JP2022147973A - 飛行体の姿勢検出装置及び姿勢制御システム - Google Patents

飛行体の姿勢検出装置及び姿勢制御システム Download PDF

Info

Publication number
JP2022147973A
JP2022147973A JP2021049468A JP2021049468A JP2022147973A JP 2022147973 A JP2022147973 A JP 2022147973A JP 2021049468 A JP2021049468 A JP 2021049468A JP 2021049468 A JP2021049468 A JP 2021049468A JP 2022147973 A JP2022147973 A JP 2022147973A
Authority
JP
Japan
Prior art keywords
light
attitude
section
light receiving
flying object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021049468A
Other languages
English (en)
Inventor
泰造 江野
Taizo Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2021049468A priority Critical patent/JP2022147973A/ja
Publication of JP2022147973A publication Critical patent/JP2022147973A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

Figure 2022147973000001
【課題】飛行体の向き、姿勢を検出する飛行体の姿勢検出装置及び姿勢制御システムを提供する。
【解決手段】遠隔操縦可能な飛行装置2に設けられる姿勢検出装置であって、該姿勢検出装置は受光部7と姿勢検出部とを有し、前記受光部は照射されるレーザ光線の一部を透過し、残部を再帰反射するハーフミラーと、該ハーフミラーを透過したレーザ光線を受光し、受光レーザ光線の光束断面形状を検出可能な受光素子とを有し、前記レーザ光線は所定の光束断面形状を有し、前記姿勢検出部は前記受光素子からの受光信号に基づき前記光束断面形状の変化を演算し、前記光束断面形状の変化に基づき前記受光部へ入射するレーザ光線の入射角、入射方向を検出し、検出した入射角、入射方向に基づき前記飛行装置の姿勢を検出する様構成された。
【選択図】図1

