JP2022145470A - Cathode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, battery module and battery system - Google Patents

Cathode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, battery module and battery system Download PDF

Info

Publication number
JP2022145470A
JP2022145470A JP2021197130A JP2021197130A JP2022145470A JP 2022145470 A JP2022145470 A JP 2022145470A JP 2021197130 A JP2021197130 A JP 2021197130A JP 2021197130 A JP2021197130 A JP 2021197130A JP 2022145470 A JP2022145470 A JP 2022145470A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
current collector
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021197130A
Other languages
Japanese (ja)
Other versions
JP7157863B2 (en
Inventor
輝 吉川
Teru Yoshikawa
裕一 佐飛
Yuichi Satobi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021045979A external-priority patent/JP2022144809A/en
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2021197130A priority Critical patent/JP7157863B2/en
Publication of JP2022145470A publication Critical patent/JP2022145470A/en
Application granted granted Critical
Publication of JP7157863B2 publication Critical patent/JP7157863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a cathode for a nonaqueous electrolyte secondary battery, which enables the reduction in impedance of a nonaqueous electrolyte secondary battery.
SOLUTION: A cathode for a nonaqueous electrolyte secondary battery comprises: a cathode collector 11 including a cathode collector body 14 made of a metal material; and a cathode active material layer 12 present on the cathode collector 11. The cathode active material layer 12 contains a cathode active material. The cathode active material has, on at least part of its surface, an active material-coating portion containing a conductive material. The cathode collector body 11 has, on at least part of its surface on the side of the cathode active material layer 12, a collector coating layer 15 containing a conductive material. The ratio of a thickness of the collector coating layer 15 to a thickness of the cathode active material layer 12 is above 0.000 and below 0.020.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明は、非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システムに関する。 The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, a battery module, and a battery system using the same.

非水電解質二次電池は、一般的に、正極、非水電解質、負極、及び正極と負極との間に設置される分離膜(セパレータ)により構成される。
非水電解質二次電池の正極としては、リチウムイオンを含む正極活物質、導電助剤、及び結着材からなる組成物を、金属箔(集電体)の表面に固着させたものが知られている。 リチウムイオンを含む正極活物質としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等のリチウム遷移金属複合酸化物や、リン酸鉄リチウム(LiFePO)等のリチウムリン酸化合物が実用化されている。
A non-aqueous electrolyte secondary battery is generally composed of a positive electrode, a non-aqueous electrolyte, a negative electrode, and a separation membrane (separator) placed between the positive electrode and the negative electrode.
As a positive electrode for non-aqueous electrolyte secondary batteries, there is known one in which a composition comprising a positive electrode active material containing lithium ions, a conductive aid, and a binder is adhered to the surface of a metal foil (current collector). ing. Examples of positive electrode active materials containing lithium ions include lithium transition metal composite oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and lithium iron phosphate ( LiFePO 4 ) and other lithium phosphate compounds have been put to practical use.

特許文献1は、アルミニウム箔集電体と、リチウム遷移金属複合酸化物を含む正極活物質層との間に、カーボンを導電剤とする導電性塗料層を設けた正極を備える非水電解質二次電池に関するものである。実施例には、正極活物質層厚みbが一定の場合に、導電性塗料層厚みaが大きいほど、サイクル寿命特性は向上し初期容量が低下することが示されており、a/bが0.02~0.1であるときに、容量の維持ができ、かつ良好なサイクル寿命特性を示すことが記載されている。 Patent Document 1 discloses a non-aqueous electrolyte secondary comprising a positive electrode provided with a conductive paint layer using carbon as a conductive agent between an aluminum foil current collector and a positive electrode active material layer containing a lithium transition metal composite oxide. It relates to batteries. Examples show that when the thickness b of the positive electrode active material layer is constant, the greater the thickness a of the conductive paint layer, the better the cycle life characteristics and the lower the initial capacity, and a/b is 0. It is described that when the ratio is from 0.02 to 0.1, the capacity can be maintained and good cycle life characteristics are exhibited.

特開2001-351612号公報Japanese Patent Application Laid-Open No. 2001-351612

しかし、特許文献1の方法は必ずしも充分ではなく、電池特性のさらなる向上が求められている。
本発明は、非水電解質二次電池のインピーダンスを低減できる非水電解質二次電池用正極を提供する。
However, the method of Patent Document 1 is not necessarily sufficient, and further improvement in battery characteristics is required.
The present invention provides a positive electrode for a non-aqueous electrolyte secondary battery that can reduce the impedance of the non-aqueous electrolyte secondary battery.

本発明は以下の態様を有する。
[1]金属材料からなる正極集電体本体を備える正極集電体と、前記正極集電体上に存在する正極活物質層とを有し、前記正極活物質層が正極活物質を含み、前記正極活物質の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在し、前記正極集電体本体の、前記正極活物質層側の表面の少なくとも一部に、導電材料を含む集電体被覆層が存在し、前記正極活物質層の厚みに対する前記集電体被覆層の厚みの比が0.000超、0.020未満である、非水電解質二次電池用正極。
[2]前記正極集電体の両面に前記正極活物質層が存在し、前記両面の正極活物質層の合計の単位面積あたりの質量が30~150mg/cmである、[1]の非水電解質二次電池用正極。
[3]前記正極活物質層の剥離強度が7~1,000mN/cmである、[1]又は[2]の非水電解質二次電池用正極。
[4]前記正極集電体の両面に前記正極活物質層が存在し、前記非水電解質二次電池用正極から前記正極集電体本体を除いた残部の厚みが50~500μmである、[1]~[3]のいずれかの非水電解質二次電池用正極。
[5] 前記正極活物質が、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含む、[1]~[4]のいずれかの非水電解質二次電池用正極。
[6] 前記正極活物質が、LiFePOで表されるリン酸鉄リチウムである、[5]の非水電解質二次電池用正極。
[7]前記正極活物質層が、さらに導電助剤を含む、[1]~[6]のいずれかの非水電解質二次電池用正極。
[8]前記正極活物質層が導電助剤を含まない、[1]~[6]のいずれかの非水電解質二次電池用正極。
[9]前記[1]~[8]のいずれかの非水電解質二次電池用正極、負極、及び前記非水電解質二次電池用正極と負極との間に存在する非水電解質を備える、非水電解質二次電池。
[10]前記[9]の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。
The present invention has the following aspects.
[1] A positive electrode current collector comprising a positive electrode current collector main body made of a metal material, and a positive electrode active material layer present on the positive electrode current collector, wherein the positive electrode active material layer contains a positive electrode active material, An active material coating portion containing a conductive material is present on at least part of the surface of the positive electrode active material, and at least part of the surface of the positive electrode current collector main body on the positive electrode active material layer side contains the conductive material. A positive electrode for a non-aqueous electrolyte secondary battery, wherein a current collector coating layer is present, and the ratio of the thickness of the current collector coating layer to the thickness of the positive electrode active material layer is more than 0.000 and less than 0.020.
[2] The non-active material of [1], wherein the positive electrode active material layers are present on both sides of the positive electrode current collector, and the total mass per unit area of the positive electrode active material layers on both sides is 30 to 150 mg/cm 2 . Positive electrode for water electrolyte secondary battery.
[3] The positive electrode for a nonaqueous electrolyte secondary battery of [1] or [2], wherein the positive electrode active material layer has a peel strength of 7 to 1,000 mN/cm.
[4] The positive electrode active material layer is present on both sides of the positive electrode current collector, and the thickness of the remainder of the positive electrode for a non-aqueous electrolyte secondary battery excluding the positive electrode current collector body is 50 to 500 μm, [ 1] to [3], the positive electrode for a non-aqueous electrolyte secondary battery.
[5] The positive electrode active material is represented by the general formula LiFe x M (1-x) PO 4 (where 0≦x≦1 and M is Co, Ni, Mn, Al, Ti or Zr). The positive electrode for a non-aqueous electrolyte secondary battery according to any one of [1] to [4], which contains a compound of
[6] The positive electrode for a nonaqueous electrolyte secondary battery of [5], wherein the positive electrode active material is lithium iron phosphate represented by LiFePO4 .
[7] The positive electrode for a nonaqueous electrolyte secondary battery according to any one of [1] to [6], wherein the positive electrode active material layer further contains a conductive aid.
[8] The positive electrode for a nonaqueous electrolyte secondary battery according to any one of [1] to [6], wherein the positive electrode active material layer does not contain a conductive aid.
[9] A positive electrode for a non-aqueous electrolyte secondary battery according to any one of [1] to [8], a negative electrode, and a non-aqueous electrolyte present between the positive electrode and the negative electrode for a non-aqueous electrolyte secondary battery, Non-aqueous electrolyte secondary battery.
[10] A battery module or battery system comprising a plurality of the non-aqueous electrolyte secondary batteries of [9] above.

本発明によれば、非水電解質二次電池のインピーダンスを低減できる非水電解質二次電池用正極が得られる。 ADVANTAGE OF THE INVENTION According to this invention, the positive electrode for nonaqueous electrolyte secondary batteries which can reduce the impedance of a nonaqueous electrolyte secondary battery is obtained.

本発明に係る非水電解質二次電池用正極の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a positive electrode for a non-aqueous electrolyte secondary battery according to the present invention; FIG. 本発明に係る非水電解質二次電池の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a non-aqueous electrolyte secondary battery according to the present invention; FIG. 正極活物質層の剥離強度の測定方法を説明するための工程図である。It is process drawing for demonstrating the measuring method of the peeling strength of a positive electrode active material layer.

本明細書及び特許請求の範囲において、数値範囲を示す「~」は、その前後に記載した数値を下限値及び上限値として含むことを意味する。
図1は、本発明の非水電解質二次電池用正極の一実施形態を示す模式断面図であり、図2は本発明の非水電解質二次電池の一実施形態を示す模式断面図である。
なお、図1、2は、その構成をわかりやすく説明するための模式図であり、各構成要素の寸法比率等は、実際とは異なる場合もある。
In the present specification and claims, "-" indicating a numerical range means that the numerical values before and after it are included as lower and upper limits.
FIG. 1 is a schematic cross-sectional view showing one embodiment of a positive electrode for a non-aqueous electrolyte secondary battery of the present invention, and FIG. 2 is a schematic cross-sectional view showing one embodiment of a non-aqueous electrolyte secondary battery of the present invention. .
1 and 2 are schematic diagrams for explaining the configuration in an easy-to-understand manner, and the dimensional ratios and the like of each component may differ from the actual ones.

<非水電解質二次電池用正極>
本実施形態の非水電解質二次電池用正極(単に「正極」ともいう。)1は、正極集電体11と正極活物質層12を有する。
正極活物質層12は正極集電体11の少なくとも一面上に存在する。正極集電体11の両面上に正極活物質層12が存在してもよい。
図1の例において、正極集電体11は、正極集電体本体14と、正極集電体本体14の正極活物質層12側の表面を被覆する集電体被覆層15とを有する。
<Positive electrode for non-aqueous electrolyte secondary battery>
A positive electrode for a non-aqueous electrolyte secondary battery (also simply referred to as “positive electrode”) 1 of this embodiment has a positive electrode current collector 11 and a positive electrode active material layer 12 .
The positive electrode active material layer 12 exists on at least one surface of the positive electrode current collector 11 . A positive electrode active material layer 12 may be present on both surfaces of the positive electrode current collector 11 .
In the example of FIG. 1, the positive electrode current collector 11 has a positive electrode current collector main body 14 and a current collector coating layer 15 that covers the surface of the positive electrode current collector main body 14 on the positive electrode active material layer 12 side.

[正極活物質層]
正極活物質層12は正極活物質を含む。正極活物質層12は、さらに結着材を含むことが好ましい。正極活物質層12は、さらに導電助剤を含んでもよい。
正極活物質の形状は、粒子状が好ましい。
正極活物質層12の総質量に対して、正極活物質の含有量は80.0~99.9質量%が好ましく、90~99.5質量%がより好ましい。
[Positive electrode active material layer]
The positive electrode active material layer 12 contains a positive electrode active material. The positive electrode active material layer 12 preferably further contains a binder. The positive electrode active material layer 12 may further contain a conductive aid.
The shape of the positive electrode active material is preferably particulate.
The content of the positive electrode active material is preferably 80.0 to 99.9% by mass, more preferably 90 to 99.5% by mass, based on the total mass of the positive electrode active material layer 12 .

