JP2022138971A - Injection molding machine and injection foam molding method - Google Patents

Injection molding machine and injection foam molding method Download PDF

Info

Publication number
JP2022138971A
JP2022138971A JP2021039156A JP2021039156A JP2022138971A JP 2022138971 A JP2022138971 A JP 2022138971A JP 2021039156 A JP2021039156 A JP 2021039156A JP 2021039156 A JP2021039156 A JP 2021039156A JP 2022138971 A JP2022138971 A JP 2022138971A
Authority
JP
Japan
Prior art keywords
mold
injection
mold clamping
clamping force
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021039156A
Other languages
Japanese (ja)
Inventor
昭男 岡本
Akio Okamoto
裕一郎 福田
Yuichiro Fukuda
和明 宮本
Kazuaki Miyamoto
祐一朗 有馬
Yuichiro Arima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Machinery Corp Ltd
Original Assignee
Ube Machinery Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corp Ltd filed Critical Ube Machinery Corp Ltd
Priority to JP2021039156A priority Critical patent/JP2022138971A/en
Publication of JP2022138971A publication Critical patent/JP2022138971A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

To provide an injection molding machine and an injection foam molding method that efficiently expel residual gas in a mold cavity from a mold mating surface during injection filling of foamable molten resin.SOLUTION: An injection molding machine 10 includes: a mold clamping device 30 that performs a mold opening and closing operation to move a movable mold 34 closer to and farther from a fixed mold 33, and a mold clamping operation to form a mold cavity 38 by applying a mold clamping force to a fixed mold 36 and a movable mold 37 that are brought into contact; an injection device 20 that stores a foamable molten resin in a reservoir 21a in front of a screw 22 and injects and fills the mold cavity 38 with the foamable molten resin from the reservoir 21a; and a control device 40 that controls the mold clamping device 30 and the injection device 20. The control device 40 performs control to increase the mold clamping force based on position information of the screw 22 during injection filling.SELECTED DRAWING: Figure 3

Description

本発明は、発泡性溶融樹脂を金型キャビティ内に射出充填させて、発泡成形品を成形する射出成形機及び射出発泡成形方法に関する。 TECHNICAL FIELD The present invention relates to an injection molding machine and an injection foam molding method for molding a foam-molded product by injecting and filling foamable molten resin into a mold cavity.

発泡成形品を成形する射出発泡成形方法は大きく分けて二つの方法がある。一つの方法は、射出装置内で可塑化(溶融)させた、発泡材料を含む溶融樹脂(発泡性溶融樹脂という)を、金型キャビティを満たさない容量を射出充填(所謂、ショートショット充填)させた後、固定金型と可動金型とを離間させることなく、発泡性溶融樹脂の発泡膨張により、最初の射出充填での未充填部を含み、金型キャビティを満たす方法である。一例として特許文献1がある。この方法を本願では「SS(ショートショット)発泡成形方法」と呼称する。 Injection foam molding methods for molding foam molded products are roughly divided into two methods. One method is to fill the volume that does not fill the mold cavity with a molten resin containing a foaming material that has been plasticized (melted) in an injection device (so-called short-shot filling). After that, without separating the fixed mold and the movable mold, the foaming and expansion of the foamable molten resin fills the mold cavity, including the unfilled portion in the first injection filling. As an example, there is Patent Document 1. This method is called "SS (short shot) foam molding method" in the present application.

もう一つの方法は、発泡性溶融樹脂を射出充填させて金型キャビティを満たした(所謂、フルパック充填)後、例えば、固定金型と可動金型とを離間させることによる金型キャビティの容積拡張によって、発泡性溶融樹脂を発泡膨張させる方法である。一例として特許文献2がある。この方法を本願では「CB(コアバック)発泡成形方法」と呼称する。 Another method is to fill the mold cavity with foamable molten resin by injection filling (so-called full-pack filling), and then, for example, separate the fixed mold and the movable mold to increase the volume of the mold cavity. This is a method of foaming and expanding foamable molten resin by expansion. There is Patent Document 2 as an example. This method is called a "CB (core-back) foam molding method" in the present application.

特開平08-103919号公報JP-A-08-103919 特開2008-143061号公報JP-A-2008-143061

ここで、金型キャビティ内への発泡性溶融樹脂の射出充填中は、発泡性溶融樹脂の流動先端部において局部的な圧力低下が生じている。この圧力低下により、発泡成形の原動力となる発泡性ガスが発泡性溶融樹脂内から放出され、発泡性溶融樹脂の流動先端部は発泡性ガスが減った状態となる。その結果、放出された発泡性ガスを巻き込むことで発泡成形品の外観の悪化や、発泡性ガスの減少による発泡不良や、あるいは、発泡セルのサイズがばらつくといった、部位による発泡品質の大きなばらつきが発生したりする。この現象は、SS発泡成形法、CB発泡成形法に共通したものである。 Here, during injection filling of the foamable molten resin into the mold cavity, a local pressure drop occurs at the flow tip of the foamable molten resin. Due to this pressure drop, the foaming gas, which serves as a driving force for foam molding, is released from inside the foamable molten resin, and the flow front of the foamable molten resin becomes in a state where the foaming gas is reduced. As a result, the appearance of the foamed molded product deteriorates due to the released foaming gas, foaming defects due to a decrease in foaming gas, and large variations in foaming quality depending on the location, such as variations in foam cell size. occur. This phenomenon is common to the SS foam molding method and the CB foam molding method.

上記のような、射出充填時の、発泡性溶融樹脂の流動先端部からの発泡性ガスの放出量を抑制するために、射出充填の時間を短時間で終わらせることが最も効果的であり、発泡性溶融樹脂の射出充填時においては、通常の樹脂材料を使用する射出充填時よりも高速の充填速度(IV:スクリュの前進速度)、例えば、100mm/s以上の充填速度で射出充填を行わせることが多い(高速射出充填という)。 In order to suppress the amount of foaming gas released from the flow tip of the foamable molten resin at the time of injection filling as described above, it is most effective to finish the injection filling in a short time, At the time of injection filling of the foamable molten resin, injection filling is performed at a filling speed (IV: forward speed of the screw) higher than that at the time of injection filling using a normal resin material, for example, at a filling speed of 100 mm/s or more. (called high-speed injection filling).

そのため、発泡性溶融樹脂の射出充填時においては、射出充填時に金型キャビティ内の残存空気や発泡性溶融樹脂の先端部から放出される発泡性ガス(両者を合わせて残存ガスという)が金型外へ十分に排出されないガス抜け不良に起因する発泡成形品の成形不良が発生し易い。具体的には、金型キャビティ内の残存ガスが発泡成形品内に取り込まれ、ヒケや強度低下を招く成形不良、また、取り込まれた同ガスが表面に噴出する成形不良、さらには、金型キャビティの形状が複雑な、あるいは、薄い部位に残留した同ガスにより、同部位に発泡性溶融樹脂が十分に充填されない充填不良等が発生する。 Therefore, when the foamable molten resin is injected and filled, the remaining air in the mold cavity and the foaming gas released from the tip of the foamable molten resin (both collectively referred to as residual gas) Molding defects of foamed molded products are likely to occur due to insufficient gas release to the outside. Specifically, the residual gas in the mold cavity is taken into the foamed molded product, resulting in molding defects such as sink marks and strength deterioration. Due to the residual gas remaining in a portion of the cavity having a complicated shape or a thin portion, a filling failure or the like occurs in which the portion is not sufficiently filled with the foamable molten resin.

また、高速射出充填以外として、予め金型キャビティ内を圧縮空気等で加圧した状態で発泡性溶融樹脂の射出充填を行う金型カウンタープレッシャー法という手法も、発泡性溶融樹脂の流動先端部からの発泡性ガスの放出量の抑制に効果があると言われている。しかしながら、金型キャビティ内へ圧縮空気等の供給と排気を行う特殊な装置や、供給した圧縮空気等を密閉し加圧状態とする特殊な構造の金型を要する。さらには、供給した圧縮空気の残存による新たな発泡不良の危険性等の理由により採用は限定的である。 In addition to the high-speed injection filling, the mold counter-pressure method, in which the foaming molten resin is injected and filled while the inside of the mold cavity is pre-pressurized with compressed air, etc., It is said that it is effective in suppressing the amount of foaming gas released. However, it requires a special device for supplying and discharging compressed air into and from the mold cavity, and a mold with a special structure that seals and pressurizes the supplied compressed air. Furthermore, the adoption is limited due to the risk of new foaming defects due to residual compressed air supplied.

