JP2022103596A - Thermal shock resistant member - Google Patents

Thermal shock resistant member Download PDF

Info

Publication number
JP2022103596A
JP2022103596A JP2020218329A JP2020218329A JP2022103596A JP 2022103596 A JP2022103596 A JP 2022103596A JP 2020218329 A JP2020218329 A JP 2020218329A JP 2020218329 A JP2020218329 A JP 2020218329A JP 2022103596 A JP2022103596 A JP 2022103596A
Authority
JP
Japan
Prior art keywords
zirconium oxide
mass
average value
less
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020218329A
Other languages
Japanese (ja)
Inventor
美恵子 八嶋
Mieko Yashima
文彦 石田
Fumihiko Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2020218329A priority Critical patent/JP2022103596A/en
Publication of JP2022103596A publication Critical patent/JP2022103596A/en
Pending legal-status Critical Current

Links

Abstract

To provide a thermal shock resistant member sufficiently exhibiting mechanical strength and thermal shock resistance of ZTA.SOLUTION: A thermal shock resistant member according to the present disclosure comprises a ceramic containing aluminum oxide as a main component, zirconium oxide, and a closed pore area ratio of 10% or more and 20% or less. In the ceramic, a difference (A) between the average value of the distance between the centers of gravity of the adjacent zirconium oxide crystal particles and the average value of the circle equivalent diameter of the zirconium oxide crystal particles is 0.7 to 1.3 times a difference (B) between the average value of the distance between the centers of gravity of the adjacent closed pores and the average value of the circle equivalent diameter of the closed pores.SELECTED DRAWING: None

Description

本開示は、耐熱衝撃性部材に関する。 The present disclosure relates to thermostable impact resistant members.

従来、酸化アルミニウムを主成分とし、酸化ジルコニウムを含むセラミックス(ZTA)は、優れた機械的強度および耐熱衝撃性を有している。そのため、ZTAは、誘電体、積層コンデンサ、サーミスタ、バリスタ、チップインダクターなどの電子部品を焼成するための焼成用治具、溶接用ノズル、各種電気炉用炉心管、サポートチューブ、ラジアントチューブ、ガス吹込み管、ガス採取管、測温用熱電対、各種機器用の保護管、接点装置用絶縁部材などが挙げられる。 Conventionally, ceramics (ZTA) containing aluminum oxide as a main component and zirconium oxide have excellent mechanical strength and thermal shock resistance. Therefore, ZTA is a firing jig for firing electronic components such as dielectrics, laminated capacitors, thermistors, varistor, and chip inductors, welding nozzles, core tubes for various electric furnaces, support tubes, radiant tubes, and gas. Examples thereof include a blow pipe, a gas sampling pipe, a thermocouple for temperature measurement, a protective pipe for various devices, and an insulating member for a contact device.

このようなZTAとして、特許文献1には、正方晶あるいは立方晶ジルコニア結晶相と単斜晶ジルコニア結晶相とを有し、気孔率(開気孔率)が10~40%であるアルミナ・ジルコニア質焼結体が記載されている。 As such a ZTA, Patent Document 1 describes an alumina-zirconia substance having a rectangular or cubic zirconia crystal phase and a monoclinic zirconia crystal phase and having a porosity (open porosity) of 10 to 40%. The sintered body is described.

特開2016-132577号公報Japanese Unexamined Patent Publication No. 2016-132577

特許文献1に記載のアルミナ・ジルコニア質焼結体は、隣り合う気孔(開気孔)の間隔と隣り合うジルコニアの間隔とのバランスが悪い。そのため、特許文献1に記載のアルミナ・ジルコニア質焼結体は、本来有する機械的強度および耐熱衝撃性を十分に発揮できない。 In the alumina-zirconia-like sintered body described in Patent Document 1, the balance between the distance between adjacent pores (open pores) and the distance between adjacent zirconia is poor. Therefore, the alumina-zirconia-based sintered body described in Patent Document 1 cannot sufficiently exhibit the inherent mechanical strength and thermal impact resistance.

本開示の課題は、ZTAが有する機械的強度および耐熱衝撃性を十分に発揮し得る耐熱衝撃性部材を提供することである。 An object of the present disclosure is to provide a thermostable impact member capable of sufficiently exhibiting the mechanical strength and thermostable impact resistance of ZTA.

