JP2022144265A - air conditioner - Google Patents

air conditioner Download PDF

Info

Publication number
JP2022144265A
JP2022144265A JP2021045186A JP2021045186A JP2022144265A JP 2022144265 A JP2022144265 A JP 2022144265A JP 2021045186 A JP2021045186 A JP 2021045186A JP 2021045186 A JP2021045186 A JP 2021045186A JP 2022144265 A JP2022144265 A JP 2022144265A
Authority
JP
Japan
Prior art keywords
water
air
refrigerant
housing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021045186A
Other languages
Japanese (ja)
Inventor
佳憲 河村
Yoshinori Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Lifestyle Products and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lifestyle Products and Services Corp filed Critical Toshiba Lifestyle Products and Services Corp
Priority to JP2021045186A priority Critical patent/JP2022144265A/en
Priority to CN202210020625.9A priority patent/CN115111655A/en
Publication of JP2022144265A publication Critical patent/JP2022144265A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0073Indoor units, e.g. fan coil units with means for purifying supplied air characterised by the mounting or arrangement of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0076Indoor units, e.g. fan coil units with means for purifying supplied air by electric means, e.g. ionisers or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/108Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using dry filter elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • F24F8/167Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means using catalytic reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

To provide an air conditioner which can perform sterilization treatment of an indoor space more effectively and inhibit drying of indoor air with a simple structure.SOLUTION: An air conditioner includes a housing, a fan, a photocatalytic filter, a water receiving part, and a light source as one example. The fan takes air outside the housing into a ventilation flue in the housing, causes the air to pass through a heat exchanger, and discharges the air to the outside of the housing. The photocatalytic filter is provided so as to allow passage of air in a part of the ventilation flue, includes a photocatalyst, and may contain water. The water receiving part may supply water to the photocatalyst filter. The light source may radiate ultraviolet light to the photocatalytic filter.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、空気調和装置に関する。 An embodiment of the present invention relates to an air conditioner.

従来、高電圧放電を用いて除菌効果を有する有効成分(例えば、OHラジカルやオゾン等)を発生させて、温度調整済みの空気とともに室内に放出し、室内の除菌や消臭を行う空気調和装置が提案されている。また、放電部分に水分を供給して有効成分を含む過酸化水素を生成し温度調整済みの空気とともに放出させる空気調和装置が提案されている。 Conventionally, high-voltage discharge is used to generate active ingredients (for example, OH radicals, ozone, etc.) that have a sterilizing effect, and they are released into the room together with temperature-controlled air to sterilize and deodorize the room. Harmonizing devices have been proposed. Also, an air conditioner has been proposed in which moisture is supplied to a discharge portion to generate hydrogen peroxide containing an active ingredient, and the hydrogen peroxide is released together with temperature-controlled air.

特開2010-196960号公報JP 2010-196960 A

しかしながら、従来技術の場合、小形の放電部周囲に水分を供給して過酸化水素等を生成しているのにとどまり、室内の乾燥対策は十分に行われていないというのが現状である。特に、暖房運転するような冬季の場合、室内空気の乾燥程度が高い場合が多く、室内の除菌処理を行うとともに、室内空気の乾燥抑制ができれば、室内環境をより改善することが可能となり、有意義である。 However, in the case of the prior art, only water is supplied to the periphery of the small discharge section to generate hydrogen peroxide, etc., and the current situation is that sufficient countermeasures against dryness in the room have not been taken. Especially in the winter when the heating is operated, the degree of dryness of the indoor air is often high. Meaningful.

本発明が解決する課題の一例は、容易な構成で、より効率的に室内の除菌処理が行えるとともに、室内空気の乾燥抑制が可能な空気調和装置を提供することである。 One example of the problem to be solved by the present invention is to provide an air conditioner that can more efficiently sterilize indoor air and suppress drying of indoor air with a simple configuration.

本発明の一つの実施形態に係る空気調和装置は、ハウジングと、ファンと、光触媒フィルタと、水受け部と、光源と、を備える。ファンは、前記ハウジングの外部の空気を当該ハウジングの内部の通風路に取り入れ、熱交換器を通過させて前記ハウジングの外部に排出させる。光触媒フィルタは、前記通風路の一部で前記空気の通過を許容するように設けられ、光触媒を含む含水可能なフィルタである。水受け部は、前記光触媒フィルタに水を供給可能である。光源は、前記光触媒フィルタに紫外線光を照射可能である。 An air conditioner according to one embodiment of the present invention includes a housing, a fan, a photocatalyst filter, a water receiver, and a light source. The fan draws air from the outside of the housing into a ventilation passage inside the housing, passes the air through the heat exchanger, and exhausts the air to the outside of the housing. The photocatalyst filter is a water-retainable filter containing a photocatalyst, provided to allow passage of the air in a portion of the ventilation passage. The water receiver can supply water to the photocatalyst filter. The light source can irradiate the photocatalyst filter with ultraviolet light.

前記水受け部は、当該水受け部に供給される前記水に継続的に界面活性成分を供給可能な界面活性剤を保持可能である。 The water receiving portion can hold a surfactant capable of continuously supplying a surface active component to the water supplied to the water receiving portion.

また、前記ハウジングの前記空気の排出側に、少なくとも暖房運転時に前記ハウジングの内部を流れる空気から水を生成する水生成部が設けられてもよい。 A water generator may be provided on the air discharge side of the housing for generating water from the air flowing through the housing at least during heating operation.

また、前記水生成部は、前記熱交換器の下流側で冷媒の流れを第一の分流路と第二の分流路に分岐させる分岐部と、前記第一の分流路に設けられて前記冷媒の温度を結露水の発生可能温度以下まで低下させて前記水受け部に供給する結露水を生成する低温化部と、前記第二の分流路に設けられて前記低温化部の下流側で当該低温化部で低下した前記冷媒の温度を前記第二の分流路を流れる前記冷媒の温度に接近させて前記第二の分流路を流れる前記冷媒に合流させられるように加熱する再加熱部と、を含んでもよい。 In addition, the water generation section includes a branching section that branches the flow of the refrigerant into a first branched flow path and a second branched flow path on the downstream side of the heat exchanger, and a branching section that is provided in the first branched flow path and the refrigerant a temperature lowering unit that lowers the temperature of to a temperature at which condensed water can be generated or less to generate condensed water to be supplied to the water receiving unit; a reheating unit that brings the temperature of the refrigerant lowered in the low-temperature unit closer to the temperature of the refrigerant flowing through the second branch channel and heats the refrigerant so that it can join the refrigerant flowing through the second branch channel; may include

また、前記光源を挟んで、前記光触媒フィルタとは逆側で前記通風路の上流側の位置にオゾン発生部を備えてもよい。 Further, an ozone generator may be provided at a position opposite to the photocatalyst filter and upstream of the ventilation passage with the light source interposed therebetween.

以上の空気調和装置によれば、例えば、光触媒フィルタに紫外線光を照射するのみで、光触媒フィルタの表面に正孔(ホール)が形成され、光触媒フィルタに含浸された水の水酸化イオンから電子を奪い、酸化力の強いOHラジカルを生成する。このとき、光触媒フィルタには、充分な水が含浸可能なため、OHラジカルを含む過酸化水素を十分に生成可能となる。その結果、容易な構成で通風路から排出される温度調整済みの空気に過酸化水素を乗せて室内に放出することが可能になり、室内の除菌効果の向上が図れる。また、通風路の途中に設けられる光触媒フィルタには、充分な水が含浸可能なため、空気中に十分な水分を放出可能である。その結果、室内の乾燥抑制に寄与することができる。 According to the air conditioner described above, for example, only by irradiating the photocatalyst filter with ultraviolet light, holes are formed on the surface of the photocatalyst filter, and electrons are removed from hydroxyl ions of the water impregnated in the photocatalyst filter. to generate OH radicals with strong oxidizing power. At this time, since the photocatalyst filter can be impregnated with sufficient water, hydrogen peroxide containing OH radicals can be generated sufficiently. As a result, with a simple structure, it is possible to put hydrogen peroxide on the temperature-adjusted air discharged from the ventilation passage and discharge it into the room, thereby improving the sterilization effect in the room. In addition, since the photocatalyst filter provided in the middle of the ventilation path can be impregnated with sufficient water, it is possible to release sufficient moisture into the air. As a result, it is possible to contribute to the suppression of dryness in the room.

図1は、実施形態に係る空気調和装置(室内機)の構成を示す例示的かつ模式的な断面図である。FIG. 1 is an exemplary and schematic cross-sectional view showing the configuration of an air conditioner (indoor unit) according to an embodiment. 図2は、光触媒を用いてOHラジカルを生成することを示す例示的かつ模式的な説明図である。FIG. 2 is an exemplary and schematic explanatory diagram showing generation of OH radicals using a photocatalyst. 図3は、実施形態に係る空気調和装置において、結露水を含浸した光触媒フィルタに紫外線光を照射し、OHラジカルを含む過酸化水素を生成することを示す例示的かつ模式的な説明図である。FIG. 3 is an exemplary and schematic explanatory diagram showing that a photocatalyst filter impregnated with condensed water is irradiated with ultraviolet light to generate hydrogen peroxide containing OH radicals in the air conditioner according to the embodiment. . 図4は、実施形態に係る空気調和装置において、光触媒フィルタに含浸させる水に界面活性剤を添加し、加速度過酸化水素を生成することを示す例示的かつ模式的な説明図である。FIG. 4 is an exemplary and schematic explanatory diagram showing that a surfactant is added to water with which a photocatalyst filter is impregnated to generate accelerated hydrogen peroxide in the air conditioner according to the embodiment. 図5は、実施形態に係る空気調和装置において、暖房運転時に循環する冷媒を用いて結露水を生成するシステムを示す例示的かつ模式的な説明図である。FIG. 5 is an exemplary and schematic explanatory diagram showing a system for generating condensed water using refrigerant circulating during heating operation in the air conditioner according to the embodiment. 図6は、実施形態に係る空気調和装置において、循環する冷媒を用いて結露水を発生させることと、水生成に利用した冷媒を循環系に戻すシステムを示す例示的かつ模式的な説明図である。FIG. 6 is an exemplary and schematic explanatory view showing a system for generating condensed water using a circulating refrigerant and returning the refrigerant used for water generation to the circulation system in the air conditioner according to the embodiment. be. 図7は、実施形態に係る空気調和装置の変形例で、オゾンを用いて加速化過酸化水素の生成効率を向上するシステムを示す例示的かつ模式的な説明図である。FIG. 7 is an exemplary and schematic explanatory diagram showing a system for improving the production efficiency of accelerated hydrogen peroxide using ozone, which is a modification of the air conditioner according to the embodiment.