本発明は、上記したような問題点に鑑みてなされたもので、発泡性溶融樹脂の射出充填時に、金型合わせ面からの、金型キャビティ内の残存ガスを効率よく排出する射出成形機及び射出発泡成形方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems. An object of the present invention is to provide an injection foam molding method.

上記の目的を達成するため、本発明に係る一の射出成形機は、固定金型を支持する固定盤と、可動金型を支持する可動盤と、
前記可動盤を、前記固定盤に対して接近・離間させる型開閉動作と、接触させた前記固定金型及び前記可動金型に型締力を作用させて、金型キャビティを形成させる型締動作と、を行わせる型締装置と、
射出シリンダ内のスクリュを回転させて、発泡材料を含む樹脂材料を可塑化させて、前記スクリュの前方の貯留部に発泡性溶融樹脂を貯留させると共に、前記貯留部の前記発泡性溶融樹脂を前記金型キャビティに射出充填する射出装置と、
前記型締装置と前記射出装置とを制御する制御装置と、備え、
前記制御装置は、射出充填中の前記スクリュの位置情報に基づき、前記型締力を増加させる制御を行うことを特徴とする。
In order to achieve the above object, one injection molding machine according to the present invention includes a stationary platen for supporting a fixed mold, a movable platen for supporting a movable mold,
A mold opening/closing operation for moving the movable platen toward or away from the fixed platen, and a mold clamping operation for forming a mold cavity by applying a mold clamping force to the fixed mold and the movable mold that are brought into contact with each other. and a mold clamping device that performs
The screw in the injection cylinder is rotated to plasticize the resin material including the foaming material, and the foamable molten resin is stored in the storage portion in front of the screw, and the foamable molten resin in the storage portion is an injection device that injects and fills the mold cavity;
a control device that controls the mold clamping device and the injection device;
The control device is characterized by performing control to increase the mold clamping force based on positional information of the screw during injection filling.

本発明に係る一の射出成形機において、前記金型キャビティに射出充填される前記発泡性溶融樹脂の、型開閉方向に直交する樹脂流動投影面積を、前記スクリュの前記位置情報に対応させて、前記制御装置に記憶させて、
前記制御装置は、射出充填中の前記スクリュの前記位置情報に対応させた前記樹脂流動投影面積と射出充填中の樹脂圧力の積に基づいて前記型締力を増加させることが好ましい。
In one injection molding machine according to the present invention, the resin flow projection area orthogonal to the mold opening/closing direction of the foamable molten resin injected and filled into the mold cavity is made to correspond to the position information of the screw, stored in the control device,
Preferably, the control device increases the mold clamping force based on the product of the projected resin flow area corresponding to the position information of the screw during injection filling and the resin pressure during injection filling.

また、上記の目的を達成するため、本発明に係る一の射出成形機を使用する、本発明に係る一の射出発泡成形方法は、所望する射出充填量の前記発泡性溶融樹脂を得る可塑化・計量工程と、
接触させた前記固定金型及び前記可動金型に型締力を作用させて、前記固定金型及び前記可動金型内に前記金型キャビティを形成させる型締工程と、
前記発泡性溶融樹脂を前記金型キャビティに射出充填させる射出工程と、
射出充填中の前記スクリュの前記位置情報に基づき、前記型締力を増加させる型締力増加工程と、
を備えることを特徴とする。
Further, in order to achieve the above object, one injection foam molding method according to the present invention, which uses one injection molding machine according to the present invention, provides a plasticizing method for obtaining a desired injection filling amount of the foamable molten resin. - a weighing process;
a mold clamping step of forming the mold cavity in the fixed mold and the movable mold by applying a mold clamping force to the fixed mold and the movable mold that are in contact with each other;
an injection step of injecting and filling the foamable molten resin into the mold cavity;
a mold clamping force increasing step of increasing the mold clamping force based on the position information of the screw during injection filling;
characterized by comprising

本発明によれば、発泡性溶融樹脂の射出充填時に、金型合わせ面からの、金型キャビティ内の残存ガスを効率よく排出する射出成形機と、同射出成形機を使用する射出発泡成形方法とを提供することができる。 According to the present invention, an injection molding machine that efficiently discharges residual gas in a mold cavity from a mold mating surface during injection filling of an expandable molten resin, and an injection foam molding method using the same injection molding machine. and can be provided.

第1実施形態に係る射出成形機の主要構成を示す概略側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic side view which shows the main structures of the injection molding machine which concerns on 1st Embodiment. 第1実施形態に係る射出発泡成形方法の、型締工程及び可塑化・計量工程が完了した状態を示す概略側面断面図である。FIG. 2 is a schematic cross-sectional side view showing a state in which a mold clamping process and a plasticizing/measuring process of the injection foam molding method according to the first embodiment are completed. 第1実施形態に係る射出発泡成形方法の、型締力増加工程における、射出充填開始から射出充填完了までのスクリュ位置と樹脂流動投影面積と型締力の関係を示すグラフである。5 is a graph showing the relationship between the screw position, resin flow projected area, and mold clamping force from the start of injection filling to the completion of injection filling in the mold clamping force increasing step of the injection foam molding method according to the first embodiment. 第1実施形態に係る射出発泡成形方法の、別形態の型締力増加工程における、射出充填開始から射出充填完了までのスクリュ位置と樹脂流動投影面積と型締力の関係を示すグラフである。5 is a graph showing the relationship between the screw position, resin flow projected area, and mold clamping force from the start of injection filling to the completion of injection filling in another mold clamping force increasing step of the injection foam molding method according to the first embodiment.

以下、本発明を実施するための形態について、添付図面を参照しながら詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.

[第1実施形態]
まず、図1を参照しながら本発明の第1実施形態に係る射出成形機10を説明する。図1は、第1実施形態に係る射出成形機の主要構成を示す概略側面図である。型締装置30は、基台32上に配置される固定盤33及び可動盤34を備える。固定盤33は固定金型36を支持し、可動盤34は可動金型37を支持する。そして、型締装置30は、基台32上に移動可能に配置された可動盤34を、基台32に固定された固定盤33に対して接近・離間させる型開閉動作と、型閉じ動作により接触させた固定金型36及び可動金型37に型締力を作用させる型締動作と、を行わせる。
[First embodiment]
First, an injection molding machine 10 according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic side view showing the main configuration of the injection molding machine according to the first embodiment. The mold clamping device 30 includes a fixed platen 33 and a movable platen 34 arranged on a base 32 . A fixed platen 33 supports a fixed mold 36 and a movable platen 34 supports a movable mold 37 . The mold clamping device 30 moves a movable platen 34 movably arranged on a base 32 toward and away from a fixed platen 33 fixed to the base 32, and performs a mold closing operation. and a mold clamping operation for applying a mold clamping force to the fixed mold 36 and the movable mold 37 that are brought into contact with each other.

固定盤33及び図示しない型締盤(型締装置30がトグル式型締装置の場合はリンクハウジング等と呼称される)は、それぞれの四隅を貫通させたタイバー39により連結されている。そして、固定盤33及び型締盤の間に配置される可動盤34は、四隅を貫通させたタイバー39により、基台32上の型開閉方向の移動を案内される。 The stationary platen 33 and the mold clamping plate (not shown) (referred to as a link housing or the like when the mold clamping device 30 is a toggle type mold clamping device) are connected by tie bars 39 penetrating the respective four corners. The movable platen 34 arranged between the stationary platen 33 and the mold clamping plate is guided to move in the mold opening/closing direction on the base 32 by the tie bars 39 passing through the four corners.

射出装置20の構成は、一般的なインラインスクリュ式射出装置と同様の構成を備える。具体的には、固定盤33に対する接近・離間が可能に、図示しない基台上に載置される射出シリンダ21を備える。射出シリンダ21内には、先端にチェックリング22aを備え、チェックリング22aの後方の外周面にフライト22bが形成されたスクリュ22が内挿されている。前者のチェックリング22aは、インラインスクリュ式射出装置に採用される一般的な逆止弁である。後者のスクリュ22は、射出シリンダ21内での長手軸中心の回転動作と、同長手軸方向の前進・後退動作とが可能に構成されており、同構成により、可塑化させた溶融樹脂を、後述する金型キャビティ38(図2参照)に射出可能である。 The configuration of the injection device 20 is similar to that of a general in-line screw type injection device. Specifically, an injection cylinder 21 mounted on a base (not shown) is provided so as to be able to approach and separate from the stationary platen 33 . Inside the injection cylinder 21, a screw 22 having a check ring 22a at its tip and a flight 22b formed on the outer peripheral surface behind the check ring 22a is inserted. The former check ring 22a is a general check valve employed in an in-line screw type injection device. The latter screw 22 is configured to be able to rotate about the longitudinal axis in the injection cylinder 21 and move forward and backward along the same longitudinal axis. It can be injected into a mold cavity 38 (see FIG. 2), which will be described later.

