JP2022120813A - Ultrathin copper foil, and method of producing the same - Google Patents

Ultrathin copper foil, and method of producing the same Download PDF

Info

Publication number
JP2022120813A
JP2022120813A JP2022011775A JP2022011775A JP2022120813A JP 2022120813 A JP2022120813 A JP 2022120813A JP 2022011775 A JP2022011775 A JP 2022011775A JP 2022011775 A JP2022011775 A JP 2022011775A JP 2022120813 A JP2022120813 A JP 2022120813A
Authority
JP
Japan
Prior art keywords
copper foil
concentration
ultra
electrolyte
thin copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022011775A
Other languages
Japanese (ja)
Other versions
JP7302046B2 (en
Inventor
銘 叶
Ming Ye
平元 廖
Pingyuan Liao
少華 劉
Shaohua Liu
基賢 謝
Jixian Xie
伝錚 李
Chuanzheng Li
明煌 古
Minghuang Gu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Fine Yuan Science Technology Co Ltd
Original Assignee
Guangdong Fine Yuan Science Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Fine Yuan Science Technology Co Ltd filed Critical Guangdong Fine Yuan Science Technology Co Ltd
Publication of JP2022120813A publication Critical patent/JP2022120813A/en
Application granted granted Critical
Publication of JP7302046B2 publication Critical patent/JP7302046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide ultrathin copper foil of a small thickness and an excellent performance so as to allow the diversification and better performances of the ultrathin copper foil, and a method of producing the same.SOLUTION: Ultrathin copper foil is produced by a step of letting a metal foil carrier adsorb cyclohexanol hexaphosphate and 2-thiouracil to form an organic layer, immersing the carrier in an aqueous solution comprising the chemicals, a step of forming a film of a tungsten-nickel alloy including a small amount of rare earth elements, Pr and Nd, on the organic layer, immersing the organic layer in an electrolytic solution comprising nickel sulfate, sodium tungstate and a small amount of PR and Nd, and a step of forming ultrathin copper foil on the surface of the alloy film, immersing the alloy film in an electrolytic copper plating solution comprising copper sulfate and a composite additive, which is repeated three times, each time under a different condition. The electrolytic copper plating solution according to the present invention comprises copper sulfate and a composite additive constituted of lignin sodium sulfonate and chitosan oligosaccharide. The electrolytic copper plating solution realizes production of uniform ultrathin copper foil of a reduced weight thanks to the actions of the rare earth elements, Pr and Nd present in the alloy layer, realizes ultrathin/ultra-lightweight copper foil of a thickness of 3.5 μm, breaking the thickness limit to date of 4 μm, and imparts excellent properties, i.e., tensile strength of 510 MPa and the maximum elongation rate of 10% to the ultrathin/ultra-lightweight copper foil.SELECTED DRAWING: None

Description

本発明は、超薄型銅箔の作製の技術分野に関し、特に超薄型銅箔とその作製方法に関するものである。 TECHNICAL FIELD The present invention relates to the technical field of making ultra-thin copper foils, and more particularly to ultra-thin copper foils and methods of making them.

超薄型銅箔の生産技術は微細化、専門化の程度が高く、各環節の制御基準が高い製造技術である。電子製品の高集積化、小型化の進展に伴う、プリント基板は多層化、高集積化の方向に発展し、プリント配線パターンの線幅とピッチもますます微細化の方向に発展する。そのため、配線基板の信頼性性能に対してより高い要求が出されている。例えば、微細配線に要求される薄型化銅箔は、より高い剥離性を有し、配線をエッチングする際に発生する「サイドエッチ」現象を効果的に低減または回避することができる。したがって、剥離可能な超薄型銅箔は、高品位、多層、薄型、高密度のプリント基板に広く使用され、特に近年では、リチウムイオン電池の普及により、この超薄型銅箔の開発に広い市場空間が提供されることになる。 The production technology of ultra-thin copper foil is a manufacturing technology with a high degree of miniaturization and specialization, and a high control standard for each link. Along with the development of high integration and miniaturization of electronic products, the printed circuit board develops toward multi-layering and high integration, and the line width and pitch of the printed wiring pattern also develops toward finer. Therefore, higher demands are being made for the reliability performance of wiring boards. For example, a thin copper foil required for fine wiring has higher releasability and can effectively reduce or avoid the "side etch" phenomenon that occurs when wiring is etched. Therefore, the peelable ultra-thin copper foil is widely used in high-grade, multilayer, thin, and high-density printed circuit boards. Market space will be provided.

超薄型銅箔はリチウム電池で負極活物質の担体と負極電子流の収集と輸送体の両方として機能し、銅箔の厚さが薄いほど電池のエネルギー向上作用が大きい。エネルギー密度が260wh/kgのリチウム電池を例にとると、1kwhの電気量に対するセルの総質量は約3.85kgである、主流の8μm銅箔の15%重量占有率で計算すると、銅箔の重量は約0.58kgであり、銅箔の厚さを6μmまで下げると、総面積を変えずに銅箔の重量は25%減少し、50%気孔率銅箔技術を重ねると、換算したエネルギー密度は287wh/kgに上昇し、8μm銅箔よりも携帯電力が多くなる。しかし、6μm以下の銅箔は加工が難しいため、国内メーカーの超薄型銅箔製品は、引張強度が300~450MPa、伸び率が3%以上、表面粗さRzが2μm以下であることを実現できる6~9μmが主流となっている。 The ultra-thin copper foil functions as both a carrier of the negative electrode active material and a collector and transporter of the negative electrode electron current in the lithium battery. Taking a lithium battery with an energy density of 260 wh/kg as an example, the total mass of the cell for 1 kwh of electricity is about 3.85 kg. The weight is about 0.58 kg, and when the thickness of the copper foil is reduced to 6 μm, the weight of the copper foil is reduced by 25% without changing the total area. Density increases to 287 wh/kg, more portable power than 8 μm copper foil. However, since it is difficult to process copper foil with a thickness of 6 μm or less, domestic manufacturers' ultra-thin copper foil products have a tensile strength of 300 to 450 MPa, an elongation of 3% or more, and a surface roughness Rz of 2 μm or less. 6 to 9 μm, which is possible, is the mainstream.