正極活物質の表面の少なくとも一部には、導電材料を含む活物質被覆部が存在する。 活物質被覆部の導電材料は、炭素を含むことが好ましい。炭素のみからなる導電材料でもよく、炭素と炭素以外の他の元素とを含む導電性有機化合物でもよい。他の元素としては、窒素、水素、酸素等が例示できる。前記導電性有機化合物において、他の元素は10原子%以下が好ましく、5原子%以下がより好ましい。
活物質被覆部を構成する導電材料は、炭素のみからなることがさらに好ましい。
活物質被覆部を有する正極活物質の総質量に対して、導電材料の含有量は0.1~3.0質量%が好ましく、0.5~1.5質量%がより好ましく、0.7~1.3質量%がさらに好ましい。
At least part of the surface of the positive electrode active material has an active material coating portion containing a conductive material. The conductive material of the active material coating preferably contains carbon. A conductive material consisting only of carbon may be used, or a conductive organic compound containing carbon and an element other than carbon may be used. Nitrogen, hydrogen, oxygen and the like can be exemplified as other elements. In the conductive organic compound, the content of other elements is preferably 10 atomic % or less, more preferably 5 atomic % or less.
It is more preferable that the conductive material forming the active material coating portion consist of carbon only.
The content of the conductive material is preferably 0.1 to 3.0% by mass, more preferably 0.5 to 1.5% by mass, and 0.7 based on the total mass of the positive electrode active material having the active material coating. ~1.3% by mass is more preferred.

正極活物質は、オリビン型結晶構造を有する化合物を含むことが好ましい。
オリビン型結晶構造を有する化合物は、一般式LiFe(1-x)POで(以下「一般式(I)」ともいう。)表される化合物が好ましい。一般式(I)において0≦x≦1である。MはCo、Ni、Mn、Al、Ti又はZrである。物性値に変化がない程度に微小量の、FeおよびM(Co、Ni、Mn、Al、Ti又はZr)の一部を他の元素に置換することもできる。一般式(I)で表される化合物は、微量の金属不純物が含まれていても本発明の効果が損なわれるものではない。
The positive electrode active material preferably contains a compound having an olivine crystal structure.
A compound having an olivine-type crystal structure is preferably a compound represented by the general formula LiFe x M (1-x) PO 4 (hereinafter also referred to as “general formula (I)”). 0≦x≦1 in general formula (I). M is Co, Ni, Mn, Al, Ti or Zr. A small amount of Fe and M (Co, Ni, Mn, Al, Ti or Zr) can be substituted with other elements to the extent that the physical properties are not changed. Even if the compound represented by the general formula (I) contains a trace amount of metal impurities, the effects of the present invention are not impaired.

一般式(I)で表される化合物は、LiFePOで表されるリン酸鉄リチウム(以下、単に「リン酸鉄リチウム」ともいう。)が好ましい。表面の少なくとも一部に導電材料を含む活物質被覆部が存在するリン酸鉄リチウム(以下「被覆リン酸鉄リチウム」ともいう。)がより好ましい。電池容量、サイクル特性により優れる点から、リン酸鉄リチウムの表面全体が導電材料で被覆されていることがさらに好ましい。
被覆リン酸鉄リチウムは公知の方法で製造できる。
例えば、特許第5098146号公報に記載の方法を用いてリン酸鉄リチウム粉末を作製し、GS Yuasa Technical Report、2008年6月、第5巻、第1号、第27~31頁等に記載の方法を用いて、リン酸鉄リチウム粉末の表面の少なくとも一部を炭素で被覆できる。
具体的には、まず、シュウ酸鉄二水和物、リン酸二水素アンモニウム、及び炭酸リチウムを、特定のモル比で計り、これらを不活性雰囲気下で粉砕及び混合する。次に、得られた混合物を窒素雰囲気下で加熱処理することによってリン酸鉄リチウム粉末を作製する。次いで、リン酸鉄リチウム粉末をロータリーキルンに入れ、窒素をキャリアガスとしたメタノール蒸気を供給しながら加熱処理することによって、表面の少なくとも一部を炭素で被覆したリン酸鉄リチウム粉末を得る。
例えば、粉砕工程における粉砕時間によってリン酸鉄リチウム粉末の粒子径を調整できる。メタノール蒸気を供給しながら加熱処理する工程における加熱時間及び温度等によって、リン酸鉄リチウム粉末を被覆する炭素の量を調整できる。被覆されなかった炭素粒子はその後の分級や洗浄などの工程などにより取り除くことが望ましい。
The compound represented by the general formula (I) is preferably lithium iron phosphate represented by LiFePO 4 (hereinafter also simply referred to as “lithium iron phosphate”). Lithium iron phosphate (hereinafter also referred to as “coated lithium iron phosphate”) having an active material coating portion containing a conductive material on at least a part of the surface is more preferable. It is more preferable that the entire surface of the lithium iron phosphate is coated with a conductive material from the viewpoint of better battery capacity and cycle characteristics.
Coated lithium iron phosphate can be produced by a known method.
For example, lithium iron phosphate powder is prepared using the method described in Japanese Patent No. 5098146, and described in GS Yuasa Technical Report, June 2008, Vol. 5, No. 1, pp. 27-31. The method can be used to coat at least a portion of the surface of the lithium iron phosphate powder with carbon.
Specifically, first, iron oxalate dihydrate, ammonium dihydrogen phosphate, and lithium carbonate are weighed in a specific molar ratio, and these are pulverized and mixed under an inert atmosphere. Next, a lithium iron phosphate powder is produced by heat-treating the obtained mixture in a nitrogen atmosphere. Next, the lithium iron phosphate powder is placed in a rotary kiln and heat-treated while supplying methanol vapor using nitrogen as a carrier gas to obtain a lithium iron phosphate powder having at least a portion of the surface coated with carbon.
For example, the particle size of the lithium iron phosphate powder can be adjusted by adjusting the pulverization time in the pulverization step. The amount of carbon covering the lithium iron phosphate powder can be adjusted by the heating time and temperature in the step of heat-treating while supplying methanol vapor. It is desirable to remove uncoated carbon particles by subsequent steps such as classification and washing.

正極活物質は、オリビン型結晶構造を有する化合物以外の他の正極活物質を含んでもよい。
他の正極活物質は、リチウム遷移金属複合酸化物が好ましい。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルコバルト酸リチウム(LiNiCoAl、ただしx+y+z=1)、ニッケルコバルトマンガン酸リチウム(LiNiCoMn、ただしx+y+z=1)、マンガン酸リチウム(LiMn)、コバルトマンガン酸リチウム(LiMnCoO)、クロム酸マンガンリチウム(LiMnCrO)、バナジウムニッケル酸リチウム(LiNiVO)、ニッケル置換マンガン酸リチウム(例えば、LiMn1.5Ni0.5)、及びバナジウムコバルト酸リチウム(LiCoVO)、これらの化合物の一部を金属元素で置換した非化学量論的化合物等が挙げられる。前記金属元素としては、Mn、Mg、Ni、Co、Cu、Zn及びGeからなる群から選択される1種以上が挙げられる。
他の正極活物質は1種でもよく、2種以上でもよい。
他の正極活物質は、表面の少なくとも一部に前記活物質被覆部が存在してもよい。
The positive electrode active material may contain a positive electrode active material other than the compound having an olivine crystal structure.
Another positive electrode active material is preferably a lithium transition metal composite oxide. For example, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium nickel cobalt oxide ( LiNixCoyAlzO2 , where x + y + z = 1), lithium nickel cobalt manganate ( LiNixCoyMnz O2 , where x+y+z= 1 ), lithium manganate ( LiMn2O4), lithium cobalt manganate (LiMnCoO4), lithium manganese chromate ( LiMnCrO4 ), lithium vanadium nickelate ( LiNiVO4 ), nickel - substituted manganates Lithium (for example, LiMn 1.5 Ni 0.5 O 4 ), lithium vanadium cobaltate (LiCoVO 4 ), non-stoichiometric compounds obtained by substituting a part of these compounds with metal elements, and the like. Examples of the metal element include one or more selected from the group consisting of Mn, Mg, Ni, Co, Cu, Zn and Ge.
1 type may be sufficient as another positive electrode active material, and 2 or more types may be sufficient as it.
Other positive electrode active materials may have the active material coating on at least part of the surface.

正極活物質の総質量に対して、オリビン型結晶構造を有する化合物の含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。
被覆リン酸鉄リチウムを用いる場合、正極活物質の総質量に対して、被覆リン酸鉄リチウムの含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。
The content of the compound having an olivine crystal structure is preferably 50% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more, relative to the total mass of the positive electrode active material. 100 mass % may be sufficient.
When coated lithium iron phosphate is used, the content of coated lithium iron phosphate is preferably 50% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more, relative to the total mass of the positive electrode active material. . 100 mass % may be sufficient.

正極活物質の活物質被覆部の厚さは、1~100nmが好ましい。
正極活物質の活物質被覆部の厚さは、正極活物質の透過電子顕微鏡(TEM)像における活物質被覆部の厚さを計測する方法で測定できる。正極活物質の表面に存在する活物質被覆部の厚さは均一でなくてもよい。正極活物質の表面の少なくとも一部に厚さ1nm以上の活物質被覆部が存在し、活物質被覆部の厚さの最大値が100nm以下であることが好ましい。
The thickness of the active material coating portion of the positive electrode active material is preferably 1 to 100 nm.
The thickness of the active material coating portion of the positive electrode active material can be measured by a method of measuring the thickness of the active material coating portion in a transmission electron microscope (TEM) image of the positive electrode active material. The thickness of the active material coating portion present on the surface of the positive electrode active material may not be uniform. It is preferable that an active material covering portion having a thickness of 1 nm or more exists on at least part of the surface of the positive electrode active material, and the maximum thickness of the active material covering portion is 100 nm or less.

正極活物質として用いる粒子(即ち、正極活物質として用いる粉体)の平均粒子径は、例えば0.1~20.0μmが好ましく、0.2~10.0μmがより好ましい。正極活物質を2種以上用いる場合、それぞれの平均粒子径が上記の範囲内であればよい。
本明細書における正極活物質の平均粒子径は、レーザー回折・散乱法による粒度分布測定器を用いて測定した体積基準のメジアン径である。
The average particle size of the particles used as the positive electrode active material (that is, the powder used as the positive electrode active material) is, for example, preferably 0.1 to 20.0 μm, more preferably 0.2 to 10.0 μm. When two or more kinds of positive electrode active materials are used, each average particle size should be within the above range.
The average particle size of the positive electrode active material in the present specification is a volume-based median size measured using a particle size distribution analyzer based on a laser diffraction/scattering method.

正極活物質層12に含まれる結着材は有機物であり、例えば、ポリアクリル酸、ポリアクリル酸リチウム、ポリフッ化ビニリデン、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、スチレンブタジエンゴム、ポリビニルアルコール、ポリビニルアセタール、ポリエチレンオキサイド、ポリエチレングリコール、カルボキシメチルセルロース、ポリアクリルニトリル、ポリイミド等が挙げられる。結着材は1種でもよく、2種以上を併用してもよい。
正極活物質層12における結着材の含有量は、例えば、正極活物質層12の総質量に対して、4.0質量%以下が好ましく、2.0質量%以下がより好ましい。結着材の含有量が上記上限値以下であれば、正極活物質層12において、リチウムイオンの伝導に寄与しない物質の割合が少なくなり、電池特性のさらなる向上を図れる。
正極活物質層12が結着材を含有する場合、結着材の含有量の下限値は、正極活物質層12の総質量に対して0.1質量%以上が好ましく、0.5質量%以上がより好ましい。
The binder contained in the positive electrode active material layer 12 is an organic substance, and examples thereof include polyacrylic acid, lithium polyacrylate, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber, polyvinyl alcohol, and polyvinylidene. Acetal, polyethylene oxide, polyethylene glycol, carboxymethyl cellulose, polyacrylonitrile, polyimide and the like can be mentioned. One type of binder may be used, or two or more types may be used in combination.
The content of the binder in the positive electrode active material layer 12 is, for example, preferably 4.0% by mass or less, more preferably 2.0% by mass or less, relative to the total mass of the positive electrode active material layer 12 . If the content of the binder is equal to or less than the above upper limit, the ratio of substances that do not contribute to the conduction of lithium ions in the positive electrode active material layer 12 is reduced, and the battery characteristics can be further improved.
When the positive electrode active material layer 12 contains a binder, the lower limit of the content of the binder is preferably 0.1% by mass or more, more preferably 0.5% by mass, based on the total mass of the positive electrode active material layer 12. The above is more preferable.

