JP2022108633A - Safety valve automatic inspection device and automatic inspection method - Google Patents

Safety valve automatic inspection device and automatic inspection method Download PDF

Info

Publication number
JP2022108633A
JP2022108633A JP2021003739A JP2021003739A JP2022108633A JP 2022108633 A JP2022108633 A JP 2022108633A JP 2021003739 A JP2021003739 A JP 2021003739A JP 2021003739 A JP2021003739 A JP 2021003739A JP 2022108633 A JP2022108633 A JP 2022108633A
Authority
JP
Japan
Prior art keywords
pressure
flow path
measuring
safety valve
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021003739A
Other languages
Japanese (ja)
Inventor
直樹 吉良
Naoki Kira
大樹 小林
Daiki Kobayashi
祐二 関口
Yuji Sekiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitz Corp
Original Assignee
Kitz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitz Corp filed Critical Kitz Corp
Priority to JP2021003739A priority Critical patent/JP2022108633A/en
Publication of JP2022108633A publication Critical patent/JP2022108633A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Details Of Valves (AREA)

Abstract

To provide a safety valve automatic inspection device and an automatic inspection method capable of measuring correctly, respective actuation pressures in start of blowing, during blowing and blowing stop of a safety valve, shortening a period until reaching to a blowing start pressure, for quickly executing a safety valve pressure inspection.SOLUTION: The invention is configured to cause inspection fluid to flow into an inspection channel 2 to which a workpiece 3 formed of a safety valve is coupled, for measuring an actuation pressure of the safety valve 3. The inspection channel 2 comprises: a primary side channel 11 for inspection fluid supply and for holding the workpiece 3 therebetween; and a secondary side channel 12 for measuring an actuation pressure of the workpiece 3. The secondary side channel 12 comprises: a minute leakage channel 40 having a minute leakage sensor 51 for measuring a minute flow rate by the blowing start pressure of the safety valve 3; and a large leakage channel 41 having a large leakage sensor 53 for measuring a large flow rate by the blowing pressure and blowing stop pressure being larger than the blowing start pressure, these channels being branched so as to be switched.SELECTED DRAWING: Figure 2

Description

本発明は、安全弁の作動圧力や弁座漏れを検査するための安全弁の自動検査装置及び自動検査方法に関する。 TECHNICAL FIELD The present invention relates to an automatic safety valve inspection device and an automatic inspection method for inspecting operating pressure and valve seat leakage of a safety valve.

従来、安全弁においては、吹始め、吹出し、吹止りなどの各作動圧力や弁座漏れ量などの規格がサイズや使用箇所等に応じて定められ、これらを満足するために市場への供給前に検査がおこなわれている。安全弁を検査するための装置としては、安全弁から漏れる検査用ガスの音を聴覚により確認したり、安全弁の流出口側に張ったせっけん水の膨らみ状態を視認したりするものがあるが、これらは何れも、装置全体や検査時の手順が複雑になるばかりか、聴覚や視覚により確認する検査であるため、作業員の熟練度によっては一度の検査で安全弁の作動良否を判断することができなかった。 Conventionally, in safety valves, standards such as each operating pressure such as blow start, blow out, blow stop, etc. and valve seat leakage amount are determined according to size and usage location. inspection is being carried out. As a device for inspecting the safety valve, there is a device that confirms the sound of the inspection gas leaking from the safety valve by hearing, and visually confirms the swelling state of the soapy water that is stretched on the outflow side of the safety valve. In either case, not only is the entire device and inspection procedures complicated, but since the inspection is conducted by auditory and visual confirmation, depending on the skill level of the operator, it is not possible to determine whether the safety valve is operating properly in a single inspection. rice field.

これに対し、自動制御により安全弁に供給した検査流体の圧力をセンサで測定し、その測定値から検査結果を判断することで検査の精度を高めようとする安全弁の自動検査装置が知られている。この種の検査装置として、一次側流路、二次側流路がそれぞれ一本の管路により検査用の安全弁を挟むように設けられ、一次側流路から検査流体を流し、二次側流路側に設けられた圧力センサにより圧力を測定する装置が知られる。 On the other hand, there is known an automatic inspection apparatus for safety valves, which measures the pressure of the inspection fluid supplied to the safety valve by automatic control with a sensor and judges the inspection result from the measured value to improve the accuracy of the inspection. . As an inspection device of this type, a primary side flow path and a secondary side flow path are provided such that a safety valve for testing is sandwiched by one pipe line, respectively. A device for measuring pressure by a pressure sensor provided on the roadside is known.

一方、特許文献1に開示された安全弁の作動テスト装置においては、圧力供給用のガスボンベからヘッダーを通して検査用の流路が閉ループ状に設けられ、この流路に複数の電磁弁が接続された構成となっている。この安全弁の検査装置では、電磁弁の開閉制御により安全弁への入口側・出口側流路が切り替えられつつ、安全弁の検査がおこなわれる。 On the other hand, in the safety valve operation test device disclosed in Patent Document 1, a flow path for inspection is provided in a closed loop through a header from a gas cylinder for pressure supply, and a plurality of solenoid valves are connected to this flow path. It has become. In this safety valve inspection device, the safety valve is inspected while the inlet side and outlet side flow paths to the safety valve are switched by opening/closing control of the electromagnetic valve.

これらの検査装置により安全弁の作動圧力を検査する場合、安全弁の作動圧力として、吹始め圧力、吹出し圧力、吹止り圧力が主要な検査項目となっており、これら各圧力を弁座漏れ量などとともに検査装置で正確かつ迅速に測定する必要がある。吹始め圧力とは、入口側の圧力が増加して、出口側で流体の微量な流出が検知されるときの入口側の圧力であり、吹出し圧力とは、ポッピング圧力とも呼ばれ、安全弁が急速開作動(ポッピング)するときの入口側の圧力であり、吹止り圧力とは、再着座圧力とも呼ばれ、弁体が弁座と再接触するか、又はリフトがゼロとなるときの入口側の静的圧力である。 When inspecting the operating pressure of a safety valve using these inspection devices, the main inspection items are the blowing start pressure, the blowing pressure, and the blowing end pressure as the operating pressure of the safety valve. It is necessary to measure accurately and quickly with inspection equipment. The blowing start pressure is the pressure on the inlet side when the pressure on the inlet side increases and a minute amount of fluid outflow is detected on the outlet side, and the blowing pressure is also called popping pressure. The blow-off pressure is the pressure on the inlet side when opening (popping). static pressure.

特開平6-137988号公報JP-A-6-137988

前者の一次側流路と二次側流路とがそれぞれ一本の管路で構成された検査装置の場合、吹始め圧力、吹出し圧力、吹止り圧力の測定をこの一本の管路内で実施し、最初の吹始め圧力の測定は、検査流体の吹出し(流出)がゼロの状態から流体が漏れ出すときの微量流量を検知し、続いて、吹出しから吹止りまでの圧力の測定は、流出している圧力値を検知することでおこなわれる。この場合、圧力センサとして微小流量測定用を用いると大流量の圧力測定が難しくなり、大流量測定用を用いると微小流量の測定が難しくなることから、一つの圧力センサを共通して用いる場合には、吹始め圧力から、吹出し、吹止り圧力まで(微小流量から大流量まで)を正確に測定してその判定をすることが難しい。
一方、後者の特許文献1の場合にも、検査用流路が閉ループ状の一つの流路となっているため、上記の検査装置の場合と同様に、一つの圧力測定用センサを共通して用いたときには、吹出し圧力、吹出し圧力、吹止り圧力を正確に測定することが難しくなる。
In the case of the former inspection device in which the primary side flow path and the secondary side flow path are each composed of a single pipe line, the blow start pressure, the blow pressure, and the blow stop pressure are measured in this single pipe line. In the first measurement of the pressure at the beginning of blowing, the trace flow rate is detected when the fluid leaks from the state where the test fluid blows (outflow) is zero. This is done by detecting the outflowing pressure value. In this case, using a small flow rate sensor as the pressure sensor makes it difficult to measure large flow rates, and using a large flow rate measurement makes it difficult to measure small flow rates. However, it is difficult to accurately measure the pressure from the start of blowing to the blowing-off pressure (from a small flow rate to a large flow rate) and make a judgment.
On the other hand, in the case of the latter patent document 1, since the inspection flow path is one closed loop flow path, one pressure measurement sensor is shared in the same manner as in the above inspection device. When used, it becomes difficult to accurately measure blow pressure, blow pressure, and blow stop pressure.

これらの圧力検査装置は、何れも安全弁を圧力検査する際に、検査開始時の吹始め圧力までの昇圧を手動でおこなう場合には熟練を要し、たとえ熟練者であっても吹出し圧力まで迅速に昇圧して吹始め圧力を正確に測定することが困難になっている。一方、吹始め圧力までの昇圧を自動化する場合であっても、吹始めの境界圧力を正確に測定するためには、圧力を徐々に上げつつ測定をおこなわざるを得ず、吹始め圧力に達するまでに時間を要するために一つの安全弁の検査に多大な時間がかかっていた。 Any of these pressure inspection devices requires skill to manually raise the pressure to the pressure at the start of blowing at the start of the inspection when inspecting the pressure of the safety valve. It is difficult to accurately measure the pressure at the start of blowing. On the other hand, even in the case of automating the rise to the pressure at the start of blowing, in order to accurately measure the boundary pressure at the start of blowing, there is no choice but to measure while gradually increasing the pressure until the pressure at the start of blowing is reached. It took a lot of time to inspect one safety valve.

