JP2022125288A - Abnormality prediction device, abnormality prediction system, abnormality prediction method, and abnormality prediction program - Google Patents

Abnormality prediction device, abnormality prediction system, abnormality prediction method, and abnormality prediction program Download PDF

Info

Publication number
JP2022125288A
JP2022125288A JP2022109778A JP2022109778A JP2022125288A JP 2022125288 A JP2022125288 A JP 2022125288A JP 2022109778 A JP2022109778 A JP 2022109778A JP 2022109778 A JP2022109778 A JP 2022109778A JP 2022125288 A JP2022125288 A JP 2022125288A
Authority
JP
Japan
Prior art keywords
failure
machine
machine learning
output
learning model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022109778A
Other languages
Japanese (ja)
Inventor
尚吾 稲垣
Shogo Inagaki
浩 中川
Hiroshi Nakagawa
大輔 岡野原
Daisuke Okanohara
遼介 奥田
Ryosuke Okuda
叡一 松元
Eiichi Matsumoto
圭悟 河合
Keigo Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Preferred Networks Inc
Original Assignee
Fanuc Corp
Preferred Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57988307&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2022125288(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fanuc Corp, Preferred Networks Inc filed Critical Fanuc Corp
Publication of JP2022125288A publication Critical patent/JP2022125288A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • G09B25/02Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes of industrial processes; of machinery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/163Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4063Monitoring general control system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/048Fuzzy inferencing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31359Object oriented model for fault, quality control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33321Observation learning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34477Fault prediction, analyzing signal trends
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37214Detect failed machine component, machine performance degradation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50185Monitoring, detect failures, control of efficiency of machine, tool life
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/46Sensing device
    • Y10S901/47Optical

Abstract

PROBLEM TO BE SOLVED: To provide a failure prediction system capable of accurately predicting a failure according to a situation.
SOLUTION: A failure prediction system 1 comprises a machine learning device 5 which learns conditions associated with failures of industrial machinery 2. The machine learning device 5 comprises: a state observation part 52 which observes state variables, consisting of output data of a sensor 11, internal data of control software, or calculation data obtained based thereupon, while the industrial machinery 2 is in operation or at a stop; a determination data acquisition part 51 which acquires determination data representing whether the industrial machinery 2 has a failure or the degree of the failure; and a learning part 53 which learns conditions associated with failures of the industrial machinery 2 through teacher-attended learning according to a training data set generated based upon a combination of the state variables and determination data.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、故障条件を学習する機械学習方法及び機械学習装置、並びに該機械学習装置を備えた故障予知装置及び故障予知システムに関する。 The present invention relates to a machine learning method and machine learning device for learning failure conditions, and a failure prediction device and failure prediction system having the machine learning device.

産業機械では、歩留まりを向上させ又は深刻な事故の発生を防止するために、構成部品の異常を事前に検知することが求められる場合がある。例えば、センサの出力値を予め定められる閾値と比較し、その結果に基づいて異常を検知する方法が公知である。ここで、「産業機械」の文言は、産業用ロボットやコンピュータ数値制御(CNC:Computer Numerical Control)装置で制御される機械だけでなく、サービス用ロボットや様々な機械装置を含む機械を意味するものとする。 2. Description of the Related Art In industrial machinery, it is sometimes required to detect abnormalities in component parts in advance in order to improve yield or prevent occurrence of serious accidents. For example, a method of comparing the output value of a sensor with a predetermined threshold value and detecting an abnormality based on the result is known. Here, the term "industrial machine" means not only industrial robots and machines controlled by computer numerical control (CNC) devices, but also machines including service robots and various mechanical devices. and

特許文献1には、正常状態のロボットの基準動作パターンと、稼働中のロボットの動作パターンを比較して、ロボットの故障を予知する故障予知診断方法が開示されている。 Patent Literature 1 discloses a failure prediction diagnosis method for predicting failure of a robot by comparing a reference motion pattern of a robot in a normal state and a motion pattern of a robot in operation.

特許文献2には、駆動軸の実際の動作状態に基づく負荷側の仕事率と、駆動軸への動作指令に基づく駆動側の仕事率との間の差を判定値と比較することによって、ロボット機構部の劣化の有無及び劣化レベルを評価する故障予知方法が開示されている。 In Patent Document 2, by comparing the difference between the power of the load side based on the actual operation state of the drive shaft and the power of the drive side based on the operation command to the drive shaft with a judgment value, the robot A failure prediction method for evaluating the presence or absence of deterioration and the deterioration level of a mechanism is disclosed.

特開昭63-123105号公報JP-A-63-123105 特開平10-039908号公報JP-A-10-039908

しかしながら、産業機械の複雑化ないし高度化に伴って故障につながる要因も複雑化している。したがって、一定の基準に従って実行される従来の故障予知方法では、実際の状況に適用できなかったり、又は正確さを欠くことがあった。そこで、状況に応じて正確な故障予知を可能にする故障予知装置が求められている。 However, as industrial machines become more complex and sophisticated, factors leading to failures are also becoming more complex. Therefore, the conventional failure prediction method, which is performed according to a certain standard, may not be applicable to actual situations or may lack accuracy. Therefore, there is a demand for a failure prediction device that enables accurate failure prediction depending on the situation.

本願の1番目の発明によれば、産業機械の故障に関連付けられる条件を学習する機械学習装置であって、前記産業機械又は周囲環境の状態を検出するセンサの出力データ、前記産業機械を制御する制御ソフトウェアの内部データ、及び、前記出力データ又は前記内部データに基づいて得られる計算データの少なくとも1つを含む状態変数を前記産業機械の動作中又は静止中に観測する状態観測部と、前記産業機械の故障の有無又は故障の度合いを表す判定データを取得する判定データ取得部と、前記状態変数及び前記判定データの組合せに基づいて作成される訓練データセットに従って、前記産業機械の故障に関連付けられる条件を教師あり学習によって学習する学習部と、を備える機械学習装置が提供される。
本願の2番目の発明によれば、産業機械の故障に関連付けられる条件を学習する機械学習装置であって、前記産業機械又は周囲環境の状態を検出するセンサの出力データ、前記産業機械を制御する制御ソフトウェアの内部データ、及び、前記出力データ又は前記内部データに基づいて得られる計算データの少なくとも1つを含む状態変数を前記産業機械の動作中又は静止中に観測する状態観測部と、前記産業機械の故障の有無又は故障の度合いを表す判定データを取得する判定データ取得部と、前記状態変数及び前記判定データの組合せに基づいて作成される訓練データセットに従って、前記産業機械の故障に関連付けられる条件を教師なし学習によって学習する学習部と、を備える機械学習装置が提供される。
本願の3番目の発明によれば、1番目又は2番目の発明に係る機械学習装置において、前記学習部は、複数の産業機械に対して作成される前記訓練データセットに従って、前記条件を学習するように構成される。
本願の4番目の発明によれば、1番目から3番目のいずれかの発明に係る機械学習装置において、前記学習部は、ある一定期間のみで正常状態を学習し、その後は、前記判定データ取得部による故障発生を検知するように構成される。
本願の5番目の発明によれば、1番目から4番目のいずれかの発明に係る機械学習装置において、前記学習部は、前記判定データ取得部が、前記産業機械の故障を表す判定データを取得したときに、前記訓練データセットに含まれる前記判定データを、故障発生時から前記判定データの取得時まで遡った時間の長さに応じて重み付けして前記条件を更新するように構成される。
本願の6番目の発明によれば、1番目から5番目のいずれかの発明に係る機械学習装置を備えた、前記産業機械の故障を予知する故障予知装置であって、前記学習部が前記訓練データセットに従って学習した結果に基づいて、現在の前記状態変数の入力に応答して、前記産業機械の故障の有無又は故障の度合いを表す故障情報を出力する故障情報出力部をさらに備える、故障予知装置が提供される。
本願の7番目の発明によれば、6番目の発明に係る故障予知装置において、前記学習部は、前記現在の状態変数及び前記判定データの組合せに基づいて作成される追加の訓練データセットに従って、前記条件を再学習するように構成される。
本願の8番目の発明によれば、6番目又は7番目の発明に係る故障予知装置において、前記機械学習装置がネットワークを介して前記産業機械に接続され、前記状態観測部は、前記ネットワークを介して、前記現在の状態変数を取得するように構成される。
本願の9番目の発明によれば、8番目の発明に係る故障予知装置において、前記機械学習装置は、クラウドサーバ上に存在する。
本願の10番目の発明によれば、6番目から8番目のいずれかの発明に係る故障予知装置において、前記機械学習装置は、前記産業機械を制御する制御装置に内蔵されている。
本願の11番目の発明によれば、6番目から10番目のいずれかの発明に係る故障予知装置において、前記機械学習装置による学習結果は、複数の前記産業機械で共用される。
本願の12番目の発明によれば、6番目から11番目のいずれかの発明に係る故障予知装置と、前記出力データを出力するセンサと、前記故障情報をオペレータに通知する故障情報通知部と、を備える故障予知システムが提供される。
本願の13番目の発明によれば、12番目の発明に係る故障予知システムにおいて、前記故障情報通知部で前記故障情報がオペレータに通知される時期は、故障が発生する時期から遡って第1の所定期間で定められる時期より前である。
本願の14番目の発明によれば、13番目の発明に係る故障予知システムにおいて、前記故障情報通知部で前記故障情報がオペレータに通知される時期は、故障が発生する時期から遡って第1の所定期間で定められる時期より前であり、かつ、故障が発生する時期から遡って、前記第1の所定期間よりも長い第2の所定期間で定められる時期より後である。
本願の15番目の発明によれば、産業機械の故障に関連付けられる条件を学習する機械学習方法であって、前記産業機械又は周囲環境の状態を検出するセンサの出力データ、前記産業機械を制御する制御ソフトウェアの内部データ、及び、前記出力データ又は前記内部データに基づいて得られる計算データの少なくとも1つを含む状態変数を前記産業機械の動作中又は静止中に観測し、前記産業機械の故障の有無又は故障の度合いを表す判定データを取得し、前記状態変数及び前記判定データの組合せに基づいて作成される訓練データセットに従って、前記産業機械の故障に関連付けられる条件を教師あり学習によって学習する機械学習方法が提供される。
本願の16番目の発明によれば、産業機械の故障に関連付けられる条件を学習する機械学習方法であって、前記産業機械又は周囲環境の状態を検出するセンサの出力データ、前記産業機械を制御する制御ソフトウェアの内部データ、及び、前記出力データ又は前記内部データに基づいて得られる計算データの少なくとも1つを含む状態変数を前記産業機械の動作中又は静止中に観測し、前記産業機械の故障の有無又は故障の度合いを表す判定データを取得し、前記状態変数及び前記判定データの組合せに基づいて作成される訓練データセットに従って、前記産業機械の故障に関連付けられる条件を教師なし学習によって学習する機械学習方法が提供される。
According to a first invention of the present application, a machine learning device that learns conditions associated with a failure of an industrial machine, comprising: output data of a sensor that detects the state of the industrial machine or the surrounding environment; a state observation unit that observes a state variable including at least one of internal data of control software and calculated data obtained based on the output data or the internal data while the industrial machine is operating or stationary; A determination data acquisition unit that acquires determination data representing the presence or absence of a failure or the degree of failure of the machine; and a training data set that is created based on a combination of the state variables and the determination data. A learning unit that learns conditions by supervised learning is provided.
According to a second aspect of the present invention, there is provided a machine learning device that learns conditions associated with a failure of an industrial machine, comprising output data of a sensor that detects the state of the industrial machine or the surrounding environment, and controlling the industrial machine. a state observation unit that observes a state variable including at least one of internal data of control software and calculated data obtained based on the output data or the internal data while the industrial machine is operating or stationary; A determination data acquisition unit that acquires determination data representing the presence or absence of a failure or the degree of failure of the machine; and a training data set that is created based on a combination of the state variables and the determination data. and a learning unit that learns the conditions by unsupervised learning.
According to a third invention of the present application, in the machine learning device according to the first or second invention, the learning unit learns the conditions according to the training data set created for a plurality of industrial machines. configured as
According to a fourth invention of the present application, in the machine learning device according to any one of the first to third inventions, the learning unit learns the normal state only for a certain period of time, and then obtains the determination data. It is configured to detect occurrence of failure by the unit.
According to a fifth invention of the present application, in the machine learning device according to any one of the first to fourth inventions, the learning unit acquires judgment data representing a failure of the industrial machine. Then, the condition is updated by weighting the judgment data included in the training data set according to the length of time that goes back from the occurrence of the failure to the acquisition of the judgment data.
According to a sixth invention of the present application, there is provided a failure prediction device for predicting a failure of the industrial machine, comprising the machine learning device according to any one of the first to fifth inventions, wherein the learning unit performs the training A failure prediction, further comprising a failure information output unit that outputs failure information representing the presence or absence of failure or the degree of failure of the industrial machine in response to the current input of the state variable based on the result of learning according to the data set. An apparatus is provided.
According to a seventh invention of the present application, in the failure prediction device according to the sixth invention, the learning unit, according to an additional training data set created based on the combination of the current state variables and the judgment data, configured to relearn the conditions;
According to an eighth invention of the present application, in the failure prediction device according to the sixth or seventh invention, the machine learning device is connected to the industrial machine via a network, and the state observation unit is connected to the industrial machine via the network to obtain the current state variable.
According to a ninth invention of the present application, in the failure prediction device according to the eighth invention, the machine learning device resides on a cloud server.
According to a tenth invention of the present application, in the failure prediction device according to any one of the sixth to eighth inventions, the machine learning device is built in a control device that controls the industrial machine.
According to the eleventh invention of the present application, in the failure prediction device according to any one of the sixth to tenth inventions, the learning result by the machine learning device is shared by the plurality of industrial machines.
According to a twelfth invention of the present application, a failure prediction device according to any one of the sixth to eleventh inventions, a sensor that outputs the output data, a failure information notification unit that notifies an operator of the failure information, A failure prediction system is provided.
According to a thirteenth invention of the present application, in the failure prediction system according to the twelfth invention, the time at which the failure information notifying unit notifies the operator of the failure information is the first time period retroactively from the time when the failure occurs. It is before the time defined by the predetermined period.
According to a fourteenth invention of the present application, in the failure prediction system according to the thirteenth invention, the time at which the failure information notifying unit notifies the operator of the failure information is the first time period retroactively from the time when the failure occurs. It is before the time determined by the predetermined period and after the time determined by the second predetermined period, which is longer than the first predetermined period, retroactively from the time when the failure occurs.
According to a fifteenth invention of the present application, there is provided a machine learning method for learning a condition associated with a failure of an industrial machine, comprising: output data of a sensor that detects the state of the industrial machine or the surrounding environment; A state variable including at least one of internal data of the control software and the output data or calculated data obtained based on the internal data is observed while the industrial machine is in operation or at rest to detect a failure of the industrial machine. A machine that acquires judgment data representing the presence or absence or degree of failure, and learns conditions associated with the failure of the industrial machine by supervised learning according to a training data set created based on the combination of the state variables and the judgment data. A learning method is provided.
According to a sixteenth invention of the present application, there is provided a machine learning method for learning a condition associated with a failure of an industrial machine, comprising: output data of a sensor that detects the state of the industrial machine or the surrounding environment; A state variable including at least one of internal data of the control software and the output data or calculated data obtained based on the internal data is observed while the industrial machine is in operation or at rest to detect a failure of the industrial machine. A machine that acquires judgment data representing the presence or absence or degree of failure, and learns conditions associated with the failure of the industrial machine by unsupervised learning according to a training data set created based on the combination of the state variables and the judgment data. A learning method is provided.