正極活物質層12に含まれる導電助剤としては、例えば、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ(CNT)等の炭素材料が挙げられる。導電助剤は1種でもよく、2種以上を併用してもよい。
正極活物質層12における導電助剤の含有量は、例えば、正極活物質の総質量100質量部に対して、4質量部以下が好ましく、3質量部以下がより好ましく、1質量部以下がさらに好ましく、導電助剤を含まないことが特に好ましい。
正極活物質層12に導電助剤を配合する場合、導電助剤の下限値は、導電助剤の種類に応じて適宜決定され、例えば、正極活物質層12の総質量に対して0.1質量%超とされる。
なお、正極活物質層12が「導電助剤を含まない」とは、実質的に含まないことを意味し、本発明の効果に影響を及ぼさない程度に含むものを排除するものではない。例えば、導電助剤の含有量が正極活物質層12の総質量に対して0.1質量%以下であれば、実質的に含まれないと判断できる。
Examples of conductive aids contained in the positive electrode active material layer 12 include carbon materials such as graphite, graphene, hard carbon, ketjen black, acetylene black, and carbon nanotubes (CNT). One type of conductive aid may be used, or two or more types may be used in combination.
The content of the conductive aid in the positive electrode active material layer 12 is, for example, preferably 4 parts by mass or less, more preferably 3 parts by mass or less, and further 1 part by mass or less with respect to 100 parts by mass of the total mass of the positive electrode active material. Preferably, it is particularly preferable not to contain a conductive aid.
When the positive electrode active material layer 12 is blended with the conductive aid, the lower limit of the conductive aid is appropriately determined according to the type of the conductive aid. % by mass.
It should be noted that the fact that the positive electrode active material layer 12 "does not contain a conductive aid" means that it does not substantially contain any conductive aid, and does not exclude substances contained to such an extent that the effect of the present invention is not affected. For example, if the content of the conductive aid is 0.1% by mass or less with respect to the total mass of the positive electrode active material layer 12, it can be determined that it is not substantially contained.

[正極集電体]
正極集電体本体14は金属材料からなる。金属材料としては、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が例示できる。
正極集電体本体14の厚みは、例えば8~40μmが好ましく、10~25μmがより好ましい。
正極集電体本体14の厚み及び正極集電体11の厚みは、マイクロメータを用いて測定できる。測定器の一例としてはミツトヨ社製品名「MDH-25M」が挙げられる。
[Positive collector]
The positive electrode current collector main body 14 is made of a metal material. Examples of metal materials include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel.
The thickness of the positive electrode current collector main body 14 is, for example, preferably 8 to 40 μm, more preferably 10 to 25 μm.
The thickness of the positive electrode current collector main body 14 and the thickness of the positive electrode current collector 11 can be measured using a micrometer. An example of the measuring instrument is Mitutoyo's product name "MDH-25M".

[集電体被覆層]
集電体被覆層15は導電材料を含む。
集電体被覆層15中の導電材料は、炭素を含むことが好ましく、炭素のみからなる導電材料がより好ましい。
集電体被覆層15は、例えばカーボンブラック等の炭素粒子と結着材を含むコーティング層が好ましい。集電体被覆層15の結着材は、正極活物質層12の結着材と同様のものを例示できる。
正極集電体本体14の表面を集電体被覆層15で被覆した正極集電体11は、例えば、導電材料、結着材、及び溶媒を含むスラリーを、グラビア法等の公知の塗工方法を用いて正極集電体本体14の表面に塗工し、乾燥して溶媒を除去する方法で製造できる。
[Current collector coating layer]
Current collector coating layer 15 includes a conductive material.
The conductive material in the current collector coating layer 15 preferably contains carbon, and more preferably a conductive material consisting only of carbon.
The current collector coating layer 15 is preferably a coating layer containing carbon particles such as carbon black and a binder. The binder for the current collector coating layer 15 can be exemplified by the same binder as the binder for the positive electrode active material layer 12 .
The positive electrode current collector 11 in which the surface of the positive electrode current collector main body 14 is coated with the current collector coating layer 15 is coated with a slurry containing a conductive material, a binder, and a solvent by a known coating method such as a gravure method. can be applied to the surface of the positive electrode current collector body 14 using and dried to remove the solvent.

集電体被覆層15の厚みは、0.1~4.0μmが好ましく、0.2~2.0μmがより好ましく、0.5~1.2μmがさらに好ましい。上記範囲の下限値以上であるとインピーダンス低減効果に優れ、上限値以下であると剥離強度向上効果に優れる。
集電体被覆層の厚さは、集電体被覆層の断面の透過電子顕微鏡(TEM)像又は走査型電子顕微鏡(SEM)像における被覆層の厚さを計測する方法で測定できる。集電体被覆層の厚さは均一でなくてもよい。
正極集電体本体14の両面に集電体被覆層15が存在する場合、両者の平均値が上記の範囲内であればよい。
The thickness of the current collector coating layer 15 is preferably 0.1 to 4.0 μm, more preferably 0.2 to 2.0 μm, even more preferably 0.5 to 1.2 μm. When it is at least the lower limit of the above range, the effect of reducing impedance is excellent, and when it is at most the upper limit, the effect of improving peel strength is excellent.
The thickness of the current collector coating layer can be measured by measuring the thickness of the coating layer in a transmission electron microscope (TEM) image or a scanning electron microscope (SEM) image of the cross section of the current collector coating layer. The thickness of the current collector coating layer may not be uniform.
When the current collector coating layer 15 exists on both surfaces of the positive electrode current collector main body 14, the average value of both should be within the above range.

[正極の製造方法]
本実施形態の正極1は、例えば、正極活物質、結着材、及び溶媒を含む正極製造用組成物を、正極集電体11上に塗工し、乾燥し溶媒を除去して正極活物質層12を形成する方法で製造できる。正極製造用組成物は導電助剤を含んでもよい。
正極集電体11上に正極活物質層12を形成した積層物を、2枚の平板状冶具の間に挟み、厚み方向に均一に加圧する方法で、正極活物質層12の厚みを調整できる。例えば、ロールプレス機を用いて加圧する方法を使用できる。
[Manufacturing method of positive electrode]
The positive electrode 1 of the present embodiment is produced by, for example, applying a positive electrode manufacturing composition containing a positive electrode active material, a binder, and a solvent onto a positive electrode current collector 11, drying the solvent, and removing the solvent to obtain a positive electrode active material. It can be manufactured by the method of forming layer 12 . The composition for positive electrode production may contain a conductive aid.
The thickness of the positive electrode active material layer 12 can be adjusted by a method in which a laminate in which the positive electrode active material layer 12 is formed on the positive electrode current collector 11 is sandwiched between two flat jigs and is evenly pressed in the thickness direction. . For example, a method of applying pressure using a roll press can be used.

正極製造用組成物の溶媒は非水系溶媒が好ましい。例えば、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール;N-メチルピロリドン、N,N-ジメチルホルムアミド等の鎖状又は環状アミド;アセトン等のケトンが挙げられる。溶媒は1種でもよく、2種以上を併用してもよい。 A non-aqueous solvent is preferable as the solvent for the positive electrode-manufacturing composition. Examples include alcohols such as methanol, ethanol, 1-propanol and 2-propanol; linear or cyclic amides such as N-methylpyrrolidone and N,N-dimethylformamide; and ketones such as acetone. One type of solvent may be used, or two or more types may be used in combination.

本実施形態において、正極活物質層の厚みに対する集電体被覆層の厚みの比(以下、「厚みの比X」ともいう)は0.000超、0.020未満であり、0.001~0.0019が好ましく、0.003~0.017がより好ましく、0.005~0.015がさらに好ましい。上記範囲の下限値以上であると非水電解質二次電池のインピーダンスの低減効果に優れ、上限値以下であると体積もしくは重量あたりのエネルギー密度が高くなる。
正極集電体本体14の両面に集電体被覆層15が存在し、正極集電体11の両面に正極活物質層12が存在する場合、正極活物質層12の厚みの合計に対する集電体被覆層15の厚みの合計の比を前記厚みの比Xとする。
In the present embodiment, the ratio of the thickness of the current collector coating layer to the thickness of the positive electrode active material layer (hereinafter also referred to as “thickness ratio X”) is more than 0.000 and less than 0.020, and is from 0.001 to 0.0019 is preferred, 0.003 to 0.017 is more preferred, and 0.005 to 0.015 is even more preferred. When it is at least the lower limit value of the above range, the effect of reducing the impedance of the non-aqueous electrolyte secondary battery is excellent, and when it is at most the upper limit value, the energy density per volume or weight increases.
When the current collector coating layer 15 is present on both sides of the positive electrode current collector body 14 and the positive electrode active material layer 12 is present on both sides of the positive electrode current collector 11, the current collector with respect to the total thickness of the positive electrode active material layer 12 The total thickness ratio of the coating layer 15 is defined as the thickness ratio X. As shown in FIG.

正極集電体11の両面に正極活物質層12が存在する場合、両面の正極活物質層12の合計の厚みは、120~800μmが好ましく、130~600μmがより好ましく、140~500μmがさらに好ましい。上記範囲内であると厚みの比Xを好ましい範囲に調整しやすい。特に、正極活物質層の剥離強度の向上効果、及び非水電解質二次電池の高レートサイクル特性の向上効果に優れる点で500μm以下が好ましい。
正極集電体11の両面に正極活物質層12を設ける場合、通常、両者は同条件で形成し、両面の正極活物質層の厚みは均等になる。
When the positive electrode active material layers 12 are present on both sides of the positive electrode current collector 11, the total thickness of the positive electrode active material layers 12 on both sides is preferably 120 to 800 μm, more preferably 130 to 600 μm, and even more preferably 140 to 500 μm. . Within the above range, it is easy to adjust the thickness ratio X to a preferable range. In particular, the thickness is preferably 500 μm or less from the viewpoint of improving the peel strength of the positive electrode active material layer and improving the high rate cycle characteristics of the non-aqueous electrolyte secondary battery.
When the positive electrode active material layer 12 is provided on both sides of the positive electrode current collector 11, both are normally formed under the same conditions, and the thickness of the positive electrode active material layer on both sides is uniform.

本実施形態において、正極集電体11の両面に正極活物質層12が存在する場合、正極1から正極集電体本体14を除いた残部の厚み(以下、「集電体本体を除く厚み」ともいう)は、50~500μmが好ましく、100~460μmがより好ましく、140~310μmがさらに好ましい。上記範囲の下限値以上であると非水電解質二次電池のインピーダンスの低減効果に優れ、上限値以下であると体積もしくは重量あたりのエネルギー密度が高くなる。 In the present embodiment, when the positive electrode active material layer 12 is present on both sides of the positive electrode current collector 11, the thickness of the remainder of the positive electrode 1 excluding the positive electrode current collector main body 14 (hereinafter referred to as the “thickness excluding the current collector main body”) is preferably 50 to 500 μm, more preferably 100 to 460 μm, even more preferably 140 to 310 μm. When it is at least the lower limit value of the above range, the effect of reducing the impedance of the non-aqueous electrolyte secondary battery is excellent, and when it is at most the upper limit value, the energy density per volume or weight increases.

集電体本体を除く厚みは、正極全体の厚みから、正極集電体本体14の厚みを差し引いて求める。これらの厚みはマイクロメータを用いて測定できる。正極集電体本体14の厚みは、正極集電体露出部13において集電体被覆層15を除去して測定できる。いずれも任意の5点で測定して平均値を求める。
正極が、正極集電体11と、正極集電体11の両面に存在する正極活物質層12とからなる場合、集電体本体を除く厚みの値から、両面の集電体被覆層15の厚みの合計を差し引いた値の2分の1を正極活物質層12の厚みとすることができる。
The thickness excluding the current collector main body is obtained by subtracting the thickness of the positive electrode current collector main body 14 from the thickness of the entire positive electrode. These thicknesses can be measured using a micrometer. The thickness of the positive electrode current collector main body 14 can be measured by removing the current collector coating layer 15 at the positive electrode current collector exposed portion 13 . Each is measured at arbitrary 5 points and an average value is obtained.
When the positive electrode is composed of the positive electrode current collector 11 and the positive electrode active material layers 12 present on both sides of the positive electrode current collector 11, from the value of the thickness excluding the current collector main body, the thickness of the current collector coating layers 15 on both sides is The thickness of the positive electrode active material layer 12 can be half of the value obtained by subtracting the total thickness.