本開示に係る耐熱衝撃性部材は、酸化アルミニウムを主成分とし、酸化ジルコニウムを含み、閉気孔の面積率が10%以上20%以下であるセラミックスを含む。セラミックスにおいて、隣り合う酸化ジルコニウムの結晶粒子の重心間距離の平均値と酸化ジルコニウムの結晶粒子の円相当径の平均値との差(A)が、隣り合う閉気孔の重心間距離の平均値と閉気孔の円相当径の平均値との差(B)の0.7倍以上1.3倍以下である。 The thermostable impact member according to the present disclosure includes ceramics containing aluminum oxide as a main component, zirconium oxide, and an area ratio of closed pores of 10% or more and 20% or less. In ceramics, the difference (A) between the average value of the distance between the centers of gravity of adjacent zirconium oxide crystal particles and the average value of the equivalent circle diameters of the adjacent zirconium oxide crystal particles is the average value of the distance between the centers of gravity of the adjacent closed pores. It is 0.7 times or more and 1.3 times or less the difference (B) from the average value of the circle equivalent diameter of the closed pores.

本開示に係る溶接切断用またはプラズマ切断用ノズル、および接点装置用絶縁部材は、上記の耐熱衝撃性部材を含む。 The welding cutting or plasma cutting nozzle and the insulating member for the contact device according to the present disclosure include the above-mentioned heat-resistant impact-resistant member.

本開示に係る耐熱衝撃性部材は、閉気孔の面積率が10%以上20%以下であるZTAを含み、上記の差(A)が上記の差(B)の0.7倍以上1.3倍以下である。したがって、本開示に係る耐熱衝撃性部材は、ZTAが有する機械的強度および耐熱衝撃性を十分に発揮し得る。 The thermostable impact member according to the present disclosure includes ZTA having an area ratio of closed pores of 10% or more and 20% or less, and the above difference (A) is 0.7 times or more and 1.3 times the above difference (B). It is less than double. Therefore, the thermostable impact member according to the present disclosure can sufficiently exhibit the mechanical strength and the thermostable impact resistance of ZTA.

本開示の一実施形態に係る耐熱衝撃性部材は、酸化アルミニウムを主成分とし、酸化ジルコニウムを含み、閉気孔の面積率が10%以上20%以下であるセラミックスを含む。閉気孔の面積率が10%以上20%以下であるセラミックスは、緻密質と多孔質との中間程度の性質を有する。 The thermostable impact member according to the embodiment of the present disclosure includes ceramics containing aluminum oxide as a main component, zirconium oxide, and an area ratio of closed pores of 10% or more and 20% or less. Ceramics having an area ratio of closed pores of 10% or more and 20% or less have properties intermediate between dense and porous.

本明細書において、耐熱衝撃性部材とは、JIS R 1648:2002で規定する精密法に準拠して得られる耐熱衝撃温度が350℃以上のセラミックスを含む部材を意味する。 In the present specification, the heat-resistant impact member means a member including ceramics having a heat-resistant impact temperature of 350 ° C. or higher obtained in accordance with the precision method specified in JIS R 1648: 2002.

「酸化アルミニウムを主成分」とは、セラミックスを構成する成分の合計100質量%のうち、酸化アルミニウムが80質量%以上の割合で含むことを意味する。セラミックスを構成している成分は、CuKα線を用いたX線回折装置によって同定することができる。各成分の含有量は、例えばICP(Inductively Coupled Plasma)発光分光分析装置または蛍光X線分析装置により求めることができる。 The "main component of aluminum oxide" means that aluminum oxide is contained in a proportion of 80% by mass or more in the total 100% by mass of the components constituting the ceramics. The components constituting the ceramics can be identified by an X-ray diffractometer using CuKα rays. The content of each component can be determined by, for example, an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer or a fluorescent X-ray analyzer.

