JP2022122577A - Chemical state measurement method of all-solid battery - Google Patents

Chemical state measurement method of all-solid battery Download PDF

Info

Publication number
JP2022122577A
JP2022122577A JP2021019910A JP2021019910A JP2022122577A JP 2022122577 A JP2022122577 A JP 2022122577A JP 2021019910 A JP2021019910 A JP 2021019910A JP 2021019910 A JP2021019910 A JP 2021019910A JP 2022122577 A JP2022122577 A JP 2022122577A
Authority
JP
Japan
Prior art keywords
material layer
solid
negative electrode
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021019910A
Other languages
Japanese (ja)
Other versions
JP2022122577A5 (en
Inventor
典利 古田
Noritoshi Furuta
英恵 白取
Hanae Shiratori
光俊 大瀧
Mitsutoshi Otaki
淳 吉田
Atsushi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Toyota Motor Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Soken Inc filed Critical Toyota Motor Corp
Priority to JP2021019910A priority Critical patent/JP2022122577A/en
Publication of JP2022122577A publication Critical patent/JP2022122577A/en
Publication of JP2022122577A5 publication Critical patent/JP2022122577A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a measurement method of enhancing a signal strength of Raman scattered light generated by emitting excitation light without short-circuiting an all-solid battery in charging or discharge times, thereby in-situ measuring a chemical state of the all-solid battery in charging or discharge state.SOLUTION: A chemical state measurement method of all-solid battery measures a chemical state of ions in charging/discharge state of an all-solid battery including a positive electrode material layer, a negative electrode material layer and a separator layer, using Raman spectroscopy. The method incudes: vapor depositing metal nanoparticles onto front faces of measurement surfaces of the positive electrode material layer and/or the negative electrode material layer without overlapping the particles on each other; and irradiating the front faces of the positive electrode material layer and/or the negative electrode material layer with excitation light to obtain Raman scattered light.SELECTED DRAWING: Figure 1

Description

本開示は、全固体電池の化学状態測定方法に関する。 The present disclosure relates to a chemical state measurement method for an all-solid-state battery.

全固体リチウムイオン二次電池(以下、全固体電池ともいう)は、正極、セパレータ層、及び負極がこの順で積層されており、Liイオンが固体電解質を介して正極と負極との間を行き来することにより充放電を行う。そこで、全固体電池の化学状態を、充電または放電状態においてその場で(以下、in-situともいう)測定することは、高性能な全固体電池を開発するための材料設計および製造工程の最適化において重要な情報になる。より具体的には、電極内の電池反応部分である活物質におけるLiイオンの脱離や吸蔵等の反応分布は、粒子の分散性、電極塗工の不均一、拘束圧力分布、イオン伝導・電子伝導パス等によるため、不均一な反応分布の状態で充放電を繰り返すと、全固体電池の劣化の原因となるため、反応分布の解析は重要である。 An all-solid lithium ion secondary battery (hereinafter also referred to as an all-solid battery) has a positive electrode, a separator layer, and a negative electrode stacked in this order, and Li ions move between the positive electrode and the negative electrode through the solid electrolyte. By doing so, charging and discharging are performed. Therefore, in situ (hereinafter also referred to as in-situ) measurement of the chemical state of an all-solid-state battery in a charged or discharged state is an optimal material design and manufacturing process for developing a high-performance all-solid-state battery. It becomes important information in the conversion. More specifically, the reaction distribution such as desorption and absorption of Li ions in the active material, which is the battery reaction part in the electrode, depends on the dispersibility of particles, uneven electrode coating, confining pressure distribution, ionic conduction and electron Repetition of charging and discharging in a non-uniform reaction distribution can cause deterioration of all-solid-state batteries due to conduction paths, etc., so analysis of the reaction distribution is important.

また、全固体電池の充放電中の活物質の化学状態はラマン分光法により測定可能である。ラマン分光法とは、物質に一定振動数の励起光を照射し、得られる散乱光を分光してスペクトルを得、照射光と異なる波長のラマン散乱光を検出する方法である。
このようなラマン分光法を用いた技術として、特許文献1には、ラマン活性がない金属基盤の解析で、導電性の金属被膜を基板表面に形成して、その上に金属ナノ粒子を配置して、ラマン散乱光の信号を増強して測定する表面増強ラマン分光法が開示されている。また、特許文献2には、電池をラマン分光法でin-situ測定する測定用セルが開示されている。また、特許文献3には、凹凸を有する固体表面に吸着した物質のラマンスペクトルを定性的に測定できるラマン分光法が開示されている。
Also, the chemical state of the active material during charging and discharging of the all-solid-state battery can be measured by Raman spectroscopy. Raman spectroscopy is a method of irradiating a substance with excitation light of a constant frequency, obtaining a spectrum by spectroscopy of the obtained scattered light, and detecting Raman scattered light having a wavelength different from that of the irradiated light.
As a technique using such Raman spectroscopy, Patent Document 1 discloses an analysis of a metal substrate that does not have Raman activity, in which a conductive metal film is formed on the substrate surface and metal nanoparticles are arranged thereon. discloses surface-enhanced Raman spectroscopy that enhances and measures the signal of Raman scattered light. Further, Patent Document 2 discloses a measurement cell for in-situ measurement of a battery by Raman spectroscopy. Further, Patent Document 3 discloses a Raman spectroscopic method capable of qualitatively measuring a Raman spectrum of a substance adsorbed on an uneven solid surface.

特開2010-025753号公報JP 2010-025753 A 特許第5661901号公報Japanese Patent No. 5661901 特許第6368516号公報Japanese Patent No. 6368516

特許文献1に記載の表面増強ラマン分光法では、ラマン散乱光の信号を増強させる方法として、測定対象物上に金属ナノ粒子とのギャップを形成して測定することが提案されている。全固体電池の充電または放電状態における化学状態をin-situ測定する場合、ギャップを設けるための導電性の被膜形成や金属ナノ粒子形成のため、電池が短絡する虞があり、電池が短絡すると充放電によるLiイオンの脱離や吸蔵の様子は測定できない。さらに、測定対象物は被膜の厚さが500nm以下の薄膜であるため、全固体電池の化学状態測定には適さない。 In the surface-enhanced Raman spectroscopy described in Patent Document 1, as a method for enhancing the signal of Raman scattered light, it is proposed to measure by forming a gap between the metal nanoparticles on the object to be measured. When performing in-situ measurement of the chemical state of an all-solid-state battery in a charged or discharged state, there is a risk of short-circuiting the battery due to the formation of a conductive film or metal nanoparticles to provide a gap. Detachment and absorption of Li ions due to discharge cannot be measured. Furthermore, since the object to be measured is a thin film with a film thickness of 500 nm or less, it is not suitable for chemical state measurement of all-solid-state batteries.

ラマン分光法の中でも、金属ナノ探針を用いたチップ増強ラマン(以下、TERS(Tip-enhanced Raman scattering)ともいう)分光法は、金属ナノ探針(以下、探針ともいう)を測定試料表面上で二次元的に走査し、各点におけるラマン散乱光のスペクトルを得る方法であり、例えば、探針先端の光照射によって励起される局在プラズモンポラリトンによる電場増強効果や探針による吸収分子内の電荷の変更による化学的増強効果等によりラマン散乱光の信号強度を増強し、活物質粒子内の化学状態を高分解能で分析できる方法である。しかしながら、従来のTERS分光法による全固体電池の化学状態測定では、例えばSiのラマン散乱光の信号増強の効果は確認されておらず、活物質の過膨張等は検出できないため、電極材層全体の平均的なLi吸蔵分布の測定にとどまる。
また、特許文献2に記載の測定用セルは、観察窓(石英ガラス)を有するため、探針を試料に近づける必要があるTERS分光法で用いることができない。
Among Raman spectroscopic methods, tip-enhanced Raman (hereinafter also referred to as TERS (Tip-enhanced Raman scattering) spectroscopy) using a metal nanoprobe is a method in which a metal nanoprobe (hereinafter also referred to as a probe) is placed on the surface of a measurement sample. For example, the electric field enhancement effect due to the localized plasmon polariton excited by the light irradiation of the tip of the probe, and the absorption in the molecule by the probe. In this method, the signal intensity of the Raman scattered light is enhanced by the chemical enhancement effect due to the change of the electric charge, etc., and the chemical state inside the active material particles can be analyzed with high resolution. However, in the chemical state measurement of all-solid-state batteries by conventional TERS spectroscopy, the effect of signal enhancement of Raman scattered light of Si, for example, has not been confirmed, and overexpansion of the active material cannot be detected. However, the measurement is limited to the average Li absorption distribution.
Moreover, since the measurement cell described in Patent Document 2 has an observation window (quartz glass), it cannot be used in TERS spectroscopy, which requires the probe to be brought close to the sample.