Description

本発明は飛行体の姿勢検出装置及び姿勢制御システムに関するものである。
近年、小型無人飛行体(UAV:Unmanned Air Vehicle)の進歩に伴い、UAVに各種装置を搭載して遠隔操作により飛行させ、或はUAVを自律飛行させ、所要の作業が行われている。例えば、UAVに写真測量用カメラ、レーザスキャナ等の測定機を搭載し、写真測量、或は飛行しつつ点群データを取得し、広範囲の測定が行われている。
飛行体に搭載した測量機により測定を実行する場合、飛行体の位置、更に飛行体の姿勢を正確に検出することが不可欠である。現在の飛行体の向きの検出、飛行体の姿勢を検出する方法としては、飛行体に慣性計測装置(IMU)を搭載し、IMUにより飛行体の姿勢向きを検出している。
然し乍ら、IMUは状態変化を検出するものであり、累積誤差、回路上のドリフト等があり、飛行体の向き、飛行体の姿勢を高精度に検出するとは言えなかった。
特開2018-44913号公報 特開2016-161411号公報
本発明は、飛行体の向き、姿勢を検出する飛行体の姿勢検出装置及び姿勢制御システムを提供するものである。
本発明は、遠隔操縦可能な飛行装置に設けられる姿勢検出装置であって、該姿勢検出装置は受光部と姿勢検出部とを有し、前記受光部は照射されるレーザ光線の一部を透過し、残部を再帰反射するハーフミラーと、該ハーフミラーを透過したレーザ光線を受光し、受光レーザ光線の光束断面形状を検出可能な受光素子とを有し、前記レーザ光線は所定の光束断面形状を有し、前記姿勢検出部は前記受光素子からの受光信号に基づき前記光束断面形状の変化を演算し、前記光束断面形状の変化に基づき前記受光部へ入射するレーザ光線の入射角、入射方向を検出し、検出した入射角、入射方向に基づき前記飛行装置の姿勢を検出する様構成された飛行体の姿勢検出装置に係るものである。
又本発明は、前記光束断面形状は、長軸、短軸を有し、長軸又は短軸が鉛直に対して傾斜した形状であり、前記姿勢検出部は前記長軸の回転変化、光束断面の受光面上での水平方向の長さ変化、光束断面の受光面上での鉛直方向の長さ変化に基づき、前記飛行装置の3軸方向の傾斜角を演算する様構成された飛行体の姿勢検出装置に係るものである。
又本発明は、前記受光部の中心部に細密受光部が設けられ、該細密受光部は微小球体レンズから構成されるレンズシートと、前記微小球体レンズそれぞれに対応した区分を有する細密受光素子とを具備し、前記微小球体レンズを透過した光線が前記区分に結像される様構成され、該区分内での結像位置に基づき前記飛行装置の傾斜角、傾斜方向を検出する様構成された飛行体の姿勢検出装置に係るものである。
又本発明は、前記受光素子の受光面は円錐形状である飛行体の姿勢検出装置に係るものである。
又本発明は、前記受光部に入射したレーザ光線を互いに直交する3軸に分岐し、各軸を中心とする回転角、回転方向を検出する様構成された飛行体の姿勢検出装置に係るものである。
又本発明は、遠隔操縦可能な飛行装置と、上記のいずれかの姿勢検出装置と、前記飛行装置を追尾可能な位置測定装置と、前記飛行装置と前記位置測定装置と無線通信可能な遠隔操縦機とを有する測量システムであって、前記飛行装置は、複数で且つ偶数のプロペラフレームに設けられたプロペラユニットと、前記遠隔操縦機と無線通信可能であり、前記プロペラユニットの駆動を制御可能な制御装置とを具備し、前記位置測定装置は測距光として所定光束断面を有するレーザ光線を前記受光部に照射し、前記ハーフミラーは反射測距光として前記測距光の一部を再帰反射し、残部を追尾光として前記受光素子で受光し、前記位置測定装置は再帰反射光を受光し、前記飛行装置を位置測定する様構成され、前記制御装置は前記姿勢検出部の検出結果に基づき前記プロペラユニットを駆動し前記飛行装置の姿勢を制御する様構成された飛行体の姿勢制御システムに係るものである。
又本発明は、前記位置測定装置は、前記受光部からの再帰反射光を受光し、受光結果に基づき前記飛行装置を追尾する様構成された飛行体の姿勢制御システムに係るものである。
更に又本発明は、飛行体通信部は、前記姿勢検出部の検出結果をリアルタイムで前記位置測定装置に送信し、該位置測定装置は受信した受光結果に基づき前記飛行装置の追尾を行う様構成された飛行体の姿勢制御システムに係るものである。
本発明によれば、遠隔操縦可能な飛行装置に設けられる姿勢検出装置であって、該姿勢検出装置は受光部と姿勢検出部とを有し、前記受光部は照射されるレーザ光線の一部を透過し、残部を再帰反射するハーフミラーと、該ハーフミラーを透過したレーザ光線を受光し、受光レーザ光線の光束断面形状を検出可能な受光素子とを有し、前記レーザ光線は所定の光束断面形状を有し、前記姿勢検出部は前記受光素子からの受光信号に基づき前記光束断面形状の変化を演算し、前記光束断面形状の変化に基づき前記受光部へ入射するレーザ光線の入射角、入射方向を検出し、検出した入射角、入射方向に基づき前記飛行装置の姿勢を検出する様構成されたので、累積誤差、回路上のドリフト等はなく、安定して飛行体の向き、飛行体の姿勢を制御することができる。
又本発明によれば、遠隔操縦可能な飛行装置と、上記のいずれかの姿勢検出装置と、前記飛行装置を追尾可能な位置測定装置と、前記飛行装置と前記位置測定装置と無線通信可能な遠隔操縦機とを有する測量システムであって、前記飛行装置は、複数で且つ偶数のプロペラフレームに設けられたプロペラユニットと、前記遠隔操縦機と無線通信可能であり、前記プロペラユニットの駆動を制御可能な制御装置とを具備し、前記位置測定装置は測距光として所定光束断面を有するレーザ光線を前記受光部に照射し、前記ハーフミラーは反射測距光として前記測距光の一部を再帰反射し、残部を追尾光として前記受光素子で受光し、前記位置測定装置は再帰反射光を受光し、前記飛行装置を位置測定する様構成され、前記制御装置は前記姿勢検出部の検出結果に基づき前記プロペラユニットを駆動し前記飛行装置の姿勢を制御する様構成されたので、前記姿勢検出部からの安定した姿勢検出結果に基づき飛行体の向き、飛行体の姿勢を制御することができるという優れた効果を発揮する。