また、本発明の第1実施形態に係る射出成形機10においては、発泡材料を含む樹脂材料を用いる。なお、図1には、説明に必要な、射出装置20の一部のみを図示している。図示された射出装置20は、固定金型36から射出装置20を離間させた状態(所謂、ノズルタッチしていない状態)を示している。 Moreover, in the injection molding machine 10 according to the first embodiment of the present invention, a resin material containing a foam material is used. Note that FIG. 1 shows only a portion of the injection device 20 necessary for explanation. The illustrated injection device 20 shows a state in which the injection device 20 is separated from the fixed mold 36 (so-called state in which the nozzles are not touched).

制御装置40は、型締装置30による型開閉動作や型締動作、及び、射出装置20による樹脂材料の可塑化や射出を制御する。この制御には、射出充填中のスクリュ22の位置情報に基づき、型締力を増加させる制御が含まれる。この制御については後述する。なお、制御装置40は、射出成形機10のユーザの希望や、射出成形機10が設置される場所の制約や必要に応じて、射出成形機10の近傍の様々な位置に配置されてよい。図1中の制御装置40は、構成として図示したものであって、制御装置40の、射出成形機10に対する配置等を限定するものではない。 The control device 40 controls the mold opening/closing operation and mold clamping operation by the mold clamping device 30 and the plasticization and injection of the resin material by the injection device 20 . This control includes control to increase the mold clamping force based on the positional information of the screw 22 during injection filling. This control will be described later. Note that the control device 40 may be arranged at various positions near the injection molding machine 10 depending on the wishes of the user of the injection molding machine 10, restrictions on the location where the injection molding machine 10 is installed, and necessity. The control device 40 in FIG. 1 is illustrated as a configuration, and the arrangement of the control device 40 with respect to the injection molding machine 10 is not limited.

次に、本発明の第1実施形態に係る射出発泡成形方法を説明する。まず、図2に示す、型締工程及び可塑化・計量工程が完了した状態と、図2に示す状態に至る前の、図示していない可塑化・計量工程、及び、型締工程について説明する。なお、本発明の第1実施形態に係る射出発泡成形方法は、本発明の第1実施形態に係る射出成形機10の使用を前提としている。そのため、図2においては、説明に必要な、固定金型36及び可動金型37(金型キャビティ38を形成)、また、射出装置20の一部のみを図示している。 Next, the injection foam molding method according to the first embodiment of the present invention will be described. First, the state shown in FIG. 2 in which the mold clamping process and the plasticizing/measuring process are completed, and the plasticizing/measuring process (not shown) and the mold clamping process before reaching the state shown in FIG. 2 will be described. . The injection foam molding method according to the first embodiment of the present invention is premised on the use of the injection molding machine 10 according to the first embodiment of the present invention. Therefore, in FIG. 2, only the stationary mold 36 and the movable mold 37 (forming the mold cavity 38) and part of the injection device 20 necessary for explanation are shown.

図2は、型締装置30により、接触させた固定金型36及び可動金型37に型締力P0(ゼロ)を作用させて、金型キャビティ38を形成させる型締工程、及び、射出装置20における可塑化・計量工程が完了した状態を示す。射出装置20は、その先端部(射出ノズル/詳細は図示せず)が、固定金型36の金型内樹脂流路36aの射出装置20側の開口部に所定の押圧力で押圧された状態(所謂、ノズルタッチ状態)であって、金型内樹脂流路36aのゲート部(金型内樹脂流路36aと金型キャビティ38の連結する部位)に配置されているゲートバルブ36bは閉止状態である。 FIG. 2 shows a mold clamping process in which a mold cavity 38 is formed by applying a mold clamping force P0 (zero) to a fixed mold 36 and a movable mold 37 that are brought into contact with each other by a mold clamping device 30, and an injection device. The plasticizing and weighing process at 20 is shown completed. The injection device 20 is in a state where the tip (injection nozzle/details not shown) is pressed against the injection device 20 side opening of the in-mold resin flow path 36a of the fixed mold 36 with a predetermined pressing force. (so-called nozzle touch state), and the gate valve 36b arranged at the gate portion of the in-mold resin flow path 36a (the portion connecting the in-mold resin flow path 36a and the mold cavity 38) is closed. is.

そして、図2に示す状態から、ゲートバルブ36bを開放状態に移行させると共に、スクリュ22を所定速度及び所定力で前進させることにより、射出充填(射出工程)が開始される。射出工程においては、後述する貯留部21aの発泡性溶融樹脂が金型内樹脂流路36a及び開放状態のゲートバルブ36bを経由して、金型キャビティ38に射出充填される。 Then, from the state shown in FIG. 2, the gate valve 36b is shifted to the open state, and the screw 22 is advanced at a predetermined speed and force, thereby starting injection filling (injection process). In the injection process, the foamable molten resin in the later-described reservoir 21a is injected and filled into the mold cavity 38 via the in-mold resin channel 36a and the open gate valve 36b.

次に、図2に示す状態に至る前の、図示していない可塑化・計量工程、及び、型締工程について説明する。最初に、可塑化・計量工程を説明する。ホッパ等の材料供給部位(図示せず)から、射出シリンダ21内に、ペレット状の樹脂材料が供給される。発泡材料の供給は、使用する発泡材料の種類によって異なる。例えば、化学発泡剤や熱膨張マイクロカプセル剤等の発泡材料は、樹脂材料と一緒に所定量を射出シリンダ21内に供給し、樹脂材料と発泡材料を同時に可塑化して発泡性溶融樹脂を得る。また、例えば窒素や二酸化炭素等の物理発泡剤を発泡材料として使用する場合は、樹脂材料を可塑化し溶融樹脂とした射出シリンダ21へ、図示しない注入装置等を用いて供給して、発泡性溶融樹脂を得る。これを可塑化工程という。本発明の第1実施形態に係る射出発泡成形方法においては、いずれの発泡材料が使用されてもよい。 Next, the plasticizing/weighing process and the mold clamping process (not shown) before reaching the state shown in FIG. 2 will be described. First, the plasticizing/weighing process will be described. A pellet-shaped resin material is supplied into the injection cylinder 21 from a material supply portion (not shown) such as a hopper. The supply of foam material depends on the type of foam material used. For example, a foaming material such as a chemical foaming agent or a thermally expandable microcapsule is fed into the injection cylinder 21 in a predetermined amount together with the resin material, and the resin material and the foaming material are simultaneously plasticized to obtain a foamable molten resin. Further, when a physical foaming agent such as nitrogen or carbon dioxide is used as a foaming material, the resin material is plasticized into a molten resin and supplied to the injection cylinder 21 using an injection device or the like (not shown) to form a foaming melt. get resin. This is called a plasticizing process. Any foam material may be used in the injection foam molding method according to the first embodiment of the present invention.

可塑化工程で得られた発泡性溶融樹脂は、スクリュ22の長手軸中心の回転動作により、フライト22bに案内されて、チェックリング22aを経由して、射出シリンダ21内の先端部(固定盤33側/以後、貯留部21aと呼称する)に連続的に貯留される。この可塑化工程から貯留部21への発泡性溶融樹脂の所定量の貯留過程を計量工程という。本説明では、可塑化工程と計量工程を合わせて、可塑化・計量工程と表現する。 The foamable molten resin obtained in the plasticizing process is guided by the flight 22b by the rotation of the screw 22 about its longitudinal axis, passes through the check ring 22a, and reaches the tip of the injection cylinder 21 (fixed platen 33). side/hereinafter referred to as storage portion 21a) is continuously stored. The process of storing a predetermined amount of foamable molten resin in the storage section 21 from the plasticizing process is called a weighing process. In this description, the plasticizing process and the weighing process are collectively referred to as the plasticizing/measuring process.