以下に、一つの実施形態について、図を参照して説明する。なお、本明細書において、実施形態に係る構成要素及び当該要素の説明が、複数の表現で記載されることがある。構成要素及びその説明は、一例であり、本明細書の表現によって限定されない。構成要素は、本明細書におけるものとは異なる名称でも特定され得る。また、構成要素は、本明細書の表現とは異なる表現によっても説明され得る。 One embodiment will be described below with reference to the drawings. Note that, in this specification, the constituent elements according to the embodiment and the description of the relevant elements may be described with a plurality of expressions. The components and their descriptions are examples and are not limited by the expressions herein. Components may also be identified by names different from those herein. Also, components may be described in terms that differ from the terms used herein.

図1は、実施形態に係る空気調和装置10(室内機10A)の構成を示す例示的かつ模式的な図である。図1示す室内機10Aは、例えば、家庭用のエアコンディショナである。室内機10Aは、建造物の室内に配置されるとともに、冷媒配管及び電気配線を介して室外に配置された室外機10B(図5参照)に接続される。なお、空気調和装置10は、この例に限られず、業務用のエアコンディショナのような他の空気調和装置であってもよい。 FIG. 1 is an exemplary and schematic diagram showing the configuration of an air conditioner 10 (indoor unit 10A) according to an embodiment. The indoor unit 10A shown in FIG. 1 is, for example, a home air conditioner. The indoor unit 10A is arranged indoors in a building and is connected to an outdoor unit 10B (see FIG. 5) arranged outdoors via refrigerant pipes and electrical wiring. Note that the air conditioner 10 is not limited to this example, and may be another air conditioner such as a commercial air conditioner.

空気調和装置10としての室内機10Aは、ハウジング12と、吸込口フィルタ14と、ファン16と、熱交換器18と、風向板20等を備える。また、本実施形態の室内機10Aは、さらに、過酸化水素発生部22として、光源24、光触媒フィルタ26、水受け部28等を備える。 An indoor unit 10A as an air conditioner 10 includes a housing 12, a suction port filter 14, a fan 16, a heat exchanger 18, a wind direction plate 20, and the like. Further, the indoor unit 10A of the present embodiment further includes a light source 24, a photocatalytic filter 26, a water receiver 28, etc. as the hydrogen peroxide generator 22. FIG.

図1に示されるように、本明細書において、便宜上、X軸、Y軸及びZ軸が定義される。X軸とY軸とZ軸とは、互いに直交する。X軸は、室内機10A(空気調和装置10)の幅に沿って設けられる。Y軸は、室内機10Aの奥行に沿って設けられる。Z軸は、室内機10Aの高さに沿って設けられる。 As shown in FIG. 1, the X, Y and Z axes are defined herein for convenience. The X-axis, Y-axis and Z-axis are orthogonal to each other. The X-axis is provided along the width of the indoor unit 10A (air conditioner 10). The Y-axis is provided along the depth of the indoor unit 10A. The Z-axis is provided along the height of the indoor unit 10A.

さらに、本明細書において、X方向、Y方向及びZ方向が定義される。X方向は、X軸に沿う方向であって、X軸の矢印が示す+X方向と、X軸の矢印の反対方向である-X方向とを含む。Y方向は、Y軸に沿う方向であって、Y軸の矢印が示す+Y方向と、Y軸の矢印の反対方向である-Y方向とを含む。Z方向は、Z軸に沿う方向であって、Z軸の矢印が示す+Z方向と、Z軸の矢印の反対方向である-Z方向とを含む。本実施形態において、+Z方向は上方向であり、-Z方向は下方向である。 Further, the X, Y and Z directions are defined herein. The X direction is a direction along the X axis and includes a +X direction indicated by an arrow on the X axis and a −X direction opposite to the arrow on the X axis. The Y direction is a direction along the Y axis and includes a +Y direction indicated by an arrow on the Y axis and a −Y direction opposite to the arrow on the Y axis. The Z direction is a direction along the Z axis and includes the +Z direction indicated by the Z axis arrow and the −Z direction opposite to the Z axis arrow. In this embodiment, the +Z direction is upward and the -Z direction is downward.

ハウジング12は、X方向に延びた略直方体状に形成される。なお、ハウジング12は、他の形状に形成されてもよい。ハウジング12は、例えば、建造物の壁に架けられる。また、別の例では、室内空気の吸込み口12aおよび空気調整済みの空気の吹出し口12bを壁面に開口させ、ハウジング12自体は壁内部に埋め込まれる形態でもよい。図1の場合、吸込み口12aはハウジング12の上面に設けられ、吹出し口12bはY方向の側面に設けられているが、室内の空気の吸込みおよび吹出しがスムーズに行えれば、吸込み口12aおよび吹出し口12bの位置は適宜変更可能である。 The housing 12 is formed in a substantially rectangular parallelepiped shape extending in the X direction. Note that the housing 12 may be formed in other shapes. The housing 12 is hung, for example, on the wall of a building. In another example, the indoor air inlet 12a and the air-conditioned air outlet 12b may be opened in the wall surface, and the housing 12 itself may be embedded in the wall. In the case of FIG. 1, the suction port 12a is provided on the top surface of the housing 12, and the air outlet 12b is provided on the side surface in the Y direction. The position of the outlet 12b can be changed as appropriate.

吸込み口12aは、通風路WRの一端に開口し、吹出し口12bは通風路WRの他端に開口している。通風路WRの一部には、熱交換器18、ファン16および過酸化水素発生部22が配置されている。本実施形態の室内機10A(空気調和装置10)は、室内の空気の温度調節および過酸化水素(OHラジカルを含む)を用いた室内の除菌処理を行う装置である。なお、本明細書では、通風路WRにおいて吸込み口12aに近い側を上流、吹出し口12bに近い側を下流と称する場合がある。また、吸込み口12a及び吹出し口12bの開口形状及び位置は、例示されたものに限られない。 The suction port 12a opens at one end of the air passage WR, and the air outlet 12b opens at the other end of the air passage WR. A heat exchanger 18, a fan 16, and a hydrogen peroxide generator 22 are arranged in a part of the ventilation passage WR. The indoor unit 10A (air conditioner 10) of the present embodiment is a device that performs indoor air temperature control and indoor sterilization using hydrogen peroxide (including OH radicals). In this specification, the side of the air passage WR near the suction port 12a may be called upstream, and the side near the blowout port 12b may be called downstream. Moreover, the opening shape and position of the suction port 12a and the blowing port 12b are not limited to those illustrated.

吸込口フィルタ14は、例えば、ファン16及び熱交換器18の上流側で吸込み口12aの部分または吸込み口12aより下流側の通風路WRに配置される。吸込口フィルタ14は、例えば、網状に形成され、吸込み口12aから吸い込まれた空気を濾過し、当該空気中の塵埃を捕捉する。なお、室内機10Aは、吸込口フィルタ14で捕集した塵埃を除去する掃除機構を設けてもよい。 The suction port filter 14 is arranged, for example, in the portion of the suction port 12a on the upstream side of the fan 16 and the heat exchanger 18 or in the air passage WR on the downstream side of the suction port 12a. The suction port filter 14 is formed in a mesh shape, for example, filters the air sucked from the suction port 12a, and captures dust in the air. In addition, the indoor unit 10A may be provided with a cleaning mechanism for removing dust collected by the suction port filter 14 .

ファン16は、X方向に延びる回転軸まわりに回転することで、ハウジング12の外部の空気を吸込み口12aから当該ハウジング12の内部の通風路WRに取り入れ、熱交換器18を通過させて、ハウジング12の外部に排出させる。つまり、室内機10Aは、吸込み口12aからハウジング12外部の空気(室内の空気)をハウジング12の内部の通風路WRへ吸い込む。そして、吸い込まれた空気は、熱交換器18および過酸化水素発生部22を通過し、吹出し口12bから除菌効果を有する温度調整済みの空気(風)として吹き出される。 The fan 16 rotates around a rotation axis extending in the X direction, thereby taking in air from the outside of the housing 12 from the suction port 12a into the air passage WR inside the housing 12, passing through the heat exchanger 18, and passing the air through the housing. 12 is discharged to the outside. That is, the indoor unit 10A sucks air outside the housing 12 (indoor air) into the air passage WR inside the housing 12 through the suction port 12a. Then, the sucked air passes through the heat exchanger 18 and the hydrogen peroxide generator 22, and is blown out from the outlet 12b as temperature-adjusted air (wind) having a sterilizing effect.

