JP2022112362A - Method of forming hollow wing structure and hollow wing structure - Google Patents

Method of forming hollow wing structure and hollow wing structure Download PDF

Info

Publication number
JP2022112362A
JP2022112362A JP2021008176A JP2021008176A JP2022112362A JP 2022112362 A JP2022112362 A JP 2022112362A JP 2021008176 A JP2021008176 A JP 2021008176A JP 2021008176 A JP2021008176 A JP 2021008176A JP 2022112362 A JP2022112362 A JP 2022112362A
Authority
JP
Japan
Prior art keywords
prepreg
hollow
wing structure
core
hollow wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021008176A
Other languages
Japanese (ja)
Inventor
勝利 滝澤
Katsutoshi Takizawa
通彦 手塚
Michihiko Tezuka
倫靖 鳥山
Michiyasu Toriyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monopost
Monopost Co Ltd
Enplas Corp
Original Assignee
Monopost
Monopost Co Ltd
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monopost, Monopost Co Ltd, Enplas Corp filed Critical Monopost
Priority to JP2021008176A priority Critical patent/JP2022112362A/en
Priority to CN202210070471.4A priority patent/CN114801246A/en
Publication of JP2022112362A publication Critical patent/JP2022112362A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

To provide a method for forming hollow airfoil structures with excellent appearance and resistance to breakage, and hollow airfoil structures obtained thereby.SOLUTION: The method of forming a hollow airfoil structure includes: lamination process S1 to obtain a prepreg molding body by wrapping and stacking a plurality of prepregs around a hollow, wing-shaped core, sealing process S2 to seal the soft hermetic container by making the prepreg molding body exist inside the soft hermetic container, and molding process S3 to form a hollow airfoil structure by tightly sealing the prepreg molding body and the soft hermetic container by exhausting the sealed soft hermetic container and further heating, and in the stacking process S1, the prepregs of respective layers are wound so that their ends touch each other, and the jointed ends of the prepreg are located in different areas for each layer.SELECTED DRAWING: Figure 1

Description

本発明は、中空翼構造の成形方法および中空翼構造に関する。 The present invention relates to a method for forming a hollow wing structure and a hollow wing structure.

小型回転翼無人航空機のロータのブレードに用いられる回転翼などの翼は、繊維強化樹脂の成形によって製造されている。 Wings such as rotor blades used for rotor blades of small rotary wing unmanned aerial vehicles are manufactured by molding fiber-reinforced resin.

繊維強化樹脂の成型品は、樹脂原料に炭素繊維やグラスファイバーなどの繊維を混合することで、樹脂成型品の強度が強化される。繊維強化樹脂成形品の製造方法としては、プレス成型法、オートクレーブ法、それを改良したものが知られている。 Fiber-reinforced resin moldings are enhanced in strength by mixing fibers such as carbon fibers and glass fibers into resin raw materials. As methods for manufacturing fiber-reinforced resin molded articles, press molding, autoclave, and improved methods thereof are known.

プレス成型法(RTM法)においては、シート状繊維品を、製造する樹脂成形品の形状に対応する雌雄一対の金型の間に配置し、キャビティに樹脂成分を注入して硬化することで繊維強化樹脂成形品を得る。 In the press molding method (RTM method), a sheet-like fiber product is placed between a pair of male and female molds corresponding to the shape of the resin molded product to be manufactured, and a resin component is injected into the cavity and cured to form a fiber. A reinforced resin molded article is obtained.

例えば、特許文献1には、翼形状の内面を有する型の内部に網状繊維シートを押し付けて略翼形状に粗成形し、その後、粗成形した網状繊維シートの内部に繊維材より小さなチョップ材を注入し、その後、樹脂材料を型内に注入する翼の製造方法が記載されている。 For example, in Patent Document 1, a net-like fiber sheet is pressed into the interior of a mold having a wing-shaped inner surface to roughly form a substantially wing-like shape, and then a chopped material smaller than the fiber material is placed inside the roughly-formed net-like fiber sheet. A method of manufacturing a wing is described in which the injection is followed by injecting the resin material into a mold.

この方法で製造された翼は、外側に網状繊維シートを樹脂材料でくるんだ繊維強化樹脂製の外皮部材を有し、内側にチョップ材を樹脂材料でくるんだチョップ強化樹脂製の芯部材を有し、網状繊維シートとチョップ材が同じ樹脂材料で同時にくるまれている。 The wing manufactured by this method has a fiber-reinforced resin outer skin member in which a net fiber sheet is wrapped in a resin material, and a chop-reinforced resin core member in which a chopped material is wrapped in a resin material. The reticulated fiber sheet and the chopped material are simultaneously wrapped in the same resin material.

オートクレーブ法においては、プリプレグを、製造する成形品に対応する金型の上に配置し、金型とプリプレグを気密性の袋に入れ、その袋ごとオートクレーブに入れて加圧しかつ袋内を減圧することで金型とプリプレグを密着させながら加熱し、プリプレグ中の熱硬化性樹脂を硬化させて繊維強化樹脂成形品を得る。 In the autoclave method, the prepreg is placed on a mold corresponding to the molded product to be manufactured, the mold and the prepreg are placed in an airtight bag, and the bag is placed in an autoclave to pressurize and reduce the pressure in the bag. Thus, the mold and the prepreg are heated while being brought into close contact with each other, and the thermosetting resin in the prepreg is cured to obtain a fiber-reinforced resin molded product.