可塑化・計量工程において、貯留部21aに貯留される発泡性溶融樹脂の増加に伴い、スクリュ22は回転動作を継続しつつ長手軸方向に後退する。このスクリュ22の長手軸方向の後退に意図的に抵抗力(以後、背圧と呼称する)を付与させる。これによって、貯留部21内の発泡性溶融樹脂の圧力を、付与させる背圧と略同じ圧力に維持させた状態とすることができる。この付与させる背圧は、貯留部21内の発泡性溶融樹脂を発泡させない圧力範囲とする。 In the plasticizing/measuring step, the screw 22 retreats in the longitudinal direction while continuing to rotate as the foamable molten resin stored in the storage portion 21a increases. A resistance force (hereinafter referred to as back pressure) is intentionally applied to the retraction of the screw 22 in the longitudinal direction. As a result, the pressure of the foamable molten resin in the reservoir 21 can be maintained at approximately the same pressure as the applied back pressure. The back pressure to be applied is set to a pressure range in which the foamable molten resin in the reservoir 21 is not foamed.

貯留部21内の発泡性溶融樹脂を発泡させない圧力範囲は、発泡材料の種類や供給量、樹脂温度等により異なる。例えば、化学発泡剤の場合は、可塑化・計量工程において、化学発泡剤の熱分解で発生する発泡性ガスの圧力(例えば0.2~0.8MPa)よりも高い範囲とすることが好ましい。一方、物理発泡剤の場合は、窒素や二酸化炭素を溶融樹脂へ溶解させるのに必要な供給圧力(例えば1~15MPa)よりも高い範囲とすることが好ましい。 The pressure range in which the foamable molten resin in the reservoir 21 is not foamed varies depending on the type and supply amount of the foaming material, the resin temperature, and the like. For example, in the case of a chemical foaming agent, the pressure is preferably in a range higher than the pressure of foaming gas generated by thermal decomposition of the chemical foaming agent (for example, 0.2 to 0.8 MPa) in the plasticizing and weighing process. On the other hand, in the case of a physical blowing agent, the supply pressure (for example, 1 to 15 MPa) required to dissolve nitrogen or carbon dioxide into the molten resin is preferably in a range higher than that.

そして、可塑化・計量工程を開始した時点からの、スクリュ22の長手軸方向の後退距離等のモニタリングにより、貯留部21aに貯留される発泡性溶融樹脂の、所望する射出充填量への到達を検出させる。同検出により、スクリュ22の長手軸中心の回転動作を停止させて、可塑化・計量工程が完了する。可塑化・計量工程の完了後も、射出充填工程が開始するまでは、貯留部21aに貯留される発泡性溶融樹脂の圧力は、発泡させない圧力範囲に保持される。 By monitoring the retraction distance in the longitudinal axis direction of the screw 22 from the start of the plasticizing/measuring process, the foamable molten resin stored in the storage part 21a reaches the desired injection filling amount. Let it be detected. By this detection, the rotational movement of the screw 22 about the longitudinal axis is stopped, and the plasticizing/measuring process is completed. Even after the plasticizing/measuring process is completed, the pressure of the expandable molten resin stored in the storage section 21a is maintained within a pressure range that does not cause foaming until the injection filling process is started.

次に、型締工程を説明する。型締工程は、先に説明した可塑化・計量工程と重複させて行わせることができる。型締装置30により、可動金型37を固定金型36側へ移動(型閉じ動作)させて、可動金型37を固定金型36に接触させる(所謂、金型タッチ)。そして、接触させた固定金型36及び可動金型37に、型締装置30により型締力P0を作用させる(図2参照)。金型キャビティ38は、固定金型36と可動金型37の型閉じによって形成される。 Next, the mold clamping process will be described. The mold clamping process can be performed by overlapping with the plasticizing/measuring process described above. The mold clamping device 30 moves the movable mold 37 toward the fixed mold 36 (mold closing operation) to bring the movable mold 37 into contact with the fixed mold 36 (so-called mold touch). Then, the mold clamping device 30 applies a mold clamping force P0 to the fixed mold 36 and the movable mold 37 that are in contact with each other (see FIG. 2). A mold cavity 38 is formed by closing the fixed mold 36 and the movable mold 37 .

ここで、従来技術の射出発泡成形においては、SS発泡成形もCB発泡成形も同じく、型開閉方向に直交する面への製品投影面積と、射出充填時の樹脂圧力(型内樹脂圧という)との積に安全率を加えた型締力が、型締工程の型締力として設定される。この製品投影面積とは、可塑化・計量工程で貯蔵された発泡性溶融樹脂を金型キャビティ38内にフルパック充填した状態の発泡成形品の完成された状態を意味し、製品投影面積で設定された型締力を最大型締力という。この最大型締力が作用した状態で、発泡性溶融樹脂の射出充填が開始される。 Here, in the injection foam molding of the prior art, both SS foam molding and CB foam molding are the same as the projected area of the product on the plane orthogonal to the mold opening and closing direction, and the resin pressure during injection filling (called the in-mold resin pressure). A mold clamping force obtained by adding a safety factor to the product of is set as the mold clamping force in the mold clamping process. The product projected area means the completed state of the foamed molded product in which the mold cavity 38 is fully filled with the foamable molten resin stored in the plasticizing and weighing process, and is set by the product projected area. The clamping force obtained is called the maximum clamping force. Injection filling of foamable molten resin is started in a state where this maximum mold clamping force is applied.

そのため、従来技術の射出発泡成形では、最大型締力により固定金型36及び可動金型37の金型合わせ面(金型PL面という)は強固に押し付けられており隙間はゼロであり、射出充填時の発泡性溶融樹脂の金型PL面からの漏れ(樹脂バリ不良)の発生を抑制できる。その反面、金型キャビティ38内の残存ガスが通過する隙間も無く、金型PL面から排出することはほぼ困難であり、ガス抜け不良に起因する発泡不良が生じる。 Therefore, in the conventional injection foam molding, the mold mating surfaces (referred to as the mold PL surface) of the fixed mold 36 and the movable mold 37 are firmly pressed by the maximum mold clamping force, and the gap is zero. It is possible to suppress the occurrence of leakage (resin burr defect) from the mold PL surface of the foamable molten resin at the time of filling. On the other hand, there is no gap for the remaining gas in the mold cavity 38 to pass through, and it is almost difficult to discharge from the mold PL surface, resulting in poor foaming due to poor gas release.

本発明の第1実施形態に係る射出発泡成形方法の型締工程においては、接触させた固定金型36及び可動金型37に、型締装置30により、先に説明したような最大型締力よりも十分に低い型締力P0を作用させて、発泡性溶融樹脂の射出充填を開始させる。その後は、射出充填中のスクリュの位置情報に基づいて型締力を増加させる型締力増加工程を行う。この型締力増加工程については、後述する図3と図4を用いた射出発泡成形方法の説明の中で詳しく解説する。 In the mold clamping step of the injection foam molding method according to the first embodiment of the present invention, the mold clamping device 30 applies the maximum mold clamping force as described above to the fixed mold 36 and the movable mold 37 that are brought into contact with each other. A sufficiently lower mold clamping force P0 is applied to start injection filling of the foamable molten resin. After that, a mold clamping force increasing process is performed to increase the mold clamping force based on the positional information of the screw during injection filling. This mold clamping force increasing process will be explained in detail in the explanation of the injection foam molding method using FIGS. 3 and 4, which will be described later.

ここで、型締力P0は、発泡性溶融樹脂の射出充填の開始の段階において、金型PL面から発泡性溶融樹脂が漏れ出ないことを前提に、固定金型36と可動金型37が接触させた状態(金型タッチ状態)から最大型締力の範囲内で型締力を設定する。金型PL面からの残存ガスの排気を優先すれば、十分に低い型締力とするのが好ましい。例えば、金型を製造するメーカー等において、金型PL面の当り調整時に用いる型締調整力を型締力P0に用いてもよい。金型PL面は、発泡性溶融樹脂は漏れ出ないが残存ガスは通過する程度の最適な隙間(約5/100mm程度)に調整されている最適な状態を再現でき、樹脂バリの抑制と残存ガスの効率的な排気の両立を得ることができる。 Here, the mold clamping force P0 is determined based on the premise that the foamable molten resin does not leak from the mold PL surface at the stage of starting the injection filling of the foamable molten resin. Set the mold clamping force within the maximum mold clamping force range from the contact state (mold touch state). If priority is given to exhausting residual gas from the PL surface of the mold, a sufficiently low mold clamping force is preferable. For example, a mold manufacturer or the like may use, as the mold clamping force P0, the mold clamping adjustment force used when adjusting the contact of the mold PL surface. The PL surface of the mold is adjusted to an optimum gap (approximately 5/100 mm) to allow residual gas to pass through while preventing foaming molten resin from leaking out. It is possible to obtain both efficient exhaust of gas.

