JP2022121222A - Hydrogen discharge method and hydrogen supply system - Google Patents

Hydrogen discharge method and hydrogen supply system Download PDF

Info

Publication number
JP2022121222A
JP2022121222A JP2021018461A JP2021018461A JP2022121222A JP 2022121222 A JP2022121222 A JP 2022121222A JP 2021018461 A JP2021018461 A JP 2021018461A JP 2021018461 A JP2021018461 A JP 2021018461A JP 2022121222 A JP2022121222 A JP 2022121222A
Authority
JP
Japan
Prior art keywords
hydrogen
storage alloy
resin
hydrogen gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021018461A
Other languages
Japanese (ja)
Inventor
健人 緒方
Taketo Ogata
彰利 藤澤
Akitoshi Fujisawa
邦彦 清水
Kunihiko Shimizu
太郎 山内
Taro Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco E&m Co Ltd
Kobe Steel Ltd
Original Assignee
Kobelco E&m Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco E&m Co Ltd, Kobe Steel Ltd filed Critical Kobelco E&m Co Ltd
Priority to JP2021018461A priority Critical patent/JP2022121222A/en
Publication of JP2022121222A publication Critical patent/JP2022121222A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To provide a hydrogen discharge method and a hydrogen supply system capable of efficiently discharging hydrogen gas from a hydrogen tank and re-discharging the hydrogen gas in a short time.SOLUTION: A hydrogen discharge method for discharging hydrogen gas stored in a hydrogen tank that houses a resin composite hydrogen storage alloy formed of a hydrogen storage alloy and resin, to a hydrogen compressor includes: a setting step for setting a required temperature difference ΔT in which relationships between a heat absorption quantity Q1 accompanying the discharge of the hydrogen gas, and a total heat quantity Q2 of the hydrogen storage alloy and the resin are Q1<Q2; a heating step for heating the resin composite hydrogen storage alloy up to a second temperature that adds the ΔT to a first temperature corresponding to a suction pressure of the hydrogen compressor in a plateau area of a PCT curve indicating relationships between a hydrogen equilibrium pressure and a hydrogen storage amount of the hydrogen storage alloy; and a hydrogen discharge step in which the hydrogen tank discharges the hydrogen gas to the hydrogen compressor after the heating step.SELECTED DRAWING: Figure 1

Description

本発明は、水素放出方法及び水素供給システムに関する。 The present invention relates to a hydrogen release method and a hydrogen supply system.

燃料電池で作動する自動車又はフォークリフト等の車両の燃料として水素ガスが利用されている。この水素ガスを前記車両の燃料タンクに供給する方法として、水素ガスを吸蔵及び放出する水素吸蔵合金を収容した容器で水素ガスを貯蔵し、この容器から放出された水素ガスを高圧にして前記燃料タンクに供給する方法が用いられている。前記車両への水素ガスの供給は、短時間での供給が繰り返し効率的に行えることが求められている。 Hydrogen gas is used as fuel for vehicles such as automobiles and forklifts that operate on fuel cells. As a method of supplying this hydrogen gas to the fuel tank of the vehicle, the hydrogen gas is stored in a container containing a hydrogen storage alloy that absorbs and releases hydrogen gas, and the hydrogen gas released from this container is pressurized to the fuel. A tank feeding method is used. Hydrogen gas is required to be supplied to the vehicle efficiently and repeatedly in a short period of time.

水素吸蔵合金、潜熱蓄熱材及び熱交換器を収容する圧力容器を備え、前記潜熱蓄熱材が密閉容器に収められて前記水素吸蔵合金に混入されている水素貯蔵供給装置が発案されている(特開2006-177434号公報)。この水素貯蔵供給装置によれば、水素の吸収特性及び放出特性が低下することなく、外部からの冷却及び加熱のためのエネルギーを小さくできるとされている。 A hydrogen storage and supply device has been proposed, which includes a pressure vessel containing a hydrogen storage alloy, a latent heat storage material, and a heat exchanger, wherein the latent heat storage material is contained in a closed vessel and mixed in the hydrogen storage alloy (particularly Japanese Laid-Open Patent Publication No. 2006-177434). According to this hydrogen storage and supply device, the energy for cooling and heating from the outside can be reduced without deteriorating the hydrogen absorption and release characteristics.

前記公報所載の装置は、前記水素吸蔵合金の水素の吸蔵及び放出を阻害しないように、前記水素吸蔵合金と前記潜熱蓄熱材とを前記圧力容器内で分離するため、前記潜熱蓄熱材を密閉容器に収め、さらにこの密閉容器を均等に分散させている。このため、前記圧力容器は、構造が複雑になり、低コストで生産できないおそれがある。また、前記水素吸蔵合金及び前記潜熱蓄熱材の熱交換と、前記水素吸蔵合金及び前記熱交換器の熱交換とが個別に行われるため、前記水素吸蔵合金への伝熱効率が低下し、前記圧力容器が水素ガスの放出後に、再放出できる状態に短時間で復帰することができず、複数の前記車両への水素ガスの供給が、随時できないおそれがある。 In the apparatus disclosed in the publication, the latent heat storage material is sealed in order to separate the hydrogen storage alloy and the latent heat storage material in the pressure vessel so as not to hinder the absorption and release of hydrogen by the hydrogen storage alloy. It is contained in a container, and the closed container is evenly distributed. For this reason, the pressure vessel has a complicated structure, and there is a possibility that it cannot be produced at a low cost. In addition, heat exchange between the hydrogen storage alloy and the latent heat storage material and heat exchange between the hydrogen storage alloy and the heat exchanger are performed separately. After the hydrogen gas is released, the container cannot return to a state in which it can be released again in a short period of time, and there is a possibility that the hydrogen gas cannot be supplied to the plurality of vehicles at any time.

特開2006-177434号公報JP 2006-177434 A

上述のような事情に鑑みて、本発明は、水素タンクからの水素ガスの放出を効率的にできると共に、短時間で水素ガスの再放出ができる水素放出方法及び水素供給システムを提供することを課題とする。 In view of the circumstances as described above, it is an object of the present invention to provide a hydrogen releasing method and a hydrogen supply system capable of efficiently releasing hydrogen gas from a hydrogen tank and re-releasing hydrogen gas in a short period of time. Make it an issue.

前記課題を解決するためになされた本発明の一態様は、水素吸蔵合金及び樹脂で形成されている樹脂複合化水素吸蔵合金を収容する水素タンクに貯蔵されている水素ガスを水素圧縮機に放出する水素放出方法であって、前記水素ガスの放出に伴う吸熱量Q1と、前記水素吸蔵合金と前記樹脂との合計熱量Q2との関係がQ1<Q2となる必要温度差ΔTを設定する設定工程と、前記水素吸蔵合金の水素平衡圧及び水素吸蔵量の関係を示すPCT曲線のプラトー領域における前記水素圧縮機の吸い込み圧力に対応する第1温度に前記ΔTを加えた第2温度まで前記樹脂複合化水素吸蔵合金を加熱する加熱工程と、前記加熱工程後、前記水素タンクが前記水素ガスを前記水素圧縮機に放出する水素放出工程とを備える。 One aspect of the present invention, which has been made to solve the above problems, is to release hydrogen gas stored in a hydrogen tank containing a resin-composite hydrogen-absorbing alloy formed of a hydrogen-absorbing alloy and a resin into a hydrogen compressor. and a setting step of setting a required temperature difference ΔT that satisfies Q1<Q2 in the relationship between the amount of heat absorbed by the release of the hydrogen gas Q1 and the total amount of heat Q2 of the hydrogen storage alloy and the resin. and the resin composite up to a second temperature obtained by adding the ΔT to the first temperature corresponding to the suction pressure of the hydrogen compressor in the plateau region of the PCT curve showing the relationship between the hydrogen equilibrium pressure and the hydrogen storage amount of the hydrogen storage alloy A heating step of heating a hydrogen chloride storage alloy, and a hydrogen releasing step of releasing the hydrogen gas from the hydrogen tank to the hydrogen compressor after the heating step.

本発明の水素放出方法に用いられる水素吸蔵合金は樹脂と複合化されているため、収容される水素タンクの内部を前記水素吸蔵合金と前記樹脂とに隔離するための区画を設ける必要がなく、前記水素タンクの構造を簡易なものとすることができる。また、樹脂複合化水素吸蔵合金とすることで、熱容量を大きくすることができる。当該水素放出方法は、前記水素タンクが、水素ガスを圧縮する水素圧縮機に水素ガスを放出するのに必要な吸熱量Q1と、前記水素吸蔵合金と前記樹脂との合計熱量Q2との関係がQ1<Q2となる必要温度差ΔTを設定する。当該水素放出方法は、前記水素吸蔵合金の水素平衡圧及び水素吸蔵量の関係を示すPCT(Pressure-Composition-Temperature)曲線のプラトー領域における前記水素圧縮機の吸い込み圧力に対応する第1温度に前記ΔTを加えた第2温度まで前記樹脂複合化水素吸蔵合金を加熱し、前記水素吸蔵合金から水素ガスを放出させる。当該水素放出方法は、前記樹脂複合化水素吸蔵合金が、熱容量が大きく、水素ガスの放出による吸熱反応の温度低下を比較的緩やかにすることができ、かつ放出前の温度と放出後の温度との差を小さくできる。このため、当該水素放出方法は、水素ガスの放出後の前記水素吸蔵合金を、短時間で再放出可能な状態にとどめることができる。 Since the hydrogen storage alloy used in the hydrogen release method of the present invention is composited with resin, there is no need to provide a compartment for isolating the interior of the hydrogen tank to be accommodated between the hydrogen storage alloy and the resin, The structure of the hydrogen tank can be simplified. Also, by using a resin composite hydrogen storage alloy, the heat capacity can be increased. In the hydrogen releasing method, the relationship between the amount of heat absorbed Q1 required for the hydrogen tank to release hydrogen gas to a hydrogen compressor for compressing the hydrogen gas and the total amount of heat Q2 of the hydrogen storage alloy and the resin is A required temperature difference ΔT that satisfies Q1<Q2 is set. In the hydrogen releasing method, the above-mentioned The resin-composite hydrogen-absorbing alloy is heated to a second temperature to which ΔT is added, and hydrogen gas is released from the hydrogen-absorbing alloy. In the hydrogen release method, the resin composite hydrogen storage alloy has a large heat capacity, can relatively moderate the temperature drop of the endothermic reaction due to the release of hydrogen gas, and has a temperature before release and a temperature after release. can reduce the difference between Therefore, the method for releasing hydrogen can keep the hydrogen storage alloy after releasing hydrogen gas in a state in which it can be released again in a short period of time.