例えば、特許文献2には、複数の中空部と、これらの各中空部を区画する中間桁とを含む航空機翼構造の成形方法であって、下型に下側外皮用プリプレグを積層し、その上に複数の中空構造物用プリプレグ成形体を並列に隣接させて載置し、その上に上側外皮用プリプレグを積層し、この後に、これらを真空バッグで覆い、この真空バッグ内を真空引きするとともに加圧・加熱することで前記翼構造を一体成形する航空機翼構造の成形方法が記載されている。 For example, Patent Document 2 discloses a molding method for an aircraft wing structure including a plurality of hollow portions and intermediate girders that partition each of these hollow portions, wherein a lower skin prepreg is laminated on a lower mold, and the A plurality of prepreg molded bodies for a hollow structure are placed side by side on top, and a prepreg for an upper outer skin is laminated thereon. After that, they are covered with a vacuum bag, and the inside of this vacuum bag is evacuated. A molding method for an aircraft wing structure is described in which the wing structure is integrally molded by applying pressure and heat together with the airfoil.

この成形方法では、中空構造物用プリプレグ成形体は、それぞれに対応する成形型にプリプレグを両端部が重なる形で巻き付けるように形成され、その重なり部が前記中間桁の領域に配置されている。 In this molding method, the hollow structure prepreg molded body is formed by winding the prepreg around the corresponding molding die with both ends overlapping, and the overlapping part is arranged in the region of the intermediate girder.

特開2002-161703号公報Japanese Patent Application Laid-Open No. 2002-161703 特開2011-152753号公報JP 2011-152753 A

小型回転翼無人航空機のロータのブレードに用いられる回転翼などの翼には、空力的な観点から平滑な表面が要求される。外表面に凹凸段差があると空気抵抗が増大するとともに外観性が低下するためである。 Wings such as rotor blades used for rotor blades of small rotary wing unmanned aerial vehicles are required to have smooth surfaces from an aerodynamic point of view. This is because if the outer surface has uneven steps, the air resistance increases and the appearance deteriorates.

特許文献1に記載の翼の製造方法では、型が、腹側の型と背側の型に、分割されており、網状繊維シート粗成形ステップは腹側の型と背側の型で別個に行われ、チョップ材注入ステップと、樹脂注入ステップは腹側の型と背側の型を合わせてから行われている。 In the wing manufacturing method described in Patent Document 1, the mold is divided into a ventral mold and a dorsal mold, and the reticulated fiber sheet rough forming step is performed separately for the ventral mold and the dorsal mold. The chop material injection step and the resin injection step are performed after matching the ventral mold and the dorsal mold.

そのため、この方法で製造された翼は、外皮部材が上型と下型に分割されており、接続部が前端と後端に生じる。そして、翼では後端部分に乱流による外力が発生するため、この方法で製造された翼は、この外皮部材の接続部から破損する恐れがあるという問題がある。 Therefore, in the wing manufactured by this method, the skin member is divided into an upper die and a lower die, and connecting portions are formed at the front end and the rear end. In addition, since an external force due to turbulent flow is generated at the rear end portion of the blade, there is a problem that the blade manufactured by this method may be damaged from the connecting portion of the outer skin member.

また、特許文献2に記載の翼構造の成形方法では、プリプレグの重なり部が翼外表面に配置されている。 Further, in the blade structure molding method described in Patent Document 2, the overlapped portion of the prepreg is arranged on the outer surface of the blade.

そのため、段差によって空気抵抗が増加する、飛行性能が低下する、外観性が低下するという問題がある。 Therefore, there are problems such as an increase in air resistance due to the step, a decrease in flight performance, and a decrease in appearance.

本発明は、上記の問題に鑑みてなされたものであって、本発明の目的は、外観性に優れ、破損しにくい中空翼構造の成形方法、それによって得られる中空翼構造を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for molding a hollow wing structure that is excellent in appearance and resistant to breakage, and a hollow wing structure obtained by the method. be.

前記目的を達成するため、本発明の第一の観点に係る中空翼構造の成形方法は、
中空で翼形状の中子に対して複数のプリプレグを巻き付けて積層することでプリプレグ成形体を得る積層工程と、
前記プリプレグ成形体を軟質気密容器の内部に存在させて前記軟質気密容器を封止する封止工程と、
封止した前記軟質気密容器を排気することで前記プリプレグ成形体と前記軟質気密容器を密着させ、さらに加熱することで中空翼構造を成形する成形工程と、を含み、
前記積層工程において、各層の前記プリプレグは両端が接するように巻き付けられ、
前記プリプレグの両端の接合部分は各層ごとに異なる領域に配置される。
In order to achieve the above object, the method for molding a hollow wing structure according to the first aspect of the present invention comprises:
A lamination step of obtaining a prepreg molded body by winding and laminating a plurality of prepregs around a hollow wing-shaped core;
A sealing step of allowing the prepreg molded body to exist inside a soft airtight container to seal the soft airtight container;
a molding step of forming a hollow wing structure by evacuating the sealed soft airtight container to bring the prepreg molded body and the soft airtight container into close contact with each other, and further heating the airtight flexible container;
In the lamination step, the prepreg of each layer is wound so that both ends are in contact,
The joints at both ends of the prepreg are arranged in different regions for each layer.