そこで、本開示の目的は、上記実情を鑑み、充電時または放電時に全固体電池を短絡させることなく、励起光の照射で発生するラマン散乱光の信号強度を増強し、全固体電池の充電または放電状態における化学状態をin-situ測定できる測定方法を提供することである。 Therefore, in view of the above circumstances, the object of the present disclosure is to enhance the signal intensity of Raman scattered light generated by irradiation of excitation light without short-circuiting the all-solid-state battery during charging or discharging, and charge or discharge the all-solid-state battery. An object of the present invention is to provide a measuring method capable of in-situ measuring a chemical state in a discharged state.

本開示は、上記課題を解決するための一つの手段として、正極材層、負極材層、セパレータ層からなる全固体電池の充放電状態におけるイオンの化学状態についてラマン分光法を用いて測定する全固体電池の化学状態測定方法であって、正極材層および/または負極材層における測定面の表面に金属ナノ粒子を該粒子の重なりがないように蒸着させ、正極材層および/または負極材層の表面に励起光を照射してラマン散乱光を得ることを特徴とする、全固体電池の化学状態測定方法を提供する。 As one means for solving the above problems, the present disclosure uses Raman spectroscopy to measure the chemical state of ions in the charge and discharge state of an all-solid-state battery consisting of a positive electrode material layer, a negative electrode material layer, and a separator layer. A method for measuring the chemical state of a solid-state battery, comprising: depositing metal nanoparticles on the surface of a positive electrode material layer and/or a negative electrode material layer to be measured so that the particles do not overlap each other; Provided is a method for measuring the chemical state of an all-solid-state battery, characterized by irradiating excitation light on the surface of a to obtain Raman scattered light.

本開示の全固体電池の化学状態測定方法によれば、充電時または放電時に全固体電池を短絡させることなく、励起光の照射で発生するラマン散乱光の信号強度を増強し、全固体電池の充電または放電状態におけるイオンの化学状態をin-situ測定できる。 According to the method for measuring the chemical state of an all-solid-state battery of the present disclosure, the signal intensity of Raman scattered light generated by irradiation with excitation light is enhanced without short-circuiting the all-solid-state battery during charging or discharging, and the all-solid-state battery In-situ measurement of the chemical state of ions in the charged or discharged state is possible.

本発明の一実施形態に係る全固体電池の化学状態測定方法について概要を説明する図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the outline|summary about the chemical state measuring method of the all-solid-state battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る測定セル100の概要図である。図2(a)は、上面図、図2(b)は側面図、図2(c)はラマン分光測定装置との位置を示す一例の上面図、図2(d)はラマン分光測定装置との位置を示す一例の断面図である。1 is a schematic diagram of a measuring cell 100 according to an embodiment of the invention; FIG. 2(a) is a top view, FIG. 2(b) is a side view, FIG. 2(c) is a top view of an example showing the position of the Raman spectrometer, and FIG. 2(d) is the Raman spectrometer and is a cross-sectional view of an example showing the position of . 図1の測定エリアIにおいて、測定面に均一に蒸着した金粒子の様子を撮影したSPM像である。FIG. 2 is an SPM image of the gold particles uniformly deposited on the measurement surface in the measurement area I of FIG. 1. FIG. 本発明の一実施形態に係る負極材層におけるラマンスペクトルとLixSi/Si強度比のマップ図である。FIG. 4 is a map diagram of Raman spectra and LixSi/Si intensity ratios in a negative electrode material layer according to one embodiment of the present invention.

本開示の全固体電池の化学状態測定方法の一実施形態について、以下、図を参照しつつ説明するが、本発明は実施形態に限定されない。
以下、図面を参照して、本発明の一実施形態にかかる全固体電池の化学状態測定方法について、測定対象となる全固体電池、測定電池の作製方法、測定セル、化学状態測定方法を順に実施形態に基づいて説明する。ただし、本発明は実施形態に限定されない。 なお、図1および図2において、X軸、Y軸、Z軸は、3次元空間における方向を規定する。
An embodiment of the method for measuring the chemical state of an all-solid-state battery of the present disclosure will be described below with reference to the drawings, but the present invention is not limited to the embodiment.
Hereinafter, with reference to the drawings, an all-solid-state battery to be measured, a method for producing a measurement battery, a measurement cell, and a method for measuring the chemical state of an all-solid-state battery to be measured are sequentially implemented in the method for measuring the chemical state of an all-solid-state battery according to one embodiment of the present invention. Description will be made based on the form. However, the invention is not limited to the embodiments. 1 and 2, the X-axis, Y-axis, and Z-axis define directions in a three-dimensional space.

[全固体電池]
本発明において測定対象となる全固体電池は、活物質を含む活物質層が、集電体上に形成されてなる電極材層を有する公知の全固体電池を特に限定されず用いることができ、例えば、硫化物系全固体二次電池、酸化物系全固体二次電池、有機物系全固体二次電池であってもよく、より具体的には全固体リチウムイオン二次電池、全固体ナトリウム二次電池、および、全固体リチウム電池が挙げられる。
[All-solid battery]
The all-solid-state battery to be measured in the present invention is not particularly limited to a known all-solid-state battery having an electrode material layer in which an active material layer containing an active material is formed on a current collector. For example, it may be a sulfide-based all-solid secondary battery, an oxide-based all-solid secondary battery, or an organic all-solid-state secondary battery. secondary batteries and all-solid lithium batteries.

図1は、本発明の一実施形態に係る全固体電池の化学状態測定方法について概要を説明する図である。図1に示すように、本発明において測定対象となる全固体電池10は、正極材層20、セパレータ層30、負極材層40がこの順で積層されている。正極材層20は、正極活物質を含有する正極活物質層21と正極集電体22とを有し、負極材層40は、負極活物質を含有する負極活物質層41と負極集電体42とを有している。全固体電池10は、正極材層20、セパレータ層30、負極材層40からなる1つの積層体であってもよく、電池性能を向上させる観点から複数の積層体であってもよい。また、1の積層体と他の積層体との間で、構成要素を共有してもよい。 FIG. 1 is a diagram explaining an outline of a method for measuring the chemical state of an all-solid-state battery according to one embodiment of the present invention. As shown in FIG. 1, an all-solid-state battery 10 to be measured in the present invention has a cathode material layer 20, a separator layer 30, and an anode material layer 40 laminated in this order. The positive electrode material layer 20 has a positive electrode active material layer 21 containing a positive electrode active material and a positive electrode current collector 22, and the negative electrode material layer 40 has a negative electrode active material layer 41 containing a negative electrode active material and a negative electrode current collector. 42. The all-solid-state battery 10 may be one laminate composed of the cathode material layer 20, the separator layer 30, and the anode material layer 40, or may be a plurality of laminates from the viewpoint of improving battery performance. Also, one laminate and another laminate may share a component.

以下、全固体電池10の各構成について説明する。なお、本明細書において「粒径」とは、レーザ回折・散乱法によって測定された体積基準の粒度分布において、積算値50%での粒子径(D50)を意味する。体積基準の粒度分布はSEMによって計測されてもよい。 Each configuration of the all-solid-state battery 10 will be described below. As used herein, the term "particle size" means the particle size ( D50 ) at an integrated value of 50% in a volume-based particle size distribution measured by a laser diffraction/scattering method. Volume-based particle size distribution may be measured by SEM.