閉気孔の面積率は、以下の方法によって測定される。まず、セラミックスの断面を鏡面研磨し、温度を1420℃としてサーマルエッチングした表面を500倍の倍率で観察する。平均的な範囲を選択して、例えば、面積が4.34×10μm(横方向の長さが241μm、縦方向の長さが180μm)となる範囲を走査型電子顕微鏡で撮影して、観察像を得る。この観察像を対象として、画像解析ソフト「A像くん(ver2.52)」(登録商標、旭化成エンジニアリング(株)製)を用いて、粒子解析という手法で閉気孔の面積率を求めればよい。以下、画像解析ソフト「A像くん」と記載した場合、旭化成エンジニアリング(株)製の画像解析ソフトを示す。 The area ratio of the closed pores is measured by the following method. First, the cross section of the ceramic is mirror-polished, and the surface subjected to thermal etching at a temperature of 1420 ° C. is observed at a magnification of 500 times. Select an average range and photograph, for example, a range with an area of 4.34 × 10 4 μm 2 (horizontal length 241 μm, vertical length 180 μm) with a scanning electron microscope. , Get an observation image. For this observation image, the area ratio of the closed pores may be obtained by a method called particle analysis using the image analysis software "A image-kun (ver2.52)" (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.). Hereinafter, when the image analysis software "A image-kun" is described, the image analysis software manufactured by Asahi Kasei Engineering Co., Ltd. is shown.

この手法の設定条件としては、例えば、画像の明暗を示す指標であるしきい値を91、明度を暗、小図形除去面積を1μm、雑音除去フィルタを有とすればよい。観察像の明るさに応じて、しきい値は調整すればよい。明度を暗、2値化の方法を手動とし、小図形除去面積を1μmおよび雑音除去フィルタを有とした上で、観察像に現れるマーカーが閉気孔の形状と一致するように、しきい値を調整すればよい。 As the setting conditions of this method, for example, a threshold value indicating the brightness of the image may be 91, the brightness may be dark, the small figure removal area may be 1 μm 2 , and a noise removal filter may be provided. The threshold value may be adjusted according to the brightness of the observed image. The brightness is dark, the binarization method is manual, the small figure removal area is 1 μm 2 , and the noise removal filter is provided, and the threshold value is set so that the marker appearing in the observation image matches the shape of the closed pores. Should be adjusted.

耐熱衝撃性部材が円筒状の溶接切断用またはプラズマ切断用ノズルである場合、軸方向に垂直な断面を鏡面研磨し、上述した方法に従って、開気孔の面積率を求めればよい。 When the heat-impact member is a cylindrical welding-cutting or plasma-cutting nozzle, the cross section perpendicular to the axial direction may be mirror-polished, and the area ratio of the open pores may be obtained according to the method described above.

一実施形態に係る耐熱衝撃性部材は、酸化ジルコニウムを含むことによって、破壊靭性が高くなる。その結果、一実施形態に係る耐熱衝撃性部材は閉気孔を含んでいても、機械的強度をある程度維持することができ、かつ昇温および降温によって生じる応力を吸収することができる。 The thermostable impact member according to the embodiment has high fracture toughness by containing zirconium oxide. As a result, even if the thermostable impact member according to the embodiment includes closed pores, the mechanical strength can be maintained to some extent, and the stress generated by the temperature rise and fall can be absorbed.

酸化ジルコニウムの含有量は、酸化アルミニウムを主成分とする量であれば限定されない。酸化ジルコニウムは、セラミックスを構成する成分の合計100質量%のうち、10質量%以上15質量%以下の割合で含まれる。酸化ジルコニウムが、10質量%以上の割合で含まれていると、一実施形態に係る耐熱衝撃性部材の破壊靭性をより高くすることができる。酸化ジルコニウムが、15質量%以下の割合で含まれていると、熱伝導率の低下をより抑制することができる。 The content of zirconium oxide is not limited as long as it contains aluminum oxide as a main component. Zirconium oxide is contained in a proportion of 10% by mass or more and 15% by mass or less in the total 100% by mass of the components constituting the ceramics. When zirconium oxide is contained in a proportion of 10% by mass or more, the fracture toughness of the thermostable impact member according to the embodiment can be further increased. When zirconium oxide is contained in a proportion of 15% by mass or less, the decrease in thermal conductivity can be further suppressed.