本発明は、従来の課題を解決するために開発したものであり、その目的とするところは、安全弁の吹始め、吹出し、吹止りの各作動圧力を正確に測定でき、吹始め圧力に達するまでの時間を短縮して速やかに安全弁の圧力検査をおこなうことができる安全弁の自動検査装置及び自動検査方法を提供することにある。 The present invention was developed in order to solve the conventional problems, and its object is to be able to accurately measure each operating pressure of a safety valve at the beginning of blowing, blowing out, and stopping of blowing, and to measure the operating pressure until the blowing start pressure is reached. To provide an automatic inspection device and an automatic inspection method for a safety valve capable of shortening the time required to quickly inspect the pressure of the safety valve.

上記目的を達成するため、請求項1に係る発明は、安全弁からなるワークを接続した検査用流路に検査流体を流入させて安全弁の作動圧力を測定する自動検査装置であって、検査用流路は、ワークを挟んで検査流体供給用の一次側流路とワークの作動圧力測定用の二次側流路とを備え、この二次側流路には、安全弁の吹始め圧力による微小流量測定用の微漏れセンサを有する微漏れ流路と、吹始め圧力よりも大きい吹出し圧力及び吹止り圧力による大流量測定用の大漏れセンサを有する大漏れ流路とが切り替え可能に分岐して設けられている安全弁の自動検査装置である。 In order to achieve the above object, the invention according to claim 1 is an automatic inspection device for measuring the operating pressure of the safety valve by causing a test fluid to flow into an inspection flow path connected to a work piece, which is a safety valve. The path has a primary side flow path for supplying the test fluid and a secondary side flow path for measuring the working pressure of the work, with the workpiece sandwiched therebetween. A small leak channel having a small leak sensor for measurement and a large leak channel having a large leak sensor for measuring a large flow rate due to blowing pressure higher than the blow start pressure and blowing stop pressure are branched so as to be switchable. This is an automatic inspection device for safety valves that are installed.

請求項2に係る発明は、一次側流路には、検査流体の供給圧力調整用の圧力調整手段と圧力測定用の圧力測定手段とが設けられ、これら圧力調整手段と圧力測定手段とが制御用の制御部に接続された安全弁の自動検査装置である。 In the invention according to claim 2, the primary side flow path is provided with a pressure adjusting means for adjusting the supply pressure of the test fluid and a pressure measuring means for measuring the pressure, and the pressure adjusting means and the pressure measuring means are controlled. This is an automatic inspection device for safety valves connected to the control unit for

請求項3に係る発明は、一次側流路には、検査流体排気用の排気流路が開閉可能に設けられた安全弁の自動検査装置である。 The invention according to claim 3 is an automatic inspection apparatus for a safety valve, in which an exhaust flow path for exhausting test fluid is provided in the primary side flow path so as to be openable and closable.

請求項4に係る発明は、安全弁からなるワークを接続した検査用流路に検査流体を流入させて安全弁の作動圧力を測定する自動検査装置であって、検査用流路は、ワークを挟んで検査流体供給用の一次側流路とワークの作動圧力測定用の二次側流路とを備え、一次側流路には、検査流体の供給圧力調整用の圧力調整手段と圧力測定用の圧力測定手段とが制御用の制御部に接続された状態で設けられ、この制御部により、検査流体の吹始め圧力に達する直前までの昇圧速度が、この吹始め圧力に達する直前から吹始め圧力までの昇圧速度よりも速くなるように設定されている安全弁の自動検査装置である。 The invention according to claim 4 is an automatic inspection device for measuring the operating pressure of the safety valve by flowing a test fluid into an inspection flow path connected to a work, which is composed of a safety valve. A primary side flow path for supplying the test fluid and a secondary side flow path for measuring the working pressure of the workpiece are provided, and the primary side flow path includes a pressure adjusting means for adjusting the supply pressure of the test fluid and a pressure for measuring the pressure. The measuring means and the measuring means are connected to a control section for control, and the control section controls the rate of pressure increase of the test fluid until just before reaching the blow start pressure. This is an automatic inspection device for a safety valve that is set to be faster than the pressure rise rate of .

請求項5に係る発明は、検査流体の吹始め圧力に達する直前の圧力が、当該ワークに要求される吹始め圧力の略90%の圧力に設定された安全弁の自動検査装置である。 The invention according to claim 5 is an automatic inspection device for a safety valve in which the pressure immediately before reaching the blow start pressure of the test fluid is set to approximately 90% of the blow start pressure required for the work.

請求項6に係る発明は、圧力調整手段は、ステッピングモータにより開度が制御されるレギュレータを備え、このレギュレータで流量調節された検査流体が所望の圧力で一次側流路からワークに供給可能に設けられた安全弁の自動検査装置である。 In the invention according to claim 6, the pressure adjusting means includes a regulator whose opening is controlled by a stepping motor, and the inspection fluid whose flow rate is adjusted by this regulator can be supplied to the workpiece from the primary side flow path at a desired pressure. It is an automatic inspection device for installed safety valves.

請求項7に係る発明は、安全弁からなるワークを検査用流路に設けた検査流体供給用の一次側流路と作動圧力測定用の二次側流路との間に接続し、この二次側流路に切り替え可能に分岐して設けた微小流量測定用の微漏れセンサを有する微漏れ流路と大流量測定用の大漏れセンサを有する大漏れ流路とのうち、微漏れ流路に切り替えた状態でワークの吹始め圧力を測定し、次いで、大漏れ流路に切り替えた状態でワークの吹出し圧力、吹止り圧力をそれぞれ測定するようにした安全弁の自動検査方法である。 In the invention according to claim 7, a workpiece comprising a safety valve is connected between a primary side flow path for supplying test fluid and a secondary side flow path for measuring operating pressure provided in the test flow path, and this secondary Among the small leak channel having a small leak sensor for measuring a small flow rate and the large leak channel having a large leak sensor for measuring a large flow rate, the small leak channel is This is an automatic inspection method for a safety valve, in which the blow start pressure of the work is measured in the switched state, and then the work blow pressure and the blow stop pressure are measured in the state of switching to the large leak flow path.

請求項8に係る発明は、吹始め圧力の測定時には、二次側流路を大漏れ流路に切り替えて昇圧速度がより速い状態で検査流体の吹始め圧力に達する直前まで昇圧した後に、二次側流路を微漏れ流路に切り替えて吹始め圧力を測定するようにした安全弁の自動検査方法である。 In the invention according to claim 8, when measuring the blowing start pressure, the secondary side flow path is switched to the large leaking flow path, and the pressure is increased to just before reaching the blowing start pressure of the test fluid in a state where the pressure rise speed is faster. This is an automatic inspection method for a safety valve in which the pressure at the start of blowing is measured by switching the secondary flow path to a slightly leaking flow path.

請求項9に係る発明は、検査流体の吹始め圧力に達する直前の圧力が、当該ワークに要求される吹始め圧力の略90%の圧力に設定された安全弁の自動検査方法である。 According to a ninth aspect of the invention, there is provided an automatic safety valve inspection method in which the pressure immediately before reaching the blow start pressure of the test fluid is set to approximately 90% of the blow start pressure required for the work.

請求項10に係る発明は、吹止り圧力の測定後には、一次側流路と大漏れ流路を閉じ、一次側流路に設けた排気流路を開けてワーク内と検査用流路内とを排気した後に、ワークに所定の検査圧力を加えて弁座漏れ検査をおこなうようにした安全弁の自動検査方法である。 In the invention according to claim 10, after the blow-off pressure is measured, the primary side flow path and the large leakage flow path are closed, and the exhaust flow path provided in the primary side flow path is opened to separate the work and the inspection flow path. This is an automatic inspection method for a safety valve in which a predetermined inspection pressure is applied to the work after exhausting the gas, and the valve seat leakage inspection is performed.

請求項1に係る発明によると、検査用流路において、ワークの作動圧力測定用の二次側流路に、微小流量測定用のセンサを有する微漏れ流路と、大流量測定用のセンサを有する大漏れ流路とを切り替え可能に分岐して設けていることで、微小流量である吹始め圧力を微漏れ流路で測定し、大流量である吹出し圧力、吹止り圧力を大漏れ流路で測定することにより、各圧力値に適したスケールを備えたセンサを用いてそれぞれの圧力を正確に測定できるだけでなく、特に、小流量測定用の微漏れセンサに過大な圧力が加わるおそれがないため、この微漏れセンサの破損や故障を防ぐこともできる。このように、吹始め圧力を微漏れ流路、吹出し、吹止り圧力を大漏れ流路で別々に測定することにより、微漏れ流路の吹始め圧力に達するまでの時間を調整することが可能になる。このため、自動制御により、吹始め圧力に達するまでの昇圧速度を速めて時間を短縮でき、速やかかつ簡便にワークの検査を実施可能となる。 According to the first aspect of the invention, in the inspection flow path, a small leak flow path having a sensor for measuring a small flow rate and a sensor for measuring a large flow rate are provided in the secondary side flow path for measuring the operating pressure of the workpiece. By branching and providing a switchable large leak flow path, the blow start pressure, which is a small flow rate, is measured in the small leak flow path, and the blow pressure and blow stop pressure, which are large flow rates, are measured in the large leak flow path. By measuring at , it is possible to accurately measure each pressure using a sensor with a scale suitable for each pressure value, and there is no risk of excessive pressure being applied to a slight leak sensor for measuring small flow rates. Therefore, it is also possible to prevent damage or failure of this slight leak sensor. In this way, it is possible to adjust the time to reach the blow start pressure in the small leak channel by separately measuring the blow start pressure in the small leak channel, the blowout, and the blow stop pressure in the large leak channel. become. For this reason, automatic control can speed up the rate of pressure increase until the pressure reaches the start of blowing, shortening the time required to reach the pressure, making it possible to inspect workpieces quickly and easily.