これら及び他の本発明の目的、特徴及び利点は、添付図面に示される本発明の例示的な実施形態に係る詳細な説明を参照することによって、より明らかになるであろう。 These and other objects, features and advantages of the present invention will become more apparent by reference to the detailed description of the exemplary embodiments of the invention illustrated in the accompanying drawings.

本発明に係る機械学習装置及び機械学習方法は、状態変数及び判定データの組合せに基づいて作成される訓練データセットに従って、産業機械の故障に関連付けられる条件を学習する。産業機械を実際に動作させながら故障条件を学習するので、実際の使用状況に応じた正確な故障条件が学習される。また、本発明に係る故障予知装置及び故障予知システムによれば、故障条件を機械学習できる機械学習装置を備えているので、実際の使用状況に応じた正確な故障予知が可能になる。 A machine learning device and a machine learning method according to the present invention learn conditions associated with industrial machine failures according to a training data set created based on a combination of state variables and decision data. Since failure conditions are learned while the industrial machine is actually operated, accurate failure conditions are learned according to actual usage conditions. Further, according to the failure prediction device and the failure prediction system according to the present invention, since a machine learning device capable of machine learning of failure conditions is provided, accurate failure prediction according to actual usage conditions is possible.

図1は、一実施形態に係る故障予知システムの一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a failure prediction system according to one embodiment. 図2は、機械学習装置における学習過程の流れの一例を示すフローチャートである。FIG. 2 is a flow chart showing an example of the flow of the learning process in the machine learning device. 図3は、ニューラルネットワークの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of a neural network. 図4は、教師なしの学習の手法における学習期間の一例を説明するための図である。FIG. 4 is a diagram for explaining an example of a learning period in an unsupervised learning method. 図5は、リカレント型ニューラルネットワークの一例を説明するための図である。FIG. 5 is a diagram for explaining an example of a recurrent neural network. 図6は、他の実施形態に係る故障予知システムの一例を示すブロック図である。FIG. 6 is a block diagram showing an example of a failure prediction system according to another embodiment. 図7は、実施形態に係る故障予知システムにおける故障の度合いを示す指標値の例を説明するための図(その1)である。FIG. 7 is a diagram (Part 1) for explaining an example of an index value indicating the degree of failure in the failure prediction system according to the embodiment; 図8は、実施形態に係る故障予知システムにおける故障の度合いを示す指標値の例を説明するための図(その2)である。FIG. 8 is a diagram (part 2) for explaining an example of an index value indicating the degree of failure in the failure prediction system according to the embodiment; 図9は、学習結果を利用した故障予知の流れの一例を示すフローチャートである。FIG. 9 is a flow chart showing an example of the flow of failure prediction using learning results.

以下、添付図面を参照して、本発明に係る機械学習方法及び機械学習装置、並びに該機械学習装置を備えた故障予知装置及び故障予知システムの実施形態を説明する。図示される実施形態の構成要素は、本発明の理解を助けるために縮尺が適宜変更されている。また、同一又は対応する構成要素には、同一の参照符号が使用される。 EMBODIMENT OF THE INVENTION Hereafter, with reference to an accompanying drawing, embodiment of the machine-learning method and machine-learning apparatus based on this invention, and the failure prediction apparatus and failure prediction system provided with this machine-learning apparatus is described. Components of the illustrated embodiments have been arbitrarily scaled to aid understanding of the invention. Also, the same reference numerals are used for the same or corresponding components.

図1は、一実施形態に係る故障予知システムの一例を示すブロック図である。故障予知システム1は、機械学習機能を有する機械学習装置5を用いて産業機械の故障に関連付けられる条件(以下、「故障条件」と称することがある。)を学習することができる。また、故障予知システム1は、機械学習装置5が学習した結果に基づいて、産業機械及びその周囲環境の状態に応じた故障情報を作成することができる。 FIG. 1 is a block diagram showing an example of a failure prediction system according to one embodiment. The failure prediction system 1 can learn conditions associated with failures of industrial machines (hereinafter sometimes referred to as "failure conditions") using a machine learning device 5 having a machine learning function. Further, the failure prediction system 1 can create failure information according to the state of the industrial machine and its surrounding environment based on the results learned by the machine learning device 5 .

本明細書において、「産業機械」は、産業用ロボット、サービス用ロボット及びコンピュータ数値制御(CNC)装置で制御される機械を含む様々な機械を意味するものとする。また、本明細書において、「産業機械の故障」は、産業機械の構成部品の故障を含んでいる。すなわち、「産業機械の故障」は、意図される産業機械の機能を実行できない状態に限定されず、例えば、正常時の動作を一時的又は恒久的に再現できないといった状態も含むものとする。 As used herein, "industrial machine" shall mean a variety of machines, including industrial robots, service robots, and machines controlled by computer numerical control (CNC) devices. Further, in this specification, "failure of industrial machinery" includes failure of components of the industrial machinery. In other words, "failure of industrial machine" is not limited to a state in which the intended functions of the industrial machine cannot be performed, and includes, for example, a state in which normal operation cannot be reproduced temporarily or permanently.

故障予知システム1によって作成される「故障情報」は、産業機械の故障の有無を表す情報又は「故障の度合い」を表す情報を含んでいる。「故障情報」は、産業機械が正常な状態であることを表す情報を含んでいてもよい。「故障の度合い」は、故障の深刻さを意味する。「故障の度合い」は、最大値又は最小値のいずれか一方が制限されていてもよい。「故障の度合い」は、連続量であっても離散量であってもよい。オペレータは、「故障の度合い」に応じて、対象の構成部品の交換又は修理を直ちに行うべきか、或いは次回の保守作業時に行うべきかを判断することができる。 The "failure information" created by the failure prediction system 1 includes information representing the presence or absence of a failure in the industrial machine or information representing the "degree of failure". "Failure information" may include information indicating that the industrial machine is in a normal state. "Failure degree" means the seriousness of the failure. The "degree of failure" may be limited to either a maximum value or a minimum value. The "degree of failure" may be a continuous quantity or a discrete quantity. The operator can determine whether the target component should be replaced or repaired immediately or at the time of the next maintenance work, depending on the "degree of failure".

