JP2022126217A - Recycling method of food waste - Google Patents

Recycling method of food waste Download PDF

Info

Publication number
JP2022126217A
JP2022126217A JP2021024152A JP2021024152A JP2022126217A JP 2022126217 A JP2022126217 A JP 2022126217A JP 2021024152 A JP2021024152 A JP 2021024152A JP 2021024152 A JP2021024152 A JP 2021024152A JP 2022126217 A JP2022126217 A JP 2022126217A
Authority
JP
Japan
Prior art keywords
iodine
food waste
carbon
coffee
carbonization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021024152A
Other languages
Japanese (ja)
Inventor
尚哉 宮嶋
Naoya Miyajima
英人 阪根
Hideto Sakane
優 築地
Masaru Tsukiji
一定 須崎
Kazusada Suzaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DC Co Ltd
University of Yamanashi NUC
Original Assignee
DC Co Ltd
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DC Co Ltd, University of Yamanashi NUC filed Critical DC Co Ltd
Priority to JP2021024152A priority Critical patent/JP2022126217A/en
Publication of JP2022126217A publication Critical patent/JP2022126217A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Abstract

To provide a recycling method of food waste capable of greatly increasing a micro hole for enhancing a carbonization yield and an adsorption effect in treatment and effective use of the food waste.SOLUTION: A recycling method of food waste is for modifying the food waste by iodine before carbonization-treatment by burning the food waste. Modification by iodine is performed, for example, by operating iodine steam generation by heating the iodine to the food waste becoming an object. Carbonization ratio can be increased by pretreatment by the iodine before carbonization-treating the food waste, and a micro hole can be developed. As the food waste, a drink waste such as coffee, barley tea, green tea, and black tea can be used.SELECTED DRAWING: None

Description

特許法第30条第2項適用申請有り (1)開催日:令和 2年 2月27日 (2)集会名、開催場所:令和元年度 国立大学法人山梨大学 工学部 応用化学科卒業論文発表会、国立大学法人山梨大学 工学部A2-21教室(山梨県甲府市武田四丁目4番37号)(1) Date: February 27, 2020 (2) Meeting name and venue: 2019 Graduation thesis presentation, Department of Applied Chemistry, Faculty of Engineering, University of Yamanashi Meeting, National University Corporation Yamanashi University Faculty of Engineering A2-21 Room (4-4-37 Takeda, Kofu City, Yamanashi Prefecture)

本発明は食品廃棄物、例えばコーヒー、麦茶、緑茶、紅茶などの飲料廃棄物の処理及び有効利用にあたって、炭素化収率を大幅に増加させることができる食品廃棄物のリサイクル方法に関するものである。 The present invention relates to a food waste recycling method that can significantly increase the carbonization yield in the treatment and effective utilization of food waste such as coffee, barley tea, green tea, and black tea.

活性炭は90%以上を炭素分が占め、残りを酸素や水素などの化合物や灰分と呼ばれるカルシウム、カリウム、ナトリウムといった原料固有の成分で構成している多孔質な材料である。その出発原料には、木材や果実などの植物、石炭や石油といった鉱物が一般的であるが、資源の再利用という観点では、炭素分を多く含む建設用廃木材、古紙、繊維廃棄物などの有機系廃棄物も有望な炭素前駆体源となり、活性炭等への改質・利用用途が図られ得る。 Activated carbon is a porous material in which 90% or more is carbon, and the remainder is composed of compounds such as oxygen and hydrogen, and constituents unique to raw materials such as calcium, potassium, and sodium called ash. The starting materials are generally plants such as wood and fruits, and minerals such as coal and petroleum. Organic waste is also a promising source of carbon precursors, and can be reformed and used for activated carbon and the like.

工業的な活性炭製造では、賦活処理という工程を経て、高比表面積への改質を図っている。賦活処理は、大別するとガス賦活と薬品賦活の2種類がある。ガス賦活は、原料を不活性ガス下で炭素化した後に、酸素や二酸化炭素といった酸化性ガスにさらすことで炭化物の表面を酸化浸食させ、大きな比表面積やミクロ孔容積を得ている。 In the industrial production of activated carbon, modification to a high specific surface area is attempted through a process called activation treatment. Activation treatments are roughly divided into two types: gas activation and chemical activation. In gas activation, the raw material is carbonized under an inert gas and then exposed to an oxidizing gas such as oxygen or carbon dioxide to oxidize and corrode the surface of the carbide to obtain a large specific surface area and micropore volume.

薬品賦活では、原料に塩化亜鉛やリン酸水溶液などの薬品を含侵させ、炭素化を行う。炭素化過程中に、含侵させた薬品の酸化反応や脱水反応によって細孔が形成されることで、多孔質な炭素体が製造される。活性炭は脱臭剤、浄水処理、空気浄化、ガス分離など、その用途は多岐にわたり、今日では、さらなるニーズの多様化によって高機能・高性能化の要求は年々高まっており、目的に合わせた細孔構造の設計・制御が求められている。 In chemical activation, raw materials are impregnated with chemicals such as zinc chloride and phosphoric acid solution to carbonize them. During the carbonization process, pores are formed by the oxidation reaction and dehydration reaction of the impregnated chemicals to produce a porous carbon body. Activated carbon has a wide variety of uses, including deodorant, water purification, air purification, and gas separation. Structural design and control are required.

また、高炭素化収率が期待される有機物を出発原料として選択することは、生産コストの観点から重要である。有機物の炭素化過程では、その熱分解、ガス化による低分子成分の蒸発・揮発及び水素・酸素を含む軽ガス成分の消失によって質量損失が生じ、ある平均分子量以上の炭素質(残存分)が炭素化収率に預かる。つまり、原料有機物の高分子化を促し、炭素化過程で生じる炭素消失を抑制するような改質が図られれば、炭素化収率の大幅な増加が期待できる。 In addition, it is important from the viewpoint of production cost to select an organic material expected to have a high carbonization yield as a starting material. In the carbonization process of organic matter, mass loss occurs due to the evaporation and volatilization of low-molecular-weight components due to thermal decomposition and gasification, and the disappearance of light gas components including hydrogen and oxygen. It depends on the carbonization yield. In other words, if a modification that promotes polymerization of raw material organic matter and suppresses carbon loss that occurs in the carbonization process is achieved, a significant increase in the carbonization yield can be expected.

また、不融化は、炭素繊維の製造で最も重要な原料の改質工程である。この工程で、原料の高分子化が図られ、その熱的安定性が増すことにより、炭素前駆体の賦形が達成されるとともに炭素化収率が増加する。特に、ピッチやPAN(ポリアクリロニトリル繊維)といった熱可塑性(液相炭素化)原料の場合は、熱硬化性(固相炭素化)への改質が促され、その改質の程度に依存して種々の物性の炭素繊維が製造される。 Infusibilization is the most important raw material modification step in the production of carbon fibers. In this step, the raw material is polymerized and its thermal stability is increased, thereby achieving shaping of the carbon precursor and increasing the carbonization yield. In particular, in the case of thermoplastic (liquid phase carbonization) raw materials such as pitch and PAN (polyacrylonitrile fiber), modification to thermosetting (solid phase carbonization) is promoted, and depending on the degree of modification, Carbon fibers with various physical properties are produced.

不融化処理は、一般的に空気(酸素)雰囲気下で行われ、300℃前後に加熱処理することによって原料成分中に酸素ラジカルが導入される。そのラジカル重合反応により高分子化が促されることで、原料中の低分子比率が少なくなり、炭素化過程での熱分解が抑えられることで高炭素化収率へとつながる。 The infusibilization treatment is generally performed in an air (oxygen) atmosphere, and heat treatment at around 300° C. introduces oxygen radicals into the raw material components. The radical polymerization reaction promotes polymerization, which reduces the ratio of low-molecular-weight materials in the raw material and suppresses thermal decomposition during the carbonization process, leading to a high carbonization yield.

また、酸素よりも原料有機物内への拡散速度の高いハロゲンを用いると、不融化反応の短縮と、大きなバルクの不融化にも応用できることが報告されている。特に、国内の有望な資源であるヨウ素を用いたヨウ素不融化処理では、ピッチやPANの他に、糖類に対しても効果的であることが報告されている。 In addition, it has been reported that the use of halogen, which has a higher diffusion rate into raw material organic matter than oxygen, shortens the infusibilization reaction and can be applied to the infusibilization of a large bulk. In particular, it has been reported that iodine infusibilization treatment using iodine, which is a promising domestic resource, is effective not only for pitch and PAN but also for sugars.

このヨウ素不融化処理は、高炭素化収率に加え、炭素体中にミクロ孔の増加が同時に図られることが特徴的である。ヨウ素は、有機物原料中の特に芳香族成分と選択的にπ-σ型の電荷移動錯体を形成し、それが分子内の脱水素化を促すことでフリーラジカルが生じる。 This iodine-infusible treatment is characterized by the fact that, in addition to a high carbonization yield, an increase in micropores in the carbon body is achieved at the same time. Iodine selectively forms a π-σ type charge-transfer complex with particularly aromatic components in organic raw materials, which promotes intramolecular dehydrogenation to generate free radicals.