前記水素放出工程後、前記水素圧縮機で圧縮した水素ガスをディスペンサで被供給物に供給する工程をさらに備え、前記設定工程におけるQ1及びQ2を下記式1及び2で算出することが好ましい。
Q1=M×ΔH ・・・・(1)
Q2=(Cpm×Wm+Cpp×Wp)ΔT ・・・・(2)
ただし、Mは、前記被供給物に供給する水素ガスの量[kg]、ΔHは、前記水素吸蔵合金の反応エンタルピー[kJ/mol]、Cpmは、前記水素吸蔵合金の比熱[kJ/kg・K]、Wmは、前記樹脂複合化水素吸蔵合金における前記水素吸蔵合金の含有量[kg]、Cppは、前記樹脂の比熱[kJ/kg・K]、Wpは、前記樹脂複合化水素吸蔵合金における前記樹脂の含有量[kg]である。このようにすることで、前記ΔTを容易に算出して加熱する温度が必要以上に高くなることを抑制でき、効率的な水素ガスの放出ができる。
After the hydrogen releasing step, it is preferable to further include a step of supplying the hydrogen gas compressed by the hydrogen compressor to the object to be supplied with a dispenser, and to calculate Q1 and Q2 in the setting step by the following equations 1 and 2.
Q1=M×ΔH (1)
Q2=(Cpm×Wm+Cpp×Wp)ΔT (2)
However, M is the amount of hydrogen gas supplied to the material to be supplied [kg], ΔH is the reaction enthalpy of the hydrogen storage alloy [kJ/mol], and Cpm is the specific heat of the hydrogen storage alloy [kJ/kg· K], Wm is the content [kg] of the hydrogen storage alloy in the resin composite hydrogen storage alloy, Cpp is the specific heat of the resin [kJ/kg K], and Wp is the resin composite hydrogen storage alloy. is the content [kg] of the resin in By doing so, the ΔT can be easily calculated to prevent the heating temperature from becoming higher than necessary, and hydrogen gas can be released efficiently.

前記水素放出工程後、再度の水素放出工程を行う前に、前記樹脂複合化水素吸蔵合金を再加熱する再加熱工程をさらに備えるのが好ましい。当該水素放出方法は、水素ガスの放出による前記水素吸蔵合金の急激な温度低下を抑制できるため、短時間で水素ガスの再放出が可能な温度まで前記水素吸蔵合金を再加熱できる。このため、応答性の早い水素ガスの放出ができる。水素ガスの放出と、前記水素吸蔵合金の加熱とを交互に繰り返し行うことで、断続的な水素ガスの放出ができ、例えば、複数の燃料電池自動車等の被供給物に対する水素ガスの供給を随時行うことができる。 It is preferable to further include a reheating step of reheating the resin composite hydrogen-absorbing alloy after the hydrogen releasing step and before performing the hydrogen releasing step again. Since the method for releasing hydrogen can suppress a rapid temperature drop of the hydrogen storage alloy due to the release of hydrogen gas, the hydrogen storage alloy can be reheated to a temperature at which hydrogen gas can be released again in a short period of time. Therefore, hydrogen gas can be released with quick response. By alternately repeating the release of hydrogen gas and the heating of the hydrogen storage alloy, it is possible to release hydrogen gas intermittently. It can be carried out.

前記水素タンクが複数配置され、この複数の水素タンクを交番運転することが好ましい。このようにすることで、水素ガスを放出して内部圧力が低下した一の水素タンクに新たな水素ガスを充填している最中でも、他の水素タンクから水素ガスを放出できるため、連続して水素ガスを放出できる。 It is preferable that a plurality of the hydrogen tanks are arranged and the plurality of hydrogen tanks are alternately operated. By doing so, even while filling new hydrogen gas into one hydrogen tank whose internal pressure has decreased due to the release of hydrogen gas, hydrogen gas can be released from the other hydrogen tanks continuously. Can release hydrogen gas.

前記課題を解決するためになされた本発明の他の態様は、水素ガスを貯蔵する水素タンクと、前記水素タンクから放出された水素ガスを圧縮する水素圧縮機とを備え、前記水素タンクが、水素吸蔵合金及び樹脂で形成され、加熱及び冷却が可能に構成されている樹脂複合化水素吸蔵合金を収容し、前記水素吸蔵合金の水素平衡圧及び水素吸蔵量の関係を示すPCT曲線のプラトー領域における前記水素圧縮機の吸い込み圧力に対応する第1温度に、前記水素タンクからの水素ガスの放出に伴う吸熱量Q1と、前記水素吸蔵合金と前記樹脂との合計熱量Q2との関係がQ1<Q2となる必要温度差ΔTを加えた第2温度まで前記樹脂複合化水素吸蔵合金を加熱することで、前記水素タンクが、貯蔵する水素ガスを前記水素圧縮機に放出する水素供給システムである。 Another aspect of the present invention, which has been made to solve the above problems, includes a hydrogen tank for storing hydrogen gas, and a hydrogen compressor for compressing the hydrogen gas released from the hydrogen tank, wherein the hydrogen tank is: A plateau region of a PCT curve showing the relationship between the hydrogen equilibrium pressure and the hydrogen storage amount of the hydrogen storage alloy containing a resin composite hydrogen storage alloy formed of a hydrogen storage alloy and a resin and capable of being heated and cooled. at the first temperature corresponding to the suction pressure of the hydrogen compressor, the relationship between the heat absorption amount Q1 accompanying the release of hydrogen gas from the hydrogen tank and the total heat amount Q2 of the hydrogen storage alloy and the resin is Q1< By heating the resin-composite hydrogen-absorbing alloy to a second temperature to which the required temperature difference ΔT, which is Q2, is added, the hydrogen tank is a hydrogen supply system in which stored hydrogen gas is released to the hydrogen compressor.

当該水素供給システムは、熱容量の比較的大きい樹脂複合化水素吸蔵合金を含む水素タンクを備えるため、水素ガスの放出による水素吸蔵合金の急激な温度低下を抑制できる。このため、短時間で前記水素吸蔵合金を水素ガスの再放出に必要な温度に昇温でき、短時間で水素ガスの再放出ができる。 Since the hydrogen supply system includes a hydrogen tank containing a resin-composite hydrogen-absorbing alloy with a relatively large heat capacity, it is possible to suppress a sudden drop in temperature of the hydrogen-absorbing alloy due to release of hydrogen gas. Therefore, the hydrogen storage alloy can be heated to a temperature necessary for re-releasing hydrogen gas in a short time, and hydrogen gas can be re-released in a short time.

前記水素タンクを複数備えるのが好ましい。複数の前記水素タンクを交番運転することで、連続して水素ガスを放出できる。 It is preferable to have a plurality of the hydrogen tanks. Hydrogen gas can be released continuously by alternately operating the plurality of hydrogen tanks.

本発明の水素放出方法及び水素供給システムは、水素タンクからの水素ガスの放出を効率的にできると共に、短時間で水素ガスの再放出ができる。 INDUSTRIAL APPLICABILITY The hydrogen release method and hydrogen supply system of the present invention are capable of efficiently releasing hydrogen gas from a hydrogen tank and re-releasing hydrogen gas in a short period of time.

図1は、本発明の一実施形態に係る水素供給システムの構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of a hydrogen supply system according to one embodiment of the present invention. 図2は、図1とは異なる水素供給システムの構成を示す模式図である。FIG. 2 is a schematic diagram showing a configuration of a hydrogen supply system different from that of FIG. 図3は、樹脂複合化水素吸蔵合金のPCT曲線の一例を示すグラフである。FIG. 3 is a graph showing an example of a PCT curve of a resin composite hydrogen storage alloy.

以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。なお、各実施形態の構成部材(構成要素)の名称は、背景技術に用いられる名称と異なる場合がある。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. Note that the names of the constituent members (components) of each embodiment may differ from the names used in the background art.

[第一実施形態]
図1に、本発明の一実施形態である水素供給システム1の構成を示す。
[First embodiment]
FIG. 1 shows the configuration of a hydrogen supply system 1 that is one embodiment of the present invention.

<水素供給システム>
当該水素供給システム1は、水素ガスを貯蔵する水素タンク2と、この水素タンク2から放出された水素ガスを圧縮する水素圧縮機3とを主に備える。水素タンク2が貯蔵する水素ガスは、水素製造装置4から供給される。水素圧縮機3は、圧縮した水素ガスを被供給物(不図示)にディスペンサ5を介して供給する。
<Hydrogen supply system>
The hydrogen supply system 1 mainly includes a hydrogen tank 2 that stores hydrogen gas and a hydrogen compressor 3 that compresses the hydrogen gas released from the hydrogen tank 2 . The hydrogen gas stored in the hydrogen tank 2 is supplied from the hydrogen production device 4 . The hydrogen compressor 3 supplies compressed hydrogen gas to an object to be supplied (not shown) via a dispenser 5 .

〔水素製造装置〕
水素製造装置4は、高純度な水素ガスを製造して、水素タンク2に供給する。水素製造装置4としては、特に限定されるものでなく、公知の技術を用いることができる。例えば、炭化水素(天然ガス)の改質又は水素を含有する有機ハイドライドの脱水素化により水素リッチガスを得て、この水素リッチガスに含まれる水素以外の不純物を水素精製器で除去して高純度の水素ガスを得る装置などを採用できる。
[Hydrogen production equipment]
The hydrogen production device 4 produces high-purity hydrogen gas and supplies it to the hydrogen tank 2 . The hydrogen production device 4 is not particularly limited, and known technology can be used. For example, a hydrogen-rich gas is obtained by reforming a hydrocarbon (natural gas) or dehydrogenating an organic hydride containing hydrogen, and impurities other than hydrogen contained in this hydrogen-rich gas are removed by a hydrogen purifier to produce a high-purity gas. A device for obtaining hydrogen gas can be employed.