本発明の第1実施形態に係る射出発泡成形方法においては、可塑化・計量工程と、型締工程と、が完了し、射出充填(射出工程)を開始させた時点から、射出充填中のスクリュ22の位置情報に基づき、型締力P0を増加させる型締力増加工程を開始させる。この型締力増加工程を、図3及び図4を参照しながら説明する。 In the injection foam molding method according to the first embodiment of the present invention, from the time when the plasticizing/weighing process and the mold clamping process are completed and the injection filling (injection process) is started, the screw during injection filling 22, the mold clamping force increasing process for increasing the mold clamping force P0 is started. This mold clamping force increasing step will be described with reference to FIGS. 3 and 4. FIG.

図3は、第1実施形態に係る射出発泡成形方法の、型締力増加工程における、射出充填開始から射出充填完了までのスクリュ位置と樹脂流動投影面積と型締力の関係を示すグラフである。横軸はスクリュ位置Tを示し、左側縦軸は可動金型37及び固定金型36の両型に作用させる型締力Pを示す。右側縦軸は金型キャビティ38内の発泡性溶融樹脂の樹脂流動投影面積Sを示す。また、実線Aは第1実施形態に係る射出発泡成形方法の型締力増加工程における樹脂流動投影面積を示し、実線Bは型締力を示す。なお、比較のために従来技術における型締力を破線Cに示す。 FIG. 3 is a graph showing the relationship between the screw position, resin flow projected area, and mold clamping force from the start of injection filling to the completion of injection filling in the mold clamping force increasing step of the injection foam molding method according to the first embodiment. . The horizontal axis indicates the screw position T, and the left vertical axis indicates the mold clamping force P acting on both the movable mold 37 and the fixed mold 36 . The right vertical axis indicates the resin flow projected area S of the foamable molten resin in the mold cavity 38 . Further, the solid line A indicates the resin flow projection area in the mold clamping force increasing step of the injection foam molding method according to the first embodiment, and the solid line B indicates the mold clamping force. For comparison, the dashed line C indicates the mold clamping force in the prior art.

図3に示すように、従来技術の型締工程(破線C)においては、型締装置により、両型に最大型締力Pmaxを作用させて型締工程が完了する。その後、射出充填工程が開始される。そして、射出工程が完了するまで、両型に最大型締力Pmaxの作用が継続される。ここで、最大型締力Pmaxとは、金型キャビティ38内に発泡性溶融樹脂がフルパック充填された射出充填完了の状態の発泡成形品を完成品とする、製品投影面積に射出充填中の樹脂圧(型内樹脂圧)の積により設定される最大の型締力を示す。従って、両金型の金型PL面は強固に押し付けられた状態であるため、金型キャビティ38内の残存ガスの排出はほぼ困難である。 As shown in FIG. 3, in the conventional mold clamping process (broken line C), the mold clamping device applies the maximum mold clamping force Pmax to both molds to complete the mold clamping process. After that, the injection filling process is started. The maximum mold clamping force Pmax continues to act on both molds until the injection process is completed. Here, the maximum mold clamping force Pmax is defined as a finished foam molded product in which the mold cavity 38 is fully filled with foamable molten resin and injection filling is completed. Indicates the maximum mold clamping force set by the product of resin pressure (in-mold resin pressure). Therefore, since the mold PL surfaces of both molds are firmly pressed against each other, it is almost difficult to discharge residual gas in the mold cavity 38 .

これに対して、第1実施形態に係る射出発泡成形方法の型締工程においては、型締装置30により、両型に最大型締力Pmaxよりも小さい型締力P0を作用させて、型締工程が完了する。 On the other hand, in the mold clamping step of the injection foam molding method according to the first embodiment, the mold clamping device 30 applies a mold clamping force P0 smaller than the maximum mold clamping force Pmax to both molds to clamp the molds. The process is completed.

そして、射出充填工程を開始させ、スクリュ22は射出充填の開始位置TSから射出充填の完了位置TEに向かって前進し、金型キャビティ38内に発泡性溶融樹脂が射出充填される。なお、開始位置TSとは、可塑化・計量工程で貯留部21aに所定量の発泡性溶融樹脂を貯留した計量完了位置である。 Then, the injection filling process is started, the screw 22 advances from the injection filling start position TS toward the injection filling completion position TE, and the mold cavity 38 is injected and filled with foamable molten resin. Note that the start position TS is a metering completion position at which a predetermined amount of foamable molten resin is stored in the reservoir 21a in the plasticizing and metering process.

この射出充填中のスクリュ22の前進により、図3の実線Aに示すように、金型キャビティ38に射出充填される発泡性溶融樹脂の量が増加し、型開閉方向に直交する樹脂流動投影面積も対応して増加する。射出充填開始(スクリュ位置TS)の樹脂流動投影面積S0が最小で、射出充填完了(スクリュ位置TE)の樹脂流動投影面積Smaxが最大となる。従って、この樹脂流動投影面積と射出充填中のスクリュ22の位置情報とを対応させることができ、型締力増圧工程における制御プロファイルとして制御装置40に記憶させることが好ましい。例えば、予め樹脂流動解析ソフト等を使用して、スクリュ22の位置と樹脂流動投影面積の相関を算出させて、算出結果を制御装置40に記憶させてもよい。また、試運転により段階的に成形した実際の発泡成形品から、スクリュ22の位置と樹脂流動投影面積の相関を計測し、計測結果を制御装置40に記憶させてもよい。また、制御装置40でスクリュ位置に基づく樹脂流動投影面積をリアルタイムに算出させてもよい。 Due to the advance of the screw 22 during this injection filling, as shown by the solid line A in FIG. also increases correspondingly. The projected resin flow area S0 at the start of injection filling (screw position TS) is the smallest, and the projected resin flow area Smax at the completion of injection filling (screw position TE) is the largest. Therefore, it is preferable that this resin flow projection area can be associated with the position information of the screw 22 during injection filling, and stored in the control device 40 as a control profile in the mold clamping force increasing process. For example, resin flow analysis software or the like may be used in advance to calculate the correlation between the position of the screw 22 and the resin flow projected area, and the calculation result may be stored in the control device 40 . Further, the correlation between the position of the screw 22 and the projected area of the resin flow may be measured from an actual foam-molded product molded step by step by trial operation, and the measurement result may be stored in the control device 40 . Further, the controller 40 may calculate the resin flow projection area based on the screw position in real time.

そして、スクリュ22の前進に伴い樹脂流動投影面積が増加し、固定金型36及び可動金型37の両型に作用する型開き力も増加する。この型開き力は、樹脂流動投影面積と射出充填中の樹脂圧力(型内樹脂圧という)の積により算出することができる。射出充填中の樹脂圧力は、固定金型36や可動金型37の金型キャビティ面(非意匠面が好ましい)に配置させた、金型キャビティ38内の樹脂圧力を計測可能な圧力検出手段で計測させてもよいし、スクリュ22を前進させる駆動手段の前進抵抗力を樹脂圧力の代用としてもよい。さらに、この型開き力により伸長されるタイバー39の伸長量を計測させて、この型開き力を直接算出させてもよい。あるいは、樹脂流動解析ソフト等で用いる解析用型内樹脂圧の数値を代用させてもよい。 As the screw 22 advances, the resin flow projection area increases, and the mold opening force acting on both the fixed mold 36 and the movable mold 37 also increases. This mold opening force can be calculated from the product of the resin flow projection area and the resin pressure during injection filling (referred to as in-mold resin pressure). The resin pressure during injection filling is measured by pressure detection means that can measure the resin pressure in the mold cavity 38, which is arranged on the mold cavity surface (preferably the non-design surface) of the fixed mold 36 or the movable mold 37. Alternatively, the forward resistance force of the driving means for advancing the screw 22 may be used as a substitute for the resin pressure. Further, the extension amount of the tie bar 39 extended by this mold opening force may be measured to directly calculate this mold opening force. Alternatively, numerical values of the analysis-use in-mold resin pressure used in resin flow analysis software or the like may be substituted.