本実施形態において、正極活物質層12の単位面積あたりの質量は30~150mg/cmが好ましく、31~100mg/cmがより好ましく、32~70mg/cmがさらに好ましい。
本明細書における「正極活物質層の単位面積あたりの質量」は、特に断りが無い限り正極集電体の両面に存在する正極活物質層の合計の値である。
正極活物質層12の単位面積あたりの質量は、例えば以下の測定方法により測定できる。
正極を所定の面積となるように打ち抜いた測定試料の質量を測定し、予め測定した正極集電体11の質量を差し引いて、正極活物質層の質量を算出する。
正極活物質層の質量(単位:mg)/測定試料の面積(単位:cm)により、正極活物質層12の単位面積あたりの質量(単位:mg/cm)を求める。
正極活物質層12の単位面積あたりの質量が、上記範囲の下限値以上であると体積もしくは重量あたりのエネルギー密度が高くなる、上限値以下であると非水電解質二次電池のインピーダンスの低減効果に優れる。
正極活物質層12の単位面積あたりの質量は、例えば、正極製造用組成物の塗工量によって調整できる。
In the present embodiment, the mass per unit area of the positive electrode active material layer 12 is preferably 30-150 mg/cm 2 , more preferably 31-100 mg/cm 2 , and even more preferably 32-70 mg/cm 2 .
The "mass per unit area of the positive electrode active material layer" in this specification is the total value of the positive electrode active material layers present on both sides of the positive electrode current collector unless otherwise specified.
The mass per unit area of the positive electrode active material layer 12 can be measured, for example, by the following measuring method.
The mass of a measurement sample obtained by punching out a positive electrode to have a predetermined area is measured, and the mass of the positive electrode active material layer is calculated by subtracting the mass of the positive electrode current collector 11 measured in advance.
The mass (unit: mg/cm 2 ) per unit area of the positive electrode active material layer 12 is obtained by dividing the mass (unit: mg) of the positive electrode active material layer/the area (unit: cm 2 ) of the measurement sample.
When the mass per unit area of the positive electrode active material layer 12 is at least the lower limit value of the above range, the energy density per volume or weight increases, and when it is at most the upper limit value, the effect of reducing the impedance of the non-aqueous electrolyte secondary battery. Excellent for
The mass per unit area of the positive electrode active material layer 12 can be adjusted, for example, by the coating amount of the positive electrode manufacturing composition.

本実施形態において、正極活物質層12の剥離強度は7~1,000mN/cmが好ましく、10~700mN/cmがより好ましく、20~500mN/cmがさらに好ましく、50~300mN/cmが特に好ましい。
本明細書において、正極活物質層12の剥離強度は、後述の実施例に記載の測定方法で得られる180°剥離強度である。
正極活物質層12の剥離強度が上記範囲の下限値以上であると、正極活物質層12を構成する粒子の結着性及び正極集電体11と正極活物質層12との密着性に優れる。上限値以下であると体積もしくは重量あたりのエネルギー密度が高くなる。
前記剥離強度は、例えば、正極活物質層12の単位面積あたりの質量、正極活物質層12の厚み、結着材の含有量、導電助剤の含有量によって調整できる。正極活物質層12の単位面積あたりの質量を増大させて正極活物質層12を厚くすると剥離強度は低くなる傾向がある。結着材の含有量が多いほど剥離強度は高まる。表面積が大きく、結着材を活物質よりも多く必要とする導電助剤の含有量を少なくすることによって、良好な剥離強度を得るために必要な結着材の量を低減できる。
In the present embodiment, the peel strength of the positive electrode active material layer 12 is preferably 7 to 1,000 mN/cm, more preferably 10 to 700 mN/cm, still more preferably 20 to 500 mN/cm, and particularly preferably 50 to 300 mN/cm. .
In the present specification, the peel strength of the positive electrode active material layer 12 is the 180° peel strength obtained by the measurement method described in Examples below.
When the peel strength of the positive electrode active material layer 12 is at least the lower limit of the above range, the adhesion of the particles constituting the positive electrode active material layer 12 and the adhesion between the positive electrode current collector 11 and the positive electrode active material layer 12 are excellent. . Energy density per volume or weight becomes high as it is below the upper limit.
The peel strength can be adjusted by, for example, the mass per unit area of the positive electrode active material layer 12, the thickness of the positive electrode active material layer 12, the content of the binder, and the content of the conductive aid. Increasing the mass per unit area of the positive electrode active material layer 12 to increase the thickness of the positive electrode active material layer 12 tends to lower the peel strength. The peel strength increases as the content of the binder increases. By reducing the content of the conductive aid, which has a large surface area and requires more binder than the active material, the amount of binder required to obtain good peel strength can be reduced.

本実施形態において、正極集電体11及び正極活物質層12の一方又は両方が導電性炭素を含むことが好ましい。
正極活物質層12が導電性炭素を含む場合、正極活物質を被覆する導電材料及び導電助剤の少なくとも一方が炭素を含むことが好ましい。
正極集電体11が導電性炭素を含む場合、集電体被覆層15中の導電材料が炭素を含むことが好ましい。
In the present embodiment, one or both of the positive electrode current collector 11 and the positive electrode active material layer 12 preferably contain conductive carbon.
When the positive electrode active material layer 12 contains conductive carbon, at least one of the conductive material covering the positive electrode active material and the conductive aid preferably contains carbon.
When positive electrode current collector 11 contains conductive carbon, the conductive material in current collector coating layer 15 preferably contains carbon.

正極1から正極集電体本体14を除いた残部の質量に対して、導電性炭素の含有量は0.5~3.5質量%が好ましく、1.5~3.0質量%がより好ましい。
正極1が正極集電体本体14と集電体被覆層15と正極活物質層12とからなる場合、正極1から正極集電体本体14を除いた残部の質量は、集電体被覆層15と正極活物質層12の合計質量である。
The content of the conductive carbon is preferably 0.5 to 3.5% by mass, more preferably 1.5 to 3.0% by mass, based on the mass of the remainder of the positive electrode 1 excluding the positive electrode current collector body 14. .
When the positive electrode 1 is composed of the positive electrode current collector main body 14, the current collector coating layer 15, and the positive electrode active material layer 12, the mass of the remainder after removing the positive electrode current collector main body 14 from the positive electrode 1 is the current collector coating layer 15. and the total mass of the positive electrode active material layer 12 .

正極1から正極集電体本体14を除いた残部の質量に対する導電性炭素の含有量は、正極集電体本体14上に存在する層の全量を剥がして120℃環境で真空乾燥した乾燥物(粉体)を測定対象物として、下記≪導電性炭素含有量の測定方法≫で測定できる。
下記≪導電性炭素含有量の測定方法≫で測定した導電性炭素の含有量は、活物質被覆部中の炭素と、導電助剤中の炭素と、集電体被覆層15中の炭素を含む。結着材中の炭素は含まれない。
The content of conductive carbon with respect to the mass of the remainder of the positive electrode 1 excluding the positive electrode current collector main body 14 is obtained by removing the entire amount of the layer existing on the positive electrode current collector main body 14 and vacuum-drying it in a 120 ° C. environment ( Powder) can be measured by the following <<Method for measuring conductive carbon content>>.
The content of conductive carbon measured by the following «Method for measuring conductive carbon content» includes carbon in the active material coating portion, carbon in the conductive aid, and carbon in the current collector coating layer 15. . Carbon in the binder is not included.

前記測定対象物を得る方法としては、例えば、以下の方法を用いることができる。
まず、正極1を任意の大きさに打ち抜き、溶剤(例えば、N-メチルピロリドン)に浸漬して攪拌する方法で、正極集電体本体14上に存在する層(粉体)を完全に剥がす。次いで、正極集電体本体14に粉体が付着していないことを確認し、正極集電体本体14を溶剤から取り出し、剥がした粉体と溶剤を含む懸濁液(スラリー)を得る。得られた懸濁液を120℃で乾燥して溶剤を完全に揮発させ、目的の測定対象物(粉体)を得る。
As a method for obtaining the measurement object, for example, the following method can be used.
First, the positive electrode 1 is punched out to an arbitrary size, immersed in a solvent (for example, N-methylpyrrolidone) and stirred to completely peel off the layer (powder) present on the positive electrode current collector body 14 . After confirming that no powder adheres to the positive electrode current collector main body 14, the positive electrode current collector main body 14 is removed from the solvent to obtain a suspension (slurry) containing the removed powder and the solvent. The suspension thus obtained is dried at 120° C. to completely volatilize the solvent to obtain the target measurement object (powder).

≪導電性炭素含有量の測定方法≫
[測定方法A]
測定対象物を均一に混合して試料(質量w1)を量りとり、下記の工程A1、工程A2の手順で熱重量示唆熱(TG-DTA)測定を行い、TG曲線を得る。得られたTG曲線から下記第1の重量減少量M1(単位:質量%)及び第2の重量減少量M2(単位:質量%)を求める。M2からM1を減算して導電性炭素の含有量(単位:質量%)を得る。 工程A1:300mL/分のアルゴン気流中において、10℃/分の昇温速度で30℃から600℃まで昇温し、600℃で10分間保持したときの質量w2から、下記式(a1)により第1の重量減少量M1を求める。
M1=(w1-w2)/w1×100 …(a1)
工程A2:前記工程A1の直後に600℃から10℃/分の降温速度で降温し、200℃で10分間保持した後に、測定ガスをアルゴンから酸素へ完全に置換し、100mL/分の酸素気流中において、10℃/分の昇温速度で200℃から1000℃まで昇温し、1000℃にて10分間保持したときの質量w3から、下記式(a2)により第2の重量減少量M2(単位:質量%)を求める。
M2=(w1-w3)/w1×100 …(a2)
<<Method for measuring conductive carbon content>>
[Measurement method A]
The object to be measured is uniformly mixed, a sample (mass w1) is weighed, and thermogravimetric suggestive heat (TG-DTA) measurement is performed in the following steps A1 and A2 to obtain a TG curve. From the obtained TG curve, the following first weight reduction amount M1 (unit: mass %) and second weight reduction amount M2 (unit: mass %) are obtained. Subtract M1 from M2 to obtain the content of conductive carbon (unit: % by mass). Step A1: In an argon stream of 300 mL/min, the temperature is raised from 30° C. to 600° C. at a rate of temperature increase of 10° C./min and held at 600° C. for 10 minutes. A first weight reduction amount M1 is obtained.
M1=(w1-w2)/w1×100 (a1)
Step A2: Immediately after step A1, the temperature is lowered from 600° C. at a rate of 10° C./min, held at 200° C. for 10 minutes, and then the measurement gas is completely replaced from argon to oxygen with an oxygen flow of 100 mL/min. Inside, the temperature is increased from 200 ° C. to 1000 ° C. at a temperature increase rate of 10 ° C./min, and the mass w3 when held at 1000 ° C. for 10 minutes is calculated by the following formula (a2) to obtain the second weight reduction amount M2 ( Unit: % by mass).
M2=(w1-w3)/w1×100 (a2)

[測定方法B]
測定対象物を均一に混合して試料を0.0001mg精秤し、下記の燃焼条件で試料を燃焼し、発生した二酸化炭素をCHN元素分析装置により定量し、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、前記測定方法Aの工程A1の手順で第1の重量減少量M1を求める。M3からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
[燃焼条件]
燃焼炉:1150℃
還元炉:850℃
ヘリウム流量:200mL/分
酸素流量:25~30mL/分
[Measurement method B]
The object to be measured is uniformly mixed and 0.0001 mg of the sample is precisely weighed, the sample is burned under the following combustion conditions, the carbon dioxide generated is quantified by a CHN elemental analyzer, and the total carbon content M3 ( Unit: % by mass). In addition, the first weight reduction amount M1 is obtained by the procedure of step A1 of the measuring method A described above. Subtract M1 from M3 to obtain the conductive carbon content (unit: % by mass).
[Combustion conditions]
Combustion furnace: 1150°C
Reduction furnace: 850°C
Helium flow rate: 200 mL/min Oxygen flow rate: 25-30 mL/min

