JP2022121778A - Control device for high efficiency operation and control method for high efficiency operation of permanent magnet synchronous motor - Google Patents

Control device for high efficiency operation and control method for high efficiency operation of permanent magnet synchronous motor Download PDF

Info

Publication number
JP2022121778A
JP2022121778A JP2021018673A JP2021018673A JP2022121778A JP 2022121778 A JP2022121778 A JP 2022121778A JP 2021018673 A JP2021018673 A JP 2021018673A JP 2021018673 A JP2021018673 A JP 2021018673A JP 2022121778 A JP2022121778 A JP 2022121778A
Authority
JP
Japan
Prior art keywords
phase
axis
voltage
permanent magnet
synchronous motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021018673A
Other languages
Japanese (ja)
Inventor
賢一郎 田中
Kenichiro Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2021018673A priority Critical patent/JP2022121778A/en
Publication of JP2022121778A publication Critical patent/JP2022121778A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

To provide a rotor magnet temperature estimation device of a permanent magnet synchronous motor (PMSM12) that does not require special motor structure and signal superposition.SOLUTION: A control device for high-efficiency operation of a permanent magnet synchronous motor comprises: a v/f control unit 10 for generating a three-phase voltage command of an inverter 11 for driving a PMSM12 from a frequency command with use of a v/f control pattern; a rotor position estimation unit 15 for estimating a rotor position θ of the PMSM12 from the generated three-phase voltage command of the inverter and a three-phase detected current; a speed electromotive force phase estimation unit 17 for estimating a speed electromotive force phase θL during driving the PMSM12 on the basis of the generated three-phase voltage command of the inverter, the three-phase detected current of the inverter, and the estimated rotor position θ of the permanent magnet synchronous motor; and a voltage correction amount generation PI controller 30 for PI controlling so that the θL becomes zero and generating a voltage correction amount vδcor to feedback the vδcor to the voltage command value vδ of the δ-axis of the v/f control unit 10.SELECTED DRAWING: Figure 1

Description

本発明は、インバータ駆動による永久磁石同期電動機の高効率運転制御方法に関する。 The present invention relates to a highly efficient operation control method for a permanent magnet synchronous motor driven by an inverter.

省エネ・省スペース化の観点から、誘導電動機に代わり回転子に永久磁石を用いた永久磁石同期電動機(Permanent Magnet Synchronous Motor;以下PMSMと称することもある)が注目されている。このPMSMの簡素な制御手法としてv/f一定制御が知られており、周波数指令に対応した電圧指令をインバータから出力する。この電圧/周波数の比率は、予め取得した電動機のパラメータから効率よく動作する点が設定される。 From the viewpoint of energy saving and space saving, a permanent magnet synchronous motor (hereinafter also referred to as PMSM) using a permanent magnet for a rotor instead of an induction motor has attracted attention. Constant v/f control is known as a simple control method for this PMSM, and the inverter outputs a voltage command corresponding to the frequency command. This voltage/frequency ratio is set at a point at which the motor operates efficiently from parameters of the motor obtained in advance.

一般に、負荷時において固定子の巻線温度の上昇から回転子に熱が伝わることや回転子に鎖交する磁束により回転子の永久磁石の温度が上昇する。また、高速回転時においては風損やベアリングの摩擦熱等によって無負荷においても磁石の温度上昇が懸念される。 In general, the temperature of the permanent magnet of the rotor rises due to heat transfer to the rotor due to the rise in the temperature of the windings of the stator under load and magnetic flux interlinking with the rotor. Moreover, during high-speed rotation, there is a concern that the temperature of the magnet may rise even with no load due to windage loss, frictional heat of bearings, and the like.

永久磁石はある上限温度を超えると減磁するため、回転子磁石の温度上昇を保護する必要がある。 Since permanent magnets demagnetize above a certain upper temperature limit, it is necessary to protect the rotor magnets from temperature rise.

また、磁石の温度上昇により誘起電圧が低下し、v/f制御の場合予め設定した動作点から外れるため、運転効率の低下につながる。 In addition, the temperature rise of the magnet causes the induced voltage to drop, and in the case of v/f control, the operating point deviates from the preset operating point, leading to a drop in operating efficiency.

従来、モータの磁石温度を推定する方法は、例えば特許文献1に記載のものが提案されていた。また、従来、永久磁石が設けられたモータの制御方法として、例えば特許文献2に記載のものが提案されていた。 Conventionally, a method for estimating the magnet temperature of a motor has been proposed, for example, in Patent Document 1. Further, conventionally, as a control method for a motor provided with permanent magnets, for example, a method described in Patent Document 2 has been proposed.

特開2017-28806号公報JP 2017-28806 A 特開2004-015891号公報Japanese Patent Application Laid-Open No. 2004-015891

特許文献1では、回転子内部に感温磁性体を埋め込む必要があり、電動機の構造が複雑になる。さらに、温度測定用に高周波電圧を重畳する必要があり、異音の発生や効率低下が懸念される。 In Patent Document 1, it is necessary to embed a temperature-sensitive magnetic material inside the rotor, which complicates the structure of the electric motor. Furthermore, it is necessary to superimpose a high-frequency voltage for temperature measurement, and there is concern about the generation of abnormal noise and a decrease in efficiency.

特許文献2には、磁石の温度上昇により誘起電圧が低下したときの高効率運転制御方法は記載されていない。 Patent Literature 2 does not describe a high-efficiency operation control method when the induced voltage is lowered due to the temperature rise of the magnet.

本発明は、上記課題を解決するものであり、その目的は、磁石の温度変化に不感な永久磁石同期電動機の高効率運転制御装置および高効率運転制御方法を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a high-efficiency operation control apparatus and a high-efficiency operation control method for a permanent magnet synchronous motor that are insensitive to magnet temperature changes.