〔水素タンク〕
水素タンク2は、水素製造装置4が製造した水素ガスを貯蔵する。水素タンク2は、水素吸蔵合金及び樹脂で形成され、加熱及び冷却が可能に構成されている樹脂複合化水素吸蔵合金(不図示)を収容する。前記水素吸蔵合金が水素ガスを吸蔵及び放出することで、水素タンク2が水素ガスを貯蔵及び放出する。水素タンク2は、内部の温度を計測する温度計Tを有するのが好ましい。
[Hydrogen tank]
The hydrogen tank 2 stores the hydrogen gas produced by the hydrogen producing device 4 . The hydrogen tank 2 contains a resin composite hydrogen storage alloy (not shown) that is made of a hydrogen storage alloy and a resin and that can be heated and cooled. The hydrogen storage alloy stores and releases hydrogen gas, and the hydrogen tank 2 stores and releases hydrogen gas. The hydrogen tank 2 preferably has a thermometer T for measuring the internal temperature.

水素供給システム1は、前記樹脂複合化水素吸蔵合金を加熱及び冷却可能に構成されている。前記樹脂複合化水素吸蔵合金を加熱及び冷却するものとしては、特に限定されず、公知の技術を用いることができる。例えば、水素供給システム1が、温熱媒を供給及び回収する加熱部7と、冷熱媒を供給及び回収する冷却部8と、前記温熱媒及び冷熱媒の熱媒体を挿通する熱媒体流路9とを有し、前記熱媒体との熱交換によって前記複合化水素吸蔵合金を冷却又は加熱できるよう構成することができる。 The hydrogen supply system 1 is configured to be able to heat and cool the resin composite hydrogen storage alloy. A method for heating and cooling the resin composite hydrogen-absorbing alloy is not particularly limited, and known techniques can be used. For example, the hydrogen supply system 1 includes a heating unit 7 for supplying and recovering a hot medium, a cooling unit 8 for supplying and recovering a cold medium, and a heat medium flow path 9 for inserting the heat medium of the hot medium and the cold medium. so that the composite hydrogen-absorbing alloy can be cooled or heated by heat exchange with the heat medium.

具体的には、熱媒体流路9は、前記温熱媒を前記複合化水素吸蔵合金に供給する温熱媒供給路91と、この温熱媒供給路91と合流し、前記冷熱媒を前記複合化水素吸蔵合金に供給する冷熱媒供給路92と、温熱媒供給路91及び冷熱媒供給路92の合流部分から前記樹脂複合化水素吸蔵合金まで配設される熱媒体供給路93とを有する。温熱媒供給路91及び冷熱媒供給路92それぞれは、開閉自在なバルブ94を含み、前記温熱媒又は冷熱媒が選択的に前記樹脂複合化水素吸蔵合金に送られる。熱媒体供給路93は、前記温熱媒又は冷熱媒を前記樹脂複合化水素吸蔵合金に送るポンプ95を含む。 Specifically, the heat medium flow path 9 merges with a hot heat medium supply line 91 that supplies the hot heat medium to the composite hydrogen storage alloy, and joins the hot heat medium supply line 91 to supply the cold heat medium to the composite hydrogen storage alloy. It has a cooling/heating medium supply path 92 that supplies the storage alloy, and a heating/heating medium supply path 93 that extends from the junction of the heating/cooling medium supply path 91 and the cooling/heating medium supply path 92 to the resin composite hydrogen storage alloy. Each of the hot medium supply path 91 and the cold medium supply path 92 includes an openable/closable valve 94 to selectively send the hot medium or the cold medium to the resin composite hydrogen storage alloy. The heat medium supply path 93 includes a pump 95 for sending the hot or cold heat medium to the resin composite hydrogen-absorbing alloy.

また、熱媒体流路9は、前記複合化水素吸蔵合金と熱交換した熱媒体を加熱部7又は冷却部8に還流する熱媒体還流路96と、熱媒体還流路96から分岐して加熱部7に前記温熱媒を還流する温熱媒還流路97と、熱媒体還流路96から分岐して冷却部8に前記冷熱媒を還流する冷熱媒還流路98とを有する。温熱媒還流路97及び冷熱媒還流路98それぞれは、開閉自在なバルブ94を含み、前記温熱媒又は冷熱媒は、選択的に加熱部7又は冷却部8に送られる。 In addition, the heat medium flow path 9 includes a heat medium return path 96 for returning the heat medium that has exchanged heat with the composite hydrogen-absorbing alloy to the heating section 7 or the cooling section 8, and a heat medium return path 96 branched from the heat medium return path 96 and 7 and a cooling medium circulation path 98 branching from the heating medium circulation path 96 and returning the cooling medium to the cooling unit 8 . Each of the hot medium circulation path 97 and the cold medium circulation path 98 includes a valve 94 that can be opened and closed, and the hot medium or cold medium is selectively sent to the heating section 7 or the cooling section 8 .

(樹脂複合化水素吸蔵合金)
樹脂複合化水素吸蔵合金は、水素吸蔵合金と樹脂とを混合して複合化されている。前記樹脂複合化水素吸蔵合金の形状としては、特に限定されるものでなく、例えば、シート状又はペレット状などとすることができる。前記樹脂複合化水素吸蔵合金における水素吸蔵合金の原材料としては、特に限定されるものでなく、公知のものを用いることができ、例えば、2元系合金、3元系合金、4元系合金、又は5元系合金等を採用できる。前記樹脂複合化水素吸蔵合金における樹脂の原材料としては、水素ガスの透過性が良好なものであれば特に限定されるものでなく、例えば、シリコーン樹脂等を採用できる。前記樹脂は、比較的熱容量が大きいものが好ましく、具体的には、比熱が1.5J/g・K以上であることが好ましい。
(resin composite hydrogen storage alloy)
The resin-composite hydrogen-absorbing alloy is formed by mixing a hydrogen-absorbing alloy and a resin. The shape of the resin-complexed hydrogen-absorbing alloy is not particularly limited, and may be, for example, a sheet shape or a pellet shape. The raw material of the hydrogen storage alloy in the resin composite hydrogen storage alloy is not particularly limited, and known materials can be used. Alternatively, a quinary alloy or the like can be adopted. The raw material of the resin in the resin-composite hydrogen-absorbing alloy is not particularly limited as long as it has good hydrogen gas permeability, and for example, a silicone resin or the like can be used. The resin preferably has a relatively large heat capacity, and specifically, preferably has a specific heat of 1.5 J/g·K or more.

前記樹脂複合化水素吸蔵合金における樹脂の含有量としては、特に限定されるものでなく、前記水素吸蔵合金が放出する水素ガスの量に応じた吸熱に相当する熱容量になるように設定されるのが好ましい。具体的には、水素供給システム1の規模などにもよるが、前記含有量としては、5質量%以上50質量%以下が好ましい。前記含有量が前記下限値に満たないと、前記樹脂複合化水素吸蔵合金の熱容量を十分なものにできないおそれがある。前記含有量が前記上限値を超えると、前記水素吸蔵合金の水素ガスの充填密度が低下し、水素タンク2による水素ガスの貯蔵及び放出が十分にできないおそれがある。 The content of the resin in the resin composite hydrogen-absorbing alloy is not particularly limited, and is set so as to have a heat capacity corresponding to heat absorption according to the amount of hydrogen gas released by the hydrogen-absorbing alloy. is preferred. Specifically, although it depends on the scale of the hydrogen supply system 1 and the like, the content is preferably 5% by mass or more and 50% by mass or less. If the content is less than the lower limit, the heat capacity of the resin-composite hydrogen-absorbing alloy may not be sufficient. If the content exceeds the upper limit, the filling density of hydrogen gas in the hydrogen storage alloy may decrease, and the storage and release of hydrogen gas in the hydrogen tank 2 may not be sufficient.

前記樹脂複合化水素吸蔵合金は、所定量の前記樹脂を含むため、熱容量が比較的大きい。また、前記樹脂は、前記水素吸蔵合金のバインダーとして機能することができ、前記水素吸蔵合金の水素ガスの吸蔵及び放出に伴う膨張及び収縮による水素タンク2への応力を緩和できる。さらに、前記樹脂は、水素ガスを繰り返し吸蔵及び放出することによって微粉化した前記水素吸蔵合金の飛散を抑制できる。 Since the resin composite hydrogen storage alloy contains a predetermined amount of the resin, it has a relatively large heat capacity. In addition, the resin can function as a binder for the hydrogen storage alloy, and can relieve stress on the hydrogen tank 2 due to expansion and contraction associated with absorption and release of hydrogen gas in the hydrogen storage alloy. Further, the resin can suppress scattering of the pulverized hydrogen storage alloy by repeatedly absorbing and releasing hydrogen gas.

〔水素圧縮機〕
水素圧縮機3は、水素タンク2から放出された水素ガスを圧縮し、ディスペンサ5を介して燃料電池自動車などの被供給物に高圧の水素ガスを供給する。水素圧縮機3としては、特に限定されるものでなく、公知の技術を用いることができ、例えば、一般的に使用されている気体を圧縮するコンプレッサ等を採用することができる。また、水素圧縮機3を水素タンク2と同様の構成を有する高圧水素タンクとして、吸蔵合金を用いた多段昇圧システムとしてもよい。
[Hydrogen compressor]
The hydrogen compressor 3 compresses the hydrogen gas released from the hydrogen tank 2 and supplies the high-pressure hydrogen gas to a supply object such as a fuel cell vehicle via a dispenser 5 . The hydrogen compressor 3 is not particularly limited, and a known technology can be used. For example, a commonly used compressor for compressing gas can be adopted. Alternatively, the hydrogen compressor 3 may be a high-pressure hydrogen tank having the same configuration as the hydrogen tank 2, and may be a multi-stage boosting system using a storage alloy.

当該水素供給システム1が、水素圧縮機3の下流側に高圧蓄圧器6を備えるのが好ましい。高圧蓄圧器6は、水素圧縮機3が圧縮した高圧の水素ガスを貯蔵する。具体的には、当該水素供給システム1が高圧蓄圧器6を備え、高圧蓄圧器6とディスペンサ5とに選択的に水素圧縮機3が水素ガスを供給し、水素タンク2による水素ガスの放出ができない状態にある場合に、高圧蓄圧器6がディスペンサ5に水素ガスを供給できるようにするのが好ましい。このようにすることで、ディスペンサ5から前記被供給物への水素ガスの供給を連続的に行うことができる。 The hydrogen supply system 1 preferably includes a high pressure accumulator 6 downstream of the hydrogen compressor 3 . The high pressure accumulator 6 stores the high pressure hydrogen gas compressed by the hydrogen compressor 3 . Specifically, the hydrogen supply system 1 includes a high pressure accumulator 6, the hydrogen compressor 3 selectively supplies hydrogen gas to the high pressure accumulator 6 and the dispenser 5, and the hydrogen tank 2 releases hydrogen gas. Preferably, the high pressure accumulator 6 will be able to supply hydrogen gas to the dispenser 5 if this is not possible. By doing so, hydrogen gas can be continuously supplied from the dispenser 5 to the object to be supplied.