<正極材層>
正極材層20は、正極活物質を含有する正極活物質層21と正極集電体22とを有しており、正極活物質層21はセパレータ層30に接して配置されている。なお、正極活物質層21は、正極集電体22とセパレータ層30の片面に形成されていても、両面に形成されていてもよい。
<Positive material layer>
The cathode material layer 20 has a cathode active material layer 21 containing a cathode active material and a cathode current collector 22 , and the cathode active material layer 21 is arranged in contact with the separator layer 30 . The positive electrode active material layer 21 may be formed on one side or both sides of the positive electrode current collector 22 and the separator layer 30 .

{正極活物質層}
正極活物質層21は少なくとも正極活物質を含む。正極活物質は全固体電池に適用可能な公知の正極活物質を用いればよい。例えば、コバルト酸リチウム、ニッケル酸リチウム等のリチウム含有複合酸化物や、硫黄系活物質、チタン酸リチウム(LTO)等を用いることができる。正極活物質の粒径は特に限定されないが、例えば0.5μm~50μmの範囲である。正極活物質層21における正極活物質の含有量は、例えば50重量%~99重量%の範囲である。正極活物質は表面がニオブ酸リチウム層やチタン酸リチウム層、リン酸リチウム層等の酸化物層で被覆されていてもよい。
{Positive electrode active material layer}
The positive electrode active material layer 21 contains at least a positive electrode active material. A known positive electrode active material applicable to all-solid-state batteries may be used as the positive electrode active material. For example, lithium-containing composite oxides such as lithium cobaltate and lithium nickelate, sulfur-based active materials, lithium titanate (LTO), and the like can be used. Although the particle size of the positive electrode active material is not particularly limited, it is, for example, in the range of 0.5 μm to 50 μm. The content of the positive electrode active material in the positive electrode active material layer 21 is, for example, in the range of 50% by weight to 99% by weight. The surface of the positive electrode active material may be coated with an oxide layer such as a lithium niobate layer, a lithium titanate layer, or a lithium phosphate layer.

正極活物質層21は任意に固体電解質を備えていてもよい。固体電解質としては酸化物固体電解質や硫化物固体電解質等が挙げられる。好ましくは硫化物固体電解質である。酸化物固体電解質としては、例えばLiLaZr12、Li7-xLaZr1-xNb12、LiPO、Li3+xPO4-x(LiPON)等が挙げられる。硫化物固体電解質としては、例えばLiPS、LiS-P、LiS-SiS、LiI-LiS-SiS、LiI-SiS-P、LiS-P-LiI-LiBr、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiS-P-GeS等が挙げられる。正極活物質層21における固体電解質の含有量は特に限定されないが、例えば1重量%~50重量%の範囲である。 The cathode active material layer 21 may optionally comprise a solid electrolyte. Examples of solid electrolytes include oxide solid electrolytes and sulfide solid electrolytes. A sulfide solid electrolyte is preferred. Examples of oxide solid electrolytes include Li 7 La 3 Zr 2 O 12 , Li 7-x La 3 Zr 1-x Nb x O 12 , Li 3 PO 4 , Li 3+x PO 4-x N x (LiPON), and the like. mentioned. Examples of sulfide solid electrolytes include Li 3 PS 4 , Li 2 SP 2 S 5 , Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Si 2 SP 2 S 5 , Li 2SP 2 S 5 -LiI-LiBr, LiI-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI - Li 3 PO 4 -P 2 S 5 , Li 2 S- P 2 S 5 -GeS 2 and the like. The content of the solid electrolyte in the positive electrode active material layer 21 is not particularly limited, but is, for example, in the range of 1 wt % to 50 wt %.

正極活物質層21は任意に導電助剤を備えていてもよい。導電助剤は、その添加により、正極活物質層の電子伝導性を向上させることができる。導電助剤としては、例えば、アセチレンブラックやケッチェンブラック、気相法炭素繊維(VGCF)等の炭素材料やニッケル、アルミニウム、ステンレス鋼等の金属材料が挙げられる。正極活物質層21における導電助剤の含有量は特に限定されないが、例えば0.1重量%~10重量%の範囲である。 The positive electrode active material layer 21 may optionally include a conductive aid. The addition of the conductive aid can improve the electron conductivity of the positive electrode active material layer. Examples of conductive aids include carbon materials such as acetylene black, ketjen black, and vapor grown carbon fiber (VGCF), and metal materials such as nickel, aluminum, and stainless steel. The content of the conductive aid in the positive electrode active material layer 21 is not particularly limited, but is, for example, in the range of 0.1% by weight to 10% by weight.

正極活物質層21は任意にバインダを備えていてもよい。バインダは、化学的、電気的に安定なものであれば特に限定されるものではないが、例えば、ブタジエンゴム(BR)、ブチレンゴム(IIR)、アクリレートブタジエンゴム(ABR)、スチレンブタジエンゴム(SBR)等のゴム系結着材、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HFP)ポリテトラフルオロエチレン(PTFE)等のフッ素系結着材、ポリプロピレン(PP)、ポリエチレン(PE)等のオレフィン系結着材、カルボキシメチルセルロース(CMC)等のセルロース系結着材等が挙げられる。正極活物質層21におけるバインダの含有量は特に限定されないが、例えば0.1重量%~10重量%の範囲である。 The cathode active material layer 21 may optionally include a binder. The binder is not particularly limited as long as it is chemically and electrically stable, but examples include butadiene rubber (BR), butylene rubber (IIR), acrylate butadiene rubber (ABR), styrene butadiene rubber (SBR) Rubber-based binders such as polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), fluorine-based binders such as polytetrafluoroethylene (PTFE), polypropylene (PP), Olefin-based binders such as polyethylene (PE), cellulose-based binders such as carboxymethylcellulose (CMC), and the like can be used. Although the content of the binder in the positive electrode active material layer 21 is not particularly limited, it is, for example, in the range of 0.1% by weight to 10% by weight.

正極活物質層21の厚みは特に限定されず、所望の電池性能に応じて適宜設定すればよい。例えば、0.1μm~1mmの範囲である。 The thickness of the positive electrode active material layer 21 is not particularly limited, and may be appropriately set according to desired battery performance. For example, it ranges from 0.1 μm to 1 mm.

{正極集電体}
正極活物質層21に含まれる正極活物質の集電を行う正極集電体22は、金属箔や金属メッシュ等により構成すればよい。特に金属箔が好ましい。正極集電体22を構成する金属としては、例えばステンレス鋼、アルミニウム、ニッケル、鉄、銅、チタンおよびカーボン等が挙げられる。正極集電体22の厚みは特に限定されず、従来と同様でよい。例えば0.1μm~1mmの範囲である。
{Positive electrode current collector}
The positive electrode current collector 22 that collects the current of the positive electrode active material contained in the positive electrode active material layer 21 may be made of metal foil, metal mesh, or the like. Metal foil is particularly preferred. Examples of metals forming the positive electrode current collector 22 include stainless steel, aluminum, nickel, iron, copper, titanium, and carbon. The thickness of the positive electrode current collector 22 is not particularly limited, and may be the same as the conventional one. For example, it ranges from 0.1 μm to 1 mm.

{正極材層の作製}
正極材層20の作製方法は特に限定されず、公知の方法により作製することができる。例えば、正極活物質層21を構成する材料を溶媒とともに混合してスラリーとし、当該スラリーを基材である正極集電体22(セパレータ層30であってもよい。)にドクターブレード法、ダイコート法、グラビア法等の湿式法で表面に塗布して、乾燥させることにより正極材層20を作製することができる。
{Preparation of positive electrode material layer}
The method for producing the positive electrode layer 20 is not particularly limited, and it can be produced by a known method. For example, the material constituting the positive electrode active material layer 21 is mixed with a solvent to form a slurry, and the slurry is applied to the positive electrode current collector 22 (which may be the separator layer 30) as a base material by a doctor blade method or a die coating method. The cathode material layer 20 can be produced by coating the surface with a wet method such as a gravure method and then drying.