熱交換器18は、通風路WRに設けられる。図1の場合、熱交換器18は、通風路WRにおいて、ファン16を取り囲むように配置されている。別の例では、熱交換器18は、ファン16より上流側に配置されてもよく、更に別の例では、ファン16より下流側に配置されてもよい。熱交換器18は、例えば冷媒配管と複数のフィンとを有する。熱交換器18は、通風路WRにおいて周囲の気体と熱交換を行う。熱交換器18は通風路WRに位置するため、ファン16が駆動し下流側への送風動作を行うと、吸込み口12aから吸い込まれた空気が熱交換器18に送り込まれ通過する。これにより、通風路WRを流れる空気が熱交換器18と熱交換を行い、冷房運転時には通風路WRを流れる空気(風)を冷却し、暖房運転時には通風路WRを流れる空気(風)を加熱する。なお、本実施形態において、熱交換器18は、X方向に沿ってファン16のZ方向側(図中上側)を取り囲むように配置されている。この配置姿勢および形状は、通風路WRの経路やハウジング12の形状、内蔵する各部品のレイアウト等に応じて適宜変更可能である。 A heat exchanger 18 is provided in the air passage WR. In the case of FIG. 1, the heat exchanger 18 is arranged so as to surround the fan 16 in the ventilation passage WR. In another example, heat exchanger 18 may be positioned upstream from fan 16 , and in yet another example, may be positioned downstream from fan 16 . The heat exchanger 18 has, for example, refrigerant pipes and a plurality of fins. The heat exchanger 18 exchanges heat with surrounding gas in the ventilation passage WR. Since the heat exchanger 18 is located in the ventilation path WR, when the fan 16 is driven to blow air downstream, the air sucked from the suction port 12a is sent to the heat exchanger 18 and passes through it. As a result, the air flowing through the ventilation passage WR exchanges heat with the heat exchanger 18, cooling the air (wind) flowing through the ventilation passage WR during cooling operation, and heating the air (wind) flowing through the ventilation passage WR during heating operation. do. In this embodiment, the heat exchanger 18 is arranged along the X direction so as to surround the Z direction side (upper side in the figure) of the fan 16 . This arrangement attitude and shape can be changed as appropriate according to the path of the ventilation path WR, the shape of the housing 12, the layout of each built-in component, and the like.

風向板20は、ルーバとも称され得る。風向板20は、室内機10Aの吹出し口12bの近傍に設けられる。風向板20は、ファン16の下流に位置する。風向板20は、図1に破線で示す閉じ位置Pcと、実線で示す開き位置Poとの間で連続的または間欠的に移動可能である。風向板20は、閉じ位置Pcに位置する場合、吹出し口12bほぼ全域を覆う。風向板20の開き角度を制御することにより、吹出し口12bから吹き出す風の向きが調整可能である。例えば、風向板20を水平姿勢に近づくように開けば、室内機10Aからより離れた位置に向けて風を送り、風向板20を閉じ位置Pcに近づけることにより、室内機10Aにより近い位置に向けて風を送ることができる。また、X方向及び-X方向に揺動可能な左右風向板を併せて設けて、吹出し口12bから吹き出す風の向きをX方向及び-X方向に制御するようにしてもよい。 The wind deflector 20 may also be referred to as a louver. The wind direction plate 20 is provided near the outlet 12b of the indoor unit 10A. The wind deflector 20 is positioned downstream of the fan 16 . The wind direction plate 20 is continuously or intermittently movable between the closed position Pc indicated by the dashed line in FIG. 1 and the open position Po indicated by the solid line. When positioned at the closed position Pc, the wind direction plate 20 covers substantially the entire area of the outlet 12b. By controlling the opening angle of the airflow direction plate 20, the direction of the air blown out from the air outlet 12b can be adjusted. For example, if the wind direction plate 20 is opened so as to approach the horizontal posture, air is sent toward a position further away from the indoor unit 10A, and by moving the wind direction plate 20 closer to the closed position Pc, the wind is directed closer to the indoor unit 10A. can send wind. Further, a horizontal wind direction plate capable of swinging in the X direction and the -X direction may also be provided to control the direction of the wind blowing out from the blowing port 12b in the X direction and the -X direction.

過酸化水素発生部22は、前述したように光源24と、光触媒フィルタ26と、水受け部28とで構成され、ハウジング12内部で過酸化水素を生成する。 The hydrogen peroxide generator 22 is composed of the light source 24, the photocatalyst filter 26, and the water receiver 28 as described above, and generates hydrogen peroxide inside the housing 12. As shown in FIG.

光源24は、例えば酸化チタン(二酸化チタンTiO)等の光触媒の価電子帯の電子を伝導帯に励起し得るような光、例えば紫外線光を照射可能である。光源24は、室内機10Aが運転中常時紫外線光を照射するようにしてもよいし、除菌処理モードが選択された場合のみに紫外線光を照射するようにしてもよい。光源24は、光触媒フィルタ26の概ね全面に所定の強度の紫外線光を照射できるように、光触媒フィルタ26の表面の延設方向(X軸方向)に照射面を有し、照射領域が設定されている。なお、後述するが、本実施形態の過酸化水素発生部22の場合、光源24は、図1に示されるように、2枚の光触媒フィルタ26に挟まれた状態で配置され、両方の光触媒フィルタ26に紫外線光を照射できるように配置される。したがって、光源24は、光触媒フィルタ26を通過する空気を遮らないように、例えば、所定間隔を空けてX方向に複数個が設置されてもよい。また別の実施形態では、光源24は、通風路WRの空気の流れを遮らないような位置(例えば、通風路WRの上方の位置)から紫外線光を照射するようにしてもよい。この場合、光源24は照射領域をカバー可能な単一の照射面としてもよい。 The light source 24 can emit light, such as ultraviolet light, which can excite electrons in the valence band of a photocatalyst such as titanium oxide (titanium dioxide TiO 2 ) to the conduction band. The light source 24 may emit ultraviolet light all the time while the indoor unit 10A is in operation, or may emit ultraviolet light only when the sterilization mode is selected. The light source 24 has an irradiation surface in the extension direction (X-axis direction) of the surface of the photocatalyst filter 26 so that the entire surface of the photocatalyst filter 26 can be irradiated with ultraviolet light of a predetermined intensity, and an irradiation area is set. there is As will be described later, in the case of the hydrogen peroxide generator 22 of the present embodiment, the light source 24 is sandwiched between two photocatalyst filters 26 as shown in FIG. 26 is arranged so that it can be irradiated with ultraviolet light. Therefore, a plurality of light sources 24 may be installed in the X direction at predetermined intervals, for example, so as not to block the air passing through the photocatalyst filter 26 . In another embodiment, the light source 24 may irradiate ultraviolet light from a position that does not block the flow of air in the airway WR (for example, a position above the airway WR). In this case, the light source 24 may be a single illumination surface capable of covering the illumination area.

光触媒フィルタ26は、通風路WRの一部で空気の通過を許容するように設けられた、光触媒を含む含水可能な部材である。具体的には、光触媒フィルタ26は、X方向に延びるとともに、Z方向に略垂直に延びた、縦置き配置された扁平形状の部材で、例えば不織布等で形成されている。この光触媒フィルタ26の形状および配置は、通風路WRの経路やハウジング12の形状、内蔵する各部品のレイアウト等に応じて適宜変更可能である。そして、光触媒フィルタ26のZ方向の下端部は、水受け部28に貯留された水に浸かり、毛細管現象を利用して光触媒フィルタ26の上端部まで水を吸い上げている。つまり、光触媒フィルタ26は水を潤沢に含んだ状態が維持可能である。光触媒フィルタ26は、例えば粉末状の酸化チタン(二酸化チタンTiO)を担持している。 The photocatalyst filter 26 is a water-absorbable member that contains a photocatalyst and is provided to allow passage of air in a portion of the ventilation path WR. Specifically, the photocatalyst filter 26 is a vertically arranged flat member extending in the X direction and substantially perpendicular to the Z direction, and is formed of, for example, a non-woven fabric. The shape and arrangement of the photocatalyst filter 26 can be changed as appropriate according to the path of the ventilation path WR, the shape of the housing 12, the layout of each built-in component, and the like. The lower end of the photocatalytic filter 26 in the Z direction is immersed in the water stored in the water receiving portion 28, and sucks up the water to the upper end of the photocatalytic filter 26 using capillary action. In other words, the photocatalyst filter 26 can maintain a state in which it contains plenty of water. The photocatalyst filter 26 carries, for example, powdered titanium oxide (titanium dioxide TiO 2 ).

図2に例示的かつ模式的に示されるように、光触媒フィルタ26(光触媒26a)は、光源24から紫外線光(UV)の照射を受けると、その表面から電子26bが飛び出す。このとき、電子26bが抜け出た穴は正孔(ホール)と呼ばれ、プラスの電荷26cを帯びる。正孔は強い酸化力をもち、水中にある水酸化物イオン30(OH)などから電子を奪う。このとき、電子を奪われた水酸化物イオン30は非常に不安定な状態のOHラジカル32になる。OHラジカル32は強力な酸化力を持ち、近くの有機物から電子を奪い、自分自身が安定になろうとする。その結果、電子を奪われた有機物は結合を分断され、最終的には二酸化炭素や水となり大気中に発散する。つまり、有機物である菌やウイルスの不活性化が可能となる。 As exemplarily and schematically shown in FIG. 2, when the photocatalyst filter 26 (photocatalyst 26a) is irradiated with ultraviolet light (UV) from the light source 24, electrons 26b are emitted from its surface. At this time, the hole from which the electron 26b escapes is called a hole, and is charged with a positive charge 26c. Holes have a strong oxidizing power and take electrons from hydroxide ions 30 (OH ) in water. At this time, the hydroxide ions 30 deprived of electrons become OH radicals 32 in a very unstable state. The OH radical 32 has a strong oxidizing power, steals electrons from nearby organic matter, and tries to stabilize itself. As a result, the bonds of the organic substances that have lost electrons are broken, and finally they become carbon dioxide and water, which are released into the atmosphere. In other words, it becomes possible to inactivate bacteria and viruses that are organic matter.