請求項2に係る発明によると、一次側流路に圧力調整手段と圧力測定手段とを設け、これらを制御部に接続していることで、制御部を通して一次側流路からの検査流体を迅速かつ正確に圧力調整し、ワークに対して所望の吹始め、吹出し、吹止り圧力などの検査圧力を供給できる。 According to the second aspect of the invention, the pressure adjusting means and the pressure measuring means are provided in the primary flow path, and these are connected to the control section. In addition, the pressure can be adjusted accurately, and inspection pressures such as desired blowing start, blowing, and blowing end pressures can be supplied to the workpiece.

請求項3に係る発明によると、一次側流路に排気流路を開閉可能に設けていることで、ワークの吹始め圧力、吹出し圧力、吹止り圧力の測定後に流路内を排気することができ、これら作動圧力の検査後にワークの弁座漏れ検査を実施することも可能になる。 According to the third aspect of the invention, the exhaust passage is provided in the primary passage so that it can be opened and closed, so that the inside of the passage can be evacuated after the blow start pressure, the blow pressure, and the blow stop pressure of the workpiece are measured. It is also possible to inspect the workpiece for valve seat leakage after inspecting these operating pressures.

請求項4に係る発明によると、検査用流路において、ワークの検査流体供給用の一次側流路に、圧力調整手段と圧力測定手段とを制御部に接続した状態で設け、この制御部により検査流体の吹始め圧力に達する直前までの昇圧速度が、この吹始め圧力に達する直前から吹始め圧力までの昇圧速度よりも速くなるように設定していることで、吹始め圧力に達するまでの時間を短縮して速やかにワークの圧力検査を実施でき、吹始め圧力の設計値に満たないワークを早期に発見することもできる。吹始め圧力に達する直前の圧力から吹始め圧力の測定に必要な微小な圧力上昇をおこなうことで、吹始め圧力を高精度に測定可能になる。 According to the fourth aspect of the invention, in the inspection channel, the pressure adjusting means and the pressure measuring means are provided in the primary side channel for supplying the inspection fluid to the workpiece in a state of being connected to the control part, and the control part By setting the pressure rise rate of the test fluid until just before reaching the blow start pressure to be faster than the pressure rise rate from just before reaching this blow start pressure to the blow start pressure, The time can be shortened and the work pressure can be inspected quickly, and it is also possible to quickly find work whose pressure at the start of blowing does not meet the design value. It is possible to measure the pressure at the start of blowing with high accuracy by performing a minute pressure increase necessary for measuring the pressure at the start of blowing from the pressure immediately before reaching the pressure at the start of blowing.

請求項5に係る発明によると、検査流体の吹始め圧力直前の圧力をワークに要求される吹始め圧力の略90%の圧力に設定することで、吹始め圧力を超えることなく昇圧速度を速めて検査にかかる時間を短縮し、二次側流路の微小流量測定用である微漏れセンサの破損や故障を防ぎつつ吹始め圧力を測定できる。 According to the fifth aspect of the invention, by setting the pressure immediately before the blow start pressure of the test fluid to a pressure approximately 90% of the blow start pressure required for the workpiece, the pressure rise speed can be increased without exceeding the blow start pressure. It is possible to reduce the time required for inspection by using this method, and to measure the pressure at the start of blowing while preventing the damage or failure of the slight leak sensor for measuring the minute flow rate in the secondary flow path.

請求項6に係る発明によると、ステッピングモータによりレギュレータで検査流体の流量を高精度に調節しつつ供給できることで、測定時に吹始め圧力、吹出し圧力、吹止り圧力がしきい値をまたぐときの圧力調整を自動制御で微細に実施でき、これらの圧力を正確に測定可能となる。 According to the sixth aspect of the invention, the flow rate of the test fluid can be supplied while being adjusted with high precision by the regulator by the stepping motor. Adjustments can be made finely under automatic control, and these pressures can be accurately measured.

請求項7に係る発明によると、微小流量である吹始め圧力を微漏れ流路で測定し、次いで、大流量である吹出し圧力、吹止り圧力を大漏れ流路で測定することで、各圧力値に適したスケールを備えたセンサを用いてそれぞれの圧力を正確に測定でき、特に微小流量測定用である微漏れセンサに過大な圧力が加わるおそれもないため、この微漏れセンサの破損や故障も防げる。微漏れ流路の吹始め圧力に達するまでの時間の調整も容易になる。 According to the seventh aspect of the invention, the blow start pressure, which is a minute flow rate, is measured in the small leak flow path, and then the blow pressure and the blow stop pressure, which are large flow rates, are measured in the large leak flow path. Each pressure can be accurately measured using a sensor with a scale suitable for the value, and there is no risk of excessive pressure being applied to the micro-leakage sensor, which is used to measure minute flow rates. can also be prevented. It also becomes easy to adjust the time until the blowing start pressure of the minute leak flow path is reached.

請求項8に係る発明によると、吹始め圧力に達するまでの昇圧速度を速めることで時間を短縮して速やかにワークの圧力検査を実施でき、吹始め圧力の設計値に満たないワークを早期に発見することもできる。吹始め圧力に達する直前の圧力から吹始め圧力の測定に必要な微小な圧力上昇をおこなうことで、吹始め圧力を高精度に測定可能になる。 According to the eighth aspect of the invention, by increasing the rate of pressure increase until the blow start pressure is reached, the pressure inspection of the work can be quickly performed in a short time, and the work whose blow start pressure does not meet the design value can be detected early. can also be discovered. It is possible to measure the pressure at the start of blowing with high accuracy by performing a minute pressure increase necessary for measuring the pressure at the start of blowing from the pressure immediately before reaching the pressure at the start of blowing.

請求項9に係る発明によると、吹始め圧力を超えることなく昇圧速度を速めて検査時間を短縮し、二次側流路の作動圧力測定用のセンサの破損や故障を防ぎつつ吹始め圧力を測定できる。 According to the ninth aspect of the invention, the pressure rise speed is increased without exceeding the blow start pressure, the inspection time is shortened, and the blow start pressure is reduced while preventing damage or failure of the sensor for measuring the working pressure of the secondary flow path. can be measured.

請求項10に係る発明によると、吹始め圧力、吹出し圧力、吹止り圧力に加えて、ワークに対して弁座漏れ検査をおこなうことにより、弁座漏れのおそれの無い信頼性の高い安全弁を提供できる。 According to the tenth aspect of the invention, in addition to the blow-start pressure, blow-off pressure, and blow-off pressure, a valve seat leak test is performed on the workpiece, thereby providing a highly reliable safety valve that is free from valve seat leaks. can.

本発明の安全弁の自動検査装置の一例を示す模式図である。It is a schematic diagram showing an example of an automatic inspection device for a safety valve of the present invention. 図1の検査用流路の大漏れ流路を開にした状態を示す模式図である。FIG. 2 is a schematic diagram showing a state in which the inspection channel of FIG. 1 is opened with a large leakage channel; 図2の検査用流路の微漏れ流路を開にした状態を示す模式図である。FIG. 3 is a schematic diagram showing a state in which a minute leak channel of the inspection channel of FIG. 2 is opened; 図3の検査用流路の大漏れ流路を開にした状態を示す模式図である。FIG. 4 is a schematic diagram showing a state in which the inspection channel of FIG. 3 is opened with a large leakage channel; ワーク内の排気状態を示す模式図である。FIG. 4 is a schematic diagram showing an exhaust state within a work; 弁座漏れ検査における流路の状態を示す模式図である。FIG. 4 is a schematic diagram showing the state of the flow path in the valve seat leakage inspection; ワークのアンクランプ時における流路の状態を示す模式図である。FIG. 5 is a schematic diagram showing the state of the flow path when the workpiece is unclamped; 安全弁(ワーク)の一例を示す中央縦断面図である。FIG. 4 is a central longitudinal sectional view showing an example of a safety valve (workpiece); 安全弁の自動検査方法の一例を示すフローチャートである。4 is a flow chart showing an example of an automatic safety valve inspection method; 図9の続きを示す安全弁の自動検査方法のフローチャートである。FIG. 10 is a flow chart of the safety valve automatic inspection method continued from FIG. 9 ; FIG. 安全弁の昇圧過程を示すグラフである。It is a graph which shows the pressurization process of a safety valve.

以下に、本発明における安全弁の自動検査装置を実施形態に基づいて詳細に説明する。
図1~図7においては、本発明の安全弁の自動検査装置(以下、装置本体1という)の一例の模式図を示しており、この装置本体1には検査用流路2が設けられ、検査用流路2に検査用の安全弁(ワーク)3が接続される。
An automatic inspection device for safety valves according to the present invention will be described in detail below based on embodiments.
FIGS. 1 to 7 show schematic diagrams of an example of an automatic inspection device for safety valves of the present invention (hereinafter referred to as device main body 1). A safety valve (workpiece) 3 for inspection is connected to the flow path 2 .

装置本体1は、検査用流路2から検査流体を図8に示した安全弁3に流入させることで、安全弁3の作動圧力である、吹始め圧力、吹出し圧力、吹止り圧力を測定可能であり、これら圧力を、検査される当該安全弁3に応じて予め設定した比較用の設計値、すなわちその安全弁3に要求される作動圧力の設計値と比較することで、検査結果を判定可能に設けている。さらに、装置本体1は、作動圧力の検査後に弁座漏れ検査も実施するように設けている。検査に使用する検査流体としては、例えば、空気又は窒素ガスが用いられる。 The device main body 1 can measure the blow start pressure, blow pressure, and blow stop pressure, which are the operating pressures of the safety valve 3, by allowing the test fluid to flow from the test channel 2 into the safety valve 3 shown in FIG. , these pressures are compared with a design value for comparison set in advance according to the safety valve 3 to be inspected, that is, a design value of the operating pressure required for the safety valve 3, so that the inspection result can be determined. there is Further, the device main body 1 is arranged so that the valve seat leakage test is also performed after the working pressure test. Air or nitrogen gas, for example, is used as the inspection fluid used for inspection.