酸化アルミニウムの結晶粒子および酸化ジルコニウムの結晶粒子の平均粒子径は、限定されない。例えば、酸化アルミニウムの結晶粒子の平均粒子径は、酸化ジルコニウムの結晶粒子の平均粒子径よりも大きい方がよい。このような構成であると、熱電度率の低下の抑制により効果的である。酸化アルミニウムの結晶粒子は、例えば、6μm以上12μm以下程度の平均粒子径を有する。酸化ジルコニウムの結晶粒子は、例えば、2μm以上4μm以下程度の平均粒子径を有する。 The average particle size of the aluminum oxide crystal particles and the zirconium oxide crystal particles is not limited. For example, the average particle size of the aluminum oxide crystal particles should be larger than the average particle size of the zirconium oxide crystal particles. Such a configuration is more effective in suppressing a decrease in the thermoelectricity rate. The crystal particles of aluminum oxide have, for example, an average particle diameter of about 6 μm or more and 12 μm or less. Zirconium oxide crystal particles have, for example, an average particle diameter of about 2 μm or more and 4 μm or less.

酸化アルミニウムの結晶粒子の平均粒子径は、閉気孔の面積率を求めるために、作製した観察像を対象として、任意の点を中心にして放射状に同じ長さ、例えば、100μmの直線を6本引く。この6本の直線の長さをそれぞれの直線上に存在する結晶の個数で除すことで、平均結晶粒径を求めることができる。 The average particle size of the aluminum oxide crystal particles is the same length radially around an arbitrary point, for example, six straight lines of 100 μm, for the observation image prepared in order to obtain the area ratio of the closed pores. Pull. The average crystal grain size can be obtained by dividing the lengths of these six straight lines by the number of crystals existing on each straight line.

酸化ジルコニウムの結晶粒子の平均粒子径は、上記観察像を対象として、画像解析ソフト「A像くん」を用いて、粒子解析という手法で求めればよい。この手法の設定条件としては、例えば、画像の明暗を示す指標であるしきい値を182、明度を明、小図形除去面積を1μm、雑音除去フィルタを有とすればよい。観察像の明るさに応じて、しきい値は調整すればよい。明度を明、2値化の方法を手動とし、小図形除去面積を1μmおよび雑音除去フィルタを有とした上で、観察像に現れるマーカーが酸化ジルコニウムの結晶粒子の形状と一致するように、しきい値を調整すればよい。 The average particle size of the crystal particles of zirconium oxide may be obtained by a method called particle analysis using the image analysis software "A image-kun" for the above-mentioned observation image. As the setting conditions of this method, for example, a threshold value indicating the brightness of the image may be 182, the brightness may be bright, the small figure removal area may be 1 μm 2 , and a noise removal filter may be provided. The threshold value may be adjusted according to the brightness of the observed image. The brightness is set to light, the binarization method is set to manual, the small figure removal area is 1 μm 2 , and a noise removal filter is provided, so that the marker appearing in the observation image matches the shape of the zirconium oxide crystal particles. You can adjust the threshold.

一実施形態に係る耐熱衝撃性部材に含まれるセラミックスにおいて、隣り合う酸化ジルコニウムの結晶粒子の重心間距離の平均値と酸化ジルコニウムの結晶粒子の円相当径の平均値との差(A)は、隣り合う閉気孔の重心間距離の平均値と閉気孔の円相当径の平均値との差(B)の0.7倍以上1.3倍以下である。 In the ceramics included in the heat-resistant impact member according to the embodiment, the difference (A) between the average value of the distance between the centers of gravity of the adjacent zirconium oxide crystal particles and the average value of the circle equivalent diameters of the zirconium oxide crystal particles is It is 0.7 times or more and 1.3 times or less the difference (B) between the average value of the distance between the centers of gravity of the adjacent closed pores and the average value of the equivalent circle diameters of the closed pores.

隣り合う酸化ジルコニウムの結晶粒子の重心間距離の平均値と酸化ジルコニウムの結晶粒子の円相当径の平均値との差(A)は、隣り合う酸化ジルコニウムの結晶粒子の間隔を示す値である。隣り合う閉気孔の重心間距離の平均値と閉気孔の円相当径の平均値との差(B)は、隣り合う閉気孔の間隔を示す値である。 The difference (A) between the average value of the distance between the centers of gravity of the adjacent zirconium oxide crystal particles and the average value of the equivalent circle diameters of the adjacent zirconium oxide crystal particles is a value indicating the distance between the adjacent zirconium oxide crystal particles. The difference (B) between the average value of the distance between the centers of gravity of the adjacent closed pores and the average value of the equivalent circle diameters of the closed pores is a value indicating the distance between the adjacent closed pores.