本発明の実施例に係る測量システムの構成図である。 UAVの制御系を示す概略ブロック図である。 UAVの受光部の説明図である。 トータルステーションの概略ブロック図である。 遠隔操縦機の概略ブロック図である。 (A)(B)は、受光される追尾光の光束断面形状とUAVの傾きとの関係を示す説明図である。 本実施例の受光部の変更例の細密受光部の説明図であり、(A)は細密受光部の断面の説明図、(B)は細密受光素子の受光面の説明図である。 (A)は前記細密受光部のレンズシートの斜視図、(B)(C)は微小球体レンズの作用説明図である。 本実施例の受光部の他の変更例を示す説明図である。 本実施例の受光部の更に他の変更例を示す説明図であり、(A)は追尾光が受光素子に入射した状態、(B)(C)(D)は受光素子の受光状態を示す説明図である。
以下、図面を参照しつつ本発明の実施例を説明する。
先ず、図1に於いて、本発明の実施例に係る飛行体の姿勢制御システムについて説明する。
飛行体の姿勢制御システム1は、主に飛行装置(UAV)2、該UAV2を追尾可能な位置測定装置、例えばトータルステーション3、及び遠隔操縦機4から構成される。
前記UAV2は、主に飛行体5と、該飛行体5の上面又は下面に設けられる測定器と、前記トータルステーション3からの追尾光を受光する受光部7と、飛行体通信部8とを有する。
前記受光部7は、追尾光の受光結果を姿勢検出部35(図2参照)に入力する。該姿勢検出部35は受光結果に基づき点群データ取得時の前記飛行体5の姿勢を検出する。
前記飛行体通信部8は、前記トータルステーション3及び前記遠隔操縦機4との間で、制御信号の通信、データ通信等の通信を行う。
前記測定器は、本実施例では飛行体5の下面に設けられており、測定器としてレーザスキャナ6が用いられている。尚、測定器としては、その他写真測量用の撮像装置等が挙げられる。
前記飛行体5には基準点が設定されている。該基準点は、例えば前記飛行体5の機械中心であり、該基準点と前記レーザスキャナ6の測定基準点との位置関係は、既知となっている。
前記飛行体5は、放射状に延出する複数で且つ偶数のプロペラフレーム11(図示では11a~11d)を有し、該プロペラフレーム11の先端にプロペラユニット12a~12dが設けられる。該プロペラユニット12a~12dは、それぞれプロペラモータとプロペラとを含む。
前記レーザスキャナ6は、パルス発光又はバースト発光されたレーザ光線を測距光(以下、パルス測距光)として射出し、走査鏡(図示せず)を介してパルス測距光を回転照射する。該走査鏡は、水平軸心を中心に鉛直方向に1軸で回転する。従って、パルス測距光は、前記飛行体5の基準点を含む鉛直平面内で1次元に回転照射される。
測定対象物で反射されたパルス測距光は、パルス測距毎に測定され、パルス測距光の回転照射によって点群データが取得される。尚、バースト発光については、特許文献2に開示されている。
前記トータルステーション3は、既知点(既知の3次元座標を有する点)に設けられ、追尾光を前記飛行体5に照射し、該飛行体5を追尾しながら、前記飛行体5の位置(3次元座標)をリアルタイムで測定する。該飛行体5の位置がリアルタイムで測定されることで、点群データ取得時の前記飛行体5の位置(3次元座標)が測定され、点群データは前記トータルステーション3を基準とした3次元データに換算することができる。
前記遠隔操縦機4は、例えばスマートフォンやタブレット等の携帯端末、或は該携帯端末に入力装置が接続又は一体化された装置となっている。前記遠隔操縦機は、演算機能を有する演算装置、データ、プログラムを格納する記憶部、更に端末通信部(後述)を有している。前記遠隔操縦機4は、前記UAV2、前記トータルステーション3との間で無線通信が可能となっている。更に、前記遠隔操縦機4は、前記飛行装置2の飛行を遠隔操作し、前記レーザスキャナ6による測距作動も遠隔操作可能となっている。
前記UAV2について、図2を参照して更に説明する。
前記飛行体5は、制御装置27を内蔵している。該制御装置27は、主に演算制御部28、記憶部29、飛行制御部32、プロペラユニットドライバ部33、スキャナ制御部34、前記姿勢検出部35、前記飛行体通信部8とを具備している。
尚、本実施例では、前記スキャナ制御部34が前記制御装置27に含まれているが、別構成としてもよい。例えば、前記レーザスキャナ6内に前記スキャナ制御部34を設け、前記飛行体通信部8を介して前記飛行体5と前記レーザスキャナ6との間で制御信号の授受を行ってもよい。
前記記憶部29には、プログラム格納部とデータ格納部とが形成される。前記プログラム格納部には、前記プロペラユニット12a~12dを駆動制御する為の飛行制御プログラム、前記レーザスキャナ6による測距作動を制御する測距プログラム、取得したデータを前記遠隔操縦機4に送信し、又該遠隔操縦機4からの飛行指令や撮像指令を受信する為の通信プログラム、前記受光部7からの受光結果に基づき飛行体5の姿勢を検出する姿勢検出プログラム、前記姿勢検出部35の姿勢検出結果に基づき飛行体5の姿勢を制御す姿勢制御プログラム等のプログラムが格納されている。
前記データ格納部には、前記レーザスキャナ6で取得された点群データ等のデータ類が格納される。
前記スキャナ制御部34は、前記レーザスキャナ6の駆動を制御する。即ち、前記スキャナ制御部34は、パルス測距光の発光間隔、前記走査鏡の回転速度等を制御し、該走査鏡を介して前記パルス測距光を回転照射する。即ち、前記スキャナ制御部34は、前記レーザスキャナ6から照射されるパルス測距光の照射点間隔、点群密度を制御する。又、反射パルス測距光の受光結果は前記走査鏡の回転角と関連づけられて前記演算制御部28に入力され、測距及び測角が実行される。
