JP2022124588A - Semiconductor contactor, condition monitoring device for semiconductor contactor, and condition monitoring method for semiconductor contactor - Google Patents

Semiconductor contactor, condition monitoring device for semiconductor contactor, and condition monitoring method for semiconductor contactor Download PDF

Info

Publication number
JP2022124588A
JP2022124588A JP2021022318A JP2021022318A JP2022124588A JP 2022124588 A JP2022124588 A JP 2022124588A JP 2021022318 A JP2021022318 A JP 2021022318A JP 2021022318 A JP2021022318 A JP 2021022318A JP 2022124588 A JP2022124588 A JP 2022124588A
Authority
JP
Japan
Prior art keywords
voltage
semiconductor
switching element
terminal
semiconductor switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021022318A
Other languages
Japanese (ja)
Other versions
JP7476818B2 (en
Inventor
隆仁 米澤
Takahito Yonezawa
悟志 町田
Satoshi Machida
貴裕 田口
Takahiro Taguchi
広脩 石橋
Kosuke Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2021022318A priority Critical patent/JP7476818B2/en
Publication of JP2022124588A publication Critical patent/JP2022124588A/en
Application granted granted Critical
Publication of JP7476818B2 publication Critical patent/JP7476818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

To provide a semiconductor contactor useful for preventing occurrence of failure.SOLUTION: A semiconductor contactor includes: a first terminal; a second terminal; at least one semiconductor switching element inserted in series in a current path between the first terminal and the second terminal; a control circuit that turns on or off the semiconductor switching element; a voltage measurement circuit that measures a voltage between the first terminal and the second terminal; and a processing unit that monitors a change in the voltage measured by the voltage measurement circuit while the semiconductor switching element is on, and determines that the semiconductor switching element is degraded when the change is a gradual increase.SELECTED DRAWING: Figure 1

Description

本開示は、半導体接触器、半導体接触器用状態監視装置及び半導体接触器の状態監視方法に関する。 The present disclosure relates to a semiconductor contactor, a condition monitoring device for a semiconductor contactor, and a condition monitoring method for a semiconductor contactor.

従来、サイリスタを主回路の開閉素子として採用した通称ソリッドステートコンタクタと呼ばれる半導体接触器が知られている(例えば、特許文献1参照)。また、サイリスタなどのスイッチング素子からなる主開閉回路と、主開閉回路の点弧回路と、点弧回路に操作入力を出力する操作回路とを備える無接点接触器の異常を検出する異常検出装置が知られている(例えば、特許文献2参照)。この異常検出装置は、点弧回路への操作入力が有り、且つ、スイッチング素子の入出力電極間の電圧が有るとき、主開閉回路の開放異常と判別する。 2. Description of the Related Art Conventionally, a semiconductor contactor commonly called a solid-state contactor that employs a thyristor as a switching element of a main circuit is known (see, for example, Patent Document 1). In addition, there is an abnormality detection device that detects an abnormality in a non-contact contactor that includes a main switching circuit composed of a switching element such as a thyristor, an ignition circuit for the main switching circuit, and an operation circuit that outputs an operation input to the ignition circuit. known (see, for example, Patent Document 2). When there is an operation input to the ignition circuit and there is a voltage between the input and output electrodes of the switching element, this abnormality detection device determines that the main switching circuit has an open abnormality.

特開平10-125898号公報JP-A-10-125898 特開平5-76123号公報JP-A-5-76123

しかしながら、従来の異常検出技術は、スイッチング素子の入出力電極間の電圧の有無を検知することによって、半導体接触器に実際に発生した開放異常等の故障を検出する方式のため、半導体接触器の故障の発生を未然に防止することが難しかった。 However, the conventional abnormality detection technology detects the presence or absence of voltage between the input and output electrodes of the switching element to detect a failure such as an open abnormality that actually occurs in the semiconductor contactor. It was difficult to prevent failures from occurring.

本開示は、故障発生の未然防止に有益な半導体接触器、半導体接触器用状態監視装置及び半導体接触器の状態監視方法を提供する。 The present disclosure provides a semiconductor contactor, a state monitoring device for a semiconductor contactor, and a method for monitoring the state of a semiconductor contactor, which are useful for preventing failures from occurring.

本開示の一態様では、
第1端子と、
第2端子と、
前記第1端子と前記第2端子との間の電流経路に直列に挿入された少なくとも一つの半導体スイッチング素子と、
前記半導体スイッチング素子をオン又はオフさせる制御回路と、
前記第1端子と前記第2端子との間の電圧を測定する電圧測定回路と、
前記電圧測定回路により前記半導体スイッチング素子のオン状態で測定された前記電圧の変化を監視し、前記変化が漸増の場合、前記半導体スイッチング素子の劣化と判定する処理部と、を備える、半導体接触器が提供される。
In one aspect of the present disclosure,
a first terminal;
a second terminal;
at least one semiconductor switching element inserted in series in a current path between the first terminal and the second terminal;
a control circuit for turning on or off the semiconductor switching element;
a voltage measuring circuit that measures the voltage between the first terminal and the second terminal;
a processing unit that monitors a change in the voltage measured by the voltage measurement circuit while the semiconductor switching element is on, and determines that the semiconductor switching element is degraded when the change is a gradual increase. is provided.

本開示の一態様によれば、半導体接触器の故障発生の未然防止に貢献できる。 According to one aspect of the present disclosure, it is possible to contribute to the prevention of failure of the semiconductor contactor.

第1実施形態の半導体接触器の構成例を示す図である。It is a figure which shows the structural example of the semiconductor contactor of 1st Embodiment. 第2実施形態の半導体接触器の構成例を示す図である。It is a figure which shows the structural example of the semiconductor contactor of 2nd Embodiment. 第3実施形態の半導体接触器及び半導体接触器用状態監視装置の構成例を示す図である。It is a figure which shows the structural example of the semiconductor contactor of 3rd Embodiment, and the state-monitoring apparatus for semiconductor contactors. 第4実施形態の半導体接触器及び半導体接触器用状態監視装置の構成例を示す図である。It is a figure which shows the structural example of the semiconductor contactor of 4th Embodiment, and the state-monitoring apparatus for semiconductor contactors. 半導体スイッチング素子の両端に発生する電圧とその半導体スイッチング素子に流れる電流との関係の一例を示す図である。FIG. 3 is a diagram showing an example of the relationship between the voltage generated across a semiconductor switching element and the current flowing through the semiconductor switching element;

以下、各実施形態の半導体接触器及び半導体接触器用状態監視装置について図面を参照して説明する。 A semiconductor contactor and a state monitoring device for a semiconductor contactor of each embodiment will be described below with reference to the drawings.