<水素放出方法>
水素タンク2に貯蔵されている水素ガスを水素圧縮機3に放出する水素放出方法は、水素ガスの放出に伴う吸熱量Q1と、前記水素吸蔵合金と前記樹脂との合計熱量Q2との関係がQ1<Q2となる必要温度差ΔTを設定する設定工程と、前記水素吸蔵合金の水素平衡圧及び水素吸蔵量の関係を示すPCT曲線のプラトー領域における水素圧縮機3の吸い込み圧力に対応する第1温度に前記ΔTを加えた第2温度まで前記樹脂複合化水素吸蔵合金を加熱する加熱工程と、前記加熱工程後、水素タンク2が水素ガスを水素圧縮機3に放出する水素放出工程とを主に備える。
<Hydrogen releasing method>
In the hydrogen releasing method of releasing the hydrogen gas stored in the hydrogen tank 2 to the hydrogen compressor 3, the relationship between the heat absorption amount Q1 accompanying the release of the hydrogen gas and the total heat amount Q2 of the hydrogen storage alloy and the resin is A setting step of setting the required temperature difference ΔT that satisfies Q1<Q2, and a first Mainly a heating step of heating the resin composite hydrogen storage alloy to a second temperature obtained by adding the ΔT to the temperature, and a hydrogen releasing step of releasing the hydrogen gas from the hydrogen tank 2 to the hydrogen compressor 3 after the heating step. Prepare for.

また、当該水素放出方法は、予め水素タンク2に水素ガスを貯蔵する工程を有する。 Further, the method for releasing hydrogen has a step of storing hydrogen gas in the hydrogen tank 2 in advance.

〔水素ガス貯蔵工程〕
水素ガス貯蔵工程は、水素製造装置4で製造された高純度な水素ガスを水素タンク2が貯蔵する。具体的には、水素製造装置4で製造された水素ガスは、貯蔵流路10を介して水素タンク2に供給され、前記水素吸蔵合金が水素ガスを吸蔵することで水素タンク2に水素ガスが貯蔵される。貯蔵流路10は、開閉自在な貯蔵バルブ10aを含む。貯蔵バルブ10aは、水素ガスが供給される際には開放される。所定量の水素ガスが水素タンクに供給されると、貯蔵バルブ10aが閉じられて水素ガスが水素タンク2に貯蔵される。
[Hydrogen gas storage step]
In the hydrogen gas storage step, the hydrogen tank 2 stores the high-purity hydrogen gas produced by the hydrogen production device 4 . Specifically, the hydrogen gas produced by the hydrogen production device 4 is supplied to the hydrogen tank 2 through the storage channel 10, and the hydrogen storage alloy absorbs the hydrogen gas so that the hydrogen gas is stored in the hydrogen tank 2. Stocked. The storage channel 10 includes an openable and closable storage valve 10a. The storage valve 10a is opened when hydrogen gas is supplied. When a predetermined amount of hydrogen gas is supplied to the hydrogen tank, the storage valve 10a is closed and the hydrogen gas is stored in the hydrogen tank 2. FIG.

〔設定工程〕
設定工程では、水素ガスの放出に伴う吸熱量Q1と、前記水素吸蔵合金と前記樹脂との合計熱量Q2との関係がQ1<Q2となる必要温度差ΔTを設定する。前記水素吸蔵合金は、吸熱反応によって水素ガスを放出するため、後述する加熱工程で、必要量の水素ガスを放出できる温度に前記水素吸蔵合金を加熱する。必要以下の温度に加熱すると、前記水素吸蔵合金が水素ガスを十分に放出することができなくなる恐れがある。必要な温度以上に加熱すると、加熱するために消費されるエネルギー及び加熱時間が増大し、水素ガスの放出が非効率になるおそれがある。予め前記Q1及びQ2の関係がQ1<Q2となるのに必要な温度差ΔTを設定することで加熱を効率的に行える。
[Setting process]
In the setting step, the required temperature difference ΔT is set such that the relationship between the amount of heat Q1 absorbed by the release of hydrogen gas and the total amount of heat Q2 of the hydrogen storage alloy and the resin satisfies Q1<Q2. Since the hydrogen-absorbing alloy releases hydrogen gas through an endothermic reaction, the hydrogen-absorbing alloy is heated to a temperature capable of releasing the required amount of hydrogen gas in the heating step described later. If heated to a temperature lower than necessary, the hydrogen storage alloy may not be able to release hydrogen gas sufficiently. Heating above the required temperature increases the energy consumed for heating and the heating time, and may result in inefficient release of hydrogen gas. Heating can be efficiently performed by setting in advance the temperature difference ΔT necessary for the relationship between Q1 and Q2 to be Q1<Q2.

〔加熱工程〕
加熱工程では、前記水素吸蔵合金の水素平衡圧及び水素吸蔵量の関係を示すPCT曲線のプラトー領域における水素圧縮機3の吸い込み圧力に対応する第1温度に前記ΔTを加えた第2温度まで前記樹脂複合化水素吸蔵合金を加熱する。前記水素吸蔵合金が放出する水素ガスの圧力が、水素圧縮機3の吸い込み圧力より小さいと水素圧縮機3は水素ガスを取り込むことができない。このため、水素圧縮機3の吸い込み圧力より大きい圧力で水素ガスを放出できるように前記水素吸蔵合金を加熱する。この加熱は、前記PCT曲線のプラトー領域における水素圧縮機3の吸い込み圧力に対応する第1温度に前記ΔTを加えた第2温度まで行う。前記樹脂複合化水素吸蔵合金を前記第2温度まで加熱することで、水素圧縮機3が吸い込み可能な圧力以上で水素ガスを放出でき、かつ水素圧縮機3が被供給物に供給するのに十分な量の水素ガスを放出できる。加熱は、水素タンク2内の水素ガスの圧力及び温度を計測する圧力計P及び温度計Tに基づいて行うことが好ましい。なお、PCT曲線とは、一定温度Tにおける、水素吸蔵合金(金属水素化物)の組成Cと、それに平衡な水素圧力Pとの関係を示すものである。
[Heating process]
In the heating step, the hydrogen storage alloy is heated up to a second temperature obtained by adding the ΔT to the first temperature corresponding to the suction pressure of the hydrogen compressor 3 in the plateau region of the PCT curve showing the relationship between the hydrogen equilibrium pressure and the hydrogen storage amount of the hydrogen storage alloy. The resin composite hydrogen storage alloy is heated. If the pressure of the hydrogen gas released by the hydrogen storage alloy is lower than the suction pressure of the hydrogen compressor 3, the hydrogen compressor 3 cannot take in the hydrogen gas. Therefore, the hydrogen storage alloy is heated so that the hydrogen gas can be released at a pressure higher than the suction pressure of the hydrogen compressor 3 . This heating is performed up to a second temperature obtained by adding the ΔT to the first temperature corresponding to the suction pressure of the hydrogen compressor 3 in the plateau region of the PCT curve. By heating the resin composite hydrogen-absorbing alloy to the second temperature, hydrogen gas can be released at a pressure higher than the pressure that the hydrogen compressor 3 can absorb, and the hydrogen compressor 3 can supply the material to be supplied. A large amount of hydrogen gas can be released. Heating is preferably performed based on a pressure gauge P and a thermometer T for measuring the pressure and temperature of the hydrogen gas in the hydrogen tank 2 . The PCT curve indicates the relationship between the composition C of the hydrogen storage alloy (metal hydride) and the equilibrium hydrogen pressure P at a constant temperature T.

具体的には、水素ガスを吸蔵して放出する前の水素吸蔵合金は、図3のPCT曲線におけるAの状態にある。状態Aにおける前記水素吸蔵合金は、常温である。この状態Aから、前記水素吸蔵合金を加熱して前記第2温度のBの状態に移行させる。 Specifically, the hydrogen storage alloy before absorbing and releasing hydrogen gas is in the state of A in the PCT curve of FIG. The hydrogen storage alloy in state A is at room temperature. From this state A, the hydrogen storage alloy is heated to shift to the state B of the second temperature.

〔水素ガス放出工程〕
水素ガス放出工程では、前記加熱工程後、水素タンク2が、水素ガスを水素圧縮機3に放出する。具体的には、加熱されることで水素圧縮機3の吸い込み圧力より高圧力となった前記水素吸蔵合金が水素ガスを放出し、この水素ガスが水素タンク2から水素圧縮機3に放出流路11を介して放出される。放出流路11は、開閉自在な放出バルブ11aを含む。放出バルブ11aは、水素ガスが放出される際には開放される。所定量の水素ガスが水素圧縮機3に放出されると、放出バルブ11aが閉じられて水素ガスの放出が停止する。前記水素吸蔵合金は、水素ガスを放出することで吸熱し、状態BからCの状態に移行する(図3)。放出流路11は、放出バルブ11aの上流側に水素タンク2内の圧力を計測する圧力計Pが配設されることが好ましい。
[Hydrogen gas release step]
In the hydrogen gas release step, the hydrogen tank 2 releases hydrogen gas to the hydrogen compressor 3 after the heating step. Specifically, the hydrogen storage alloy, which is heated to a pressure higher than the suction pressure of the hydrogen compressor 3, releases hydrogen gas, and the hydrogen gas is discharged from the hydrogen tank 2 to the hydrogen compressor 3. 11 is released. The discharge channel 11 includes an openable/closable discharge valve 11a. The release valve 11a is opened when hydrogen gas is released. When a predetermined amount of hydrogen gas is released to the hydrogen compressor 3, the release valve 11a is closed to stop the release of hydrogen gas. The hydrogen storage alloy absorbs heat by releasing hydrogen gas, and shifts from state B to state C (FIG. 3). A pressure gauge P for measuring the pressure in the hydrogen tank 2 is preferably arranged in the discharge passage 11 upstream of the discharge valve 11a.