第1実施形態に係る射出発泡成形方法の型締力増加工程においては、射出充填中のスクリュ22の前進に伴い増加する上記のような型開き力に基づいて、この型開き力に抗して、固定金型36及び可動金型37の接触状態を維持することができるように型締力を増加させる(図3の実線B)。なお、先に説明したように、射出充填開始(スクリュ位置TS)は、型締力P0と定義したので、型締力増圧工程においては、型締力P0から射出充填完了(スクリュ位置TE)の最大型締力Pmaxの範囲とする。また、金型PL面からの発泡性溶融樹脂の漏れ出る樹脂バリ不良を確実に抑制する狙いで、算出される型開き力に、安全のための余裕を加えた型締力とすることが好ましい。 In the mold clamping force increasing step of the injection foam molding method according to the first embodiment, based on the above mold opening force that increases as the screw 22 advances during injection filling, the mold opening force is resisted. , the mold clamping force is increased so that the contact state between the fixed mold 36 and the movable mold 37 can be maintained (solid line B in FIG. 3). As described above, the start of injection filling (screw position TS) is defined as the mold clamping force P0. is the range of the maximum mold clamping force Pmax. In addition, in order to reliably suppress resin burrs caused by leakage of foamable molten resin from the PL surface of the mold, it is preferable to set the mold clamping force by adding a margin for safety to the calculated mold opening force. .

また、上記のような、増加する型開き力や、同型開き力に基づく型締力は、先に説明した樹脂流動投影面積と同様に、制御装置40内で、リアルタイムで算出させてもよいし、予め、樹脂流動解析ソフト等を使用して算出させてもよい。また、型締力増圧工程の制御プロファイルとして制御装置40に記憶させておいてもよい。なお、型締力の算出において、型開き力加える安全のための余裕は、制御装置40や図示しない操作手段から任意に設定や設定変更ができるように構成されてもよい。また、図3に示す樹脂流動投影面積(実線A)と型締力(実線B)は、スクリュ位置Tに対して直線的に変化すると表現したが、これに限定されるものではなく、金型キャビティ形状等により直線以外の変化となることも、第1実施形態に係る型締力増加工程に含まれるものである。 Further, the increasing mold opening force and the mold clamping force based on the same mold opening force as described above may be calculated in real time in the control device 40 in the same manner as the resin flow projection area described above. , may be calculated in advance using resin flow analysis software or the like. Further, it may be stored in the control device 40 as a control profile for the mold clamping force increasing process. In the calculation of the mold clamping force, the safety margin for applying the mold opening force may be configured to be arbitrarily set or changed from the control device 40 or operation means (not shown). Also, although the resin flow projection area (solid line A) and the mold clamping force (solid line B) shown in FIG. The mold clamping force increasing process according to the first embodiment also includes a change other than a straight line due to the shape of the cavity or the like.

上記の一例を具体的に説明する。例えば、図3に示すように、型締力P0で射出充填を開始させ、射出充填中のスクリュ位置TX1の時点で、樹脂流動投影面積SX1となり、樹脂流動投影面積SX1に相当する型開き力が発生する。制御装置40は、この型開き力に適合する型締力PX1を算出し、型締装置30により型締力PX1に増加させる。次に、射出充填中のスクリュ位置TX2に進むと、樹脂流動投影面積SX2に増加し型開き力も増加し、型締力PX2に増加する。このように、射出充填中のスクリュの位置情報に基づいて、型締力を暫時増加させる制御を、射出充填の開始から完了の範囲においてリアルタイムに行われ、最終的には、射出充填完了(スクリュ位置TE)で最大型締力Pmaxとなる。 The above example will be specifically described. For example, as shown in FIG. 3, injection filling is started with a mold clamping force P0, and at the time of the screw position TX1 during injection filling, the resin flow projected area becomes SX1, and the mold opening force corresponding to the resin flow projected area SX1 is Occur. The control device 40 calculates a mold clamping force PX1 suitable for this mold opening force, and causes the mold clamping device 30 to increase the mold clamping force PX1. Next, when the screw position TX2 during injection filling is reached, the resin flow projection area increases to SX2, the mold opening force also increases, and the mold clamping force increases to PX2. In this way, based on the positional information of the screw during injection filling, the control to gradually increase the mold clamping force is performed in real time from the start to the completion of injection filling, and finally the injection filling is completed (screw At the position TE), the maximum mold clamping force Pmax is reached.

例えば、図4の実線Dに示すように、型締力をステップ状に増加させる型締力増加工程であってもよい。型締力P0で射出充填を開始させ、射出充填中のスクリュ位置TX3(樹脂流動投影面積SX3)までは型締力P0とする。スクリュ位置TX3を検知すると、型締力PX4に増加させ、スクリュ位置TX4(樹脂流動投影面積SX4)までは型締力PX4とする。このように、射出充填中のスクリュ位置情報に基づいて、型締力をステップ状に増加させる制御を、射出充填の開始から完了の範囲において行われ、最終的には、射出充填完了(スクリュ位置TE)で最大型締力Pmaxとなる。 For example, as shown by the solid line D in FIG. 4, it may be a mold clamping force increasing process in which the mold clamping force is increased stepwise. Injection filling is started with a mold clamping force P0, and the mold clamping force P0 is maintained up to the screw position TX3 (resin flow projection area SX3) during injection filling. When the screw position TX3 is detected, the mold clamping force is increased to PX4, and the mold clamping force is kept at PX4 up to the screw position TX4 (resin flow projected area SX4). In this way, based on the screw position information during injection filling, the control to increase the mold clamping force stepwise is performed in the range from the start to the completion of injection filling, and finally the injection filling is completed (screw position TE) reaches the maximum mold clamping force Pmax.

上記のように、第1実施形態に係る射出発泡成形方法の型締力増加工程においては、射出充填中のスクリュ22の位置情報(位置信号TS~TE)に基づき、固定金型36及び可動金型37の両型に作用させる型締力を、型締力P0から最大型締力Pmaxまで増加させる。スクリュ22の位置情報(位置信号TE)の検知により、スクリュ22の前進動作を停止させて射出工程が完了となる。 As described above, in the mold clamping force increasing step of the injection foam molding method according to the first embodiment, the fixed mold 36 and the movable mold The clamping force acting on both dies of the mold 37 is increased from the clamping force P0 to the maximum clamping force Pmax. By detecting the position information (position signal TE) of the screw 22, the forward movement of the screw 22 is stopped and the injection process is completed.

これまで説明したように、第1実施形態の射出発泡成形方法の型締力増加工程においては、射出工程の開始後、射出充填中のスクリュ22の位置情報に基づいて、樹脂流動投影面積に増加による型開き力に対する型締力を型締力P0から最大型締力Pmaxまで増加させる。これにより、金型PL面の強固な押し付け状態が回避され、発泡性溶融樹脂は漏れ出ることがないが、金型キャビティ38内の残存ガスのみを効率よく排出できる好適な隙間を有する金型PL面の適度な押し付け状態が、射出充填の開始から完了の全ての範囲において確保できる。その結果、金型PL面から、図3に示す、実線Bと破線Cとで囲まれた範囲(GF/図4においては、実線Dと破線Cとで囲まれた範囲)の金型キャビティ38内の残存ガスの排出を促進することができる。従来技術の型締工程(図3の破線C)では、金型キャビティ38内の残存ガスを、射出充填中に金型PL面から型外へ排出させることがほぼ困難であることは、先に説明したとおりである。 As described above, in the mold clamping force increasing step of the injection foam molding method of the first embodiment, after the injection step is started, the resin flow projected area is increased based on the position information of the screw 22 during injection filling. increases the mold clamping force against the mold opening force from the mold clamping force P0 to the maximum mold clamping force Pmax. As a result, the surface of the mold PL is prevented from being firmly pressed, and the foamable molten resin does not leak out. Appropriate pressing of the surface can be ensured over the entire range from the start to the completion of injection filling. As a result, the mold cavity 38 in the range surrounded by the solid line B and the broken line C shown in FIG. 3 (the range surrounded by the solid line D and the broken line C in GF/FIG. 4) from the mold PL surface It is possible to promote the discharge of residual gas inside. In the mold clamping process of the prior art (dashed line C in FIG. 3), it is almost difficult to discharge the residual gas in the mold cavity 38 from the mold PL surface to the outside of the mold during injection filling. As explained.