本実施形態において、前記した「吹始め圧力」、「吹出し圧力」、「吹止り圧力」の各圧力とは、JIS_B8210「安全弁」で規定されている内容、すなわち、「吹始め圧力:入口側の圧力が増加して、出口側で流体の微量な流出が検知されるときの入口側の圧力」、「吹出し圧力:安全弁が急速開作動(ポッピング)するときの入口側の圧力。ポッピング圧力ともいう。」、「吹止り圧力:弁体が弁座と再接触するか、又はリフトがゼロとなるときの入口側の静的圧力。再着座圧力ともいう。」とそれぞれ定義するものとする。 In this embodiment, the above-mentioned "blowing start pressure", "blowing pressure", and "blowing stop pressure" are defined in JIS_B8210 "Safety valve", that is, "Blow start pressure: pressure on the inlet side The pressure on the inlet side when the pressure increases and a small amount of fluid is detected on the outlet side. Blow-out pressure: The pressure on the inlet side when the safety valve rapidly opens (popping). Also called popping pressure. and "Blow-off pressure: The static pressure on the inlet side when the disc re-contacts the valve seat or the lift becomes zero. Also referred to as re-seat pressure."

図中、検査用流路2は、検査流体供給用の一次側流路11、ワーク3の作動圧力測定用の二次側流路12、検査流体排気用の排気流路13を有し、一次側流路11と二次側流路12とがワーク3を挟むようにして一、二次側にそれぞれ設けられ、排気流路13が一次側流路11から流路を切り替え可能に開閉自在に接続されている。 In the figure, the inspection channel 2 has a primary side channel 11 for supplying the test fluid, a secondary side channel 12 for measuring the operating pressure of the workpiece 3, and an exhaust channel 13 for discharging the test fluid. A side flow path 11 and a secondary side flow path 12 are provided on the first and secondary sides respectively so as to sandwich the workpiece 3, and an exhaust flow path 13 is connected to the primary side flow path 11 so as to be openable and closable so as to switch the flow path. ing.

一次側流路11には、検査流体(エア又は窒素ガス)を供給するための流体供給源20、圧力調整手段21、圧力測定手段22、流路開閉用のNC(ノーマルクローズ)型の加圧用電磁弁23が設けられている。このうち、流体供給源20はエアポンプよりなり、例えば、3.5MPa以上の元圧(供給圧)によって、検査流体であるエアを検査用流路2(一次側流路1)に供給可能になっている。 The primary channel 11 includes a fluid supply source 20 for supplying a test fluid (air or nitrogen gas), a pressure adjusting means 21, a pressure measuring means 22, and an NC (normally closed) pressurizing device for opening and closing the channel. A solenoid valve 23 is provided. Among these, the fluid supply source 20 is composed of an air pump, and can supply air, which is a test fluid, to the test flow path 2 (primary side flow path 1) with an original pressure (supply pressure) of, for example, 3.5 MPa or more. ing.

圧力調整手段21は、検査流体の供給圧力調整用として設けられ、ステッピングモータ30と、このステッピングモータ30により開度を制御可能なレギュレータ31とを備え、制御用として設けられた制御部32により、ステッピングモータ30の回転量を制御してレギュレータ31の開度が調整可能に設けられ、このレギュレータ31を通して検査流体の圧力が調節される。そして、圧力調節された検査流体が、所望の圧力で一次側流路11からワーク3に供給可能に設けられている。
圧力測定手段22は、一般的に用いられる圧力センサよりなり、この圧力センサ22で測定した一次側流路11の圧力が、制御部32によって検出される。
The pressure adjusting means 21 is provided for adjusting the supply pressure of the test fluid, and includes a stepping motor 30 and a regulator 31 capable of controlling the opening degree by the stepping motor 30. A control section 32 provided for control, The amount of rotation of the stepping motor 30 is controlled to adjust the opening of the regulator 31 , and the pressure of the test fluid is adjusted through the regulator 31 . A pressure-regulated test fluid is provided so as to be supplied from the primary side flow path 11 to the workpiece 3 at a desired pressure.
The pressure measuring means 22 is composed of a generally used pressure sensor.

圧力調整手段21、圧力測定手段22は、制御部32に電気的に接続されている。図中、一点鎖線は、圧力調整手段21、圧力測定手段22が電気的に接続されている状態を示している。 The pressure adjusting means 21 and the pressure measuring means 22 are electrically connected to the controller 32 . In the figure, the dashed line indicates the state in which the pressure adjusting means 21 and the pressure measuring means 22 are electrically connected.

制御部32は、圧力調整手段21、圧力測定手段22、とさらに加圧用電磁弁23に加えて、後述する排気流路13や二次側流路12に設けられた電磁弁、センサ等の構成部品に電気的に接続され、これにより、検査用流路2の一次側流路11以外の電磁弁等の動作の制御や、センサによる測定値の検出も可能になっている。 In addition to the pressure adjusting means 21, the pressure measuring means 22, and the pressurizing electromagnetic valve 23, the control unit 32 includes electromagnetic valves, sensors, etc. provided in the exhaust flow path 13 and the secondary flow path 12, which will be described later. It is electrically connected to the parts, thereby enabling control of the operation of electromagnetic valves other than the primary side flow path 11 of the inspection use flow path 2 and detection of measured values by sensors.

なお、制御部には、圧力の測定値の記録や、各ワーク3に応じて設定された吹始め圧力、吹出し圧力、吹止り圧力による作動圧力の設定値や、弁座漏れ検査用の圧力などの設定値が比較用として格納され、この設定値を測定値とを比較することで、各種検査結果を判定する機能も備えていてもよい。 In addition, the control unit stores the recording of the measured pressure values, the set values of the operating pressure based on the blow start pressure, the blow pressure, and the blow stop pressure set according to each workpiece 3, and the pressure for valve seat leakage inspection, etc. may be stored for comparison, and may be provided with a function of judging various inspection results by comparing the set values with the measured values.

本例では、図11のとおり上記の制御部32により、検査開始から検査流体の吹始め圧力に達する直前までの昇圧速度(A区間)が、この吹始め圧力に達する直前から吹始め圧力までの昇圧速度(B区間)よりも速くなるように、圧力調整手段21の動作が制御されるように設定されている。制御部32には、図示しないモニターやキーボードなどの入力機も接続され、検査の結果等の確認や設定事項などの入力をおこなうようにしてもよい。 In this example, as shown in FIG. 11, the control unit 32 controls the pressure increase rate (A section) from the start of inspection to immediately before reaching the blowing start pressure of the test fluid. The operation of the pressure regulating means 21 is set so as to be faster than the pressure increase speed (B section). Input devices such as a monitor and a keyboard (not shown) may also be connected to the control unit 32 to confirm inspection results and input setting items.

加圧用電磁弁23は、圧力調整手段21、圧力測定手段22の二次側に流体加圧用として接続され、制御部32の制御により一次側流路11を開閉可能に設けられる。 The pressurization electromagnetic valve 23 is connected to the secondary side of the pressure adjustment means 21 and the pressure measurement means 22 for fluid pressurization, and is provided so as to be able to open and close the primary side flow path 11 under the control of the control section 32 .

排気流路13には、圧力センサ35、排気用のNO(ノーマルオープン)型の電磁弁37が設けられる。これら圧力センサ35、排気用電磁弁37は、制御部32により制御され、圧力センサ35で流路内の圧力を測定しつつ、排気用電磁弁37を開閉して排気流路13から検査流体を排出可能になっている。 The exhaust passage 13 is provided with a pressure sensor 35 and a NO (normally open) electromagnetic valve 37 for exhaust. The pressure sensor 35 and the exhaust solenoid valve 37 are controlled by the control unit 32 . While the pressure sensor 35 measures the pressure in the flow path, the exhaust solenoid valve 37 is opened and closed to discharge the test fluid from the exhaust flow path 13 . Ejectable.

二次側流路12は、ワークの作動圧力測定用の流路であり、ワーク3からの微小な漏れによる流体を流すための微漏れ流路40と、この微小な漏れに比較してより流量の大きい流体を流すための大漏れ流路41とが、制御部32で切り替え可能な状態で分岐して設けられる。 The secondary side flow path 12 is a flow path for measuring the working pressure of the workpiece, and has a small leakage flow path 40 for flowing fluid due to minute leakage from the work 3, and a flow rate larger than this minute leakage. A large leakage flow path 41 for flowing a fluid with a large leakage is provided branching in a state switchable by the control unit 32 .