既存の超薄型銅箔の厚さは要求を満たすことができず、引張強度と伸び率は悪いが、現在、研究開発チームは6μm未満、最低4μmの超薄型銅箔製品を試作したが、銅箔の表面粗さRaは0.35μm未満、引張性能は最大408MPa、伸び率は最大9.5%に達し、超薄型銅箔の各性能面での突破を実現した。しかし、薄型化、軽量化、コストダウン、効率化の要求のうち、銅箔のさらなる軽量化は、現在、銅箔業界の発展のための重要な方向性となっている。超薄型銅箔の厚さをいかに薄くし、かつ多様な生産ニーズに対応できるような大きな性能ブレークスルーを実現するか、これが超薄型銅箔の開発を達成するための重要かつ難しい問題なのである。 The thickness of the existing ultra-thin copper foil cannot meet the requirements, and the tensile strength and elongation are poor. , the surface roughness Ra of the copper foil is less than 0.35 μm, the tensile strength is up to 408 MPa, and the elongation is up to 9.5%, realizing a breakthrough in various performance aspects of ultra-thin copper foil. However, among the demands for thinness, weight reduction, cost reduction, and efficiency improvement, further weight reduction of copper foil is currently an important direction for the development of the copper foil industry. How to reduce the thickness of ultra-thin copper foil and achieve a large performance breakthrough that can meet various production needs is an important and difficult problem to achieve the development of ultra-thin copper foil. be.

本発明の目的は、先行技術の上記問題点を解決し、超薄型銅箔の多様化、高性能化に対応するため、超薄型銅箔の厚みが薄く、性能が良い超薄型銅箔及びその作製方法を提供することである。 The object of the present invention is to solve the above-mentioned problems of the prior art, and to respond to the diversification and high performance of ultra-thin copper foils. It is to provide a foil and a method of making the same.

上記目的を達成するために、本発明は以下の解決策を提供する。 In order to achieve the above objects, the present invention provides the following solutions.

本発明は、以下のステップを含む超薄型銅箔の作製方法を提供する。
(1)金属箔担体の表面に有機層を吸着させる(ステップ(1)):
シクロヘキサノール六リン酸と2-チオウラシルの混合水溶液に金属箔担体を浸漬して吸着させ、有機層吸着用担体を得る。
(2)吸着した有機層の表面に合金層を成膜する(ステップ(2)):
電流密度が25~30A/dm、電解液温度が48~50℃、pHが4.5~5.0で、有機層の表面に合金層を成膜させ、
前記電解液は、希土類元素のPrとNdを含むタングステン-ニッケル電解液である。
(3)合金層の表面に超薄型銅箔層を成膜する(ステップ(3)):
成膜電解液は、リグニンスルホン酸ナトリウムとキトサンオリゴ糖を含む硫酸銅電解液である。
さらに、前記シクロヘキサノール六リン酸の濃度が1~15g/Lであり、前記2-チオウラシルの濃度が1~8g/Lである。
The present invention provides a method of fabricating an ultra-thin copper foil, including the following steps.
(1) Adsorbing an organic layer on the surface of a metal foil carrier (step (1)):
A metal foil carrier is immersed in a mixed aqueous solution of cyclohexanol hexaphosphate and 2-thiouracil for adsorption to obtain a carrier for adsorbing an organic layer.
(2) forming an alloy layer on the surface of the adsorbed organic layer (step (2)):
forming an alloy layer on the surface of the organic layer at a current density of 25 to 30 A/dm 2 , an electrolyte temperature of 48 to 50° C., and a pH of 4.5 to 5.0;
The electrolyte is a tungsten-nickel electrolyte containing the rare earth elements Pr and Nd.
(3) Forming an ultra-thin copper foil layer on the surface of the alloy layer (step (3)):
The film-forming electrolyte is a copper sulfate electrolyte containing sodium ligninsulfonate and chitosan oligosaccharide.
Furthermore, the concentration of cyclohexanol hexaphosphate is 1 to 15 g/L, and the concentration of 2-thiouracil is 1 to 8 g/L.

さらに、ステップ(1)の浸漬吸着を室温で70~75秒間行うことである。 Further, the immersion adsorption of step (1) is performed at room temperature for 70-75 seconds.


さらに、前記金属箔が銅箔である。

Furthermore, the metal foil is copper foil.

さらに、前記希土類元素のPrとNdを含むタングステン-ニッケル電解液には、硫酸ニッケルの濃度が20~35g/Lで、タングステン酸ナトリウムの濃度が20~35g/Lで、希土類元素Prの濃度が0.05~0.06g/Lで、Ndの濃度は0.03-0.04g/Lである。 Further, the tungsten-nickel electrolyte containing rare earth elements Pr and Nd has a nickel sulfate concentration of 20 to 35 g/L, a sodium tungstate concentration of 20 to 35 g/L, and a rare earth element Pr concentration of 0.05-0.06 g/L and the concentration of Nd is 0.03-0.04 g/L.

さらに、ステップ(3)の成膜電解液中のリグノスルホン酸ナトリウムの濃度は0.1~0.2g/L、キトサンオリゴ糖の濃度は10~25g/Lである。 Furthermore, the concentration of sodium lignosulfonate in the film forming electrolyte in step (3) is 0.1 to 0.2 g/L, and the concentration of chitosan oligosaccharide is 10 to 25 g/L.

さらに、前記ステップ(3)には、超薄型銅箔層は3回成膜で、第1回成膜電解液のCu2+濃度が65~68g/Lで、硫酸濃度が145~150g/Lで、第2回成膜電解液のCu2+濃度が20~30g/Lで、硫酸濃度が110~120g/Lで、第3回成膜電解液のCu2+濃度が60~65g/Lで、硫酸濃度が120~130g/Lで行うことである。 Further, in the step (3), the ultra-thin copper foil layer is formed three times, the Cu 2+ concentration of the first film-forming electrolyte is 65-68 g/L, and the sulfuric acid concentration is 145-150 g/L. The Cu 2+ concentration of the second deposition electrolyte is 20 to 30 g/L, the sulfuric acid concentration is 110 to 120 g/L, the Cu 2+ concentration of the third deposition electrolyte is 60 to 65 g/L, The concentration of sulfuric acid should be 120-130 g/L.