生じたラジカルは、酸素不融化処理と同様に重合反応を引き起こすことで、原料の高分子化が促進される。この反応機構により、炭素微細構造の三次元架橋密度が増加することで、微細孔が発達し、主としてミクロ孔が導入されると推測されている。 The generated radicals induce a polymerization reaction in the same manner as in the oxygen infusibility treatment, thereby promoting the polymerization of the raw material. It is presumed that this reaction mechanism increases the three-dimensional crosslink density of the carbon microstructure, which leads to the development of micropores and the introduction of mainly micropores.

このことは、一般的なガス賦活法による酸化反応を活用した細孔構築法では、炭素体の製品収率と比表面積がトレードオフの関係にある(多孔質化を進めると、炭素収率が低くなる)ことと比べると、炭素化収率を高めつつ、多孔質化を図るという点で極めてユニークな細孔構築法であると言える。 This means that in the pore construction method that utilizes the oxidation reaction by the general gas activation method, there is a trade-off relationship between the product yield and the specific surface area of the carbon body. It can be said that it is a very unique pore construction method in terms of achieving porosity while increasing the carbonization yield.

エチレンは炭素原子2つが2重結合をした炭化水素であり、常温、常圧で気体として存在し、植物の成長を制御する植物ホルモンの一つとして知られている。収穫後の青果物の成熟作用においてエチレンは重要な役割を担っており、青果物の早期追熟という点では有益になる面もあるが、青果物流通市場において、そのほとんどが品質劣化に繋がる場合が多い。 Ethylene is a hydrocarbon in which two carbon atoms form a double bond, exists as a gas at normal temperature and normal pressure, and is known as one of the plant hormones that control the growth of plants. Ethylene plays an important role in the ripening action of fruits and vegetables after harvesting, and although it is beneficial in terms of early ripening of fruits and vegetables, it often leads to quality deterioration in the distribution market of fruits and vegetables.

実際、エチレンの作用による青果物の過度な成熟や腐敗、キャベツの葉柄やブドウ果粒の離脱、ジャガイモの発芽、カーネーションの花弁が開かなくなる眠り病、アスパラガス組織の繊維化といった品質劣化や廃棄に繋がる事例が報告されている。エチレンガスは0.1-1.0ppm程度の濃度下に約12時間以上曝露させることで、多くの青果物に対して十分な生理作用(成熟)を与える。つまり、青果物輸送時におけるエチレンガス濃度を0.1-1.0ppm以下におさえるような吸着・吸蔵技術が、この基準をクリアするレベルの吸着剤や分解剤の開発が進められている。 In fact, the action of ethylene leads to quality deterioration and waste, such as excessive ripening and rotting of fruits and vegetables, detachment of cabbage petioles and grape berries, germination of potatoes, sleeping sickness in which carnation petals do not open, and fibrosis of asparagus tissue. Cases have been reported. Ethylene gas exerts a sufficient physiological action (ripening) on many fruits and vegetables by exposing them to a concentration of about 0.1 to 1.0 ppm for about 12 hours or longer. In other words, the adsorption/storage technology for suppressing the concentration of ethylene gas to 0.1 to 1.0 ppm or less during the transportation of fruits and vegetables is being developed for adsorbents and decomposing agents that satisfy this standard.

一方、青果物輸送時のエチレンガスを除去する手法として、輸送用コンテナ内の空気を循環させることによって除去する方法や、光触媒に紫外線を当てることによってエチレンガスを分解する方法、小袋に詰めたエチレン除去剤を青果物と一緒に梱包する方法が取られている。 On the other hand, as a method of removing ethylene gas during the transportation of fruits and vegetables, there is a method of removing ethylene gas by circulating the air in the shipping container, a method of decomposing ethylene gas by exposing a photocatalyst to ultraviolet rays, and a method of packing ethylene gas in small bags to remove ethylene gas. The method used is to pack the agent together with the fruits and vegetables.

エチレンガスを除去するために使用されているのは、臭素塩、リン酸塩、過マンガン酸カリウムなどのエチレン分解剤、もしくはゼオライトや活性炭のようなエチレン吸着剤が一般的である。しかし、過マンガン酸カリウム等の薬品を用いたエチレン分解剤は、吸引によって人体の粘膜や組織を刺激する危険性を有している。そのため、青果物などの食品輸送においては安全面に問題があると考えられる。 Ethylene decomposers such as bromine salts, phosphates, potassium permanganate, or ethylene adsorbents such as zeolites and activated carbon are commonly used to remove ethylene gas. However, ethylene decomposing agents using chemicals such as potassium permanganate have the risk of irritating mucous membranes and tissues of the human body when inhaled. Therefore, it is considered that there is a problem in terms of safety in food transportation such as fruits and vegetables.

また、エチレンの影響を抑えるために1-メチルシクロプロペン(以下、「1-MCP」という。)が植物成長調整剤として薬品登録されている。この1-MCPは植物のエチレン受容体に対しエチレンの代わりに強く結合するため、エチレンの生理作用を阻害することが知られており、成熟や腐敗を大幅に遅延させる。しかし、1-MCPは常温常圧で気体として存在し、1000ppm以上では爆発の危険性があるとされているため鮮度保持利用としての安全面には問題があると考えられる。 Further, 1-methylcyclopropene (hereinafter referred to as "1-MCP") is registered as a plant growth regulator in order to suppress the influence of ethylene. Since this 1-MCP strongly binds to ethylene receptors in plants instead of ethylene, it is known to inhibit the physiological actions of ethylene and significantly delay maturation and putrefaction. However, 1-MCP exists as a gas at normal temperature and pressure, and there is a risk of explosion at 1000 ppm or more, so it is considered that there is a problem in terms of safety in terms of freshness preservation use.

このような背景より、エチレン除去剤として活性炭は、安心かつ安価な吸着材として適していると言える。しかしながら活性炭は、長期的なエチレン吸着能がないため、青果物の長距離輸送には向いていない。そこで求められるのは、コストを抑えたまま、吸着能が高く、多量のエチレンを吸着する新たなエチレン吸着剤である。実現すれば輸送時における青果物廃棄量の減少、及び廃棄物減少における経済的効果を見込むことができる。 Against this background, it can be said that activated carbon is suitable as an ethylene remover as a safe and inexpensive adsorbent. However, activated carbon is not suitable for long-distance transportation of fruits and vegetables because it does not have long-term ethylene adsorption capacity. Therefore, what is required is a new ethylene adsorbent that has high adsorption capacity and can adsorb a large amount of ethylene while keeping costs down. If realized, it is possible to expect a reduction in the amount of fruits and vegetables discarded during transportation and an economic effect in terms of waste reduction.

コーヒーやお茶といった嗜好品類は世界中で消費されており、コーヒーだけでも2016年に約92億kg生産されていることから、経済的にも非常に重要な飲み物の一つであることが言える。コーヒーやお茶は、豆や茶葉に熱湯を注ぐことで得られた抽出液が主な目的物であり、抽出後に残された粕は特別な利用用途がないがゆえに必要とされないことが多い。 Luxury goods such as coffee and tea are consumed all over the world, and about 9.2 billion kg of coffee alone was produced in 2016, so it can be said that it is one of the economically very important drinks. The main purpose of coffee and tea is the extract obtained by pouring boiling water over beans and tea leaves, and the lees left after extraction are often not needed because they have no special use.

飲料産業において、コーヒーやお茶の粕といった食品廃棄物が毎日大量に排出されており、ほとんどが廃棄物として燃やされ、温室効果ガスである二酸化炭素生成に繋がっている。また、国内では食品関連事業者などから排出される食品廃棄物の処分量を減少させるとともに、リサイクルを図ることを目的とした食品リサイクル法が施行されている。このような背景から、コーヒーやお茶の残渣の再利用法としてペレット燃料開発や牛の飼料化といった研究が進められてきた。 In the beverage industry, large amounts of food waste such as coffee and tea lees are discharged every day, and most of them are burned as waste, leading to the production of carbon dioxide, a greenhouse gas. In Japan, the Food Recycling Law has been enacted with the aim of reducing the disposal amount of food waste discharged from food-related businesses and promoting recycling. Against this background, research has progressed on the development of pellet fuel and the use of cattle feed as methods for reusing coffee and tea residue.

一方、コーヒーやお茶の残渣物は、およそ70~80%がセルロース、ヘミセルロース、リグニンといった炭水化物、残りをたんぱく質やミネラルなどで構成されており、炭素化物利用としては好適な炭素前駆体であるといえる。また、食品廃棄物内の炭素分を二酸化炭素として排出させず、炭として得られる炭素化処理はカーボンニュートラルな取り組みであり、リサイクルの新たな活路であると言える。 On the other hand, about 70 to 80% of coffee and tea residue is composed of carbohydrates such as cellulose, hemicellulose, and lignin, and the remainder is composed of proteins and minerals. . In addition, the carbonization process, in which the carbon content in food waste is not emitted as carbon dioxide and is obtained as charcoal, is a carbon-neutral approach and can be said to be a new way of recycling.