光触媒フィルタ26で生成されたOHラジカル32は、通風路WRを流れる空気が光触媒フィルタ26を通過する空気流により効果的に排出される。そのため、光触媒フィルタ26は、通風路WRを概ね覆うような大きさで設置されることが望ましいが、通風路WRにおける空気の空気抵抗等を考慮し、空気抵抗の調整のために、図1に示すように、光触媒フィルタ26が非存在となる領域を適宜調整設定してもよい。また、例えば、光触媒フィルタ26を回動可能に取り付け、光触媒フィルタ26の回動により、その傾きを変更させて、通風路WRにおける空気の空気抵抗を適宜調整できるようにしてもよい。 The OH radicals 32 generated by the photocatalyst filter 26 are effectively discharged by the air flow passing through the photocatalyst filter 26 in the ventilation passage WR. Therefore, it is desirable that the photocatalyst filter 26 be installed in a size that covers the ventilation passage WR. As shown, the region where the photocatalyst filter 26 does not exist may be appropriately adjusted and set. Further, for example, the photocatalyst filter 26 may be rotatably attached, and the tilt of the photocatalyst filter 26 may be changed by rotating the photocatalyst filter 26 so that the air resistance of the air in the ventilation passage WR can be appropriately adjusted.

水受け部28は、例えば、室内機10Aの冷房運転時に熱交換器18で発生した結露水を図示を省略したドレンパンで受け、図示を省略した配管を通して受け入れ貯留してもよいし、給水タンクや給水口等を介して外部から供給された水を受け入れて貯留してもよい。給水タンクから水を供給する場合は、あらかじめ給水タンクに界面活性剤を含む水を導入することで、界面活性剤を含む水を水受け部28に供給することができる。このようにすれば、後述するように、加速度過酸化水素を生成することができる。また、後述するが、室外機10Bと室内機10Aの熱交換器18とを循環する冷媒を利用して積極的に生成した結露水を貯留してもよい。前述したように、水受け部28には、光触媒フィルタ26の下端部が浸かり、毛細管現象を利用し、貯留した水を光触媒フィルタ26が十分に含水できるようにしている。 The water receiving unit 28 may receive, for example, a drain pan (not shown) to receive condensed water generated in the heat exchanger 18 during the cooling operation of the indoor unit 10A, and receive and store the water through a pipe (not shown). Water supplied from the outside through a water supply port or the like may be received and stored. When water is supplied from the water tank, the water containing the surfactant can be supplied to the water receiver 28 by introducing the water containing the surfactant into the water tank in advance. In this way, accelerated hydrogen peroxide can be produced as will be described later. Further, as will be described later, the condensed water that is actively generated using the refrigerant that circulates between the outdoor unit 10B and the heat exchanger 18 of the indoor unit 10A may be stored. As described above, the lower end of the photocatalyst filter 26 is immersed in the water receiving portion 28 so that the photocatalyst filter 26 can sufficiently absorb the retained water using capillary action.

図3は、室内機10A(空気調和装置10)において、結露水を含水する光触媒フィルタ26に紫外線光を照射し、OHラジカル32を含む過酸化水素36を生成することを示す例示的かつ模式的な説明図である。 FIG. 3 is an exemplary and schematic illustration of irradiating a photocatalyst filter 26 containing condensed water with ultraviolet light to generate hydrogen peroxide 36 containing OH radicals 32 in an indoor unit 10A (air conditioner 10). It is an explanatory diagram.

上述したように、酸化チタン等の光触媒を担持した光触媒フィルタ26が水受け部28に貯留された水(HO)を毛細管現象を利用して吸い上げられている状態で、光源24から紫外線光(UV)の照射を受けると、図2で説明したように、光触媒フィルタ26の表面から電子26bが飛び出す。このとき、電子26bが抜け出た穴である正孔は、プラスの電荷26cを帯びる。そして、正孔は水受け部28から吸い上げた水の中にある水酸化物イオン30などから電子を奪う。このとき、電子を奪われた水酸化物イオン30は非常に不安定な状態のOHラジカル32になる。生成されたOHラジカル32の周囲には、光触媒フィルタ26で吸い上げられた水受け部28から供給される水(HO)が十分に存在するため、OHラジカル32が水に可溶し過酸化水素36(H)が生成される。OHラジカル32は、一般に酸化されやすく短寿命であるが、過酸化水素36とすることにより、酸化されにくくなり寿命を延ばすことができる。 As described above, the water (H 2 O) stored in the water receiving portion 28 is sucked up by the photocatalyst filter 26 supporting a photocatalyst such as titanium oxide, and the ultraviolet light is emitted from the light source 24 . When irradiated with (UV), electrons 26b are ejected from the surface of the photocatalyst filter 26, as described with reference to FIG. At this time, a hole, which is a hole from which the electron 26b has escaped, has a positive charge 26c. Then, the holes take electrons from the hydroxide ions 30 and the like in the water sucked up from the water receiving portion 28 . At this time, the hydroxide ions 30 deprived of electrons become OH radicals 32 in a very unstable state. Since there is sufficient water (H 2 O) sucked up by the photocatalyst filter 26 and supplied from the water receiving part 28 around the generated OH radicals 32, the OH radicals 32 are dissolved in water and peroxidized. Hydrogen 36 (H 2 O 2 ) is produced. The OH radical 32 is generally easily oxidized and has a short life. However, by using the hydrogen peroxide 36, it is difficult to be oxidized and the life can be extended.

過酸化水素発生部22で発生した過酸化水素36は、ファン16の動作によりハウジング12内部を流れ、光触媒フィルタ26を通過する風Wに乗り室内機10Aの外部(室内)に放出される。室内機10Aから放出された過酸化水素36は、空気中に浮遊するウイルス等の表面でプラスイオン(H)とマイナスイオン(O )が結合し、一部がOHラジカル32に戻る。酸化力の強いOHラジカル32は、ウイルスのたんぱく質の表面から、水素原子(H)を奪い、非活性化(除菌)する。なお、OHラジカル32は奪い取った水素原子(H)と結合し、反応後は水(HO)になり空気中に戻る。 The hydrogen peroxide 36 generated by the hydrogen peroxide generator 22 flows inside the housing 12 due to the operation of the fan 16, rides on the wind W passing through the photocatalyst filter 26, and is released to the outside (indoor) of the indoor unit 10A. In the hydrogen peroxide 36 released from the indoor unit 10A, positive ions (H + ) and negative ions (O 2 ) combine on the surfaces of viruses and the like floating in the air, and part of the hydrogen peroxide 36 returns to OH radicals 32 . The OH radical 32, which has a strong oxidizing power, deprives the surface of the virus protein of hydrogen atoms (H) and inactivates (sterilizes) the virus. Note that the OH radicals 32 bond with the hydrogen atoms (H) that have been taken away, and after the reaction, become water (H 2 O) and return to the air.

このように、本実施形態の空気調和装置10(室内機10A)は、光触媒フィルタ26に紫外線光を照射するのみで、酸化力の強いOHラジカル32を生成する。このとき、光触媒フィルタ26には、充分な水が含浸可能なため、OHラジカル32を含む過酸化水素36を十分に生成可能となる。このとき、通風路WRに対して十分な広さ(大きさ)の光触媒フィルタ26を容易に配置可能なので、十分な量の過酸化水素36を発生させることが可能である。その結果、容易な構成で通風路WRから排出される温度調整済みの空気に過酸化水素36を含ませて室内に放出することにより室内の除菌効果の向上が図れる。また、通風路WRに設けられる光触媒フィルタ26には、充分な水が含浸可能なため、空気中に十分な水分を放出可能であるとともに、放出されたOHラジカル32は除菌処理の結果、水に戻るため、室内に水分を戻すことが可能で、室内の乾燥抑制に寄与できる。前述したように、水を含浸可能な光触媒フィルタ26は、ハウジング12の中で比較的容易に大型部品として組み込み易いため、より多くの水分を放出可能となり室内の乾燥抑制を容易に実現することができる。 Thus, the air conditioner 10 (indoor unit 10A) of the present embodiment generates the OH radicals 32 with strong oxidizing power only by irradiating the photocatalyst filter 26 with ultraviolet light. At this time, since the photocatalyst filter 26 can be impregnated with sufficient water, hydrogen peroxide 36 containing the OH radicals 32 can be generated sufficiently. At this time, a sufficient amount of hydrogen peroxide 36 can be generated because the photocatalyst filter 26 having a sufficient width (size) can be easily arranged with respect to the ventilation path WR. As a result, with a simple structure, the temperature-controlled air discharged from the ventilation passage WR is impregnated with the hydrogen peroxide 36 and discharged into the room, thereby improving the sterilization effect in the room. In addition, since the photocatalyst filter 26 provided in the ventilation path WR can be impregnated with sufficient water, it is possible to release sufficient moisture into the air, and the released OH radicals 32 are removed from the water as a result of the sterilization treatment. , it is possible to return the moisture to the room, which contributes to the suppression of dryness in the room. As described above, the water-impregnable photocatalyst filter 26 can be relatively easily assembled as a large-sized component in the housing 12, so that more water can be released, and the indoor drying can be easily suppressed. can.