また、本発明は、上記の作製方法により作製された超薄型銅箔を提供するものである。 Moreover, the present invention provides an ultra-thin copper foil produced by the above production method.

本発明は、以下の技術的効果を開示している。 The present invention discloses the following technical effects.

本発明は、まず清浄な35μmの銅箔担体の上にシクロヘキサノール六リン酸及び2-チオウラシルを原料とする有機層を吸着させてから、その有機層の上に希土類元素PrとNdを含むタングステン-ニッケル合金を成膜する。希土類元素PrとNdの導入により銅箔の剥離強度が向上し、超薄型銅箔表面の結晶粒を微細化することができる。同時にシクロヘキサノール六リン酸はチオフェンと一緒に有機層として機能するため、有機層自体が良好な剥離ポテンシャルを有し、合金層と複合した場合、わずかな希土類元素PrとNdの添加量で優れる剥離効果を実現できる。これにより、剥離剤の吸着が少ないと剥離しにくく、吸着が多いと導電性が悪くなり、その後の電着ステップに影響を及ぼすという問題を効果的に解決することができる。 The present invention first adsorbs an organic layer made of cyclohexanol hexaphosphate and 2-thiouracil on a clean 35 μm copper foil carrier, and then deposits tungsten containing rare earth elements Pr and Nd on the organic layer. - depositing a nickel alloy; The introduction of the rare earth elements Pr and Nd improves the peel strength of the copper foil and makes it possible to refine the crystal grains on the surface of the ultra-thin copper foil. At the same time, cyclohexanol hexaphosphate functions as an organic layer together with thiophene, so the organic layer itself has a good peeling potential, and when combined with an alloy layer, excellent peeling can be achieved with a small amount of rare earth elements Pr and Nd added. effect can be achieved. As a result, it is possible to effectively solve the problem that if the release agent is less adsorbed, it is difficult to release, and if the release agent is more adsorbed, the conductivity deteriorates, which affects the subsequent electrodeposition step.

現在、リグニンスルホン酸ナトリウムは工業的に分散剤や湿潤剤として広く使用されているが、本発明には、リグニンスルホン酸ナトリウムとキトサンオリゴ糖を複合添加剤として硫酸銅電解液に添加することを創造的に行い、合金層中の極めて少量の希土類元素Pr、Ndによって超薄型銅箔の軽量化の均一成膜を実現し、超薄型銅箔が4μmの限界を突破して3.5μmの超軽量化を実現し、かつ引張性能が510MPaと高く、伸び率が最高10%に達し、軽量化超薄型銅箔に優れた性能を与えている。 At present, sodium lignosulfonate is widely used industrially as a dispersing agent and a wetting agent. Creatively, the extremely small amount of rare earth elements Pr and Nd in the alloy layer realizes uniform deposition of light weight ultra-thin copper foil. It has a high tensile performance of 510 MPa and a maximum elongation of 10%, giving the lightweight, ultra-thin copper foil excellent performance.

本発明の調製方法は安定的かつ制御可能であり、複合銅箔は優れた剥離強度を有し、調製された超薄型銅箔は、主流の超薄型銅箔8μm、6μm、4μmの限界を突破し、引張特性、伸度等の面で優れた性能を反映しながら、3.5μmの超薄効果を達成でき、超薄型銅箔の開発、超薄型銅箔の開発を依存する多くの産業に大きな意義を持っている。 The preparation method of the present invention is stable and controllable, the composite copper foil has excellent peel strength, and the prepared ultra-thin copper foil is the limit of the mainstream ultra-thin copper foil 8 μm, 6 μm, 4 μm , and can achieve an ultra-thin effect of 3.5 μm while reflecting excellent performance in terms of tensile properties, elongation, etc., and depends on the development of ultra-thin copper foil. It has great significance for many industries.

次に、本発明の様々な例示的な実施形態を詳細に説明するが、この詳細な説明は、本発明の限定とみなされるべきではなく、本発明の特定の局面、特徴および実施形態のより詳細な説明として理解されるべきである。 Various exemplary embodiments of the invention will now be described in detail; however, this detailed description should not be construed as a limitation of the invention, but rather of specific aspects, features and embodiments of the invention. It should be understood as a detailed description.

本発明に記載された用語は、特定の実施形態を説明することのみを意図しており、本発明を限定することを意図していないことを理解することができる。さらに、本発明における数値の範囲に関しては、その範囲の上限と下限の間の各中間値も具体的に開示されていると理解される。また、記載された範囲内の任意の記載値または中間値と、記載された範囲内の他の記載値または中間値との間の各小範囲も、本発明に含まれる。これらの小さい範囲の上限と下限は、独立して範囲に含めたり除外したりすることができる。 It is to be understood that the terminology used herein is intended to describe particular embodiments only and is not intended to be limiting of the invention. Moreover, with respect to any numerical range in the present invention, it is understood that each intermediate value between the upper and lower limits of the range is also specifically disclosed. Also included within the invention is each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in a stated range. The upper and lower limits of these smaller ranges can independently be included or excluded from the range.

特に断らない限り、本明細書で使用されるすべての技術用語および科学用語は、本発明で説明する分野の通常の技術者によって一般的に理解されるのと同じ意味を有する。本発明では、好ましい方法および材料のみを説明するが、本明細書に記載したものと類似または同等の任意の方法および材料も、本発明の実施または試験に使用することができる。本明細書で言及するすべての文献は、当該文献に関連する方法および/または材料を開示し、説明する目的で参照により組み込まれるものである。本仕様書と組み込まれた文献が矛盾する場合、本仕様書の内容が優先されるものとする。 Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art described in this invention. Although the present invention describes only preferred methods and materials, any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention. All publications mentioned herein are incorporated by reference for the purpose of disclosing and describing the methods and/or materials in connection with which they are associated. In the event of any conflict between this specification and an incorporated document, the contents of this specification shall control.