また、第1実施形態の射出発泡成形方法の型締力増加工程においては、スクリュ22の前進に伴い増加する、先に説明した型開き力に基づいて、この型開き力に抗して、固定金型36及び可動金型37の接触状態を維持することができるように型締力を増加させる。これにより、金型PL面からの溶融樹脂の漏れ出し(樹脂バリ不良という)を抑制するために必要な型締力を、射出充填中のスクリュ22の位置情報に基づいて、固定金型36及び可動金型37の両型に作用させるため、樹脂バリ不良を抑制することができる。 Further, in the mold clamping force increasing step of the injection foam molding method of the first embodiment, based on the above-described mold opening force that increases as the screw 22 advances, the screw 22 is fixed against this mold opening force. The mold clamping force is increased so that the contact state between the mold 36 and the movable mold 37 can be maintained. As a result, based on the positional information of the screw 22 during injection filling, the mold clamping force necessary to suppress leakage of the molten resin from the mold PL surface (called resin burr defect) Since it acts on both molds of the movable mold 37, resin burr defects can be suppressed.

このように、第1実施形態に係る射出成形機を使用する、第1実施形態に係る射出発泡成形方法によって、発泡材料を含む溶融樹脂の射出充填時に、金型PL面からの、金型キャビティ内の残存ガスの排出の促進と、金型PL面からの樹脂バリ不良の抑制と、を両立させることができ、射出充填時に金型キャビティ内の残存ガスが金型外へ十分に排出されないことに起因する、発泡成形品の各種成形不良が抑制されるため、高品質の発泡成形品を成形することができる。 In this way, according to the injection foam molding method according to the first embodiment using the injection molding machine according to the first embodiment, when the molten resin containing the foam material is injected and filled, the mold cavity from the mold PL surface It is possible to both promote the discharge of residual gas inside the mold and suppress resin burrs from the mold PL surface, and the residual gas in the mold cavity is not sufficiently discharged outside the mold during injection filling. Since various molding defects of the foam-molded product caused by the above are suppressed, it is possible to mold a high-quality foam-molded product.

本発明は、上記の実施の形態に限定されることなく色々な形で実施できる。例えば、第1実施形態に係る射出成形方法の型締力増加工程の説明において、一例として、スクリュ22のスクリュ位置が、スクリュ位置TX1及びTX2に到達した際の型締力を増加させる制御について説明した。これは、型締力を増加させるスクリュ22のスクリュ位置について、任意のスクリュ位置を選択して、型締力を増加させる形態に限定するものではない。 The present invention can be implemented in various forms without being limited to the above embodiments. For example, in the description of the mold clamping force increasing process of the injection molding method according to the first embodiment, as an example, control for increasing the mold clamping force when the screw positions of the screws 22 reach the screw positions TX1 and TX2 is described. did. This is not limited to selecting an arbitrary screw position to increase the mold clamping force with respect to the screw position of the screw 22 that increases the mold clamping force.

図3の実線Bに示すように、射出充填中のスクリュ22のスクリュの位置情報に基づき、連続して型締力Pを増加させてもよいし、予め、スクリュ22の射出充填ストローク中に、複数の型締力増加位置を設定し、スクリュ22が、設定した各型締力増加位置に到達するタイミングで、型締力を増加させてもよい。一方、発泡成形品の形状が複雑な場合等で、射出充填された溶融樹脂の量に起因する型開き力が、発泡成形品の特徴的な形状部分で大きく増加する場合等は、樹脂流動解析ソフト等を使用して、該当する型開き力の増加ポイントと、想定される型開き力を予め算出して、同ポイントに対応するスクリュ22の位置情報や、想定される型開き力に対する適切な型締力も予め算出して、型締力増加工程に採用してもよい。 As shown by the solid line B in FIG. 3, based on the screw position information of the screw 22 during injection filling, the mold clamping force P may be continuously increased, or in advance, during the injection filling stroke of the screw 22, A plurality of mold clamping force increasing positions may be set, and the mold clamping force may be increased at the timing when the screw 22 reaches each set mold clamping force increasing position. On the other hand, when the shape of the foam-molded product is complicated, and the mold opening force caused by the amount of injected molten resin increases greatly in the characteristic shape of the foam-molded product, resin flow analysis Using software, etc., the corresponding mold opening force increase point and the assumed mold opening force are calculated in advance, and the position information of the screw 22 corresponding to the point and the appropriate mold opening force for the assumed mold opening force are calculated. The mold clamping force may also be calculated in advance and employed in the mold clamping force increasing step.

また、第1実施形態に係る射出成形機を使用する、第1実施形態に係る射出成形方法は、射出工程が、先に説明したSS発泡成形方法におけるショートショット充填であっても、CB発砲成形方法におけるフルパック充填であっても採用することができる。すなわち、第1実施形態に係る射出成形機及び射出成形方法は、発泡性溶融樹脂の射出充填時において、発泡性溶融樹脂の流動先端部からの発泡性ガスの漏れ量を抑制するために行われる、通常の樹脂材料を使用する射出充填時よりも高速の充填速度(スクリュの前進速度)に起因する、発泡成形品の各種成形不良の抑制を目的としているからである。 In addition, the injection molding method according to the first embodiment, which uses the injection molding machine according to the first embodiment, has a CB foam molding even if the injection step is short shot filling in the SS foam molding method described above. Even full pack filling in the process can be employed. That is, the injection molding machine and the injection molding method according to the first embodiment are performed to suppress the amount of foaming gas leaking from the flow tip of the foamable molten resin during injection filling of the foamable molten resin. This is because the purpose is to suppress various molding defects in foam-molded products caused by a higher filling speed (advancing speed of the screw) than in injection filling using a normal resin material.

そして、射出充填(射出工程)完了後は、固定金型36及び可動金型37の両型に、最大型締力Pmaxを作用させているため、射出工程完了後に、ショートショット充填させた発泡性溶融樹脂の発泡膨張による溶融樹脂の容積増加分で、最初の射出充填での未充填部を含み、金型キャビティを満たしてもよい。また、金型キャビティの容積を拡張可能な金型、例えば、シェアエッジ構造の金型や、可動中子を有する金型を使用して、発泡成形品よりも容積が小さい金型キャビティを形成させて、フルパック充填させた後、型締力を低下させて、金型キャビティの容積を拡張させる、あるいは、同容積拡張によって、発泡性溶融樹脂の発泡状態が制御されてもよい。 After the injection filling (injection process) is completed, the maximum mold clamping force Pmax is applied to both the fixed mold 36 and the movable mold 37. Therefore, after the completion of the injection process, the short shot filling foaming property The increased volume of the molten resin due to foaming and expansion of the molten resin may fill the mold cavity, including the unfilled portion in the initial injection filling. In addition, a mold that can expand the mold cavity volume, such as a mold with a shear edge structure or a mold with a movable core, is used to form a mold cavity with a smaller volume than the foam molded product. After full pack filling, the mold clamping force is reduced to expand the volume of the mold cavity, or by expanding the same volume, the foaming state of the foamable molten resin may be controlled.

なお、第1実施形態に係る射出成形機10の説明では、金型内樹脂流路36aにゲートバルブ36bが配置される形態を説明したが、射出シリンダ21の射出ノズル(詳細は図示せず)等に、貯留部21aの溶融樹脂の射出ノズルからの射出・閉止を任意で選択できる開閉弁(所謂、シャットオフバルブ)が装備されている形態であってもよいし、金型側のゲートバルブ、射出装置側のシャットオフバルブの双方が装備されている形態であっても、これらの開放・閉塞を選択的に行わせることによって、本発明は実施に支障はない。 In the description of the injection molding machine 10 according to the first embodiment, the gate valve 36b is arranged in the in-mold resin flow path 36a. For example, an on-off valve (so-called shut-off valve) that can arbitrarily select injection and closing from the injection nozzle of the molten resin of the reservoir 21a may be provided, or a gate valve on the mold side. Even if both of the shut-off valves on the side of the injection device are provided, the present invention can be put into practice by selectively opening and closing these valves.

また、第1実施形態に係る射出成形機10の説明では、射出装置20がインラインスクリュ式射出装置であることを前提に説明した。しかしながら、射出装置20はこれに限定されず、可塑化スクリュを内挿する可塑化ユニットと、射出プランジャを内挿する射出ユニットとから構成されるプリプラ式射出装置であっても、スクリュの位置情報を射出プランジャの位置情報と読み替えれば、本発明の実施に支障はない。 Further, in the description of the injection molding machine 10 according to the first embodiment, the description has been made on the premise that the injection device 20 is an in-line screw type injection device. However, the injection device 20 is not limited to this. can be read as positional information of the injection plunger, there is no problem in carrying out the present invention.