ところで、OHラジカル32は、界面活性剤と組み合わせることで、より除菌能力が向上(除菌効率が向上)する、いわゆる、「加速度過酸化水素」とすることができる。加速度過酸化水素は、界面活性剤の働きにより菌やウイルスの表面からOHラジカルが浸透しやすくなり、より短時間で菌やウイルスを不活性化できると考えられている。そこで、本実施形態の空気調和装置10(室内機10A)は、図4に示されるように、水受け部28は、界面活性剤38を保持可能である。例えば、水受け部28に貯留された水に継続的に界面活性成分を供給可能なように、水受け部28の底面部28aには、界面活性剤38としての界面活性剤シートやビーズ状の界面活性剤ビーズ等を保持可能な保持部が形成されている。保持部は、例えば、網等で構成された保持領域を形成し、界面活性剤38が水受け部28の内部で浮遊し片寄った位置に移動すること等を抑制し、水受け部28に貯留された水の界面活性成分の濃度の均一化を実現している。なお、水受け部28が保持する界面活性剤38は、長期間継続的に徐々に界面活性成分が溶け出すように構成し、長期間メンテナンス不要(界面活性剤の投入作業の不要)とすることが望ましい。別の実施形態では、固形タイプや液状タイプの界面活性剤38を定期的に投入する自動投入装置を設けてもよい。この界面活性成分の濃度ばらつきを抑制するために、水受け部28の槽内に攪拌装置等を設けてもよい。例えば、水受け部28に定期的に振動を与えたり、水受け部28の内部で定期的に動作する攪拌片を設けたりしてもよい。 By the way, the OH radical 32 can be made into so-called "accelerated hydrogen peroxide" that further improves the sterilization ability (improves the sterilization efficiency) by combining it with a surfactant. Accelerated hydrogen peroxide is thought to be able to inactivate bacteria and viruses in a shorter period of time by facilitating penetration of OH radicals from the surface of bacteria and viruses due to the action of a surfactant. Therefore, in the air conditioner 10 (indoor unit 10A) of the present embodiment, the water receiver 28 can hold the surfactant 38 as shown in FIG. For example, a surface-active agent sheet or bead-like surfactant 38 may be provided on the bottom surface portion 28a of the water receiving portion 28 so that the surface active component can be continuously supplied to the water stored in the water receiving portion 28. A holding portion capable of holding surfactant beads or the like is formed. The holding part forms a holding area made up of, for example, a net, etc., suppresses the surfactant 38 from floating inside the water receiving part 28 and moving to a one-sided position, and is stored in the water receiving part 28. It realizes the uniformity of the concentration of surface-active components in the water. The surfactant 38 held by the water receiving portion 28 should be configured so that the surfactant component gradually dissolves continuously over a long period of time so that maintenance is not required for a long period of time (no need to add the surfactant). is desirable. In another embodiment, an automatic dosing device may be provided for periodically dosing the surfactant 38 in solid or liquid form. A stirrer or the like may be provided in the tank of the water receiver 28 in order to suppress variations in concentration of the surface-active component. For example, the water receiving portion 28 may be periodically vibrated, or an agitating piece that operates periodically may be provided inside the water receiving portion 28 .

このように、水受け部28に界面活性剤38を投入して、貯留する水に界面活性成分を含ませて、光触媒フィルタ26に吸い上げさせておく。そして、光触媒フィルタ26に光源24から紫外線光(UV)を照射することにより、加速度過酸化水素36A(H)を容易に生成し、図3の例と同様に、通風路WRを流れる風Wに乗せてより除菌効率のよい加速度過酸化水素36Aを室内に放出することができる。なお、加速度過酸化水素36Aを生成するための界面活性剤の濃度は高くないため、除菌処理後に水に戻った場合でも、拭き取り等は必要ない。また、次亜塩素酸等のように塩分を含まないため錆の発生等を心配する必要もない。 In this manner, the surface active agent 38 is put into the water receiving portion 28 so that the water to be stored contains the surface active component, and the photocatalyst filter 26 sucks up the water. Then, by irradiating the photocatalyst filter 26 with ultraviolet light (UV) from the light source 24, accelerated hydrogen peroxide 36A (H 2 O 2 ) is easily generated, and flows through the ventilation path WR as in the example of FIG. The accelerated hydrogen peroxide 36A, which is carried on the wind W and has a higher sterilization efficiency, can be discharged into the room. Note that since the concentration of the surfactant for generating the accelerated hydrogen peroxide 36A is not high, wiping or the like is not necessary even when the liquid returns to water after the sterilization process. In addition, unlike hypochlorous acid, it does not contain salt, so there is no need to worry about the occurrence of rust.

ところで、室内機10A(空気調和装置10)を運転する際、一般的に冷房運転時には、熱交換器18の部分で結露水が発生するが、暖房運転時には、熱交換器18の部分で結露水は発生しない。そのため、暖房運転時に光触媒フィルタ26を用いて過酸化水素36や加速度過酸化水素36Aを発生させるためには、外部より水を水受け部28に供給する必要がある。 By the way, when the indoor unit 10A (air conditioner 10) is operated, condensed water generally occurs at the heat exchanger 18 during cooling operation, but condensed water is generated at the heat exchanger 18 during heating operation. does not occur. Therefore, in order to generate the hydrogen peroxide 36 and the accelerated hydrogen peroxide 36A using the photocatalytic filter 26 during the heating operation, it is necessary to supply water to the water receiver 28 from the outside.

そこで、本実施形態の室内機10A(空気調和装置10)は、暖房運転時にも結露水を生成する水生成部を備える。例えば、図4に示すように、水受け部28の壁面の一部、例えば、底面部28aは、水生成部の一部を構成する冷却管34を下方に備え、水受け部28自体の冷却を行う。冷却管34には、熱交換器18を含む冷媒回路の中を循環する冷媒を、例えば、5℃程度の状態にして流す。その結果、暖房運転時でも水受け部28を冷却し、水受け部28の壁面で結露を生じさせ、結露水を溜めることができる。なお、水受け部28の外壁や冷却管34の周囲には、断熱材が配置され、結露が水受け部28の内壁側(槽内、容器内)で発生するように構成している。なお、冷却管34は、水受け部28の外壁を厚くして、そこに埋め込まれるように配管されてもよい。また、冷却管34は、水受け部28の内側(例えば、底面部28aの上面)に配管されてもよい。 Therefore, the indoor unit 10A (air conditioner 10) of the present embodiment includes a water generator that generates condensed water even during heating operation. For example, as shown in FIG. 4, a part of the wall surface of the water receiving part 28, for example, the bottom part 28a, has a cooling pipe 34 below which constitutes a part of the water generating part, and cools the water receiving part 28 itself. I do. Refrigerant that circulates in the refrigerant circuit including the heat exchanger 18 is allowed to flow through the cooling pipe 34 in a state of, for example, about 5°C. As a result, the water receiving portion 28 can be cooled even during heating operation, dew condensation can be generated on the wall surface of the water receiving portion 28, and the condensed water can be collected. A heat insulating material is disposed around the outer wall of the water receiving portion 28 and the cooling pipe 34 so that dew condensation occurs on the inner wall side of the water receiving portion 28 (inside the tank and inside the container). Incidentally, the cooling pipe 34 may be arranged so that the outer wall of the water receiving portion 28 is thickened and embedded therein. Also, the cooling pipe 34 may be arranged inside the water receiving portion 28 (for example, the upper surface of the bottom portion 28a).

図5に示されるように、空気調和装置10の室外機10Bは、室外熱交換器40および室外ファン42、圧縮機44と、四方弁46と、膨張弁48と、を備える。室外機10Bの室外熱交換器40、圧縮機44、四方弁46、膨張弁48と、室内機10Aの熱交換器18(室内熱交換器)とは、冷媒配管P(P1~P5)で接続され、冷媒が循環可能な冷媒回路を構成する。図5の場合、室外熱交換器40と圧縮機44に接続されたアキュムレータ44aが四方弁46を介して冷媒配管P1で接続され、圧縮機44は、四方弁46を介して(室内)熱交換器18と冷媒配管P2で接続されている。また、本実施形態の室内機10Aにおいて、(室内)熱交換器18と室外機10Bの膨張弁48との間には、水受け部28で結露水を生成する水生成部50が配置されている。(室内)熱交換器18と水生成部50とは、冷媒配管P3で接続され、水生成部50と膨張弁48とは、冷媒配管P4で接続されている。そして、膨張弁48と室外熱交換器40とは、冷媒配管P5で接続されている。 As shown in FIG. 5, the outdoor unit 10B of the air conditioner 10 includes an outdoor heat exchanger 40, an outdoor fan 42, a compressor 44, a four-way valve 46, and an expansion valve 48. The outdoor heat exchanger 40, compressor 44, four-way valve 46, expansion valve 48 of the outdoor unit 10B and the heat exchanger 18 (indoor heat exchanger) of the indoor unit 10A are connected by refrigerant pipes P (P1 to P5). and form a refrigerant circuit in which the refrigerant can circulate. In the case of FIG. 5, the outdoor heat exchanger 40 and the accumulator 44a connected to the compressor 44 are connected via a four-way valve 46 to a refrigerant pipe P1, and the compressor 44 is connected to (indoor) heat exchange via the four-way valve 46. 18 and the refrigerant pipe P2. In addition, in the indoor unit 10A of the present embodiment, a water generating unit 50 for generating condensed water in the water receiving unit 28 is arranged between the (indoor) heat exchanger 18 and the expansion valve 48 of the outdoor unit 10B. there is The (indoor) heat exchanger 18 and the water generator 50 are connected by a refrigerant pipe P3, and the water generator 50 and the expansion valve 48 are connected by a refrigerant pipe P4. The expansion valve 48 and the outdoor heat exchanger 40 are connected by a refrigerant pipe P5.