前記水素放出工程後、再度の水素放出工程を行う前に、前記樹脂複合化水素吸蔵合金を再加熱する再加熱工程をさらに備えることが好ましい。このようにして、前記水素放出工程と、前記水素放出工程とを交互に繰り返し行うことで、断続的な水素ガスの放出ができ、複数の被供給物、例えば、複数の燃料電池自動車等の車両に対して、水素ガスを随時供給することができる。 After the hydrogen releasing step, it is preferable to further include a reheating step of reheating the resin composite hydrogen-absorbing alloy before performing the hydrogen releasing step again. In this way, by alternately repeating the hydrogen releasing step and the hydrogen releasing step, hydrogen gas can be released intermittently, and a plurality of objects to be supplied, for example, a plurality of vehicles such as fuel cell vehicles can be supplied with hydrogen gas at any time.

具体的には、状態Cに移行した前記水素吸蔵合金を再加熱してB1の状態に移行させる(図3)。水素ガスを再放出してC1の状態に移行した前記水素吸蔵合金をさらに再加熱し、B2の状態に移行させる。このように、加熱と放出とを繰り返すことで、前記複数の車両に水素ガスを随時供給することが容易にできる。 Specifically, the hydrogen storage alloy that has shifted to state C is reheated to shift to state B1 (FIG. 3). The hydrogen storage alloy, which has shifted to the state of C1 by re-releasing the hydrogen gas, is further reheated to shift to the state of B2. By repeating heating and discharging in this way, hydrogen gas can be easily supplied to the plurality of vehicles at any time.

再加熱する温度としては、再度設定工程を行うことで必要温度差ΔTを設定し、水素圧縮機3の吸い込み圧力に対応する温度に、再設定したΔTを加えた温度まで再加熱すればよく、又は、加熱工程の第2温度まで加熱すればよい。第2温度は、前記再設定したΔTを加えた温度以上であるため、再放出できる温度として十分である。前記第2温度以上に加熱してもよいが、加熱するエネルギー、加熱時間が増大するおそれがある。 As the reheating temperature, the necessary temperature difference ΔT is set by performing the setting step again, and the temperature corresponding to the suction pressure of the hydrogen compressor 3 is added to the reset ΔT. Alternatively, it may be heated to the second temperature in the heating step. Since the second temperature is equal to or higher than the temperature to which the reset ΔT is added, it is sufficient as a temperature for re-emission. Although it may be heated to the second temperature or higher, the heating energy and heating time may increase.

水素吸蔵合金の熱容量が小さいと、水素ガスの放出による水素吸蔵合金の吸熱が比較的大きくなり、状態BからDの状態に移行し(図3)、所定の圧力で水素ガスを再放出できるように前記水素吸蔵合金の温度を復帰させることが容易にできないないおそれがある。このため、一般的に、水素吸蔵合金の吸蔵容量を増大することで、水素ガスの放出速度を増大させている。しかし、水素吸蔵合金の吸蔵容量を増大すると水素タンクが大型化し、ひいては水素供給システムが大型化する。このような大型の水素供給システムは、起動に長時間を要するため、工場などで24時間稼働する設備としては問題が生じにくいが、燃料電池自動車、燃料電池フォークリフト等に水素ガスを供給する水素ステーション等は、日々起動及び停止をするDSS(Dairy Start and Stop)運転を行うため、問題となることがある。 When the heat capacity of the hydrogen-absorbing alloy is small, the heat absorption of the hydrogen-absorbing alloy due to the release of hydrogen gas becomes relatively large, and the state changes from state B to state D (Fig. 3). It may not be possible to restore the temperature of the hydrogen-absorbing alloy immediately. For this reason, the release rate of hydrogen gas is generally increased by increasing the storage capacity of the hydrogen storage alloy. However, if the storage capacity of the hydrogen storage alloy is increased, the size of the hydrogen tank will be increased, and the size of the hydrogen supply system will be increased. Such a large-scale hydrogen supply system takes a long time to start up, so it is unlikely that problems will occur as facilities that operate 24 hours a day in factories, etc. However, hydrogen stations that supply hydrogen gas to fuel cell vehicles, fuel cell forklifts, etc. etc. may pose a problem because it performs a DSS (Daily Start and Stop) operation in which it is started and stopped on a daily basis.

本発明の発明者達は、水素吸蔵合金を樹脂と複合化して熱容量を大きくすることで、所定の能力での水素ガスの放出が繰り返しできることを発見し、本発明を完成させた。前記熱容量を増大すると、一括的、或いは一時的な水素ガスの放出に対して、吸熱によって低下した水素吸蔵合金の温度を早く復帰できるため、再放出するまでの間隔を短縮できる。特に、本発明の水素放出方法は、水素ステーションのように、燃料電池自動車などの車両に対して、例えば3分間など、数分の一時的な水素ガスの放出を行い、例えば3分間から7分間など、数分で次の車両に水素ガスを再放出をしなければならない設備に適している。また、当該水素放出方法は、前記吸蔵容量を増大するのではなく、前記熱容量を増大しているため、水素タンクを大型化する必要がなく、広大な設置面積と長時間の起動とを要する大型の水素供給システムとなることを抑制できる。この点でも、当該水素放出方法は、DSS運転を行う水素ステーションに適している。 The inventors of the present invention discovered that by combining a hydrogen storage alloy with a resin to increase the heat capacity, it is possible to repeatedly release hydrogen gas with a predetermined capacity, and completed the present invention. When the heat capacity is increased, the temperature of the hydrogen-absorbing alloy, which has been lowered due to endothermic absorption, can be recovered quickly in response to the collective or temporary release of hydrogen gas, so the interval until re-release can be shortened. In particular, the hydrogen release method of the present invention, like a hydrogen station, temporarily releases hydrogen gas for several minutes, such as 3 minutes, to a vehicle such as a fuel cell vehicle, for example, for 3 minutes to 7 minutes. It is suitable for equipment that must re-release hydrogen gas to the next vehicle in a few minutes. In addition, the hydrogen release method does not increase the storage capacity but increases the heat capacity, so there is no need to increase the size of the hydrogen tank. It is possible to suppress becoming a hydrogen supply system. In this respect as well, the hydrogen release method is suitable for a hydrogen station that performs DSS operation.

水素吸蔵合金は、水素ガスの吸蔵及び放出に際し、熱のやり取りが必要である。この熱のやり取りは、一般的には、水素吸蔵合金を伝熱管、熱交換プレート等にできるだけ薄く接触させることで、伝熱面からの伝熱抵抗を減らし、伝熱速度を向上している。本発明では、水素吸蔵合金と複合化されている樹脂が、伝熱面から離れたところで予め熱を蓄えることで、水素吸蔵合金への伝熱速度を向上している。 A hydrogen storage alloy needs to exchange heat when absorbing and desorbing hydrogen gas. This heat exchange is generally achieved by bringing the hydrogen storage alloy into contact with the heat transfer tube, heat exchange plate, or the like as thinly as possible to reduce the heat transfer resistance from the heat transfer surface and improve the heat transfer rate. In the present invention, the resin compounded with the hydrogen storage alloy stores heat in advance at a distance from the heat transfer surface, thereby improving the heat transfer rate to the hydrogen storage alloy.

前記水素放出工程後、水素圧縮機3で圧縮した水素ガスをディスペンサ5で被供給物に供給する工程をさらに備え、前記設定工程におけるQ1及びQ2を下記式1及び2で算出することが好ましい。
Q1=M×ΔH ・・・・(1)
Q2=(Cpm×Wm+Cpp×Wp)ΔT ・・・・(2)
ただし、Mは、前記被供給物に供給する水素ガスの量[kg]、ΔHは、前記水素吸蔵合金の反応エンタルピー[kJ/mol]、Cpmは、前記水素吸蔵合金の比熱[kJ/kg・K]、Wmは、前記樹脂複合化水素吸蔵合金における前記水素吸蔵合金の含有量[kg]、Cppは、前記樹脂の比熱[kJ/kg・K]、Wpは、前記樹脂複合化水素吸蔵合金における前記樹脂の含有量[kg]である。
After the hydrogen releasing step, it is preferable to further include a step of supplying the hydrogen gas compressed by the hydrogen compressor 3 to the object to be supplied by the dispenser 5, and to calculate Q1 and Q2 in the setting step by the following equations 1 and 2.
Q1=M×ΔH (1)
Q2=(Cpm×Wm+Cpp×Wp)ΔT (2)
However, M is the amount of hydrogen gas supplied to the material to be supplied [kg], ΔH is the reaction enthalpy of the hydrogen storage alloy [kJ/mol], and Cpm is the specific heat of the hydrogen storage alloy [kJ/kg· K], Wm is the content [kg] of the hydrogen storage alloy in the resin composite hydrogen storage alloy, Cpp is the specific heat of the resin [kJ/kg K], and Wp is the resin composite hydrogen storage alloy. is the content [kg] of the resin in

前記の式1及び2を用いることで、ΔTの算出が容易にできるため、必要以上に加熱して加熱用のエネルギーコストが増大すること、及び加熱時間が増大することを抑制でき、効率的な水素ガスの放出ができる。 By using the above formulas 1 and 2, it is possible to easily calculate ΔT, so it is possible to suppress the increase in the energy cost for heating due to excessive heating and the increase in the heating time. Hydrogen gas can be released.

〔水素ガス供給工程〕
水素ガス供給工程は、水素圧縮機3で圧縮した水素ガスをディスペンサ5で被供給物に供給する。水素圧縮機3に放出された水素ガスは、水素圧縮機3で圧縮され、供給流路12を介してディスペンサ5に送られ、ディスペンサ5は、前記車両等に水素ガスを供給する。供給流路12が、分岐され、ディスペンサ5用供給流路12aと、高圧蓄圧器6用供給流路12bとを有し、前記車両等への水素ガスの供給がない場合には、水素圧縮機3が高圧蓄圧器6に水素ガスを供給するのが好ましい。
[Hydrogen gas supply step]
In the hydrogen gas supply step, the hydrogen gas compressed by the hydrogen compressor 3 is supplied to the object to be supplied by the dispenser 5 . The hydrogen gas discharged to the hydrogen compressor 3 is compressed by the hydrogen compressor 3 and sent to the dispenser 5 via the supply channel 12, and the dispenser 5 supplies the hydrogen gas to the vehicle or the like. The supply flow path 12 is branched to have a supply flow path 12a for the dispenser 5 and a supply flow path 12b for the high-pressure accumulator 6. When hydrogen gas is not supplied to the vehicle or the like, the hydrogen compressor 3 preferably supplies hydrogen gas to high pressure accumulator 6 .