上記課題を解決するための請求項1に記載の永久磁石同期電動機の高効率運転制御装置は、
永久磁石同期電動機の定格運転時に励磁電流がゼロとなるように設定したv/f制御パターンによって、周波数指令から、永久磁石同期電動機を駆動するインバータの3相電圧指令を生成するv/f制御部であって、前記設定したv/f制御パターンによって周波数指令から得たδ軸の電圧指令vδに、推定した永久磁石同期電動機の速度起電力位相に基づいて生成した電圧補正量vδcorを加算して求めたδ方向の電圧指令と、ゼロに設定したγ軸方向の電圧指令vγとを、前記周波数指令を積分して求めた出力電圧位相θvfによって座標変換してインバータの3相電圧指令を生成するv/f制御部と、
前記生成されたインバータの3相電圧指令および3相検出電流から永久磁石同期電動機の回転子位置を推定する回転子位置推定部と、
前記生成されたインバータの3相電圧指令、インバータの3相検出電流、前記推定された永久磁石同期電動機の回転子位置に基づいて、永久磁石同期電動機駆動時の速度起電力位相を推定する速度起電力位相推定部と、
前記速度起電力位相推定部で推定された速度起電力位相がゼロになるようにPI制御してδ軸方向の電圧補正量vδcorを生成し、該電圧補正量vδcorを前記v/f制御部のδ軸の電圧指令に加算する電圧補正量とする電圧補正量生成PI制御器と、を備え、
前記v/f制御部で生成された3相電圧指令によって前記インバータを制御することを特徴とする。
A high-efficiency operation control device for a permanent magnet synchronous motor according to claim 1 for solving the above problems,
A v/f control unit that generates a three-phase voltage command for the inverter that drives the permanent magnet synchronous motor from the frequency command using a v/f control pattern that is set so that the excitation current is zero during rated operation of the permanent magnet synchronous motor. The voltage correction amount v δcor generated based on the estimated speed electromotive force phase of the permanent magnet synchronous motor is added to the δ-axis voltage command v δ obtained from the frequency command by the set v/f control pattern. and the γ -axis direction voltage command vγ set to zero are coordinate-transformed by the output voltage phase θ vf obtained by integrating the frequency command, to obtain the three-phase voltage of the inverter. a v/f controller that generates commands;
a rotor position estimator for estimating a rotor position of the permanent magnet synchronous motor from the generated three-phase voltage command and three-phase detected current of the inverter;
A speed generator for estimating a speed electromotive force phase during driving of the permanent magnet synchronous motor based on the generated three-phase voltage command of the inverter, the three-phase detection current of the inverter, and the estimated rotor position of the permanent magnet synchronous motor. a power phase estimator;
PI control is performed so that the speed electromotive force phase estimated by the speed electromotive force phase estimator becomes zero to generate a voltage correction amount v δcor in the δ-axis direction, and the voltage correction amount v δcor is subjected to the v/f control. and a voltage correction amount generation PI controller that generates a voltage correction amount to be added to the δ-axis voltage command of the part,
The inverter is controlled by the three-phase voltage command generated by the v/f control section.

請求項2に記載の永久磁石同期電動機の高効率運転制御装置は、請求項1において、
前記回転子位置推定部は、前記インバータの3相電圧指令および3相検出電流をαβ座標軸に変換したα軸電圧vα、β軸電圧vβ、α軸電流iα、β軸電流iβを用いて、(4)式、(5)式、(6)式を演算して回転子位置θを推定し、
The high-efficiency operation control device for a permanent magnet synchronous motor according to claim 2 is characterized in that, in claim 1,
The rotor position estimating unit uses the α-axis voltage vα, β-axis voltage vβ, α-axis current iα, and β-axis current iβ obtained by converting the three-phase voltage command and the three-phase detection current of the inverter to αβ coordinate axes to obtain ( 4) Calculate the equations (5) and (6) to estimate the rotor position θ,

Figure 2022121778000002
Figure 2022121778000002

Figure 2022121778000003
Figure 2022121778000003

Figure 2022121778000004
Figure 2022121778000004

(ただし、λαはα軸の磁束ベクトル、λβはβ軸の磁束ベクトル、sはラプラス演算子、ωcは角周波数、R1は永久磁石同期電動機の巻線抵抗、Lqはq軸インダクタンス)
前記速度起電力位相推定部は、前記インバータの3相電圧指令および3相検出電流に対して、前記推定された回転子位置θを用いて(7)式の座標変換を施してd軸電圧vd、d軸電流idを推定し、
(where λα is the α-axis magnetic flux vector, λβ is the β-axis magnetic flux vector, s is the Laplace operator, ωc is the angular frequency, R1 is the winding resistance of the permanent magnet synchronous motor, and Lq is the q-axis inductance)
The speed electromotive force phase estimator performs the coordinate transformation of equation (7) on the three-phase voltage command and the three-phase detected current of the inverter using the estimated rotor position θ to obtain a d-axis voltage vd. , to estimate the d-axis current id, and

Figure 2022121778000005
Figure 2022121778000005

前記推定されたd軸電圧vd、d軸電流idを用いて(2)式を演算して速度起電力位相を推定することを特徴とする。 The speed electromotive force phase is estimated by calculating the equation (2) using the estimated d-axis voltage vd and d-axis current id.

Figure 2022121778000006
Figure 2022121778000006

(ただし、Ldはd軸インダクタンス)
請求項3に記載の永久磁石同期電動機の高効率運転制御方法は、
v/f制御部が、永久磁石同期電動機の定格運転時に励磁電流がゼロとなるように設定したv/f制御パターンによって、周波数指令から、永久磁石同期電動機を駆動するインバータの3相電圧指令を生成するステップであって、前記設定したv/f制御パターンによって周波数指令から得たδ軸の電圧指令vδに、推定した永久磁石同期電動機の速度起電力位相に基づいて生成した電圧補正量vδcorを加算して求めたδ方向の電圧指令と、ゼロに設定したγ軸方向の電圧指令vγとを、前記周波数指令を積分して求めた出力電圧位相θvfによって座標変換してインバータの3相電圧指令を生成するv/f制御ステップと、
回転子位置推定部が、前記生成されたインバータの3相電圧指令および3相検出電流から永久磁石同期電動機の回転子位置を推定する回転子位置推定ステップと、
速度起電力位相推定部が、前記生成されたインバータの3相電圧指令、インバータの3相検出電流、前記推定された永久磁石同期電動機の回転子位置に基づいて、永久磁石同期電動機駆動時の速度起電力位相を推定する速度起電力位相推定ステップと、
電圧補正量生成PI制御器が、前記速度起電力位相推定部で推定された速度起電力位相がゼロになるようにPI制御してδ軸方向の電圧補正量vδcorを生成し、該電圧補正量vδcorを前記v/f制御ステップにおけるδ軸の電圧指令に加算する電圧補正量とするステップと、を備え、
前記v/f制御ステップで生成された3相電圧指令によって前記インバータを制御することを特徴とする。
(where Ld is the d-axis inductance)
The high-efficiency operation control method for a permanent magnet synchronous motor according to claim 3,
The v/f control unit converts the three-phase voltage command for the inverter that drives the permanent magnet synchronous motor from the frequency command according to the v/f control pattern that is set so that the excitation current is zero during the rated operation of the permanent magnet synchronous motor. In the step of generating, the voltage correction amount v generated based on the estimated speed electromotive force phase of the permanent magnet synchronous motor to the δ-axis voltage command v δ obtained from the frequency command by the set v/f control pattern The δ-direction voltage command obtained by adding δcor and the γ -axis direction voltage command vγ set to zero are coordinate-transformed by the output voltage phase θ vf obtained by integrating the frequency command, and the inverter's a v/f control step that generates a three-phase voltage command;
a rotor position estimating step in which a rotor position estimating unit estimates a rotor position of the permanent magnet synchronous motor from the generated three-phase voltage command and three-phase detected current of the inverter;
A speed electromotive force phase estimator calculates the speed when the permanent magnet synchronous motor is driven based on the generated three-phase voltage command of the inverter, the three-phase detection current of the inverter, and the estimated rotor position of the permanent magnet synchronous motor. a speed electromotive force phase estimation step of estimating the electromotive force phase;
A voltage correction amount generation PI controller performs PI control so that the speed electromotive force phase estimated by the speed electromotive force phase estimator becomes zero to generate a voltage correction amount v δcor in the δ-axis direction, and the voltage correction is performed. and setting the amount v δcor as a voltage correction amount to be added to the δ-axis voltage command in the v / f control step,
The inverter is controlled by the three-phase voltage command generated in the v/f control step.