前記プリプレグは、強化用繊維として炭素繊維を含有する、と好ましい。 Preferably, the prepreg contains carbon fibers as reinforcing fibers.

前記中子は、3Dプリンタで造形した立体造形物である、と好ましい。 It is preferable that the core is a three-dimensional object modeled by a 3D printer.

本発明の第二の観点に係る中空翼構造は、
中空で翼形状の中子と、
前記中子に結着した複数のプリプレグの層と、
を含み、
各層の前記プリプレグは両端が接するように巻き付けられ、
前記プリプレグの両端の接合部分は各層ごとに異なる領域に配置されている。
The hollow wing structure according to the second aspect of the present invention includes:
a hollow, wing-shaped core;
a plurality of layers of prepreg bonded to the core;
including
The prepreg of each layer is wound so that both ends are in contact,
The joint portions at both ends of the prepreg are arranged in different regions for each layer.

前記中子は、3Dプリンタで造形した立体造形物である、と好ましい。 It is preferable that the core is a three-dimensional object modeled by a 3D printer.

前記プリプレグは、強化用繊維として炭素繊維を含有する、と好ましい。 Preferably, the prepreg contains carbon fibers as reinforcing fibers.

本発明によれば、外観性に優れ、破損しにくい中空翼構造の成形方法、それによって得られる中空翼構造が得られる。 ADVANTAGE OF THE INVENTION According to this invention, the molding method of the hollow wing structure which is excellent in external appearance and is hard to break, and the hollow wing structure obtained by the method are obtained.

第一の実施形態に係る中空翼構造の成形方法の流れ図。4 is a flowchart of a method for forming a hollow wing structure according to the first embodiment; 第一の実施形態に係る中空で翼形状の中子の概略図。1 is a schematic view of a hollow, wing-shaped core according to a first embodiment; FIG. 第一の実施形態に係るプリプレグの概略図。Schematic of the prepreg which concerns on 1st embodiment. 第一の実施形態に係るプリプレグ成形体の概略図。Schematic diagram of a prepreg molded body according to the first embodiment. 第一の実施形態に係る積層工程の一層目を示す概略図。Schematic which shows the first layer of the lamination process which concerns on 1st embodiment. 他の実施形態に係るプリプレグ成形体の概略図。Schematic diagram of a prepreg molded body according to another embodiment. 第一の実施形態に係る封止工程を示す概略図。Schematic which shows the sealing process which concerns on 1st embodiment. 第一の実施形態に係る成形工程の排気を示す概略図。FIG. 4 is a schematic diagram showing exhaust in the molding process according to the first embodiment; 第一の実施形態に係る成形工程の加熱を示す概略図。Schematic which shows the heating of the shaping|molding process which concerns on 1st embodiment. 第一の実施形態に係る取出操作を示す概略図。Schematic which shows extraction operation which concerns on 1st embodiment.

本発明の一実施形態に係る中空翼構造の成形方法について、図を参照しながら説明するが、本発明はこれに限定されない。 A method for molding a hollow wing structure according to an embodiment of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

成形方法は、図1に示すように、積層工程S1と、封止工程S2と、成形工程S3とを少なくとも含む。以下各工程について詳細に説明する。 The molding method includes at least a lamination step S1, a sealing step S2, and a molding step S3, as shown in FIG. Each step will be described in detail below.

(積層工程S1)
積層工程S1では、図2に示す中空で翼形状の中子1に対して図3に示す複数のプリプレグ2を巻き付けて積層することで図4に示すプリプレグ成形体3を得る。
(Lamination step S1)
In the lamination step S1, a plurality of prepregs 2 shown in FIG. 3 are wound around a hollow blade-shaped core 1 shown in FIG. 2 and laminated to obtain a prepreg molded body 3 shown in FIG.

中子1は、中空翼構造の形状の元になるものであり、中空で翼形状である。また、中子1は、積層工程S1、封止工程S2および成形工程S3で変形しない程度の強度があれば組成は特に限定されない。組成としては、樹脂、セラミック、紙、金属、木質材などが挙げられる。中子1の形状は、図2に示すような空洞部分が形成されているが、後述する、封止工程S2において空洞部分に粉体を充填する出入り口を有する形状であることが好ましい。中子1に空洞部分があると得られる中空翼構造が軽量化できる。 The core 1 is the origin of the shape of the hollow wing structure, and is hollow and wing-shaped. Moreover, the composition of the core 1 is not particularly limited as long as it has strength to the extent that it is not deformed in the lamination step S1, the sealing step S2 and the molding step S3. Compositions include resins, ceramics, paper, metals, wood materials, and the like. The shape of the core 1 is formed with a hollow portion as shown in FIG. 2, and it is preferable to have a shape having an inlet and outlet for filling powder into the hollow portion in the sealing step S2, which will be described later. If the core 1 has a hollow portion, the weight of the resulting hollow blade structure can be reduced.