本発明の明細書の具体的な実施の形態には、本発明の範囲または精神から逸脱することなく、多くの改良や変更を加えることができることは当業者にとって明らかである。本発明の明細書から得られる他の実施形態は、当業者にとって明らかである。本発明の明細書および実施形態は、あくまで例示に過ぎない。 It will be apparent to those skilled in the art that many modifications and variations may be made to the specific embodiments of the specification of the invention without departing from the scope or spirit of the invention. Other embodiments derived from the specification of the invention will be apparent to those skilled in the art. The specification and embodiments of the invention are merely exemplary.

本明細書で使用される用語「含む」、「有する」、「ある」等などについては、いずれも開放的な用語であり、含むがこれに限定されないことを意味する。本発明で使用する「部」は、特に断らない限り、質量部で表す。 As used herein, the terms “including,” “having,” “a,” etc. are all open terms and mean including but not limited to. Unless otherwise specified, the "parts" used in the present invention are parts by mass.

(1)銅箔担体の表面に有機層を吸着させる:
厚さが35μmの銅箔を成膜担体とし、担体を酸洗処理を行い、担体表面の酸化物及び不純物を除去した後、洗浄処理後の担体銅箔をシクロヘキサノール六リン酸及び2-チオウラシルの混合水溶液〔シクロヘキサノール六リン酸の濃度が1g/Lで、2-チオウラシル濃度が1g/Lである〕に浸漬し、室温で70s浸漬処理し、取り出した後、脱イオン水で洗い、有機層を吸着する担体を得る。
(1) Absorption of an organic layer on the surface of a copper foil carrier:
A copper foil with a thickness of 35 μm is used as a film-forming carrier, and the carrier is subjected to pickling treatment to remove oxides and impurities on the surface of the carrier. [The concentration of cyclohexanol hexaphosphate is 1 g / L and the concentration of 2-thiouracil is 1 g / L], immersed at room temperature for 70 s, removed, washed with deionized water, organic A carrier is obtained which adsorbs the layer.

(2)担体に吸着した有機層の上に合金層を成膜させる:
タングステン-ニッケル合金電解液の調製;電解液中の硫酸ニッケルの濃度が20g/Lで、タングステン酸ナトリウム濃度が35g/Lで、希土類元素Prの添加量が0.05g/L、Ndの添加量は0.03g/Lで、電解液のphが4.5である。
成膜プロセスパラメータ;電流密度が25A/dmで、電解液温度が48℃で、成膜時間は5sである。
(2) Depositing an alloy layer on the organic layer adsorbed on the carrier:
Preparation of a tungsten-nickel alloy electrolyte; the concentration of nickel sulfate in the electrolyte is 20 g/L, the concentration of sodium tungstate is 35 g/L, the amount of rare earth element Pr added is 0.05 g/L, and the amount of Nd added. is 0.03 g/L and the pH of the electrolyte is 4.5.
Deposition process parameters; current density is 25 A/dm 2 , electrolyte temperature is 48° C., deposition time is 5 s.

(3)合金層の表面に超薄型銅箔層は3回で成膜する:
初回浸漬銅プロセスパラメータ;電解液中のCu2+の濃度が65g/Lで、硫酸の濃度が145g/Lで、リグニンスルホン酸ナトリウムの濃度が0.1g/Lで、キトサンオリゴ糖の濃度が10g/Lで、電解液の温度が45℃である。電流密度が10A/dmで、成膜時間8sである。
第二回浸漬銅プロセスパラメータ;電解液には、Cu2+の濃度が20g/Lで、硫酸の濃度が110g/Lで、リグニンスルホン酸ナトリウムの濃度が0.1g/Lで、キトサンオリゴ糖の濃度が10g/Lで、電解液温度が48℃である。電流密度が20A/dmで、成膜時間が8sである。
第三回浸漬銅プロセスパラメータ;電解液には、Cu2+の濃度が60g/Lで、硫酸の濃度が125g/Lで、リグニンスルホン酸ナトリウムの濃度が0.1g/Lで、キトサンオリゴ糖の濃度が10g/Lで、電解液温度が45℃である。電流密度が10A/dmで、成膜時間が10sである。
(3) Forming an ultra-thin copper foil layer on the surface of the alloy layer in three steps:
Initial immersion copper process parameters: the concentration of Cu 2+ in the electrolyte is 65 g/L, the concentration of sulfuric acid is 145 g/L, the concentration of sodium lignosulfonate is 0.1 g/L, and the concentration of chitosan oligosaccharide is 10 g. /L and the temperature of the electrolyte is 45°C. The current density is 10 A/dm 2 and the film formation time is 8 s.
Second immersion copper process parameters; The concentration is 10 g/L and the electrolyte temperature is 48°C. The current density is 20 A/dm 2 and the film formation time is 8 s.
Third immersion copper process parameters; The concentration is 10 g/L and the electrolyte temperature is 45°C. The current density is 10 A/dm 2 and the film formation time is 10 s.

(1)銅箔担体の表面に有機層を吸着させる:
厚さが35μmの銅箔を成膜担体とし、担体を酸洗処理を行い、担体表面の酸化物及び不純物を除去した後、洗浄処理後の担体銅箔をシクロヘキサノール六リン酸及び2-チオウラシルの混合水溶液〔シクロヘキサノール六リン酸の濃度が5g/Lで、2-チオウラシル濃度が5g/Lである〕に浸漬し、室温で75s浸漬処理し、取り出した後、脱イオン水で洗い、有機層を吸着する担体を得る。
(1) Absorption of an organic layer on the surface of a copper foil carrier:
A copper foil with a thickness of 35 μm is used as a film-forming carrier, and the carrier is subjected to pickling treatment to remove oxides and impurities on the surface of the carrier. [The concentration of cyclohexanol hexaphosphate is 5 g / L and the concentration of 2-thiouracil is 5 g / L], immersed at room temperature for 75 s, removed, washed with deionized water, organic A carrier is obtained which adsorbs the layer.