[測定方法C]
上記測定方法Bと同様にして、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、下記の方法で結着材由来の炭素の含有量M4(単位:質量%)を求める。M3からM4を減算して導電性炭素の含有量(単位:質量%)を得る。
結着材がポリフッ化ビニリデン(PVDF:モノマー(CHCF)の分子量64)である場合は、管状式燃焼法による燃焼イオンクロマトグラフィーにより測定されたフッ化物イオン(F)の含有量(単位:質量%)、PVDFを構成するモノマーのフッ素の原子量(19)、及びPVDFを構成する炭素の原子量(12)から以下の式で計算することができる。
PVDFの含有量(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×64/38
PVDF由来の炭素の含有量M4(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×12/19
結着材がポリフッ化ビニリデンであることは、試料、又は試料をN-Nジメチルホルムアミド(DMF)溶媒により抽出した液体をフーリエ変換赤外スペクトル(FT-IR)測定し、C-F結合由来の吸収を確認する方法で確かめることができる。同様に19F-NMR測定でも確かめることができる。
結着材がPVDF以外と同定された場合は、その分子量に相当する結着材の含有量(単位:質量%)および炭素の含有量(単位:質量%)を求めることで、結着材由来の炭素量M4を算出できる。
これらの手法は下記複数の公知文献に記載されている。
東レリサーチセンター The TRC News No.117 (Sep.2013)第34~37頁、[2021年2月10日検索]、インターネット<https://www.toray-research.co.jp/technical-info/trcnews/pdf/TRC117(34-37).pdf>
東ソー分析センター 技術レポート No.T1019 2017.09.20、[2021年2月10日検索]、インターネット<http://www.tosoh-arc.co.jp/techrepo/files/tarc00522/T1719N.pdf>
[Measurement method C]
The total carbon content M3 (unit: % by mass) contained in the sample is measured in the same manner as in the measurement method B above. Also, the binder-derived carbon content M4 (unit: % by mass) is determined by the following method. Subtract M4 from M3 to obtain the conductive carbon content (unit: % by mass).
When the binder is polyvinylidene fluoride (PVDF: monomer (CH 2 CF 2 ) molecular weight 64), the content of fluoride ions (F ) measured by combustion ion chromatography using a tubular combustion method ( Unit: % by mass), the fluorine atomic weight (19) of the monomer constituting PVDF, and the atomic weight (12) of carbon constituting PVDF by the following formula.
PVDF content (unit: mass%) = fluoride ion content (unit: mass%) x 64/38
PVDF-derived carbon content M4 (unit: mass%) = fluoride ion content (unit: mass%) x 12/19
The fact that the binder is polyvinylidene fluoride is confirmed by Fourier transform infrared spectrum (FT-IR) measurement of the sample or the liquid obtained by extracting the sample with N-N dimethylformamide (DMF) solvent, and the C-F bond derived It can be confirmed by a method for confirming absorption. It can also be confirmed by 19 F-NMR measurement.
If the binder is identified to be other than PVDF, the content of the binder (unit: mass %) corresponding to the molecular weight and the content of carbon (unit: mass %) of carbon content M4 can be calculated.
These techniques are described in the following publications.
Toray Research Center The TRC News No. 117 (Sep. 2013) pp. 34-37, [searched on February 10, 2021], Internet <https://www.toray-research.co.jp/technical-info/trcnews/pdf/TRC117(34- 37).pdf>
Tosoh Analysis Center Technical Report No. T1019 2017.09.20, [searched on February 10, 2021], Internet <http://www.tosoh-arc.co.jp/techrepo/files/tarc00522/T1719N.pdf>

≪導電性炭素の分析方法≫
正極活物質の活物質被覆部を構成する導電性炭素と、導電助剤である導電性炭素は、以下の分析方法で区別できる。
例えば、正極活物質層中の粒子を透過電子顕微鏡電子エネルギー損失分光法(TEM-EELS)により分析し、粒子表面近傍にのみ290eV付近の炭素由来のピークが存在する粒子は正極活物質であり、粒子内部にまで炭素由来のピークが存在する粒子は導電助剤と判定することができる。
他の方法としては、正極活物質層中の粒子をラマン分光によりマッピング解析し、炭素由来のG-bandとD-band、及び正極活物質由来の酸化物結晶のピークが同時に観測された粒子は正極活物質であり、G-bandとD-bandのみが観測された粒子は導電助剤と判定することができる。
さらに他の方法としては、広がり抵抗顕微鏡(SSRM:Scanning Spread Resistance Microscope)により、正極活物質層の断面を観察し、粒子表面に粒子内部より抵抗が低い部分が存在する場合、抵抗が低い部分は活物質被覆部に存在する導電性炭素であると判定できる。そのような粒子以外に独立して存在し、かつ抵抗が低い部分は導電助剤であると判定することができる。
なお、不純物として考えられる微量な炭素や、製造時に正極活物質の表面から意図せず剥がれた微量な炭素などは、導電助剤と判定しない。
これらの方法を用いて、炭素材料からなる導電助剤が正極活物質層に含まれるか否かを確認することができる。
<<Method for analyzing conductive carbon>>
The conductive carbon that constitutes the active material coating portion of the positive electrode active material and the conductive carbon that is the conductive aid can be distinguished by the following analysis method.
For example, the particles in the positive electrode active material layer are analyzed by transmission electron microscope electron energy loss spectroscopy (TEM-EELS), and particles having a carbon-derived peak near 290 eV only in the vicinity of the particle surface are positive electrode active materials, Particles in which carbon-derived peaks are present even inside the particles can be determined to be conductive aids.
As another method, the particles in the positive electrode active material layer are subjected to mapping analysis by Raman spectroscopy. Particles that are positive electrode active materials and in which only the G-band and D-band are observed can be determined as conductive aids.
As yet another method, a scanning spread resistance microscope (SSRM) is used to observe the cross section of the positive electrode active material layer. It can be determined that it is the conductive carbon present in the active material coating portion. It can be determined that a portion that exists independently and has a low resistance other than such particles is the conductive aid.
A small amount of carbon considered as an impurity, a small amount of carbon unintentionally peeled off from the surface of the positive electrode active material during production, and the like are not determined to be conductive aids.
Using these methods, it is possible to confirm whether or not the positive electrode active material layer contains a conductive aid made of a carbon material.

<非水電解質二次電池>
図2に示す本実施形態の非水電解質二次電池10は、本実施形態の非水電解質二次電池用正極1と、負極3と、非水電解質とを備える。さらにセパレータ2を備えてもよい。図中符号5は外装体である。
本実施形態において、正極1は、板状の正極集電体11と、その両面上に設けられた正極活物質層12と有する。正極活物質層12は正極集電体11の表面の一部に存在する。正極集電体11の表面の縁部は、正極活物質層12が存在しない正極集電体露出部13である。正極集電体露出部13の任意の箇所に、図示しない端子用タブが電気的に接続する。
負極3は、板状の負極集電体31と、その両面上に設けられた負極活物質層32とを有する。負極活物質層32は負極集電体31の表面の一部に存在する。負極集電体31の表面の縁部は、負極活物質層32が存在しない負極集電体露出部33である。負極集電体露出部33の任意の箇所に、図示しない端子用タブが電気的に接続する。
正極1、負極3およびセパレータ2の形状は特に限定されない。例えば平面視矩形状でもよい。
本実施形態の非水電解質二次電池10は、例えば、正極1と負極3を、セパレータ2を介して交互に積層した電極積層体を作製し、電極積層体をアルミラミネート袋等の外装体(筐体)5に封入し、非水電解質(図示せず)を注入して密閉する方法で製造できる。 図2では、代表的に、負極/セパレータ/正極/セパレータ/負極の順に積層した構造を示しているが、電極の数は適宜変更できる。正極1は1枚以上あればよく、得ようとする電池容量に応じて任意の数の正極1を用いることができる。負極3及びセパレータ2は、正極1の数より1枚多く用い、最外層が負極3となるように積層する。
<Non-aqueous electrolyte secondary battery>
A non-aqueous electrolyte secondary battery 10 of the present embodiment shown in FIG. 2 includes the positive electrode 1 for non-aqueous electrolyte secondary batteries of the present embodiment, a negative electrode 3, and a non-aqueous electrolyte. Further, a separator 2 may be provided. Reference numeral 5 in the figure is an exterior body.
In this embodiment, the positive electrode 1 has a plate-like positive electrode current collector 11 and positive electrode active material layers 12 provided on both sides thereof. The positive electrode active material layer 12 exists on part of the surface of the positive electrode current collector 11 . An edge portion of the surface of the positive electrode current collector 11 is a positive electrode current collector exposed portion 13 where the positive electrode active material layer 12 does not exist. A terminal tab (not shown) is electrically connected to an arbitrary portion of the positive electrode current collector exposed portion 13 .
The negative electrode 3 has a plate-like negative electrode current collector 31 and negative electrode active material layers 32 provided on both sides thereof. The negative electrode active material layer 32 exists on part of the surface of the negative electrode current collector 31 . An edge portion of the surface of the negative electrode current collector 31 is a negative electrode current collector exposed portion 33 where the negative electrode active material layer 32 does not exist. A terminal tab (not shown) is electrically connected to an arbitrary portion of the negative electrode current collector exposed portion 33 .
The shapes of the positive electrode 1, the negative electrode 3 and the separator 2 are not particularly limited. For example, it may be rectangular in plan view.
The non-aqueous electrolyte secondary battery 10 of the present embodiment is produced, for example, by fabricating an electrode laminate in which the positive electrode 1 and the negative electrode 3 are alternately laminated with the separator 2 interposed therebetween, and the electrode laminate is packaged in an outer package such as an aluminum laminate bag ( It can be manufactured by a method of enclosing in a housing 5, injecting a non-aqueous electrolyte (not shown), and sealing. FIG. 2 typically shows a structure in which negative electrodes/separators/positive electrodes/separators/negative electrodes are laminated in this order, but the number of electrodes can be changed as appropriate. One or more positive electrodes 1 are sufficient, and any number of positive electrodes 1 can be used according to the battery capacity to be obtained. One more negative electrode 3 and separator 2 than the number of positive electrodes 1 are used, and they are laminated so that the negative electrode 3 is the outermost layer.

[負極]
負極活物質層32は負極活物質を含む。さらに結着材を含んでもよい。さらに導電助剤を含んでもよい。負極活物質の形状は、粒子状が好ましい。
負極3は、例えば、負極活物質、結着材、及び溶媒を含む負極製造用組成物を調製し、これを負極集電体31上に塗工し、乾燥し溶媒を除去して負極活物質層32を形成する方法で製造できる。負極製造用組成物は導電助剤を含んでもよい。
[Negative electrode]
The negative electrode active material layer 32 contains a negative electrode active material. Furthermore, a binding material may be included. Further, it may contain a conductive aid. The shape of the negative electrode active material is preferably particulate.
For the negative electrode 3, for example, a negative electrode manufacturing composition containing a negative electrode active material, a binder, and a solvent is prepared, coated on the negative electrode current collector 31, and dried to remove the solvent to obtain the negative electrode active material. It can be manufactured by any method that forms layer 32 . The negative electrode production composition may contain a conductive aid.

負極活物質及び導電助剤としては、例えばグラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ(CNT)等の炭素材料が挙げられる。負極活物質及び導電助剤は、それぞれ1種でもよく2種以上を併用してもよい。 Examples of negative electrode active materials and conductive aids include carbon materials such as graphite, graphene, hard carbon, ketjen black, acetylene black, and carbon nanotubes (CNT). Each of the negative electrode active material and the conductive aid may be used alone or in combination of two or more.

負極集電体31の材料、負極製造用組成物中の結着材、溶媒としては、上記した正極集電体11の材料、正極製造用組成物中の結着材、溶媒と同様のものを例示できる。負極製造用組成物中の結着材、溶媒は、それぞれ1種でもよく2種以上を併用してもよい。 As the material of the negative electrode current collector 31 and the binder and solvent in the composition for manufacturing the negative electrode, the same materials as the material of the positive electrode current collector 11 and the binder and solvent in the composition for manufacturing the positive electrode are used. I can give an example. The binder and the solvent in the negative electrode-producing composition may be used alone or in combination of two or more.

負極活物質層32の総質量に対して、負極活物質及び導電助剤の合計の含有量は80.0~99.9質量%が好ましく、85.0~98.0質量%がより好ましい。 The total content of the negative electrode active material and the conductive aid is preferably 80.0 to 99.9 mass %, more preferably 85.0 to 98.0 mass %, relative to the total mass of the negative electrode active material layer 32 .