中子1は、その製造方法によっては限定されないが、例えば、3Dプリンタで造形することが好ましい。3Dプリンタで造形することで、従来の金型では成形することが困難な複雑な形状の立体造形物を成形することができる。また、少量生産にも好適である。 The core 1 is not limited by its manufacturing method, but is preferably modeled by, for example, a 3D printer. By modeling with a 3D printer, it is possible to mold three-dimensional objects with complicated shapes that are difficult to mold with conventional molds. It is also suitable for small-scale production.

プリプレグ2は、図3に示すとおり、強化用繊維4とマトリクス樹脂5を含有するシート状の繊維強化樹脂基材である。 The prepreg 2 is a sheet-like fiber-reinforced resin base material containing reinforcing fibers 4 and a matrix resin 5, as shown in FIG.

強化用繊維4は、プリプレグ2中で一方向に並んでいても、平織、綾織、朱子織などの織物状で存在していても、無秩序に分散していてもよい。 The reinforcing fibers 4 may be arranged in one direction in the prepreg 2, may exist in a woven fabric such as a plain weave, a twill weave, or a satin weave, or may be dispersed randomly.

強化用繊維4としては、成形工程S3の加熱温度で劣化しない繊維であれば特に限定されず、炭素繊維、カーボンナノチューブ、グラフェンシート、セルロースナノファイバー、ガラス繊維、鉱物繊維などが挙げられる。中でも、得られる繊維強化樹脂成形品の強度の点で、炭素繊維が好ましい。強化用繊維4のサイズは特に限定されないが、例えば繊維長が数百nm以上数mm以下の繊維を用いることができる。 The reinforcing fibers 4 are not particularly limited as long as they do not deteriorate at the heating temperature of the molding step S3, and examples thereof include carbon fibers, carbon nanotubes, graphene sheets, cellulose nanofibers, glass fibers, and mineral fibers. Among them, carbon fiber is preferable from the viewpoint of the strength of the resulting fiber-reinforced resin molded product. Although the size of the reinforcing fibers 4 is not particularly limited, for example, fibers having a fiber length of several hundred nm or more and several mm or less can be used.

強化用繊維4は、一種単独で又は複数種を組み合わせて用いることができる。 The reinforcing fibers 4 can be used singly or in combination.

マトリクス樹脂5は、積層工程S1においては柔軟性を有し、成形工程S3で結着できる樹脂であれば特に限定されないが、例えばエポキシ樹脂、不飽和ポリエステル、フェノール樹脂などの熱硬化性樹脂の半硬化樹脂や、ポリ塩化ビニリデン系樹脂、アクリル系樹脂、AN系共重合体系樹脂などの熱可塑性樹脂が挙げられる。 The matrix resin 5 is not particularly limited as long as it has flexibility in the lamination step S1 and can be bound in the molding step S3. Thermoplastic resins such as curable resins, polyvinylidene chloride resins, acrylic resins, and AN copolymer resins can be used.

マトリクス樹脂5は、プリプレグ2中において、繊維と繊維の間、繊維の周囲にマトリクス(母材)として存在する。 The matrix resin 5 exists as a matrix (base material) between the fibers and around the fibers in the prepreg 2 .

プリプレグ2としては、強化用繊維4にマトリクス樹脂5を含浸させてシート状にした、市販品を用いることができる。より詳しくは、プリプレグ2は、強化用繊維4に熱硬化性樹脂を含浸させ、加熱又は乾燥して半硬化状態にした樹脂のシート、または、強化用繊維に溶融した熱可塑性樹脂を含浸させ、その熱可塑性樹脂を固化したシートである。例えば、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastic:CFRP)の熱硬化性樹脂プリプレグとして東レ株式会社のトレカ(登録商標)やCFRPの熱可塑性樹脂プリプレグとして日鉄ケミカル&マテリアル株式会社のTEPreg(登録商標)等の各種プリプレグを用いることができる。プリプレグ2の厚みは特に限定されないが、例えば0.07mm以上0.2mm以下である。 As the prepreg 2, a commercially available product in which reinforcing fibers 4 are impregnated with a matrix resin 5 and made into a sheet can be used. More specifically, the prepreg 2 is made by impregnating the reinforcing fibers 4 with a thermosetting resin and heating or drying to semi-harden the resin sheet, or by impregnating the reinforcing fibers with a molten thermoplastic resin. It is a sheet obtained by solidifying the thermoplastic resin. For example, Toray Industries Inc.'s Torayca (registered trademark) as a carbon fiber reinforced plastic (CFRP) thermosetting resin prepreg, and Nippon Steel Chemical & Materials Co., Ltd.'s TEPreg (registered trademark) as a CFRP thermoplastic resin prepreg. ) can be used. Although the thickness of the prepreg 2 is not particularly limited, it is, for example, 0.07 mm or more and 0.2 mm or less.

積層工程S1において、プリプレグ2は両端6が接するように巻き付けられるので、プリプレグ2は、中子1の形状や凹凸に合わせて、予め超音波カッターなどで切断したものを用いることができる。プリプレグ2は、巻き付けた際に、両端6が接するように加工しておく。 In the laminating step S1, the prepreg 2 is wound so that both ends 6 are in contact with each other. Therefore, the prepreg 2 can be pre-cut by an ultrasonic cutter or the like in accordance with the shape and unevenness of the core 1 . The prepreg 2 is processed so that both ends 6 are in contact with each other when wound.