前記飛行体通信部8は、前記飛行体5が前記遠隔操縦機4で遠隔操作される場合に、前記遠隔操縦機4からの操縦信号、或は前記レーザスキャナ6に対するコマンドを受信し、該操縦信号を前記演算制御部28に入力する。或は、前記レーザスキャナ6で取得した測定データ、姿勢検出データ(後述)等のデータを前記遠隔操縦機4に送信する等の機能を有する。
前記演算制御部28は、前記記憶部29に格納された各種プログラムに基づき、測定対象物をパルス測距光で走査(測定)する為の各種制御を実行する。又、前記演算制御部28は、前記飛行制御部32、前記スキャナ制御部34に制御信号を発し、これら制御部の統合制御を実行する。
前記飛行制御部32は、前記演算制御部28からの飛行に関する制御信号に基づき前記プロペラユニットドライバ部33を介して前記プロペラユニット12a~12dを個別に制御し、前記UAV2を所要の状態で飛行させる。例えば、前記飛行制御部32は、前記プロペラユニット12a~12dを制御し、上昇/下降、前進/後退、ホバリング、ホバリングした状態で水平方向に回転させる等の飛行を実行する。
図3を参照して、前記受光部7、前記姿勢検出部35について、説明する。
該姿勢検出部35は、前記受光部7からの受光結果に基づき前記飛行体5の姿勢を検出する。
前記受光部7について説明する。
該受光部7は、前記飛行体5の下面、或は側面に設けられ、下方からの光線(追尾光)を受光し易い位置に配置される。又、前記受光部7の受光位置と前記飛行体5の基準点との位置関係は既知となっている。
前記受光部7は、受光窓7a及び受光素子7bを含んでいる。前記受光窓7aは、照射される追尾光の一部を透過し、残りを反射するハーフミラーとなっており、前記受光素子7bは透過した光線を受光し、受光信号を発する様になっている。
又、前記受光素子7bの受光面は多数の画素の集合体で構成され、各画素から発せられる受光信号は、受光強度(受光光量)と共に各画素の受光面内の位置を特定する位置情報を含んでいる。受光素子としては、例えば、CCD或はCMOSセンサ等が用いられる。
前記姿勢検出部35には前記受光素子7bからの受光信号が入力され、前記姿勢検出部35は前記受光信号に基づき受光強度(受光光量)を検出すると共に入射光の受光中心位置(例えば、受光光量の重心位置)を検出し、更に各画素の受光信号と位置情報とを関連付けて受光形状(光束断面形状)を検出する様になっている。
次に、図4を参照してトータルステーション3の概略を説明する。
該トータルステーション3は、主に測定制御装置41、測距部42、追尾部43、視準光学系44、測角部45、測定通信部46、駆動部47、測定記憶部48等を具備している。
前記視準光学系44は、測定対象物を視準する。前記測距部42は、前記視準光学系44を介して測距光49としてのレーザ光線を射出し、更に前記視準光学系44を介して前記測定対象物からの反射光を受光し、測距を行う。即ち、前記測距部42は光波距離計としての機能を有する。
前記測距部42は、プリズム測定及びノンプリズム測定が可能であり、プリズム測定の場合は、測定対象物を再帰反射体とし、再帰反射体からの反射光を受光して測定を行う。再帰反射体としては、プリズム、反射シート等が用いられる。又、ノンプリズム測定の場合は、測定対象物の自然面からの反射光を受光して測定を行う。
プリズム測定の場合、プリズム測定を実行しつつ前記追尾部43による前記測定対象物の追尾が可能である。本実施例では、前記受光部7が再帰反射特性を有する測定対象物となっている。
前記追尾部43は、追尾光としてのレーザ光線を測定対象物に射出し、測定対象物からの再帰反射光を受光素子で受光し、再帰反射光の受光位置が所定範囲内となる様に、前記視準光学系44を測定対象物に追尾させる。尚、前記測距光49を追尾光として、使用することも可能であり、本実施例では、測距光49が追尾光として使用されている場合を説明する。
前記測角部45は、測距時の前記視準光学系44の視準光軸の水平角、鉛直角をそれぞれ測角する。前記測角部45の測角結果は、前記測定制御装置41に入力される。該測定制御装置41は、測角結果と測距結果とを関連付け、測定点の測定結果を3次元データとする。
前記視準光学系44からは平行光束の前記測距光49が照射されるが、該測距光49の光束の断面形状は、前記飛行体5の姿勢(傾斜)対応して、前記受光部7が受光する光束の断面形状が変化する様に設定される。例えば、後述する様に楕円断面に設定される。
上記した様に、前記受光部7に照射された前記測距光49は、一部が透過し、前記受光素子7bに受光され、残部は前記受光窓7aにより再帰反射されて前記測距部42に受光され、測定が実行され、又前記追尾部43に受光され、追尾が実行される。
前記測定記憶部48には、測定対象物の測距を行う為の測定プログラム、測定対象物の追尾を行う為の追尾プログラム、前記飛行装置2及び前記遠隔操縦機4と通信を行う為の通信プログラム等のプログラムが格納されている。又、前記測定記憶部48には、前記測定対象物の測定結果(測距結果、測角結果)が格納される。
前記測定通信部46は、測定結果(斜距離、水平角、鉛直角)をリアルタイムで前記遠隔操縦機4に送信する。
前記駆動部47は、前記受光部7に前記視準光学系44を視準させる為に、或は前記受光部7を追尾させる為に、前記視準光学系44を水平方向に、或は鉛直方向に回転させる。
前記トータルステーション3は、前記受光部7、即ち前記飛行体5を追尾しつつ測距し、測距結果と前記測角部45の検出結果に基づき、前記飛行体5の基準点の3次元座標をリアルタイムで測定する。
図5を参照して、前記遠隔操縦機4について説明する。