請求項4に記載の永久磁石同期電動機の高効率運転制御方法は、請求項3において、
前記回転子位置推定ステップは、前記インバータの3相電圧指令および3相検出電流をαβ座標軸に変換したα軸電圧vα、β軸電圧vβ、α軸電流iα、β軸電流iβを用いて、(4)式、(5)式、(6)式を演算して回転子位置θを推定するステップを含み、
The high-efficiency operation control method for a permanent magnet synchronous motor according to claim 4 is characterized in that, according to claim 3,
The rotor position estimating step uses the α-axis voltage vα, β-axis voltage vβ, α-axis current iα, and β-axis current iβ obtained by converting the three-phase voltage command and the three-phase detection current of the inverter to the αβ coordinate axes to obtain ( 4) calculating equations (5) and (6) to estimate the rotor position θ;

Figure 2022121778000007
Figure 2022121778000007

Figure 2022121778000008
Figure 2022121778000008

Figure 2022121778000009
Figure 2022121778000009

(ただし、λαはα軸の磁束ベクトル、λβはβ軸の磁束ベクトル、sはラプラス演算子、ωcは角周波数、R1は永久磁石同期電動機の巻線抵抗、Lqはq軸インダクタンス)
前記速度起電力位相推定ステップは、前記インバータの3相電圧指令および3相検出電流に対して、前記推定された回転子位置θを用いて(7)式の座標変換を施してd軸電圧vd、d軸電流idを推定するステップと、
(where λα is the α-axis magnetic flux vector, λβ is the β-axis magnetic flux vector, s is the Laplace operator, ωc is the angular frequency, R1 is the winding resistance of the permanent magnet synchronous motor, and Lq is the q-axis inductance)
In the speed electromotive force phase estimation step, the 3-phase voltage command and the 3-phase detected current of the inverter are subjected to the coordinate transformation of equation (7) using the estimated rotor position θ to obtain the d-axis voltage vd. , estimating the d-axis current id;

Figure 2022121778000010
Figure 2022121778000010

前記推定されたd軸電圧vd、d軸電流idを用いて(2)式を演算して速度起電力位相を推定するステップとを含んでいることを特徴とする。 and calculating the equation (2) using the estimated d-axis voltage vd and d-axis current id to estimate the speed electromotive force phase.

Figure 2022121778000011
Figure 2022121778000011

(ただし、Ldはd軸インダクタンス) (where Ld is the d-axis inductance)

請求項1~4に記載の発明によれば、v/f制御パターンにより得た電圧指令に、推定した永久磁石同期電動機の速度起電力位相がゼロになるようにPI制御して生成した電圧補正量を加算した電圧指令によって、インバータを制御しているので、磁石温度の変化により誘起電圧が変化しても高効率運転制御を行うことができる。 According to the invention of claims 1 to 4, the voltage correction generated by PI-controlling the voltage command obtained by the v/f control pattern so that the estimated speed electromotive force phase of the permanent magnet synchronous motor becomes zero Since the inverter is controlled by the voltage command to which the amount is added, high-efficiency operation control can be performed even if the induced voltage changes due to changes in the magnet temperature.

本発明の実施形態例による高効率運転制御装置の構成図。1 is a configuration diagram of a highly efficient operation control device according to an embodiment of the present invention; FIG. 励磁電流がゼロとなるように設定した際のv/f制御における電圧ベクトル図。A voltage vector diagram in v/f control when the excitation current is set to be zero. v/f制御において誘起電圧が低下した際の電圧ベクトル図。A voltage vector diagram when the induced voltage is lowered in v/f control. v/f制御における、高効率運転のための電圧ベクトル図。A voltage vector diagram for high-efficiency operation in v/f control.

以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。本実施形態例では、誘起電圧の変動から高効率動作点を推定し、磁石の温度変化に不感な高効率運転制御を可能にする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiment examples. In this embodiment, a highly efficient operating point is estimated from fluctuations in the induced voltage, enabling highly efficient operation control that is insensitive to magnet temperature changes.

図1に、本実施形態例による高効率運転制御装置の全体構成を示す。図1において10は、速度起電力位相が常に0となる電圧指令を生成するv/f制御部であり、設定したv/f制御パターンに基づいて、永久磁石同期電動機のパラメータから事前に設定される周波数指令fcomから、後で詳述する構成によりインバータ11の3相電圧指令v* uvwを生成する。 FIG. 1 shows the overall configuration of a high-efficiency operation control device according to this embodiment. In FIG. 1, reference numeral 10 denotes a v/f control unit that generates a voltage command in which the speed electromotive force phase is always 0. Based on the set v/f control pattern, 10 is set in advance from the parameters of the permanent magnet synchronous motor. A three-phase voltage command v * uvw for the inverter 11 is generated from the frequency command fcom, which will be described in detail later.

12は、インバータ11のスイッチング動作により出力される3相の出力電圧vuvwによって駆動される永久磁石同期電動機である。 A permanent magnet synchronous motor 12 is driven by a three-phase output voltage v uvw output by the switching operation of the inverter 11 .