以下の説明では、ロボット2の故障を予知するために使用される故障予知システム1について説明する。しかしながら、他の任意の産業機械に対しても本発明を同様に適用できることを当業者は認識するであろう。 In the following description, the failure prediction system 1 used to predict failure of the robot 2 will be described. However, those skilled in the art will recognize that the invention is equally applicable to any other industrial machine.

図1に例示されるロボット2は、モータによって各々の関節が駆動される6軸垂直多関節ロボットである。ロボット2は、公知の通信手段によってロボット制御装置3に接続されている。ロボット制御装置3は、制御プログラムに従ってロボット2に対する指令を作成する。 The robot 2 illustrated in FIG. 1 is a 6-axis vertical articulated robot in which each joint is driven by a motor. The robot 2 is connected to the robot controller 3 by known communication means. The robot control device 3 creates commands for the robot 2 according to the control program.

ロボット制御装置3は、CPU、ROM、RAM、不揮発性メモリ及び外部装置に接続されるインタフェースを備えたデジタルコンピュータである。ロボット制御装置3は、図1に示されるように、故障判定部31を備えている。 The robot control device 3 is a digital computer having a CPU, ROM, RAM, nonvolatile memory, and an interface connected to an external device. The robot control device 3 includes a failure determination section 31 as shown in FIG.

故障判定部31は、公知の故障診断方法を利用してロボット2の故障を判定する。故障判定部31は、故障予知システム1によって作成される故障情報とは独立して、ロボット2の故障の有無又は故障の度合いを判定する。例えば、トルクセンサによって検出される外乱トルク、或いはセンサの出力データの振動の振幅が予め定められる閾値を超えたときに、故障判定部31は、故障が発生したと判定する。或いは、故障判定部31は、ロボット制御装置3に格納された制御ソフトウェアの内部データに基づいて、ロボット2の故障が発生したと判定してもよい。このように、故障判定部31は、様々な要因に基づく故障を判定する。なお、故障判定部31による判定結果は、後述する機械学習装置5の判定データ取得部51に入力される。 The failure determination unit 31 determines failure of the robot 2 using a known failure diagnosis method. The failure determination unit 31 determines whether or not there is a failure in the robot 2 or the degree of failure independently of the failure information created by the failure prediction system 1 . For example, when the disturbance torque detected by the torque sensor or the amplitude of vibration of the output data of the sensor exceeds a predetermined threshold value, the failure determination unit 31 determines that a failure has occurred. Alternatively, the failure determination unit 31 may determine that a failure has occurred in the robot 2 based on internal data of control software stored in the robot control device 3 . In this way, the failure determination unit 31 determines failures based on various factors. The determination result by the failure determination unit 31 is input to the determination data acquisition unit 51 of the machine learning device 5, which will be described later.

別の実施形態において、機械学習装置5は、ロボット2の故障を発見し、或いは知得したオペレータの入力操作に応答して、故障情報が判定データ取得部51に入力されるように構成されていてもよい。 In another embodiment, the machine learning device 5 is configured to input failure information to the determination data acquisition unit 51 in response to an input operation by an operator who has discovered or learned a failure of the robot 2 . may

故障予知システム1は、ロボット2又は周囲環境の状態を検出するセンサ11をさらに備えている。センサ11は、力センサ、トルクセンサ、振動センサ、集音センサ、撮像センサ、距離センサ、温度センサ、湿度センサ、流量センサ、光量センサ、pHセンサ、圧力センサ、粘度センサ及び臭気センサの少なくともいずれか1つを含んでいてもよい。センサ11から出力されるデータ(以下、単に「出力データ」と称することがある。)は、機械学習装置5の状態観測部52に入力される。 The failure prediction system 1 further includes a sensor 11 that detects the state of the robot 2 or the surrounding environment. The sensor 11 is at least one of a force sensor, a torque sensor, a vibration sensor, a sound collection sensor, an imaging sensor, a distance sensor, a temperature sensor, a humidity sensor, a flow rate sensor, a light amount sensor, a pH sensor, a pressure sensor, a viscosity sensor, and an odor sensor. may contain one. Data output from the sensor 11 (hereinafter sometimes simply referred to as “output data”) is input to the state observation unit 52 of the machine learning device 5 .

機械学習装置5は、ロボット2の故障条件を学習する。一実施形態において、機械学習装置5は、ネットワークを介してロボット2に接続されていてロボット制御装置3とは別個のデジタルコンピュータであってもよい。 The machine learning device 5 learns failure conditions of the robot 2 . In one embodiment, machine learning device 5 may be a digital computer connected to robot 2 via a network and separate from robot controller 3 .

別の実施形態において、機械学習装置5は、ロボット制御装置3に内蔵されていてもよい。その場合、機械学習装置5は、ロボット制御装置3のプロセッサを利用して機械学習を実行する。また別の実施形態において、機械学習装置5は、クラウドサーバ上に存在していてもよい。 In another embodiment, the machine learning device 5 may be built into the robot controller 3. In that case, the machine learning device 5 uses the processor of the robot control device 3 to perform machine learning. In yet another embodiment, machine learning device 5 may reside on a cloud server.

図1に示されるように、機械学習装置5は、判定データ取得部51と、状態観測部52と、学習部53と、を備えている。 As shown in FIG. 1 , the machine learning device 5 includes a determination data acquisition section 51 , a state observation section 52 and a learning section 53 .

判定データ取得部51は、故障判定部31から判定データを取得する。判定データは、判定データ取得部51から学習部53に入力され、機械学習装置5が故障条件を学習する際に使用される。判定データは、故障の有無又は故障の度合いを判定したデータである。判定データは、故障有りの場合、すなわちロボット2が異常な状態にあることを表すデータを含んでいなくてもよい。 The determination data acquisition unit 51 acquires determination data from the failure determination unit 31 . The determination data is input from the determination data acquisition unit 51 to the learning unit 53 and used when the machine learning device 5 learns the failure condition. The judgment data is data obtained by judging the presence or absence of failure or the degree of failure. The determination data does not have to include data indicating that there is a failure, that is, that the robot 2 is in an abnormal state.

状態観測部52は、機械学習の入力値としての状態変数をロボット2の動作中又は静止中に観測する。機械学習装置5がネットワークを介してロボット2及びセンサ11に接続されている実施形態において、状態観測部52は、ネットワークを介して状態変数を取得する。 The state observation unit 52 observes state variables as input values for machine learning while the robot 2 is in motion or at rest. In an embodiment in which the machine learning device 5 is connected to the robot 2 and the sensor 11 via a network, the state observer 52 acquires state variables via the network.

状態変数は、センサ11の出力データを含んでいてもよい。状態変数は、ロボット2を制御する制御ソフトウェアの内部データを含んでいてもよい。内部データは、トルク、位置、速度、加速度、加加速度、電流、電圧及び推定外乱値のうちの少なくともいずれか1つを含んでいてもよい。推定外乱値は、例えば、トルク指令及び速度フィードバックに基づいてオブザーバによって推定される外乱値である。 State variables may include sensor 11 output data. State variables may include internal data of the control software that controls the robot 2 . The internal data may include at least one of torque, position, velocity, acceleration, jerk, current, voltage and estimated disturbance value. The estimated disturbance value is, for example, a disturbance value estimated by an observer based on the torque command and speed feedback.

状態変数は、出力データ又は内部データに基づいて得られる計算データを含んでいてもよい。計算データは、周波数解析、時間周波数解析及び自己相関解析のうちの少なくとも1つを利用して取得されてもよい。当然ながら、計算データは、より単純な計算、例えば係数乗算又は微分積分演算を利用して取得されてもよい。 State variables may include calculated data obtained based on output data or internal data. The calculated data may be obtained using at least one of frequency analysis, time-frequency analysis and autocorrelation analysis. Of course, the calculated data may also be obtained using simpler calculations, such as coefficient multiplication or calculus operations.

学習部53は、状態観測部52から出力される状態変数、及び判定データ取得部51から出力される判定データの組合せに基づいて作成される訓練データセットに従って、故障条件を学習する。訓練データセットは、状態変数及び判定データを互いに関連付けたデータである。 The learning unit 53 learns failure conditions according to a training data set created based on a combination of state variables output from the state observation unit 52 and determination data output from the determination data acquisition unit 51 . A training data set is data in which state variables and decision data are associated with each other.

図2を参照して、機械学習装置5における学習過程の一例について説明する。学習が開始されると、ステップS201において、状態観測部52が、出力データ、内部データ又は計算データなどを含む状態変数を取得する。ステップS202では、判定データ取得部51が、故障判定部31による判定結果に基づいて判定データを取得する。 An example of the learning process in the machine learning device 5 will be described with reference to FIG. When learning is started, in step S201, the state observation unit 52 acquires state variables including output data, internal data, calculation data, and the like. In step S<b>202 , the determination data acquisition unit 51 acquires determination data based on the determination result by the failure determination unit 31 .

ステップS203では、学習部53が、ステップS201で取得された状態変数と、ステップS202で取得された判定データと、の組合せに基づいて作成される訓練データセットに従って、故障条件を学習する。ステップS201~S203の処理は、機械学習装置5が故障条件を十分に学習するまで繰返し実行される。 In step S203, the learning unit 53 learns failure conditions according to a training data set created based on a combination of the state variables obtained in step S201 and the determination data obtained in step S202. The processing of steps S201 to S203 is repeatedly executed until the machine learning device 5 has sufficiently learned the failure condition.

一実施形態において、機械学習装置5の学習部53は、ニューラルネットワークモデルに従って故障条件を学習してもよい。図3は、ニューラルネットワークモデルの例を示している。ニューラルネットワークは、l個のニューロンx1、x2、x3、・・・、xlを含む入力層と、m個のニューロンy1、y2、y3、・・・、ymを含む中間層(隠れ層)と、n個のニューロンz1、z2、z3、・・・、znを含む出力層と、から構成されている。なお、図3において、中間層は、1層のみ示されているものの、2層以上の中間層が設けられてもよい。なお、機械学習装置5(ニューラルネット)は、汎用の計算機若しくはプロセッサを用いてもよいが、GPGPU(General-Purpose computing on Graphics Processing Units)や大規模PCクラスターなどを適用すると、より高速に処理することが可能である。 In one embodiment, the learning unit 53 of the machine learning device 5 may learn fault conditions according to a neural network model. FIG. 3 shows an example of a neural network model. The neural network includes an input layer containing l neurons x1, x2, x3 , ..., xl and m neurons y1 , y2 , y3, ..., ym . It consists of an intermediate layer (hidden layer) and an output layer containing n neurons z 1 , z 2 , z 3 , . . . , z n . Although only one intermediate layer is shown in FIG. 3, two or more intermediate layers may be provided. The machine learning device 5 (neural network) may use a general-purpose computer or processor, but if a GPGPU (General-Purpose computing on Graphics Processing Units) or a large-scale PC cluster is applied, the processing will be faster. It is possible.