各実施形態の半導体接触器は、交流が流れる配線に直列に挿入され、当該配線を開閉する開閉器である。半導体接触器は、サイリスタやトライアックなどの半導体スイッチング素子を主回路の開閉素子として備え、ソリッドステートコンタクタとも称される。各実施形態の半導体接触器用状態監視装置は、半導体接触器の状態を監視する装置であり、その具体例として、半導体接触器の異常を検出する機能を有する異常検出ユニットが挙げられる。 The semiconductor contactor of each embodiment is a switch that is inserted in series into a wiring through which an alternating current flows and opens and closes the wiring. A semiconductor contactor is equipped with a semiconductor switching element such as a thyristor or a triac as a switching element of a main circuit, and is also called a solid state contactor. The semiconductor contactor state monitoring device of each embodiment is a device for monitoring the state of a semiconductor contactor, and a specific example thereof is an abnormality detection unit having a function of detecting an abnormality in the semiconductor contactor.

図1は、第1実施形態の半導体接触器の構成例を示す図である。図1に示す半導体接触器101は、サイリスタ21,22を主回路20の開閉素子として備える開閉器である。半導体接触器101は、例えば、主端子11、主端子12、制御端子13、制御端子14、主回路20、制御回路30、電圧測定回路40、処理部50及びメモリ60を備える。 FIG. 1 is a diagram showing a configuration example of the semiconductor contactor of the first embodiment. A semiconductor contactor 101 shown in FIG. 1 is a switch including thyristors 21 and 22 as switching elements of a main circuit 20 . Semiconductor contactor 101 includes, for example, main terminal 11 , main terminal 12 , control terminal 13 , control terminal 14 , main circuit 20 , control circuit 30 , voltage measurement circuit 40 , processing section 50 and memory 60 .

主端子11は、第1端子の一例であり、配線81の一端に接続される。配線81の他端は、例えば、電源側に接続される。主端子12は、第2端子の一例であり、配線82の一端に接続される。配線82の他端は、例えば、負荷側に接続される。 The main terminal 11 is an example of a first terminal and is connected to one end of the wiring 81 . The other end of the wiring 81 is connected to the power supply side, for example. The main terminal 12 is an example of a second terminal and is connected to one end of the wiring 82 . The other end of the wiring 82 is connected to the load side, for example.

主回路20は、主端子11と主端子12との間の電流経路23に直列に挿入され、相互に逆並列に接続された複数のサイリスタ21,22を有する。サイリスタ21,22は、それぞれ、ゲート、カソード及びアノードの三端子を有する半導体スイッチング素子である。 The main circuit 20 has a plurality of thyristors 21 and 22 inserted in series in a current path 23 between the main terminals 11 and 12 and connected in anti-parallel to each other. The thyristors 21 and 22 are semiconductor switching elements each having three terminals of gate, cathode and anode.

なお、主回路20の半導体スイッチング素子は、サイリスタに限られず、トライアック、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの他のスイッチング素子でもよい。 The semiconductor switching elements of the main circuit 20 are not limited to thyristors, and may be other switching elements such as triacs, IGBTs (Insulated Gate Bipolar Transistors), and MOSFETs (Metal Oxide Semiconductor Field Effect Transistors).

制御回路30は、主回路20のサイリスタ21,22をオン又はオフさせる回路である。制御回路30は、例えば、不図示の外部電源から一対の制御端子13,14を介して入力される制御電圧Vcの有無に従って、サイリスタ21,22のオン又はオフを制御する。 The control circuit 30 is a circuit that turns on or off the thyristors 21 and 22 of the main circuit 20 . The control circuit 30 controls ON/OFF of the thyristors 21 and 22, for example, according to the presence or absence of a control voltage Vc input via a pair of control terminals 13 and 14 from an external power supply (not shown).

制御回路30は、例えば、制御電圧Vcが入力されると、サイリスタ21,22をオン状態にする。これにより、配線81,82及び電流経路23が導通し、交流が配線81,82及び電流経路23に流れる。一方、制御回路30は、例えば、制御電圧Vcの入力が停止すると、サイリスタ21,22をオフ状態にする。これにより、配線81,82及び電流経路23の導通が遮断され、交流が配線81,82及び電流経路23に流れなくなる。制御回路30によるサイリスタ21,22の点弧方式は、ゼロクロス点弧方式でも非ゼロクロス点弧方式でもよい。 The control circuit 30 turns on the thyristors 21 and 22, for example, when the control voltage Vc is input. As a result, the wirings 81 and 82 and the current path 23 become conductive, and alternating current flows through the wirings 81 and 82 and the current path 23 . On the other hand, the control circuit 30 turns off the thyristors 21 and 22, for example, when the input of the control voltage Vc stops. As a result, electrical continuity between the wirings 81 and 82 and the current path 23 is interrupted, and alternating current does not flow through the wirings 81 and 82 and the current path 23 . A method of firing the thyristors 21 and 22 by the control circuit 30 may be a zero-cross firing method or a non-zero-cross firing method.

例えば、制御電圧Vcが制御回路30に入力されると、制御電圧がサイリスタ21,22の制御電極(具体的には、ゲート)に制御回路30により印加される。ゼロクロス点弧方式の場合、制御電圧がサイリスタ21,22の制御電極に印加されと、サイリスタ21,22の主電極間(具体的には、アノードとカソードとの間)の電圧(極間電圧)がゼロ電圧近傍になってから、サイリスタ21,22はオンする。これにより、サイリスタ21,22のオン時の電流立ち上がり速度が遅いため、ノイズの発生を抑制できる。これに対し、非ゼロクロス点弧方式の場合、制御電圧がサイリスタ21,22の制御電極に印加されたタイミングで、サイリスタ21,22はオンする。これにより、配線81,82に電流を速やかに流し始めることができる。 For example, when the control voltage Vc is input to the control circuit 30 , the control voltage is applied to the control electrodes (specifically, gates) of the thyristors 21 and 22 by the control circuit 30 . In the case of the zero-cross firing method, when a control voltage is applied to the control electrodes of the thyristors 21 and 22, the voltage (inter-electrode voltage) between the main electrodes of the thyristors 21 and 22 (specifically, between the anode and the cathode) becomes near zero voltage, the thyristors 21 and 22 are turned on. As a result, the current rising speed when the thyristors 21 and 22 are turned on is slow, so noise generation can be suppressed. On the other hand, in the case of the non-zero cross firing method, the thyristors 21 and 22 are turned on at the timing when the control voltage is applied to the control electrodes of the thyristors 21 and 22 . As a result, the current can start flowing through the wirings 81 and 82 quickly.