13は、インバータ11の出力電流を検出して3相検出電流iuvwを出力する電流検出器である。 A current detector 13 detects the output current of the inverter 11 and outputs a three-phase detection current i uvw .

14は、インバータ11の3相電圧指令v* uvwおよび3相検出電流iuvwをαβ座標軸に変換するuvw/αβ変換部である。 A uvw/αβ conversion unit 14 converts the three-phase voltage command v * uvw and the three-phase detection current i uvw of the inverter 11 into αβ coordinate axes.

15は、uvw/αβ変換部14で変換されたα軸電圧vα、β軸電圧vβ、α軸電流iα、β軸電流iβを用いて、後述の(4)式、(5)式、(6)式を演算して回転子位置θを推定する回転子位置推定部である。 15 uses the α-axis voltage vα, the β-axis voltage vβ, the α-axis current iα, and the β-axis current iβ converted by the uvw/αβ conversion unit 14 to obtain equations (4), (5), and (6 ) is a rotor position estimator for estimating the rotor position θ by calculating the equation.

16は、インバータ11の3相電圧指令v* uvwおよび3相検出電流iuvwに対して、前記推定された回転子位相θを用いて、後述の(7)式の座標変換を施してd軸電圧vd、d軸電流idを出力(推定)するuvw/dq変換部である。 16 uses the estimated rotor phase .theta. to the three-phase voltage command v * uvw and the three-phase detection current i uvw of the inverter 11 to perform the coordinate transformation of equation (7), which will be described later, to obtain the d-axis It is a uvw/dq converter that outputs (estimates) the voltage vd and the d-axis current id.

17は、前記出力されたd軸電圧vd、d軸電流idを用いて後述の(2)式を演算し、速度起電力位相θLを推定する速度起電力位相推定部である。 Reference numeral 17 denotes a speed electromotive force phase estimating unit that calculates the following equation (2) using the output d-axis voltage vd and d-axis current id to estimate the speed electromotive force phase θL .

前記uvw/αβ変換部14および回転子位置推定部15によって本発明の回転子位置推定部を構成している。 The uvw/αβ conversion unit 14 and the rotor position estimation unit 15 constitute a rotor position estimation unit of the present invention.

前記uvw/dq変換部16および速度起電力位相推定部17によって本発明の速度起電力位相推定部を構成している。 The uvw/dq converter 16 and the speed electromotive force phase estimator 17 constitute the speed electromotive force phase estimator of the present invention.

18は目標値0と前記速度起電力位相θLの偏差をとる減算器、19は比例ゲインKpを有したPI制御の比例項、20は積分ゲインKiを有したPI制御の積分項、21は積分器、22は比例項19の出力と積分器21の出力を加算してδ軸の電圧補正量vδcorを出力する加算器である。 18 is a subtractor that takes the deviation between the target value 0 and the speed electromotive force phase θL , 19 is a PI control proportional term having a proportional gain Kp, 20 is a PI control integral term having an integral gain Ki, and 21 is An integrator 22 is an adder that adds the output of the proportional term 19 and the output of the integrator 21 to output a voltage correction amount v δcor on the δ axis.

これら減算器18、PI制御の比例項19、積分項20、積分器21、加算器22によって、前記速度起電力位相θLがゼロとなるようにPI制御してδ軸方向の電圧補正量vδcorを生成する電圧補正量生成PI制御器30を構成している。 The subtractor 18, PI control proportional term 19, integral term 20, integrator 21, and adder 22 perform PI control so that the speed electromotive force phase θL becomes zero, and the voltage correction amount v in the δ-axis direction is It constitutes a voltage correction amount generation PI controller 30 that generates δcor .

前記v/f制御部10内の31は、PMSM(12)の定格運転時に励磁電流がゼロとなるように設定されたv/f制御パターンであり、入力される周波数指令fcomに対応したδ軸の電圧指令vδを出力する。 31 in the v/f control unit 10 is a v/f control pattern set so that the excitation current becomes zero during rated operation of the PMSM (12), and the δ axis corresponding to the input frequency command fcom. output the voltage command v δ of .

32は、δ軸の電圧指令vδと電圧補正量生成PI制御器30で生成されたδ軸方向の電圧補正量vδcorを加算する加算器である。 An adder 32 adds the δ-axis voltage command v δ and the voltage correction amount v δcor in the δ-axis direction generated by the voltage correction amount generation PI controller 30 .

33は、周波数指令fcomを積分して出力電圧位相θvfを出力する積分器である。 An integrator 33 integrates the frequency command fcom and outputs an output voltage phase θvf.

34は、加算器32の加算出力であるδ方向の電圧指令と、ゼロに設定したγ軸方向の電圧指令vγとを、前記出力電圧位相θvfによって座標変換して3相電圧指令v* uvwを生成するγδ/uvw変換部である。 34 coordinate-transforms the δ-direction voltage command, which is the addition output of the adder 32, and the γ -axis direction voltage command vγ set to zero by the output voltage phase θ vf to obtain a three-phase voltage command v *. It is a γδ/uvw converter that generates uvw .

このように、δ軸の電圧補正量vδcorがv/f制御パターン31の出力であるδ軸の電圧指令vδにフィードバックされる(加算器32において加算される)ことによって、速度起電力位相θLが常に0となる電圧指令(v* uvw)が生成される。 In this way, the δ-axis voltage correction amount v δcor is fed back to the δ-axis voltage command v δ which is the output of the v/f control pattern 31 (added in the adder 32), whereby the speed electromotive force phase A voltage command (v * uvw ) is generated such that θ L is always 0.

v/f制御とは、周波数指令によって出力電圧の大きさを設定することにより、出力電流を一定に制御する手法である。また、電動機駆動のためのトルクに寄与しない励磁電流成分は周波数と電圧の比で決定するため、一般には、電動機の定格運転時において、励磁電流が0となるよう事前にv/fパターンが設定される。 The v/f control is a method of controlling the output current to be constant by setting the magnitude of the output voltage according to the frequency command. In addition, since the excitation current component that does not contribute to the torque for driving the motor is determined by the ratio of the frequency and voltage, the v/f pattern is generally set in advance so that the excitation current is 0 during rated operation of the motor. be done.