[セパレータ]
セパレータ2を負極3と正極1との間に配置して短絡等を防止する。セパレータ2は、後述する非水電解質を保持してもよい。
セパレータ2としては、特に限定されず、多孔性の高分子膜、不織布、ガラスファイバー等が例示できる。
セパレータ2の一方又は両方の表面上に絶縁層を設けてもよい。絶縁層は、絶縁性微粒子を絶縁層用結着材で結着した多孔質構造を有する層が好ましい。
[Separator]
A separator 2 is arranged between the negative electrode 3 and the positive electrode 1 to prevent short circuit or the like. The separator 2 may hold a non-aqueous electrolyte, which will be described later.
The separator 2 is not particularly limited, and can be exemplified by porous polymer membranes, non-woven fabrics, glass fibers, and the like.
An insulating layer may be provided on one or both surfaces of the separator 2 . The insulating layer is preferably a layer having a porous structure in which insulating fine particles are bound with an insulating layer binder.

セパレータ2は、各種可塑剤、酸化防止剤、難燃剤を含んでもよい。
酸化防止剤としては、ヒンダードフェノール系酸化防止剤、モノフェノール系酸化防止剤、ビスフェノール系酸化防止剤、ポリフェノール系酸化防止剤等のフェノール系酸化防止剤;ヒンダードアミン系酸化防止剤;リン系酸化防止剤;イオウ系酸化防止剤;ベンゾトリアゾール系酸化防止剤;ベンゾフェノン系酸化防止剤;トリアジン系酸化防止剤;サルチル酸エステル系酸化防止剤等が例示できる。フェノール系酸化防止剤、リン系酸化防止剤が好ましい。
The separator 2 may contain various plasticizers, antioxidants and flame retardants.
Antioxidants include phenolic antioxidants such as hindered phenolic antioxidants, monophenolic antioxidants, bisphenolic antioxidants, and polyphenolic antioxidants; hindered amine antioxidants; phosphorus antioxidants. benzotriazole-based antioxidants; benzophenone-based antioxidants; triazine-based antioxidants; salicylic acid ester-based antioxidants, and the like. Phenolic antioxidants and phosphorus antioxidants are preferred.

[非水電解質]
非水電解質は正極1と負極3との間を満たす。例えば、リチウムイオン二次電池、電気二重層キャパシタ等において公知の非水電解質を使用できる。
非水電解質として、有機溶媒に電解質塩を溶解した非水電解液が好ましい。
[Non-aqueous electrolyte]
A non-aqueous electrolyte fills between the positive electrode 1 and the negative electrode 3 . For example, known nonaqueous electrolytes can be used in lithium ion secondary batteries, electric double layer capacitors and the like.
As the non-aqueous electrolyte, a non-aqueous electrolytic solution obtained by dissolving an electrolyte salt in an organic solvent is preferable.

有機溶媒は、高電圧に対する耐性を有するものが好ましい。例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトロヒドラフラン、2-メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒、又はこれら極性溶媒の2種類以上の混合物が挙げられる。 The organic solvent preferably has resistance to high voltage. For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, Polar solvents such as tetrahydrafuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate, or mixtures of two or more of these polar solvents are included.

電解質塩は、特に限定されず、例えばLiClO、LiPF、LiBF、LiAsF、LiCF、LiCFCO、LiPFSO、LiN(SOF)、LiN(SOCF、Li(SOCFCF、LiN(COCF、LiN(COCFCF等のリチウムを含む塩、又はこれら塩の2種以上の混合物が挙げられる。 The electrolyte salt is not particularly limited, and examples thereof include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 6 , LiCF 3 CO 2 , LiPF 6 SO 3 , LiN(SO 2 F) 2 and LiN(SO 2 CF 3 ). 2 , Li( SO2CF2CF3 ) 2 , LiN( COCF3 ) 2 , LiN ( COCF2CF3 ) 2 , or a mixture of two or more of these salts.

本実施形態の非水電解質二次電池は、産業用、民生用、自動車用、住宅用等、各種用途のリチウムイオン二次電池として使用できる。
本実施形態の非水電解質二次電池の使用形態は特に限定されない。例えば、複数個の非水電解質二次電池を直列又は並列に接続して構成した電池モジュール、電気的に接続した複数個の電池モジュールと電池制御システムとを備える電池システム等に用いることができる。
電池システムの例としては、電池パック、定置用蓄電池システム、自動車の動力用蓄電池システム、自動車の補機用蓄電池システム、非常電源用蓄電池システム等が挙げられる。
The non-aqueous electrolyte secondary battery of the present embodiment can be used as a lithium ion secondary battery for various uses such as industrial use, consumer use, automobile use, and residential use.
The mode of use of the non-aqueous electrolyte secondary battery of this embodiment is not particularly limited. For example, it can be used for a battery module configured by connecting a plurality of non-aqueous electrolyte secondary batteries in series or in parallel, a battery system including a plurality of electrically connected battery modules and a battery control system, and the like.
Examples of battery systems include battery packs, stationary storage battery systems, automotive power storage battery systems, automotive auxiliary equipment storage battery systems, and emergency power supply storage battery systems.

本実施形態の正極は、「集電体被覆層の厚み/正極活物質層の厚み」で表される厚みの比Xが、前記特許文献1で規定された範囲より小さい範囲で、インピーダンスが低い非水電解質二次電池を実現できる。 In the positive electrode of the present embodiment, the impedance is low when the thickness ratio X represented by "thickness of current collector coating layer/thickness of positive electrode active material layer" is smaller than the range specified in Patent Document 1. A non-aqueous electrolyte secondary battery can be realized.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。 EXAMPLES The present invention will be described in more detail below using examples, but the present invention is not limited to these examples.

<測定方法>
[厚み]
マイクロメータを用いて、正極シートの厚み、正極集電体11の厚み、正極集電体本体14の厚みをそれぞれ測定した。それぞれ任意の5点で測定して平均値を求めた。
正極集電体11の厚みとして、正極集電体露出部13の厚みを用いた。正極集電体露出部13の集電体被覆層15を除去して正極集電体本体14の厚みを測定した。
正極シートの厚みから正極集電体本体14の厚みを差し引いて、集電体本体を除く厚みを求めた。
集電体本体を除く厚みの値から集電体被覆層の厚み(両面合計)を差し引いて、正極活物質層の厚み(両面合計)を求めた。
正極活物質層の厚み(両面合計)に対する集電体被覆層の厚み(両面合計)の比を、厚みの比Xとして求めた。
<Measurement method>
[Thickness]
Using a micrometer, the thickness of the positive electrode sheet, the thickness of the positive electrode current collector 11, and the thickness of the positive electrode current collector main body 14 were measured. Each was measured at arbitrary five points and an average value was obtained.
As the thickness of the positive electrode current collector 11, the thickness of the positive electrode current collector exposed portion 13 was used. After removing the current collector coating layer 15 from the positive electrode current collector exposed portion 13, the thickness of the positive electrode current collector main body 14 was measured.
By subtracting the thickness of the positive electrode current collector main body 14 from the thickness of the positive electrode sheet, the thickness excluding the current collector main body was obtained.
The thickness of the positive electrode active material layer (total of both sides) was obtained by subtracting the thickness of the current collector coating layer (total of both sides) from the value of the thickness excluding the current collector body.
The thickness ratio X was obtained as the ratio of the thickness of the current collector coating layer (total of both sides) to the thickness of the positive electrode active material layer (total of both sides).

[正極活物質層の単位面積あたりの質量の測定方法]
正極シートを、直径16mmの円形に打ち抜いた測定試料を5枚準備した。
各測定試料の質量を精密天秤にて秤量し、測定結果から、予め測定した正極集電体11の質量を差し引くことにより、測定試料中の正極活物質層の質量を算出した。
正極活物質層の質量の平均値(単位:mg)/測定試料の面積(単位:cm)により、正極活物質層の単位面積あたりの質量(単位:mg/cm)を求めた。
[Method for measuring mass per unit area of positive electrode active material layer]
Five measurement samples were prepared by punching a positive electrode sheet into a circle with a diameter of 16 mm.
The mass of each measurement sample was weighed with a precision balance, and the mass of the positive electrode active material layer in the measurement sample was calculated by subtracting the previously measured mass of the positive electrode current collector 11 from the measurement result.
The mass per unit area of the positive electrode active material layer (unit: mg/cm 2 ) was obtained from the average value of the mass of the positive electrode active material layer (unit: mg)/the area of the measurement sample (unit: cm 2 ).

[剥離強度の測定方法]
正極活物質層12の剥離強度は、オートグラフを用いて以下の方法により測定することができる。図3は、正極活物質層の剥離強度の測定方法の工程図である。図3に示す工程(S1)~(S7)を順に説明する。図3は、その構成をわかりやすく説明するための模式図であり、各構成要素の寸法比率等は、実際とは異なる場合もある。
(S1)先ず、幅25mm、長さ120mmの長方形の両面テープ50を準備する。両面テープ50は粘着層50aの両面に剥離紙50b、50cが積層されている。両面テープ50としては、日東電工社製品名「No.5015、25mm幅」を用いた。
(S2)両面テープ50の片面の離型紙50cを剥がし、粘着層50aの表面(以下、「糊面」ともいう。)が露出した粘着体55とする。粘着体55において、長さ方向の一端部55aからの距離が約10mmのところに折り曲げ位置51を設ける。
(S3)前記折り曲げ位置51より一端部55a側を、糊面と糊面とが接着するように折り曲げる。
(S4)粘着体55の糊面と、正極シート60の正極活物質層12とが接触するように、粘着体55と正極シート60とを貼り合わせる。
(S5)粘着体55の外縁に沿って正極シート60を切り出し、長さ方向に圧着ローラーを2往復させる方法で、粘着体55と正極シート60とを圧着させて複合体65を得る。
(S6)ステンレス板70の一面に、複合体65の粘着体55側の外面を接触させ、折り曲げ位置51とは反対側の他端部65bを、メンディングテープ80でステンレス板70に固定する。メンディングテープ80としては、3M社製品名「スコッチテープメンディングテープ18mm×30小巻810-1-18D」を用いた。メンディングテープ80の長さは約30mmとし、ステンレス板70の端部から複合体65の他端部65bまでの距離Aは約5mm、メンディングテープ80の一端部80aから複合体65の他端部65bまでの距離Bは5mmとする。メンディングテープ80の他端部80bはステンレス板70の他面に貼り付ける。
(S7)複合体65の折り曲げ位置51側の端部において、粘着体55から正極シート60を、長さ方向に対して平行にゆっくりと剥がす。メンディングテープ80で固定されていない正極シート60の端部(以下、「剥離端」という)60aが、ステンレス板70からはみ出す程度までゆっくりと剥がす。
次いで、複合体65が固定されたステンレス板70を、図示しない引っ張り試験機(島津製作所製品名「EZ-LX」)に設置し、粘着体55の折り曲げ位置51側の端部を固定し、正極シート60の剥離端60aを折り曲げ位置51とは反対方向(折り曲げ位置51に対して180°方向)に、引っ張り速度60mm/分、試験力50000mN、ストローク70mmで引っ張って剥離強度を測定する。ストローク20~50mmにおける剥離強度の平均値を、正極活物質層12の剥離強度とする。
[Method for measuring peel strength]
The peel strength of the positive electrode active material layer 12 can be measured by the following method using an autograph. FIG. 3 is a process diagram of a method for measuring the peel strength of the positive electrode active material layer. Steps (S1) to (S7) shown in FIG. 3 will be described in order. FIG. 3 is a schematic diagram for explaining the configuration in an easy-to-understand manner, and the dimensional ratio of each component may differ from the actual one.
(S1) First, a rectangular double-sided tape 50 having a width of 25 mm and a length of 120 mm is prepared. The double-sided tape 50 has release papers 50b and 50c laminated on both sides of an adhesive layer 50a. As the double-sided tape 50, Nitto Denko's product name "No. 5015, 25 mm width" was used.
(S2) The release paper 50c on one side of the double-sided tape 50 is peeled off to form an adhesive body 55 in which the surface of the adhesive layer 50a (hereinafter also referred to as "adhesive surface") is exposed. The adhesive body 55 is provided with a bending position 51 at a distance of about 10 mm from one longitudinal end 55a.
(S3) The one end portion 55a side from the bending position 51 is folded so that the adhesive surfaces are adhered to each other.
(S4) The adhesive body 55 and the positive electrode sheet 60 are pasted together so that the adhesive surface of the adhesive body 55 and the positive electrode active material layer 12 of the positive electrode sheet 60 are in contact with each other.
(S5) The positive electrode sheet 60 is cut out along the outer edge of the adhesive body 55, and the adhesive body 55 and the positive electrode sheet 60 are press-bonded to obtain a composite body 65 by reciprocating a pressing roller twice in the length direction.
(S6) The outer surface of the adhesive 55 side of the composite 65 is brought into contact with one surface of the stainless steel plate 70, and the other end 65b opposite to the bending position 51 is fixed to the stainless steel plate 70 with the mending tape 80. As the mending tape 80, 3M's product name "Scotch tape mending tape 18 mm×30 small roll 810-1-18D" was used. The length of the mending tape 80 is approximately 30 mm, the distance A from the end of the stainless steel plate 70 to the other end 65b of the composite 65 is approximately 5 mm, and the length of the mending tape 80 is approximately 5 mm. A distance B to the portion 65b is set to 5 mm. The other end 80b of the mending tape 80 is attached to the other surface of the stainless steel plate 70. As shown in FIG.
(S7) Slowly peel the positive electrode sheet 60 from the adhesive body 55 parallel to the length direction at the end of the composite 65 on the bending position 51 side. The edge 60 a of the positive electrode sheet 60 that is not fixed by the mending tape 80 (hereinafter referred to as “peeled edge”) is slowly peeled off to such an extent that it protrudes from the stainless steel plate 70 .
Next, the stainless steel plate 70 to which the composite 65 is fixed is set in a tensile tester (Shimadzu Corporation product name “EZ-LX”) not shown, the end of the adhesive 55 on the bending position 51 side is fixed, and the positive electrode The peel strength is measured by pulling the peeled edge 60a of the sheet 60 in the direction opposite to the bending position 51 (180° direction with respect to the bending position 51) at a pulling speed of 60 mm/min, a test force of 50000 mN, and a stroke of 70 mm. The peel strength of the positive electrode active material layer 12 is the average value of the peel strength at strokes of 20 to 50 mm.