(2)担体に吸着した有機層の上に合金層を成膜させる:
タングステン-ニッケル合金電解液の調製;電解液中の硫酸ニッケルの濃度が22g/Lで、タングステン酸ナトリウム濃度が30g/Lで、希土類元素Prの添加量が0.06g/L、Ndの添加量は0.04g/Lで、電解液のphが5.0である。
成膜プロセスパラメータ;電流密度が28A/dmで、電解液温度が49℃で、成膜時間は5sである。
(2) Depositing an alloy layer on the organic layer adsorbed on the carrier:
Preparation of a tungsten-nickel alloy electrolyte; the concentration of nickel sulfate in the electrolyte is 22 g/L, the concentration of sodium tungstate is 30 g/L, the amount of rare earth element Pr added is 0.06 g/L, and the amount of Nd added. is 0.04 g/L and the pH of the electrolyte is 5.0.
Deposition process parameters: current density is 28 A/dm 2 , electrolyte temperature is 49° C., deposition time is 5 s.

(3)合金層の表面に超薄型銅箔層は3回で成膜する:
初回浸漬銅プロセスパラメータ;電解液中のCu2+の濃度が68g/Lで、硫酸の濃度が150g/Lで、リグニンスルホン酸ナトリウムの濃度が0.2g/Lで、キトサンオリゴ糖の濃度が25g/Lで、電解液の温度が48℃である。電流密度が20A/dmで、成膜時間9sである。
第二回浸漬銅プロセスパラメータ;電解液には、Cu2+の濃度が30g/Lで、硫酸の濃度が120g/Lで、リグニンスルホン酸ナトリウムの濃度が0.2g/Lで、キトサンオリゴ糖の濃度が25g/Lで、電解液温度が45℃である。電流密度が35A/dmで、成膜時間が10sである。
(3) Forming an ultra-thin copper foil layer on the surface of the alloy layer in three steps:
Initial immersion copper process parameters: the concentration of Cu2 + in the electrolyte is 68g/L, the concentration of sulfuric acid is 150g/L, the concentration of sodium lignosulfonate is 0.2g/L, and the concentration of chitosan oligosaccharide is 25g. /L and the temperature of the electrolyte is 48°C. The current density is 20 A/dm 2 and the film formation time is 9 s.
Second immersion copper process parameters; The concentration is 25 g/L and the electrolyte temperature is 45°C. The current density is 35 A/dm 2 and the film formation time is 10 s.

第三回浸漬銅プロセスパラメータ;電解液には、Cu2+の濃度が65g/Lで、硫酸の濃度が120g/Lで、リグニンスルホン酸ナトリウムの濃度が0.2g/Lで、キトサンオリゴ糖の濃度が15g/Lで、電解液温度が48℃である。電流密度が35A/dmで、成膜時間が8sである。 Third immersion copper process parameters; The concentration is 15 g/L and the electrolyte temperature is 48°C. The current density is 35 A/dm 2 and the film formation time is 8 s.

(1)銅箔担体の表面に有機層を吸着させる:
厚さが35μmの銅箔を成膜担体とし、担体を酸洗処理を行い、担体表面の酸化物及び不純物を除去した後、洗浄処理後の担体銅箔をシクロヘキサノール六リン酸及び2-チオウラシルの混合水溶液〔シクロヘキサノール六リン酸の濃度が10g/Lで、2-チオウラシル濃度が6g/Lである〕に浸漬し、室温で73s浸漬処理し、取り出した後、脱イオン水で洗い、有機層を吸着する担体を得る。
(1) Absorption of an organic layer on the surface of a copper foil carrier:
A copper foil with a thickness of 35 μm is used as a film-forming carrier, and the carrier is subjected to pickling treatment to remove oxides and impurities on the surface of the carrier. [cyclohexanol hexaphosphate concentration is 10 g / L, 2-thiouracil concentration is 6 g / L], immersed at room temperature for 73 s, taken out, washed with deionized water, organic A carrier is obtained which adsorbs the layer.

(2)担体に吸着した有機層の上に合金層を成膜させる:
タングステン-ニッケル合金電解液の調製;電解液中の硫酸ニッケルの濃度が23g/Lで、タングステン酸ナトリウム濃度が25g/Lで、希土類元素Prの添加量が0.06g/L、Ndの添加量は0.04g/Lで、電解液のphが5.0である。
成膜プロセスパラメータ;電流密度が30A/dmで、電解液温度が50℃で、成膜時間は6sである。
(2) Depositing an alloy layer on the organic layer adsorbed on the carrier:
Preparation of a tungsten-nickel alloy electrolyte; the concentration of nickel sulfate in the electrolyte is 23 g/L, the concentration of sodium tungstate is 25 g/L, the amount of rare earth element Pr added is 0.06 g/L, and the amount of Nd added. is 0.04 g/L and the pH of the electrolyte is 5.0.
Deposition process parameters; current density is 30 A/dm 2 , electrolyte temperature is 50° C., deposition time is 6 s.

(3)合金層の表面に超薄型銅箔層は3回で成膜する:
初回浸漬銅プロセスパラメータ;電解液中のCu2+の濃度が65g/Lで、硫酸の濃度が145g/Lで、リグニンスルホン酸ナトリウムの濃度が0.2g/Lで、キトサンオリゴ糖の濃度が15g/Lで、電解液の温度が45℃である。電流密度が35A/dmで、成膜時間10sである。
第二回浸漬銅プロセスパラメータ;電解液には、Cu2+の濃度が25g/Lで、硫酸の濃度が110g/Lで、リグニンスルホン酸ナトリウムの濃度が0.1g/Lで、キトサンオリゴ糖の濃度が20g/Lで、電解液温度が48℃である。電流密度が25A/dmで、成膜時間が9sである。
第三回浸漬銅プロセスパラメータ;電解液には、Cu2+の濃度が63g/Lで、硫酸の濃度が130g/Lで、リグニンスルホン酸ナトリウムの濃度が0.1g/Lで、キトサンオリゴ糖の濃度が20g/Lで、電解液温度が46℃である。電流密度が20/dmで、成膜時間が9sである。
(3) Forming an ultra-thin copper foil layer on the surface of the alloy layer in three steps:
Initial immersion copper process parameters: the concentration of Cu 2+ in the electrolyte is 65g/L, the concentration of sulfuric acid is 145g/L, the concentration of sodium lignosulfonate is 0.2g/L, and the concentration of chitosan oligosaccharide is 15g. /L and the temperature of the electrolyte is 45°C. The current density is 35 A/dm 2 and the film formation time is 10 s.
Second immersion copper process parameters; The concentration is 20 g/L and the electrolyte temperature is 48°C. The current density is 25 A/dm 2 and the film formation time is 9 s.
Third immersion copper process parameters; The concentration is 20 g/L and the electrolyte temperature is 46°C. The current density is 20/dm 2 and the film formation time is 9 s.