一方、例えば、制御回路30への制御電圧Vcの入力が停止すると、サイリスタ21,22の制御電極への制御電圧の印加が制御回路30により遮断される。上記のいずれの点弧方式でも、サイリスタ21,22の制御電極への制御電圧の印加が遮断されると、サイリスタ21,22に流れる電流がゼロ近傍になってから、サイリスタ21,22はオフする。 On the other hand, for example, when the input of the control voltage Vc to the control circuit 30 stops, the control circuit 30 cuts off the application of the control voltage to the control electrodes of the thyristors 21 and 22 . In any of the ignition methods described above, when the application of the control voltage to the control electrodes of the thyristors 21 and 22 is cut off, the thyristors 21 and 22 turn off after the current flowing through the thyristors 21 and 22 becomes near zero. .

電圧測定回路40は、主端子11と主端子12との間の電圧(以下、"電圧V"とも称する)を測定する回路である。電圧Vは、主回路20の両端電圧(サイリスタ21,22の主電極間の電圧)に相当する。電圧測定回路40は、電圧Vの測定結果を処理部50に出力する。電圧測定回路40は、例えば、測定された電圧Vの大きさを表すアナログの電圧測定信号を処理部50に出力する。 The voltage measurement circuit 40 is a circuit that measures the voltage between the main terminals 11 and 12 (hereinafter also referred to as "voltage V"). The voltage V corresponds to the voltage across the main circuit 20 (the voltage across the main electrodes of the thyristors 21 and 22). The voltage measurement circuit 40 outputs the measurement result of the voltage V to the processing section 50 . The voltage measurement circuit 40 outputs, for example, an analog voltage measurement signal representing the magnitude of the measured voltage V to the processing section 50 .

処理部50は、電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vの変化を監視する回路であり、その具体例として、CPU(Central Processing Unit)等のプロセッサが挙げられる。処理部50の機能は、メモリに記憶されたプログラムによって、プロセッサが動作することにより実現される。処理部50は、FPGA(Field Programmable Gate Array)によって形成されてもよい。 The processing unit 50 is a circuit that monitors changes in the voltage V measured by the voltage measurement circuit 40 while the thyristors 21 and 22 are on, and a specific example thereof is a processor such as a CPU (Central Processing Unit). The functions of the processing unit 50 are implemented by the processor operating according to the programs stored in the memory. The processing unit 50 may be formed by an FPGA (Field Programmable Gate Array).

処理部50は、電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vの変化を監視し、その変化が漸増か否かを判定する。サイリスタ21,22の劣化が進行すると、サイリスタ21,22のオン状態で測定された電圧Vが漸増する現象が現れる。つまり、サイリスタ21,22のオン状態で測定された電圧Vの漸増は、サイリスタ21,22の開放異常等の故障の兆候とみなすことができる。処理部50は、電圧Vが故障前に漸増する現象を利用して、電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vの変化が漸増の場合、サイリスタ21,22の劣化と判定する。これにより、サイリスタ21,22が開放異常等の故障が実際に発生する前段階でサイリスタ21,22の劣化を把握可能となるので、半導体接触器101のサイリスタ21,22の故障発生の未然防止に貢献できる。 The processing unit 50 monitors changes in the voltage V measured by the voltage measurement circuit 40 while the thyristors 21 and 22 are in the ON state, and determines whether the change is a gradual increase. As the deterioration of the thyristors 21 and 22 progresses, a phenomenon appears in which the voltage V measured in the on state of the thyristors 21 and 22 gradually increases. That is, the gradual increase in the voltage V measured when the thyristors 21 and 22 are on can be regarded as a symptom of a failure such as an open failure of the thyristors 21 and 22 . Using the phenomenon that the voltage V gradually increases before a failure, the processing unit 50 detects deterioration of the thyristors 21 and 22 when the change in the voltage V measured with the thyristors 21 and 22 in the ON state by the voltage measurement circuit 40 gradually increases. I judge. As a result, deterioration of the thyristors 21 and 22 can be grasped before a failure such as an open failure of the thyristors 21 and 22 actually occurs. can contribute.

処理部50は、電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vの変化が漸増の場合、サイリスタ21,22の劣化を出力部51から通知してもよい。このような劣化通知を受けることで、ユーザ又は外部装置は、サイリスタ21,22の劣化を認知でき、例えば、半導体接触器101の交換を促すことができる。処理部50は、電気信号、音、光、表示又はそれらのいずれかの組み合わせによって、サイリスタ21,22の劣化を通知してもよい。 If the change in the voltage V measured by the voltage measurement circuit 40 with the thyristors 21 and 22 in the ON state gradually increases, the processing unit 50 may notify the deterioration of the thyristors 21 and 22 from the output unit 51 . By receiving such deterioration notification, the user or the external device can recognize the deterioration of the thyristors 21 and 22, and can prompt replacement of the semiconductor contactor 101, for example. The processing unit 50 may notify deterioration of the thyristors 21, 22 by an electrical signal, sound, light, display, or any combination thereof.

処理部50は、サイリスタ21,22の劣化判定の結果をメモリ60に保存してもよい。これにより、サイリスタ21,22の劣化判定の結果を、メモリ60を参照することで把握することができる。処理部50は、サイリスタ21,22の劣化判定の結果を時系列にメモリ60に保存してもよい。これにより、サイリスタ21,22の劣化判定の経緯を、メモリ60を参照することで把握することができる。 The processing unit 50 may store the results of deterioration determination of the thyristors 21 and 22 in the memory 60 . As a result, the result of deterioration determination of the thyristors 21 and 22 can be grasped by referring to the memory 60 . The processing unit 50 may store the results of deterioration determination of the thyristors 21 and 22 in time series in the memory 60 . Thus, the history of deterioration determination of the thyristors 21 and 22 can be grasped by referring to the memory 60 .