また、活性炭の製造において、薬品等の洗浄工程は極めて煩雑でコストがかかることから、これらの処理が極めて少なく、炭素化(焼成)以外の複雑な工程が不要であることも、食品廃棄物のリサイクル利用には好ましいと考えられる。 In addition, in the production of activated carbon, the washing process of chemicals, etc. is extremely complicated and costly, so these treatments are extremely rare, and no complicated processes other than carbonization (burning) are required. It is considered preferable for recycling use.

食品廃棄物のリサイクルとして炭素化物を利用する技術があり、例えば以下の特許文献1、2記載の発明がある。 There are technologies that utilize carbonized products for recycling food waste, such as the inventions described in Patent Documents 1 and 2 below.

特許文献1には、前処理されたバイオマスのリグニン残渣から調整される活性炭が記載されている。前記活性炭のリグニン残渣は、サイズが約5ミクロン~約150ミクロンの固体粒子を少なくとも50%含んでいる。 WO 2005/010000 describes activated carbon prepared from lignin residues of pretreated biomass. The lignin residue of the activated carbon contains at least 50% solid particles with a size of about 5 microns to about 150 microns.

特許文献2には、バイオマスを空気遮断状態での間接加熱により400~900℃の熱分解ガスと固形炭化物に分離する熱分解工程とを含むバイオマスコークスの製造方法が記載されている。 Patent Document 2 describes a method for producing biomass coke, which includes a pyrolysis step of separating biomass into pyrolysis gas of 400 to 900° C. and solid carbide by indirect heating in an air-blocked state.

特許文献3には、有機物質である木材をヨウ素処理した後に炭素化処理する炭の製造方法が記載されている。特許文献4には、バイオマス由来の有機物質をヨウ素処理した後に炭素化処理する炭の製造方法が記載されている。 Patent Document 3 describes a method for producing charcoal, in which wood, which is an organic substance, is treated with iodine and then carbonized. Patent Document 4 describes a method for producing charcoal, in which biomass-derived organic substances are treated with iodine and then carbonized.

特表2018-534233号公報Japanese Patent Publication No. 2018-534233 特開2006-282914号公報JP 2006-282914 A 特開2007-153674号公報JP 2007-153674 A 再表2007-066674号公報Retable 2007-066674

Kazumasa Nakamura、Yasuhiro Tanabe、Yasunori Nagakura、Takashi Nishizawa、Katsuya Fukuyama、Yoshikiyo Hatakeyama、Eiichi Yasuda、「Improvements in char yield and pore properties of wood-derived carbon by iodine treatment」、炭素材料学会、炭素TANSO、2008年、234号、p.215-219Kazumasa Nakamura, Yasuhiro Tanabe, Yasunori Nagakura, Takashi Nishizawa, Katsuya Fukuyama, Yoshikiyo Hatakeyama, Eiichi Yasuda, "Improvements in char yield and pore properties of wood-derived carbon by iodine treatment", Carbon Society of Japan, Carbon TANSO, 2008, 234 No., p. 215-219 宮嶋尚哉、廣岡宏治、阪根英人、古屋雅子、田村佳緒留、松本頼興、「多糖類から調製した炭素体の細孔構造とエチレン吸着特性」、炭素材料学会、炭素TANSO、2011年、249号、p.179-184Naoya Miyajima, Koji Hirooka, Hideto Sakane, Masako Furuya, Kaoru Tamura, Yorioki Matsumoto, "Pore Structure and Ethylene Adsorption Properties of Carbon Materials Prepared from Polysaccharides", Carbon Society of Japan, Carbon TANSO, 2011, 249 No., p. 179-184

特許文献1、2記載の発明は、工程が複雑となり、炭化物の比表面積を上げるために賦活処理が必要となる。また、比表面積を上昇させるためにミクロ孔の生成が必要であるが、ミクロ孔の生成時にCOが発生するため炭素化の収率が減少する。 The inventions described in Patent Documents 1 and 2 require a complicated process and an activation treatment to increase the specific surface area of the carbide. In addition, although the generation of micropores is necessary to increase the specific surface area, the yield of carbonization decreases because CO 2 is generated during the generation of micropores.

また、飲料産業から毎日大量に排出されるコーヒーやお茶の抽出後残渣物は確立した利用用途がなく、焼却とともに温室効果ガスである二酸化炭素の排出に繋がっている。そこで、コーヒーやお茶の粕には炭素成分が豊富に含まれていることから、これらの廃棄物の新たな利用用途として、活性炭への転換が好ましいと考えた。さらに、これら食品廃棄物に対して、炭素体の残炭率及び多孔度を同時改善し得るヨウ素前処理を施すことにより、従来の賦活処理とは異なる細孔構築法で活性炭の調製が可能になるものと予想された。 In addition, there is no established use for the residue after coffee and tea extraction, which is discharged in large amounts every day from the beverage industry. Therefore, since coffee and tea lees contain a lot of carbon components, we thought it would be preferable to convert them to activated carbon as a new use for these wastes. Furthermore, by applying iodine pretreatment to these food wastes, which can simultaneously improve the residual carbon ratio and porosity of the carbon body, it is possible to prepare activated carbon by a pore construction method that is different from the conventional activation treatment. expected to be.

一方、青果物市場において、青果物輸送時におけるエチレンガスの発生、及びエチレンガス作用による青果物の品質劣化が課題となっている。このような輸送におけるロスを減らすためにも、使用環境に左右されない大容量のエチレンガス吸着剤が求められている。 On the other hand, in the fruit and vegetable market, the generation of ethylene gas during the transportation of fruit and vegetables and the deterioration of the quality of the fruit and vegetables due to the action of ethylene gas are problems. In order to reduce such losses during transportation, there is a demand for a large-capacity ethylene gas adsorbent that is not affected by the usage environment.

本発明は、食品廃棄物の処理及び有効利用にあたって、炭素化収率を大幅に増加させ、かつ吸着効果を高めるミクロ孔を増加させることができる食品廃棄物のリサイクル方法を提供することを目的としたものである。 An object of the present invention is to provide a food waste recycling method that can greatly increase the carbonization yield and increase the micropores that enhance the adsorption effect in the treatment and effective use of food waste. It is what I did.

本発明に係る食品廃棄物のリサイクル方法は、食品廃棄物を焼成して炭素化処理する前に、食品廃棄物をヨウ素によって改質することを特徴とするものである。 The food waste recycling method according to the present invention is characterized by reforming the food waste with iodine before the food waste is burned and carbonized.

ヨウ素による改質は、例えば対象となる食品廃棄物にヨウ素を加熱して発生するヨウ素蒸気を作用させるなどして行うことができる。 Modification with iodine can be carried out, for example, by applying iodine vapor generated by heating iodine to the target food waste.

食品廃棄物を炭素化処理する前に、ヨウ素によって前処理することで、炭素化収率を増加することができ、同時にミクロ孔を発達させることができる。 Pretreatment with iodine before carbonizing the food waste can increase the carbonization yield and develop micropores at the same time.

本発明における食品廃棄物としては、例えばコーヒー、麦茶、緑茶、紅茶の飲料廃棄物を用いることができる。 Beverage waste such as coffee, barley tea, green tea, and black tea can be used as the food waste in the present invention.

本発明の食品廃棄物のリサイクル方法によれば、ヨウ素を加えて前処理することにより炭素化収率の増加とミクロ孔増加の両立が可能となり、炭素化収率を大幅に増加させることができる。 According to the food waste recycling method of the present invention, pretreatment by adding iodine makes it possible to achieve both an increase in carbonization yield and an increase in micropores, and can greatly increase the carbonization yield. .

食品廃棄物として、麦茶、緑茶、紅茶の飲料廃棄物を用いた場合には、エチレン及び二酸化炭素吸着量が増加し、特に緑茶、紅茶の飲料廃棄物を用いた場合に優れたエチレン吸着性能が得られる。 When barley tea, green tea, or black tea waste is used as food waste, the amount of ethylene and carbon dioxide adsorption increases. can get.