ニューラルネットワークは、ロボット2の故障に関連付けられる故障条件を学習する。ニューラルネットワークは、状態観測部52によって観測される状態変数と、判定データ取得部51によって取得される判定データとの組合せに基づいて作成される訓練データセットに従って、いわゆる教師あり学習によって、状態変数と故障発生との関係性、すなわち故障条件を学習する。教師あり学習とは、ある入力と結果(ラベル)のデータの組を大量に学習装置に与えることで、それらのデータセットにある特徴を学習し、入力から結果を推定するモデル、すなわちその関係性を帰納的に獲得することができるというものである。 The neural network learns fault conditions associated with robot 2 failures. The neural network performs so-called supervised learning according to a training data set created based on a combination of the state variables observed by the state observation unit 52 and the judgment data acquired by the judgment data acquisition unit 51. It learns the relationship with failure occurrence, that is, failure conditions. Supervised learning is a model that gives a large amount of data pairs of certain inputs and results (labels) to a learning device, learns the features in those data sets, and estimates the result from the input, that is, the relationship can be obtained inductively.

或いは、ニューラルネットワークは、故障無しの状態、すなわちロボット2が正常に動作しているときの状態変数のみを蓄積し、いわゆる教師なし学習によって、故障条件を学習することもできる。例えば、ロボット2の故障の頻度が極めて低い場合、教師なし学習の手法が有効であろう。教師なし学習とは、入力データのみを大量に学習装置に与えることで、入力データがどのような分布をしているか学習し、対応する教師出力データを与えなくても、入力データに対して圧縮・分類・整形などを行う装置を学習する手法である。それらのデータセットにある特徴を似た者どうしにクラスタリングすることなどができる。この結果を使って、何らかの基準を設けてそれを最適にするような出力の割り当てを行うことで、出力の予測を実現することできる。また、教師なし学習と教師あり学習との中間的な問題設定として、半教師あり学習と呼ばれるものもあり、これは一部のみ入力と出力のデータの組が存在し、それ以外は入力のみのデータである場合がこれに当たる。 Alternatively, the neural network can store only the state variables in the fault-free state, ie when the robot 2 is operating normally, and learn fault conditions by so-called unsupervised learning. For example, if the failure frequency of the robot 2 is extremely low, an unsupervised learning technique would be effective. In unsupervised learning, by giving only a large amount of input data to the learning device, it learns what kind of distribution the input data has, and compresses the input data without giving the corresponding supervised output data.・It is a method for learning a device that performs classification and shaping. Features in those datasets can be clustered against similar ones, and so on. Using this result, it is possible to realize output prediction by setting some criteria and assigning outputs so as to optimize them. In addition, as an intermediate problem setting between unsupervised learning and supervised learning, there is also what is called semi-supervised learning. This is the case for data.

図4は、教師なしの学習の手法における学習期間の一例を説明するための図である。ここで、横軸は、時間(時間の経過)を示し、縦軸は、故障の度合いを示す。図4に示されるように、上記の教師なしの学習の手法は、ロボット2が、出荷された直後もしくはメンテナンスされた直後などを起点としてある一定期間、例えば、数週間などを学習期間として、このときのみ状態変数を更新し、正常状態として定義する。そして、その後は状態変数の更新を行わず、ニューラルネットワークから出力される出力結果から正常モデルからの距離をもとに「故障の度合い」を出力して異常判定のみを行うことによって、異常検知を行うことを実現できる。 FIG. 4 is a diagram for explaining an example of a learning period in an unsupervised learning method. Here, the horizontal axis indicates time (passage of time), and the vertical axis indicates the degree of failure. As shown in FIG. 4, the above-described unsupervised learning method sets a certain period of time, for example, several weeks, as a learning period starting immediately after the robot 2 is shipped or immediately after maintenance. Update the state variable only when it is defined as a normal state. After that, the state variables are not updated, and the "degree of failure" is output based on the distance from the normal model from the output result of the neural network. You can do what you do.

また、本実施形態においては、例えば、時間的相関がある時系列データをモデル化するため、リカレント型と呼ばれるニューラルネットワークを使用するのも有効である。リカレントニューラルネットワーク(RNN:Recurrent Neural Network)は、現時刻だけの状態のみを使って学習モデルを形成するのではなく、これまでの時刻の内部状態も利用する。リカレントニューラルネットワークは時間軸のネットワークを展開して考えることで、一般的なニューラルネットワークと同様に扱うことができる。ここで、リカレントニューラルネットワークも多種あるが、一例として、単純再帰型ネットワーク(エルマンネットワーク:Elman Network)を説明する。 In addition, in this embodiment, it is also effective to use a neural network called a recurrent type, for example, in order to model time-series data with temporal correlation. Recurrent Neural Networks (RNNs) do not use only the state of the current time to form a learning model, but also use internal states of previous times. A recurrent neural network can be treated in the same way as a general neural network by expanding the network on the time axis. Here, although there are many types of recurrent neural networks, a simple recurrent network (Elman network) will be described as an example.

図5は、リカレント型ニューラルネットワークの一例を説明するための図であり、図5(a)は、エルマンネットワークの時間軸展開を示し、図5(b)は、誤差逆伝播法(バックプロパゲーション:Backpropagation)のバックプロパゲーションタイムスルータイム(BPTT:Back Propagation Through Time)を示す。ここで、図5(a)に示されるようなエルマンネットワークの構造であれば、バックプロパゲーションを適用することができる。 FIG. 5 is a diagram for explaining an example of a recurrent neural network, FIG. 5(a) shows the time axis expansion of the Ellman network, and FIG. : Backpropagation) indicates the back propagation time through time (BPTT: Back Propagation Through Time). Here, back propagation can be applied to the structure of the Ellman network as shown in FIG. 5(a).

ただし、エルマンネットワークでは、通常のニューラルネットワークと異なり、図5(b)に示されるように、時間を遡るように誤差が伝搬し、このようなバックプロパゲーションをバックプロパゲーションスルータイム(BPTT)と呼ぶ。このようなニューラルネットワーク構造を適用することで、これまでの入力の遷移を踏まえた出力のモデルを推定することができ、例えば、その推定される出力値が、ある異常値であるかどうかを故障発生との関係性に使うことが可能になる。 However, in the Ellmann network, unlike a normal neural network, as shown in FIG. call. By applying such a neural network structure, it is possible to estimate an output model based on the transition of the input so far. Can be used in relation to occurrence.

後述する故障予知を行う際、ニューラルネットワークの入力層に入力される状態変数に応答して、出力層が前述の故障情報に対応する故障の有無を表す情報又は「故障の度合い」を出力する。なお、「故障の度合い」の取り得る値は、最大値・最小値のいずれかが制限された値、或いは、連続量、もしくは離散量であってもよい。 When performing failure prediction, which will be described later, in response to state variables input to the input layer of the neural network, the output layer outputs information indicating whether or not there is a failure corresponding to the above-described failure information, or "degree of failure." It should be noted that the possible values of the "degree of failure" may be either a limited maximum or minimum value, a continuous amount, or a discrete amount.

前述した実施形態に係る機械学習装置及び機械学習方法によれば、判定データ取得部51から出力される判定データによる故障条件よりも実際の使用状況に応じた正確な故障条件を学習できる。それにより、故障につながる要因が複雑であり、故障条件を予め設定するのが困難な場合であっても、高い精度の故障予知が可能になる。 According to the machine learning device and the machine learning method according to the above-described embodiments, it is possible to learn more accurate failure conditions according to the actual usage conditions than failure conditions based on the determination data output from the determination data acquisition unit 51 . As a result, even if the factors leading to failure are complicated and it is difficult to set failure conditions in advance, highly accurate failure prediction is possible.

一実施形態において、判定データ取得部51がロボット2の故障を表す判定データを取得したときに、学習部53が、判定データを、故障発生時から各々の判定データの取得時まで遡った時間の長さに応じて、それぞれ重み付けして故障条件を更新するようにしてもよい。ここで、判定データを取得してから故障が実際に発生するまでの時間が短ければ短いほど、故障発生に直結する状態に近いことが推定される。したがって、訓練データセット取得時からの経過時間に応じて判定データを重み付けすれば、故障条件を効果的に学習することができる。 In one embodiment, when the determination data acquisition unit 51 acquires the determination data representing the failure of the robot 2, the learning unit 53 acquires the determination data from the time of occurrence of the failure to the acquisition of each determination data. The fault conditions may be updated by weighting them according to their length. Here, it is presumed that the shorter the time from acquisition of determination data to the actual occurrence of a failure, the closer to a state directly linked to the occurrence of the failure. Therefore, by weighting the determination data according to the elapsed time from the acquisition of the training data set, the failure condition can be effectively learned.

一実施形態において、学習部53は、複数のロボット2に対して作成される訓練データセットに従って、故障条件を学習するようにしてもよい。なお、学習部53は、同一の現場で使用される複数のロボット2から訓練データセットを取得してもよいし、或いは、異なる現場で独立して稼働する複数のロボット2から収集される訓練データセットを利用して故障条件を学習してもよい。また、訓練データセットを収集するロボット2を途中で対象に追加し、或いは、逆に対象から除去することもできる。 In one embodiment, the learning unit 53 may learn fault conditions according to training data sets created for multiple robots 2 . Note that the learning unit 53 may acquire training data sets from a plurality of robots 2 used at the same site, or training data collected from a plurality of robots 2 operating independently at different sites. A set may be used to learn fault conditions. Also, the robot 2 that collects the training data set can be added to the target along the way, or conversely removed from the target.

次に、複数のロボット2の訓練データセットを共有(共用)する方法として、以下に3つの例を挙げるが、それ以外の方法を適用することができるのはいうまでもない。まず、第1の例としては、ニューラルネットワークのモデルを同じになるように共有する方法であり、例えば、ネットワークの各重み係数について、各ロボット2間の差分を、通信手段を用いて送信して反映させるものである。また、第2の例としては、ニューラルネットワークの入力と出力のデータセットを共有することにより、学習装置5の重みなどを共有することができる。さらに、第3の例としては、あるデータベースを用意し、それにアクセスしてより妥当なニューラルネットワークのモデルをロードすることで状態を共有する(同じようなモデルとする)ものである。 Next, the following three examples will be given as methods for sharing (sharing) training data sets for a plurality of robots 2, but it goes without saying that other methods can be applied. First, as a first example, there is a method of sharing neural network models so that they are the same. It should be reflected. As a second example, the weights of the learning device 5 can be shared by sharing the input and output data sets of the neural network. Furthermore, as a third example, a certain database is prepared, accessed and a more appropriate neural network model is loaded to share the state (similar model).