ここで、上記の通りに設定した際の電圧ベクトル図を図2に示す。図2において、回転子の磁束方向をd軸、直交する方向をq軸として、I1:出力電流、V1:出力電圧、E:誘起電圧、Vr:電圧降下、VL:速度起電力である。 FIG. 2 shows a voltage vector diagram when the voltages are set as described above. In FIG. 2, I1: output current, V1: output voltage, E: induced voltage, Vr: voltage drop, VL: speed electromotive force, with the direction of magnetic flux of the rotor being the d-axis and the orthogonal direction being the q-axis.

励磁電流=0、すなわちd軸方向電流id=0となるよう設定したv/fパターンにおいては、速度起電力VLはd軸方向のみに発生する。 In the v/f pattern set such that the excitation current=0, that is, the d-axis direction current id=0, the velocity electromotive force VL is generated only in the d-axis direction.

これに対して、回転子磁石温度が上昇し、誘起電圧Eが低下した際の電圧ベクトル図を図3に示す。図3に示すように、磁石の初期温度で設定した出力電圧V1では誘起電圧Eが低下した際に、d軸に対する速度起電力VLの位相が変化していることがわかる。 On the other hand, FIG. 3 shows a voltage vector diagram when the rotor magnet temperature increases and the induced voltage E decreases. As shown in FIG. 3, it can be seen that the phase of the speed electromotive force VL with respect to the d-axis changes when the induced voltage E decreases with the output voltage V1 set at the initial temperature of the magnet.

したがって、事前に励磁電流が0となるよう設定した電動機の定格速度において、速度起電力VLの位相から回転子磁石の温度上昇を推定することができる。 Therefore, at the rated speed of the motor set in advance so that the excitation current is 0, the temperature rise of the rotor magnet can be estimated from the phase of the speed electromotive force VL.

次に、速度起電力VLの位相の推定について示す。PMSM(永久磁石同期電動機12)のdq座標軸上の電圧方程式は下記(1)式の通りに表される。 Next, estimation of the phase of speed electromotive force VL will be described. A voltage equation on the dq coordinate axes of the PMSM (permanent magnet synchronous motor 12) is expressed as the following equation (1).

Figure 2022121778000012
Figure 2022121778000012

ここで、vd:d軸の電圧指令、vq:q軸の電圧指令、id:d軸の電流指令、iq:q軸の電流指令、R1:巻線抵抗(定数)、Ld:d軸インダクタンス、Lq:q軸インダクタンス(定数)、ω:回転速度、λ:固定子鎖交磁束(定数)。 Here, vd: d-axis voltage command, vq: q-axis voltage command, id: d-axis current command, iq: q-axis current command, R1: winding resistance (constant), Ld: d-axis inductance, Lq: q-axis inductance (constant), ω: rotation speed, λ: stator flux linkage (constant).

(1)式より、dq軸上の速度起電力は、次の通り表される。 From the equation (1), the speed electromotive force on the dq axis is expressed as follows.

d軸方向の速度起電力:ωLqiqvd-R1id
q軸方向の速度起電力:ωLdid
速度起電力VLの位相θVLは、各軸の逆正接で得られるため次の(2)式となる。
Velocity electromotive force in d-axis direction: ωLqiqvd-R1id
Velocity electromotive force in q-axis direction: ωLdid
The phase θ VL of the speed electromotive force VL is obtained by the arctangent of each axis, and is expressed by the following equation (2).

Figure 2022121778000013
Figure 2022121778000013

(ただし、Ldはd軸インダクタンス)
次に、(2)式を導出するためのvd、idの推定について示す。
(where Ld is the d-axis inductance)
Next, estimation of vd and id for deriving equation (2) will be described.

v/f制御は、電動機駆動に回転子位置情報を必要としないため、位置センサが不要な制御手法である。そこで、dq座標軸上の電圧・電流成分を求めるために、回転子位置を推定する必要がある。 Since the v/f control does not require rotor position information to drive the motor, it is a control method that does not require a position sensor. Therefore, it is necessary to estimate the rotor position in order to obtain the voltage/current components on the dq coordinate axes.

この回転子位置は、αβ座標軸上の電圧方程式から得られる各軸の鎖交磁束の逆正接から推定できる。αβ座標軸とは、α軸をU相とし、これと直交した方向をβ軸としV相・W相を分解した二相固定座標軸のことである。αβ座標軸上の電圧方程式は次の(3)式の通りである。 This rotor position can be estimated from the arc tangent of the interlinkage flux of each axis obtained from the voltage equation on the αβ coordinate axis. The αβ coordinate axis is a two-phase fixed coordinate axis in which the U phase is the α axis and the β axis is the direction perpendicular to the U phase, and the V phase and the W phase are resolved. A voltage equation on the αβ coordinate axis is given by the following equation (3).

Figure 2022121778000014
Figure 2022121778000014

ここで、R1:巻線抵抗(定数)、Lq:q軸インダクタンス(定数、pは微分演算子、λは固定座標軸上で定義した磁束ベクトルである。回転子位置θは、次の(4)式の通り、磁束ベクトルの逆正接から得られる。 Here, R1: winding resistance (constant), Lq: q-axis inductance (constant, p is a differential operator, λ is a magnetic flux vector defined on a fixed coordinate axis. The rotor position θ is the following (4) It is obtained from the arc tangent of the magnetic flux vector, as shown in the equation.

Figure 2022121778000015
Figure 2022121778000015

一般にファラデーの法則が示すように、ある種の電圧情報を積分することにより鎖交磁束が得られるが、純粋な積分は電圧誤差や電流検出器のオフセットなどの計測の影響により、演算結果が収束しない問題がある。 Generally speaking, Faraday's law shows that the interlinkage flux can be obtained by integrating some kind of voltage information, but the calculation result converges due to the effects of measurement such as voltage error and current detector offset in pure integration. Not a problem.

そこで本実施形態例では、次の(5)式、(6)式に示すローパスフィルタを使用し初期誤差を低減させる。 Therefore, in this embodiment, the initial error is reduced by using the low-pass filters shown in the following formulas (5) and (6).

Figure 2022121778000016
Figure 2022121778000016

Figure 2022121778000017
Figure 2022121778000017

(ただし、λαはα軸の磁束ベクトル、λβはβ軸の磁束ベクトル、sはラプラス演算子、ωcは角周波数、R1は永久磁石同期電動機の巻線抵抗、Lqはq軸インダクタンス)
前記(5)式、(6)式におけるωcは小さすぎると誤差収束に時間を要し、大きすぎると運転周波数対域で積分特性を失うため、適切な値を選択する必要があるが、今回は例として10rad/sとする。
(where λα is the α-axis magnetic flux vector, λβ is the β-axis magnetic flux vector, s is the Laplace operator, ωc is the angular frequency, R1 is the winding resistance of the permanent magnet synchronous motor, and Lq is the q-axis inductance)
If ωc in the above equations (5) and (6) is too small, it will take time to converge the error, and if it is too large, the integral characteristics will be lost in the operating frequency vs. range, so it is necessary to select an appropriate value. is 10 rad/s as an example.