<セパレータ層>
セパレータ層30は、正極材層20および負極材層40の間に形成され、例えば固体電解質層であってもよい。固体電解質層は、少なくとも固体電解質を含有する。
固体電解質としては、正極活物質層21に用いられる固体電解質と同様の種類のものを用いることができる。固体電解質層における固体電解質の含有量は、例えば20重量%~99重量%の範囲であり、より好ましくは、50重量%~99重量%の範囲である。
<Separator layer>
The separator layer 30 is formed between the positive electrode material layer 20 and the negative electrode material layer 40, and may be, for example, a solid electrolyte layer. The solid electrolyte layer contains at least a solid electrolyte.
As the solid electrolyte, the same type of solid electrolyte as that used for the positive electrode active material layer 21 can be used. The solid electrolyte content in the solid electrolyte layer is, for example, in the range of 20 wt % to 99 wt %, and more preferably in the range of 50 wt % to 99 wt %.

固体電解質層は任意にバインダを備えていてもよい。バインダは、正極活物質層21に用いられるバインダと同様の種類のものを用いることができ、固体電解質層におけるバインダの含有量は特に限定されないが、例えば0.1重量%~10重量%の範囲である。 The solid electrolyte layer may optionally be provided with a binder. The binder can be of the same type as the binder used for the positive electrode active material layer 21, and the content of the binder in the solid electrolyte layer is not particularly limited. is.

セパレータ層30の厚みは特に限定されず、従来と同様でよい。例えば5μm~1mmの範囲であり、より好ましくは10μm~100μmの範囲である。 The thickness of the separator layer 30 is not particularly limited, and may be the same as the conventional thickness. For example, it ranges from 5 μm to 1 mm, more preferably from 10 μm to 100 μm.

<負極材層>
負極材層40は、負極活物質を含有する負極活物質層41と負極集電体42とを有しており、負極活物質層41はセパレータ層30に接して配置されている。なお、負極活物質層41は、負極集電体42とセパレータ層30の片面に形成されていても、両面に形成されていてもよい。
<Negative electrode material layer>
The negative electrode material layer 40 has a negative electrode active material layer 41 containing a negative electrode active material and a negative electrode current collector 42 , and the negative electrode active material layer 41 is arranged in contact with the separator layer 30 . The negative electrode active material layer 41 may be formed on one side or both sides of the negative electrode current collector 42 and the separator layer 30 .

{負極活物質層}
負極活物質層41は少なくとも負極活物質を含む。負極活物質は全固体電池に適用可能な公知の負極活物質を用いればよい。例えば、Si、Si合金等のシリコン系活物質や、グラファイト、ハードカーボン等の炭素系活物質、チタン酸リチウム等の各種酸化物系活物質、リチウム合金のリチウム系活物質等を用いることができる。より堅調な効果が得られるのは、ラマン活性がLi量により大きく変化するSi系、C系活物質である。負極活物質の粒径は特に限定されないが、例えば5μm~50μmの範囲である。負極活物質層41における負極活物質の含有量は、例えば30重量%~90重量%の範囲である。
{Negative electrode active material layer}
The negative electrode active material layer 41 contains at least a negative electrode active material. A known negative electrode active material applicable to all-solid-state batteries may be used as the negative electrode active material. For example, silicon-based active materials such as Si and Si alloys, carbon-based active materials such as graphite and hard carbon, various oxide-based active materials such as lithium titanate, and lithium-based active materials such as lithium alloys can be used. . Si-based and C-based active materials, whose Raman activity varies greatly depending on the amount of Li, provide more robust effects. Although the particle size of the negative electrode active material is not particularly limited, it is, for example, in the range of 5 μm to 50 μm. The content of the negative electrode active material in the negative electrode active material layer 41 is, for example, in the range of 30% by weight to 90% by weight.

負極活物質層41は任意に固体電解質を備えていてもよい。固体電解質は、正極活物質層21に用いられる固体電解質と同様の種類のものを用いることができる。負極活物質層41における固体電解質の含有量は特に限定されないが、例えば10重量%~70重量%の範囲である。 The negative electrode active material layer 41 may optionally comprise a solid electrolyte. The same type of solid electrolyte as that used for the positive electrode active material layer 21 can be used as the solid electrolyte. The content of the solid electrolyte in the negative electrode active material layer 41 is not particularly limited, but is, for example, in the range of 10% by weight to 70% by weight.

負極活物質層41は任意に導電助剤を備えていてもよい。導電助剤は、正極活物質層21に用いられる導電助剤と同様の種類のものを用いることができる。負極活物質層41における導電助剤の含有量は特に限定されないが、例えば0.1重量%~20重量%の範囲である。 The negative electrode active material layer 41 may optionally include a conductive aid. As the conductive aid, the same type of conductive aid as used for the positive electrode active material layer 21 can be used. The content of the conductive aid in the negative electrode active material layer 41 is not particularly limited, but is, for example, in the range of 0.1% by weight to 20% by weight.

負極活物質層41は任意にバインダを備えていてもよい。バインダは、正極活物質層21に用いられる導電助剤と同様の種類のものを用いることができる。負極活物質層41におけるバインダの含有量は特に限定されないが、例えば0.1重量%~10重量%の範囲である。 The negative electrode active material layer 41 may optionally include a binder. The binder can be of the same type as the conductive aid used for the positive electrode active material layer 21 . Although the content of the binder in the negative electrode active material layer 41 is not particularly limited, it is in the range of 0.1% by weight to 10% by weight, for example.

負極活物質層41の厚みは特に限定されず、所望の電池性能に応じて適宜設定すればよい。例えば、0.1μm~1mmの範囲である。 The thickness of the negative electrode active material layer 41 is not particularly limited, and may be appropriately set according to the desired battery performance. For example, it ranges from 0.1 μm to 1 mm.

{負極集電体}
負極活物質層41に含まれる負極活物質の集電を行う負極集電体42は、金属箔や金属メッシュ等により構成すればよい。特に金属箔が好ましい。負極集電体42を構成する金属としては、例えばステンレス鋼、アルミニウム、ニッケル、鉄、銅、チタンおよびカーボン等が挙げられる。負極集電体42の各々の厚みは特に限定されず、従来と同様でよい。例えば0.1μm~1mmの範囲である。
{Negative electrode current collector}
The negative electrode current collector 42 that collects current of the negative electrode active material contained in the negative electrode active material layer 41 may be made of metal foil, metal mesh, or the like. Metal foil is particularly preferred. Examples of metals forming the negative electrode current collector 42 include stainless steel, aluminum, nickel, iron, copper, titanium, and carbon. The thickness of each of the negative electrode current collectors 42 is not particularly limited, and may be the same as the conventional one. For example, it ranges from 0.1 μm to 1 mm.

{負極材層の作製}
負極材層40の作製方法は特に限定されず、公知の方法により作製することができる。例えば、負極活物質層41を構成する材料を溶媒とともに混合してスラリーとし、当該スラリーを基材である負極集電体42(セパレータ層30であってもよい。)にドクターブレード法、ダイコート法、グラビア法等の湿式法で表面に塗布して、乾燥させることにより負極材層40を作製することができる。
{Preparation of negative electrode material layer}
A method for producing the negative electrode layer 40 is not particularly limited, and it can be produced by a known method. For example, the material constituting the negative electrode active material layer 41 is mixed with a solvent to form a slurry, and the slurry is applied to the negative electrode current collector 42 (which may be the separator layer 30) as a base material by a doctor blade method or a die coating method. The negative electrode material layer 40 can be produced by coating the surface with a wet method such as a gravure method and drying it.

<全固体電池の作製>
全固体電池10の作製方法は特に限定されるものではなく、正極材層20と負極材層40との間にセパレータ層30が配置されるように接合されればよく、公知の全固体電池における作製方法を用いることができる。
<Production of all-solid-state battery>
The method for producing the all-solid-state battery 10 is not particularly limited, and the separator layer 30 may be joined between the positive electrode material layer 20 and the negative electrode material layer 40 so that it is disposed. Fabrication methods can be used.