図6は、他の実施形態に係る故障予知システムの一例を示すブロック図である。故障予知システム1は、機械学習装置5によって学習された結果を利用して、ロボット2の故障情報を作成する故障予知装置4を備えている。 FIG. 6 is a block diagram showing an example of a failure prediction system according to another embodiment. The failure prediction system 1 includes a failure prediction device 4 that creates failure information for the robot 2 using results learned by the machine learning device 5 .

故障予知装置4は、状態観測部41と、故障情報出力部42と、を備えている。状態観測部41は、図1を参照して説明した状態観測部52と同様に機能し、ロボット2及び周囲の環境の状態を反映した状態変数を取得する。故障情報出力部42は、前述した機械学習装置5の学習部53が訓練データセットに従って学習した結果に基づいて、状態観測部41を介した状態変数の入力に応答して、ロボット2の故障情報を出力する。 The failure prediction device 4 includes a state observation section 41 and a failure information output section 42 . The state observation unit 41 functions in the same manner as the state observation unit 52 described with reference to FIG. 1, and obtains state variables that reflect the state of the robot 2 and the surrounding environment. The failure information output unit 42 outputs failure information of the robot 2 in response to input of state variables via the state observation unit 41 based on the result of learning by the learning unit 53 of the machine learning device 5 according to the training data set. to output

図6に示されるように、ロボット制御装置3は、通知部(故障情報通知部)32を備えることができる。通知部32は、故障情報出力部42によって出力される故障情報をオペレータに通知する。故障情報が通知される態様は、オペレータが知得可能であれば、特に限定されない。例えば、予知された故障の有無又は故障の度合いを図示されない表示装置に表示してもよいし、或いは、故障情報の内容に応じて警告音を発生させてもよい。 As shown in FIG. 6 , the robot control device 3 can include a notification section (failure information notification section) 32 . The notification unit 32 notifies the operator of the failure information output by the failure information output unit 42 . The manner in which the failure information is notified is not particularly limited as long as the operator can perceive it. For example, the presence or absence of a predicted failure or the degree of failure may be displayed on a display device (not shown), or a warning sound may be generated according to the contents of the failure information.

図7および図8は、実施形態に係る故障予知システムにおける故障の度合いを示す指標値の例(第1例~第4例)を説明するための図である。ここで、図7(a),図7(b),図7(c)及び図8において、横軸は、時間を示し、縦軸は、故障の度合いを示す。まず、図7(a)に示されるように、例えば、第1例において、「故障の度合い」を示す指標値を、故障が近づくにつれて大きくなるように定め、学習によって得られた指標値をそのまま故障情報として故障情報出力部42が出力するように構成することができる。また、図7(b)に示されるように、例えば、第2例において、前述の指標値に閾値を設け、閾値以上であれば異常、閾値未満であれば正常、というように故障の有無を表す情報を故障情報として故障情報出力部42が出力するように構成することもできる。さらに、図7(c)に示されるように、例えば、第3例において、前述の指標値に閾値を複数(閾値1~閾値3)設け、各閾値別に区切られたレベル(故障レベル1~故障レベル4)を故障情報として故障情報出力部42が出力するように構成することもできる。 7 and 8 are diagrams for explaining examples (first to fourth examples) of index values indicating the degree of failure in the failure prediction system according to the embodiment. Here, in FIGS. 7(a), 7(b), 7(c) and 8, the horizontal axis indicates time, and the vertical axis indicates the degree of failure. First, as shown in FIG. 7A, for example, in the first example, the index value indicating the "degree of failure" is determined to increase as the failure approaches, and the index value obtained by learning is used as it is. It can be configured so that the failure information output unit 42 outputs it as failure information. Further, as shown in FIG. 7(b), for example, in the second example, a threshold value is set for the above-described index value, and the presence or absence of a failure is determined such that if it is equal to or greater than the threshold, it is abnormal, and if it is less than the threshold, it is normal. It is also possible to configure the failure information output unit 42 to output the information represented as failure information. Further, as shown in FIG. 7(c), for example, in the third example, a plurality of thresholds (threshold 1 to threshold 3) are provided for the aforementioned index value, and levels (failure level 1 to failure It is also possible to configure the level 4) to be output by the failure information output unit 42 as failure information.

図8に示されるように、例えば、第4例において、複数の故障に至ったデータ(教師データ)に基づいて、前述の指標値と故障に至るまでの時間の関係を求め、それを元に、故障が発生する時期から遡って第1の所定期間で定められる時期より前であることを満たすための第1の閾値を求める。また、故障が発生する時期から遡って第2の所定期間で定められる時期より後であることを満たすための第2の閾値を定める。そして、指標値が第1の閾値未満であることと、指標値が第2の閾値以上であることの少なくとも一方を満たす場合に、指標値そのもの、或いは、指標値を閾値で区切ったレベルを、故障情報として故障情報出力部42が出力することもできる。この場合の閾値の決め方は、例えば、過去の教師データが条件を全て満たすように閾値を設けることもでき、また、必要に応じてマージンを設けて閾値を設けることもでき、さらに、確率論的に、ある一定確率内での判定間違いを許すように閾値を定めることもできる。 As shown in FIG. 8, for example, in the fourth example, based on the data (teaching data) leading to a plurality of failures, the relationship between the index value and the time until failure is obtained, and based on it , and a first threshold value for satisfying that the failure occurs before the time determined by the first predetermined period. Also, a second threshold value is determined to meet the condition that the time is later than the time determined by the second predetermined period retroactively from the time when the failure occurs. Then, when at least one of the index value being less than the first threshold and the index value being equal to or greater than the second threshold is satisfied, the index value itself or the level obtained by dividing the index value by the threshold is The failure information output unit 42 can also output the failure information. In this case, the threshold can be set so that the past training data satisfies all the conditions, or the threshold can be set with a margin if necessary. In addition, it is also possible to set a threshold so as to allow judgment errors within a certain probability.

次に、図9を参照して、機械学習装置が学習した結果を利用して実行される故障予知の一例について説明する。ステップS501では、状態観測部41が、例えばセンサ11からの出力データを含む現在の状態変数を取得する。ステップS502では、故障情報出力部42が、前述した機械学習装置5の学習結果に基づいて、ステップS501で取得された状態変数に応じた故障情報を出力する。故障予知システム1が通知部32を備えている場合は、故障情報をオペレータに通知する工程がステップS502の後に実行されてもよい。 Next, with reference to FIG. 9, an example of failure prediction executed using the results learned by the machine learning device will be described. In step S501, the state observation unit 41 acquires current state variables including output data from the sensor 11, for example. In step S502, the failure information output unit 42 outputs failure information corresponding to the state variables obtained in step S501 based on the learning result of the machine learning device 5 described above. If the failure prediction system 1 includes the notification unit 32, a step of notifying the operator of the failure information may be performed after step S502.

図9を参照して説明した故障予知装置4による故障予知は、ロボット2が予め定められる特定の動作を実行するときに行われてもよい。或いは、ロボット2の動作中又は静止中に並行してステップS501~S502の処理を継続して実行してもよい。或いは、予め定められた時刻に定期的に故障予知が行われてもよい。 Failure prediction by the failure prediction device 4 described with reference to FIG. 9 may be performed when the robot 2 performs a predetermined specific operation. Alternatively, the processes of steps S501 and S502 may be continuously executed in parallel while the robot 2 is in motion or stationary. Alternatively, failure prediction may be performed periodically at a predetermined time.

一実施形態において、故障予知装置4による故障予知を実行するのと並行して、機械学習装置5による機械学習が実行されてもよい。その場合、故障予知装置4が故障情報を作成するのと同時に、故障判定部31又はオペレータの操作を介して取得される判定データとその時点での状態変数に基づいて、機械学習装置5の学習部53が故障条件を再学習する。 In one embodiment, machine learning may be performed by the machine learning device 5 in parallel with the failure prediction by the failure prediction device 4 . In that case, at the same time when the failure prediction device 4 creates failure information, the machine learning device 5 learns based on the determination data obtained through the operation of the failure determination unit 31 or the operator and the state variables at that time. A unit 53 relearns the fault condition.

ニューラルネットワークを利用して機械学習する実施形態について説明したものの、他の公知の方法、例えば遺伝的プログラミング、機能論理プログラミング、サポートベクターマシンなどに従って機械学習を実行してもよい。また、繰り返しになるが、本明細書において、「産業機械」なる文言は、産業用ロボット、サービス用ロボット及びコンピュータ数値制御(CNC)装置で制御される機械を含む様々な機械を意味するのは、前述した通りである。 Although embodiments of machine learning using neural networks have been described, machine learning may be performed according to other known methods such as genetic programming, functional logic programming, support vector machines, and the like. Also, to reiterate, the term "industrial machine" is used herein to mean a variety of machines, including industrial robots, service robots, and machines controlled by computer numerical control (CNC) devices. , as described above.

以上、本発明の種々の実施形態について説明したが、当業者であれば、他の実施形態によっても本発明の意図する作用効果を実現できることを認識するであろう。特に、本発明の範囲を逸脱することなく、前述した実施形態の構成要素を削除又は置換することができるし、或いは公知の手段をさらに付加することができる。また、本明細書において明示的又は暗示的に開示される複数の実施形態の特徴を任意に組合せることによっても本発明を実施できることは当業者に自明である。 While various embodiments of the present invention have been described above, those skilled in the art will recognize that other embodiments may achieve the intended effects of the present invention. In particular, elements of the previously described embodiments may be deleted or replaced, or known means may be added, without departing from the scope of the invention. In addition, it is obvious to those skilled in the art that the present invention can be carried out by arbitrarily combining features of multiple embodiments disclosed explicitly or implicitly in this specification.