微漏れ流路40には、微漏れ側電磁弁50と、吹始め圧力による微小流量を測定可能なスケールを備えた微漏れセンサ51とが備えられ、大漏れ流路41には、大漏れ側電磁弁52と、吹出し圧力及び吹止り圧力による大流量を測定可能な大漏れセンサ53とが備えられている。微漏れセンサ51、大漏れセンサ53としては、フローセンサが用いられ、特に、微漏れセンサ51は、0.01mL/min.単位で細かく圧力測定できるスケールを備えていることが望ましい。本実施例において、微漏れセンサは、FSM-H-N-005ML-6A-T(CKD製、スケール0.25~5mL/min.)、大漏れセンサは、FSM3-L005U1BH1A1N-AH(CKD製、スケール15~500mL/min.)を用いている。
微漏れ側電磁弁50、微漏れセンサ51、大漏れ側電磁弁52、大漏れセンサ53は、それぞれ制御部32で制御可能に設けられる。
The small leak passage 40 is provided with a small leak side solenoid valve 50 and a small leak sensor 51 having a scale capable of measuring a minute flow rate due to the pressure at the start of blowing. A solenoid valve 52 and a large leak sensor 53 capable of measuring a large flow rate due to blow-off pressure and blow-off pressure are provided. A flow sensor is used as the small leak sensor 51 and the large leak sensor 53. In particular, it is desirable that the small leak sensor 51 has a scale capable of finely measuring pressure in units of 0.01 mL/min. In this embodiment, the small leak sensor is FSM-HN-005ML-6A-T (manufactured by CKD, scale 0.25 to 5 mL/min.), and the large leak sensor is FSM3-L005U1BH1A1N-AH (manufactured by CKD, scale 15 ~500mL/min.) is used.
The small leak side solenoid valve 50 , the small leak sensor 51 , the large leak side solenoid valve 52 , and the large leak sensor 53 are provided so as to be controllable by the controller 32 .

図示しないが、一次側流路11と二次側流路12との間の所定位置には、適宜のワーク取付け用治具が設けられる。この治具は、例えば、下部側の載置用ベースと上部側のクランプ板とを備えた構造であり、ベース側に一次側流路11、クランプ板側に二次側流路12がそれぞれ接続され、ベースとクランプ板との間にワーク3を挟んで検査用流路2にシール状態で接続することが可能になっている。ワーク3取付け用の治具は、ワーク3をシール状態で接続し、その作動圧力(少なくとも、吹始め圧力、吹出し圧力、吹止り圧力)を測定可能であれば、上記以外の各種の構造のものを用いることもできる。 Although not shown, an appropriate workpiece mounting jig is provided at a predetermined position between the primary side flow path 11 and the secondary side flow path 12 . This jig has a structure including, for example, a mounting base on the lower side and a clamp plate on the upper side, and the primary side channel 11 is connected to the base side, and the secondary side channel 12 is connected to the clamp plate side. It is possible to sandwich the workpiece 3 between the base and the clamp plate and connect it to the inspection channel 2 in a sealed state. The jig for mounting the workpiece 3 has various structures other than the above, as long as it can connect the workpiece 3 in a sealed state and measure the operating pressure (at least, the blowing start pressure, the blowing pressure, and the blowing stop pressure). can also be used.

図8においては、上述した装置本体1によって作動圧力の測定や弁座漏れ検査が実施される検査用の安全弁(ワーク)3の一例を示している。安全弁3は、例えば容器や配管に接続され、これらの内部圧力が規定の圧力を超えて上昇することを防ぐ機能を備えており、これによって容器や配管の破損等を防止することができる。 FIG. 8 shows an example of an inspection safety valve (workpiece) 3 on which the operating pressure is measured and the valve seat leakage inspection is performed by the device body 1 described above. The safety valve 3 is connected to, for example, a container or pipe, and has a function of preventing the internal pressure of these from exceeding a specified pressure, thereby preventing damage to the container or pipe.

安全弁3は、ばねの弾発力に抗して作動する、いわゆるばね式と呼ばれる作動方式の安全弁からなり、円筒状のボデー70、キャップ71、ソケット72を備えている。ボデー70の両端側には、キャップ71、ソケット72がそれぞれ螺着され、これらキャップ71、ソケット72の中央部には、検査流体が通過する入口側貫通穴73、出口側貫通穴74がそれぞれ入口側流路、出口側流路として形成され、入口側貫通穴73の二次側(ボデー内部側)には、環状の弁座75が突出形成されている。 The safety valve 3 is a so-called spring-type safety valve that operates against the elastic force of a spring, and includes a cylindrical body 70 , a cap 71 and a socket 72 . A cap 71 and a socket 72 are screwed to both ends of the body 70, and an inlet-side through hole 73 and an outlet-side through hole 74 through which the test fluid passes are provided in the center of the cap 71 and socket 72, respectively. An annular valve seat 75 is formed so as to protrude from the secondary side of the inlet-side through-hole 73 (inside the body).

ボデー70内部には、円筒状の弁体76がコイルスプリング77でキャップ71方向に弾発付勢された状態で取付けられ、弁体76のキャップ71側に装着されたシート78が、コイルスプリング77によって弁座75に着座可能に設けられている。弁体76の外周にはこの弁体の移動方向に沿って切欠き溝79が複数箇所に設けられ、この切欠き溝79が弁開時における流路の機能を果たしている。 Inside the body 70, a cylindrical valve body 76 is mounted elastically biased toward the cap 71 by a coil spring 77. A seat 78 is attached to the valve body 76 on the cap 71 side. It is provided so that it can be seated on the valve seat 75 by means of. A plurality of cutout grooves 79 are provided on the outer periphery of the valve body 76 along the moving direction of the valve body, and these cutout grooves 79 function as flow paths when the valve is opened.

安全弁3は、通常時においては、コイルスプリング77の弾発付勢力で弁体76のシート78が弁座75に着座することで弁閉状態が維持される。一方、入口側貫通穴73から所定の流体圧が加わったときには、その圧力により弁体76がコイルスプリング77の弾発付勢力に抗して移動して弁開状態となり、入口側貫通穴73からの圧力が切欠き溝79を通して出口側貫通穴74から流出されて圧力を開放可能になっている。 In the normal state, the safety valve 3 is maintained in the closed state by the seat 78 of the valve body 76 being seated on the valve seat 75 by the resilient biasing force of the coil spring 77 . On the other hand, when a predetermined fluid pressure is applied from the inlet-side through hole 73 , the pressure causes the valve body 76 to move against the elastic biasing force of the coil spring 77 to open the valve. is discharged from the outlet-side through-hole 74 through the notch groove 79 to release the pressure.

本例の安全弁としては、例えば、口径サイズが10A~65A程度のものが用いられ、容器や配管への取付け側であるキャップ71に取付け用のフランジ71aが形成されたフランジ式からなっているが、このようなフランジ式に限らず、キャップにおねじが設けられたねじ込み式による取付け構造などであってもよい。また、安全弁3の作動方式は、ばね式に限らず、てこ式やおもり式、ばね平衡式などであってもよい。これらのように取付け構造や作動方式が異なる安全弁の検査をおこなう場合には、装置本体の取付け用治具を適宜変更することで容易に対応できる。 As the safety valve of this example, for example, one having a bore size of about 10A to 65A is used, and is of a flange type in which a flange 71a for attachment is formed on the cap 71, which is the attachment side to the container or pipe. The mounting structure is not limited to such a flange type, and may be a screw-in type mounting structure in which an external thread is provided on the cap. Moreover, the operating method of the safety valve 3 is not limited to the spring type, and may be a lever type, a weight type, a spring balance type, or the like. When inspecting safety valves having different mounting structures and operating methods, such as those described above, it is possible to easily cope with these by appropriately changing the mounting jig of the device main body.

次いで、上述した装置本体1による安全弁3の自動検査方法の一例を図9、図10に示したフローチャートに基づいて詳細に説明する。図1~図7の検査時における模式図において、実線は、検査用流路2に検査流体が流れることが可能な状態、破線は、検査用流路2に検査流体が流れていない状態を示している。 Next, an example of the automatic inspection method of the safety valve 3 by the device body 1 described above will be described in detail based on the flow charts shown in FIGS. 9 and 10. FIG. In the schematic diagrams of FIGS. 1 to 7 during inspection, the solid line indicates a state in which the test fluid can flow through the test channel 2, and the dashed line indicates a state in which the test fluid does not flow in the test channel 2. ing.

先ず、装置本体1に設けられた図示しないスタートボタンをオフの状態にし、図1において検査用流路2に検査流体が流れていない状態で、制御部32から安全弁(ワーク)3に応じた吹始め圧力、吹出し圧力、吹止り圧力の各作動圧力、弁座漏れ検査用の圧力、安全弁の品番や製造番号などの各種の入力事項を設定(入力)する。 First, a start button (not shown) provided on the apparatus main body 1 is turned off, and in a state in which the inspection fluid is not flowing in the inspection flow path 2 in FIG. Set (input) various input items such as starting pressure, blowing pressure, blow-off pressure, pressure for valve seat leakage inspection, safety valve product number and manufacturing number.

続いて、検査をおこなう新規のワーク(安全弁)3を、入口側貫通穴73を下方に向けた状態で、キャップ71を治具のベースにセット(載置)する。これにより、ワーク3を治具の所定位置に配置した状態とする。 Subsequently, a new workpiece (safety valve) 3 to be inspected is set (placed) on the base of the jig with the inlet-side through hole 73 directed downward. As a result, the workpiece 3 is arranged at a predetermined position on the jig.

スタートボタンをオンにすることで装置本体1による安全弁3の自動検査が開始され、これ以降の電磁弁やセンサなどの各機器の制御が、制御部32によっておこなわれる。 When the start button is turned on, automatic inspection of the safety valve 3 by the device main body 1 is started, and after this, each device such as the solenoid valve and the sensor is controlled by the controller 32 .