[測定電池の作製方法]
本発明において、後述するラマン分光法による測定において測定対象となる面、すなわち、ラマン散乱光Sを発生させるための励起光Eが照射される面は、全固体電池の積層方向に沿った断面であり、活物質層が露出している表面となる。以下、in-situ測定で測定対象となる全固体電池の断面は、測定面10aともいい、ラマン散乱光Sを発生させるための励起光Eが照射される面である。当該測定面10aの大きさは特に限定されないが、例えば1mm~1cmであってもよい。測定対象となる全固体電池の厚さは特に限定されないが、例えば10μm~1000μmであってもよい。
[Method for preparing measurement battery]
In the present invention, the surface to be measured in the measurement by Raman spectroscopy, which will be described later, that is, the surface irradiated with the excitation light E for generating the Raman scattered light S is a cross section along the stacking direction of the all-solid-state battery. This is the surface where the active material layer is exposed. Hereinafter, the cross section of the all-solid-state battery to be measured in the in-situ measurement is also referred to as a measurement surface 10a, which is the surface irradiated with the excitation light E for generating the Raman scattered light S. Although the size of the measurement surface 10a is not particularly limited, it may be, for example, 1 mm 2 to 1 cm 2 . The thickness of the all-solid-state battery to be measured is not particularly limited, but may be, for example, 10 μm to 1000 μm.

ラマン分光法による測定において、円滑に走査できる平坦な断面を得る観点から、断面はイオンミリング装置で平坦化することが好ましい。イオンミリング装置とは試料の断面に集束していないブロードなAr等のイオンビームを照射することで、観察・測定用の研磨・エッチングを行う断面研磨装置である。ただし、長時間平坦化のためのイオンビームを照射すると電池内のイオンがなくなり電気容量が小さくなるため、ミリング加工前後において電池電圧を一定に確保しながらミリング加工することが好ましい。例えば、100μm×1mm~100μm×2mmの表面の平坦化における、ミリング時間は4時間~8時間程度、イオンビームの強さ設定を2mA~4mA程度としてもよい。 In the measurement by Raman spectroscopy, the cross section is preferably flattened by an ion milling device from the viewpoint of obtaining a flat cross section that can be scanned smoothly. An ion milling apparatus is a cross-sectional polishing apparatus that performs polishing and etching for observation and measurement by irradiating a cross section of a sample with a broad unfocused ion beam such as Ar. However, if the ion beam for flattening is applied for a long time, the ions in the battery disappear and the electric capacity decreases, so it is preferable to perform the milling while ensuring a constant battery voltage before and after milling. For example, in flattening a surface of 100 μm×1 mm to 100 μm×2 mm, the milling time may be about 4 to 8 hours, and the ion beam intensity setting may be about 2 mA to 4 mA.

ここで、「平坦な断面」とは、in-situ測定で測定対象となる全固体電池の断面が、顕微鏡の焦点を合わせることができる程度に平坦化された断面であることを意味し、例えば、測定対象となる全固体電池の一断面内での凹凸差が1μm以下であってもよい。 Here, the “flat cross section” means that the cross section of the all-solid-state battery to be measured in in-situ measurement is a cross section flattened to the extent that the microscope can be focused. , the unevenness difference in one cross section of the all-solid-state battery to be measured may be 1 μm or less.

測定対象となる全固体電池の積層方向に沿った断面(測定面10a)の表面上に金属ナノ粒子を配置する。金属ナノ粒子を配置することで、ラマン散乱光の信号を増強できる。金属ナノ粒子は、該表面において、粒子間で水平方向(図1のX方向およびY方向)および垂直方向(図1のZ方向)において、重なり合ったり、接触したりしないように配置される。そのように金属ナノ粒子間の接触を抑制することで、電池の短絡を防ぐことができる。測定面10a上に金属ナノ粒子を配置する方法は、金属ナノ粒子を該粒子の重なりがなければ限定されず公知の方法を用いることができるが、例えば、蒸着が挙げられ、蒸着時間を制御することで、金属ナノ粒子間の接触は抑制される。例えば、蒸着時間は0.5秒~10秒であってもよい。なお、金属ナノ粒子は、測定面10aにおいて、正極材層および/または負極材層の表面に配置されていればよく、セパレータ層も含んだ全固体電池の測定面10a全体に配置されていてもよいし、測定面10aの一部に配置されていてもよい。 Metal nanoparticles are arranged on the surface of a cross section (measurement surface 10a) along the stacking direction of the all-solid-state battery to be measured. Arranging the metal nanoparticles can enhance the signal of the Raman scattered light. The metal nanoparticles are arranged on the surface such that there is no overlap or contact between the particles in the horizontal direction (X and Y directions in FIG. 1) and in the vertical direction (Z direction in FIG. 1). By suppressing the contact between the metal nanoparticles in such a manner, the short circuit of the battery can be prevented. The method of arranging the metal nanoparticles on the measurement surface 10a is not limited as long as the metal nanoparticles do not overlap, and known methods can be used. Thus, contact between metal nanoparticles is suppressed. For example, the deposition time may be 0.5 seconds to 10 seconds. In addition, the metal nanoparticles may be arranged on the surface of the positive electrode material layer and / or the negative electrode material layer on the measurement surface 10a, and may be arranged on the entire measurement surface 10a of the all-solid-state battery including the separator layer. Alternatively, it may be arranged on a part of the measurement surface 10a.

金属ナノ粒子は、プラズモン増強能を有する金属が好ましく、例えば、金、白金、銀、銅の粒子が挙げられる。 Metal nanoparticles are preferably metals having plasmon-enhancing ability, and examples thereof include particles of gold, platinum, silver, and copper.

金属ナノ粒子の形状は特に問わない。金属ナノ粒子の形状としては、略球状、棒状、円柱状などを採用することができるが、金属ナノ粒子の表面プラズモン増強能をより効果的に発揮させる観点から、金属ナノ粒子が略球状であり、且つ、当該粒子の粒径が10nm~40nmの範囲であることが好ましく、10nm~20nmの範囲であることがより好ましい。 The shape of the metal nanoparticles is not particularly limited. As the shape of the metal nanoparticles, a substantially spherical shape, a rod-like shape, a cylindrical shape, or the like can be adopted. And, the particle size of the particles is preferably in the range of 10 nm to 40 nm, more preferably in the range of 10 nm to 20 nm.

[測定セル]
測定セル100は、活物質を含む活物質層が集電体上に形成されてなる電極材層を有する全固体電池10の化学状態を、ラマン分光法によって測定する測定セルである。図2は、本発明の一実施形態にかかる測定セルの一例を示す図である。図2(a)は、上面図、図2(b)は側面図、図2(c)はラマン分光測定装置との位置を示す一例の上面図、図2(d)はラマン分光測定装置との位置を示す一例の断面図である。図2に示すように、測定セル100は、全固体電池10を収容するための収容部104、接続端子の機能を有する拘束印加部102を備えている。
正極集電体22、正極活物質層21、セパレータ層30、負極活物質層41、および、負極集電体42が当該順で積層されている全固体電池10は、その積層方向(図1におけるY方向)で拘束治具102Aと拘束治具102Bとに挟まれるように収容部104内に収容される。そして、全固体電池の積層方向に沿った断面である測定面が上面となるように測定セル100に設置され、測定面10aとなる。
ラマン分光測定装置のステージ73上に測定セル100は設置され、ラマン分光測定装置のカンチレバー71および検出部72は測定セル100内に収容された全固体電池10に励起光の照射およびラマン散乱光の検出のために配置される。
[Measurement cell]
The measurement cell 100 is a measurement cell that measures the chemical state of an all-solid-state battery 10 having an electrode material layer in which an active material layer containing an active material is formed on a current collector by Raman spectroscopy. FIG. 2 is a diagram showing an example of a measurement cell according to one embodiment of the invention. 2(a) is a top view, FIG. 2(b) is a side view, FIG. 2(c) is a top view of an example showing the position of the Raman spectrometer, and FIG. 2(d) is the Raman spectrometer and is a cross-sectional view of an example showing the position of . As shown in FIG. 2, the measurement cell 100 includes a housing portion 104 for housing the all-solid-state battery 10 and a restraint applying portion 102 that functions as a connection terminal.
The all-solid-state battery 10 in which the positive electrode current collector 22, the positive electrode active material layer 21, the separator layer 30, the negative electrode active material layer 41, and the negative electrode current collector 42 are stacked in this order is the stacking direction ( Y direction) is accommodated in the accommodating portion 104 so as to be sandwiched between the restraining jig 102A and the restraining jig 102B. Then, it is installed in the measurement cell 100 so that the measurement surface, which is a cross section along the stacking direction of the all-solid-state battery, faces upward, and becomes the measurement surface 10a.
The measurement cell 100 is installed on the stage 73 of the Raman spectrometry device, and the cantilever 71 and the detection unit 72 of the Raman spectrometry device irradiate the all-solid-state battery 10 accommodated in the measurement cell 100 with excitation light and Raman scattered light. Placed for detection.