前記式1及び2について、以下に仮定してΔTを算出する。
前記車両などへの水素ガスの供給量 M:3[kg]
水素圧縮機3の吸い込み圧力 Pc:0.6[MPaG]
水素吸蔵合金の平衡圧 Pm:0.1[MPaA at -20℃]
樹脂複合化水素吸蔵合金における前記水素吸蔵合金含有量 Wm:3800[kg]
前記水素吸蔵合金の反応エンタルピー ΔH:-26[kJ/mol]
前記水素吸蔵合金の比熱 Cpm:0.6[kJ/kg・K]
前記樹脂複合化水素吸蔵合金における樹脂の含有量 Wp:760[kg]
前記樹脂の比熱 Cpp:1.8[kJ/kg・K]
Regarding Equations 1 and 2 above, ΔT is calculated assuming the following.
Amount of hydrogen gas supplied to the vehicle, etc. M: 3 [kg]
Suction pressure Pc of hydrogen compressor 3: 0.6 [MPaG]
Equilibrium pressure of hydrogen storage alloy Pm: 0.1 [MPaA at -20°C]
Content of the hydrogen storage alloy in the resin composite hydrogen storage alloy Wm: 3800 [kg]
Reaction enthalpy ΔH of the hydrogen storage alloy: -26 [kJ/mol]
Specific heat Cpm of the hydrogen storage alloy: 0.6 [kJ/kg K]
Resin content Wp: 760 [kg] in the resin composite hydrogen storage alloy
Specific heat of the resin Cpp: 1.8 [kJ / kg K]

式1より、
Q1=3×1000÷2.016×26=38.69[MJ]
式2より、
Q2=(0.6×3800+1.8×760)×ΔT=3.65ΔT[MJ]
従って、Q1<Q2とするためには、ΔT>10.6[℃]となる。
From Equation 1,
Q1 = 3 x 1000/2.016 x 26 = 38.69 [MJ]
From Equation 2,
Q2=(0.6×3800+1.8×760)×ΔT=3.65ΔT [MJ]
Therefore, in order to satisfy Q1<Q2, ΔT>10.6 [° C.].

図3で、プラトー領域のC[H/M]:0.8程度から当該水素放出方法を開始する(状態A)。水素圧縮機3の吸い込み圧力Pc:0.6[MPaG]の平衡圧である前記水素吸蔵合金の温度Tは22[℃]付近であるため、この温度にΔT>10.6[℃]を加算して、前記水素吸蔵合金の温度Tが33[℃]程度になるように加熱する(状態B)。水素ガスの放出後(状態C)に再放出するためには、熱媒体で所定時間(例えば、10分)前記水素吸蔵合金を再加熱し、前記水素吸蔵合金の温度を33[℃]程度にする(状態B1)。このようにすることで、所定能力での水素ガスの再放出が可能となる。水素ガスの再放出後(状態C1)にさらに再放出するためには、熱媒体で所定時間、前記水素吸蔵合金を再加熱し、前記水素吸蔵合金の温度を33[℃]程度にする(状態B2)。複数回の加熱及び放出を行い、水素タンク2内の水素ガスが所定量以下になると、前記水素ガス貯蔵工程を行う。これにより、前記水素吸蔵合金は、状態Aに復帰する。なお、熱容量としては、前記水素吸蔵合金及び樹脂の他、水素タンク2、熱媒体流路9、熱媒体、周辺水素ガス等が考慮されるが、前記樹脂複合化水素吸蔵合金と比較すると、短時間での熱の移動は小さいと考えられるため、Q2の熱量に加算しなくともよいと考察される。 In FIG. 3, the hydrogen release method is started at C[H/M]: about 0.8 in the plateau region (state A). Since the temperature T of the hydrogen storage alloy, which is the equilibrium pressure of the suction pressure Pc of the hydrogen compressor 3: 0.6 [MPaG], is around 22 [°C], ΔT > 10.6 [°C] is added to this temperature. Then, the hydrogen storage alloy is heated to a temperature T of about 33[° C.] (state B). In order to release the hydrogen gas again after it is released (state C), the hydrogen storage alloy is reheated with a heat medium for a predetermined time (for example, 10 minutes) to raise the temperature of the hydrogen storage alloy to about 33[°C]. (state B1). By doing so, hydrogen gas can be re-released at a predetermined capacity. In order to further re-release the hydrogen gas after it has been re-released (state C1), the hydrogen storage alloy is reheated for a predetermined time with a heat medium to bring the temperature of the hydrogen storage alloy to about 33[°C] (state B2). When the hydrogen gas in the hydrogen tank 2 becomes equal to or less than a predetermined amount after heating and discharging a plurality of times, the hydrogen gas storage step is performed. As a result, the hydrogen storage alloy returns to state A. As the heat capacity, in addition to the hydrogen storage alloy and the resin, the hydrogen tank 2, the heat medium flow path 9, the heat medium, the surrounding hydrogen gas, etc. are considered. Since the heat transfer with time is considered to be small, it is considered that it does not need to be added to the heat quantity of Q2.

<利点>
当該水素供給システム1及び水素放出方法は、熱容量の大きい樹脂複合化水素吸蔵合金を収容している水素タンク2を備えるため、水素ガスの放出による水素吸蔵合金の急激な温度低下を抑制することができる。また、水素吸蔵合金を樹脂と複合化することで、水素供給システムが大型化することを抑制できる。
<Advantages>
Since the hydrogen supply system 1 and the hydrogen release method include the hydrogen tank 2 containing the resin-composite hydrogen-absorbing alloy with a large heat capacity, it is possible to suppress a rapid temperature drop of the hydrogen-absorbing alloy due to the release of hydrogen gas. can. In addition, by combining the hydrogen storage alloy with the resin, it is possible to suppress an increase in the size of the hydrogen supply system.

また、当該水素供給システム1及び水素放出方法は、水素吸蔵合金の急激な温度低下を抑制するため、水素タンク2が水素ガスを再放出できる温度まで前記水素吸蔵合金を加熱する時間を短縮でき、複数の被供給物への水素ガスの供給を効率的に行うことができる。 In addition, since the hydrogen supply system 1 and the hydrogen release method suppress a rapid temperature drop of the hydrogen storage alloy, the time for heating the hydrogen storage alloy to a temperature at which the hydrogen tank 2 can re-release hydrogen gas can be shortened. Hydrogen gas can be efficiently supplied to a plurality of objects to be supplied.

[第二実施形態]
図2に、本発明の他の実施形態である水素供給システム20の構成を示す。なお、上述の水素供給システム1と同一の構成については、同一の符号を付して説明を省略する。
[Second embodiment]
FIG. 2 shows the configuration of a hydrogen supply system 20 that is another embodiment of the present invention. The same reference numerals are given to the same components as those of the hydrogen supply system 1 described above, and the description thereof is omitted.

<水素供給システム>
水素供給システム20は、複数の水素タンクと、この複数の水素タンクから放出された水素ガスを圧縮する水素圧縮機3とを主に備える。本実施形態では、第一水素タンク2a及び第二水素タンク2bの二つの水素タンクを備えた水素供給システム20で説明する。
<Hydrogen supply system>
The hydrogen supply system 20 mainly includes a plurality of hydrogen tanks and a hydrogen compressor 3 that compresses hydrogen gas released from the plurality of hydrogen tanks. In this embodiment, a hydrogen supply system 20 having two hydrogen tanks, a first hydrogen tank 2a and a second hydrogen tank 2b, will be described.

水素製造装置4で製造された水素ガスは、貯蔵流路10と、この貯蔵流路10が分岐した第一貯蔵流路101及び第二貯蔵流路102を介して二つの水素タンク2a,2bに供給される。第一貯蔵流路101及び第二貯蔵流路102それぞれは、開閉自在な貯蔵バルブ10aを含む。 The hydrogen gas produced by the hydrogen production device 4 is supplied to the two hydrogen tanks 2a and 2b through the storage channel 10 and the first storage channel 101 and the second storage channel 102 branched from the storage channel 10. supplied. Each of the first storage channel 101 and the second storage channel 102 includes an openable and closable storage valve 10a.

二つの水素タンク2a,2bから水素圧縮機3に放出される水素ガスの流路は、第一水素タンク2aと接続されている第一放出流路111と、第二水素タンク2bと接続されている第二放出流路112と、第一放出流路111及び第二放出流路112が合流して水素圧縮機3に接続されている放出流路11とで構成されている。第一放出流路111及び第二放出流路112それぞれは、二つの水素タンク2a,2bの内圧を計測する圧力計Pと、開閉自在なバルブ11aとを含む。 The flow paths of the hydrogen gas discharged from the two hydrogen tanks 2a and 2b to the hydrogen compressor 3 are the first discharge flow path 111 connected to the first hydrogen tank 2a and the second hydrogen tank 2b. and the discharge passage 11 in which the first discharge passage 111 and the second discharge passage 112 merge and are connected to the hydrogen compressor 3 . Each of the first release channel 111 and the second release channel 112 includes a pressure gauge P for measuring the internal pressure of the two hydrogen tanks 2a and 2b, and a valve 11a that can be opened and closed.

二つの水素タンク2a,2bは、それぞれの樹脂複合化水素吸蔵合金を加熱及び冷却するための熱媒体流路9aを有する。加熱部7からの温熱媒を供給する温熱媒供給路91は、第一水素タンク2aに前記温熱媒を供給する第一温熱媒供給路911と、第二水素タンク2bに前記温媒体を供給する第二温熱媒供給路912とに分岐する。冷熱媒を供給する冷熱媒供給路92は、第一水素タンク2aに前記冷熱媒を供給する第一冷熱媒供給路921と、第二水素タンク2bに前記冷媒体を供給する第二冷熱媒供給路922とに分岐する。第一温熱媒供給路911と第一冷熱媒供給路921とは、第一切替バルブ941に接続される。第一切替バルブ941は、第一熱媒体供給路931を介して前記温熱媒又は冷熱媒を選択的に第一水素タンク2aに供給する。第二温熱媒供給路912と第二冷熱媒供給路922とは、第二切替バルブ942に接続される。第二切替バルブ942は、熱媒体供給路932を介して前記温熱媒又は冷熱媒を選択的に第二水素タンク2に供給する。 The two hydrogen tanks 2a and 2b have heat medium flow paths 9a for heating and cooling the respective resin-composite hydrogen-absorbing alloys. A heating medium supply path 91 that supplies the heating medium from the heating unit 7 supplies the heating medium to a first heating medium supply path 911 that supplies the heating medium to the first hydrogen tank 2a and to the second hydrogen tank 2b. It branches to the second heating medium supply path 912 . The cooling/heating medium supply path 92 for supplying the cooling/heating medium includes a first cooling/heating medium supply path 921 for supplying the cooling/heating medium to the first hydrogen tank 2a and a second cooling/heating medium supply path for supplying the cooling/heating medium to the second hydrogen tank 2b. 922. The first hot medium supply path 911 and the first cold medium supply path 921 are connected to a first switching valve 941 . The first switching valve 941 selectively supplies the hot or cold medium to the first hydrogen tank 2a through the first heat medium supply path 931 . The second hot medium supply path 912 and the second cold medium supply path 922 are connected to a second switching valve 942 . The second switching valve 942 selectively supplies the hot or cold medium to the second hydrogen tank 2 via the heat medium supply path 932 .

