26

Publications (1)

Publication Number Publication Date
JP2022151627A true JP2022151627A (en) 2022-10-07

Family

ID=83465307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022019210A Pending JP2022151627A (en) 2021-03-26 2022-02-10 Alloy material for probe pins

Country Status (1)

Country Link
JP (1) JP2022151627A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053549A1 (en) * 2022-09-07 2024-03-14 株式会社ヨコオ Probe
WO2024053552A1 (en) * 2022-09-07 2024-03-14 石福金属興業株式会社 Alloy material for probe pins

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053549A1 (en) * 2022-09-07 2024-03-14 株式会社ヨコオ Probe
WO2024053552A1 (en) * 2022-09-07 2024-03-14 石福金属興業株式会社 Alloy material for probe pins

Similar Documents

Publication Publication Date Title
EP2159581B1 (en) Method of manufacturing probe pins
US8183877B2 (en) Material for probe pins
JP2022151627A (en) Alloy material for probe pins
TW201422826A (en) Ag-Pd-Cu-Co alloy for electric/electronic devices
JP2022041921A (en) Palladium-copper-silver-ruthenium alloy
KR101260135B1 (en) Silver alloy having excellent contact resistance and antifouling property and suitable for use in probe pin
WO2022202681A1 (en) Alloy material for probe pins
JP7141098B2 (en) Materials for probe pins and probe pins
JP2014114465A (en) PROBE PIN CONSISTING OF Ag BASE ALLOY
TWI794355B (en) Precipitation hardening ag-pd-cu-b-based alloy
WO2024053552A1 (en) Alloy material for probe pins
JP2023145888A (en) Alloy material for probe pins
JP2021080552A (en) Probe pin material and probe pin
CN117015625A (en) Alloy material for probe
JP6372952B2 (en) Probe pin material composed of a Pt-based alloy and method for manufacturing the probe pin
JP7429011B2 (en) Probe pin materials and probe pins
JP2023145917A (en) probe
JP2021092450A (en) PROBE PIN MATERIAL COMPRISING Rh-BASED ALLOY, AND PROBE PIN

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220217