収容部104は、ステー101上に配置された拘束治具102Aと拘束治具102Bとをねじ止め部103により留めることで形成され、測定対象となる全固体電池10を収容する。ステー101は、電池をラマン分光測定装置に容易に設置できるための部材であり、例えば樹脂製で、底面の位置決めのザグリ穴を有していてもよい。 The housing portion 104 is formed by fastening the restraining jig 102A and the restraining jig 102B arranged on the stay 101 with the screwing portion 103, and houses the all-solid-state battery 10 to be measured. The stay 101 is a member for easily installing the battery in the Raman spectrometer, and may be made of resin, for example, and may have a counterbore for positioning on the bottom surface.

拘束印加部102では、拘束治具102Aと拘束治具102Bとで挟むように全固体電池10を配置し、ねじ止め部103により拘束治具102Aと拘束治具102Bとを留めることで拘束する。拘束印加部102により全固体電池10が拘束されていればよいが、0.2MPa~20MPaの範囲程度の加圧状態にされてもよい。 In the constraint application unit 102, the all-solid-state battery 10 is arranged so as to be sandwiched between the constraint jigs 102A and 102B, and the constraint jigs 102A and 102B are fastened by the screwing portions 103 to be constrained. The all-solid-state battery 10 may be restrained by the restraint applying section 102, but may be pressurized in a range of approximately 0.2 MPa to 20 MPa.

拘束印加部102では、拘束治具102Aと拘束治具102Bとで挟むように全固体電池10を配置できればよいが、図2(a)に示すように、全固体電池10を拘束治具102Aの凹部と拘束治具102Bの凸部とで挟むように設置してもよい。また、図2(c)および図2(d)に示すように、拘束印加部102はラマン散乱光を取得する検出部72と干渉しなければ、その形状は限定されない。また、後述する探針70を備えたカンチレバー71の駆動範囲に全固体電池10が設置されれば、全固体電池10内の任意の位置の化学状態測定が可能になる。拘束印加部102の高さは、カンチレバー71の操作を妨げない高さであればよい。ここで、「拘束印加部102の高さ」とは、拘束治具102Aと拘束治具102BのZ方向の長さを意味する。 In the constraint application unit 102, it is sufficient if the all-solid-state battery 10 can be arranged so as to be sandwiched between the constraint jig 102A and the constraint jig 102B. However, as shown in FIG. It may be installed so as to be sandwiched between the concave portion and the convex portion of the restraining jig 102B. Moreover, as shown in FIGS. 2(c) and 2(d), the shape of the constraint applying unit 102 is not limited as long as it does not interfere with the detecting unit 72 that acquires Raman scattered light. Moreover, if the all-solid-state battery 10 is installed in the driving range of a cantilever 71 having a probe 70 to be described later, it becomes possible to measure the chemical state at any position in the all-solid-state battery 10 . The height of the constraint applying section 102 may be any height that does not hinder the operation of the cantilever 71 . Here, the "height of the restraint application section 102" means the length in the Z direction of the restraint jig 102A and the restraint jig 102B.

拘束治具102Aおよび拘束治具102Bは接続端子の機能を有し、集電体と外部機器とを電気的に接続する部材である。拘束治具102Aに備えられた接続端子105A、および、拘束治具102Bに備えられた接続端子105Bを充放電装置等の外部機器と接続することにより、充放電を行うことができる。拘束治具102Aおよび拘束治具102Bの材料は、特に限定されないが、例えばステンレス鋼、Al等が挙げられる。また、接続端子の表面の材料は、導電性を有するものであれば、特に限定されないが、例えばNi、Au、ステンレス鋼、Al、Cu、Pt等が挙げられる。 The constraining jig 102A and the constraining jig 102B function as connection terminals, and are members that electrically connect the current collector and the external device. Charging and discharging can be performed by connecting the connecting terminal 105A provided on the restraining jig 102A and the connecting terminal 105B provided on the restraining jig 102B to an external device such as a charging/discharging device. Materials for the restraining jig 102A and the restraining jig 102B are not particularly limited, but examples thereof include stainless steel and Al. Moreover, the material of the surface of the connection terminal is not particularly limited as long as it has conductivity, and examples thereof include Ni, Au, stainless steel, Al, Cu, and Pt.

ねじ止め部103は、拘束治具102Aと拘束治具102Bとで全固体電池10を拘束印加し留めるための部材である。 The screwing portion 103 is a member for applying a constraint to the all-solid-state battery 10 with the constraint jig 102A and the constraint jig 102B.

上記測定電池と測定セルの構成によれば、収容部104に全固体電池10を収容するとともに、拘束印加部102によって全固体電池10の正極材層20、負極材層40が、セパレータ層30を挟んで拘束される。接続端子を介して全固体電池10の充放電が行い、金属ナノ粒子80を該粒子の重なりがないように蒸着させた正極材層および/または負極材層の測定面の表面に励起光を照射してラマン散乱光を得るラマン分光法によって充放電反応状態における全固体電池10のイオンの化学状態をin-situ測定することができる。 According to the configuration of the measurement battery and the measurement cell described above, the all-solid-state battery 10 is accommodated in the accommodation section 104, and the positive electrode material layer 20 and the negative electrode material layer 40 of the all-solid-state battery 10 are held together by the constraint applying section 102 and the separator layer 30. pinched and restrained. The all-solid-state battery 10 is charged and discharged through the connection terminal, and the surface of the positive electrode material layer and/or the negative electrode material layer on which the metal nanoparticles 80 are deposited without overlapping the particles is irradiated with excitation light. The chemical state of ions in the all-solid-state battery 10 in the charging/discharging reaction state can be measured in-situ by Raman spectroscopy that obtains Raman scattered light.

[化学状態測定方法]
TERS分光法では、プラズモン共鳴効果を利用したラマン分光測定装置の探針先端部を介して測定面10aに励起光を照射し、ラマン散乱光を取得する。ラマン分光測定装置としては、公知のラマン分光測定装置を用いることができ、例えば、走査型プローブ顕微鏡が挙げられる。TERS分光法による空間分解能は、例えば、10nm~100nm程度である。
[Chemical state measurement method]
In the TERS spectroscopy, the measurement surface 10a is irradiated with excitation light through the tip of a probe of a Raman spectrometer using the plasmon resonance effect to acquire Raman scattered light. As the Raman spectrometer, a known Raman spectrometer can be used, and examples thereof include a scanning probe microscope. Spatial resolution by TERS spectroscopy is, for example, about 10 nm to 100 nm.