スタートボタンのオンでクランプ板が下降し、このクランプ板とベースとの間にワーク3がクランプされる。これにより、一次側流路11と入口側貫通穴73、二次側流路12と出口側貫通穴74とが、それぞれシールされて外部漏れが防がれた状態でワーク3が装置本体1の所定位置に接続される。 When the start button is turned on, the clamp plate descends and the workpiece 3 is clamped between the clamp plate and the base. As a result, the primary flow path 11 and the inlet through hole 73, and the secondary flow path 12 and the outlet through hole 74 are sealed to prevent external leakage, and the work 3 is placed in the main body 1 of the apparatus. Connected in place.

図2において、吹始め圧力の測定開始時には、一次側流路11が開状態、大漏れ流路41が開状態、微漏れ流路40が閉状態、排気流路13が閉状態となるようにそれぞれの電磁弁が制御され、二次側流路12の流路が大漏れ流路41に切り替えられる。 In FIG. 2, at the start of blowing pressure measurement, the primary side flow path 11 is open, the large leak flow path 41 is open, the small leak flow path 40 is closed, and the exhaust flow path 13 is closed. Each electromagnetic valve is controlled, and the flow path of the secondary side flow path 12 is switched to the large leakage flow path 41 .

この状態でステッピングモータ30の回転制御によりレギュレータ31が開かれ、一次側流路11からワーク2に供給される検査流体の圧力が、当該ワーク3に要求される吹始め圧力の略50%程度に設定される。このときの検査流体の昇圧速度(図11のC区間)は、後述の吹始め圧力測定時の検査流体の供給時に比較して速くなるように、レギュレータ31が高速で開かれるようになっている。 In this state, the regulator 31 is opened by controlling the rotation of the stepping motor 30, and the pressure of the test fluid supplied to the work 2 from the primary side flow path 11 is reduced to about 50% of the blow start pressure required for the work 3. set. The regulator 31 is opened at a high speed so that the pressure increase speed of the test fluid (section C in FIG. 11) at this time is faster than when the test fluid is supplied when measuring the pressure at the start of blowing, which will be described later. .

ステッピングモータ30によりレギュレータ31がさらに開かれ、ワーク3への検査流体が、当該ワーク3に要求される吹始め圧力の略90%程度の圧力まで昇圧するように調整される。このときの検査流体の昇圧速度(図11のD区間)は、ワーク3の吹始め圧力を測定するときの昇圧速度よりも昇圧速度がより速い状態で、検査流体の吹始め圧力に達する直前の圧力である略90%の圧力まで昇圧される。 The regulator 31 is further opened by the stepping motor 30 , and the inspection fluid to the work 3 is adjusted so that the pressure rises to about 90% of the blow start pressure required for the work 3 . The pressure rise rate of the test fluid at this time (D section in FIG. 11) is a state where the pressure rise rate is faster than the pressure rise rate when measuring the blow start pressure of the workpiece 3, and is immediately before reaching the pressure of the test fluid start blow. The pressure is increased to approximately 90% of the pressure.

この場合、大漏れセンサ53によりワーク3からの漏れが確認されたときには、このワーク3を不良品として判定し、ワーク3を治具からアンクランプし、続けて新規のもしくは作動方式に合わせて調整した検査用ワーク3を治具に取付けて圧力検査を実施すればよい。大漏れセンサ53により漏れが確認されないときには、続けて昇圧が続けられる。 In this case, when leakage from the work 3 is confirmed by the large leak sensor 53, the work 3 is determined as a defective product, the work 3 is unclamped from the jig, and then adjusted according to the new or operation method. The pressure inspection may be performed by mounting the inspection work 3 to a jig. When no leakage is confirmed by the large leak sensor 53, the pressure is continuously increased.

上述のように、一次側流路11からワーク3に供給される検査流体の圧力をワーク3に要求される吹始め圧力の略50%まで昇圧した後に、この吹始め圧力の略90%に昇圧する理由としては、検査開始から吹始め圧力直前まで急速に昇圧させると、例えば安全弁が昇圧開始直後に吹出した場合はどの検査圧力の値で吹始めたかが判定できないため、安全弁の作動をどれくらい調整すればよいのか判断できない恐れがある一方、検査開始から吹始め圧力まで昇圧速度を小さくしてしまうと検査時間が非常に長くなってしまうため、一次側流路11からワーク3に供給される検査流体の圧力をワーク3に要求される吹始め圧力の略50%まで昇圧した後に、この吹始め圧力の略90%に昇圧させるといった二段階で検査流体の昇圧を実施しているのである。なお、ここでいう略50%及び略90%については値を適宜変更してもよい。また、二段階で検査流体の昇圧を実施しているが、三段階以上の検査流体の昇圧を実施しても良い。 As described above, after the pressure of the test fluid supplied from the primary flow path 11 to the workpiece 3 is increased to approximately 50% of the blow start pressure required for the workpiece 3, the pressure is increased to approximately 90% of the blow start pressure. The reason for this is that if the pressure is increased rapidly from the start of the test to just before the start of blowing, for example, if the safety valve blows off immediately after the start of pressure rising, it cannot be determined at what inspection pressure value the blow started. On the other hand, if the pressure increase rate is reduced from the start of inspection to the start of blowing pressure, the inspection time will become very long. After increasing the pressure to about 50% of the blow start pressure required for the workpiece 3, the test fluid is increased to about 90% of the blow start pressure. Note that the values of approximately 50% and approximately 90% may be changed as appropriate. Also, although the test fluid is boosted in two stages, the test fluid may be boosted in three or more stages.

検査流体の吹始め圧力に達する直前の圧力、すなわち、圧力センサ35による圧力の測定値が、当該ワーク3に要求される吹始め圧力の略90%の圧力に達した後には、図3に示すように、大漏れ流路41が閉状態、微漏れ流路40が閉状態となるように各電磁弁が制御される。これにより、二次側流路12が微漏れ流路40に切り替えられた状態で吹始め圧力が測定される。 The pressure immediately before reaching the blow start pressure of the test fluid, that is, the pressure measured by the pressure sensor 35 reaches approximately 90% of the blow start pressure required for the work 3, as shown in FIG. , each electromagnetic valve is controlled so that the large leak path 41 is closed and the small leak path 40 is closed. As a result, the blow start pressure is measured in a state where the secondary side flow path 12 is switched to the slight leak flow path 40 .

吹始め圧力の測定時には、ステッピングモータ30によりレギュレータ31の開速度が下げられ、この状態から例えば0.002MPa/sec程度の昇圧速度により、吹始め圧力までの略50%や略90%に昇圧させる場合(図11のE区間)に比較して、検査流体の圧力がごくわずかずつ上昇するように制御される。この昇圧時において、微漏れセンサ51による検査流体の漏れ量が、所定のしきい値(例えば、0.3mL/min.)をまたいだとき(超えたとき)の圧力測定手段22で測定した圧力が吹始め圧力として判定され、この測定した圧力の値が制御部32に記録される。 When the blow start pressure is measured, the opening speed of the regulator 31 is lowered by the stepping motor 30, and from this state, the pressure is increased to approximately 50% or approximately 90% of the blow start pressure at a pressure increase rate of, for example, about 0.002 MPa/sec. Compared to the case (E section of FIG. 11), the pressure of the test fluid is controlled to rise very slightly. The pressure measured by the pressure measuring means 22 when the amount of test fluid leaked by the slight leak sensor 51 straddles (exceeds) a predetermined threshold value (for example, 0.3 mL/min.) at this pressure rise. is determined as the blow start pressure, and the measured pressure value is recorded in the controller 32 .

次いで、図4に示すように、大漏れ流路41が開状態、微漏れ流路40が閉状態となるように各電磁弁が制御され、二次側流路12が大漏れ流路41に切り替えられ、この状態で吹出し圧力、吹止り圧力がそれぞれ測定される。 Next, as shown in FIG. 4, each solenoid valve is controlled so that the large leak flow path 41 is open and the minor leak flow path 40 is closed, and the secondary side flow path 12 becomes the large leak flow path 41. The blow-off pressure and the blow-off pressure are measured in this state.

吹出し圧力の測定時には、上述の吹始め圧力の測定時よりも昇圧速度が速められることで、検査流体の圧力が急速に上昇する。ワーク3の弁開時の排出能力が限界に達すると、それ以上の排出が難しくなって圧力値がピークに達した状態となる。この圧力がピークに達したときの圧力測定手段22が測定した圧力がワーク3の吹出し圧力として判定され、この測定した圧力の値が制御部32に記録される。 When measuring the blowing pressure, the rate of pressure increase is faster than when measuring the above-mentioned blowing start pressure, so that the pressure of the test fluid rises rapidly. When the discharge capacity of the workpiece 3 reaches its limit when the valve is opened, it becomes difficult to discharge any more, and the pressure value reaches its peak. The pressure measured by the pressure measuring means 22 when this pressure reaches its peak is determined as the blowing pressure of the workpiece 3 , and the value of this measured pressure is recorded in the controller 32 .

吹出し圧力の測定後には、ステッピングモータ30を逆転させるようにし、これによってレギュレータ31が徐々に絞られる方向に制御されて検査流体の圧力が漸次下降する。これに伴って圧力測定手段22が測定した圧力の測定値も低下する。この圧力の測定値がほぼゼロとなったときに、その圧力がワーク3の吹止り圧力として判定され、その値が制御部32に記録される。 After measuring the blowing pressure, the stepping motor 30 is reversed, thereby controlling the regulator 31 in a direction to gradually reduce the pressure of the test fluid. Along with this, the pressure value measured by the pressure measuring means 22 also decreases. When the measured value of this pressure becomes almost zero, the pressure is determined as the blow-off pressure of the workpiece 3 and the value is recorded in the control section 32 .