[インピーダンスの測定方法]
定格容量が1Ahとなるようにセルを作製し、得られたセルに対して、25℃(常温)環境下で0.2Cレート(すなわち、200mA)で一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて前記充電電流の1/10を終止電流(すなわち、20mA)として充電を行った後に、常温(25℃)、周波数1kHzの条件でインピーダンスを測定した。
測定は正負極タブにそれぞれ電流端子、電圧端子を取り付ける4端子法にて実施した。測定には一例として、BioLogic社製インピーダンスアナライザを用いた。
[Method of measuring impedance]
A cell is produced so that the rated capacity is 1 Ah, and the obtained cell is charged at a constant current of 0.2 C rate (i.e., 200 mA) at a final voltage of 3.6 V in a 25 ° C. (room temperature) environment. After that, the battery was charged at a constant voltage with 1/10 of the charging current as the final current (that is, 20 mA), and then the impedance was measured at room temperature (25° C.) and a frequency of 1 kHz.
The measurement was performed by a four-terminal method in which a current terminal and a voltage terminal are attached to the positive and negative tabs, respectively. As an example, an impedance analyzer manufactured by BioLogic was used for the measurement.

<評価方法>
[高レートサイクル試験]
容量維持率の評価は、下記(1)~(7)の手順に沿って行った。
(1)定格容量が1Ahとなるように非水電解質二次電池(セル)を作製し、常温(25℃)下で、サイクル評価を実施した。
(2)得られたセルに対して、0.2Cレート(すなわち、200mA)で一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて前記充電電流の1/10を終止電流(すなわち、20mA)として充電を行った。
(3)容量確認のための放電を0.2Cレートで一定電流にて終止電圧2.5Vで行った。このときの放電容量を基準容量とし、基準容量を1Cレートの電流値とした(すなわち、1,000mAとした)。
(4)セルの3Cレート(すなわち、3000mA)で一定電流にて終止電圧3.8Vで充電を行った後、10秒間休止し、この状態から3Cレートにて終止電圧2.0Vで放電を行い、10秒間休止した。
(5)(4)のサイクル試験を1,000回繰り返した。
(6)(2)と同様の充電を実施した後に、(3)と同じ容量確認を実施した。
(7)(6)で測定された容量確認での放電容量をサイクル試験前の基準容量で除して百分率とする事で、1,000サイクル後の容量維持率(1,000サイクル容量維持率、単位:%)とした。
<Evaluation method>
[High rate cycle test]
Evaluation of the capacity retention rate was performed according to the following procedures (1) to (7).
(1) A non-aqueous electrolyte secondary battery (cell) was produced so as to have a rated capacity of 1 Ah, and cycle evaluation was performed at room temperature (25°C).
(2) The resulting cell was charged at a constant current rate of 0.2C (i.e., 200mA) with a termination voltage of 3.6V, and then terminated at a constant voltage with 1/10 of the charging current. Charging was done as a current (ie 20 mA).
(3) Discharge for capacity confirmation was performed at a constant current of 0.2C rate and a final voltage of 2.5V. The discharge capacity at this time was taken as the reference capacity, and the reference capacity was taken as the current value of 1C rate (that is, 1,000 mA).
(4) After charging the cell at a constant current at a 3C rate (that is, 3000 mA) with a final voltage of 3.8 V, resting for 10 seconds, and discharging from this state at a 3 C rate with a final voltage of 2.0 V , rested for 10 seconds.
(5) The cycle test of (4) was repeated 1,000 times.
(6) After performing the same charging as in (2), the same capacity confirmation as in (3) was performed.
(7) By dividing the discharge capacity in capacity confirmation measured in (6) by the reference capacity before the cycle test and making it a percentage, the capacity retention rate after 1,000 cycles (1,000 cycle capacity retention rate , unit: %).

<製造例1:負極の製造>
負極活物質である人造黒鉛100質量部と、結着材であるスチレンブタジエンゴム1.5質量部と、増粘材であるカルボキシメチルセルロースNa1.5質量部と、溶媒である水とを混合し、固形分50質量%の負極製造用組成物を得た。
得られた負極製造用組成物を、銅箔(厚さ8μm)の両面上にそれぞれ塗工し、100℃で真空乾燥した後、2kNの荷重で加圧プレスして負極シートを得た。得られた負極シートを打ち抜き、負極とした。
<Production Example 1: Production of Negative Electrode>
100 parts by mass of artificial graphite as a negative electrode active material, 1.5 parts by mass of styrene-butadiene rubber as a binder, 1.5 parts by mass of carboxymethyl cellulose Na as a thickener, and water as a solvent are mixed, A composition for manufacturing a negative electrode having a solid content of 50% by mass was obtained.
The obtained composition for manufacturing a negative electrode was coated on both sides of a copper foil (thickness: 8 μm), dried in vacuum at 100° C., and then pressed under a load of 2 kN to obtain a negative electrode sheet. The obtained negative electrode sheet was punched out to obtain a negative electrode.

<例1~6>
例1~5は実施例、例6は比較例である。
正極活物質としては、炭素で被覆されたリン酸鉄リチウム(以下「カーボンコート活物質」ともいう、平均粒子径1.0μm、炭素含有量1質量%)を用いた。
導電助剤としてカーボンブラックを用いた。
結着材としてポリフッ化ビニリデン(PVDF)を用いた。
<Examples 1 to 6>
Examples 1 to 5 are examples, and Example 6 is a comparative example.
As the positive electrode active material, carbon-coated lithium iron phosphate (hereinafter also referred to as “carbon-coated active material”, average particle diameter of 1.0 μm, carbon content of 1% by mass) was used.
Carbon black was used as a conductive aid.
Polyvinylidene fluoride (PVDF) was used as a binder.

[例1]
まず、以下の方法で正極集電体本体14の表裏両面を集電体被覆層15で被覆して正極集電体11を作製した。正極集電体本体14としてはアルミニウム箔(厚さ15μm)を用いた。
カーボンブラック100質量部と、結着材であるポリフッ化ビニリデン40質量部と、溶媒であるN-メチルピロリドン(NMP)とを混合してスラリーを得た。NMPの使用量はスラリーを塗工するのに必要な量とした。
得られたスラリーを正極集電体本体14の両面にグラビア法で塗工し、乾燥し溶媒を除去して集電体被覆層15を形成し、正極集電体11を得た。両面の集電体被覆層15の合計厚みが表2に示す値となるように、スラリーの塗工量を設定した。両面それぞれの集電体被覆層15は、塗工量及び厚みが互いに均等になるように形成した。
[Example 1]
First, the positive electrode current collector 11 was produced by coating the front and back surfaces of the positive electrode current collector body 14 with the current collector coating layer 15 by the following method. An aluminum foil (thickness: 15 μm) was used as the positive electrode current collector main body 14 .
A slurry was obtained by mixing 100 parts by mass of carbon black, 40 parts by mass of polyvinylidene fluoride as a binder, and N-methylpyrrolidone (NMP) as a solvent. The amount of NMP used was the amount necessary for coating the slurry.
The obtained slurry was applied to both surfaces of the positive electrode current collector main body 14 by gravure, dried, and the solvent was removed to form the current collector coating layer 15 , and the positive electrode current collector 11 was obtained. The slurry coating amount was set so that the total thickness of the current collector coating layers 15 on both sides was the value shown in Table 2. The current collector coating layers 15 on both sides were formed so that the coating amount and thickness were uniform.

次いで、以下の方法で正極活物質層12を形成した。
表1に示す配合で、正極活物質であるカーボンコート活物質と、導電助剤であるカーボンブラックと、結着材であるPVDFと、溶媒であるNMPとを、ミキサーにて混合して正極製造用組成物を得た。溶媒の使用量は、正極製造用組成物を塗工するのに必要な量とした。
正極集電体11の両面上に、それぞれ正極製造用組成物を塗工し、予備乾燥後、120℃環境で真空乾燥して正極活物質層12を形成した。単位面積あたりの正極活物質層の質量が表2に示す値となるように、正極製造用組成物の塗工量を設定した。得られた積層物を10kNの荷重で加圧プレスして正極シートを得た。両面それぞれの正極活物質層12は、塗工量及び厚みが互いに均等になるように形成した。
得られた正極シートを試料として、上記の方法で、集電体本体を除く厚み、集電体被覆層の厚み(両面合計)、正極活物質層の厚み(両面合計)、「集電体被覆層の厚み/正極活物質層の厚み」で表される厚みの比X、正極活物質層の単位面積あたりの質量、及び剥離強度を測定した。これらの結果を表2に示す(以下、同様)。
得られた正極シートを打ち抜き、正極とした。
Next, the positive electrode active material layer 12 was formed by the following method.
A positive electrode is produced by mixing a carbon coat active material as a positive electrode active material, carbon black as a conductive agent, PVDF as a binder, and NMP as a solvent in a mixer with the formulation shown in Table 1. A composition for The amount of the solvent used was the amount necessary for coating the composition for manufacturing a positive electrode.
On both sides of the positive electrode current collector 11 , the positive electrode manufacturing composition was applied, pre-dried, and then vacuum dried in an environment of 120° C. to form the positive electrode active material layer 12 . The coating amount of the composition for manufacturing a positive electrode was set so that the mass of the positive electrode active material layer per unit area was the value shown in Table 2. The resulting laminate was pressed under a load of 10 kN to obtain a positive electrode sheet. The positive electrode active material layers 12 on both sides were formed so that the coating amount and thickness were uniform.
Using the obtained positive electrode sheet as a sample, the thickness excluding the current collector main body, the thickness of the current collector coating layer (both sides total), the thickness of the positive electrode active material layer (both sides total), and the "current collector coating The thickness ratio X represented by "thickness of layer/thickness of positive electrode active material layer", mass per unit area of positive electrode active material layer, and peel strength were measured. These results are shown in Table 2 (hereinafter the same).
The obtained positive electrode sheet was punched out to obtain a positive electrode.