したがって、回転子位置推定部15において、(4)式、(5)式、(6)式を演算することによって回転子位置θが得られる。 Therefore, the rotor position θ is obtained by calculating the equations (4), (5), and (6) in the rotor position estimator 15 .

このようにして得られた回転子位置θを用いて、uvw/dq変換部16が、インバータ11の3相電圧指令v* uvwおよび3相検出電流iuvwに対して(7)式の座標変換を施すことにより、d軸電圧vd、d軸電流idを推定することができる。 Using the rotor position θ obtained in this manner, the uvw/dq conversion unit 16 performs the coordinate conversion of equation (7) on the three-phase voltage command v * uvw and the three-phase detection current i uvw of the inverter 11. , the d-axis voltage vd and the d-axis current id can be estimated.

Figure 2022121778000018
Figure 2022121778000018

そして速度起電力位相推定部17が(2)式を演算することによって速度起電力の位相θVLを導出し、該θVLを速度起電力位相θLとして出力する。 Then, the speed electromotive force phase estimator 17 derives the speed electromotive force phase θ VL by calculating the equation (2), and outputs the speed electromotive force phase θ VL as the speed electromotive force phase θ L .

Figure 2022121778000019
Figure 2022121778000019

ここで、永久磁石同期電動機12の高効率運転のためには前記図2に示すように、速度起電力の位相が0°となる必要がある。図4は高効率運転のための電圧レベルを示しており、図3と同様にI1は出力電流、V1は出力電圧、Eは誘起電圧、VLは速度起電力である。図4では出力電圧V1の位相をδ位相と定義している。 Here, in order to operate the permanent magnet synchronous motor 12 with high efficiency, the phase of the speed electromotive force must be 0°, as shown in FIG. FIG. 4 shows voltage levels for high-efficiency operation, where I1 is the output current, V1 is the output voltage, E is the induced voltage, and VL is the speed electromotive force, as in FIG. In FIG. 4, the phase of the output voltage V1 is defined as the δ phase.

永久磁石同期電動機12の回転子磁石の温度上昇により誘起電圧Eが低下した際は、図3に示すように速度起電力VLの位相が正となり、出力電圧V1を減らすことにより速度起電力VLの位相を0°とすることができる。 When the temperature of the rotor magnet of the permanent magnet synchronous motor 12 rises and the induced voltage E decreases, the phase of the speed electromotive force VL becomes positive as shown in FIG. The phase can be 0°.

また、負荷の軽減などで磁石温度が低下した際は、誘起電圧Eが上昇し、速度起電力VLの位相が負となるため、出力電圧V1を増やすことにより速度起電力VLの位相を0°とすることができる。 Also, when the magnet temperature drops due to a reduction in the load, etc., the induced voltage E rises and the phase of the speed electromotive force VL becomes negative. can be

したがって、前記速度起電力位相推定部17において速度起電力VLの位相θLを推定し、これが0となるよう次の(8)式の通り電圧補正量生成PI制御器30によりδ軸方向の電圧指令を補正する。 Therefore, the phase θL of the speed electromotive force VL is estimated by the speed electromotive force phase estimator 17, and the voltage in the δ-axis direction is controlled by the voltage correction amount generation PI controller 30 so that the phase θL of the speed electromotive force VL becomes 0 as shown in the following equation (8). Correct the directive.

Figure 2022121778000020
Figure 2022121778000020

ここで、Kpは比例ゲイン、Kiは積分ゲイン、vδcorはPI制御により生成される電圧補正量である。これにより、誘起電圧の変動に影響を受けない高効率運転が可能となる。 Here, Kp is a proportional gain, Ki is an integral gain, and v δcor is a voltage correction amount generated by PI control. This enables highly efficient operation that is not affected by fluctuations in the induced voltage.

以上のように本発明によれば、磁石温度の変化により誘起電圧が変化したとしても高効率運転制御を行うことができる。 As described above, according to the present invention, highly efficient operation control can be performed even if the induced voltage changes due to changes in magnet temperature.

また、温度推定用の誘起電圧検出器は不要であり装置を小型化できる。また、回転子内部に感温磁性体を埋め込む必要もなく、構造が簡素である。さらには、温度測定用に高調波電圧を重畳する必要がないため、異音の発生や効率の低下のおそれがない。 In addition, since an induced voltage detector for temperature estimation is not required, the device can be miniaturized. In addition, there is no need to embed a temperature-sensitive magnetic material inside the rotor, and the structure is simple. Furthermore, since there is no need to superimpose a harmonic voltage for temperature measurement, there is no fear of generating abnormal noise or reducing efficiency.

10…v/f制御部
11…インバータ
12…永久磁石同期電動機
13…電流検出器
14…uvw/αβ変換部
15…回転子位置推定部
16…uvw/dq変換部
17…速度起電力位相推定部
18…減算器
19…PI制御の比例項
20…PI制御の積分項
21、33…積分器
22、35…加算器
24…γδ/uvw変換部
31…v/f制御パターン
DESCRIPTION OF SYMBOLS 10... v/f control part 11... Inverter 12... Permanent magnet synchronous motor 13... Current detector 14... uvw/αβ conversion part 15... Rotor position estimation part 16... uvw/dq conversion part 17... Speed electromotive force phase estimation part 18 Subtractor 19 Proportional term of PI control 20 Integral term of PI control 21, 33 Integrator 22, 35 Adder 24 γδ/uvw converter 31 v/f control pattern

Claims (4)