1 故障予知システム
2 ロボット
3 ロボット制御装置
4 故障予知装置
5 機械学習装置
11 センサ
31 故障判定部
32 通知部
41 状態観測部
42 故障情報出力部
51 判定データ取得部
52 状態観測部
53 学習部
1 failure prediction system 2 robot 3 robot control device 4 failure prediction device 5 machine learning device 11 sensor 31 failure determination unit 32 notification unit 41 state observation unit 42 failure information output unit 51 determination data acquisition unit 52 state observation unit 53 learning unit

Claims (19)

第1の機械の動作に関する情報を検出するセンサの出力データ、及び、前記出力データに基づいて得られるデータの少なくとも1つを含む状態変数を取得する観測部と、
機械学習モデルに前記状態変数を入力した際の前記機械学習モデルからの出力に基づいて、前記第1の機械の故障情報と故障が発生する時期を取得し、前記故障が発生する時期から遡って所定期間で定められる時期より前に、少なくとも前記故障情報に基づいた情報を通知部に出力する出力部と、を備える、
故障予知装置。
an observation unit that acquires state variables including at least one of output data of a sensor that detects information about the operation of the first machine and data obtained based on the output data;
Based on the output from the machine learning model when the state variables are input to the machine learning model, the failure information of the first machine and the time when the failure occurs are obtained, and the time when the failure occurs is traced back from the time when the failure occurs. an output unit that outputs information based on at least the failure information to the notification unit before a time determined by a predetermined period;
Failure prediction device.
第1の機械の動作に関する情報を検出するセンサの出力データ、及び、前記出力データに基づいて得られるデータの少なくとも1つを含む状態変数を取得する観測部と、
機械学習モデルに前記状態変数を入力した際の前記機械学習モデルからの出力に基づいて、前記第1の機械の故障の度合いを示す情報の時系列を通知部に出力する出力部と、を備え、
前記故障の度合いを示す情報は、前記機械学習モデルからの出力に基づいて生成される、
故障予知装置。
an observation unit that acquires state variables including at least one of output data of a sensor that detects information about the operation of the first machine and data obtained based on the output data;
an output unit that outputs a time series of information indicating the degree of failure of the first machine to a notification unit based on the output from the machine learning model when the state variables are input to the machine learning model. ,
the information indicating the degree of failure is generated based on the output from the machine learning model;
Failure prediction device.
第1の機械の動作に関する情報を検出するセンサの出力データ、及び、前記出力データに基づいて得られるデータの少なくとも1つを含む状態変数を取得する観測部と、
機械学習モデルに前記状態変数を入力した際の前記機械学習モデルからの出力に基づいて、前記第1の機械の故障の度合いを示す情報と故障の発生する時期を通知部に出力する出力部と、を備え、
前記故障の度合いを示す情報は、前記機械学習モデルからの出力に基づいて生成される、
故障予知装置。
an observation unit that acquires state variables including at least one of output data of a sensor that detects information about the operation of the first machine and data obtained based on the output data;
an output unit that outputs information indicating the degree of failure of the first machine and the timing of occurrence of the failure to a notification unit based on the output from the machine learning model when the state variables are input to the machine learning model; , and
the information indicating the degree of failure is generated based on the output from the machine learning model;
Failure prediction device.
前記機械学習モデルは、少なくとも、前記第1の機械の状態変数と前記第1の機械の故障情報との組合せ、及び、第2の機械の状態変数と前記第2の機械の故障情報との組合せ、のいずれかを含む訓練データセットを用いて学習されたものである、
請求項1乃至3のいずれか1項に記載の故障予知装置。
The machine learning model includes at least a combination of the state variables of the first machine and the failure information of the first machine, and a combination of the state variables of the second machine and the failure information of the second machine. , which is learned using a training dataset containing either
The failure prediction device according to any one of claims 1 to 3.
前記機械学習モデルは、少なくとも、前記第1の機械の故障が無いとき又は故障の度合いが低いときの状態変数、及び、前記第2の機械の故障が無いとき又は故障の度合いが低いときの状態変数、のいずれかを含む訓練データセットを用いて学習されたものである、
請求項1乃至3のいずれか1項に記載の故障予知装置。
The machine learning model includes at least a state variable when the first machine is free of failure or a low degree of failure, and a state when the second machine is free of failure or a low degree of failure. variables, which are learned using a training dataset containing either
The failure prediction device according to any one of claims 1 to 3.
前記第1の機械の故障がないとき又は故障の度合いが低いときは、前記第1の機械が出荷された後又はメンテナンスされた後を起点とした一定期間を表し、
前記第2の機械の故障がないとき又は故障の度合いが低いときは、前記第2の機械が出荷された後又はメンテナンスされた後を起点とした一定期間を表す、
請求項5に記載の故障予知装置。
When the first machine has no failure or the degree of failure is low, it represents a certain period starting from after the first machine is shipped or after maintenance,
When there is no failure of the second machine or when the degree of failure is low, it represents a certain period starting from after the second machine is shipped or after maintenance,
The failure prediction device according to claim 5.
前記第1の機械の故障情報は、少なくとも、前記第1の機械の故障の有無、前記第1の機械の故障の度合い、及び、前記第1の機械が正常状態であること、のいずれかを示す情報である、
請求項1に記載の故障予知装置。
The failure information of the first machine includes at least one of the presence or absence of failure of the first machine, the degree of failure of the first machine, and whether the first machine is in a normal state. is information that indicates
The failure prediction device according to claim 1.
前記機械学習モデルは、クラウドサーバ上に存在する、
請求項1乃至7のいずれか1項に記載の故障予知装置。
the machine learning model resides on a cloud server;
The failure prediction device according to any one of claims 1 to 7.
前記機械学習モデルは、他の機械の故障予知にも利用される、
請求項1乃至8のいずれか1項に記載の故障予知装置。
The machine learning model is also used for failure prediction of other machines,
The failure prediction device according to any one of claims 1 to 8.
前記機械学習モデルは、時系列データを扱う機械学習モデルである、
請求項1乃至9のいずれか1項に記載の故障予知装置。
The machine learning model is a machine learning model that handles time series data,
The failure prediction device according to any one of claims 1 to 9.
前記機械学習モデルは、ニューラルネットワークである、
請求項1乃至10のいずれか1項に記載の故障予知装置。
wherein the machine learning model is a neural network;
The failure prediction device according to any one of claims 1 to 10.
前記出力部は、前記機械学習モデルからの出力と正常モデルとに基づいて、前記第1の機械の故障情報を出力する、
請求項1乃至請求項11のいずれか1項に記載の故障予知装置。
The output unit outputs failure information of the first machine based on the output from the machine learning model and the normal model.
The failure prediction device according to any one of claims 1 to 11.
前記第1の機械は、少なくとも、産業用ロボット、サービス用ロボット、及び、コンピュータ数値制御装置で制御される機械のいずれか1つである、
請求項1乃至12のいずれか1項に記載の故障予知装置。
wherein the first machine is at least one of an industrial robot, a service robot, and a machine controlled by a computer numerical controller;
The failure prediction device according to any one of claims 1 to 12.
請求項1乃至13のいずれか1項に記載の故障予知装置と、
前記通知部と、を備え、
前記通知部は、前記出力部からの出力をオペレータに通知する、
故障予知システム。
A failure prediction device according to any one of claims 1 to 13;
and the notification unit,
The notification unit notifies the operator of the output from the output unit;
Failure prediction system.
前記通知部は、故障が発生する時期から遡って第1の所定期間で定められる時期より前であり、かつ、前記故障が発生する時期から遡って前記第1の所定期間よりも長い第2の所定期間で定められる時期より後に、前記出力部からの出力をオペレータに通知する、
請求項14に記載の故障予知システム。
The notification unit sends a second message that is before a time determined by a first predetermined period retroactively from the time when the failure occurs and is longer than the first predetermined period retroactively from the time the failure is occurring. Notifying the operator of the output from the output unit after the time determined by the predetermined period;
The failure prediction system according to claim 14.
前記センサと、
前記第1の機械と、を更に備える、
請求項14又は15に記載の故障予知システム。
the sensor;
further comprising the first machine;
The failure prediction system according to claim 14 or 15.
第1の機械の動作に関する情報を検出するセンサの出力データ、及び、前記出力データに基づいて得られるデータの少なくとも1つを含む状態変数を取得し、
機械学習モデルに前記状態変数を入力した際の前記機械学習モデルからの出力に基づいて、前記第1の機械の故障情報と故障が発生する時期を取得し、前記故障が発生する時期から遡って所定期間で定められる時期より前に、少なくとも前記故障情報に基づいた情報を出力する、
故障予知方法。
obtaining a state variable including at least one of output data of a sensor detecting information about operation of the first machine and data obtained based on the output data;
Based on the output from the machine learning model when the state variables are input to the machine learning model, the failure information of the first machine and the time when the failure occurs are obtained, and the time when the failure occurs is traced back from the time when the failure occurs. outputting information based on at least the failure information before a time determined by a predetermined period;
Failure prediction method.
第1の機械の動作に関する情報を検出するセンサの出力データ、及び、前記出力データに基づいて得られるデータの少なくとも1つを含む状態変数を取得し、
機械学習モデルに前記状態変数を入力した際の前記機械学習モデルからの出力に基づいて、前記第1の機械の故障の度合いを示す情報の時系列を出力し、
前記故障の度合いを示す情報は、前記機械学習モデルからの出力に基づいて生成される、
故障予知方法。
obtaining a state variable including at least one of output data of a sensor detecting information about operation of the first machine and data obtained based on the output data;
outputting a time series of information indicating the degree of failure of the first machine based on the output from the machine learning model when the state variables are input to the machine learning model;
the information indicating the degree of failure is generated based on the output from the machine learning model;
Failure prediction method.
第1の機械の動作に関する情報を検出するセンサの出力データ、及び、前記出力データに基づいて得られるデータの少なくとも1つを含む状態変数を取得し、
機械学習モデルに前記状態変数を入力した際の前記機械学習モデルからの出力に基づいて、前記第1の機械の故障の度合いを示す情報と故障の発生する時期を出力し、
前記故障の度合いを示す情報は、前記機械学習モデルからの出力に基づいて生成される、
故障予知方法。
obtaining a state variable including at least one of output data of a sensor detecting information about operation of the first machine and data obtained based on the output data;
based on the output from the machine learning model when the state variables are input to the machine learning model, outputting information indicating the degree of failure of the first machine and the timing of occurrence of the failure;
the information indicating the degree of failure is generated based on the output from the machine learning model;
Failure prediction method.
JP2022109778A 2015-07-31 2022-07-07 Abnormality prediction device, abnormality prediction system, abnormality prediction method, and abnormality prediction program Pending JP2022125288A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015152572 2015-07-31
JP2015152572 2015-07-31
JP2020167222A JP7104121B2 (en) 2015-07-31 2020-10-01 Failure prediction device, failure prediction system and failure prediction method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020167222A Division JP7104121B2 (en) 2015-07-31 2020-10-01 Failure prediction device, failure prediction system and failure prediction method

Publications (1)

Publication Number Publication Date
JP2022125288A true JP2022125288A (en) 2022-08-26