前記遠隔操縦機4は、例えばスマートフォンやタブレット等の携帯端末、或は該携帯端末に入力装置が接続又は一体化された装置となっている。前記遠隔操縦機4は、演算機能を有する端末演算処理部51、データ、プログラムを格納する端末記憶部52、端末通信部53、操作部54、表示部55を有している。
前記遠隔操縦機4は、前記端末通信部53と前記飛行体通信部8との間で無線通信、光通信が可能となっている。前記遠隔操縦機4は、前記飛行装置2の飛行を遠隔操作し、前記レーザスキャナ6による測距作動も遠隔操作可能となっている。
前記端末演算処理部51は、前記操作部54から入力された指令に基づき制御用のコマンドを作成し、前記端末通信部53を介して前記UAV2に送信する。又、前記UAV2から送信された画像データ、測定データ等を前記端末記憶部52に格納し、或は前記表示部55に表示させる。
該端末記憶部52には、前記飛行装置2及び前記トータルステーション3との通信を行う為の通信プログラム、前記レーザスキャナ6で取得された点群データ等を表示する為の表示プログラム、タッチパネル等を介して指示を入力する為の操作プログラム、制御用のコマンドを作成する為プログラム、等のプログラムが格納される。
前記端末通信部53は、前記飛行装置2の飛行体通信部8との間で、或はトータルステーション3の測定通信部46との間で通信を行う。又、前記操作部54は前記表示部55と一体に設けられたコントローラのボタン等を介して各種指示を入力し、前記飛行体5の操作を行う。
前記表示部55は、前記トータルステーション3で測定された測定結果、前記レーザスキャナ6で取得された点群データ、操作状況等が表示される。
尚、前記表示部55の全てをタッチパネルとしてもよい。該表示部55が全てタッチパネルである場合には、前記操作部54を省略してもよい。この場合、前記表示部55には前記飛行体5を操作する為の操作パネルが設けられる。
上記測量システムによる測定作動について説明する。
前記トータルステーション3を既知の設置点(地心座標系(グローバル座標系)で3次元座標が既知の点)に設置する。尚、測定対象物が建造物等で形状測定を行う場合等で地心座標系の3次元座標を必要としない場合は、測定対象物に対して既知化された点を設置点としてもよい。
飛行前、前記UAV2が着地した状態で、前記トータルステーション3によりUAV2(即ち受光部7)を視準し、追尾を開始した後、前記遠隔操縦機4からの遠隔操縦で前記UAV2を測定領域上方に飛行させ、更に前記遠隔操縦機4からの遠隔操作で前記レーザスキャナ6を駆動し、レーザスキャンによる点群データの取得を開始する。
前記レーザスキャナ6による一次元のスキャン作動と前記UAV2の飛行で2次元にレーザスキャンされ、2次元スキャンの点群データが取得される。該点群データは、前記記憶部29に一時格納され、逐次、前記飛行体通信部8を介して前記遠隔操縦機4に送信され、前記端末記憶部52に格納される。
飛行中、前記トータルステーション3が前記UAV2の追尾を実行することで、前記測距光49が前記受光部7に照射され、該受光部7(即ち、前記受光窓7a)からの反射測距光49が前記視準光学系44を介して前記測距部42に受光され、該測距部42により測距がリアルタイムで実行される。
更に、前記測距光49の一部が追尾光として前記受光窓7aを透過し、前記受光素子7bに受光される。
ここで、前記測距光49の光束断面形状について説明する。
上記した様に、該測距光49の光束の断面形状は、前記飛行体5の姿勢(傾斜)対応して、前記受光部7が受光する光束の断面形状が変化する様に設定される。
前記測距光49の光束の断面形状の一例として、図1中のAで示している。Aでは前記測距光49の光束断面形状が楕円であり、楕円の長軸が鉛直(又は水平)に対して所定の角度、例えば45゜傾斜したものとなっている。或は、前記UAV2が水平姿勢で、前記測距光49を受光した場合の光束断面の形状を、長軸が鉛直(又は水平)に対して所定の角度、例えば45゜傾斜する様に設定してもよい。尚、光束の断面形状としては、長軸と短軸を有する形状であれば楕円に限定されるものではなく、例えば長方形、略長方形、或は長方形に内接する十字形等であってもよい。
図6(A)、図6(B)は、前記受光素子7bを透過した測距光(以下、追尾光)が前記受光素子7bに受光された光束断面の状態を示し、又前記UAV2に姿勢に対応して光束断面が変化していることを示している。又、図6(A)、図6(B)中、Gは光量重心を示している。
前記UAV2の傾斜について、3方向の回転(傾斜)が考えられる。図1を参照して、x軸を中心とする回転角をω、y軸を中心とする回転角をφ、z軸を中心とする回転角をκとする。
図1を参照して、前記UAV2がy軸を中心として回転(傾斜)した場合、前記追尾光の光束断面の形状は、楕円の長軸の傾斜角度θに変化が現れる。又、前記UAV2がz軸を中心として回転(傾斜)した場合、前記追尾光の光束断面の形状は、楕円の水平方向の長さHに変化が現れる。又、前記UAV2がx軸を中心として回転(傾斜)した場合、前記追尾光の光束断面の形状は、楕円の鉛直方向の長さVに変化が現れる。
図6(A)中、傾斜角度θ1、水平長さH1、鉛直長さV1とし、更に図6(B)中、傾斜角度θ2、水平長さH2、鉛直長さV2とし、図6(A)の光束断面形状と図6(B)の光束断面形状とを比較すると、V1=V2となっているのでx軸に関する傾斜(回転)はなく、θ1<θ2となっているのでθ1-θ2の角度だけy軸に関して反時計方向に回転し、又H1>H2となっているのでz軸に関してH1-H2の変位に対応する傾斜(回転)が発生したことが分る。
更に、前記UAV2がx軸を中心とする傾斜ωと鉛直長さVとは相関関係があり、従って、傾斜角ωは鉛直長さVの関数であり、ω=f(V)となる。
同様に前記UAV2がy軸を中心とする傾斜φと長軸の傾斜角度θとは相関関係があり、従って、傾斜角φは傾斜角θの関数であり、φ=f(θ)となる。