(1)銅箔担体の表面に有機層を吸着させる:
厚さが35μmの銅箔を成膜担体とし、担体を酸洗処理を行い、担体表面の酸化物及び不純物を除去した後、洗浄処理後の担体銅箔をシクロヘキサノール六リン酸及び2-チオウラシルの混合水溶液〔シクロヘキサノール六リン酸の濃度が12g/Lで、2-チオウラシル濃度が8g/Lである〕に浸漬し、室温で72s浸漬処理し、取り出した後、脱イオン水で洗い、有機層を吸着する担体を得る。
(1) Absorption of an organic layer on the surface of a copper foil carrier:
A copper foil with a thickness of 35 μm is used as a film-forming carrier, and the carrier is subjected to pickling treatment to remove oxides and impurities on the surface of the carrier. [The concentration of cyclohexanol hexaphosphate is 12 g / L and the concentration of 2-thiouracil is 8 g / L], immersed at room temperature for 72 s, removed, washed with deionized water, organic A carrier is obtained which adsorbs the layer.

(2)担体に吸着した有機層の上に合金層を成膜させる:
タングステン-ニッケル合金電解液の調製;電解液中の硫酸ニッケルの濃度が25g/Lで、タングステン酸ナトリウム濃度が20g/Lで、希土類元素Prの添加量が0.05g/L、Ndの添加量は0.04g/Lで、電解液のphが5.0である。
成膜プロセスパラメータ;電流密度が30A/dmで、電解液温度が48℃で、成膜時間は6sである。
(2) Depositing an alloy layer on the organic layer adsorbed on the carrier:
Preparation of a tungsten-nickel alloy electrolyte; the concentration of nickel sulfate in the electrolyte is 25 g/L, the concentration of sodium tungstate is 20 g/L, the amount of rare earth element Pr added is 0.05 g/L, and the amount of Nd added. is 0.04 g/L and the pH of the electrolyte is 5.0.
Deposition process parameters; current density is 30 A/dm 2 , electrolyte temperature is 48° C., deposition time is 6 s.

(3)合金層の表面に超薄型銅箔層は3回で成膜する:
初回浸漬銅プロセスパラメータ;電解液中のCu2+の濃度が66g/Lで、硫酸の濃度が148g/Lで、リグニンスルホン酸ナトリウムの濃度が0.1g/Lで、キトサンオリゴ糖の濃度が20g/Lで、電解液の温度が46℃である。電流密度が30A/dmで、成膜時間10sである。
第二回浸漬銅プロセスパラメータ;電解液には、Cu2+の濃度が30g/Lで、硫酸の濃度が115g/Lで、リグニンスルホン酸ナトリウムの濃度が0.1g/Lで、キトサンオリゴ糖の濃度が25g/Lで、電解液温度が46℃である。電流密度が30A/dmで、成膜時間が8sである。
第三回浸漬銅プロセスパラメータ;電解液には、Cu2+の濃度が62g/Lで、硫酸の濃度が125g/Lで、リグニンスルホン酸ナトリウムの濃度が0.2g/Lで、キトサンオリゴ糖の濃度が25g/Lで、電解液温度が47℃である。電流密度が25/dmで、成膜時間が10sである。
<比較例1>
(3) Forming an ultra-thin copper foil layer on the surface of the alloy layer in three steps:
Initial immersion copper process parameters: the concentration of Cu 2+ in the electrolyte is 66 g/L, the concentration of sulfuric acid is 148 g/L, the concentration of sodium lignosulfonate is 0.1 g/L, and the concentration of chitosan oligosaccharide is 20 g. /L and the temperature of the electrolyte is 46°C. The current density is 30 A/dm 2 and the film formation time is 10 s.
Second immersion copper process parameters; The concentration is 25 g/L and the electrolyte temperature is 46°C. The current density is 30 A/dm 2 and the film formation time is 8 s.
Third immersion copper process parameters; The concentration is 25 g/L and the electrolyte temperature is 47°C. The current density is 25/dm 2 and the film formation time is 10 s.
<Comparative Example 1>

実施例1と異なる点は、有機層の原料にベンゾトリアゾールを用いることである。
<比較例2>
The difference from Example 1 is that benzotriazole is used as the raw material for the organic layer.
<Comparative Example 2>

実施例1と異なる点は、合金層に希土類元素を添加しないことである。
<比較例3>
The difference from Example 1 is that no rare earth element is added to the alloy layer.
<Comparative Example 3>

実施例1と異なる点は、合金層中の希土類元素NdをLaに置き換えることである。
<比較例4>
The difference from Example 1 is that the rare earth element Nd in the alloy layer is replaced with La.
<Comparative Example 4>

実施例1と異なる点は、浸漬銅電解液にリグニンスルホン酸ナトリウムを添加しないことである。 The difference from Example 1 is that sodium ligninsulfonate is not added to the immersion copper electrolyte.