コーヒー残渣のヨウ素導入率とヨウ素処理時間の関係を示したグラフである。It is a graph showing the relationship between the iodine introduction rate of coffee residue and the iodine treatment time. 未処理原料のTG曲線を示している。TG curve of untreated feedstock is shown. ヨウ素処理した各原料のTG曲線のグラフである。1 is a graph of TG curves for each raw material treated with iodine. コーヒー残渣のヨウ素導入率と700℃における炭素化収率の関係を示したグラフである。It is a graph showing the relationship between the iodine introduction rate of coffee residue and the carbonization yield at 700°C. C700-I-coffee、C900-I-coffeeのC1s、N1s、O1sナロースキャンスペクトルを示すグラフである。It is a graph which shows C1s, N1s, and O1s narrow scan spectra of C700-I-coffee and C900-I-coffee. C700-I-coffee、C900-I-coffeeのCa1s、I3d5/2ナロースキャンスペクトルを示すグラフである。It is a graph which shows Ca1s and I3d5 /2 narrow scan spectra of C700-I-coffee and C900-I-coffee. C700-coffeeのピーク分離図を示すグラフである。It is a graph which shows the peak separation figure of C700-coffee. C900-coffeeのピーク分離図を示すグラフである。It is a graph which shows the peak separation figure of C900-coffee. C700-I-coffee、C900-I-icoffeeのワイドスキャンスペクトルを示すグラフである。It is a graph which shows the wide scan spectrum of C700-I-coffee and C900-I-icoffee. 炭素化温度の異なるコーヒー炭素体のXRDパターンを示すグラフであり、(a)が未処理のもの、(b)がヨウ素で処理したものである。1 is a graph showing XRD patterns of coffee carbon bodies with different carbonization temperatures, (a) untreated and (b) treated with iodine. 各食品廃棄物炭素体のXRDパターンを示すグラフであり、(a)が未処理のもの、(b)がヨウ素で処理したものである。It is a graph which shows the XRD pattern of each food-waste carbon body, (a) is an untreated thing, (b) is an iodine-treated thing. 灰分のXRDパターンを示すグラフである。1 is a graph showing an XRD pattern of ash; 炭素化温度の異なるコーヒー炭素体の-196℃における窒素吸着等温線を示すグラフである。1 is a graph showing nitrogen adsorption isotherms at −196° C. of coffee carbon bodies with different carbonization temperatures. 炭素化温度の異なるコーヒー炭素体(ヨウ素処理あり)の-196℃における窒素吸着等温線を示すグラフである。1 is a graph showing nitrogen adsorption isotherms at −196° C. of coffee carbon bodies (with iodine treatment) with different carbonization temperatures. 各食品廃棄物炭素体の-196℃における窒素吸着等温線を示すグラフである。4 is a graph showing the nitrogen adsorption isotherm at −196° C. of each food waste carbon material. 各飲料炭素体(ヨウ素処理あり)の-196℃における窒素吸着等温線を示すグラフである。FIG. 10 is a graph showing nitrogen adsorption isotherms at −196° C. for each beverage carbon body (with iodine treatment). FIG. 各食品廃棄物灰分の-196℃における窒素吸着等温線を示すグラフである。1 is a graph showing nitrogen adsorption isotherms at −196° C. for each food waste ash. 炭素化温度の異なるコーヒー炭素体のエチレン吸着等温線のグラフである。1 is a graph of ethylene adsorption isotherms of coffee carbonaceous bodies with different carbonization temperatures. 炭素化温度の異なるコーヒー炭素体(ヨウ素処理あり)のエチレン吸着等温線のグラフである。1 is a graph of ethylene adsorption isotherms of coffee carbon bodies (with iodine treatment) at different carbonization temperatures. 各食品廃棄物炭素体のエチレン吸着等温線のグラフである。1 is a graph of ethylene adsorption isotherms for each food waste carbon material. 各食品廃棄物炭素体(ヨウ素処理あり)のエチレン吸着等温線のグラフである。1 is a graph of ethylene adsorption isotherms for each food waste carbon body (with iodine treatment). 炭素化温度の異なるコーヒー炭素体の二酸化炭素吸着等温線のグラフである。1 is a graph of carbon dioxide adsorption isotherms of coffee carbon bodies with different carbonization temperatures. 炭素化温度の異なるコーヒー炭素体(ヨウ素処理あり)の二酸化炭素吸着等温線のグラフである。1 is a graph of carbon dioxide adsorption isotherms of coffee carbon bodies (with iodine treatment) with different carbonization temperatures. 各食品廃棄物炭素体の二酸化炭素吸着等温線のグラフである。1 is a graph of carbon dioxide adsorption isotherms for each food waste carbon material. 各食品廃棄物炭素体(ヨウ素処理あり)の二酸化炭素吸着等温線のグラフである。2 is a graph of carbon dioxide adsorption isotherms of each food waste carbon body (with iodine treatment). エチレン吸着量と二酸化炭素吸着から算出した細孔表面積との関係を示したグラフである。It is a graph showing the relationship between the ethylene adsorption amount and the pore surface area calculated from the carbon dioxide adsorption. 未処理の場合とヨウ素前処理の場合の炭素化吸収率とミクロ孔の増加(700℃炭化品)の比較をまとめて示したグラフである。1 is a graph summarizing a comparison of the carbonization absorption rate and the increase in micropores (700° C. carbonized product) between untreated and iodine pretreated.

以下、本発明の効果を確認するために行った試験について説明する。まず、食品廃棄物のヨウ素前処理及び炭素化に関する実験について述べる。 Tests conducted to confirm the effects of the present invention will be described below. First, we describe experiments on iodine pretreatment and carbonization of food waste.

1.食品廃棄物のヨウ素前処理及び炭素化に関する実験
4種の食品廃棄物(コーヒー、麦茶、緑茶、紅茶)に対してヨウ素蒸気と作用させ(ヨウ素前処理)、引き続き、不活性雰囲気下で炭素化を行い、得られた炭素体の試料特性を比較検討することで、ヨウ素不融化効果の有無について検討した。
1. Experiments on iodine pretreatment and carbonization of food waste Four types of food waste (coffee, barley tea, green tea, black tea) were allowed to act with iodine vapor (iodine pretreatment), and then under an inert atmosphere. The presence or absence of the iodine-infusibilizing effect was examined by conducting carbonization and comparing the characteristics of the carbon bodies obtained.

1.1 実験方法
1.1.1 出発物質
コーヒー、麦茶、緑茶、紅茶の4種の食品廃棄物を60℃で十分乾燥させたものを出発原料とした。各食品廃棄物の元素分析結果を表1に示す。酸素については炭素、水素、窒素、硫黄の各元素の含有率を100%から差し引くことに(差数法)で算出した。
1.1 Experimental method 1.1.1 Starting materials Four types of food waste, coffee, barley tea, green tea, and black tea, were thoroughly dried at 60°C and used as starting materials. Table 1 shows the results of elemental analysis of each food waste. Oxygen was calculated by subtracting the content of each element of carbon, hydrogen, nitrogen and sulfur from 100% (difference number method).

Figure 2022126217000001
Figure 2022126217000001

1.1.2 ヨウ素前処理
約1gの各食品廃棄物(コーヒー(coffee)、麦茶(barley)、緑茶(green)、紅茶(tea))と、過剰量のヨウ素が入ったガラス瓶をセパラブルフラスコ内に静置し、密閉した後にロータリーポンプを用いて15分以上系内を減圧した。これをあらかじめ120℃に加熱した恒温乾燥器内に所定の時間静置し、ヨウ素蒸気と反応させた。ヨウ素前処理した試料は、それぞれI-coffee、I-barley、I-green、I-teaと示す。ヨウ素導入率は、ヨウ素処理前後の質量変化を用いて、数1より算出した。
1.1.2 Iodine pretreatment Approximately 1 g of each food waste (coffee, barley, green, and tea) and a glass bottle containing excess iodine were placed in a separable flask. After the system was allowed to stand in the chamber and hermetically sealed, the pressure in the system was reduced for 15 minutes or more using a rotary pump. This was allowed to stand for a predetermined time in a constant temperature dryer preheated to 120° C. to react with iodine vapor. The iodine pretreated samples are labeled I-coffee, I-barley, I-green and I-tea, respectively. The iodine introduction rate was calculated from Equation 1 using the change in mass before and after the iodine treatment.

Figure 2022126217000002
Figure 2022126217000002

1.1.3 試料の炭素化
秤量した試料をアルミナボートに載せ、これを管状炉に挿入し、窒素ガスのパージを行った。その後10℃/minの昇温速度で所定温度まで昇温し、目的温度到達後1時間保持することで試料を炭素化させた。以下、例えばヨウ素前処理をしたコーヒー残渣を700℃で炭素化した場合、C700-I-coffeeのように表記する。また、各炭素体の炭素化収率は、数1のヨウ素導入率を用いて、数2より算出した。
1.1.3 Carbonization of Sample A weighed sample was placed on an alumina boat, which was inserted into a tubular furnace and purged with nitrogen gas. After that, the temperature was raised to a predetermined temperature at a heating rate of 10° C./min, and the sample was carbonized by holding for 1 hour after reaching the target temperature. Hereinafter, for example, when coffee residue pretreated with iodine is carbonized at 700° C., it is expressed as C700-I-coffee. Also, the carbonization yield of each carbon body was calculated from Equation 2 using the iodine introduction rate of Equation 1.

Figure 2022126217000003
Figure 2022126217000003

1.2 各炭素体の試料特性評価
1.2.1 熱重量測定
試料の炭素化過程における熱挙動を評価するために、示差熱・熱重量同時測定装置(株式会社島津製作所製DTA-60)を用いて測定した。測定条件は窒素雰囲気下で昇温速度を10℃/minとし、室温-950℃までの範囲を測定した。
1.2 Sample characteristics evaluation of each carbon body 1.2.1 Thermogravimetric measurement In order to evaluate the thermal behavior in the carbonization process of the sample, a simultaneous differential thermal and thermogravimetric measurement device (DTA-60 manufactured by Shimadzu Corporation) was used. was measured using The measurement conditions were a temperature rise rate of 10°C/min under a nitrogen atmosphere, and the range from room temperature to 950°C was measured.