同様に前記UAV2がz軸を中心とする傾斜角κと水平長さHとは相関関係があり、従って、傾斜角κは水平長さHの関数であり、κ=f(H)となる。
従って、関数、ω=f(V)、φ=f(θ)、κ=f(H)を予め求めておけば、前記姿勢検出部35は前記受光素子7bからの受光信号に基づき、V,θ,Hを検出し、該V,θ,H及び前記ω=f(V)、φ=f(θ)、κ=f(H)に基づき前記UAV2の3方向の傾斜角を演算することができる。
前記姿勢検出部35は演算結果を前記演算制御部28に入力し、該演算制御部28は演算結果に基づき前記飛行制御部32を介して前記飛行体5の姿勢を制御する。尚、x軸を中心とする回転角、y軸を中心とする回転角、z軸を中心とする回転角について、回転方向はそれぞれ右ネジの方向を+とする。
更に、前記受光部7による受光結果に基づき、追尾制御を行うことができる。
前記受光素子7bで受光した追尾光の光量重心を演算し、更に、該光量重心と前記受光素子7bの基準位置(例えば、前記受光素子7bの中心)との偏差を検出する。検出結果は、前記飛行体通信部8を介して前記測定通信部46にリアルタイムで送信され、更に測定制御装置41に入力される。該測定制御装置41は前記追尾部43により前記偏差が0になる様に測距光49を前記UAV2に追尾させる。
図7、図8を参照して前記受光部7の変更例を説明する。
該変更例では、受光部7の中心部に細密受光部60を設ける。
該細密受光部60は、前記受光窓7aの中心部、レンズシート61、細密受光素子62を有し、更に前記レンズシート61は多数の微小球体レンズ63を同一平面上に密着させて配置し、シート状に構成したものである(図8(A)参照)。
前記細密受光素子62は、受光部が碁盤目状に区分され、各区分62aは前記微小球体レンズ63毎に対応して設けられている。又、前記レンズシート61と前記細密受光素子62間の距離は、前記微小球体レンズ63の焦点距離となっており、各微小球体レンズ63がそれぞれ対応する前記区分62aに結像する様に構成されている。
又該区分62aは各区分毎に受光信号を発すると共に、各区分内62aでの受光位置Pも受光位置情報として出力する様になっている。
前記測距光49が前記細密受光部60に入射した場合、前記測距光49の結像位置は、前記測距光49の入射角に対応して変化する。図8(B)は、前記測距光49がレンズシート61に対して垂直に入射し、図8(C)は前記測距光49が前記レンズシート61に対して斜めに入射した場合を示している。
従って、前記測距光49が前記細密受光部60に垂直入射した時の各区分62aの受光位置Pを初期値として保存し、その後入射角の変化があった場合に、初期値に対する受光位置Pの変化を検出すれば、受光位置Pの変化に基づき入射角の変化、入射方向の変化を求めることができる。
従って、追尾に於いて、大きな角度変化は、前記受光素子7bからの検出結果に基づき求め、前記測距光49の入射角が、前記受光部7に略垂直となり、各微小球体レンズ63による結像位置が対応する前記区分62a内となった状態で、前記細密受光部60からの検出結果に基づき追尾を実行すれば、高精度の追尾が可能となる。
図9は、前記受光部7の他の変更例を示しており、該他の変更例に於いて、追尾光をx軸、y軸、z軸方向に分岐して受光し、各軸について光束断面形状の楕円の長軸の角度変化を検出する様にしてもよい。
図10は、前記受光部7の更に他の変更例を示している。該他の変更例では受光素子7bを所定の頂角を有する円錐形状とし、追尾光の光束断面を長軸が鉛直な楕円としている。尚、円錐形状の頂角としては入射角の変化が受光状態に反映される角度であればよく、例えば90°とする。
図10(A)に示される様に、追尾光49aが受光素子7bの中心に垂直に入射した場合、受光素子7bでの受光形状は図10(B)に示される様に光束断面と同形の楕円形71となり、又図10(A)に示される様に、追尾光49bが受光素子7bに対して傾斜して入射した場合、受光素子7bでの受光形状は図10(C)に示される様に前記楕円形71の前記受光素子7bの中心から傾斜方向側の部分が更に延びる非対称な楕円72(卵形状の楕円)となる。又、傾斜角度は前記非対称な楕円72の長軸73を前記受光素子7bの中心で分割すると、傾斜側の分割長73aはα伸長し、反対側の分割長73bはβ短縮する、従って、分割長73aと分割長73bの比、及び円錐形状の頂角に基づき傾斜角を求めることができる。更に、傾斜方向は分割長の長短によって判別できる。
又、前記追尾光49aの短軸方向に傾斜した場合も同様にして傾斜角、傾斜方向を検出することができる。
更に、傾斜方向が長軸方向と短軸方向との間の場合は、長軸方向で得られる傾斜角、短軸方向で得られる傾斜角の合成によって求めることができる。
又、前記追尾光49aの光軸を中心とする回転角θについては、光束断面形状の楕円の長軸の鉛直に対する角度を求めればよい(図10(D)参照)。
尚、該他の変更例の場合、光束断面形状を十字形状としてもよい。この場合、分割長の伸縮、回転が明確なる。
尚、他の変更例の場合、追尾に関する検出はトータルステーション3の追尾部43で行い、追尾光が常に前記受光素子7bの中心に照射される様に前記測定制御装置41によって制御されることが好ましい。
その他、本実施例に於いて、前記遠隔操縦機4をデータコレクタとして使用し、取得したデータの座標変換、統合処理等のデータ処理については、別途PC等の演算処理装置で実行してもよい。
1 姿勢制御システム
2 UAV
3 位置測定装置
4 遠隔操縦機
5 飛行体
6 レーザスキャナ
7 受光部
8 飛行体通信部
27 制御装置
28 演算制御部
29 記憶部
32 飛行制御部
34 スキャナ制御部
35 姿勢検出部
41 測定制御装置
43 追尾部
44 視準光学系
51 端末演算処理部
53 端末通信部
60 細密受光部