探針70は、収容部104に収容された全固体電池10の測定面10aに、ラマン散乱光を発生させるための励起光を照射させる部材であり、測定の場所を特定するために配置される。探針70は、カンチレバー71の先端に配置され、ラマン散乱光の信号を増強する観点から金や銀等の金属でその表面が被覆されていることが好ましい。なお、図1に示すように、探針70は、表面に金属ナノ粒子80が蒸着された全固体電池10の測定面10aと密接して配置される。 The probe 70 is a member that irradiates the measurement surface 10a of the all-solid-state battery 10 accommodated in the accommodation unit 104 with excitation light for generating Raman scattered light, and is arranged to specify the measurement location. . The probe 70 is arranged at the tip of the cantilever 71, and its surface is preferably coated with a metal such as gold or silver from the viewpoint of enhancing the signal of Raman scattered light. As shown in FIG. 1, the probe 70 is arranged in close contact with the measurement surface 10a of the all-solid-state battery 10 having metal nanoparticles 80 vapor-deposited thereon.

励起光としては、例えば波長500nm~600nmの励起用レーザ光が挙げられる。励起光の照射方向は、特に限定されないが、例えば斜方照射である。測定面10aの斜め上方に探針70を配置して、励起光を照射してラマン散乱光が得られる。 Excitation light includes, for example, excitation laser light with a wavelength of 500 nm to 600 nm. Although the irradiation direction of the excitation light is not particularly limited, it is oblique irradiation, for example. A probe 70 is placed obliquely above the measurement surface 10a and irradiated with excitation light to obtain Raman scattered light.

TERS分光法による測定は、ラマン分光測定装置も含めて、大気非暴露の環境で行うことが好ましい。大気非暴露な環境にすることで実電池と同じ環境での電池性能を評価できる。 Measurement by TERS spectroscopy, including the Raman spectrometer, is preferably performed in an atmosphere non-exposed environment. By creating an environment that is not exposed to the atmosphere, the battery performance can be evaluated in the same environment as the actual battery.

本発明者らは、活物質粒子のLi吸蔵分布を検出する方法として、TERS分光法において、全固体電池の電極材層にラマン活性な物質がない場合にも、ラマン散乱光の信号を増強して活物質粒子内のLi吸蔵分布を検出できる方法について検討した結果、全固体電池の電極材層の表面に金属ナノ粒子を該粒子の重なりがないように蒸着し、金属で被覆されたカンチレバー先端の探針を、電極材層の表面に近づけるように配置することで、ラマン散乱光の信号の増強ができ、活物質粒子内のLi吸蔵分布を検出できることを見出した。
本発明の化学状態測定法によると、Siに対するSi-Li信号強度比からLi量の分布を算出することで、Si粒子内のLi分布を観察することができ、負極活物質内のLi吸蔵分布による過膨張の検出等に有効である。また、本発明の化学状態測定法による測定結果を基に、Li吸蔵分布を緩和する充放電制御をすることで過膨張の抑制対策ができ、高性能な全固体電池の実現にもつながる可能性がある。
As a method for detecting the Li absorption distribution of active material particles, the present inventors have found that in TERS spectroscopy, the signal of Raman scattered light is enhanced even when there is no Raman-active substance in the electrode material layer of the all-solid-state battery. As a result of investigating a method that can detect the Li absorption distribution in the active material particles by using the By arranging the probe near the surface of the electrode material layer, the signal of the Raman scattered light can be enhanced, and the Li absorption distribution in the active material particles can be detected.
According to the chemical state measurement method of the present invention, the Li distribution in the Si particles can be observed by calculating the Li amount distribution from the Si—Li signal intensity ratio to Si, and the Li occlusion distribution in the negative electrode active material. It is effective for detecting excessive expansion due to In addition, based on the measurement results of the chemical state measurement method of the present invention, it is possible to suppress excessive expansion by controlling charge and discharge to relax the Li absorption distribution, which may lead to the realization of high-performance all-solid-state batteries. There is

[TERS分光法による測定用電池の作製]
測定対象となる全固体電池は、正極活物質としてNCMおよびLiS-Pガラスセラミックス系固体電解質を、導電助剤としてVGCFを、バインダとしてPVDFを用い、Al上に塗工し、正極材層を作製し、負極活物質としてシリコンおよびLiS-Pガラスセラミックス系固体電解質を、導電助剤としてVGCFを、バインダとしてPVDFを用い、Cu上に塗工し、負極材層を作製し、セパレータ層はLiS-Pガラスセラミックス系固体電解質およびABRを用い作製し、正極材層と負極材層との間に配置し、複数積層した。測定に用いた全固体電池の体格は図1におけるX方向の長さが5mm、Y方向の長さが2mm、Z方向の長さが0.1mmとした。
[Preparation of battery for measurement by TERS spectroscopy]
The all-solid-state battery to be measured uses NCM and Li 2 SP 2 S 5 glass-ceramic solid electrolyte as the positive electrode active material, VGCF as the conductive aid, and PVDF as the binder, and is coated on Al. A positive electrode material layer was prepared, and silicon and Li 2 SP 2 S 5 glass ceramics-based solid electrolyte were used as negative electrode active materials, VGCF was used as a conductive aid, and PVDF was used as a binder. A separator layer was prepared using a Li 2 SP 2 S 5 glass-ceramic-based solid electrolyte and ABR, placed between the positive electrode material layer and the negative electrode material layer, and laminated in multiple layers. The size of the all-solid-state battery used for the measurement was 5 mm in the X direction, 2 mm in the Y direction, and 0.1 mm in the Z direction in FIG.

全固体電池の測定面上の100μm×2mmを、イオンミリング装置によって平坦化した。長時間平坦化すると電池内のイオンがなくなり電気容量が小さくなるので、ミリング時間は8時間とし、Arイオンビームの強さ設定を4mAとした。 An area of 100 μm×2 mm on the measurement surface of the all-solid-state battery was flattened by an ion milling device. If the flattening is performed for a long period of time, the ions in the battery are lost and the electric capacity decreases.

測定面上に、蒸着装置を用い、蒸着時間は1秒とすることで、粒径10nm程度の金粒子を測定面に均一に蒸着した。図3は、図1の測定エリアIにおいて、測定面に均一に蒸着した金粒子の様子を撮影したSPM像である。図3より、金粒子間の接触がなく、均一に蒸着されていることがわかる。 Gold particles having a particle diameter of about 10 nm were uniformly deposited on the measurement surface by using a deposition device and setting the deposition time to 1 second. FIG. 3 is an SPM image of gold particles uniformly vapor-deposited on the measurement surface in the measurement area I of FIG. From FIG. 3, it can be seen that there is no contact between the gold particles and the deposition is uniform.

[化学状態測定]
上記の測定用電池を測定セルに収容した。ラマン分光測定装置(堀場製作所製)に当該測定セルを設置した。なお、拘束時の圧力は1MPaであった。接続端子には、コネクターを接触させ、充放電装置と接続し、TERS分光法による測定を行った。測定条件は、励起レーザ照射方向を斜方照射、探針を金、励起レーザ波長を638nm、励起レーザ照射パワーを14mW、測定領域/測定間隔を0.3μm× 0.3μm/0.03μm、一点あたりの測定時間を10秒とした。
[Chemical state measurement]
The measurement battery described above was placed in a measurement cell. The measurement cell was installed in a Raman spectrometer (manufactured by Horiba, Ltd.). In addition, the pressure at the time of restraint was 1 MPa. A connector was brought into contact with the connection terminal, connected to a charging/discharging device, and measurement was performed by TERS spectroscopy. The measurement conditions were oblique illumination for the excitation laser irradiation direction, gold probe, excitation laser wavelength of 638 nm, excitation laser irradiation power of 14 mW, measurement area/measurement interval of 0.3 μm×0.3 μm/0.03 μm, one point. The measurement time per time was 10 seconds.