処理部50は、サイリスタ21,22がオン状態かオフ状態かのオンオフ情報を、サイリスタ21,22をオン又はオフさせる制御回路30から入手してもよい。例えば、処理部50は、サイリスタ21,22がオン状態であることを表す情報が制御回路30から入力されている期間に電圧測定回路40から入力される電圧Vの測定結果を、サイリスタ21,22の劣化判定に利用する。 The processing unit 50 may obtain on/off information indicating whether the thyristors 21 and 22 are on or off from the control circuit 30 that turns the thyristors 21 and 22 on or off. For example, the processing unit 50 measures the measurement result of the voltage V input from the voltage measurement circuit 40 during a period in which information indicating that the thyristors 21 and 22 are in the ON state is input from the control circuit 30, and the thyristors 21 and 22 used for determining the deterioration of

処理部50は、電圧Vが電圧測定回路40によりサイリスタ21,22のオン状態で測定されるごとに増加する場合、電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vの変化が漸増と判断できる。よって、処理部50は、電圧Vが電圧測定回路40によりサイリスタ21,22のオン状態で測定されるごとに増加する場合、サイリスタ21,22の劣化と判定してもよい。 If the voltage V increases each time the voltage measurement circuit 40 measures the voltage V while the thyristors 21 and 22 are in the ON state, the processing unit 50 measures the change in the voltage V measured by the voltage measurement circuit 40 while the thyristors 21 and 22 are in the ON state. can be judged to be a gradual increase. Therefore, if the voltage V increases each time the voltage measurement circuit 40 measures the thyristors 21 and 22 in the on state, the processing unit 50 may determine that the thyristors 21 and 22 have deteriorated.

処理部50は、電圧測定回路40によりサイリスタ21,22のオン状態で前回測定された電圧Vに比べて、電圧測定回路40によりサイリスタ21,22のオン状態で今回測定された電圧Vが大きい場合、電圧Vの変化が漸増と判断できる。よって、処理部50は、このような場合、サイリスタ21,22の劣化と判定してもよい。処理部50は、電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vを、メモリ60に蓄積することで、過去に測定された電圧Vをメモリ60から参照できる。 If the voltage V measured this time with the thyristors 21 and 22 in the ON state by the voltage measurement circuit 40 is greater than the voltage V previously measured by the voltage measurement circuit 40 with the thyristors 21 and 22 in the ON state, the processing unit 50 , the voltage V can be determined to gradually increase. Therefore, the processing unit 50 may determine that the thyristors 21 and 22 are deteriorated in such a case. The processing unit 50 can refer to the voltage V measured in the past from the memory 60 by accumulating the voltage V measured by the voltage measurement circuit 40 in the ON state of the thyristors 21 and 22 in the memory 60 .

処理部50は、電圧Vの一周期を超える測定周期(例えば、電圧Vの一周期の整数倍の周期)で電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vの変化が漸増の場合、サイリスタ21,22を劣化と判定してもよい。これにより、処理部50は、電圧Vが漸増か否かを高精度に判断できる。 The processing unit 50 measures the change in the voltage V measured by the voltage measuring circuit 40 with the thyristors 21 and 22 in the on state at a measurement period exceeding one period of the voltage V (for example, a period that is an integral multiple of one period of the voltage V). In the case of gradual increase, the thyristors 21 and 22 may be determined as deteriorated. Thereby, the processing unit 50 can determine with high accuracy whether or not the voltage V is gradually increasing.

処理部50は、電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vが漸増し所定の電圧範囲(以下、"電圧範囲A"とも称する)から外れた場合、サイリスタ21,22の劣化と判定してもよい。電圧範囲Aがサイリスタ21,22の劣化特性に応じて適切に設定されることで、サイリスタ21,22の劣化の判定精度が向上する。 When the voltage V measured by the voltage measurement circuit 40 with the thyristors 21 and 22 in the ON state gradually increases and deviates from a predetermined voltage range (hereinafter also referred to as “voltage range A”), the processing unit 50 controls the thyristors 21 and 22 may be determined as the deterioration of By appropriately setting the voltage range A according to the deterioration characteristics of the thyristors 21 and 22, the accuracy of determining the deterioration of the thyristors 21 and 22 is improved.

処理部50は、電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vの変化が減少の場合、サイリスタ21,22の短絡故障又は温度の異常上昇と判定してもよい。電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vの減少は、サイリスタ21,22の短絡故障又は温度の異常上昇とみなすことができるからである。例えば、処理部50は、電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vが漸減し電圧範囲Aから外れた場合、サイリスタ21,22の短絡故障又は温度の異常上昇と判定してもよい。 If the change in the voltage V measured by the voltage measurement circuit 40 while the thyristors 21 and 22 are on decreases, the processing unit 50 may determine that there is a short-circuit failure in the thyristors 21 and 22 or an abnormal temperature rise. This is because a decrease in the voltage V measured by the voltage measurement circuit 40 with the thyristors 21 and 22 turned on can be regarded as a short-circuit failure of the thyristors 21 and 22 or an abnormal temperature rise. For example, when the voltage V measured by the voltage measurement circuit 40 with the thyristors 21 and 22 in the ON state gradually decreases and deviates from the voltage range A, the processing unit 50 determines that the thyristors 21 and 22 have a short circuit failure or an abnormal temperature rise. You may