永久磁石同期電動機の定格運転時に励磁電流がゼロとなるように設定したv/f制御パターンによって、周波数指令から、永久磁石同期電動機を駆動するインバータの3相電圧指令を生成するv/f制御部であって、前記設定したv/f制御パターンによって周波数指令から得たδ軸の電圧指令vδに、推定した永久磁石同期電動機の速度起電力位相に基づいて生成した電圧補正量vδcorを加算して求めたδ方向の電圧指令と、ゼロに設定したγ軸方向の電圧指令vγとを、前記周波数指令を積分して求めた出力電圧位相θvfによって座標変換してインバータの3相電圧指令を生成するv/f制御部と、
前記生成されたインバータの3相電圧指令および3相検出電流から永久磁石同期電動機の回転子位置を推定する回転子位置推定部と、
前記生成されたインバータの3相電圧指令、インバータの3相検出電流、前記推定された永久磁石同期電動機の回転子位置に基づいて、永久磁石同期電動機駆動時の速度起電力位相を推定する速度起電力位相推定部と、
前記速度起電力位相推定部で推定された速度起電力位相がゼロになるようにPI制御してδ軸方向の電圧補正量vδcorを生成し、該電圧補正量vδcorを前記v/f制御部のδ軸の電圧指令に加算する電圧補正量とする電圧補正量生成PI制御器と、を備え、
前記v/f制御部で生成された3相電圧指令によって前記インバータを制御することを特徴とする永久磁石同期電動機の高効率運転制御装置。
A v/f control unit that generates a three-phase voltage command for the inverter that drives the permanent magnet synchronous motor from the frequency command using a v/f control pattern that is set so that the excitation current is zero during rated operation of the permanent magnet synchronous motor. The voltage correction amount v δcor generated based on the estimated speed electromotive force phase of the permanent magnet synchronous motor is added to the δ-axis voltage command v δ obtained from the frequency command by the set v/f control pattern. and the γ -axis direction voltage command vγ set to zero are coordinate-transformed by the output voltage phase θ vf obtained by integrating the frequency command, to obtain the three-phase voltage of the inverter. a v/f controller that generates commands;
a rotor position estimator for estimating a rotor position of the permanent magnet synchronous motor from the generated three-phase voltage command and three-phase detected current of the inverter;
A speed generator for estimating a speed electromotive force phase during driving of the permanent magnet synchronous motor based on the generated three-phase voltage command of the inverter, the three-phase detection current of the inverter, and the estimated rotor position of the permanent magnet synchronous motor. a power phase estimator;
PI control is performed so that the speed electromotive force phase estimated by the speed electromotive force phase estimator becomes zero to generate a voltage correction amount v δcor in the δ-axis direction, and the voltage correction amount v δcor is subjected to the v/f control. and a voltage correction amount generation PI controller that generates a voltage correction amount to be added to the δ-axis voltage command of the part,
A highly efficient operation control device for a permanent magnet synchronous motor, wherein the inverter is controlled by the three-phase voltage command generated by the v/f control section.
前記回転子位置推定部は、前記インバータの3相電圧指令および3相検出電流をαβ座標軸に変換したα軸電圧vα、β軸電圧vβ、α軸電流iα、β軸電流iβを用いて、(4)式、(5)式、(6)式を演算して回転子位置θを推定し、
Figure 2022121778000021
Figure 2022121778000022
Figure 2022121778000023
(ただし、λαはα軸の磁束ベクトル、λβはβ軸の磁束ベクトル、sはラプラス演算子、ωcは角周波数、R1は永久磁石同期電動機の巻線抵抗、Lqはq軸インダクタンス)
前記速度起電力位相推定部は、前記インバータの3相電圧指令および3相検出電流に対して、前記推定された回転子位置θを用いて(7)式の座標変換を施してd軸電圧vd、d軸電流idを推定し、
Figure 2022121778000024
前記推定されたd軸電圧vd、d軸電流idを用いて(2)式を演算して速度起電力位相を推定することを特徴とする請求項1に記載の永久磁石同期電動機の高効率運転制御装置。
Figure 2022121778000025
(ただし、Ldはd軸インダクタンス)
The rotor position estimating unit uses the α-axis voltage vα, β-axis voltage vβ, α-axis current iα, and β-axis current iβ obtained by converting the three-phase voltage command and the three-phase detection current of the inverter to αβ coordinate axes to obtain ( 4) Calculate the equations (5) and (6) to estimate the rotor position θ,
Figure 2022121778000021
Figure 2022121778000022
Figure 2022121778000023
(where λα is the α-axis magnetic flux vector, λβ is the β-axis magnetic flux vector, s is the Laplace operator, ωc is the angular frequency, R1 is the winding resistance of the permanent magnet synchronous motor, and Lq is the q-axis inductance)
The speed electromotive force phase estimator performs the coordinate transformation of equation (7) on the three-phase voltage command and the three-phase detected current of the inverter using the estimated rotor position θ to obtain a d-axis voltage vd. , to estimate the d-axis current id, and
Figure 2022121778000024
2. High-efficiency operation of a permanent magnet synchronous motor according to claim 1, wherein the estimated d-axis voltage vd and d-axis current id are used to calculate the equation (2) to estimate the speed electromotive force phase. Control device.
Figure 2022121778000025
(where Ld is the d-axis inductance)
v/f制御部が、永久磁石同期電動機の定格運転時に励磁電流がゼロとなるように設定したv/f制御パターンによって、周波数指令から、永久磁石同期電動機を駆動するインバータの3相電圧指令を生成するステップであって、前記設定したv/f制御パターンによって周波数指令から得たδ軸の電圧指令vδに、推定した永久磁石同期電動機の速度起電力位相に基づいて生成した電圧補正量vδcorを加算して求めたδ方向の電圧指令と、ゼロに設定したγ軸方向の電圧指令vγとを、前記周波数指令を積分して求めた出力電圧位相θvfによって座標変換してインバータの3相電圧指令を生成するv/f制御ステップと、
回転子位置推定部が、前記生成されたインバータの3相電圧指令および3相検出電流から永久磁石同期電動機の回転子位置を推定する回転子位置推定ステップと、
速度起電力位相推定部が、前記生成されたインバータの3相電圧指令、インバータの3相検出電流、前記推定された永久磁石同期電動機の回転子位置に基づいて、永久磁石同期電動機駆動時の速度起電力位相を推定する速度起電力位相推定ステップと、
電圧補正量生成PI制御器が、前記速度起電力位相推定部で推定された速度起電力位相がゼロになるようにPI制御してδ軸方向の電圧補正量vδcorを生成し、該電圧補正量vδcorを前記v/f制御ステップにおけるδ軸の電圧指令に加算する電圧補正量とするステップと、を備え、
前記v/f制御ステップで生成された3相電圧指令によって前記インバータを制御することを特徴とする永久磁石同期電動機の高効率運転制御方法。
The v/f control unit converts the three-phase voltage command for the inverter that drives the permanent magnet synchronous motor from the frequency command according to the v/f control pattern that is set so that the excitation current is zero during the rated operation of the permanent magnet synchronous motor. In the step of generating, the voltage correction amount v generated based on the estimated speed electromotive force phase of the permanent magnet synchronous motor to the δ-axis voltage command v δ obtained from the frequency command by the set v/f control pattern The δ-direction voltage command obtained by adding δcor and the γ -axis direction voltage command vγ set to zero are coordinate-transformed by the output voltage phase θ vf obtained by integrating the frequency command, and the inverter's a v/f control step that generates a three-phase voltage command;
a rotor position estimating step in which a rotor position estimating unit estimates a rotor position of the permanent magnet synchronous motor from the generated three-phase voltage command and three-phase detected current of the inverter;
A speed electromotive force phase estimator calculates the speed when the permanent magnet synchronous motor is driven based on the generated three-phase voltage command of the inverter, the three-phase detection current of the inverter, and the estimated rotor position of the permanent magnet synchronous motor. a speed electromotive force phase estimation step of estimating the electromotive force phase;
A voltage correction amount generation PI controller performs PI control so that the speed electromotive force phase estimated by the speed electromotive force phase estimator becomes zero to generate a voltage correction amount v δcor in the δ-axis direction, and the voltage correction is performed. and setting the amount v δcor as a voltage correction amount to be added to the δ-axis voltage command in the v / f control step,
A highly efficient operation control method for a permanent magnet synchronous motor, wherein the inverter is controlled by the three-phase voltage command generated in the v/f control step.
前記回転子位置推定ステップは、前記インバータの3相電圧指令および3相検出電流をαβ座標軸に変換したα軸電圧vα、β軸電圧vβ、α軸電流iα、β軸電流iβを用いて、(4)式、(5)式、(6)式を演算して回転子位置θを推定するステップを含み、
Figure 2022121778000026
Figure 2022121778000027
Figure 2022121778000028
(ただし、λαはα軸の磁束ベクトル、λβはβ軸の磁束ベクトル、sはラプラス演算子、ωcは角周波数、R1は永久磁石同期電動機の巻線抵抗、Lqはq軸インダクタンス)
前記速度起電力位相推定ステップは、前記インバータの3相電圧指令および3相検出電流に対して、前記推定された回転子位置θを用いて(7)式の座標変換を施してd軸電圧vd、d軸電流idを推定するステップと、
Figure 2022121778000029
前記推定されたd軸電圧vd、d軸電流idを用いて(2)式を演算して速度起電力位相を推定するステップとを含んでいることを特徴とする請求項3に記載の永久磁石同期電動機の高効率運転制御方法。
Figure 2022121778000030
(ただし、Ldはd軸インダクタンス)
The rotor position estimating step uses the α-axis voltage vα, β-axis voltage vβ, α-axis current iα, and β-axis current iβ obtained by converting the three-phase voltage command and the three-phase detection current of the inverter to the αβ coordinate axes to obtain ( 4) calculating equations (5) and (6) to estimate the rotor position θ;
Figure 2022121778000026
Figure 2022121778000027
Figure 2022121778000028
(where λα is the α-axis magnetic flux vector, λβ is the β-axis magnetic flux vector, s is the Laplace operator, ωc is the angular frequency, R1 is the winding resistance of the permanent magnet synchronous motor, and Lq is the q-axis inductance)
In the speed electromotive force phase estimation step, the 3-phase voltage command and the 3-phase detected current of the inverter are subjected to the coordinate transformation of equation (7) using the estimated rotor position θ to obtain the d-axis voltage vd. , estimating the d-axis current id;
Figure 2022121778000029
4. The permanent magnet according to claim 3, further comprising a step of calculating equation (2) using the estimated d-axis voltage vd and d-axis current id to estimate the velocity electromotive force phase. High-efficiency operation control method for synchronous motor.
Figure 2022121778000030
(where Ld is the d-axis inductance)
JP2021018673A 2021-02-09 2021-02-09 Control device for high efficiency operation and control method for high efficiency operation of permanent magnet synchronous motor Pending JP2022121778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021018673A JP2022121778A (en) 2021-02-09 2021-02-09 Control device for high efficiency operation and control method for high efficiency operation of permanent magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021018673A JP2022121778A (en) 2021-02-09 2021-02-09 Control device for high efficiency operation and control method for high efficiency operation of permanent magnet synchronous motor