実施例1-4及び比較例1-4で作制する複合箔をプリプレグに60KNの圧力、175℃の条件で圧着して複合積層板を作制する、万能試験機に載せて剥離強度試験を行う。テスト結果を表1に示す。

Figure 2022120813000001
The composite foil produced in Example 1-4 and Comparative Example 1-4 is crimped to a prepreg under conditions of 60 KN pressure and 175 ° C. to produce a composite laminate, which is placed on a universal testing machine and subjected to a peel strength test. conduct. Table 1 shows the test results.
Figure 2022120813000001

テストの結果として、本発明の実施例1~4の担体と超薄型銅箔との間の剥離効果は優れて、剥離強度は0.14kg/cmに達することができ、剥離後の超薄型銅箔の表面は光沢がきれいである。比較例1-4の担体と超薄型銅箔との間の剥離強度は低く、その中で比較例1-2は超薄型銅箔が担体に残留する現象がある。 The test results show that the peeling effect between the carrier of Examples 1-4 of the present invention and the ultra-thin copper foil is excellent, the peel strength can reach 0.14 kg/cm, and the ultra-thin The surface of the mold copper foil has a beautiful luster. The peel strength between the carrier of Comparative Example 1-4 and the ultra-thin copper foil is low, and in Comparative Example 1-2 there is a phenomenon that the ultra-thin copper foil remains on the carrier.

実施例1-4及び比較例3-4で剥離した超薄型銅箔について性能試験を行った(比較例1-2では超薄型銅箔が担体に残留する現象があり、完全な超薄型銅箔が得られなかったため性能試験を行わなかった)結果を表2に示す。

Figure 2022120813000002
A performance test was performed on the peeled ultra-thin copper foil in Example 1-4 and Comparative Example 3-4 (in Comparative Example 1-2, there was a phenomenon that the ultra-thin copper foil remained on the carrier, and the complete ultra-thin copper foil Table 2 shows the results (no performance test was performed because no mold copper foil was obtained).
Figure 2022120813000002

以上述べた実施例は、本発明の好ましい態様を説明しただけであり、本発明の範囲を限定するものではなく、本発明の設計精神を逸脱することなく、当業者が本発明の請求項に対して行った様々な変形や改良は、本発明の特許請求の範囲によって定められる保護範囲内に収まるべきである。 The above-described embodiments merely illustrate preferred embodiments of the invention, and are not intended to limit the scope of the invention, and those skilled in the art may make modifications to the claims of the invention without departing from the design spirit of the invention. Various modifications and improvements made to it should fall within the protection scope defined by the claims of the present invention.

Claims (5)

(1)金属箔担体の表面に有機層を吸着させるステップ(1)であって、
シクロヘキサノール六リン酸と2-チオウラシルの混合水溶液に前記金属箔担体を浸漬して吸着させ、有機層吸着用担体を得て、
(2)吸着した前記有機層の表面に合金層を成膜するステップ(2)であって、
電流密度が25~30A/dm、電解液の温度が48~50℃、pHが4.5~5.0で、前記有機層の表面に前記合金層を成膜させ、
前記電解液は、希土類元素のPrとNdを含むタングステン-ニッケル電解液であり、
(3)前記合金層の表面に超薄型銅箔層を成膜するステップ(3)であって、
成膜電解液は、リグニンスルホン酸ナトリウムとキトサンオリゴ糖を含む硫酸銅電解液であり、
前記シクロヘキサノール六リン酸の濃度が1~15g/Lであり、前記2-チオウラシルの濃度が1~8g/Lであり、
前記希土類元素のPrとNdを含む前記タングステン-ニッケル電解液には、硫酸ニッケルの濃度が20~35g/Lで、タングステン酸ナトリウムの濃度が20~35g/Lで、前記希土類元素Prの濃度が0.05~0.06g/Lで、Ndの濃度は0.03-0.04g/Lであり、
前記ステップ(3)の前記成膜電解液中の前記リグノスルホン酸ナトリウムの濃度は0.1~0.2g/L、前記キトサンオリゴ糖の濃度は10~25g/Lである、
というステップを含むこと、を特徴とする超薄型銅箔の作製方法。
(1) A step (1) of adsorbing an organic layer on the surface of a metal foil carrier,
The metal foil carrier is immersed in a mixed aqueous solution of cyclohexanol hexaphosphate and 2-thiouracil for adsorption to obtain a carrier for adsorbing an organic layer,
(2) forming an alloy layer on the surface of the adsorbed organic layer (2),
forming the alloy layer on the surface of the organic layer at a current density of 25 to 30 A/dm 2 , an electrolyte temperature of 48 to 50° C., and a pH of 4.5 to 5.0;
The electrolytic solution is a tungsten-nickel electrolytic solution containing rare earth elements Pr and Nd,
(3) forming an ultra-thin copper foil layer on the surface of the alloy layer (3),
The film-forming electrolyte is a copper sulfate electrolyte containing sodium ligninsulfonate and chitosan oligosaccharide,
The concentration of cyclohexanol hexaphosphate is 1 to 15 g/L, the concentration of 2-thiouracil is 1 to 8 g/L,
The tungsten-nickel electrolyte containing the rare earth elements Pr and Nd has a nickel sulfate concentration of 20 to 35 g/L, a sodium tungstate concentration of 20 to 35 g/L, and a rare earth element Pr concentration of 0.05-0.06 g/L, the concentration of Nd is 0.03-0.04 g/L;
The sodium lignosulfonate concentration in the film-forming electrolyte in step (3) is 0.1 to 0.2 g/L, and the chitosan oligosaccharide concentration is 10 to 25 g/L.
A method for fabricating an ultra-thin copper foil, comprising:
前記ステップ(1)の浸漬吸着を室温で70~75秒間行うこと、を特徴とする請求項1に記載の超薄型銅箔の作製方法。 The method for fabricating an ultra-thin copper foil according to claim 1, characterized in that the immersion adsorption in step (1) is carried out at room temperature for 70-75 seconds. 前記金属箔が銅箔であること、を特徴とする請求項1に記載の超薄型銅箔の作製方法。 2. The method for fabricating an ultra-thin copper foil according to claim 1, wherein said metal foil is copper foil. 前記ステップ(3)には、前記超薄型銅箔層は3回成膜で、第1回成膜電解液のCu2+濃度が65~68g/Lで、硫酸濃度が145~150g/Lで、第2回成膜電解液のCu2+濃度が20~30g/Lで、硫酸濃度が110~120g/Lで、第3回成膜電解液のCu2+濃度が60~65g/Lで、硫酸濃度が120~130g/Lで行うこと、を特徴とする請求項1に記載の超薄型銅箔の作製方法。 In the step (3), the ultra-thin copper foil layer is deposited three times, and the first deposition electrolyte has a Cu 2+ concentration of 65-68 g/L and a sulfuric acid concentration of 145-150 g/L. , the second deposition electrolyte has a Cu 2+ concentration of 20 to 30 g/L and a sulfuric acid concentration of 110 to 120 g/L; the third deposition electrolyte has a Cu 2+ concentration of 60 to 65 g/L; 2. The method for producing an ultra-thin copper foil according to claim 1, wherein the concentration is 120 to 130 g/L. 請求項1~4のいずれか1項に記載の作製方法により作製された超薄型銅箔である。 An ultra-thin copper foil produced by the production method according to any one of claims 1 to 4.
JP2022011775A 2021-02-05 2022-01-28 Ultra-thin copper foil and its fabrication method Active JP7302046B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110161499.4 2021-02-05
CN202110161499.4A CN112981481B (en) 2021-02-05 2021-02-05 Ultrathin copper foil and preparation method thereof