図5は、積層工程S1の一層目の積層を示す概略図である。中空で翼形状の中子1に対して一層目のプリプレグ2を巻き付けて積層している。翼の前側および後側でプリプレグ2の巻き込みを行い両端6が接するように巻き付けている。二層目以降も同様に、翼の前側および後側でプリプレグ2の巻き込みを行い両端6が接するように巻き付けるが、プリプレグ2の両端6の接合部分は各層ごとに異なる領域に配置する。 FIG. 5 is a schematic diagram showing the lamination of the first layer in the lamination step S1. A first layer of prepreg 2 is wound around a hollow wing-shaped core 1 to stack them. The prepreg 2 is wound on the front side and the rear side of the wing so that both ends 6 are in contact with each other. For the second and subsequent layers, the prepreg 2 is similarly wound on the front and rear sides of the wing so that both ends 6 are in contact with each other.

翼の前側および後側でプリプレグ2の巻き込みを行うことで、得られる中空翼構造の前端と後端が破損する可能性を下げることができる。 Wrapping the prepreg 2 on the front and rear sides of the airfoil reduces the likelihood of leading and trailing edge failure of the resulting hollow airfoil structure.

また、図6に示す通り、プリプレグ2の最外層のみ、意匠性を考慮して、プリプレグ2の両端6を、翼の後側に配置することもできる。 Further, as shown in FIG. 6, only the outermost layer of the prepreg 2 can be arranged with both ends 6 on the rear side of the wing in consideration of the design.

中子1とプリプレグ2とが直接接触した状態で積層を行うと、後述する成形工程S3で、中子1とプリプレグ2を結着することができる。 If lamination is performed while the core 1 and the prepreg 2 are in direct contact with each other, the core 1 and the prepreg 2 can be bound together in the later-described forming step S3.

中子1に対してプリプレグ2を巻き付けて積層する際には、必要とされる強度により、外側面と空筒部分の内側面のいずれか一方又は両面を被覆することができる。 When the prepreg 2 is wound around the core 1 and laminated, either one or both of the outer surface and the inner surface of the hollow portion can be covered depending on the required strength.

プリプレグ2の積層数は複層であれば適宜選択することができる。図3では、プリプレグ2の積層数は3である。 The number of layers of the prepreg 2 can be appropriately selected as long as the number of layers is plural. In FIG. 3, the number of laminations of the prepreg 2 is three.

(封止工程S2)
封止工程S2では、図7に示すように、プリプレグ成形体3を軟質気密容器7の内部に存在させて軟質気密容器7を封止する。
(Sealing step S2)
In the sealing step S2, as shown in FIG. 7, the prepreg molded body 3 is placed inside the soft airtight container 7 to seal the soft airtight container 7. As shown in FIG.

図7では、排気口8を備える軟質気密容器7の内部に、プリプレグ成形体3と粉体9とを、軟質気密容器7の内側面とプリプレグ成形体3との間に粉体9が存在するように充填して封止する。 In FIG. 7, the prepreg molding 3 and the powder 9 are present inside the flexible airtight container 7 having the exhaust port 8, and the powder 9 exists between the inner surface of the flexible airtight container 7 and the prepreg molding 3. Fill and seal as shown.

軟質気密容器7は、プリプレグ成形体3と粉体9を収納できる大きさであり、軟質気密容器7の外側と内側で圧力を伝達できる柔軟性を備える材質であれば特に限定されない。例えば、図7に示すような耐熱性ビニール袋や、チューブの一端を閉じたチューブ容器などを用いることができる。袋の口は、プリプレグ成形体3と粉体9の出入り口になるとともに、管を挟んで閉じることで排気口8として機能する。このようにプリプレグ成形体3等の出入り口を排気口8として共用することができるが、プリプレグ成形体3等の出入り口と異なる部分に別途排気口8を設けることもできる。 The soft airtight container 7 has a size that can accommodate the prepreg molded body 3 and the powder 9, and is not particularly limited as long as it is made of a material that is flexible enough to transmit pressure between the outside and the inside of the soft airtight container 7 . For example, a heat-resistant plastic bag as shown in FIG. 7, a tube container having one end closed, or the like can be used. The mouth of the bag serves as an entrance and exit for the prepreg molded body 3 and the powder 9, and also functions as an exhaust port 8 by closing it with a pipe sandwiched therebetween. Although the entrance of the prepreg molded body 3 and the like can be shared as the exhaust port 8 in this manner, the exhaust port 8 can be separately provided in a portion different from the entrance and exit of the prepreg molded body 3 and the like.

粉体9は、流動性と熱伝導性があれば、大きさ、形状、材質は特に限定されない。粉体9としては、例えば、平均粒径1~200μmの有機粉体又は無機粉体を用いることができる。粉体9は、一種単独で用いることができ、又、粒径、形状などの異なる複数種の粉体9を用いることできる。粉体9として粒径の異なる複数種の粉体からなる混合物を用いると、軟質気密容器7中での充填性に優れ、かつ脱気の際に同伴する粉体9を減らすことができるので好ましい。 The size, shape, and material of the powder 9 are not particularly limited as long as it has fluidity and thermal conductivity. As the powder 9, for example, organic powder or inorganic powder having an average particle size of 1 to 200 μm can be used. A single type of powder 9 can be used, or a plurality of types of powder 9 having different particle sizes, shapes, etc. can be used. It is preferable to use a mixture of a plurality of types of powders with different particle diameters as the powder 9 because it is excellent in packing performance in the soft airtight container 7 and can reduce the amount of the powder 9 that accompanies during degassing. .