Publications (1)

Publication Number Publication Date
JP2022121778A true JP2022121778A (en) 2022-08-22

Family

ID=82932903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021018673A Pending JP2022121778A (en) 2021-02-09 2021-02-09 Control device for high efficiency operation and control method for high efficiency operation of permanent magnet synchronous motor

Country Status (1)

Country Link
JP (1) JP2022121778A (en)

Similar Documents

Publication Publication Date Title
JP4022630B2 (en) Power conversion control device, power conversion control method, and program for power conversion control
US8829830B2 (en) Synchronous machine control apparatus
KR100423715B1 (en) Synchronous motor control device and method
KR101046802B1 (en) Control device of AC rotor and electric constant measurement method of AC rotor using this controller
JP3684203B2 (en) Motor control device
JP6776066B2 (en) Inverter controller and motor drive system
JP3783695B2 (en) Motor control device
JP2002095300A (en) Method of controlling permanent magnet synchronous motor
WO2012029715A1 (en) Electric motor drive device
WO2015056541A1 (en) Drive device for electric motor
JP6166601B2 (en) Motor control device and generator control device
JP5305933B2 (en) Motor drive system
JP5994355B2 (en) Control device for permanent magnet type synchronous motor
JP6199776B2 (en) Electric motor drive
JP4652176B2 (en) Control device for permanent magnet type rotating electrical machine
JP2005151678A (en) V/f CONTROLLER FOR PERMANENT-MAGNET SYNCHRONOUS MOTOR
JP2011024276A (en) Controller for winding field type synchronous machine
JP4639832B2 (en) AC motor drive device
US20230198438A1 (en) Rotary machine control device
JP5641774B2 (en) Method and apparatus for estimating rotor position and speed of stepping motor
US11837982B2 (en) Rotary machine control device
JP7251424B2 (en) INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD
JP2016220364A (en) Control device for permanent magnet synchronous motor
JP2022121778A (en) Control device for high efficiency operation and control method for high efficiency operation of permanent magnet synchronous motor
JP3680618B2 (en) Control device for permanent magnet type synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240618