さらに、本発明の実施において、型締装置は、固定金型及び可動金型に作用させる型締力を増加させる型締力増加工程が実施できるのであれば、その形態は問わない。具体的には、トグルリンク機構を備えるトグル式型締装置であっても、タイバーの固定盤あるいは可動盤の貫通部に油圧シリンダを構成させた型締機構と、これとは別の型開閉機構とを備える直圧式型締装置であっても、トグル式型締機構と直圧式型締機構とを組み合わせた複合型型締装置であってもよい。 Furthermore, in carrying out the present invention, the form of the mold clamping device does not matter as long as it can perform a mold clamping force increasing process for increasing the mold clamping force acting on the fixed mold and the movable mold. Specifically, even in a toggle type mold clamping device equipped with a toggle link mechanism, there is a mold clamping mechanism in which a hydraulic cylinder is configured in the penetrating part of the fixed plate or movable plate of the tie bar, and a separate mold opening and closing mechanism. It may be a direct pressure mold clamping device provided with and a composite mold clamping device combining a toggle type mold clamping mechanism and a direct pressure mold clamping mechanism.

10 射出成形機、20 射出装置、21 射出シリンダ、21a 貯留部、22 スクリュ、22a チェックリング(逆止弁)、22b フライト、30 型締装置、32 基台、33 固定盤、34 可動盤、36 固定金型、36a 金型内樹脂流路、36b ゲートバルブ、37 可動金型、38 金型キャビティ、39 タイバー、40 制御装置、
A/B/D 実線、C 破線、
P/P0/PX1/PX2/PX4/Pmax 型締力、
S/S0/SX1/SX2/SX3/SX4/Smax 樹脂流動投影面積、
T/TX1/TX2/TX3/TX4/TE スクリュ位置(位置信号)
10 injection molding machine, 20 injection device, 21 injection cylinder, 21a reservoir, 22 screw, 22a check ring (check valve), 22b flight, 30 mold clamping device, 32 base, 33 stationary platen, 34 movable platen, 36 Fixed mold 36a In-mold resin channel 36b Gate valve 37 Movable mold 38 Mold cavity 39 Tie bar 40 Control device
A/B/D solid line, C dashed line,
P/P0/PX1/PX2/PX4/Pmax mold clamping force,
S/S0/SX1/SX2/SX3/SX4/Smax resin flow projected area,
T/TX1/TX2/TX3/TX4/TE Screw position (position signal)

Claims (3)

固定金型を支持する固定盤と、可動金型を支持する可動盤と、
前記可動盤を、前記固定盤に対して接近・離間させる型開閉動作と、接触させた前記固定金型及び前記可動金型に型締力を作用させて、金型キャビティを形成させる型締動作と、を行わせる型締装置と、
射出シリンダ内のスクリュを回転させて、発泡材料を含む樹脂材料を可塑化させて、前記スクリュの前方の貯留部に発泡性溶融樹脂を貯留させると共に、前記貯留部の前記発泡性溶融樹脂を前記金型キャビティに射出充填する射出装置と、
前記型締装置と前記射出装置とを制御する制御装置と、備え、
前記制御装置は、射出充填中の前記スクリュの位置情報に基づき、前記型締力を増加させる制御を行う
ことを特徴とする射出成形機。
a fixed platen for supporting the fixed mold; a movable platen for supporting the movable mold;
A mold opening/closing operation for moving the movable platen toward or away from the fixed platen, and a mold clamping operation for forming a mold cavity by applying a mold clamping force to the fixed mold and the movable mold that are brought into contact with each other. and a mold clamping device that performs
The screw in the injection cylinder is rotated to plasticize the resin material including the foaming material, and the foamable molten resin is stored in the storage portion in front of the screw, and the foamable molten resin in the storage portion is an injection device that injects and fills the mold cavity;
a control device that controls the mold clamping device and the injection device;
The injection molding machine, wherein the control device performs control to increase the mold clamping force based on positional information of the screw during injection filling.
前記金型キャビティに射出充填される前記発泡性溶融樹脂の、型開閉方向に直交する樹脂流動投影面積を、前記スクリュの前記位置情報に対応させて、前記制御装置に記憶させて、
前記制御装置は、射出充填中の前記スクリュの前記位置情報に対応させた前記樹脂流動投影面積と射出充填中の樹脂圧力の積に基づいて前記型締力を増加させる
ことを特徴とする、請求項1に記載の射出成形機。
causing the control device to store the resin flow projected area orthogonal to the mold opening/closing direction of the foamable molten resin injected and filled into the mold cavity in association with the position information of the screw,
The control device increases the mold clamping force based on the product of the projected resin flow area corresponding to the position information of the screw during injection filling and the resin pressure during injection filling. Item 1. The injection molding machine according to item 1.
請求項1又は請求項2に記載の射出成形機を使用する射出発泡成形方法であって、
所望する射出充填量の前記発泡性溶融樹脂を得る可塑化・計量工程と、
接触させた前記固定金型及び前記可動金型に型締力を作用させて、前記固定金型及び前記可動金型内に前記金型キャビティを形成させる型締工程と、
前記発泡性溶融樹脂を前記金型キャビティに射出充填させる射出工程と、
射出充填中の前記スクリュの前記位置情報に基づき、前記型締力を増加させる型締力増加工程と、
を備えることを特徴とする射出発泡成形方法。
An injection foam molding method using the injection molding machine according to claim 1 or claim 2,
a plasticizing and weighing step of obtaining a desired injection filling amount of the foamable molten resin;
a mold clamping step of forming the mold cavity in the fixed mold and the movable mold by applying a mold clamping force to the fixed mold and the movable mold that are in contact with each other;
an injection step of injecting and filling the foamable molten resin into the mold cavity;
a mold clamping force increasing step of increasing the mold clamping force based on the position information of the screw during injection filling;
An injection foam molding method comprising:
JP2021039156A 2021-03-11 2021-03-11 Injection molding machine and injection foam molding method Pending JP2022138971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021039156A JP2022138971A (en) 2021-03-11 2021-03-11 Injection molding machine and injection foam molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021039156A JP2022138971A (en) 2021-03-11 2021-03-11 Injection molding machine and injection foam molding method

Publications (1)

Publication Number Publication Date
JP2022138971A true JP2022138971A (en) 2022-09-26

Family

ID=83399454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021039156A Pending JP2022138971A (en) 2021-03-11 2021-03-11 Injection molding machine and injection foam molding method

Country Status (1)

Country Link
JP (1) JP2022138971A (en)

Similar Documents

Publication Publication Date Title
KR100919690B1 (en) Method for expansion injection molding
JP5152430B2 (en) Injection molding method
JP2006159898A (en) Injection foam molding method and mold for injection foam molding
JP4743595B2 (en) Injection molding equipment for foam molded products
JP5532840B2 (en) Injection foam molding apparatus and injection foam molding method
JP4893220B2 (en) Resin multilayer injection molding method and resin multilayer injection molding apparatus
KR20090082224A (en) Resin multilayer injecting-molding method
JP3609038B2 (en) Three-layer laminate molding method and molding die
JP4515694B2 (en) Foam injection molding method
JP2022138971A (en) Injection molding machine and injection foam molding method
JP2004167777A (en) Thermoplastic resin foam and method/device for manufacturing the foam
JP2022131087A (en) Injection molding machine and injection foam molding method
JP3237528B2 (en) Skin integral molding method
JP2001162649A (en) Method and apparatus for manufacturing sandwich foam
JP7102298B2 (en) Injection device and injection molding machine
JP2007054995A (en) Injection divice
WO2023089940A1 (en) Injection device for foam molding, injection molding machine, and foam molding method
JP2010241085A (en) Injection foaming molding method
US20230278270A1 (en) Injection molding machine for foam molding and method for molding foam molded product
US11400625B2 (en) Injection foam molding method
JP2001113561A (en) Method for molding laminated molding
JPH06262645A (en) Injection molder and injection molding method
JPH06320591A (en) Foam injection molding method of thick-walled molded product
JP2005254532A (en) Pressure control method of injection molding machine
JPH08318553A (en) Injection compression molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240617