処理部50は、電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vの実効値又は平均値を算出してもよい。処理部50は、算出された実効値又は平均値が漸増し電圧範囲Aの上限値から外れた場合、サイリスタ21,22の劣化と判定してもよい。電圧Vの大きさを表す数値として好適な実効値又は平均値を電圧Vの漸増か否かの判定に利用することで、サイリスタ21,22の劣化の判定精度が向上する。同様に、処理部50は、算出された実効値又は平均値が漸減し電圧範囲Aの下限値から外れた場合、サイリスタ21,22の短絡故障又は温度の異常上昇と判定してもよい。電圧Vの大きさを表す数値として好適な実効値又は平均値を電圧Vの漸減か否かの判定に利用することで、サイリスタ21,22の短絡故障又は温度の異常上昇の判定精度が向上する。 The processing unit 50 may calculate the effective value or average value of the voltage V measured by the voltage measurement circuit 40 while the thyristors 21 and 22 are in the ON state. The processing unit 50 may determine that the thyristors 21 and 22 have deteriorated when the calculated effective value or average value gradually increases and deviates from the upper limit value of the voltage range A. By using the effective value or average value, which is suitable as a numerical value representing the magnitude of the voltage V, for determining whether the voltage V is gradually increasing, the accuracy of determining deterioration of the thyristors 21 and 22 is improved. Similarly, when the calculated effective value or average value gradually decreases and deviates from the lower limit value of the voltage range A, the processing unit 50 may determine that the thyristors 21 and 22 are short-circuited or the temperature is abnormally increased. By using the effective value or average value suitable as a numerical value representing the magnitude of the voltage V to determine whether the voltage V is gradually decreasing, the accuracy of determining whether the thyristors 21 and 22 have a short-circuit failure or an abnormal temperature rise is improved. .

第1実施形態は、負荷電流が大きく変動しない場合に特に有効である。 The first embodiment is particularly effective when the load current does not fluctuate greatly.

図2は、第2実施形態の半導体接触器の構成例を示す図である。第2実施形態において、上述の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。図2に示す第2実施形態の半導体接触器102は、電流測定回路70を更に備える点で、図1に示す第1実施形態の半導体接触器101と異なる。 FIG. 2 is a diagram showing a configuration example of a semiconductor contactor according to the second embodiment. In the second embodiment, descriptions of configurations and effects similar to those of the above embodiments are omitted or simplified by citing the above descriptions. The semiconductor contactor 102 of the second embodiment shown in FIG. 2 is different from the semiconductor contactor 101 of the first embodiment shown in FIG. 1 in that a current measuring circuit 70 is further provided.

図2において、電流測定回路70は、電流経路23に流れる電流(以下、"電流I"とも称する)を測定する回路である。電流Iは、サイリスタ21,22に流れる電流に相当する。電流測定回路70は、電流Iの測定結果を処理部50に出力する。電流測定回路70は、例えば、測定された電流Iの大きさを表すアナログの電流測定信号を処理部50に出力する。 In FIG. 2, the current measurement circuit 70 is a circuit that measures the current flowing through the current path 23 (hereinafter also referred to as "current I"). A current I corresponds to a current flowing through the thyristors 21 and 22 . The current measurement circuit 70 outputs the measurement result of the current I to the processing section 50 . The current measurement circuit 70 outputs, for example, an analog current measurement signal representing the magnitude of the measured current I to the processing section 50 .

処理部50は、電流測定回路70によりサイリスタ21,22のオン状態で測定された電流Iが所定の電流範囲にあり、且つ、電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vの変化が漸増の場合、サイリスタ21,22の劣化と判定してもよい。これにより、定常時の電流Iが所定の電流範囲(以下、"電流範囲B"とも称する)内で変化するシステムであれば、処理部50は、電流Iが変化しても、サイリスタ21,22の劣化を高精度に判定できる。 The processing unit 50 determines that the current I measured with the thyristors 21 and 22 in the ON state by the current measurement circuit 70 is within a predetermined current range, and the voltage measured by the voltage measurement circuit 40 with the thyristors 21 and 22 in the ON state. If the change in V gradually increases, it may be determined that the thyristors 21 and 22 have deteriorated. As a result, in a system in which the steady-state current I varies within a predetermined current range (hereinafter, also referred to as "current range B"), the processing unit 50 keeps the thyristors 21 and 22 even if the current I varies. deterioration can be determined with high accuracy.

処理部50は、電流測定回路70によりサイリスタ21,22のオン状態で測定された電流Iが電流範囲Bを超え、且つ、電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vが電圧範囲Aを超えた場合、サイリスタ21,22の過電流異常と判定してもよい。電流Iの上昇に伴って、サイリスタ21,22の電圧降下は大きくなるので、電圧Vも上昇する。したがって、処理部50は、電流Iが電流範囲Bを超え且つ電圧Vが電圧範囲Aを超える上記の条件が成立した場合、サイリスタ21,22に過電流が流れたと判定できる(過電流異常と判定できる)。 The processing unit 50 detects that the current I measured by the current measurement circuit 70 with the thyristors 21 and 22 in the ON state exceeds the current range B, and the voltage V exceeds the voltage range A, it may be determined that the thyristors 21 and 22 have an overcurrent abnormality. As the current I increases, the voltage drop across the thyristors 21 and 22 increases, so the voltage V also increases. Therefore, the processing unit 50 can determine that an overcurrent has flowed through the thyristors 21 and 22 (determined as an overcurrent abnormality) when the above conditions are satisfied, in which the current I exceeds the current range B and the voltage V exceeds the voltage range A. can).

第2実施形態は、負荷電流が大きく変動する場合に特に有効である。 The second embodiment is particularly effective when the load current fluctuates greatly.

図3は、第3実施形態の半導体接触器及び半導体接触器用状態監視装置の構成例を示す図である。第3実施形態において、上述の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。図3に示す第3実施形態は、状態監視装置201が処理部50及びメモリ60を備える点で、図1に示す第1実施形態と異なる。 FIG. 3 is a diagram showing a configuration example of the semiconductor contactor and the state monitoring device for the semiconductor contactor of the third embodiment. In the third embodiment, descriptions of the same configurations and effects as those of the above embodiments are omitted or simplified by citing the above descriptions. The third embodiment shown in FIG. 3 differs from the first embodiment shown in FIG. 1 in that a state monitoring device 201 includes a processing unit 50 and a memory 60. FIG.

図3に示す状態監視装置201は、半導体接触器用状態監視装置の一例であり、半導体接触器103の状態を監視する装置である。半導体接触器103は、主端子11、主端子12、制御端子13、制御端子14、主回路20、制御回路30及び電圧測定回路40を備える。状態監視装置201は、処理部50及びメモリ60を備える。 A state monitoring device 201 shown in FIG. 3 is an example of a semiconductor contactor state monitoring device, and is a device for monitoring the state of the semiconductor contactor 103 . The semiconductor contactor 103 includes a main terminal 11 , a main terminal 12 , a control terminal 13 , a control terminal 14 , a main circuit 20 , a control circuit 30 and a voltage measurement circuit 40 . The state monitoring device 201 has a processing unit 50 and a memory 60 .