封止工程S2において、粉体9に加えて他の部材を充填することができる。他の部材としては、チョップドファイバーや、熱膨脹材などが挙げられる。 In the sealing step S2, in addition to the powder 9, other members can be filled. Other members include chopped fibers and thermal expansion materials.

チョップドファイバーを用いる場合には、繊維径が1~20μm、長さ0.5~5mmにカットしたチョップドファイバーが好ましい。 When chopped fibers are used, chopped fibers having a fiber diameter of 1 to 20 μm and a length of 0.5 to 5 mm are preferred.

熱膨脹材としては、熱膨張性マイクロカプセルが挙げられる。熱膨脹材を用いると、成形工程S3の際に熱膨脹材が熱で膨脹し、軟質気密容器7の中の圧力を高めてプリプレグ2の中子1の形状への追随性を向上させることができる。熱膨脹材は、粉体9と均一に混合して用いることができる。また、粉体9を再利用する観点で、熱膨脹材を伸縮性のある包装フィルムなどで包装してスティック形状にして、粉体9と共に軟質気密容器7内に配置することが好ましい。 Thermal expansion materials include thermally expandable microcapsules. When a thermal expansion material is used, the thermal expansion material is thermally expanded during the molding step S3, increasing the pressure in the soft airtight container 7 and improving the conformability of the prepreg 2 to the shape of the core 1. The thermal expansion material can be used by being uniformly mixed with the powder 9 . Moreover, from the viewpoint of reusing the powder 9, it is preferable to wrap the thermal expansion material in a stretchable wrapping film or the like to form a stick shape, and place it in the flexible airtight container 7 together with the powder 9.

プリプレグ成形体3と粉体9との間には、薄い紙などの離形材を配置することができる。離形材を配置することで取り出す際に粉体9の除去が容易になる。離形材としては、フッ素樹脂フィルムやシリコーンフィルムなどのフィルム類が用いられる。 A release material such as thin paper can be placed between the prepreg molded body 3 and the powder 9 . Arranging the release material makes it easier to remove the powder 9 when taking out. Films such as fluororesin films and silicone films are used as the release material.

軟質気密容器7にプリプレグ成形体3と粉体9とを、軟質気密容器7の内側面と前記積層体との間に粉体9が存在するように充填して封止する方法としては、例えば、軟質気密容器7にプリプレグ成形体3を入れて、プリプレグ成形体3の空筒部分とプリプレグ成形体3の周囲に粉体9を充填し、プリプレグ成形体3と粉体9の出入り口(排気口8)に管を挟み込んで封止する(図7参照)。 As a method of filling the soft airtight container 7 with the prepreg molding 3 and the powder 9 so that the powder 9 exists between the inner surface of the soft airtight container 7 and the laminate, for example, , the prepreg molded body 3 is put in a soft airtight container 7, the hollow part of the prepreg molded body 3 and the periphery of the prepreg molded body 3 are filled with the powder 9, and the entrance (exhaust port) of the prepreg molded body 3 and the powder 9 is provided. 8) to sandwich and seal the tube (see FIG. 7).

(成形工程S3)
成形工程S3では、図8に示すように、封止した軟質気密容器7を排気することで中子1とプリプレグ2とが密着した状態で軟質気密容器7内を加熱してプリプレグ2を中子1と結着させる。
(Molding step S3)
In the molding step S3, as shown in FIG. 8, the sealed soft airtight container 7 is evacuated to heat the inside of the soft airtight container 7 while the core 1 and the prepreg 2 are in close contact with each other, thereby forming the prepreg 2 into the core. Connect with 1.

封止した軟質気密容器7の排気口8からガス10(空気)を排気すると、外気圧11で軟質気密容器7が収縮し、その外気圧11が軟質気密容器7及び粉体9を通して中子1とプリプレグ2とを密着させる。粉体9が存在することで、中子1の凸部分が軟質気密容器7に直接接触して軟質気密容器7が破壊されることを防ぐとともに、外気圧11をプリプレグ2の凹部分を含む全面に均等に伝えて中子1とプリプレグ2との間の隙間を埋めて密着させる。粉体9は、圧及び熱を伝えるとともに、排気の際にはガス流路として機能する。 When the gas 10 (air) is exhausted from the exhaust port 8 of the sealed soft airtight container 7 , the soft airtight container 7 contracts due to the external pressure 11 , and the external pressure 11 pushes the core 1 through the soft airtight container 7 and the powder 9 . and the prepreg 2 are brought into close contact with each other. The presence of the powder 9 prevents the projecting portion of the core 1 from directly contacting the soft airtight container 7 and destroying the soft airtight container 7, and also prevents the external pressure 11 from being applied to the entire surface of the prepreg 2 including the recessed portion. to evenly fill the gap between the core 1 and the prepreg 2 to bring them into close contact with each other. The powder 9 conducts pressure and heat, and functions as a gas flow path during evacuation.