以下の方法で、図2に示す構成の非水電解質二次電池を製造した。
エチレンカーボネート(EC)とジエチルカーボネート(DEC)を、EC:DECの体積比が3:7となるように混合した溶媒に、電解質としてLiPFを1モル/リットルとなるように溶解して、非水電解液を調製した。
本例で得た正極と、製造例1で得た負極とを、セパレータを介して交互に積層し、最外層が負極である電極積層体を作製した。セパレータとしては、ポリオレフィンフィルム(厚さ15μm)を用いた。
電極積層体を作製する工程では、まず、セパレータ2と正極1とを積層し、その後、セパレータ2上に負極3を積層した。
電極積層体の正極集電体露出部13及び負極集電体露出部33のそれぞれに、端子用タブを電気的に接続し、端子用タブが外部に突出するように、アルミラミネートフィルムで電極積層体を挟み、三辺をラミネート加工して封止した。
続いて、封止せずに残した一辺から非水電解液を注入し、真空封止して非水電解質二次電池(ラミネートセル)を製造した。
上記の方法でインピーダンスを測定した。また上記の方法で高レートサイクル試験を行い、1,000サイクル容量維持率を測定した。結果を表2に示す(以下、同様)。
A non-aqueous electrolyte secondary battery having the configuration shown in FIG. 2 was manufactured by the following method.
Ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed so that the volume ratio of EC:DEC was 3 :7. An aqueous electrolyte was prepared.
The positive electrode obtained in this example and the negative electrode obtained in Production Example 1 were alternately laminated via a separator to prepare an electrode laminate having the negative electrode as the outermost layer. A polyolefin film (thickness: 15 μm) was used as the separator.
In the process of producing the electrode laminate, first, the separator 2 and the positive electrode 1 were laminated, and then the negative electrode 3 was laminated on the separator 2 .
A terminal tab is electrically connected to each of the positive electrode current collector exposed portion 13 and the negative electrode current collector exposed portion 33 of the electrode laminate, and the electrodes are stacked with an aluminum laminate film so that the terminal tab protrudes to the outside. The body was sandwiched, and three sides were laminated and sealed.
Subsequently, a non-aqueous electrolyte was injected from one side that was left unsealed, and vacuum-sealed to manufacture a non-aqueous electrolyte secondary battery (laminate cell).
Impedance was measured by the method described above. Also, a high rate cycle test was performed by the above method to measure the 1,000 cycle capacity retention rate. The results are shown in Table 2 (same below).

[例2~4]
正極製造用組成物の塗工量を変更して、正極活物質層の厚みを変えた。それ以外は例1と同様にして正極を作製し、二次電池を製造して評価した。
[Examples 2-4]
The thickness of the positive electrode active material layer was changed by changing the coating amount of the positive electrode manufacturing composition. Otherwise, a positive electrode was produced in the same manner as in Example 1, and a secondary battery was produced and evaluated.

[例5]
本例は、導電助剤を用いずに正極を作製した例である。表1に示す通りに正極製造用組成物の配合を変更した。表2に示す通りに正極活物質層の塗工量、厚みを変えた。それ以外は例1と同様にして正極を作製し、二次電池を製造して評価した。
[Example 5]
This example is an example of producing a positive electrode without using a conductive aid. As shown in Table 1, the formulation of the positive electrode manufacturing composition was changed. As shown in Table 2, the coating amount and thickness of the positive electrode active material layer were changed. Otherwise, a positive electrode was produced in the same manner as in Example 1, and a secondary battery was produced and evaluated.

[例6]
例1において、集電体被覆層15を設けない以外は例1と同様にして正極を作製し、二次電池を製造して評価した。
[Example 6]
In Example 1, a positive electrode was produced in the same manner as in Example 1 except that the current collector coating layer 15 was not provided, and a secondary battery was produced and evaluated.

Figure 2022145470000002
Figure 2022145470000002

Figure 2022145470000003
Figure 2022145470000003

表2の結果に示されるように、正極集電体が集電体被覆層を備え、正極活物質が活物質被覆層を有するリン酸鉄リチウムであり、厚みの比Xが0.000超、0.020未満である例1~5は、非水電解質二次電池のインピーダンスを低く抑えることができた。
集電体被覆層を設けず、厚みの比Xがゼロである例6は、例1に比べて非水電解質二次電池のインピーダンスが大幅に高くなった。
As shown in the results of Table 2, the positive electrode current collector has a current collector coating layer, the positive electrode active material is lithium iron phosphate having an active material coating layer, and the thickness ratio X is greater than 0.000, Examples 1 to 5, which are less than 0.020, were able to keep the impedance of the non-aqueous electrolyte secondary battery low.
In Example 6, in which the current collector coating layer was not provided and the thickness ratio X was zero, the impedance of the non-aqueous electrolyte secondary battery was significantly higher than that in Example 1.

一般に、正極活物質層の厚みが大きくなると、導電パスが悪くなってインピーダンスが高くなりやすいと予測されるが、例1~5では、正極活物質層の厚みの増大に伴う、インピーダンスの上昇が小さく抑えられた。 In general, it is predicted that as the thickness of the positive electrode active material layer increases, the conductive path deteriorates and the impedance tends to increase. kept small.

1 正極
2 セパレータ
3 負極
5 外装体
10 二次電池
11 正極集電体
12 正極活物質層
13 正極集電体露出部
14 正極集電体本体
15 集電体被覆層
31 負極集電体
32 負極活物質層
33 負極集電体露出部
50 両面テープ
50a 粘着層
50b 剥離紙
51 折り曲げ位置
55 粘着体
60 正極シート
70 ステンレス板
80 メンディングテープ
REFERENCE SIGNS LIST 1 positive electrode 2 separator 3 negative electrode 5 exterior body 10 secondary battery 11 positive electrode current collector 12 positive electrode active material layer 13 positive electrode current collector exposed portion 14 positive electrode current collector body 15 current collector coating layer 31 negative electrode current collector 32 negative electrode active Substance layer 33 Negative electrode current collector exposed portion 50 Double-sided tape 50a Adhesive layer 50b Release paper 51 Folding position 55 Adhesive body 60 Positive electrode sheet 70 Stainless steel plate 80 Mending tape

Claims (10)

金属材料からなる正極集電体本体を備える正極集電体と、前記正極集電体上に存在する正極活物質層とを有し、
前記正極活物質層が正極活物質を含み、
前記正極活物質の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在し、 前記正極集電体本体の、前記正極活物質層側の表面の少なくとも一部に、導電材料を含む集電体被覆層が存在し、
前記正極活物質層の厚みに対する前記集電体被覆層の厚みの比が0.000超、0.020未満である、非水電解質二次電池用正極。
A positive electrode current collector comprising a positive electrode current collector main body made of a metal material, and a positive electrode active material layer present on the positive electrode current collector,
The positive electrode active material layer contains a positive electrode active material,
An active material coating portion containing a conductive material is present on at least part of the surface of the positive electrode active material, and at least part of the surface of the positive electrode current collector main body on the positive electrode active material layer side contains the conductive material. a current collector coating layer is present,
A positive electrode for a non-aqueous electrolyte secondary battery, wherein the ratio of the thickness of the current collector coating layer to the thickness of the positive electrode active material layer is more than 0.000 and less than 0.020.
前記正極集電体の両面に前記正極活物質層が存在し、前記両面の正極活物質層の合計の単位面積あたりの質量が30~150mg/cmである、請求項1に記載の非水電解質二次電池用正極。 2. The nonaqueous according to claim 1, wherein the positive electrode active material layers are present on both sides of the positive electrode current collector, and the total mass per unit area of the positive electrode active material layers on both sides is 30 to 150 mg/cm 2 . Positive electrode for electrolyte secondary batteries. 前記正極活物質層の剥離強度が7~1,000mN/cmである、請求項1又は2に記載の非水電解質二次電池用正極。 3. The positive electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein said positive electrode active material layer has a peel strength of 7 to 1,000 mN/cm. 前記正極集電体の両面に前記正極活物質層が存在し、前記非水電解質二次電池用正極から前記正極集電体本体を除いた残部の厚みが50~500μmである、請求項1~3のいずれか一項に記載の非水電解質二次電池用正極。 The positive electrode active material layer is present on both sides of the positive electrode current collector, and the thickness of the remainder of the positive electrode for a non-aqueous electrolyte secondary battery excluding the positive electrode current collector body is 50 to 500 μm. 4. The positive electrode for a non-aqueous electrolyte secondary battery according to any one of 3. 前記正極活物質が、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含む、請求項1~4のいずれか一項に記載の非水電解質二次電池用正極。 The positive electrode active material is a compound represented by the general formula LiFe x M (1-x) PO 4 (where 0≦x≦1 and M is Co, Ni, Mn, Al, Ti or Zr). The positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, comprising 前記正極活物質が、LiFePOで表されるリン酸鉄リチウムである、請求項5に記載の非水電解質二次電池用正極。 6. The positive electrode for a non-aqueous electrolyte secondary battery according to claim 5, wherein said positive electrode active material is lithium iron phosphate represented by LiFePO4 . 前記正極活物質層が、さらに導電助剤を含む、請求項1~6のいずれか一項に記載の非水電解質二次電池用正極。 The positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein said positive electrode active material layer further contains a conductive aid. 前記正極活物質層が導電助剤を含まない、請求項1~6のいずれか一項に記載の非水電解質二次電池用正極。 The positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein said positive electrode active material layer does not contain a conductive aid. 請求項1~8のいずれか一項に記載の非水電解質二次電池用正極、負極、及び前記非水電解質二次電池用正極と負極との間に存在する非水電解質を備える、非水電解質二次電池。 A positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 8, a negative electrode, and a non-aqueous electrolyte present between the positive electrode and the negative electrode for the non-aqueous electrolyte secondary battery, non-aqueous Electrolyte secondary battery. 請求項9に記載の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。 A battery module or battery system comprising a plurality of non-aqueous electrolyte secondary batteries according to claim 9 .
JP2021197130A 2021-03-19 2021-12-03 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same Active JP7157863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021197130A JP7157863B2 (en) 2021-03-19 2021-12-03 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021045979A JP2022144809A (en) 2021-03-19 2021-03-19 Cathode for nonaqueous electrolyte secondary battery
JP2021197130A JP7157863B2 (en) 2021-03-19 2021-12-03 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021045979A Division JP2022144809A (en) 2021-03-19 2021-03-19 Cathode for nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2022145470A true JP2022145470A (en) 2022-10-04
JP7157863B2 JP7157863B2 (en) 2022-10-20

Family

ID=87852692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021197130A Active JP7157863B2 (en) 2021-03-19 2021-12-03 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same

Country Status (1)

Country Link
JP (1) JP7157863B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134777A (en) * 2004-11-08 2006-05-25 Erekuseru Kk Positive electrode for lithium battery and lithium battery using this
JP2006190528A (en) * 2005-01-05 2006-07-20 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery and positive electrode thereof
JP2007226969A (en) * 2005-02-10 2007-09-06 Showa Denko Kk Current collector for secondary battery, positive electrode for the secondary battery, negative electrode for the secondary battery, the secondary battery, and manufacturing method of them
JP2013077476A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Sheet for positive pole of lithium ion secondary battery and positive pole using the same
WO2020237713A1 (en) * 2019-05-31 2020-12-03 宁德时代新能源科技股份有限公司 Lithium-ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134777A (en) * 2004-11-08 2006-05-25 Erekuseru Kk Positive electrode for lithium battery and lithium battery using this
JP2006190528A (en) * 2005-01-05 2006-07-20 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery and positive electrode thereof
JP2007226969A (en) * 2005-02-10 2007-09-06 Showa Denko Kk Current collector for secondary battery, positive electrode for the secondary battery, negative electrode for the secondary battery, the secondary battery, and manufacturing method of them
JP2013077476A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Sheet for positive pole of lithium ion secondary battery and positive pole using the same
WO2020237713A1 (en) * 2019-05-31 2020-12-03 宁德时代新能源科技股份有限公司 Lithium-ion secondary battery

Also Published As

Publication number Publication date
JP7157863B2 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
US20230115482A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
JP2022144809A (en) Cathode for nonaqueous electrolyte secondary battery
JP7138228B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7194299B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7197668B2 (en) Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery module, and battery system
JP7157863B2 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7212130B2 (en) Positive electrode for bendable non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same
WO2024009988A1 (en) Positive electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery, battery module, and battery system using same, and method for producing positive electrode for nonaqueous electrolyte secondary batteries
JP7193671B1 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module, and battery system using the same, method for manufacturing positive electrode for non-aqueous electrolyte secondary battery
JP7197670B2 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7181372B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7197669B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same
JP7149437B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7316424B1 (en) NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, BATTERY MODULE, AND BATTERY SYSTEM
JP7138259B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7323690B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
WO2023176929A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using same
US20230178731A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
JP2023029333A (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system that employ the same
JP2022144968A (en) Method for evaluation of cathode for nonaqueous electrolyte secondary battery
JP2023141411A (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same
JP2023141414A (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module, and battery system using the same
JP2023141406A (en) Method for manufacturing positive electrode for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same, and composition for manufacturing positive electrode
JP2023140733A (en) Composition for manufacturing positive electrode for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module and battery system, and method for manufacturing positive electrode for non-aqueous electrolyte secondary battery
CN115380406A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211203

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221007

R151 Written notification of patent or utility model registration

Ref document number: 7157863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151