電圧測定回路40は、電圧Vの測定結果を、半導体接触器103とは別体の状態監視装置201に内蔵される処理部50に、外部配線を介して出力する。 The voltage measurement circuit 40 outputs the measurement result of the voltage V to the processing unit 50 incorporated in the state monitoring device 201 which is separate from the semiconductor contactor 103 via an external wiring.

電圧測定回路40は、半導体接触器103ではなく、状態監視装置201に備えてもよい。この場合、電圧測定回路40は、主回路20の両端(サイリスタ21,22の両端)を図示のようにモニタすることで電圧Vを測定してもよいし、配線81,82に接続された一対のモニタ線(不図示)を介して、電圧Vを測定してもよい。 The voltage measurement circuit 40 may be provided in the condition monitoring device 201 instead of the semiconductor contactor 103 . In this case, the voltage measurement circuit 40 may measure the voltage V by monitoring both ends of the main circuit 20 (both ends of the thyristors 21 and 22) as shown, or a pair of , the voltage V may be measured via a monitor line (not shown).

図4は、第4実施形態の半導体接触器及び半導体接触器用状態監視装置の構成例を示す図である。第4実施形態において、上述の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。図4に示す第4実施形態は、状態監視装置201が処理部50及びメモリ60を備える点で、図2に示す第2実施形態と異なる。 FIG. 4 is a diagram showing a configuration example of the semiconductor contactor and the state monitoring device for the semiconductor contactor of the fourth embodiment. In the fourth embodiment, descriptions of configurations and effects similar to those of the above embodiments are omitted or simplified by citing the above descriptions. The fourth embodiment shown in FIG. 4 differs from the second embodiment shown in FIG. 2 in that a state monitoring device 201 includes a processing unit 50 and a memory 60. FIG.

図4に示す状態監視装置201は、半導体接触器用状態監視装置の一例であり、半導体接触器104の状態を監視する装置である。半導体接触器104は、主端子11、主端子12、制御端子13、制御端子14、主回路20、制御回路30、電圧測定回路40及び電流測定回路70を備える。状態監視装置201は、処理部50及びメモリ60を備える。 A state monitoring device 201 shown in FIG. 4 is an example of a semiconductor contactor state monitoring device, and is a device that monitors the state of the semiconductor contactor 104 . Semiconductor contactor 104 includes main terminal 11 , main terminal 12 , control terminal 13 , control terminal 14 , main circuit 20 , control circuit 30 , voltage measurement circuit 40 and current measurement circuit 70 . The state monitoring device 201 has a processing unit 50 and a memory 60 .

電圧測定回路40は、電圧Vの測定結果を、半導体接触器104とは別体の状態監視装置201に内蔵される処理部50に、外部配線を介して出力する。電流測定回路70は、電流Iの測定結果を、半導体接触器104とは別体の状態監視装置201に内蔵される処理部50に、外部配線を介して出力する。 The voltage measurement circuit 40 outputs the measurement result of the voltage V to the processing unit 50 incorporated in the state monitoring device 201 which is separate from the semiconductor contactor 104 via an external wiring. The current measurement circuit 70 outputs the measurement result of the current I to the processing unit 50 built in the state monitoring device 201 which is separate from the semiconductor contactor 104 via an external wiring.

図5は、サイリスタ21,22等の半導体スイッチング素子の両端に発生する電圧Vとその半導体スイッチング素子に流れる電流Iとの関係の一例を示す図である。半導体スイッチング素子が過電流や熱ストレスによって劣化すると、半導体スイッチング素子のチップの剥離や損傷などによって、電圧Vは、増加し、電圧V-電流Iの特性カーブは、右側にシフトする(例えば、カーブC1参照)。また、半導体スイッチング素子に過電流が流れると、電流Iの増加による電圧Vの増加によって、半導体スイッチング素子の動作点は、特性カーブに沿って上方に移動する(例えば、動作点P1参照)。また、半導体スイッチング素子の短絡故障又は温度(例えば、半導体スイッチング素子のジャンクション温度)の異常上昇が生じると、電圧Vは、減少し、電圧V-電流Iの特性カーブは、左側にシフトする(例えば、カーブC2参照)。 FIG. 5 is a diagram showing an example of the relationship between the voltage V generated across the semiconductor switching elements such as the thyristors 21 and 22 and the current I flowing through the semiconductor switching elements. When the semiconductor switching element deteriorates due to overcurrent or thermal stress, the voltage V increases due to peeling or damage to the chip of the semiconductor switching element, and the characteristic curve of voltage V-current I shifts to the right (for example, the curve C1). Also, when an overcurrent flows through the semiconductor switching element, the operating point of the semiconductor switching element moves upward along the characteristic curve due to the increase in voltage V due to the increase in current I (see, for example, operating point P1). Further, when a short-circuit failure of the semiconductor switching element or an abnormal temperature rise (for example, the junction temperature of the semiconductor switching element) occurs, the voltage V decreases, and the voltage V-current I characteristic curve shifts to the left (for example, , curve C2).

したがって、処理部50は、電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vが漸増し電圧範囲Aの上限値(例えば、1V)を超えた場合、サイリスタ21,22の劣化と判定してもよい。これにより、電流測定回路70を利用しなくても、サイリスタ21,22の劣化を簡易に判定できる。また、処理部50は、電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vが漸減し電圧範囲Aの下限値(例えば、0.5V)よりも低下した場合、サイリスタ21,22の短絡故障又は温度の異常上昇と判定してもよい。これにより、電流測定回路70を利用しなくても、サイリスタ21,22の短絡故障又は温度の異常上昇を簡易に判定できる。 Therefore, when the voltage V measured by the voltage measurement circuit 40 with the thyristors 21 and 22 in the ON state gradually increases and exceeds the upper limit value (for example, 1 V) of the voltage range A, the processing unit 50 detects deterioration of the thyristors 21 and 22. can be determined. This makes it possible to easily determine the deterioration of the thyristors 21 and 22 without using the current measuring circuit 70 . In addition, when the voltage V measured by the voltage measurement circuit 40 with the thyristors 21 and 22 in the ON state gradually decreases and falls below the lower limit value (for example, 0.5 V) of the voltage range A, the processing unit 50 detects that the thyristors 21 and 22 22 or an abnormal rise in temperature. This makes it possible to easily determine whether the thyristors 21 and 22 have a short-circuit failure or an abnormal temperature rise without using the current measuring circuit 70 .