排気は、減圧ポンプ12などで排気口8から直接行うことができるが、図8に示すように減圧ポンプ12と排気口8の間に、同伴した粉体9を捕捉するトラップ13を設けることが好ましい。 Evacuation can be performed directly from the exhaust port 8 by a decompression pump 12 or the like. However, as shown in FIG. preferable.

軟質気密容器7内の加熱は、図9に示すように、中子1とプリプレグ2とが密着した状態の軟質気密容器7をオーブン14に入れて行うことができる。また、軟質気密容器7の内部にヒータを配置して加熱することもできる。 The inside of the airtight flexible container 7 can be heated by placing the airtight flexible container 7 with the core 1 and the prepreg 2 in close contact with each other in an oven 14, as shown in FIG. Alternatively, a heater may be placed inside the soft airtight container 7 for heating.

加熱温度は、プリプレグ2が結着する温度であれば特に限定されず、用いるマトリクス樹脂5の種類によって適宜選択できる。例えば、常温以上200℃以下とすることができる。 The heating temperature is not particularly limited as long as it is a temperature at which the prepreg 2 is bound, and can be appropriately selected depending on the type of the matrix resin 5 to be used. For example, the temperature can be from room temperature to 200°C.

前述の排気は、加熱中にも行うことが好ましい。プリプレグ2の結着の際にガスが発生することがあるが、そのガスを排気することで、中子1とプリプレグ2の密着を保つことができる。 It is preferable that the above-described evacuation is also performed during heating. Although gas may be generated when the prepreg 2 is bound, the core 1 and the prepreg 2 can be kept in close contact with each other by exhausting the gas.

プリプレグ2が結着することで、プリプレグ成形体3の中子1とプリプレグ2とが一体となった中空翼構造15となる。 By binding the prepreg 2, the core 1 of the prepreg molded body 3 and the prepreg 2 are integrated to form a hollow wing structure 15. - 特許庁

図10に示すように、軟質気密容器7から中空翼構造15を取り出すとともに粉体9を取り除き、中空翼構造15を得る。 As shown in FIG. 10 , the hollow wing structure 15 is taken out from the soft airtight container 7 and the powder 9 is removed to obtain the hollow wing structure 15 .

取り除いた粉体9、軟質気密容器7は再利用することができる。 The removed powder 9 and soft airtight container 7 can be reused.

中空翼構造15中のプリプレグ2は、中子1の表面凹凸のアンカー効果などにより、中子1と強固に結着している。従って、中空翼構造15中の中子1は取り除く必要はないが、研磨することなどで除去することも可能である。 The prepreg 2 in the hollow wing structure 15 is firmly attached to the core 1 due to the anchoring effect of the uneven surface of the core 1 or the like. Therefore, the core 1 in the hollow wing structure 15 does not need to be removed, but can be removed by polishing or the like.

中空翼構造15は、中空で翼形状の中子と、前記中子に結着した複数のプリプレグ2の層と、を含み、各層のプリプレグ2は両端6が接するように巻き付けられ、前記プリプレグの両端の接合部分は各層ごとに異なる領域に配置されている。 The hollow wing structure 15 includes a hollow, wing-shaped core and a plurality of layers of prepreg 2 bonded to the core. The joints at both ends are arranged in different regions for each layer.

中空翼構造15は、中子1の形状で、用いる繊維強化樹脂の強度をそのまま備えるので、様々な形状、大きさのものを製造することができ、様々な用途に使用することができる。 Since the hollow wing structure 15 has the shape of the core 1 and has the strength of the fiber-reinforced resin used, it can be manufactured in various shapes and sizes, and can be used in various applications.

また、中空翼構造15は、段差による空気抵抗の増加が生じず、外観性に優れ、プリプレグ2の接続部が前端と後端に生じないので破損しにくい。 Further, the hollow wing structure 15 does not cause an increase in air resistance due to a step, is excellent in appearance, and is less likely to be damaged because the connecting portions of the prepreg 2 are not formed at the front end and the rear end.

本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broader spirit and scope of the invention. Moreover, the embodiment described above is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated by the claims rather than the embodiments. Various modifications made within the scope of the claims and within the meaning of equivalent inventions are considered to be within the scope of the present invention.

1 中子
2 プリプレグ
3 プリプレグ成形体
4 強化用繊維
5 マトリクス樹脂
6 両端
7 軟質気密容器
8 排気口
9 粉体
10 ガス
11 外気圧
12 減圧ポンプ
13 トラップ
14 オーブン
15 中空翼構造
REFERENCE SIGNS LIST 1 core 2 prepreg 3 prepreg molded body 4 reinforcing fiber 5 matrix resin 6 both ends 7 soft airtight container 8 exhaust port 9 powder 10 gas 11 external pressure 12 decompression pump 13 trap 14 oven 15 hollow wing structure

Claims (6)