Family

ID=57988307

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2015234022A Active JP6148316B2 (en) 2015-07-31 2015-11-30 Machine learning method and machine learning device for learning failure conditions, and failure prediction device and failure prediction system provided with the machine learning device
JP2017020403A Active JP6773582B2 (en) 2015-07-31 2017-02-07 Machine learning device, failure prediction device and failure prediction system, and machine learning method and failure prediction method
JP2020167222A Active JP7104121B2 (en) 2015-07-31 2020-10-01 Failure prediction device, failure prediction system and failure prediction method
JP2022109778A Pending JP2022125288A (en) 2015-07-31 2022-07-07 Abnormality prediction device, abnormality prediction system, abnormality prediction method, and abnormality prediction program

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2015234022A Active JP6148316B2 (en) 2015-07-31 2015-11-30 Machine learning method and machine learning device for learning failure conditions, and failure prediction device and failure prediction system provided with the machine learning device
JP2017020403A Active JP6773582B2 (en) 2015-07-31 2017-02-07 Machine learning device, failure prediction device and failure prediction system, and machine learning method and failure prediction method
JP2020167222A Active JP7104121B2 (en) 2015-07-31 2020-10-01 Failure prediction device, failure prediction system and failure prediction method

Country Status (2)

Country Link
JP (4) JP6148316B2 (en)
CN (1) CN106409120B (en)

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6346251B2 (en) * 2016-11-25 2018-06-20 ファナック株式会社 Oil leak detection device
EP3591484A4 (en) * 2017-03-03 2020-03-18 Panasonic Intellectual Property Management Co., Ltd. Additional learning method for deterioration diagnosis system
JP6499689B2 (en) * 2017-03-08 2019-04-10 ファナック株式会社 Finishing amount prediction device and machine learning device
JP6693451B2 (en) * 2017-03-14 2020-05-13 オムロン株式会社 Judgment device, judgment program, and learning method
JP2018156151A (en) * 2017-03-15 2018-10-04 ファナック株式会社 Abnormality detecting apparatus and machine learning device
CN110431569A (en) * 2017-03-21 2019-11-08 首选网络株式会社 Server unit, learning model provide program, learning model providing method and learning model provides system
JP6527187B2 (en) * 2017-03-22 2019-06-05 ファナック株式会社 Learning model construction device, anomaly detection device, anomaly detection system and server
JP6557272B2 (en) * 2017-03-29 2019-08-07 ファナック株式会社 State determination device
JP6313516B1 (en) * 2017-03-30 2018-04-18 三菱総研Dcs株式会社 Information processing apparatus, information processing method, and computer program
JP6514260B2 (en) * 2017-04-13 2019-05-15 ファナック株式会社 Control device and machine learning device
JP6530779B2 (en) * 2017-04-20 2019-06-12 ファナック株式会社 Machining defect factor estimation device
CN110785716B (en) 2017-06-30 2023-03-31 三菱电机株式会社 Instability detection device, instability detection system, and instability detection method
JP6572265B2 (en) 2017-06-30 2019-09-04 ファナック株式会社 Control device and machine learning device
KR102616698B1 (en) * 2017-07-07 2023-12-21 오티스 엘리베이터 컴파니 An elevator health monitoring system
JP7082461B2 (en) * 2017-07-26 2022-06-08 株式会社Ye Digital Failure prediction method, failure prediction device and failure prediction program
JP6380628B1 (en) 2017-07-31 2018-08-29 株式会社安川電機 Power conversion apparatus, server, and data generation method
JP6680730B2 (en) * 2017-08-08 2020-04-15 ファナック株式会社 Control device and learning device
JP6989841B2 (en) * 2017-08-25 2022-01-12 国立大学法人 鹿児島大学 Learning data generation method with teacher information, machine learning method, learning data generation system and program with teacher information
JP6577542B2 (en) * 2017-09-05 2019-09-18 ファナック株式会社 Control device
JP6926904B2 (en) * 2017-09-28 2021-08-25 株式会社デンソーウェーブ Robot abnormality judgment device
CN111164524B (en) * 2017-09-30 2023-09-01 西门子股份公司 Method and device for generating fault diagnosis information base of numerical control machine tool
JP6629815B2 (en) 2017-10-23 2020-01-15 ファナック株式会社 Life estimation device and machine learning device
KR101989579B1 (en) * 2017-10-31 2019-06-14 한국전자통신연구원 Apparatus and method for monitoring the system
JP6622778B2 (en) * 2017-11-01 2019-12-18 ファナック株式会社 Rotary table device
JP6798968B2 (en) * 2017-11-22 2020-12-09 ファナック株式会社 Noise cause estimation device
JP6972971B2 (en) * 2017-11-28 2021-11-24 株式会社安川電機 Control system, machine learning device, maintenance support device, and maintenance support method
JP6721563B2 (en) 2017-11-28 2020-07-15 ファナック株式会社 Numerical control device
JP7173273B2 (en) * 2017-12-11 2022-11-16 日本電気株式会社 Failure analysis device, failure analysis method and failure analysis program
JPWO2019116418A1 (en) * 2017-12-11 2020-12-17 日本電気株式会社 Fault analyzer, fault analysis method and fault analysis program
JP7007715B2 (en) * 2017-12-28 2022-01-25 ローレル精機株式会社 Status determination device, money processor status determination system, status determination method and program
CN107919054B (en) * 2018-01-04 2019-06-25 南京旭上数控技术有限公司 A kind of industrial robot instructional device
CN110065091A (en) * 2018-01-24 2019-07-30 固德科技股份有限公司 A kind of mechanical arm dynamic monitoring system and its implementation method
JP6892400B2 (en) 2018-01-30 2021-06-23 ファナック株式会社 Machine learning device that learns the failure occurrence mechanism of laser devices
JP6662926B2 (en) * 2018-01-31 2020-03-11 ファナック株式会社 Notification method of robot and maintenance time for robot
WO2019150726A1 (en) * 2018-02-01 2019-08-08 本田技研工業株式会社 Robot system and method for controlling robot
JP2019141869A (en) * 2018-02-19 2019-08-29 ファナック株式会社 Controller and machine learning device
JP6711854B2 (en) 2018-02-22 2020-06-17 ファナック株式会社 Failure prediction device and machine learning device
CN111727108B (en) * 2018-03-05 2023-09-15 欧姆龙株式会社 Method, device and system for controlling robot and storage medium
DE102018203234A1 (en) * 2018-03-05 2019-09-05 Kuka Deutschland Gmbh Predictive assessment of robots
JP6882719B2 (en) * 2018-03-07 2021-06-02 オムロン株式会社 Robot control device, abnormality diagnosis method, and abnormality diagnosis program
JP6965798B2 (en) * 2018-03-12 2021-11-10 オムロン株式会社 Control system and control method
DE102019001760A1 (en) * 2018-03-19 2019-09-19 Fanuc Corporation INFORMATION PROCESSING DEVICE, MECHANICAL LEARNING DEVICE AND SYSTEM
CN108459933B (en) * 2018-03-21 2021-10-22 哈工大大数据(哈尔滨)智能科技有限公司 Big data computer system fault detection method based on deep recursion network
JP2019191799A (en) 2018-04-23 2019-10-31 株式会社日立製作所 Failure sign diagnosis system and failure sign diagnosis method
CN108621159B (en) * 2018-04-28 2020-05-19 首都师范大学 Robot dynamics modeling method based on deep learning
JP6909410B2 (en) * 2018-05-08 2021-07-28 オムロン株式会社 Robot control device, maintenance management method, and maintenance management program
JP6810097B2 (en) * 2018-05-21 2021-01-06 ファナック株式会社 Anomaly detector
CN110539331A (en) * 2018-05-28 2019-12-06 睿胜自动化工程有限公司 Method and device for detecting abnormality of mechanical arm and pump in advance
DE112018007729B4 (en) * 2018-06-14 2022-09-08 Yamaha Hatsudoki Kabushiki Kaisha Machine learning device and robotic system equipped with same
KR102239040B1 (en) * 2018-06-29 2021-04-13 성균관대학교산학협력단 Prognostics and health management systems for component of vehicle and methods thereof
WO2020000362A1 (en) * 2018-06-29 2020-01-02 罗伯特·博世有限公司 Method for monitoring and identifying sensor failure in electric drive system
JP7060546B2 (en) * 2018-07-10 2022-04-26 ファナック株式会社 Tooth contact position adjustment amount estimation device, machine learning device, robot system and tooth contact position adjustment amount estimation system
CN112512762B (en) * 2018-07-31 2023-10-20 日产自动车株式会社 Abnormality determination device and abnormality determination method
EP3835750A4 (en) * 2018-08-06 2021-08-04 Nissan Motor Co., Ltd. Abnormality diagnosis device and abnormality diagnosis method
JP6856591B2 (en) 2018-09-11 2021-04-07 ファナック株式会社 Control device, CNC device and control method of control device
CN109270921A (en) * 2018-09-25 2019-01-25 深圳市元征科技股份有限公司 A kind of method for diagnosing faults and device
JP2020052821A (en) * 2018-09-27 2020-04-02 株式会社ジェイテクト Deterioration determination device and deterioration determination system
JP7110884B2 (en) 2018-10-01 2022-08-02 オムロン株式会社 LEARNING DEVICE, CONTROL DEVICE, LEARNING METHOD, AND LEARNING PROGRAM
JP6885911B2 (en) * 2018-10-16 2021-06-16 アイダエンジニアリング株式会社 Press machine and abnormality monitoring method for press machine
JP6787971B2 (en) * 2018-10-25 2020-11-18 ファナック株式会社 State judgment device and state judgment method
US11119716B2 (en) * 2018-10-31 2021-09-14 Fanuc Corporation Display system, machine learning device, and display device
JP6867358B2 (en) * 2018-11-13 2021-04-28 ファナック株式会社 State judgment device and state judgment method
JP7107830B2 (en) 2018-12-21 2022-07-27 ファナック株式会社 Learning data confirmation support device, machine learning device, failure prediction device
CN109514560A (en) * 2018-12-25 2019-03-26 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Industrial robot failure monitoring system, method and device
JP7162550B2 (en) * 2019-02-15 2022-10-28 オムロン株式会社 Model generation device, prediction device, model generation method, and model generation program
JP7357450B2 (en) * 2019-02-28 2023-10-06 コマツ産機株式会社 System and method for collecting learning data
JP7219117B2 (en) * 2019-02-28 2023-02-07 コマツ産機株式会社 Industrial machine predictive maintenance device, method, and system
JP6915638B2 (en) * 2019-03-08 2021-08-04 セイコーエプソン株式会社 Failure time estimation device, machine learning device, failure time estimation method
CN113544486B (en) * 2019-03-08 2022-10-28 三菱电机株式会社 Fault diagnosis system, fault prediction method, and computer-readable recording medium
JP6993374B2 (en) 2019-03-25 2022-01-13 ファナック株式会社 Robot control system
JP6811878B1 (en) * 2019-03-28 2021-01-13 三菱電機株式会社 Numerical control device and numerical control method
US10996664B2 (en) * 2019-03-29 2021-05-04 Mitsubishi Electric Research Laboratories, Inc. Predictive classification of future operations
JP7000376B2 (en) * 2019-04-23 2022-01-19 ファナック株式会社 Machine learning equipment, prediction equipment, and control equipment
TR201906067A2 (en) * 2019-04-24 2020-11-23 Borusan Makina Ve Guec Sistemleri Sanayi Ve Ticaret Anonim Sirketi A SYSTEM AND METHOD FOR FAULT PREDICTION IN BUSINESS MACHINES
CN111942973B (en) * 2019-05-16 2023-04-11 株式会社日立制作所 Elevator control device, robot fault precursor diagnosis system and method thereof
JP7260402B2 (en) * 2019-05-31 2023-04-18 ファナック株式会社 MACHINE LEARNING DEVICE, ROBOT SYSTEM, AND MACHINE LEARNING METHOD FOR LEARNING CABLE STATE
JP7347969B2 (en) 2019-06-18 2023-09-20 ファナック株式会社 Diagnostic equipment and method
JP7401207B2 (en) * 2019-06-21 2023-12-19 ファナック株式会社 Machine learning device, robot system, and machine learning method for learning tool status
WO2021006374A1 (en) * 2019-07-08 2021-01-14 엘지전자 주식회사 Method and apparatus for monitoring brake system of vehicle in automated vehicle and highway systems
JP7436169B2 (en) * 2019-09-18 2024-02-21 ファナック株式会社 Diagnostic equipment and method
JP7396850B2 (en) 2019-10-18 2023-12-12 ファナック株式会社 robot
CN111086025A (en) * 2019-12-25 2020-05-01 南京熊猫电子股份有限公司 Multi-fault-cause diagnosis system and method applied to industrial robot
JP7282700B2 (en) * 2020-01-22 2023-05-29 双葉電子工業株式会社 ROBOT, MOTOR DRIVE UNIT, ROBOT CONTROL METHOD
JP7298494B2 (en) 2020-01-31 2023-06-27 横河電機株式会社 Learning device, learning method, learning program, determination device, determination method, and determination program
US20210247753A1 (en) 2020-02-07 2021-08-12 Kabushiki Kaisha Yaskawa Denki State estimation device, system, and manufacturing method
US11531339B2 (en) * 2020-02-14 2022-12-20 Micron Technology, Inc. Monitoring of drive by wire sensors in vehicles
JP2021160031A (en) * 2020-03-31 2021-10-11 セイコーエプソン株式会社 Failure prediction method and device
KR102181432B1 (en) * 2020-04-22 2020-11-24 김한수 Intelligent robot control system
KR102129480B1 (en) * 2020-04-23 2020-07-02 호서대학교 산학협력단 The predictive maintenance apparatus of automatic guided vehicle and predictive maintenance method of thereof
KR102316773B1 (en) * 2020-07-31 2021-10-26 삼성중공업(주) System and method for predicting health of vessel
KR102538542B1 (en) * 2021-04-12 2023-05-30 서울대학교산학협력단 Method and apparatus for diagnosis of motor using current signals
US20220342391A1 (en) 2021-04-27 2022-10-27 Aida Engineering, Ltd. Press machine and method of displaying operating state of press machine
CN114142605B (en) * 2021-11-09 2022-07-15 广东工业大学 Pilot protection method, device and storage medium
CN114055516B (en) * 2021-11-10 2023-08-11 合肥欣奕华智能机器股份有限公司 Fault diagnosis and maintenance method, system, equipment and storage medium
CN114565058A (en) * 2022-03-16 2022-05-31 广东电网有限责任公司 Training method, device, equipment and medium for island detection model
CN114770509A (en) * 2022-05-05 2022-07-22 新代科技(苏州)有限公司 Fault diagnosis method applied to welding robot system
WO2024053101A1 (en) * 2022-09-09 2024-03-14 富士通株式会社 Learning program, generation program, learning method, and information processing device