吹止り圧力の測定後には、図5に示すように、一次側流路11、二次側流路12が閉じられた状態で、排気流路13が連通した状態に制御される。これにより、排気流路13からワーク3内と検査用流路2内の検査流体が排気され、圧力が低下した状態となる。 After the blow-off pressure is measured, as shown in FIG. 5, the exhaust flow path 13 is controlled to communicate with the primary flow path 11 and the secondary flow path 12 closed. As a result, the test fluid in the work 3 and the test flow path 2 is exhausted from the exhaust flow path 13, and the pressure is lowered.

その後、図6において、二次側流路12の微漏れ流路40が開状態、大漏れ流路41が閉状態、一次側流路11が閉状態、排気流路13が閉状態となるように制御される。この状態でレギュレータ31が開かれて、一次側流路11内が弁座漏れ検査に適した供給圧力に設定される。 After that, in FIG. 6, the minor leak passage 40 of the secondary side passage 12 is in an open state, the large leak passage 41 is in a closed state, the primary side passage 11 is in a closed state, and the exhaust passage 13 is in a closed state. controlled by In this state, the regulator 31 is opened, and the supply pressure in the primary side passage 11 is set to be suitable for the valve seat leakage inspection.

一次側流路11が開状態に制御され、ワーク3に所定の検査圧力が加えられて弁座漏れ検査がおこなわれる。この場合、微漏れセンサ51の圧力が所定のしきい値(例えば、0.3mL/min.)以下であることを確認し、このしきい値以下であれば弁座漏れ検査に合格したものとして判定されてその判定結果が制御部32に記録される。 The primary side flow path 11 is controlled to be in an open state, and a predetermined inspection pressure is applied to the workpiece 3 to perform a valve seat leakage inspection. In this case, it is confirmed that the pressure of the slight leak sensor 51 is below a predetermined threshold value (for example, 0.3 mL/min.). A judgment is made and the judgment result is recorded in the control section 32 .

最後に、図7に示すように、大漏れ流路41が閉状態、一次側流路11が閉状態、排気流路13が開状態となるように各電磁弁が制御されて排気流路に切り替えられることで、排気流路13からワーク3内と検査用流路2内の検査流体が排気される。
排気後には、治具からワーク3をアンクランプして検査が完了となり、続けて別のワーク3を検査することができる。
Finally, as shown in FIG. 7, the solenoid valves are controlled so that the large leakage flow path 41 is closed, the primary side flow path 11 is closed, and the exhaust flow path 13 is open. By switching, the test fluid in the workpiece 3 and the test flow path 2 is exhausted from the exhaust flow path 13 .
After the evacuation, the workpiece 3 is unclamped from the jig to complete the inspection, and another workpiece 3 can be inspected continuously.

なお、前述した安全弁の自動検査装置は、あくまでも一例を示したものであり、必要に応じて、流路の構成や、流路に接続されているセンサやバルブなどの仕様や数、流路への取付位置などを適宜変更することもできる。また、安全弁の自動検査方法についても、必ずしも前述したフローにこだわることなく、昇圧の手順や圧力設定など適宜変更することも可能である。 The safety valve automatic inspection device described above is merely an example. can be changed as appropriate. Also, regarding the automatic inspection method of the safety valve, it is also possible to appropriately change the procedure for increasing the pressure and setting the pressure without sticking to the flow described above.

次に、本発明の安全弁の自動操作装置及び自動検査方法の上記実施形態における作用・効果を述べる。
装置本体1は、二次側流路12に微漏れ流路40と大漏れ流路41とを分岐するように備え、これら微漏れ流路40と大漏れ流路41への流路を加圧用電磁弁23で切り替え可能に設けているので、ワーク3の作動圧力を測定するときに、吹き始め圧力を微漏れ流路40の微漏れセンサ51によって測定し、さらに、吹出し、吹止り圧力を大漏れ流路41の大漏れセンサ53によって測定できる。このため、微漏れセンサ51として微細な圧力の測定用スケールを有するセンサ、大漏れセンサ53として大圧力の測定用スケールを有するセンサを用いて、吹始め、吹出し、吹止りの各圧力の測定や弁座漏れ検査における圧力の測定を精度におこなうことができ、測定した値を制御部32の設計値と比較することにより、ワーク3の合否を容易に判定可能となる。また、小流量測定用センサである微漏れセンサ51に過大な圧力が加わるおそれがないため、小流量測定用センサの破損や故障も防ぐことができる。
しかも、上記の微漏れ流路40、大漏れ流路41は、二次側流路12から単に分岐しただけの分岐流路であるため、流路の複雑化も防いでいる。
Next, the actions and effects of the above-described embodiment of the automatic operation device and automatic inspection method for a safety valve of the present invention will be described.
The device main body 1 is provided with a small leak channel 40 and a large leak channel 41 branched from the secondary side channel 12, and the channels leading to the small leak channel 40 and the large leak channel 41 are pressurized. Since the solenoid valve 23 is switchable, when measuring the working pressure of the workpiece 3, the blow start pressure is measured by the slight leak sensor 51 of the slight leak flow path 40, and the blow and blow stop pressures are increased. It can be measured by a large leak sensor 53 in the leak path 41 . For this reason, a sensor having a minute pressure measuring scale as the slight leak sensor 51 and a sensor having a large pressure measuring scale as the large leak sensor 53 are used to measure the respective pressures at the beginning, blowing, and stopping of blowing. It is possible to accurately measure the pressure in the valve seat leakage inspection, and by comparing the measured value with the design value of the control unit 32, it is possible to easily determine whether the workpiece 3 is acceptable. In addition, since there is no possibility that excessive pressure is applied to the slight leak sensor 51, which is a sensor for measuring a small flow rate, damage or failure of the sensor for measuring a small flow rate can be prevented.
Moreover, since the above-described small leak flow path 40 and large leak flow path 41 are branch flow paths that are simply branched from the secondary side flow path 12, the flow paths are prevented from becoming complicated.

また、一次側流路11においては、圧力調整手段21としてレギュレータ31及びステッピングモータ30、圧力測定手段22として圧力センサを設け、制御部32により、吹始め圧力に達する直前までの昇圧温度を、この吹始め圧力に達する直前から吹始め圧力までの昇圧速度よりも速くなるように設定しているので、吹始め圧力に達するまでの時間を短縮できる。これらのレギュレータ31、ステッピングモータ30、圧力センサ22を用いることで、一次側流路11の簡素化を図りつつ、圧力調整と圧力測定とを迅速かつ正確におこなうことができる。 In the primary flow passage 11, a regulator 31 and a stepping motor 30 are provided as pressure adjusting means 21, and a pressure sensor is provided as pressure measuring means 22. Since the pressure is set to be faster than the rate of increase from just before reaching the blow start pressure to the blow start pressure, the time until reaching the blow start pressure can be shortened. By using the regulator 31, the stepping motor 30, and the pressure sensor 22, the pressure adjustment and pressure measurement can be performed quickly and accurately while simplifying the primary flow path 11. FIG.

しかも、ステッピングモータ30でレギュレータ31の開度を制御しているので、ステッピングモータ30の精細な回転制御により、検査流体の圧力を0.002MPa/secのごく微小な昇圧速度で上昇させ、この微小な昇圧速度により吹始め圧力を正確に測定可能となる。 Moreover, since the opening of the regulator 31 is controlled by the stepping motor 30, the fine rotation control of the stepping motor 30 increases the pressure of the test fluid at a very small rate of 0.002 MPa/sec. It is possible to accurately measure the pressure at the start of blowing due to the high rate of pressure increase.

吹始め圧力の測定時において、大漏れ流路41に切り替えたときに、ワーク3に要求される吹始め圧力の略90%の圧力まで昇圧速度を速めるようにしているため、吹始め圧力を超過することなく迅速に昇圧でき、吹始め圧力が設計値から略10%程度に大きく外れたワーク3を、その後の作動圧力(吹始め圧力、吹出し圧力、吹止り圧力)の測定や弁座漏れ検査をおこなうことなく、不良品として早期に発見することができる。 At the time of measuring the blow start pressure, when switching to the large leak flow path 41, the pressure rise speed is increased to approximately 90% of the blow start pressure required for the workpiece 3, so the blow start pressure is exceeded. The pressure at the start of blowing can be quickly increased without any pressure, and the work 3 whose blowing start pressure deviates greatly from the design value by about 10% is subjected to subsequent measurement of the operating pressure (blowing start pressure, blowing pressure, blow stop pressure) and valve seat leakage inspection. It can be found early as a defective product without carrying out the inspection.

以上、本発明の実施の形態について詳述したが、本発明は、前記実施の形態記載に限定されるものではなく、本発明の特許請求の範囲に記載されている発明の精神を逸脱しない範囲で、種々の変更ができるものである。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the description of the above embodiments, and is within the spirit of the invention described in the claims of the present invention. and can be modified in various ways.