室外熱交換器40は、伝熱管(図示せず)を通流する冷媒と、室外ファン42によって送り込まれる外気と、の間で熱交換を行う。 The outdoor heat exchanger 40 exchanges heat between a refrigerant flowing through a heat transfer tube (not shown) and outside air sent by an outdoor fan 42 .

圧縮機44は、低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する。なお、圧縮機44の吸込側には、冷媒の気液分離を行うためのアキュムレータ44aが接続されている。 The compressor 44 compresses the low-temperature, low-pressure gas refrigerant and discharges it as a high-temperature, high-pressure gas refrigerant. An accumulator 44a is connected to the suction side of the compressor 44 for separating gas and liquid of the refrigerant.

膨張弁48は、凝縮器としての室外熱交換器40または(室内)熱交換器18の一方で凝縮した冷媒を減圧する弁である。膨張弁48で減圧された冷媒は、蒸発器としての室外熱交換器40または(室内)熱交換器18の他方に導かれる。 The expansion valve 48 is a valve that decompresses the refrigerant condensed in either the outdoor heat exchanger 40 or the (indoor) heat exchanger 18 as a condenser. The refrigerant decompressed by the expansion valve 48 is led to the other of the outdoor heat exchanger 40 and the (indoor) heat exchanger 18 as an evaporator.

なお、(室内)熱交換器18は、内部の伝熱管を通流する冷媒と、(室内)ファン16によって送り込まれる室内空気と、の間で熱交換を行う。 The (indoor) heat exchanger 18 exchanges heat between the refrigerant flowing through the internal heat transfer tubes and the indoor air sent by the (indoor) fan 16 .

四方弁46は、空気調和装置10の運転モードに応じて、冷媒の流路を切り替える弁である。 The four-way valve 46 is a valve that switches the refrigerant flow path according to the operation mode of the air conditioner 10 .

例えば、冷房運転時には、冷媒回路において、圧縮機44、室外熱交換器40、膨張弁48、及び(室内)熱交換器18の順番で冷媒が循環する。その結果、(室内)熱交換器18で室内空気と冷媒との間で熱交換が行われ、熱交換によって冷却された空気が室内に排出され、室内温度を低下させる。熱交換で回収された熱(冷媒の熱)は、室外熱交換器40で室外空気との間で熱交換され、屋外に排出され、冷媒回路から排出する。一方、暖房運転時には、冷媒回路において、圧縮機44、(室内)熱交換器18、膨張弁48、室外熱交換器40の順番で冷媒が循環する。その結果、(室内)熱交換器18で室内空気と冷媒との間で熱交換が行われ、熱交換によって暖められた空気が室内に排出され、室内温度を上昇させる。熱交換で冷やされた冷媒は、室外熱交換器40で室外空気との間で熱交換され、屋外から熱を回収し、冷媒回路内に取り込む。 For example, during cooling operation, the refrigerant circulates in the order of the compressor 44, the outdoor heat exchanger 40, the expansion valve 48, and the (indoor) heat exchanger 18 in the refrigerant circuit. As a result, heat is exchanged between the indoor air and the refrigerant in the (indoor) heat exchanger 18, and the air cooled by the heat exchange is discharged indoors, thereby lowering the indoor temperature. The heat (refrigerant heat) recovered by heat exchange is heat-exchanged with the outdoor air in the outdoor heat exchanger 40, discharged to the outdoors, and discharged from the refrigerant circuit. On the other hand, during heating operation, the refrigerant circulates in the order of the compressor 44, the (indoor) heat exchanger 18, the expansion valve 48, and the outdoor heat exchanger 40 in the refrigerant circuit. As a result, heat is exchanged between the indoor air and the refrigerant in the (indoor) heat exchanger 18, and the air warmed by the heat exchange is discharged indoors, raising the indoor temperature. The refrigerant cooled by heat exchange is heat-exchanged with the outdoor air in the outdoor heat exchanger 40, recovers heat from the outdoors, and takes it into the refrigerant circuit.

図6は、空気調和装置10(室内機10A)の水生成部50において、循環する冷媒を用いて結露水を発生させることと、利用した冷媒を循環系に戻すシステムを示す例示的かつ模式的な説明図である。 FIG. 6 is an exemplary and schematic diagram showing a system for generating condensed water using the circulating refrigerant and returning the used refrigerant to the circulation system in the water generating unit 50 of the air conditioner 10 (indoor unit 10A). It is an explanatory diagram.

暖房運転時に(室内)熱交換器18から室内空気との熱交換の結果として冷媒配管P3に排出される冷媒は、例えば、中温、中圧の液状である。熱交換器18の下流側の分岐部Sで、冷媒の流れは、第一の分流路P31と第二の分流路P32に分岐させられる。第一の分流路P31には、冷媒の温度を結露水の発生可能温度以下まで低下させて水受け部28に接触するように配置された冷却管34に供給する低温化部52が設けられている。低温化部52は、例えばキャピラリで構成可能で、キャピラリにて冷媒を膨張させ、冷媒温度を、例えば5℃程度まで低下させる。低温化部52の下流が冷却管34であり、図4等に示されるように、水受け部28の底面部28aに接続されている。その結果、暖房運転時でも水受け部28の冷却を行い周囲に存在する空気を結露させ、水受け部28の内部(槽内)に結露水で生成し、OHラジカル32、さらには過酸化水素36(加速度過酸化水素36A)を生成するために利用される。 During heating operation, the refrigerant discharged from the (indoor) heat exchanger 18 to the refrigerant pipe P3 as a result of heat exchange with the indoor air is, for example, medium-temperature, medium-pressure liquid. At the branching portion S on the downstream side of the heat exchanger 18, the refrigerant flow is branched into a first branched channel P31 and a second branched channel P32. The first branch flow path P31 is provided with a low-temperature part 52 that lowers the temperature of the refrigerant to a temperature at which dew condensation water can be generated or lower, and supplies the refrigerant to the cooling pipe 34 arranged so as to contact the water receiving part 28. there is The low-temperature part 52 can be configured by, for example, a capillary, and expands the refrigerant with the capillary to lower the temperature of the refrigerant to, for example, about 5°C. A cooling pipe 34 is located downstream of the low-temperature part 52, and is connected to the bottom surface part 28a of the water receiving part 28 as shown in FIG. As a result, even during the heating operation, the water receiver 28 is cooled and the surrounding air is condensed. 36 (accelerated hydrogen peroxide 36A).

なお、暖房運転時に(室内)熱交換器18から室内空気との熱交換の結果として冷媒配管P3に排出される冷媒は、中温、中圧の状態で膨張弁48に提供される必要がある。この場合、分岐部Sで第一の分流路P31に流れ、低温、低圧になった冷媒をそのままの状態で、第二の分流路P32を流れる中温、中圧の冷媒に合流させると逆流してしまうので、スムーズに合流させることができない。そこで、水生成部50は、冷却管34を通過して結露水の生成に寄与した冷媒を、再加熱している。具体的には、第一の分流路P31に設けられた低温化部52の下流側で、当該低温化部52で低下した冷媒の温度を第二の分流路P32を流れる中温、中圧の冷媒を用いて、第二の分流路P32を流れる冷媒の温度に接近させるように再加熱する再加熱部54を備える。再加熱部54は、例えば、冷却管34の下流側の配管部と、第二の分流路P32とが螺旋状の二重配管構造を形成し、第二の分流路P32を流れる中温、中圧の冷媒によって、冷却管34を通過した冷媒を加熱して冷媒流路P33に排出する。そして、再加熱部54を通過した第二の分流路P32、すなわち冷媒配管P34が、再加熱された冷媒が流れる冷媒流路P33と、合流部Jで合流する。その結果、第一の分流路P31に流れて低温、低圧になった冷媒は、再加熱処理の結果、第二の分流路P32を流れる中温、中圧の冷媒にスムーズに合流し、冷媒配管P4に入り、膨張弁48に供給されることができる。つまり、冷房運転時でも容易に結露水を生成することができる。なお、低温化部52は、キャピラリを用いることで安価に構成することができるが、キャピラリに代えて、例えば膨張弁で構成してもよく、同様の効果を得ることができる。 Note that the refrigerant discharged from the (indoor) heat exchanger 18 to the refrigerant pipe P3 as a result of heat exchange with the indoor air during heating operation must be supplied to the expansion valve 48 in an intermediate temperature and intermediate pressure state. In this case, when the refrigerant that has flowed into the first branched passage P31 at the branch portion S and has become low temperature and low pressure is allowed to join the medium temperature and medium pressure refrigerant that flows through the second branched passage P32, it flows backward. Therefore, it is not possible to merge smoothly. Therefore, the water generator 50 reheats the refrigerant that has passed through the cooling pipe 34 and contributed to the generation of the condensed water. Specifically, on the downstream side of the low-temperature portion 52 provided in the first branch passage P31, the temperature of the refrigerant lowered in the low-temperature portion 52 is reduced to medium-temperature, medium-pressure refrigerant flowing through the second branch passage P32. is used to reheat the refrigerant flowing through the second branch path P32 so as to approach the temperature thereof. The reheating section 54 has, for example, a spiral double-pipe structure formed by a piping section on the downstream side of the cooling pipe 34 and the second branch flow path P32. The refrigerant that has passed through the cooling pipe 34 is heated by the refrigerant and discharged to the refrigerant flow path P33. Then, the second branch flow path P32 that has passed through the reheating section 54, that is, the refrigerant pipe P34 joins the refrigerant flow path P33 through which the reheated refrigerant flows at the junction J. As a result, the low-temperature, low-pressure refrigerant flowing through the first branch passage P31 smoothly joins the medium-temperature, medium-pressure refrigerant flowing through the second branch passage P32 as a result of the reheating treatment, and the refrigerant pipe P4 can enter and be supplied to the expansion valve 48 . That is, it is possible to easily generate condensed water even during cooling operation. Although the low-temperature part 52 can be constructed at a low cost by using a capillary, it may be constructed with, for example, an expansion valve instead of the capillary, and the same effect can be obtained.