[結果]
図4は本発明の一実施形態に係る負極材層におけるラマンスペクトルとLixSi/Si強度比(但し、LixSiはSiと結合しているLiを示す)のマップ図である。図4(a)~図4(c)の電池の充電率(States Of Charge 、以下、SOCともいう)はそれぞれ100%、50%、0%であり、すべての測定点のラマンスペクトルの測定波形が重ね合わせられている。縦軸はラマン散乱強度(Intensity)を、横軸はラマンシフト(Raman shift)を表している。
図4(a)のラマンスペクトルでは、固体電解質およびSi活物質のピークに加えて、全固体電池への金ナノ粒子の蒸着なしでは測定できなかったLixSiのピークが確認できる。また、Lix/Siの強度比のマップ図から、SOC100%ではLixSiの強度が強く、LiがSi粒子内に吸蔵されていることがわかる。
図4(b)および図4(c)によると、SOCを下げるとLiが減るため、LixSi/Si強度比が小さくなることが確認できる。図4(b)のLixSi/Si強度比のマップ図によると、今回の実施例である図1の測定エリアIでは、SOC50%で中央付近はLiが少なくなりやすいことがわかる結果が得られた。
[result]
FIG. 4 is a map diagram of the Raman spectrum and the LixSi/Si intensity ratio (where LixSi indicates Li bonded to Si) in the negative electrode material layer according to one embodiment of the present invention. The states of charge (hereinafter also referred to as SOC) of the batteries in FIGS. 4(a) to 4(c) are 100%, 50%, and 0%, respectively. are superimposed. The vertical axis represents the Raman scattering intensity (Intensity), and the horizontal axis represents the Raman shift.
In the Raman spectrum of FIG. 4(a), in addition to peaks of the solid electrolyte and Si active material, peaks of LixSi, which could not be measured without depositing gold nanoparticles on the all-solid-state battery, can be confirmed. Further, from the map diagram of the Lix/Si intensity ratio, it can be seen that the intensity of LixSi is high at 100% SOC, and Li is occluded in the Si particles.
According to FIGS. 4(b) and 4(c), it can be confirmed that the Li x Si/Si intensity ratio decreases when the SOC is lowered, since the Li decreases. According to the map diagram of the LixSi/Si intensity ratio in FIG. 4(b), in the measurement area I in FIG. .

なお、本実施例では負極材層において測定を行ったが、正極材層についても同様の方法によって測定を行うことができる。 In this example, the negative electrode material layer was measured, but the positive electrode material layer can also be measured by the same method.

すなわち、本発明によれば、充電時または放電時に全固体電池を短絡させることなく、励起光の照射で発生するラマン散乱光の信号強度を増強し、全固体電池の充放電反応中の電極における活物質の化学状態の分布を高分解能でin―situで観察することができ、高性能な電池の開発に重要な電極を作製する条件を見つける上で非常に有用である。 That is, according to the present invention, the signal intensity of Raman scattered light generated by irradiation with excitation light is enhanced without short-circuiting the all-solid-state battery during charging or discharging, and the electrode during the charge-discharge reaction of the all-solid-state battery The distribution of the chemical state of the active material can be observed in-situ with high resolution, which is extremely useful in finding the conditions for producing electrodes that are important for the development of high-performance batteries.

10 全固体電池
10a 測定面
20 正極材層
21 正極活物質層
22 正極集電体
30 セパレータ層
40 負極材層
41 負極活物質層
42 負極集電体
70 探針
71 カンチレバー
72 検出部
73 ステージ
80 金属ナノ粒子
100 測定セル
101 ステー
102 拘束印加部
102A 拘束治具
102B 拘束治具
103 ねじ止め部
104 収容部
105A 接続端子
105B 接続端子
E 励起光
S ラマン散乱光
10 All-solid-state battery 10a Measurement surface 20 Positive electrode material layer 21 Positive electrode active material layer 22 Positive electrode current collector 30 Separator layer 40 Negative electrode material layer 41 Negative electrode active material layer 42 Negative electrode current collector 70 Probe 71 Cantilever 72 Detector 73 Stage 80 Metal Nanoparticle 100 Measurement cell 101 Stay 102 Constraint application section 102A Constraint jig 102B Constraint jig 103 Screwing section 104 Accommodating section 105A Connection terminal 105B Connection terminal E Excitation light S Raman scattered light

Claims (1)

正極材層、負極材層、セパレータ層からなる全固体電池の充放電状態におけるイオンの化学状態についてラマン分光法を用いて測定する全固体電池の化学状態測定方法であって、
前記正極材層および/または前記負極材層における測定面の表面に金属ナノ粒子を該粒子の重なりがないように蒸着させ、前記正極材層および/または前記負極材層の前記表面に励起光を照射してラマン散乱光を得ることを特徴とする、全固体電池の化学状態測定方法。
A method for measuring the chemical state of an all-solid-state battery using Raman spectroscopy to measure the chemical state of ions in the charge-discharge state of an all-solid-state battery composed of a positive electrode material layer, a negative electrode material layer, and a separator layer,
Metal nanoparticles are vapor-deposited on the surface of the measurement surface of the positive electrode material layer and/or the negative electrode material layer so that the particles do not overlap, and excitation light is applied to the surface of the positive electrode material layer and/or the negative electrode material layer. A method for measuring the chemical state of an all-solid-state battery, comprising irradiating to obtain Raman scattered light.
JP2021019910A 2021-02-10 2021-02-10 Chemical state measurement method of all-solid battery Pending JP2022122577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021019910A JP2022122577A (en) 2021-02-10 2021-02-10 Chemical state measurement method of all-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021019910A JP2022122577A (en) 2021-02-10 2021-02-10 Chemical state measurement method of all-solid battery

Publications (2)

Publication Number Publication Date
JP2022122577A true JP2022122577A (en) 2022-08-23
JP2022122577A5 JP2022122577A5 (en) 2024-02-19

Family

ID=82939651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021019910A Pending JP2022122577A (en) 2021-02-10 2021-02-10 Chemical state measurement method of all-solid battery

Country Status (1)

Country Link
JP (1) JP2022122577A (en)

Similar Documents

Publication Publication Date Title
Kim et al. Three-dimensional silicon/carbon core–shell electrode as an anode material for lithium-ion batteries
Klavetter et al. A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life
US11923541B2 (en) Lithium ion secondary battery
Thomas et al. SnO 2 nanowire anchored graphene nanosheet matrix for the superior performance of Li-ion thin film battery anode
Smyrek et al. Laser-induced breakdown spectroscopy for the quantitative measurement of lithium concentration profiles in structured and unstructured electrodes
RU2695127C1 (en) Method of producing sulphide solid-state batteries
Demirocak et al. In situ atomic force microscopy analysis of morphology and particle size changes in lithium iron phosphate cathode during discharge
US20210367265A1 (en) All-solid-state battery and production method of the same
WO2014162809A1 (en) Non-aqueous electrolyte secondary cell and method for manufacturing cell
US11658355B2 (en) Method and system for analyzing swelling behavior of lithium secondary battery
Zhang et al. Laser structured Cu foil for high-performance lithium-ion battery anodes
Bezza et al. Understanding the lithiation/delithiation process in SnP2O7 anode material for lithium-ion batteries
Lürenbaum et al. Quantitative spatially resolved post-mortem analysis of lithium distribution and transition metal depositions on cycled electrodes via a laser ablation-inductively coupled plasma-optical emission spectrometry method
Yamada et al. Development of a roll-to-roll high-speed laser micro processing machine for preparing through-holed anodes and cathodes of lithium-ion batteries
JP6068241B2 (en) Method for manufacturing lithium ion battery
Oakes et al. Catalyst morphology matters for lithium–oxygen battery cathodes
JP2022122577A (en) Chemical state measurement method of all-solid battery
Ruck et al. Enhancing the rate capability of highly densified Li-Ion battery cathodes by selective laser ablation
WO2012172656A1 (en) Air cell
JPH11283612A (en) Lithium secondary battery
Akiyama et al. One-step and room-temperature fabrication of carbon nanocomposites including Ni nanoparticles for supercapacitor electrodes
Zhu et al. Laser structuring of high mass loaded and aqueous acid processed Li (Ni0. 6Mn0. 2Co0. 2) O2 cathodes for lithium-ion batteries
Opra et al. Facile synthesis of α-Fe2O3/carbon core-shell composite for lithium storage and conversion
Li et al. Visualizing surface-enriched Li storage with a nanopore-array model battery
NL2028136B1 (en) Method for joining an electrode tab to a current collector using ultrasonic welding, an electrode assembly for a battery, and use of the assembly

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240208