1.2.2 XRD測定
炭素体の結晶構造は、粉末X線回折装置(株式会社リガク製、RINT2100Ultima+、以下、「XRD」という。)にて評価した。測定にはCuKα線を使用し、2θ=2-60°、スキャン間隔は2θ=0.02°、スキャン速度は4°/minとした。
1.2.2 XRD measurement The crystal structure of the carbon body was evaluated with a powder X-ray diffractometer (RINT2100 Ultima+, manufactured by Rigaku Corporation, hereinafter referred to as "XRD"). CuKα rays were used for the measurement, =2-60°, the scan interval was 2θ=0.02°, and the scan speed was 4°/min.

1.2.3 窒素吸着測定
前処理としてアルゴン雰囲気下で24時間、300℃に加熱することで試料を乾燥させた後、-196℃における窒素吸着測定(マイクロトラック・ベル株式会社製BELSORP MINIを使用)を行い、吸着等温線を求めた。得られた等温線にαs法を適用しミクロ孔表面積及びミクロ孔容量を求めた。
1.2.3 Nitrogen adsorption measurement After drying the sample by heating it to 300 ° C for 24 hours in an argon atmosphere as a pretreatment, nitrogen adsorption measurement at -196 ° C (BELSORP MINI manufactured by Microtrack Bell Co., Ltd. use) to determine the adsorption isotherm. The α s method was applied to the obtained isotherms to determine the micropore surface area and micropore volume.

1.2.4 イオンクロマトグラフィー
炭素体中のヨウ素含有率を見積もるため、イオンクロマトグラフィー測定(サーモフィッシャーサイエンティフィック株式会社製イオンクロマトグラフィーシステムを使用)を行った。サンプルとして適量のC700-I-coffeeとC900-I-coffeeを1mol/Lのヒドラジン溶液に入れ、24時間振とうさせた後の上澄み液を希釈したものを利用した。また、標準溶液としてヨウ化カリウムを用いた。
1.2.4 Ion Chromatography In order to estimate the iodine content in the carbon body, ion chromatography measurement (using an ion chromatography system manufactured by Thermo Fisher Scientific Co., Ltd.) was performed. Appropriate amounts of C700-I-coffee and C900-I-coffee were put into a 1 mol/L hydrazine solution as samples, and the supernatant was diluted after shaking for 24 hours. Also, potassium iodide was used as a standard solution.

1.2.5 XPS測定
各炭素体中のC、N、O、Iの各元素の結合状態を調べるため、X線光電子分光装置(日本電子株式会社製JPS-9200)にて各元素のナロースペクトルを測定した。励起源にはMgKα線を用い、帯電補正はC1s(284.6eV)を基準にした。
1.2.5 XPS measurement In order to examine the bonding state of each element of C, N, O, and I in each carbon body, narrow Spectra were measured. MgKα rays were used as an excitation source, and charging correction was based on C1s (284.6 eV).

1.2.6 灰分
各炭素体中の灰分量は、空気雰囲気下で10℃/minの昇温速度で700℃まで昇温させ、炭素分を完全燃焼させたのち残存する無機固形物を灰分として、それを定量して求めた。以下、各炭素体から得た灰分をAsh-C-coffeeのように表記する。また、得られた灰分の収率は数3より算出した。

Figure 2022126217000004
1.2.6 Ash content The ash content in each carbon body is determined by heating up to 700°C at a rate of 10°C/min in an air atmosphere and completely burning the carbon content. As such, it was quantified and obtained. Hereinafter, the ash content obtained from each carbon body is expressed as Ash-C-coffee. Moreover, the yield of the obtained ash was calculated from Equation 3.
Figure 2022126217000004

1.3 結果及び考察
表2に、コーヒー残渣のヨウ素処理時間とヨウ素導入率、及び700℃における炭素化収率をまとめた。また、図1に、ヨウ素処理時間とヨウ素導入率の関係を示した。ヨウ素処理を開始すると同時にヨウ素による原料の質量増加が確認できる。処理時間が6時間を超えたあたりでヨウ素導入率はおよそ200wt%となり、ほぼ一定値に達した。
1.3 Results and Discussion Table 2 summarizes the iodine treatment time and iodine introduction rate of the coffee residue, and the carbonization yield at 700°C. Moreover, FIG. 1 shows the relationship between the iodine treatment time and the iodine introduction rate. At the same time as the iodine treatment is started, an increase in the mass of the raw material due to iodine can be confirmed. When the treatment time exceeded 6 hours, the iodine introduction rate reached approximately 200 wt % and reached a substantially constant value.

Figure 2022126217000005
Figure 2022126217000005

図2及び図3に各食品廃棄物のTG曲線を示す。ヨウ素前処理をした原料のTG曲線の縦軸は、ヨウ素導入率を考慮して各食品廃棄物の原料の質量が100wt%となるように規格している。未処理試料は、100℃付近、300-400℃及び400℃以降で重量減少が確認できる。これらはセルロースやデンプンなどの多糖類の熱挙動に従うと、それぞれ、吸着水の脱離、原料有機物の熱分解、熱分解残留物の炭素化に伴う軽ガス放出に起因していると考えられる。 2 and 3 show the TG curves of each food waste. The vertical axis of the TG curve of the raw material pretreated with iodine is standardized so that the mass of each food waste raw material is 100 wt %, considering the iodine introduction rate. The weight loss of the untreated sample can be confirmed at around 100°C, 300-400°C, and after 400°C. According to the thermal behavior of polysaccharides such as cellulose and starch, these are considered to be caused by desorption of adsorbed water, thermal decomposition of raw material organic matter, and light gas emission accompanying carbonization of thermal decomposition residue, respectively.

一方、ヨウ素前処理をした食品廃棄物では、100-200℃の範囲でヨウ素の昇華による大幅な重量減少が発現し、原料有機物の熱分解に伴う大きな重量減少が未処理の原料よりも低温で生じることが判明した。また、非特許文献1では、スギやヒノキなどの木質原料にヨウ素処理を行うと、それらの熱分解が低温で開始することを述べており、ヨウ素改質の一つの指標であるとしている。 On the other hand, in food waste pretreated with iodine, a significant weight loss occurs due to sublimation of iodine in the range of 100-200°C, and a large weight loss due to thermal decomposition of raw material organic matter occurs at a lower temperature than untreated raw materials. turned out to occur. In addition, Non-Patent Document 1 states that when woody raw materials such as cedar and cypress are treated with iodine, their thermal decomposition starts at a low temperature, which is one indicator of iodine modification.

すなわち、同様のヨウ素による原料有機物の改質によって、熱挙動が変化したことがうかがえる。また、700℃以降の収量は、未処理のものと比べて大きくなっていることから、本試験で用いた4種の廃棄物についても、炭素化収率の増加といったヨウ素不融化効果が発現していることが判明した。 That is, it can be inferred that the thermal behavior changed due to the similar modification of the raw material organic matter by iodine. In addition, since the yield after 700 ° C. is larger than that of the untreated waste, the iodine infusibilization effect such as the increase in the carbonization yield is manifested for the four types of waste used in this test. It turned out that

図4にコーヒー炭素体のヨウ素導入率と700℃における炭素化収率の関係を示す。ヨウ素導入率が増加することによって炭素化収率の向上が見られ、TG曲線の結果が再確認できた。すなわち、ヨウ素が原料の高分子化を促進したため、残炭率の増加が図られたと理解される。その増加分に着目すると、120wt%以上のヨウ素導入処理で、ほぼ一定値に(44wt%)に達していることが分かる。 FIG. 4 shows the relationship between the iodine introduction rate of the coffee carbon body and the carbonization yield at 700°C. An increase in the iodine introduction rate was found to improve the carbonization yield, reconfirming the results of the TG curve. That is, it is understood that iodine accelerated the polymerization of the raw material, so that the residual carbon rate was increased. Focusing on the amount of increase, it can be seen that it reaches a substantially constant value (44 wt %) in the iodine introduction treatment of 120 wt % or more.

残炭率の向上には、原料の炭素化過程における熱安定性が重要となるが、ある一定の平均分子量を超え、十分炭素化過程で熱分解しない程度にまで改質されるためには、原料の約2倍のヨウ素導入処理で十分であることが示唆される。ピッチのヨウ素不融化処理では、導入したヨウ素には電荷移動錯体の形成に寄与するものと、その錯体を吸着活性点として物理吸着(凝縮)するものに大別される。2倍以上のヨウ素導入処理では、十分改質された原料炭素前駆体にヨウ素が物理的に取り込まれ、ヨウ素導入率が増加しているものと考えられる。 Thermal stability in the carbonization process of the raw material is important for improving the residual coal rate. It is suggested that about twice as much iodine treatment as the raw material is sufficient. In the iodine infusibilization treatment of pitch, the introduced iodine is roughly divided into iodine that contributes to the formation of a charge transfer complex and iodine that physically adsorbs (condenses) using the complex as an adsorption active site. It is considered that the iodine introduction rate is increased when the iodine introduction treatment is doubled or more, and iodine is physically incorporated into the sufficiently modified raw material carbon precursor.