中空で翼形状の中子に対して複数のプリプレグを巻き付けて積層することでプリプレグ成形体を得る積層工程と、
前記プリプレグ成形体を軟質気密容器の内部に存在させて前記軟質気密容器を封止する封止工程と、
封止した前記軟質気密容器を排気することで前記プリプレグ成形体と前記軟質気密容器を密着させ、さらに加熱することで中空翼構造を成形する成形工程と、を含み、
前記積層工程において、各層の前記プリプレグは両端が接するように巻き付けられ、
前記プリプレグの両端の接合部分は各層ごとに異なる領域に配置される、中空翼構造の成形方法。
A lamination step of obtaining a prepreg molded body by winding and laminating a plurality of prepregs around a hollow wing-shaped core;
A sealing step of allowing the prepreg molded body to exist inside a soft airtight container to seal the soft airtight container;
a molding step of forming a hollow wing structure by evacuating the sealed soft airtight container to bring the prepreg molded body and the soft airtight container into close contact with each other, and further heating the airtight flexible container;
In the lamination step, the prepreg of each layer is wound so that both ends are in contact,
A molding method for a hollow wing structure, wherein joints at both ends of the prepreg are arranged in different regions for each layer.
前記プリプレグは、強化用繊維として炭素繊維を含有する、請求項1に記載の中空翼構造の成形方法。 2. The method of forming a hollow wing structure according to claim 1, wherein the prepreg contains carbon fibers as reinforcing fibers. 前記中子は、3Dプリンタで造形した立体造形物である、請求項1または2に記載の中空翼構造の成形方法。 3. The method of forming a hollow wing structure according to claim 1, wherein the core is a three-dimensional object formed by a 3D printer. 中空で翼形状の中子と、
前記中子に結着した複数のプリプレグの層と、
を含み、
各層の前記プリプレグは両端が接するように巻き付けられ、
前記プリプレグの両端の接合部分は各層ごとに異なる領域に配置されている、中空翼構造。
a hollow, wing-shaped core;
a plurality of layers of prepreg bonded to the core;
including
The prepreg of each layer is wound so that both ends are in contact,
A hollow wing structure in which joint portions at both ends of the prepreg are arranged in different regions for each layer.
前記中子は、3Dプリンタで造形した立体造形物である、請求項4に記載の中空翼構造。 5. The hollow wing structure according to claim 4, wherein the core is a three-dimensional object modeled by a 3D printer. 前記プリプレグは、強化用繊維として炭素繊維を含有する、請求項4または5に記載の中空翼構造。 6. Hollow wing structure according to claim 4 or 5, wherein the prepreg contains carbon fibers as reinforcing fibers.
JP2021008176A 2021-01-21 2021-01-21 Method of forming hollow wing structure and hollow wing structure Pending JP2022112362A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021008176A JP2022112362A (en) 2021-01-21 2021-01-21 Method of forming hollow wing structure and hollow wing structure
CN202210070471.4A CN114801246A (en) 2021-01-21 2022-01-21 Method for molding hollow blade structure and hollow blade structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021008176A JP2022112362A (en) 2021-01-21 2021-01-21 Method of forming hollow wing structure and hollow wing structure

Publications (1)

Publication Number Publication Date
JP2022112362A true JP2022112362A (en) 2022-08-02

Family

ID=82527617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021008176A Pending JP2022112362A (en) 2021-01-21 2021-01-21 Method of forming hollow wing structure and hollow wing structure

Country Status (2)

Country Link
JP (1) JP2022112362A (en)
CN (1) CN114801246A (en)

Also Published As

Publication number Publication date
CN114801246A (en) 2022-07-29

Similar Documents

Publication Publication Date Title
JP5877156B2 (en) Rotor blade manufacturing method and manufacturing apparatus thereof
US10596769B2 (en) Bagging process and mandrel for fabrication of elongated composite structure
US20120039720A1 (en) Method of manufacturing a wind turbine blade by embedding a layer of pre-cured fibre reinforced resin
CN107738457A (en) A kind of integrated forming technique of unmanned aerial vehicle body
JP5430424B2 (en) Method for forming aircraft wing structure
EP2190650A1 (en) Hollow composite structure and method of amking same
US20090039566A1 (en) Composite structures and methods of making same
JP5151668B2 (en) Manufacturing method of FRP
JP2019069579A (en) Manufacturing method of fiber reinforced resin molded product
JP2006219078A (en) Compound body for aircraft, and manufacturing method of compound structural part of aircraft
CN108883585A (en) The manufacture of the composite construction of complicated shape
US9550331B2 (en) Method and device for producing a composite molded part from fiber-reinforced plastic
US10391722B1 (en) Method of producing aerofoils
US20220134687A1 (en) Mold for manufacturing composite material molded product, and method for manufacturing composite material molded product
WO2009097853A1 (en) Vacuum bagging of composite materials
JP2016539035A (en) Manufacturing apparatus and manufacturing method for composite material parts
JP6543577B2 (en) Method of forming composite material and jig for forming composite material
WO2021044894A1 (en) Fiber-reinforced resin molded product manufacturing method and fiber-reinforced resin molded product
JP2022112362A (en) Method of forming hollow wing structure and hollow wing structure
JP2009107292A (en) Manufacturing process of resin structure
KR102075425B1 (en) Manufacturing apparatus and method for horizontal stabilizer of Light Civil Helicopter
JP2017128012A (en) Autoclave molding method, autoclave molding device and manufacturing method of molding block used therefor
JP3834628B2 (en) Resin filler for manufacturing fiber reinforced composite material and fiber reinforced composite material manufacturing method using the same
JP5843686B2 (en) Manufacturing method of resin diffusion medium and manufacturing method of fiber reinforced plastic molding
US20090155521A1 (en) Composite structures and methods of making same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20231207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240116