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08202444A (en) * 1995-01-25 1996-08-09 Hitachi Ltd Method and device for diagnosing abnormality of machine facility
JPH08263131A (en) * 1995-03-27 1996-10-11 Hitachi Ltd Device and method for diagnosing plant deterioration
JPH1049223A (en) * 1996-07-31 1998-02-20 Nissan Motor Co Ltd Method and device for fault diagnosis using neural network
JPH10154900A (en) * 1996-11-25 1998-06-09 Hitachi Ltd Method and system for analyzing failure of printed board for mounting electronic device
JP3604860B2 (en) * 1997-03-24 2004-12-22 三洋電機株式会社 Equipment operation status management device
JPH11212637A (en) * 1998-01-22 1999-08-06 Hitachi Ltd Method and device for preventive maintenance
JP2000064964A (en) * 1998-08-21 2000-03-03 Ebara Corp Failure prediction system of vacuum pump
JP4592235B2 (en) * 2001-08-31 2010-12-01 株式会社東芝 Fault diagnosis method for production equipment and fault diagnosis system for production equipment
JP2003208220A (en) * 2002-01-11 2003-07-25 Hitachi Industries Co Ltd Method and device for diagnosing deterioration of facility
TWI240216B (en) * 2002-06-27 2005-09-21 Ind Tech Res Inst Pattern recognition method by reducing classification error
EP1793296A1 (en) * 2005-12-05 2007-06-06 Insyst Ltd. An apparatus and method for the analysis of a process having parameter-based faults
CN101127100A (en) * 2006-08-18 2008-02-20 张湛 Construction method for intelligent system for processing uncertain cause and effect relationship information
CN101008992A (en) * 2006-12-30 2007-08-01 北京市劳动保护科学研究所 Method for detecting leakage of pipeline based on artificial neural network
US8036999B2 (en) * 2007-02-14 2011-10-11 Isagacity Method for analyzing and classifying process data that operates a knowledge base in an open-book mode before defining any clusters
EP2144166A4 (en) * 2007-03-29 2011-01-12 Nec Corp Diagnostic system
CN100468263C (en) * 2007-09-05 2009-03-11 东北大学 Continuous miner remote real-time failure forecast and diagnosis method and device
CN101697079B (en) * 2009-09-27 2011-07-20 华中科技大学 Blind system fault detection and isolation method for real-time signal processing of spacecraft
CN102844721B (en) * 2010-02-26 2015-11-25 株式会社日立制作所 Failure cause diagnostic system and method thereof
CN102063109B (en) * 2010-11-29 2012-09-05 株洲南车时代电气股份有限公司 Neural network-based subway train fault diagnosis device and method
JP2012168799A (en) * 2011-02-15 2012-09-06 Hitachi Ltd Plant monitoring device and plant monitoring method
CN103064340B (en) * 2011-10-21 2014-12-03 沈阳高精数控技术有限公司 Failure prediction method facing to numerically-controlled machine tool
CN102609764A (en) * 2012-02-01 2012-07-25 上海电力学院 CPN neural network-based fault diagnosis method for stream-turbine generator set
CN102629243B (en) * 2012-03-02 2015-01-07 燕山大学 End effect suppression method based on neural network ensemble and B-spline empirical mode decomposition (BS-EMD)
JP5996384B2 (en) * 2012-11-09 2016-09-21 株式会社東芝 Process monitoring diagnostic device, process monitoring diagnostic program
CN103018660B (en) * 2012-12-25 2015-04-22 重庆邮电大学 Multi-fault intelligent diagnosing method for artificial circuit utilizing quantum Hopfield neural network
WO2014116888A1 (en) * 2013-01-25 2014-07-31 REMTCS Inc. Network security system, method, and apparatus
JP5530019B1 (en) * 2013-11-01 2014-06-25 株式会社日立パワーソリューションズ Abnormal sign detection system and abnormality sign detection method
JP5684941B1 (en) * 2014-07-31 2015-03-18 株式会社日立パワーソリューションズ Abnormal sign diagnostic apparatus and abnormal sign diagnostic method
CN104571079A (en) * 2014-11-25 2015-04-29 东华大学 Wireless long-distance fault diagnosis system based on multiple-sensor information fusion
CN104699994A (en) * 2015-04-02 2015-06-10 刘岩 FBF (fuzzy basis function) neural network based motor air gap eccentricity fault diagnosis method

Also Published As

Publication number Publication date
JP6773582B2 (en) 2020-10-21
CN106409120A (en) 2017-02-15
JP2017120649A (en) 2017-07-06
JP2017033526A (en) 2017-02-09
JP2021002398A (en) 2021-01-07
JP7104121B2 (en) 2022-07-20
CN106409120B (en) 2021-03-23
JP6148316B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP2022125288A (en) Abnormality prediction device, abnormality prediction system, abnormality prediction method, and abnormality prediction program
US11275345B2 (en) Machine learning Method and machine learning device for learning fault conditions, and fault prediction device and fault prediction system including the machine learning device
JP6140331B1 (en) Machine learning device and machine learning method for learning failure prediction of main shaft or motor driving main shaft, and failure prediction device and failure prediction system provided with machine learning device
JP6810097B2 (en) Anomaly detector
CN107263464B (en) Machine learning device, machine system, manufacturing system, and machine learning method
CN109693354B (en) State determination device
US9830559B2 (en) Machine learning unit, spindle replacement judging device, controller, machine tool, production system, and machine learning method, which are able to judge necessity of spindle replacement
JP2017120649A5 (en)
CN106552974B (en) Wire electric discharge machine having movable shaft abnormal load warning function
JP6542833B2 (en) Control device and machine learning device
JP6711323B2 (en) Abnormal state diagnosis method and abnormal state diagnosis device
US11762679B2 (en) Information processing device, information processing method, and non-transitory computer-readable storage medium
JP6647473B1 (en) Abnormality detection device and abnormality detection method
US11269710B2 (en) Diagnostic apparatus
JP2017130094A (en) Cell control device, and production system for managing operation situation of multiple manufacturing machines in manufacturing cell
CN114757048A (en) Health state assessment method, device, equipment and medium for fan foundation
JP2018086715A (en) Apparatus and method for estimating occurrence of abnormality of telescopic cover
AU2018426458B2 (en) Assistance device, learning device, and plant operation condition setting assistance system
JP6702297B2 (en) Abnormal state diagnosis method and abnormal state diagnosis device
US20210178615A1 (en) Abnormality diagnosis device and abnormality diagnosis method
CN113377595B (en) Fault diagnosis method, device, electronic equipment and storage medium
JP7085140B2 (en) Control device, control method and control program
JP6829271B2 (en) Measurement operation parameter adjustment device, machine learning device and system
JP2020025462A (en) Motor control system
JP2020025461A (en) Motor control system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240216