一方、コーヒー残渣中の炭素収率は、54.14wt%であり(表1参照)、理論的には今回得られた炭素体の収率はこれを超えることはない。得られた炭素化収率はおよそ44wt%であることから、約8割程度の炭素分が回収できていると思われる。表3に各炭素体の灰分率及び原料食品廃棄物中の灰分率(表1の結果と同じ)を示す。両数値ともにほとんど近い値であることから、今回行った700℃における炭素化において、これらの灰分が蒸発等で焼失することとなく、炭素体内部に微量ながらも不純物として存在していることが判明した。 On the other hand, the yield of carbon in the coffee residue was 54.14 wt% (see Table 1), and theoretically the yield of the carbon body obtained this time would not exceed this. Since the obtained carbonization yield was about 44 wt %, it is considered that about 80% of the carbon content has been recovered. Table 3 shows the ash content of each carbon material and the ash content in raw material food waste (same as the results in Table 1). Since both numerical values are almost close, it was found that these ash contents did not burn off due to evaporation, etc. during the carbonization at 700°C, and were present as impurities, albeit in very small amounts, inside the carbon body. did.

Figure 2022126217000006
Figure 2022126217000006

表4に各炭素化温度で得た炭素体の炭素収率を示す。ヨウ素前処理を施すことによってすべての試料で約20wt%の炭素化収率の向上が確認できた。また、イオンクロマトグラフィーを用いてヨウ素の定量を行った結果、C900-I-coffeeにはヨウ素の存在が確認できなかったが、C700-I-coffee内には1wt%以下のヨウ素が残存していることが判明した。このヨウ素残存量及び先の炭素体内部の灰分量を考慮しても、明らかに炭素化収率の著しい増加が認められることから、本試験で用いた食品廃棄物については従来のヨウ素不融化効果が発現することが示された。 Table 4 shows the carbon yield of the carbon body obtained at each carbonization temperature. It was confirmed that the iodine pretreatment improved the carbonization yield by about 20 wt% for all the samples. In addition, as a result of quantifying iodine using ion chromatography, the presence of iodine could not be confirmed in C900-I-coffee, but 1 wt% or less of iodine remained in C700-I-coffee. It turned out that there is Considering this residual amount of iodine and the amount of ash inside the carbon body, a significant increase in the carbonization yield is clearly observed. was shown to occur.

Figure 2022126217000007
Figure 2022126217000007

図9にC700-I-coffeeとC900-I-coffeeのワイドスキャンスペクトルを示す。いくつかの特徴的なピークの検出と、C900-I-coffeeでは消失するピーク(矢印)が見て取れる。これらのピークについて詳細に調査し、図5と図6にC700-I-coffee、C900-I-coffeeのC1s、N1s、O1s、I3d各ナロースペクトル及びC700-I-coffeeのCa1sスペクトル、また図7と図8にC700-I-coffee、C900-I-coffeeの各スペクトルのピーク分離結果を示す。 Figure 9 shows the wide scan spectra of C700-I-coffee and C900-I-coffee. Several characteristic peaks can be detected, and a disappearing peak (arrow) can be seen in C900-I-coffee. These peaks were investigated in detail, and Figs. and Fig. 8 shows the results of peak separation for each spectrum of C700-I-coffee and C900-I-coffee.

C1sスペクトルは284.5eVのC-C、286.4 eVのC-O、287.6eVのC=O、289.3eVのCOOの4つのピークに分離できる。O1sスペクトルについては、C700-I-coffeeでは532.2eVのC-O、534.2eV付近のC-O-Cに分離しているのが確認できたが、C900-coffeeでは533.7eV付近のピークしか確認できなかった。C700-I-coffeeには348.5eV付近のCa1sピークと、わずかに確認できる630.5-632.5eVのI3d3/2及び619.0-621.1eVのI3d5/2のピークが存在した。 The C1s spectrum can be separated into four peaks: CC at 284.5 eV, CO at 286.4 eV, C=O at 287.6 eV, and COO at 289.3 eV. Regarding the O1s spectrum, it was confirmed that C700-I-coffee was separated into C-O at 532.2 eV and C-O-C near 534.2 eV, but C900-coffee near 533.7 eV. I could only see peaks. C700-I-coffee had a Ca1s peak near 348.5 eV and slightly recognizable I3d 3/2 peaks of 630.5-632.5 eV and I3d 5/2 peaks of 619.0-621.1 eV. .

これは、ヨウ素の***したスペクトルより、ヨウ素が2成分に分離され、炭素内に2種類の結合状態で存在していることを示唆している。C900-I-coffeeにはI3d、Caのピークが確認できないことから、C700-I-coffeeでは、CaIのような化学種で灰分として一部炭素体中に残存していたと推測できる。また、ヨウ化カルシウムの沸点は718℃であることから、900℃での炭素化過程中に溶融・揮発したため、C900-I-coffeeでは検出されなかったものと思われる。 This suggests that iodine is separated into two components from the split spectrum of iodine and exists in two types of bonding states within carbon. Since I3d and Ca peaks were not confirmed in C900-I-coffee, it can be assumed that in C700-I-coffee, chemical species such as CaI2 partially remained as ash in the carbon body. Also, since the boiling point of calcium iodide is 718°C, it is believed that it was melted and volatilized during the carbonization process at 900°C, and therefore was not detected in C900-I-coffee.

図10に各コーヒー炭素体のXRDパターンを示す。ヨウ素処理の有無にかかわらず、いずれのコーヒー炭素体もアモルファス炭素由来のブロードな波形のほかに目立ったピークは見られなかった。他の食品廃棄物からの炭素体のXRDパターンにおいても、コーヒー炭素体と同様なブロードな回折パターンであり結晶性の灰分などに起因する目立ったピークは確認できなかった(図11)。 FIG. 10 shows the XRD pattern of each coffee carbonaceous body. Regardless of the presence or absence of iodine treatment, no conspicuous peaks other than a broad waveform derived from amorphous carbon were observed in any of the coffee carbon bodies. The XRD patterns of carbon bodies from other food wastes also showed broad diffraction patterns similar to those of coffee carbon bodies, and no conspicuous peaks attributable to crystalline ash or the like could be confirmed (Fig. 11).

図12に各食品廃棄物から得た灰分のXRDピークを示す。主としてKならびにCaの化合物ピークが確認できることから、これらが灰分の主成分であると理解される。 FIG. 12 shows XRD peaks of ash obtained from each food waste. Since compound peaks mainly of K and Ca can be confirmed, it is understood that these are the main components of ash.

図13~図16に各炭素体における-196℃における窒素吸着等温線を示す。一部の高温炭素化処理のものを除き、いずれの炭素体もIUPACのI型に分類される吸着等温線となり、ミクロ多孔性カーボンであることがうかがえる。未処理の炭素体と比較すると、ヨウ素前処理を施した炭素体は、さらに低相対圧域での吸着量の立ち上がりが大きく、さらにミクロ孔が発達していることが見て取れる。このことから、従来の多糖類のヨウ素不融化と同様に、調製した炭素体の炭素化収率とミクロ多孔性を同時に向上させる効果を確認できた。 13 to 16 show nitrogen adsorption isotherms at −196° C. for each carbon body. Except for some high-temperature carbonization treated carbons, all the carbons have adsorption isotherms classified as IUPAC type I, suggesting that they are microporous carbons. Compared with the untreated carbon body, the iodine-pretreated carbon body has a larger rise in the adsorption amount in the low relative pressure range, and it can be seen that the micropores are further developed. From this, it was possible to confirm the effect of simultaneously improving the carbonization yield and microporosity of the prepared carbon body, as in the conventional iodine-infusibilization of polysaccharides.

表5に窒素吸着等温線からαs法で算出したミクロ孔比表面積及びミクロ孔容量を示す。コーヒー残渣では、未処理炭素体と比較すると、ヨウ素前処理した炭素体ではミクロ孔比表面積が増加しており、C700-I-coffeeがミクロ孔表面積149m/g(ミクロ孔容積0.061cm/g)となり最大となった。これは未処理のものと比較するとミクロ孔表面積が1.84倍増加したことになり、概ね炭素化収率の増加分に一致する。 Table 5 shows the micropore specific surface area and micropore volume calculated by the αs method from the nitrogen adsorption isotherm. In the coffee residue, the micropore specific surface area of the iodine pretreated carbon body is increased compared to the untreated carbon body, and C700-I-coffee has a micropore surface area of 149 m 2 /g (micropore volume of 0.061 cm 3 / g) and became maximum. This means that the surface area of the micropores has increased by 1.84 times as compared with the untreated one, which roughly agrees with the increase in the carbonization yield.

Figure 2022126217000008
Figure 2022126217000008

また、700℃以上の炭素化では、炭素体の熱収縮によってミクロ孔表面積及びミクロ孔容量が減少するが、ヨウ素前処理を行うとその低下が抑制され、多孔性がより維持される結果を得た。一方、コーヒー残渣以外の炭素体では、ヨウ素前処理の効果によって、ミクロ孔表面積が1.44倍から2.11倍増加した。 In carbonization at 700° C. or higher, the micropore surface area and micropore volume decrease due to thermal contraction of the carbon body, but pretreatment with iodine suppresses the decrease, resulting in better retention of porosity. rice field. On the other hand, in carbon bodies other than coffee residue, the effect of pretreatment with iodine increased the micropore surface area by 1.44 to 2.11 times.