1 装置本体
2 検査用流路
3 ワーク(安全弁)
11 一次側流路
12 二次側流路
13 排気流路
21 圧力調整手段
22 圧力センサ(圧力測定手段)
30 ステッピングモータ
31 レギュレータ
32 制御部
40 微漏れ流路
41 大漏れ流路
51 微漏れセンサ
53 大漏れセンサ
1 device main body 2 inspection channel 3 work (safety valve)
REFERENCE SIGNS LIST 11 primary flow path 12 secondary flow path 13 exhaust flow path 21 pressure adjusting means 22 pressure sensor (pressure measuring means)
30 stepping motor 31 regulator 32 control unit 40 small leak channel 41 large leak channel 51 small leak sensor 53 large leak sensor

Claims (10)

安全弁からなるワークを接続した検査用流路に検査流体を流入させて安全弁の作動圧力を測定する自動検査装置であって、前記検査用流路は、前記ワークを挟んで検査流体供給用の一次側流路と前記ワークの作動圧力測定用の二次側流路とを備え、この二次側流路には、安全弁の吹始め圧力による微小流量測定用の微漏れセンサを有する微漏れ流路と、吹始め圧力よりも大きい吹出し圧力及び吹止り圧力による大流量測定用の大漏れセンサを有する大漏れ流路とが切り替え可能に分岐して設けられていることを特徴とする安全弁の自動検査装置。 An automatic inspection device for measuring the operating pressure of a safety valve by causing a test fluid to flow into an inspection flow path connected to a workpiece, the inspection flow path sandwiching the work. A minor leak passage comprising a side passage and a secondary passage for measuring the working pressure of the workpiece, and the secondary passage has a minute leak sensor for measuring a minute flow rate due to the blowing start pressure of the safety valve. and a large leakage flow path having a large leakage sensor for measuring a large flow rate due to blowing pressure greater than the blowing start pressure and blowing stop pressure are branched so as to be switchable. Device. 前記一次側流路には、検査流体の供給圧力調整用の圧力調整手段と圧力測定用の圧力測定手段とが設けられ、これら圧力調整手段と圧力測定手段とが制御用の制御部に接続された請求項1に記載の安全弁の自動検査装置。 The primary flow path is provided with pressure adjusting means for adjusting the supply pressure of the test fluid and pressure measuring means for measuring the pressure, and these pressure adjusting means and pressure measuring means are connected to a control unit for control. The automatic inspection device for safety valves according to claim 1. 前記一次側流路には、検査流体排気用の排気流路が開閉可能に設けられた請求項1又は2に記載の安全弁の自動検査装置。 3. The automatic inspection device for a safety valve according to claim 1, wherein an exhaust passage for exhausting test fluid is provided in said primary passage so as to be openable and closable. 安全弁からなるワークを接続した検査用流路に検査流体を流入させて安全弁の作動圧力を測定する自動検査装置であって、前記検査用流路は、前記ワークを挟んで検査流体供給用の一次側流路と前記ワークの作動圧力測定用の二次側流路とを備え、前記一次側流路には、検査流体の供給圧力調整用の圧力調整手段と圧力測定用の圧力測定手段とが制御用の制御部に接続された状態で設けられ、この制御部により、検査流体の吹始め圧力に達する直前までの昇圧速度が、この吹始め圧力に達する直前から吹始め圧力までの昇圧速度よりも速くなるように設定されていることを特徴とする安全弁の自動検査装置。 An automatic inspection device for measuring the operating pressure of a safety valve by causing a test fluid to flow into an inspection flow path connected to a workpiece, the inspection flow path sandwiching the work. A side flow path and a secondary side flow path for measuring the working pressure of the work are provided, and the primary side flow path has pressure adjusting means for adjusting the supply pressure of the test fluid and pressure measuring means for measuring the pressure. It is connected to a control unit for control, and by this control unit, the pressure rise rate of the test fluid until just before reaching the blow start pressure is higher than the pressure rise rate from immediately before reaching the blow start pressure to the blow start pressure. An automatic inspection device for a safety valve, characterized in that it is set to speed up. 前記検査流体の吹始め圧力に達する直前の圧力が、当該ワークに要求される吹始め圧力の略90%の圧力に設定された請求項4に記載の安全弁の自動検査装置。 5. The safety valve automatic inspection device according to claim 4, wherein the pressure immediately before reaching the blow start pressure of the inspection fluid is set to approximately 90% of the blow start pressure required for the work. 前記圧力調整手段は、ステッピングモータにより開度が制御されるレギュレータを備え、このレギュレータで流量調節された検査流体が所望の圧力で前記一次側流路から前記ワークに供給可能に設けられた請求項4又は5に記載の安全弁の自動検査装置。 3. The pressure adjusting means is provided with a regulator whose opening is controlled by a stepping motor, and the test fluid whose flow rate is adjusted by the regulator is provided so as to be supplied to the work from the primary side passage at a desired pressure. 6. The automatic inspection device for the safety valve according to 4 or 5. 安全弁からなるワークを検査用流路に設けた検査流体供給用の一次側流路と作動圧力測定用の二次側流路との間に接続し、この二次側流路に切り替え可能に分岐して設けた微小流量測定用の微漏れセンサを有する微漏れ流路と大流量測定用の大漏れセンサを有する大漏れ流路とのうち、前記微漏れ流路に切り替えた状態で前記ワークの吹始め圧力を測定し、次いで、大漏れ流路に切り替えた状態で前記ワークの吹出し圧力、吹止り圧力をそれぞれ測定するようにしたことを特徴とする安全弁の自動検査方法。 A workpiece consisting of a safety valve is connected between the primary side flow path for supplying test fluid and the secondary side flow path for measuring the operating pressure provided in the test flow path, and branched to the secondary side flow path so as to be switchable. and a small leak channel having a small leak sensor for measuring a small flow rate and a large leak channel having a large leak sensor for measuring a large flow rate. An automatic inspection method for a safety valve, characterized in that the pressure at the start of blowing is measured, and then the pressure at which the work is blown out and the pressure at which the blowing stops are measured in a state of switching to a large leakage flow path. 吹始め圧力の測定時には、前記二次側流路を前記大漏れ流路に切り替えて昇圧速度がより速い状態で検査流体の吹始め圧力に達する直前まで昇圧した後に、前記二次側流路を前記微漏れ流路に切り替えて吹始め圧力を測定するようにした請求項7に記載の安全弁の自動検査方法。 When measuring the blow-start pressure, the secondary-side flow path is switched to the large-leakage flow path, and the pressure rises immediately before reaching the blow-start pressure of the test fluid in a state where the pressure rise rate is faster, and then the secondary-side flow path is switched. 8. The method of automatically inspecting a safety valve according to claim 7, wherein the pressure at the start of blowing is measured by switching to the slightly leaking flow path. 前記検査流体の吹始め圧力に達する直前の圧力が、当該ワークに要求される吹始め圧力の略90%の圧力に設定された請求項8に記載の安全弁の自動検査方法。 9. The method of automatically inspecting a safety valve according to claim 8, wherein the pressure immediately before reaching the blow start pressure of the inspection fluid is set to approximately 90% of the blow start pressure required for the work. 吹止り圧力の測定後には、前記一次側流路と前記大漏れ流路を閉じ、前記一次側流路に設けた排気流路を開けて前記ワーク内と前記検査用流路内とを排気した後に、前記ワークに所定の検査圧力を加えて弁座漏れ検査をおこなうようにした請求項7乃至9の何れか1項に記載の安全弁の自動検査方法。 After measuring the blow-off pressure, the primary side flow path and the large leakage flow path were closed, and the exhaust flow path provided in the primary side flow path was opened to exhaust the work and the inspection flow path. 10. The method of automatically inspecting a safety valve according to claim 7, wherein a predetermined inspection pressure is applied to said workpiece to inspect for valve seat leakage.
JP2021003739A 2021-01-13 2021-01-13 Safety valve automatic inspection device and automatic inspection method Pending JP2022108633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021003739A JP2022108633A (en) 2021-01-13 2021-01-13 Safety valve automatic inspection device and automatic inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021003739A JP2022108633A (en) 2021-01-13 2021-01-13 Safety valve automatic inspection device and automatic inspection method

Publications (1)

Publication Number Publication Date
JP2022108633A true JP2022108633A (en) 2022-07-26

Family

ID=82556444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021003739A Pending JP2022108633A (en) 2021-01-13 2021-01-13 Safety valve automatic inspection device and automatic inspection method

Country Status (1)

Country Link
JP (1) JP2022108633A (en)

Similar Documents

Publication Publication Date Title
JP6638117B2 (en) Valve seat inspection and pressure resistance inspection apparatus for valves and their inspection methods
RU2378678C2 (en) Method and device for controlling regulating valve using control loop, as well as for detecting faults in said loop
KR100824213B1 (en) Safety Valve Test Bench
KR20180101898A (en) Valve leakage test equipment
KR20100058939A (en) Natural gas pressure regulating equipment and operating methods of it
JP6934099B1 (en) Gas leak detector, gas leak detection setting method, gas leak detection method, program
KR101282600B1 (en) Opening and closing device of modulating valve for testing relief valve of nuclear power plant
KR20220081031A (en) Tightness test system and test method for valve
JP6608418B2 (en) Pressure resistance test method for pressure devices such as valves
KR101221631B1 (en) Apparatus of performance testing console for the Pilot Operated Check Valve
JP2022108633A (en) Safety valve automatic inspection device and automatic inspection method
KR102198689B1 (en) Performance test measurement equipment for safety valve
JPH06201046A (en) O-ring testing device for air flow-rate sensor
KR20220081032A (en) Performance test system and test method for valve
US5801298A (en) In-line valve seat leak flow testing apparatus
KR101551761B1 (en) Butterfly Valve impulse pressure testing apparatus
KR102130639B1 (en) Inspection device for pressure control cap
KR100589824B1 (en) Equipment for pressure testing of safety valve
JPH01269028A (en) Leak testing method
KR101662131B1 (en) Apparatus for testing emergency trip apparatus and method for testing thereof
JPH1137890A (en) Pressure leakage inspector
KR101990505B1 (en) Apparatus for inspecting driving valve of pneumatic control valve
JP7510791B2 (en) Air Leak Testing Equipment
JP2002013418A (en) Abnormality detection method for gas turbine fuel supply device
US20220088726A1 (en) Welding cap cooling water controller and method of controlling a welding cap cooling water controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528