また、処理部50は、電流測定回路70によりサイリスタ21,22のオン状態で測定された電流Iが電流範囲Bにあり、且つ、電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vの変化が漸増し電圧範囲Aの上限値(例えば、1V)を超えた場合、サイリスタ21,22の劣化と判定してもよい。これにより、サイリスタ21,22の劣化を高精度に判定できる。例えば、電流範囲Bは、1A以上10A以下の範囲である。 Further, the processing unit 50 determines that the current I measured by the current measurement circuit 70 with the thyristors 21 and 22 in the ON state is within the current range B, and that the current I measured by the voltage measurement circuit 40 with the thyristors 21 and 22 in the ON state is When the change in voltage V gradually increases and exceeds the upper limit value (for example, 1 V) of voltage range A, it may be determined that the thyristors 21 and 22 have deteriorated. Thereby, deterioration of the thyristors 21 and 22 can be determined with high accuracy. For example, the current range B is a range of 1 A or more and 10 A or less.

また、処理部50は、電流測定回路70によりサイリスタ21,22のオン状態で測定された電流Iが電流範囲Bの上限値を超え、且つ、電圧測定回路40によりサイリスタ21,22のオン状態で測定された電圧Vが電圧範囲Aの上限値を超えた場合、サイリスタ21,22の過電流異常と判定してもよい。これにより、サイリスタ21,22の過電流異常を高精度に判定できる。例えば、電流範囲Bの上限値は、10Aであり、電圧範囲Aの上限値は、1Vである。 In addition, the processing unit 50 determines that the current I measured by the current measurement circuit 70 when the thyristors 21 and 22 are on exceeds the upper limit of the current range B, and the voltage measurement circuit 40 detects that the current I is When the measured voltage V exceeds the upper limit value of the voltage range A, it may be determined that the thyristors 21 and 22 are overcurrent abnormal. Thereby, the overcurrent abnormality of the thyristors 21 and 22 can be determined with high accuracy. For example, the upper limit of current range B is 10A, and the upper limit of voltage range A is 1V.

以上、実施形態を説明したが、本開示の技術は上記実施形態に限定されない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が可能である。 Although the embodiments have been described above, the technology of the present disclosure is not limited to the above embodiments. Various modifications and improvements such as combination or replacement with part or all of other embodiments are possible.

11,12 主端子
13,14 制御端子
20 主回路
21,22 サイリスタ
23 電流経路
30 制御回路
40 電圧測定回路
50 処理部
60 メモリ
70 電流測定回路
81,82 配線
101,102,103,104 半導体接触器
201 状態監視装置
11, 12 main terminals 13, 14 control terminal 20 main circuit 21, 22 thyristor 23 current path 30 control circuit 40 voltage measurement circuit 50 processing unit 60 memory 70 current measurement circuit 81, 82 wiring 101, 102, 103, 104 semiconductor contactor 201 condition monitoring device

Claims (11)