Publications (2)

Publication Number Publication Date
JP2022120813A true JP2022120813A (en) 2022-08-18
JP7302046B2 JP7302046B2 (en) 2023-07-03

Family

ID=76348078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022011775A Active JP7302046B2 (en) 2021-02-05 2022-01-28 Ultra-thin copper foil and its fabrication method

Country Status (3)

Country Link
JP (1) JP7302046B2 (en)
KR (1) KR102553081B1 (en)
CN (1) CN112981481B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114703514B (en) * 2022-04-11 2023-04-25 广东嘉元科技股份有限公司 Modified copper foil, preparation method thereof and application of modified copper foil in lithium ion battery
CN114990641B (en) * 2022-06-02 2023-10-17 山东金宝电子有限公司 Carrier ultrathin copper foil and preparation method thereof
CN115058711B (en) * 2022-06-17 2022-12-27 山东大学 Preparation method of easily-stripped ultrathin carrier copper foil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138337A (en) * 2015-01-09 2016-08-04 Jx金属株式会社 Metal base with plating
CN107245735A (en) * 2017-05-26 2017-10-13 东强(连州)铜箔有限公司 The plating solution and preparation method of a kind of high drug-resistance and heat resistance alloy copper foil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270889B1 (en) * 1998-01-19 2001-08-07 Mitsui Mining & Smelting Co., Ltd. Making and using an ultra-thin copper foil
CN101892499B (en) * 2010-07-24 2011-11-09 江西理工大学 Peel-able ultra-thin copper foil using copper foil as carrier and preparation method thereof
KR20140050541A (en) * 2012-10-18 2014-04-29 일진머티리얼즈 주식회사 Electrolytic copper foil, electric component and battery comprising the foil and preparation method thereof
CN112226790B (en) * 2020-10-19 2022-04-22 九江德福科技股份有限公司 Production method of ultrathin high-strength electronic copper foil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138337A (en) * 2015-01-09 2016-08-04 Jx金属株式会社 Metal base with plating
CN107245735A (en) * 2017-05-26 2017-10-13 东强(连州)铜箔有限公司 The plating solution and preparation method of a kind of high drug-resistance and heat resistance alloy copper foil

Also Published As

Publication number Publication date
JP7302046B2 (en) 2023-07-03
KR20220113266A (en) 2022-08-12
CN112981481A (en) 2021-06-18
KR102553081B1 (en) 2023-07-07
CN112981481B (en) 2021-12-28

Similar Documents

Publication Publication Date Title
JP7302046B2 (en) Ultra-thin copper foil and its fabrication method
CN101892499B (en) Peel-able ultra-thin copper foil using copper foil as carrier and preparation method thereof
CN106498467B (en) A kind of preparation method of ultra-thin carrier copper foil that stablizing stripping
WO2013047272A1 (en) Copper foil excellent in adhesion with resin, method for manufacturing same, and printed wiring board or battery negative electrode material using electrolytic copper foil
CN106011965A (en) Fine roughing treatment technology for surface of electrolytic copper foil
CN112853408B (en) Preparation method of ultrathin carrier-attached copper foil easy to peel and pure in interface
CN112226790B (en) Production method of ultrathin high-strength electronic copper foil
CN113122845B (en) Preparation method of aluminum alloy metal plating part
CN103132110A (en) Preparation method of high-performance electrolytic copper foil
CN113463155A (en) Roughening liquid for electronic copper foil surface roughening treatment and surface roughening treatment process
TW201217589A (en) Method for manufacturing copper foil for printed circuit board and copper foil for printed circuit board
CN111074317A (en) Surface treatment method of copper foil and copper foil material
CN102233699B (en) Extremely thin copper foil using ultralow ridge copper foil as carrier and manufacturing method of extremely thin copper foil
TWI645750B (en) Composite metal foil, composite metal foil containing carrier, and metal clad laminate and printed wiring board using the same
CN111690963B (en) Method for preparing copper/graphite/copper laminated composite material with high thermal conductivity
CN114016098A (en) Copper-clad plate electroplating Ni-Co-Ce film plating solution for PCB and film preparation method
CN114086227A (en) Surface treatment process for improving peel strength resistance of low-profile electrolytic copper foil
CN115261942A (en) Electrolytic copper foil surface treatment method for PCB
JPH04318997A (en) Copper foil for printed circuit and manufacture thereof
CN109930179A (en) A kind of production method and its product of extra thin copper foil
KR101453423B1 (en) Method of manufacturing of metal plated layer on the flexible printed circuit board
CN113943954B (en) Preparation method of 2-3 micron pinhole-free carrier electrolytic copper foil
CN114908340B (en) Ultrathin copper foil with carrier and preparation method thereof
CN113122846B (en) Aluminum alloy metal plating part
CN109951947B (en) Reflective ceramic circuit board and processing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230621

R150 Certificate of patent or registration of utility model

Ref document number: 7302046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150