その増加率が一番高かったのは緑茶炭素体であり、ヨウ素前処理によって、94m/gが201m/gとなり、最もヨウ素不融化の効果が表れた。また、全試料の中でC700-I-teaがミクロ孔表面積337m/g、ミクロ孔容積0.119cm/gとなり最大値を示した。一方、麦茶残渣では多孔性の発現という点ではヨウ素前処理の効果が乏しく、原料依存性があることが示唆された。 Green tea carbon had the highest rate of increase, and the iodine pretreatment increased from 94 m 2 /g to 201 m 2 /g, demonstrating the greatest iodine-infusibilizing effect. Among all the samples, C700-I-tea showed the maximum micropore surface area of 337 m 2 /g and micropore volume of 0.119 cm 3 /g. On the other hand, the iodine pretreatment had little effect on the development of porosity in barley tea residue, suggesting that it depends on raw materials.

図17に各食品廃棄物の灰分の吸着等温線を示す。炭素体とは異なり、低相対圧部での立ち上がりがなくIUPACのIII型もしくはII型の等温線を示しており、窒素分子が侵入できる細孔がほとんど存在しないことが判明した。このことから、各食品廃棄物から得られた炭素体のミクロ孔性の発現は、灰分ではなく炭素マトリックスの集合組織が担っていることが判明した。 FIG. 17 shows adsorption isotherms of ash of each food waste. Unlike the carbon body, it shows an IUPAC type III or II isotherm without rising in the low relative pressure region, and it was found that there are almost no pores through which nitrogen molecules can enter. From this, it was clarified that the texture of the carbon matrix, not the ash content, is responsible for the development of the microporosity of the carbon bodies obtained from each food waste.

1.4 まとめ
各食品廃棄物の炭素化特性に及ぼすヨウ素前処理の影響を調べた結果、以下のことが結論付けられた。
1.4 Summary As a result of examining the effect of iodine pretreatment on the carbonization characteristics of each food waste, the following conclusions were drawn.

(1)用いた食品廃棄物について、いずれもヨウ素前処理を行うと、炭素化収率(残炭率)が飛躍的に増加した。理論炭素収率の8割を超える残炭率を得るには、約100wt%程度のヨウ素不融化処理が必要であることが分かった。 (1) The carbonization yield (residual carbon ratio) increased dramatically when all the food wastes used were pretreated with iodine. It was found that approximately 100 wt % of iodine infusibilization treatment is necessary to obtain a residual coal rate exceeding 80% of the theoretical carbon yield.

(2)700℃炭素体では、1wt%以下のヨウ素の残存が確認できたが、900℃炭素体では残存ヨウ素が検出されなかったことから、著しい炭素化収率の増加は、ヨウ素不融化反応による原料有機物成分の改質の結果であるとわかった。 (2) In the 700°C carbon body, 1 wt% or less residual iodine was confirmed, but in the 900°C carbon body, no residual iodine was detected. It was found to be the result of the modification of the raw material organic matter component by

(3)ヨウ素前処理によって炭素化収率だけでなく、炭素体のミクロ孔も発達し、その効果は緑茶が最も大きかった。このことから、ヨウ素不融化による細孔形成効果については、原料依存性があることが示唆された。 (3) The iodine pretreatment not only increased the carbonization yield but also developed the micropores of the carbon body, and green tea had the greatest effect. From this, it was suggested that the effect of pore formation by iodine infusibility is dependent on raw materials.

2.エチレンと二酸化炭素の吸着特性評価
前章では、それぞれの食品廃棄物に対してヨウ素処理を行うことで、炭素化収率とミクロ孔容量の増加を同時に達成することに成功した。そこで本章では、各炭素体のエチレン吸着と二酸化炭素吸着測定を行い、ヨウ素処理の有無によるこれら吸着特性に与える影響について検討した。
2. Evaluation of adsorption properties of ethylene and carbon dioxide In the previous chapter, we succeeded in simultaneously increasing the carbonization yield and micropore volume by treating each food waste with iodine. Therefore, in this chapter, ethylene adsorption and carbon dioxide adsorption measurements were carried out on each carbon material, and the effects of iodine treatment on these adsorption properties were investigated.

2.1 吸着測定
2.1.1 エチレン吸着測定
25℃におけるエチレン吸着測定を、マイクロトラック・ベル株式会社製の全自動ガス吸着装置(Belsorp max)を用いて測定した。吸着前処理条件は、300℃、24時間のArガス置換とした。
2.1 Adsorption measurement 2.1.1 Ethylene adsorption measurement Ethylene adsorption measurement at 25°C was performed using a fully automatic gas adsorption apparatus (Belsorp max) manufactured by Microtrac Bell Co., Ltd. The pre-adsorption treatment conditions were Ar gas replacement at 300° C. for 24 hours.

2.1.2 二酸化炭素吸着測定
25℃における二酸化炭素吸着を、マイクロトラック・ベル株式会社製の全自動ガス吸着装置(Belsorp max)を用いて測定した。吸着前処理条件は、300℃、24時間のArガス置換とした。また、二酸化炭素の吸着等温線からDR解析を行うことで、二酸化炭素基準のミクロ孔比表面積ACO2を算出した。算出にあたって用いた単位換算はそれぞれ、二酸化炭素密度ρ=1.035g/mL(25℃)、飽和蒸気圧P=6.13MPa(25℃)、親和係数β=0.36である。
2.1.2 Carbon dioxide adsorption measurement Carbon dioxide adsorption at 25°C was measured using a fully automatic gas adsorption apparatus (Belsorp max) manufactured by Microtrac Bell Co., Ltd. The pre-adsorption treatment conditions were Ar gas replacement at 300° C. for 24 hours. Further, by performing DR analysis from the carbon dioxide adsorption isotherm, the micropore specific surface area A CO2 based on carbon dioxide was calculated. Unit conversions used for the calculations are carbon dioxide density ρ=1.035 g/mL (25° C.), saturated vapor pressure P 0 =6.13 MPa (25° C.), and affinity coefficient β=0.36.

2.2 結果及び考察
2.2.1 各ガス吸着等温線
図18~図21に、各炭素体のエチレン吸着等温線を示す。いずれの炭素体も超臨界ガスの吸着にみられるI型に類似した吸着等温線を示した。一部、吸脱着のヒステリシスが見られるが、おおむねエチレン分子が炭素体中の細孔内に物理吸着していると考えられる。-196℃における窒素吸着測定ではヨウ素前処理したコーヒー炭素体の方が未処理のそれよりもミクロ孔容量の増加が認められたが、エチレン吸着量(nC2H4)は逆の関係となった。
2.2 Results and discussion 2.2.1 Adsorption isotherms of each gas Figs. 18 to 21 show the ethylene adsorption isotherms of each carbon material. All carbons exhibited adsorption isotherms similar to type I observed in the adsorption of supercritical gases. Some hysteresis of adsorption and desorption is observed, but it is generally considered that ethylene molecules are physically adsorbed within the pores in the carbon body. Nitrogen adsorption measurements at −196° C. showed an increase in micropore volume in coffee carbon bodies pretreated with iodine over untreated coffee carbon bodies, whereas ethylene adsorption (n C2H4 ) was inversely related.

一方、その他の炭素体では、ヨウ素前処理によるミクロ孔発達を受けて、エチレン吸着量が増加した。特にC700-I-teaではエチレン吸着量が2.14mmol/gと最も高い値を示した(表6)。 On the other hand, the ethylene adsorption of other carbon bodies increased due to the development of micropores due to iodine pretreatment. In particular, C700-I-tea exhibited the highest ethylene adsorption amount of 2.14 mmol/g (Table 6).

Figure 2022126217000009
Figure 2022126217000009

図22~図25に、各炭素体の二酸化炭素吸着等温線を示す。いずれもほぼエチレンの吸着挙動と同じようなI型を示す結果となった。また、DR解析から求めた二酸化炭素の飽和吸着量もエチレン吸着量と同じ傾向を示し、C700-I-teaが1.96mmol/gと最大の二酸化炭素吸着量を示すことが分かった(表6)。 22 to 25 show the carbon dioxide adsorption isotherms of each carbon body. All of them showed a type I adsorption behavior similar to that of ethylene. In addition, the saturated adsorption amount of carbon dioxide obtained from DR analysis also showed the same tendency as the ethylene adsorption amount, and it was found that C700-I-tea exhibited the maximum carbon dioxide adsorption amount of 1.96 mmol / g (Table 6 ).