第一水素タンク2aの前記複合化水素吸蔵合金と熱交換した熱媒体を加熱部7又は冷却部8に還流する第一熱媒体還流路961は、第三切替バルブ943と接続される。第三切替バルブ943は、接続されている第一温熱媒還流路971及び第一冷熱媒還流路981に、前記温熱媒又は冷熱媒を選択的に供給する。第二水素タンク2bの熱媒体を還流する第二熱媒体還流路962は、第四切替バルブ944と接続される。第四切替バルブ944は、接続されている第二温熱媒還流路972及び第二冷熱媒還流路982に、前記温熱媒又は冷熱媒を選択的に供給する。第一温熱媒還流路971及び第二温熱媒還流路972は、加熱部7に接続されている温熱媒還流路97に合流する。第一冷熱媒還流路981及び第二冷熱媒還流路982は、冷却部8に接続されている冷熱媒還流路98に合流する。 A first heat medium circulation path 961 for returning the heat medium that has exchanged heat with the composite hydrogen storage alloy in the first hydrogen tank 2 a to the heating section 7 or the cooling section 8 is connected to the third switching valve 943 . The third switching valve 943 selectively supplies the hot medium or the cold medium to the connected first hot medium circulation path 971 and first cold medium circulation path 981 . A second heat medium circulation path 962 that circulates the heat medium in the second hydrogen tank 2 b is connected to the fourth switching valve 944 . The fourth switching valve 944 selectively supplies the hot medium or the cold medium to the connected second hot medium circulation path 972 and second cold medium circulation path 982 . The first heating medium circulation path 971 and the second heating medium circulation path 972 join the heating medium circulation path 97 connected to the heating unit 7 . The first cooling/heating medium circulation path 981 and the second cooling/heating medium circulation path 982 merge with the cooling/heating medium circulation path 98 connected to the cooling unit 8 .

<水素放出方法>
複数の水素タンクは、同時に水素ガスを放出してもよいが、複数の水素タンクを交番運転するのが好ましい。すなわち、二つの水素タンク2a,2bでは、一方が水素ガス貯蔵工程を行っているとき、他方が水素ガス放出工程を行うのが好ましい。
<Hydrogen releasing method>
A plurality of hydrogen tanks may release hydrogen gas at the same time, but it is preferable to alternately operate the plurality of hydrogen tanks. That is, when one of the two hydrogen tanks 2a and 2b is performing the hydrogen gas storage step, the other is preferably performing the hydrogen gas release step.

具体的には、水素製造装置4で製造した高純度な水素ガスを二つの水素タンク2a,2bに貯蔵する。第一放出流路111のバルブ11aを開放して第一水素タンク2aから水素ガスを放出し、被供給物に水素ガスを供給する。第一水素タンク2aからの水素ガスの放出は、複数回行われてもよく、第一水素タンク2a内の水素ガスの量が所定量以下になるまで行う。この間、第二放出流路112のバルブ11aは閉鎖し、第二水素タンク2bからの水素ガスの放出は行わない。 Specifically, the high-purity hydrogen gas produced by the hydrogen producing device 4 is stored in two hydrogen tanks 2a and 2b. The valve 11a of the first release channel 111 is opened to release the hydrogen gas from the first hydrogen tank 2a, and the hydrogen gas is supplied to the object to be supplied. The release of hydrogen gas from the first hydrogen tank 2a may be performed multiple times until the amount of hydrogen gas in the first hydrogen tank 2a becomes equal to or less than a predetermined amount. During this time, the valve 11a of the second release channel 112 is closed, and no hydrogen gas is released from the second hydrogen tank 2b.

第一水素タンク2a内の水素ガスの量が所定量以下になると、第一放出流路111のバルブ11aを閉鎖し、第一水素タンク2aによる水素ガスの放出を停止する。同時に、第二放出流路112のバルブ11aを開放し、第二水素タンク2bによる水素ガスの放出を開始する。 When the amount of hydrogen gas in the first hydrogen tank 2a becomes equal to or less than a predetermined amount, the valve 11a of the first release channel 111 is closed to stop the release of hydrogen gas from the first hydrogen tank 2a. At the same time, the valve 11a of the second release channel 112 is opened to start releasing hydrogen gas from the second hydrogen tank 2b.

第一貯蔵流路101のバルブ10aを開放し、水素製造装置4で製造した高純度の水素ガスを第一水素タンク2aに供給する。第一水素タンク2a内の水素ガスの量が所定量以上になると第一貯蔵流路101のバルブ10aを閉鎖し、第一水素タンク2aへの水素ガスの供給を停止する。第一水素タンク2aは、第二水素タンク2b内の水素ガスが所定量以下になると水素ガスの放出を開始する。同時に、第二貯蔵流路102の貯蔵バルブ10aを開放して第二水素タンク2bに水素製造装置4から水素ガスを供給する。 The valve 10a of the first storage channel 101 is opened to supply the high-purity hydrogen gas produced by the hydrogen production device 4 to the first hydrogen tank 2a. When the amount of hydrogen gas in the first hydrogen tank 2a reaches a predetermined amount or more, the valve 10a of the first storage channel 101 is closed to stop the supply of hydrogen gas to the first hydrogen tank 2a. The first hydrogen tank 2a starts releasing hydrogen gas when the amount of hydrogen gas in the second hydrogen tank 2b becomes equal to or less than a predetermined amount. At the same time, the storage valve 10a of the second storage channel 102 is opened to supply hydrogen gas from the hydrogen production device 4 to the second hydrogen tank 2b.

<利点>
水素供給システム20は、複数の水素タンクを交番運転することで、一の水素タンクが水素ガスを放出できない状態にあっても、他の水素タンクが水素ガスを放出できるため、被供給物への水素ガスの供給を連続的に行うことができる。
[その他の実施形態]
前記実施形態は、本発明の構成を限定するものではない。従って、前記実施形態は、本明細書の記載及び技術常識に基づいて前記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
<Advantages>
By alternately operating a plurality of hydrogen tanks, the hydrogen supply system 20 can release hydrogen gas from the other hydrogen tanks even if one of the hydrogen tanks cannot release hydrogen gas. Hydrogen gas can be supplied continuously.
[Other embodiments]
The above embodiments do not limit the configuration of the present invention. Therefore, in the embodiment, the components of each part of the embodiment can be omitted, replaced, or added based on the description of the present specification and common general technical knowledge, and all of them are interpreted as belonging to the scope of the present invention. should.

前記実施形態では、圧力計Pを放出流路11に配設される構成で説明したが、圧力計Pは水素タンク2に配設されてもよい。 In the above embodiment, the pressure gauge P is arranged in the discharge channel 11 , but the pressure gauge P may be arranged in the hydrogen tank 2 .

本発明の水素放出方法及び水素供給システムは、水素ガスを燃料として消費する設備に好適に用いることができ、特にDSS運転を行う水素ステーション等に好適に用いることができる。 INDUSTRIAL APPLICABILITY The hydrogen release method and hydrogen supply system of the present invention can be suitably used in equipment that consumes hydrogen gas as fuel, and in particular can be suitably used in hydrogen stations and the like that perform DSS operation.

1,20 水素供給システム
2 水素タンク
2a 第一水素タンク
2b 第二水素タンク
3 水素圧縮機
4 水素製造装置
5 ディスペンサ
6 高圧蓄圧器
7 加熱部
8 冷却部
9,9a 熱媒体流路
91 温熱媒供給路
911 第一温熱媒供給路
912 第二温熱媒供給路
92 冷熱媒供給路
921 第一冷熱媒供給路
922 第二冷熱媒供給路
93 熱媒体供給路
931 第一熱媒体供給路
932 第二熱媒体供給路
94 バルブ
941 第一切替バルブ
942 第二切替バルブ
943 第三切替バルブ
944 第四切替バルブ
95 ポンプ
96 熱媒体還流路
961 第一熱媒体還流路
962 第二熱媒体還流路
97 温熱媒還流路
971 第一温熱媒還流路
972 第二温熱媒還流路
98 冷熱媒還流路
981 第一冷熱媒還流路
982 第二冷熱媒還流路
10 貯蔵流路
101 第一貯蔵流路
102 第二貯蔵流路
10a 貯蔵バルブ
11 放出流路
111 第一放出流路
112 第二放出流路
11a 放出バルブ
12 供給流路
12a ディスペンサ用供給流路
12b 高圧蓄圧器用供給流路
A 水素ガスを吸蔵した水素吸蔵合金の常温での状態
B 加熱工程後の水素吸蔵合金の状態
B1 再加熱工程後の水素吸蔵合金の状態
B2 さらに再加熱工程を行った水素吸蔵合金の状態
C 放出工程後の水素吸蔵合金の状態
C1 再放出工程後の水素吸蔵合金の状態
D 熱容量の小さい水素吸蔵合金の放出工程後の状態
P 圧力計
T 温度計
Reference Signs List 1, 20 Hydrogen supply system 2 Hydrogen tank 2a First hydrogen tank 2b Second hydrogen tank 3 Hydrogen compressor 4 Hydrogen production device 5 Dispenser 6 High-pressure accumulator 7 Heating unit 8 Cooling unit 9, 9a Heat medium flow path 91 Heat medium supply Path 911 First heating/heating medium supply path 912 Second heating/heating medium supply path 92 Cooling/heating medium supply path 921 First cooling/heating medium supply path 922 Second cooling/heating medium supply path 93 Heat medium supply path 931 First heat medium supply path 932 Second heat Medium supply path 94 valve 941 first switching valve 942 second switching valve 943 third switching valve 944 fourth switching valve 95 pump 96 heat medium return path 961 first heat medium return path 962 second heat medium return path 97 heat medium return Path 971 First heating/heating medium circulation path 972 Second heating/heating medium circulation path 98 Cooling/heating medium circulation path 981 First cooling/heating medium circulation path 982 Second cooling/heating medium circulation path 10 Storage channel 101 First storage channel 102 Second storage channel 10a Storage valve 11 Release channel 111 First release channel 112 Second release channel 11a Release valve 12 Supply channel 12a Supply channel for dispenser 12b Supply channel for high-pressure accumulator A Normal temperature of hydrogen storage alloy storing hydrogen gas B State of hydrogen storage alloy after heating process B1 State of hydrogen storage alloy after reheating process B2 State of hydrogen storage alloy after further reheating process C State of hydrogen storage alloy after desorption process C1 Re-release State of hydrogen-absorbing alloy after process D State of hydrogen-absorbing alloy with small heat capacity after releasing process P Pressure gauge T Thermometer