第1端子と、
第2端子と、
前記第1端子と前記第2端子との間の電流経路に直列に挿入された少なくとも一つの半導体スイッチング素子と、
前記半導体スイッチング素子をオン又はオフさせる制御回路と、
前記第1端子と前記第2端子との間の電圧を測定する電圧測定回路と、
前記電圧測定回路により前記半導体スイッチング素子のオン状態で測定された前記電圧の変化を監視し、前記変化が漸増の場合、前記半導体スイッチング素子の劣化と判定する処理部と、を備える、半導体接触器。
a first terminal;
a second terminal;
at least one semiconductor switching element inserted in series in a current path between the first terminal and the second terminal;
a control circuit for turning on or off the semiconductor switching element;
a voltage measuring circuit that measures the voltage between the first terminal and the second terminal;
a processing unit that monitors a change in the voltage measured by the voltage measurement circuit while the semiconductor switching element is on, and determines that the semiconductor switching element is degraded when the change is a gradual increase. .
前記処理部は、前記電圧が漸増し所定の電圧範囲から外れた場合、前記半導体スイッチング素子の劣化と判定する、請求項1に記載の半導体接触器。 2. The semiconductor contactor according to claim 1, wherein said processing unit determines deterioration of said semiconductor switching element when said voltage gradually increases and deviates from a predetermined voltage range. 前記処理部は、前記電圧の実効値又は平均値が漸増し前記所定の電圧範囲から外れた場合、前記半導体スイッチング素子の劣化と判定する、請求項2に記載の半導体接触器。 3. The semiconductor contactor according to claim 2, wherein said processing unit determines deterioration of said semiconductor switching element when the effective value or average value of said voltage gradually increases and deviates from said predetermined voltage range. 前記処理部は、前記電圧の一周期を超える測定周期で前記電圧測定回路により前記オン状態で測定された前記電圧の変化が漸増の場合、前記半導体スイッチング素子の劣化と判定する、請求項1から3のいずれか一項に記載の半導体接触器。 2. The processing unit determines deterioration of the semiconductor switching element when the change in the voltage measured in the ON state by the voltage measurement circuit in a measurement cycle exceeding one cycle of the voltage gradually increases. 4. The semiconductor contactor of claim 3. 前記処理部は、前記変化が減少の場合、前記半導体スイッチング素子の短絡故障又は温度の異常上昇と判定する、請求項1から4のいずれか一項に記載の半導体接触器。 5. The semiconductor contactor according to any one of claims 1 to 4, wherein, when said change is a decrease, said processing unit determines that there is a short-circuit failure in said semiconductor switching element or an abnormal rise in temperature. 前記電流経路に流れる電流を測定する電流測定回路を更に備え、
前記処理部は、前記電流測定回路により前記オン状態で測定された前記電流が所定の電流範囲にあり、且つ、前記変化が漸増の場合、前記半導体スイッチング素子の劣化と判定する、請求項1から5のいずれか一項に記載の半導体接触器。
Further comprising a current measurement circuit that measures the current flowing through the current path,
2. When the current measured in the ON state by the current measuring circuit is within a predetermined current range and the change is a gradual increase, the processing unit determines deterioration of the semiconductor switching element. 6. The semiconductor contactor of claim 5.
前記処理部は、前記電流が前記所定の電流範囲を超え、且つ、前記電圧が所定の電圧範囲を超えた場合、前記半導体スイッチング素子の過電流異常と判定する、請求項6に記載の半導体接触器。 7. The semiconductor contact according to claim 6, wherein said processing unit determines an overcurrent abnormality in said semiconductor switching element when said current exceeds said predetermined current range and said voltage exceeds said predetermined voltage range. vessel. 前記処理部は、前記変化が漸増の場合、前記半導体スイッチング素子の劣化を通知する、請求項1から7のいずれか一項に記載の半導体接触器。 8. The semiconductor contactor according to any one of claims 1 to 7, wherein the processing unit notifies deterioration of the semiconductor switching element when the change is gradual. 前記半導体スイッチング素子は、サイリスタである、請求項1から8のいずれか一項に記載の半導体接触器。 9. The semiconductor contactor according to any one of claims 1 to 8, wherein the semiconductor switching element is a thyristor. 第1端子と第2端子との間の電流経路に直列に挿入された少なくとも一つの半導体スイッチング素子と、前記半導体スイッチング素子をオン又はオフさせる制御回路とを有する半導体接触器の状態を監視する半導体接触器用状態監視装置であって、
前記第1端子と前記第2端子との間の電圧を測定する電圧測定回路により前記半導体スイッチング素子のオン状態で測定された前記電圧の変化を監視し、前記変化が漸増の場合、前記半導体スイッチング素子の劣化と判定する処理部を備える、半導体接触器用状態監視装置。
A semiconductor for monitoring the state of a semiconductor contactor having at least one semiconductor switching element inserted in series in a current path between a first terminal and a second terminal, and a control circuit for turning on or off the semiconductor switching element A contactor condition monitoring device,
monitoring a change in the voltage measured in the ON state of the semiconductor switching element by a voltage measuring circuit that measures the voltage between the first terminal and the second terminal, and if the change gradually increases, the semiconductor switching A condition monitoring device for a semiconductor contactor, comprising a processing unit for determining deterioration of an element.
第1端子と第2端子との間の電流経路に直列に挿入された少なくとも一つの半導体スイッチング素子と、前記半導体スイッチング素子をオン又はオフさせる制御回路とを有する半導体接触器の状態を監視する方法であって、
電圧測定回路は、前記第1端子と前記第2端子との間の電圧を測定し、
処理部は、前記電圧測定回路により前記半導体スイッチング素子のオン状態で測定された前記電圧の変化を監視し、前記変化が漸増の場合、前記半導体スイッチング素子の劣化と判定する、半導体接触器の状態監視方法。
A method for monitoring the state of a semiconductor contactor having at least one semiconductor switching device inserted in series in a current path between a first terminal and a second terminal, and a control circuit for turning on or off the semiconductor switching device. and
a voltage measurement circuit that measures a voltage between the first terminal and the second terminal;
The processing unit monitors a change in the voltage measured by the voltage measurement circuit in the ON state of the semiconductor switching element, and determines that the semiconductor switching element is degraded when the change gradually increases, determining the state of the semiconductor contactor. Monitoring method.
JP2021022318A 2021-02-16 2021-02-16 Semiconductor contactor, semiconductor contactor condition monitoring device, and semiconductor contactor condition monitoring method Active JP7476818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021022318A JP7476818B2 (en) 2021-02-16 2021-02-16 Semiconductor contactor, semiconductor contactor condition monitoring device, and semiconductor contactor condition monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021022318A JP7476818B2 (en) 2021-02-16 2021-02-16 Semiconductor contactor, semiconductor contactor condition monitoring device, and semiconductor contactor condition monitoring method

Publications (2)

Publication Number Publication Date
JP2022124588A true JP2022124588A (en) 2022-08-26
JP7476818B2 JP7476818B2 (en) 2024-05-01

Family

ID=82942123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021022318A Active JP7476818B2 (en) 2021-02-16 2021-02-16 Semiconductor contactor, semiconductor contactor condition monitoring device, and semiconductor contactor condition monitoring method

Country Status (1)

Country Link
JP (1) JP7476818B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101649082B1 (en) 2012-11-14 2016-08-17 후루카와 덴키 고교 가부시키가이샤 Positive electrode active material, production method for same, positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JP6683510B2 (en) 2016-03-17 2020-04-22 東京エレクトロンデバイス株式会社 Semiconductor device, maintenance device, and maintenance method
JP2020137352A (en) 2019-02-25 2020-08-31 株式会社フジクラ Power supply device

Also Published As

Publication number Publication date
JP7476818B2 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
KR20180018451A (en) Solid state circuit breaker and motor driving system
US11320481B2 (en) High voltage interlock circuit and detection method
US10770882B2 (en) Power module
US20150288331A1 (en) Method and device for monitoring a photovolaic system
US10468972B2 (en) Power converter including a plurality of converter cells connected in multiple series
US10770887B2 (en) Semiconductor circuit interruption devices using current filtering to improve device coordination
JP5511599B2 (en) Commutation type shut-off device
JP2022124588A (en) Semiconductor contactor, condition monitoring device for semiconductor contactor, and condition monitoring method for semiconductor contactor
KR20190037658A (en) System and method for predicting the failure rate of contactor
US6297661B1 (en) Semiconductor switch fault detection
US7116110B1 (en) Sensorless protection for electronic device
JP5509431B2 (en) Semiconductor circuit breaker and DC power supply system
JP6439597B2 (en) Power converter
JP2012065459A (en) Overcurrent detecting device, and overcurrent detecting method
JP6955951B2 (en) Discharge device
JP2003125532A (en) Tracking breaker
JP2008008859A (en) Method and device for detecting deterioration of wire
AU2019382082A1 (en) Overcurrent detection in an electronic switch
JP6548698B2 (en) Power converter
JP3899280B2 (en) Overcurrent detection device
JP7438157B2 (en) Failure detection device, failure detection method, and semiconductor switch device
US20240128737A1 (en) Thermal failure prediction module and method for solid state circuit protection device
JP2014048223A (en) Semiconductor element testing device
KR20220112127A (en) Apparatus for short-circle protection of secondary battery
JP2023169669A (en) Dc circuit breaker and interrupting method

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20230313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240401

R150 Certificate of patent or registration of utility model

Ref document number: 7476818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150