2.2.2 各試料の二酸化炭素及びエチレンの吸着挙動
一般的に-196℃の窒素吸着測定では、吸着測定温度における吸着質の拡散障害のために、窒素分子が細孔内部に入ることができない。しかし、常温における吸着測定では拡散障害が少ないため、ウルトラミクロ孔の内部に吸着質分子が充填される。つまり、炭素体内に存在するウルトラミクロ孔の正しい評価には、今回の場合、二酸化炭素吸着測定が適していると言える。
2.2.2 Adsorption Behavior of Carbon Dioxide and Ethylene in Each Sample Generally, in nitrogen adsorption measurement at -196°C, nitrogen molecules may enter the pores due to the diffusion hindrance of the adsorbate at the adsorption measurement temperature. Can not. However, adsorption measurement at room temperature has little diffusion hindrance, so the interior of the ultramicropores is filled with adsorbate molecules. In other words, it can be said that the carbon dioxide adsorption measurement is suitable for the correct evaluation of the ultramicropores present in the carbon body in this case.

また、二酸化炭素の分子サイズ(0.330nm)が近いエチレン(0.390nm)は、二酸化炭素吸着を吸着した空孔に対して優位に吸着することが確認されており、セルロース炭素体ではACO2とnC2H4が良い相関関係にあることが知られている。 In addition, it has been confirmed that ethylene (0.390 nm), which has a similar molecular size to carbon dioxide (0.330 nm), preferentially adsorbs to the pores that have adsorbed carbon dioxide . and n C2H4 are known to have a good correlation.

そこで、エチレンガスの動力学的な吸着機構を検討するため、図26に各700℃炭素体のACO2とnC2H4の関係をプロットしたものを示す。図中には比較試料として、市販の微結晶セルロース(Merck製、20℃における密度1.5g/cm)を各炭素化温度で処理した炭素体、スギ炭素体、ヒノキ炭素体、市販のエチレン吸着剤の同実験値をプロットしてある。 Therefore, in order to examine the dynamic adsorption mechanism of ethylene gas, FIG. 26 shows a plot of the relationship between A CO2 and n C2H4 of each 700° C. carbon body. In the figure, as comparative samples, commercially available microcrystalline cellulose (manufactured by Merck, density 1.5 g/cm 3 at 20° C.) was treated at each carbonization temperature, cedar carbon, cypress carbon, and commercially available ethylene. The same experimental values for the adsorbent are plotted.

本研究にて得た各炭素体のACO2とnC2H4の関係性は、C700-I-coffee、C700-I-teaを除けば概ね良い線形性を示し、CO吸着をする細孔に対してC吸着が支配的であるという従来の報告を支持した結果が得られた。 The relationship between ACO2 and nC2H4 of each carbon material obtained in this study showed generally good linearity, except for C700-I-coffee and C700-I-tea. The results supported the previous report that C 2 H 4 adsorption was dominant in the

また、C700-I-teaやC700-I-barleyでは、セルロース炭素体や市販のエチレン吸着剤と非常に近い吸着量を示したことから、これらの原料中にはセルロース様の成分を多く含んでおり、それらから誘導された炭素分がエチレン吸着に優位に機能していることが示唆される。また、市販のセルロースは純度が高く原料コストも高いことから、同様の吸着特性を示した両食品廃棄物の炭化物利用(吸着剤)としての利用価値は高いと考えられる。 In addition, C700-I-tea and C700-I-barley exhibited adsorption amounts very similar to those of cellulose carbon and commercially available ethylene adsorbents, suggesting that these raw materials contain many cellulose-like components. , suggesting that the carbon content derived from them plays a dominant role in ethylene adsorption. In addition, since commercially available cellulose has a high purity and a high raw material cost, it is considered to have a high utility value as a carbonized product (adsorbent) of both food wastes that showed similar adsorption properties.

2.3 まとめ
本章では各食品廃棄物にヨウ素前処理を施した炭素体のエチレン吸着測定及び二酸化炭素吸着測定を行い、各吸着性能を比較検討した結果、以下のことが判明した。
(1)エチレン及び二酸化炭素吸着挙動はI型を示し、コーヒー炭素体を除き、ヨウ素前処理によるミクロ孔発達に対応して両吸着量は増加した。
(2)エチレン吸着量と二酸化炭素で見積もられた細孔表面積は良い線形性が見られ、特にC700-I-tea、C700-I-greenが優れたエチレン吸着性能を有することが分かった。
2.3 Summary In this chapter, ethylene adsorption measurement and carbon dioxide adsorption measurement of each food waste pretreated with iodine were carried out, and the following results were obtained as a result of comparing each adsorption performance.
(1) The adsorption behavior of ethylene and carbon dioxide showed type I, and both adsorption amounts increased with the development of micropores due to iodine pretreatment, except for coffee carbon bodies.
(2) Good linearity was observed between the ethylene adsorption capacity and the pore surface area estimated from carbon dioxide, and it was found that C700-I-tea and C700-I-green in particular had excellent ethylene adsorption performance.

図27は、別途行った未処理の場合とヨウ素前処理の場合の炭素化吸収率とミクロ孔の増加(700℃炭化品)の比較をまとめて示したグラフである。 FIG. 27 is a graph summarizing the comparison of the carbonization absorption rate and the increase in micropores (700° C. carbonized product) between the case of no treatment and the case of iodine pretreatment, which were performed separately.

Claims (3)

食品廃棄物を焼成して炭素化処理する前に、前記食品廃棄物をヨウ素によって改質することを特徴とする食品廃棄物のリサイクル方法。 A method for recycling food waste, characterized in that the food waste is reformed with iodine before the food waste is burned and carbonized. 請求項1記載の食品廃棄物のリサイクル方法において、前記ヨウ素による改質は、前記食品廃棄物にヨウ素蒸気を作用させて行うことを特徴とする食品廃棄物のリサイクル方法。 2. The method for recycling food waste according to claim 1, wherein said reforming with iodine is carried out by applying iodine vapor to said food waste. 請求項1または2記載の食品廃棄物のリサイクル方法において、前記食品廃棄物はコーヒー、麦茶、緑茶、または紅茶の何れかの飲料廃棄物であることを特徴とする食品廃棄物のリサイクル方法。
3. The method of recycling food waste according to claim 1 or 2, wherein said food waste is beverage waste such as coffee, barley tea, green tea or black tea.
JP2021024152A 2021-02-18 2021-02-18 Recycling method of food waste Pending JP2022126217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021024152A JP2022126217A (en) 2021-02-18 2021-02-18 Recycling method of food waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021024152A JP2022126217A (en) 2021-02-18 2021-02-18 Recycling method of food waste

Publications (1)

Publication Number Publication Date
JP2022126217A true JP2022126217A (en) 2022-08-30

Family

ID=83059049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021024152A Pending JP2022126217A (en) 2021-02-18 2021-02-18 Recycling method of food waste

Country Status (1)

Country Link
JP (1) JP2022126217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116880243A (en) * 2023-09-07 2023-10-13 北京大学 Distributed cleaning carbonization system based on autonomous robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116880243A (en) * 2023-09-07 2023-10-13 北京大学 Distributed cleaning carbonization system based on autonomous robot
CN116880243B (en) * 2023-09-07 2023-11-07 北京大学 Distributed cleaning carbonization system based on autonomous robot

Similar Documents

Publication Publication Date Title
Ogungbenro et al. Physical synthesis and characterization of activated carbon from date seeds for CO2 capture
Yagmur et al. A novel method for production of activated carbon from waste tea by chemical activation with microwave energy
JP5763228B2 (en) High surface area carbon and method for producing the same
Nabais et al. Production of activated carbons from coffee endocarp by CO2 and steam activation
Durán et al. Microalgae: Potential precursors of CO2 adsorbents
Arslanoğlu Direct and facile synthesis of highly porous low cost carbon from potassium-rich wine stone and their application for high-performance removal
Kopac et al. Preparation of activated carbons from Zonguldak region coals by physical and chemical activations for hydrogen sorption
Bouchelta et al. Effects of pyrolysis conditions on the porous structure development of date pits activated carbon
JP5288592B2 (en) Method for producing high specific surface area activated carbon
US5626637A (en) Low pressure methane storage with highly microporous carbons
JP6760583B2 (en) How to make activated carbon
Fiuza Jr et al. Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption
MacDonald et al. Adsorbents for methane storage made by phosphoric acid activation of peach pits
Klasson et al. Copper (II) adsorption by activated carbons from pecan shells: Effect of oxygen level during activation
KR102392508B1 (en) Carbon dioxide adsorbent using biochar, and production method of the same
KR20180125758A (en) Method for Manufacturing Biomass Adsorbent using byproducts of coffee and Biomass adsorbent
Chouikhi et al. Valorization of agricultural waste as a carbon materials for selective separation and storage of CO2, H2 and N2
Anis et al. Production of rubber seed pericarp based activated carbon using microwave-induced different chemical activating agent
JP2022126217A (en) Recycling method of food waste
RU2393111C1 (en) Method of producing microporous carbon material from lignocellulose material
CN103265028B (en) Preparation method of high-adsorptive selectivity activated carbon for separating CO2 and CH4
Thu et al. Highly microporous activated carbon from acorn nutshells and its performance in water vapor adsorption
Zhang et al. High temperature ammonia modification of rice husk char to enhance CO 2 adsorption: influence of pre-deashing
Ajayi et al. A comparative study of thermal and chemical activation of Canarium Schweinfurthii Nutshell
Al Gharibi et al. The effect of chemical activation method in the preparation of activated carbon from local phoenix dactylifera waste stems

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20210218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231204