Claims (6)

水素吸蔵合金及び樹脂で形成されている樹脂複合化水素吸蔵合金を収容する水素タンクに貯蔵されている水素ガスを水素圧縮機に放出する水素放出方法であって、
前記水素ガスの放出に伴う吸熱量Q1と、前記水素吸蔵合金と前記樹脂との合計熱量Q2との関係がQ1<Q2となる必要温度差ΔTを設定する設定工程と、
前記水素吸蔵合金の水素平衡圧及び水素吸蔵量の関係を示すPCT曲線のプラトー領域における前記水素圧縮機の吸い込み圧力に対応する第1温度に前記ΔTを加えた第2温度まで前記樹脂複合化水素吸蔵合金を加熱する加熱工程と、
前記加熱工程後、前記水素タンクが前記水素ガスを前記水素圧縮機に放出する水素放出工程と
を備える水素放出方法。
A hydrogen release method for releasing hydrogen gas stored in a hydrogen tank containing a resin composite hydrogen storage alloy formed of a hydrogen storage alloy and a resin into a hydrogen compressor,
a setting step of setting a required temperature difference ΔT such that the relationship between the heat absorption amount Q1 accompanying the release of the hydrogen gas and the total heat amount Q2 of the hydrogen storage alloy and the resin is Q1<Q2;
Up to a second temperature obtained by adding the ΔT to the first temperature corresponding to the suction pressure of the hydrogen compressor in the plateau region of the PCT curve showing the relationship between the hydrogen equilibrium pressure and the hydrogen storage amount of the hydrogen storage alloy. a heating step of heating the storage alloy;
and a hydrogen releasing step in which the hydrogen tank releases the hydrogen gas to the hydrogen compressor after the heating step.
前記水素放出工程後、前記水素圧縮機で圧縮した水素ガスをディスペンサで被供給物に供給する工程をさらに備え、
前記設定工程におけるQ1及びQ2を下記式1及び2で算出する請求項1に記載の水素放出方法。
Q1=M×ΔH ・・・・(1)
Q2=(Cpm×Wm+Cpp×Wp)ΔT ・・・・(2)
ただし、Mは、前記被供給物に供給する水素ガスの量[kg]、ΔHは、前記水素吸蔵合金の反応エンタルピー[kJ/mol]、Cpmは、前記水素吸蔵合金の比熱[kJ/kg・K]、Wmは、前記樹脂複合化水素吸蔵合金における前記水素吸蔵合金の含有量[kg]、Cppは、前記樹脂の比熱[kJ/kg・K]、Wpは、前記樹脂複合化水素吸蔵合金における前記樹脂の含有量[kg]である。
After the hydrogen releasing step, further comprising a step of supplying the hydrogen gas compressed by the hydrogen compressor to the object to be supplied with a dispenser,
2. The hydrogen releasing method according to claim 1, wherein Q1 and Q2 in said setting step are calculated by the following equations 1 and 2.
Q1=M×ΔH (1)
Q2=(Cpm×Wm+Cpp×Wp)ΔT (2)
However, M is the amount of hydrogen gas supplied to the material to be supplied [kg], ΔH is the reaction enthalpy of the hydrogen storage alloy [kJ/mol], and Cpm is the specific heat of the hydrogen storage alloy [kJ/kg· K], Wm is the content [kg] of the hydrogen storage alloy in the resin composite hydrogen storage alloy, Cpp is the specific heat of the resin [kJ/kg K], and Wp is the resin composite hydrogen storage alloy. is the content [kg] of the resin in
前記水素放出工程後、再度の水素放出工程を行う前に、前記樹脂複合化水素吸蔵合金を再加熱する再加熱工程をさらに備える請求項1又は請求項2に記載の水素放出方法。 3. The hydrogen releasing method according to claim 1, further comprising a reheating step of reheating the resin-composite hydrogen-absorbing alloy after the hydrogen releasing step and before performing the hydrogen releasing step again. 前記水素タンクが複数配置され、この複数の水素タンクを交番運転する請求項1、請求項2又は請求項3に記載の水素放出方法。 4. The method for releasing hydrogen according to claim 1, 2 or 3, wherein a plurality of said hydrogen tanks are arranged and said plurality of hydrogen tanks are alternately operated. 水素ガスを貯蔵する水素タンクと、
前記水素タンクから放出された水素ガスを圧縮する水素圧縮機と
を備え、
前記水素タンクが、水素吸蔵合金及び樹脂で形成され、加熱及び冷却が可能に構成されている樹脂複合化水素吸蔵合金を収容し、
前記水素吸蔵合金の水素平衡圧及び水素吸蔵量の関係を示すPCT曲線のプラトー領域における前記水素圧縮機の吸い込み圧力に対応する第1温度に、前記水素タンクからの水素ガスの放出に伴う吸熱量Q1と、前記水素吸蔵合金と前記樹脂との合計熱量Q2との関係がQ1<Q2となる必要温度差ΔTを加えた第2温度まで前記樹脂複合化水素吸蔵合金を加熱することで、前記水素タンクが、貯蔵する水素ガスを前記水素圧縮機に放出する水素供給システム。
a hydrogen tank for storing hydrogen gas;
a hydrogen compressor for compressing the hydrogen gas released from the hydrogen tank,
The hydrogen tank is formed of a hydrogen storage alloy and a resin, and contains a resin composite hydrogen storage alloy that can be heated and cooled,
At the first temperature corresponding to the suction pressure of the hydrogen compressor in the plateau region of the PCT curve showing the relationship between the hydrogen equilibrium pressure and the hydrogen storage amount of the hydrogen storage alloy, the endothermic amount accompanying the release of hydrogen gas from the hydrogen tank By heating the resin composite hydrogen storage alloy to a second temperature obtained by adding a necessary temperature difference ΔT at which the relationship between Q1 and the total amount of heat Q2 of the hydrogen storage alloy and the resin is Q1<Q2, the hydrogen A hydrogen supply system in which a tank releases stored hydrogen gas to said hydrogen compressor.
前記水素タンクを複数備える請求項5に記載の水素供給システム。

6. The hydrogen supply system according to claim 5, comprising a plurality of said hydrogen tanks.

JP2021018461A 2021-02-08 2021-02-08 Hydrogen discharge method and hydrogen supply system Pending JP2022121222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021018461A JP2022121222A (en) 2021-02-08 2021-02-08 Hydrogen discharge method and hydrogen supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021018461A JP2022121222A (en) 2021-02-08 2021-02-08 Hydrogen discharge method and hydrogen supply system

Publications (1)

Publication Number Publication Date
JP2022121222A true JP2022121222A (en) 2022-08-19

Family

ID=82849449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021018461A Pending JP2022121222A (en) 2021-02-08 2021-02-08 Hydrogen discharge method and hydrogen supply system

Country Status (1)

Country Link
JP (1) JP2022121222A (en)

Similar Documents

Publication Publication Date Title
Davids et al. Metal hydride hydrogen storage tank for light fuel cell vehicle
Lototskyy et al. Metal hydride systems for hydrogen storage and supply for stationary and automotive low temperature PEM fuel cell power modules
Modi et al. Room temperature metal hydrides for stationary and heat storage applications: a review
US6591616B2 (en) Hydrogen infrastructure, a combined bulk hydrogen storage/single stage metal hydride hydrogen compressor therefor and alloys for use therein
US7431756B2 (en) Modular metal hydride hydrogen storage system
US4566281A (en) Reaction heat storage method for hydride tanks
Lutz et al. Adiabatic magnesium hydride system for hydrogen storage based on thermochemical heat storage: Numerical analysis of the dehydrogenation
Jana et al. Design and performance prediction of a compact MmNi4. 6Al0. 4 based hydrogen storage system
Gkanas Metal hydrides: Modeling of metal hydrides to be operated in a fuel cell
KR101875633B1 (en) Solid state hydrogen storage device and solid state hydrogen storage system
CN108699713A (en) Prepare the system of hydrogen and relevant method
TW573107B (en) Atomically engineered hydrogen storage alloys having extended storage capacity at high pressures and high pressure hydrogen storage units containing variable amounts thereof
Gkanas et al. Numerical investigation on the operation and energy demand of a seven-stage metal hydride hydrogen compression system for Hydrogen Refuelling Stations
Ahluwalia Sodium alanate hydrogen storage system for automotive fuel cells
Nguyen et al. An experimental study of employing organic phase change material for thermal management of metal hydride hydrogen storage
Erdemir et al. Development and assessment of a novel hydrogen storage unit combined with compressed air energy storage
Davids et al. Development of a portable polymer electrolyte membrane fuel cell system using metal hydride as the hydrogen storage medium
Barale et al. A metal hydride compressor for a small scale H2 refuelling station
JP2022121222A (en) Hydrogen discharge method and hydrogen supply system
Mori et al. High-pressure metal hydride tank for fuel cell vehicles
US7112382B2 (en) Fuel cell hydrogen recovery system
US9777968B1 (en) Metal hydride-based thermal energy storage systems
JP4663839B2 (en) Hydrogen recovery / storage container
JP2017187154A (en) Hydrogen storage device, power supply system using hydrogen, and hydrogen residual quantity evaluation method of hydrogen storage tank
JP2001289397A (en) Hydrogen storage alloy storing container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231019