なお、冷房運転時には、(室内)熱交換器18で熱交換を行う際に結露水が発生する。この場合、結露水を水受け部28に供給してもよい。このとき、過酸化水素36(加速度過酸化水素36A)の発生に必要な量以上の結露水が発生する場合がある。この場合、水受け部28に、例えば水位センサを設け、必要以上の結露水が水受け部28に流入した場合、ドレンパンの排出口から余分な水を排出するようにしてもよい。なお、水生成部50は、冷房運転時に熱交換器18で十分な結露水が生成可能な場合、結露水の生成を一時的に停止してもよい。この場合、例えば、分岐部Sおよび合流部Jに切替弁を設け、第一の分流路P31に冷媒が供給されないようにしてもよい。 It should be noted that condensed water is generated when heat is exchanged in the (indoor) heat exchanger 18 during cooling operation. In this case, the condensed water may be supplied to the water receiver 28 . At this time, an amount of condensed water larger than that required to generate hydrogen peroxide 36 (accelerated hydrogen peroxide 36A) may be generated. In this case, for example, a water level sensor may be provided in the water receiving portion 28 so that when excessive dew condensation water flows into the water receiving portion 28, excess water may be discharged from the outlet of the drain pan. Note that the water generator 50 may temporarily stop the generation of condensed water when the heat exchanger 18 can generate a sufficient amount of condensed water during cooling operation. In this case, for example, switching valves may be provided at the branching portion S and the merging portion J to prevent the refrigerant from being supplied to the first branched flow path P31.

図7は、空気調和装置10(室内機10A)の変形例で、オゾン58を用いて加速度過酸化水素36Aの生成効率を向上するシステムを示す例示的かつ模式的な説明図である。図3に示す過酸化水素発生部22の場合、光触媒フィルタ26に光源24から紫外線光を照射し、水酸化物イオン30を生成、さらにOHラジカル32を生成して、最終的に過酸化水素36を生成した。 FIG. 7 is a modified example of the air conditioner 10 (indoor unit 10A), and is an exemplary and schematic explanatory diagram showing a system that uses ozone 58 to improve the generation efficiency of the accelerated hydrogen peroxide 36A. In the case of the hydrogen peroxide generator 22 shown in FIG. 3, the photocatalyst filter 26 is irradiated with ultraviolet light from the light source 24 to generate hydroxide ions 30, OH radicals 32, and finally hydrogen peroxide 36. generated.

一方、図7に示す過酸化水素発生部22Aは、オゾン発生器56(オゾン発生部)を用いて、オゾン58(O)を発生し、発生したオゾン58に基づいて、加速度過酸化水素36Aを発生させている。オゾン発生器56は、例えば、光源24を挟んで、光触媒フィルタ26とは逆側で通風路WRの上流側の位置に配置される。 On the other hand, the hydrogen peroxide generator 22A shown in FIG. is causing The ozone generator 56 is arranged, for example, at a position opposite to the photocatalyst filter 26 and upstream of the air passage WR with the light source 24 interposed therebetween.

オゾン58は、周知のオゾン発生装置を用いて発生させることができる。例えば、誘電体(例えばガラス)を介した電極間に交流電圧を印加して無声放電を発生させることで容易に発生させることができる。このとき、光触媒フィルタ26には、界面活性剤38が溶け込んだ水(HO)が毛細管現象により全体に行き渡っている。この状態で、光触媒フィルタ26に光源24により紫外線光が照射されると、光触媒によって、オゾン58は分解され、一重項の酸素が生成される(O+O)。この一重項の酸素が、光触媒フィルタ26に存在する水(HO)と反応し、二分子のOHラジカル32を生成する。さらに、生成されたOHラジカル32の周囲には、界面活性剤38を含む水が存在するため、その水にOHラジカル32が可溶し加速度過酸化水素36A(H)が生成される。 Ozone 58 can be generated using a known ozone generator. For example, it can be easily generated by applying an AC voltage between electrodes via a dielectric (for example, glass) to generate silent discharge. At this time, the water (H 2 O) in which the surfactant 38 is dissolved spreads throughout the photocatalyst filter 26 due to capillary action. In this state, when the photocatalyst filter 26 is irradiated with ultraviolet light from the light source 24, the photocatalyst decomposes the ozone 58 to generate singlet oxygen (O+ O2 ). This singlet oxygen reacts with water (H 2 O) present in the photocatalytic filter 26 to generate bimolecular OH radicals 32 . Furthermore, since water containing surfactant 38 exists around the generated OH radicals 32, the OH radicals 32 are dissolved in the water to generate accelerated hydrogen peroxide 36A (H 2 O 2 ). .

このように、過酸化水素発生部22Aにおいて、オゾン58を予め生成しておくことにより、図3のように、光触媒フィルタ26に紫外線光を照射することのみで、OHラジカル32を生成し、過酸化水素36(加速度過酸化水素36A)を生成する場合に比べて、より効率的に大量の過酸化水素36(加速度過酸化水素36A)を生成することができる。なお、オゾン58は、濃度が高くなると臭いを感じさせ易くなったり、人体に悪影響を及ぼしたりする場合があるが、本実施形態の場合、オゾン58は分解されるので、そのような不都合を解消し易い。 Thus, by generating the ozone 58 in advance in the hydrogen peroxide generation unit 22A, as shown in FIG. A large amount of hydrogen peroxide 36 (accelerated hydrogen peroxide 36A) can be produced more efficiently than in the case of producing hydrogen oxide 36 (accelerated hydrogen peroxide 36A). When the concentration of the ozone 58 increases, the ozone 58 tends to give off an odor or adversely affect the human body. easy to do

この場合も過酸化水素発生部22Aで発生した加速度過酸化水素36Aは、ファン16の動作によりハウジング12内部を流れ、光触媒フィルタ26を通過する風Wに乗り室内機10Aの外部(室内)に放出される。室内機10Aから放出された加速度過酸化水素36Aは、空気中に浮遊するウイルス等の表面でプラスイオン(H)とマイナスイオン(O )が結合し、一部がOHラジカル32に戻る。酸化力の強いOHラジカル32は、ウイルスのたんぱく質の表面から、水素原子(H)を奪い、非活性化(除菌)する。なお、過酸化水素発生部22Aは、界面活性剤38の投入を省略してもよい。この場合でも、大量の過酸化水素36を効率的に発生させて除菌を行うことができる。 In this case as well, the accelerated hydrogen peroxide 36A generated by the hydrogen peroxide generating section 22A flows inside the housing 12 due to the operation of the fan 16, and is released outside (indoors) of the indoor unit 10A on the wind W passing through the photocatalytic filter 26. be done. In the accelerated hydrogen peroxide 36A released from the indoor unit 10A, positive ions (H + ) and negative ions (O 2 ) combine on the surface of viruses or the like floating in the air, and some of them return to OH radicals 32. . The OH radical 32, which has a strong oxidizing power, deprives the surface of the virus protein of hydrogen atoms (H) and inactivates (sterilizes) the virus. It should be noted that the addition of the surfactant 38 to the hydrogen peroxide generating section 22A may be omitted. Even in this case, a large amount of hydrogen peroxide 36 can be efficiently generated for sterilization.

このように、過酸化水素発生部22Aによれば、オゾン58を併用することで、OHラジカル32を含む加速度過酸化水素36A(過酸化水素36)を容易かつ大量に生成可能となる。この場合も、通風路WRに対して十分な広さ(大きさ)の光触媒フィルタ26を容易に配置可能なので、十分な量の加速度過酸化水素36A(過酸化水素36)を発生させることが可能である。その結果、容易な構成で通風路WRから排出される温度調整済みの空気に加速度過酸化水素36A(過酸化水素36)を乗せて室内に放出することにより室内の除菌効果の向上が図れる。また、通風路WRに設けられる光触媒フィルタ26には、充分な水が含浸可能なため、空気中に十分な水分を放出可能であるとともに、放出されたOHラジカル32は除菌処理の結果、水に戻るため、室内に水分を戻すことが可能で、室内の乾燥抑制に寄与できる。前述したように、水を含浸可能な光触媒フィルタ26は、ハウジング12の中で比較的容易に大型部品として組み込み易いため、室内の乾燥抑制を容易に実現することができる。 Thus, according to the hydrogen peroxide generator 22A, by using the ozone 58 together, it is possible to easily generate a large amount of the accelerated hydrogen peroxide 36A (hydrogen peroxide 36) containing the OH radicals 32. FIG. Also in this case, since the photocatalyst filter 26 having a sufficient width (size) can be easily arranged with respect to the ventilation path WR, it is possible to generate a sufficient amount of accelerated hydrogen peroxide 36A (hydrogen peroxide 36). is. As a result, the accelerated hydrogen peroxide 36A (hydrogen peroxide 36) is put on the temperature-controlled air discharged from the air passage WR with a simple structure and discharged into the room, thereby improving the sterilization effect in the room. In addition, since the photocatalyst filter 26 provided in the ventilation path WR can be impregnated with sufficient water, it is possible to release sufficient moisture into the air, and the released OH radicals 32 are removed from the water as a result of the sterilization treatment. , it is possible to return the moisture to the room, which contributes to the suppression of dryness in the room. As described above, the water-impregnable photocatalyst filter 26 can be relatively easily incorporated as a large-sized component in the housing 12, so that it is possible to easily suppress indoor drying.