Claims (8)

  1. 遠隔操縦可能な飛行装置に設けられる姿勢検出装置であって、該姿勢検出装置は受光部と姿勢検出部とを有し、前記受光部は照射されるレーザ光線の一部を透過し、残部を再帰反射するハーフミラーと、該ハーフミラーを透過したレーザ光線を受光し、受光レーザ光線の光束断面形状を検出可能な受光素子とを有し、前記レーザ光線は所定の光束断面形状を有し、前記姿勢検出部は前記受光素子からの受光信号に基づき前記光束断面形状の変化を演算し、前記光束断面形状の変化に基づき前記受光部へ入射するレーザ光線の入射角、入射方向を検出し、検出した入射角、入射方向に基づき前記飛行装置の姿勢を検出する様構成された飛行体の姿勢検出装置。
  2. 前記光束断面形状は、長軸、短軸を有し、長軸又は短軸が鉛直に対して傾斜した形状であり、前記姿勢検出部は前記長軸の回転変化、光束断面の受光面上での水平方向の長さ変化、光束断面の受光面上での鉛直方向の長さ変化に基づき、前記飛行装置の3軸方向の傾斜角を演算する様構成された請求項1に記載の飛行体の姿勢検出装置。
  3. 前記受光部の中心部に細密受光部が設けられ、該細密受光部は微小球体レンズから構成されるレンズシートと、前記微小球体レンズそれぞれに対応した区分を有する細密受光素子とを具備し、前記微小球体レンズを透過した光線が前記区分に結像される様構成され、該区分内での結像位置に基づき前記飛行装置の傾斜角、傾斜方向を検出する様構成された請求項1に記載の飛行体の姿勢検出装置。
  4. 前記受光素子の受光面は円錐形状である請求項1又は請求項2に記載の飛行体の姿勢検出装置。
  5. 前記受光部に入射したレーザ光線を互いに直交する3軸に分岐し、各軸を中心とする回転角、回転方向を検出する様構成された請求項1又は請求項2に記載の飛行体の姿勢検出装置。
  6. 遠隔操縦可能な飛行装置と、請求項1~請求項5のいずれかの姿勢検出装置と、前記飛行装置を追尾可能な位置測定装置と、前記飛行装置と前記位置測定装置と無線通信可能な遠隔操縦機とを有する測量システムであって、前記飛行装置は、複数で且つ偶数のプロペラフレームに設けられたプロペラユニットと、前記遠隔操縦機と無線通信可能であり、前記プロペラユニットの駆動を制御可能な制御装置とを具備し、前記位置測定装置は測距光として所定光束断面を有するレーザ光線を前記受光部に照射し、前記ハーフミラーは反射測距光として前記測距光の一部を再帰反射し、残部を追尾光として前記受光素子で受光し、前記位置測定装置は再帰反射光を受光し、前記飛行装置を位置測定する様構成され、前記制御装置は前記姿勢検出部の検出結果に基づき前記プロペラユニットを駆動し前記飛行装置の姿勢を制御する様構成された飛行体の姿勢制御システム。
  7. 前記位置測定装置は、前記受光部からの再帰反射光を受光し、受光結果に基づき前記飛行装置を追尾する様構成された請求項6に記載の飛行体の姿勢制御システム。
  8. 飛行体通信部は、前記姿勢検出部の検出結果をリアルタイムで前記位置測定装置に送信し、該位置測定装置は受信した受光結果に基づき前記飛行装置の追尾を行う様構成された請求項6に記載の飛行体の姿勢制御システム。
JP2021049468A 2021-03-24 2021-03-24 飛行体の姿勢検出装置及び姿勢制御システム Pending JP2022147973A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021049468A JP2022147973A (ja) 2021-03-24 2021-03-24 飛行体の姿勢検出装置及び姿勢制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021049468A JP2022147973A (ja) 2021-03-24 2021-03-24 飛行体の姿勢検出装置及び姿勢制御システム

Publications (1)

Publication Number Publication Date
JP2022147973A true JP2022147973A (ja) 2022-10-06

Family

ID=83463296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021049468A Pending JP2022147973A (ja) 2021-03-24 2021-03-24 飛行体の姿勢検出装置及び姿勢制御システム

Country Status (1)

Country Link
JP (1) JP2022147973A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117792482A (zh) * 2024-02-23 2024-03-29 电子科技大学 一种基于大型无人机控制的北斗短消息通信恢复方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117792482A (zh) * 2024-02-23 2024-03-29 电子科技大学 一种基于大型无人机控制的北斗短消息通信恢复方法
CN117792482B (zh) * 2024-02-23 2024-05-31 电子科技大学 一种基于大型无人机控制的北斗短消息通信恢复方法

Similar Documents

Publication Publication Date Title
US10324183B2 (en) UAV measuring apparatus and UAV measuring system
US10983196B2 (en) Laser scanner and surveying system
JP7139052B2 (ja) 測量システム
KR101553998B1 (ko) 무인 항공기를 제어하기 위한 시스템 및 방법
JP5882951B2 (ja) 飛行体誘導システム及び飛行体誘導方法
JP7077013B2 (ja) 三次元情報処理部、三次元情報処理部を備える装置、無人航空機、報知装置、三次元情報処理部を用いた移動体制御方法および移動体制御処理用プログラム
JP6326237B2 (ja) 測定システム
CA2831682C (en) Measuring system for determining 3d coordinates of an object surface
US11460299B2 (en) Survey system
US20170131404A1 (en) Surveying System
JP6823482B2 (ja) 三次元位置計測システム,三次元位置計測方法,および計測モジュール
EP3644012B1 (en) Surveying instrument
JP6302660B2 (ja) 情報取得システム、無人飛行体制御装置
JP6577083B2 (ja) 測定システム
US11630186B2 (en) Target device and measuring system
JP2017224123A (ja) 無人飛行装置制御システム、無人飛行装置制御方法および無人飛行装置
JP2022147973A (ja) 飛行体の姿勢検出装置及び姿勢制御システム
JP2022057277A (ja) 測量システム
US20220317149A1 (en) Reversing actuation type inertia detecting device and surveying instrument
JP2018138922A (ja) 測定システム
JP2023081234A (ja) 測量システムおよび測量システムの制御方法
JP2019219206A (ja) 測定システム
JP2023048409A (ja) 測量システム
US11754677B2 (en) Measurement device
US20240112327A1 (en) Bar arrangement inspection system and bar arrangement inspection method