なお、上述した実施形態では、過酸化水素発生部22,22Aをファン16より下流側に配置したが、これには限られない。例えば、過酸化水素発生部22,22Aをファン16より上流側に配置することもできる。つまり、過酸化水素発生部22,22Aは、通風路WRに配置されていればよい。また、上述した実施形態では、例えば住宅用の空気調和装置10を想定して説明したが、各種空気調和装置10についても同様に本実施形態の構成が適用可能である。例えば、業務用の空気調和装置や車両や航空機、船舶等設けられる空気調和装置についても本実施形態の構成が適用可能であり、同様の効果を得ることができる。 Although the hydrogen peroxide generators 22 and 22A are arranged downstream of the fan 16 in the above-described embodiment, the arrangement is not limited to this. For example, the hydrogen peroxide generators 22 and 22A can be arranged upstream of the fan 16. FIG. In other words, the hydrogen peroxide generators 22, 22A may be arranged in the ventilation passage WR. In the above-described embodiment, the air conditioner 10 for residential use is assumed, for example, but the configuration of the present embodiment can also be applied to various air conditioners 10 in the same manner. For example, the configuration of the present embodiment can be applied to commercial air conditioners and air conditioners installed in vehicles, aircraft, ships, etc., and similar effects can be obtained.

以上、本発明の実施形態を説明したが、上記実施形態はあくまで一例であって、発明の範囲を限定することは意図していない。上記実施形態は、様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記実施形態は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiment of the present invention has been described above, the above embodiment is merely an example and is not intended to limit the scope of the invention. The above embodiments can be implemented in various forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. The above embodiments are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

10…空気調和装置、10A…室内機、10B…室外機、12…ハウジング、12a…吸込み口、12b…吹出し口、16…ファン、18…熱交換器、22…過酸化水素発生部、24…光源、26…光触媒フィルタ、28…水受け部、32…OHラジカル、34…冷却管、36…過酸化水素、36A…加速度過酸化水素、38…界面活性剤、50…水生成部、52…低温化部(キャピラリ)、54…再加熱部(二重排管部)、56…オゾン発生器、58…オゾン。 DESCRIPTION OF SYMBOLS 10... Air conditioner, 10A... Indoor unit, 10B... Outdoor unit, 12... Housing, 12a... Inlet, 12b... Outlet, 16... Fan, 18... Heat exchanger, 22... Hydrogen peroxide generator, 24... Light source 26 Photocatalyst filter 28 Water receiver 32 OH radical 34 Cooling tube 36 Hydrogen peroxide 36A Accelerated hydrogen peroxide 38 Surfactant 50 Water generator 52 Low-temperature part (capillary), 54... Reheating part (double exhaust tube part), 56... Ozone generator, 58... Ozone.

Claims (5)

ハウジングと、
前記ハウジングの外部の空気を当該ハウジングの内部の通風路に取り入れ、熱交換器を通過させて前記ハウジングの外部に排出させるファンと、
前記通風路の一部で前記空気の通過を許容するように設けられた、光触媒を含む含水可能な光触媒フィルタと、
前記光触媒フィルタに水を供給可能な水受け部と、
前記光触媒フィルタに紫外線光を照射可能な光源と、
を備えた空気調和装置。
a housing;
a fan for taking in air from the outside of the housing into a ventilation passage inside the housing, passing the air through a heat exchanger, and discharging the air to the outside of the housing;
a water impregnable photocatalyst filter containing a photocatalyst, provided to allow passage of the air in a portion of the air passage;
a water receiver capable of supplying water to the photocatalyst filter;
a light source capable of irradiating the photocatalyst filter with ultraviolet light;
Air conditioner with.
前記水受け部は、当該水受け部に供給される前記水に継続的に界面活性成分を供給可能な界面活性剤を保持可能である、請求項1に記載の空気調和装置。 2. The air conditioner according to claim 1, wherein said water receiving portion is capable of holding a surfactant capable of continuously supplying a surface active component to said water supplied to said water receiving portion. 前記ハウジングの前記空気の排出側に、少なくとも暖房運転時に前記ハウジングの内部を流れる空気から水を生成する水生成部が設けられている、請求項1または請求項2に記載の空気調和装置。 3. The air conditioning apparatus according to claim 1, further comprising a water generator that generates water from the air flowing through the housing at least during heating operation, on the air discharge side of the housing. 前記水生成部は、
前記熱交換器の下流側で冷媒の流れを第一の分流路と第二の分流路に分岐させる分岐部と、
前記第一の分流路に設けられて前記冷媒の温度を結露水の発生可能温度以下まで低下させて前記水受け部に供給する結露水を生成する低温化部と、
前記第二の分流路に設けられて前記低温化部の下流側で当該低温化部で低下した前記冷媒の温度を前記第二の分流路を流れる前記冷媒の温度に接近させて前記第二の分流路を流れる前記冷媒に合流させられるように加熱する再加熱部と、
を含む、請求項3に記載の空気調和装置。
The water generation unit is
a branching part that branches the flow of the refrigerant into a first branched channel and a second branched channel on the downstream side of the heat exchanger;
a temperature lowering unit provided in the first branch passage for reducing the temperature of the refrigerant to a temperature at which condensed water can be generated or less to generate condensed water to be supplied to the water receiving unit;
On the downstream side of the low-temperature portion provided in the second branch passage, the temperature of the refrigerant lowered in the low-temperature portion is brought close to the temperature of the refrigerant flowing through the second branch passage, and the second a reheating unit that heats the refrigerant so that it merges with the refrigerant flowing through the branch flow path;
The air conditioner according to claim 3, comprising:
前記光源を挟んで、前記光触媒フィルタとは逆側で前記通風路の上流側の位置にオゾン発生部を備える、請求項1から請求項4のいずれか1項に記載の空気調和装置。 5. The air conditioner according to any one of claims 1 to 4, further comprising an ozone generating section on the opposite side of the photocatalyst filter and on the upstream side of the ventilation passage with the light source interposed therebetween.
JP2021045186A 2021-03-18 2021-03-18 air conditioner Pending JP2022144265A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021045186A JP2022144265A (en) 2021-03-18 2021-03-18 air conditioner
CN202210020625.9A CN115111655A (en) 2021-03-18 2022-01-10 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021045186A JP2022144265A (en) 2021-03-18 2021-03-18 air conditioner

Publications (1)

Publication Number Publication Date
JP2022144265A true JP2022144265A (en) 2022-10-03

Family

ID=83325102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021045186A Pending JP2022144265A (en) 2021-03-18 2021-03-18 air conditioner

Country Status (2)

Country Link
JP (1) JP2022144265A (en)
CN (1) CN115111655A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3143104A1 (en) * 2022-12-08 2024-06-14 Systel Aeraulic group for a closed zone to be ventilated in a construction and assembly comprising such a group

Also Published As

Publication number Publication date
CN115111655A (en) 2022-09-27

Similar Documents

Publication Publication Date Title
JP4396688B2 (en) Air conditioner and operation method thereof
JP2005214612A (en) Air ventilator/cleaner
KR20130013576A (en) Heat-recovery type ventilation system using heat-pump air conditioner
KR200439228Y1 (en) A thermo - hygrostat having optical plasma sterilizer
KR100918708B1 (en) Photosterilizing thermo-hygrostat
JP2007051866A (en) Air conditioner
JP2022144265A (en) air conditioner
CN111207462A (en) Sterilization and disinfection method and system
JP6284134B1 (en) Outside air conditioner and ventilation system
JP4073824B2 (en) Blower
KR20110102586A (en) Air cleaner with air-conditioning unit
KR20130013585A (en) Heat-pump air conditioner with heat-recovery type ventilation function
CN209744633U (en) Sterilizing device for air conditioner and air conditioner with same
JP4841471B2 (en) Equipment drain water purification equipment
JP6951518B1 (en) Air conditioning system
JP5209753B2 (en) Ventilation system
JP2002243243A (en) Air conditioner
KR20070073528A (en) Air conditioner and control method thereof
JP6335418B2 (en) Air conditioning system
KR20220126121A (en) Multipurpose Heat Exchanger comprising Pre-heating function and Method for Controlling Thereof
JP2008116202A (en) Installation structure of ion generating element, air blowing structure using the installation structure, air conditioner and air-conditioning system
JP2001065958A (en) Air conditioner and operation method thereof
CN216897551U (en) Ceiling type air conditioner indoor unit capable of sterilizing air by using pulsed magnetic field
KR102477472B1 (en) Multipurpose Heat Exchanger for Airconditioning and Dehumidification and Method for Controlling Thereof
CN217817090U (en) Air conditioner dehumidification all-in-one

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240524