このように、差(A)が差(B)の0.7倍以上1.3倍以下であれば、隣り合う酸化ジルコニウムの結晶粒子の間隔と隣り合う閉気孔の間隔とのバランスがよいといえる。そのため、熱衝撃が加わり、酸化ジルコニウムまたは閉気孔を起点とするマイクロクラックが発生しても、マイクロクラックが進展しにくくなる。したがって、熱衝撃によって発生するクラックによる破壊が抑制される。熱衝撃によって発生するクラックによる破壊をより抑制するために、差(A)と差(B)とをほぼ同じ、例えば、差(A)が差(B)の0.9倍以上1.1倍以下程度となるようにしてもよい。 As described above, when the difference (A) is 0.7 times or more and 1.3 times or less the difference (B), the balance between the distance between the crystal particles of adjacent zirconium oxide and the distance between the adjacent closed pores is good. I can say. Therefore, even if a thermal shock is applied and microcracks originating from zirconium oxide or closed pores are generated, the microcracks are less likely to develop. Therefore, destruction due to cracks generated by thermal shock is suppressed. In order to further suppress the destruction due to cracks generated by thermal shock, the difference (A) and the difference (B) are almost the same, for example, the difference (A) is 0.9 times or more and 1.1 times the difference (B). It may be as follows.

酸化ジルコニウムの結晶粒子の重心間距離の平均値は、以下の方法によって測定される。上記観察像を対象として、画像解析ソフト「A像くん」を用いて、分散度計測の重心間距離法という手法で酸化ジルコニウムの結晶粒子の重心間距離の平均値を求めればよい。 The average value of the distance between the centers of gravity of the zirconium oxide crystal particles is measured by the following method. For the above observation image, the average value of the distance between the centers of gravity of the crystal particles of zirconium oxide may be obtained by a method called the distance between the centers of gravity of the dispersion degree measurement using the image analysis software "A image-kun".

この手法の設定条件としては、例えば、画像の明暗を示す指標であるしきい値を182、明度を明、小図形除去面積を1μm、雑音除去フィルタを無とすればよい。観察像の明るさに応じて、しきい値は調整すればよく、明度を明、2値化の方法を手動とし、小図形除去面積を1μmおよび雑音除去フィルタを有とした上で、観察像に現れるマーカーが酸化ジルコニウムの結晶粒子の形状と一致するように、しきい値を調整すればよい。 As the setting conditions of this method, for example, the threshold value indicating the brightness of the image may be 182, the brightness may be bright, the small figure removal area may be 1 μm 2 , and the noise removal filter may be omitted. The threshold value may be adjusted according to the brightness of the observed image, the brightness is clarified, the binarization method is manual, the small figure removal area is 1 μm 2 , and the noise removal filter is provided. The threshold may be adjusted so that the markers appearing in the image match the shape of the zirconium oxide crystal particles.

酸化ジルコニウムの結晶粒子の円相当径は、以下の方法で求めることができる。上記観察像を対象として、粒子解析という手法で酸化ジルコニウムの結晶粒子の円相当径を求めればよい。この手法の設定条件も分散度計測の重心間距離法で用いた設定条件と同じにすればよい。 The equivalent circle diameter of the zirconium oxide crystal particles can be determined by the following method. For the above observation image, the equivalent circle diameter of the zirconium oxide crystal particles may be obtained by a technique called particle analysis. The setting conditions of this method may be the same as the setting conditions used in the distance between the centers of gravity of the dispersion measurement.

閉気孔の重心間距離および閉気孔の円相当径の各平均値についても、酸化ジルコニウムの結晶粒子の重心間距離および酸化ジルコニウムの結晶粒子の円相当径の各平均値と同様の方法で測定される。但し、設定条件は、閉気孔の面積率を求めるのに用いた設定条件と同じにする。 The average values of the distance between the centers of gravity of the closed pores and the equivalent circle diameter of the closed pores were also measured by the same method as the average values of the distance between the centers of gravity of the crystal particles of zirconium oxide and the equivalent diameter of the circles of the crystal particles of zirconium oxide. To. However, the setting conditions are the same as the setting conditions used to obtain the area ratio of the closed pores.

酸化ジルコニウムの結晶粒子の球状化率の平均値は限定されない。酸化ジルコニウムの結晶粒界に発生する応力をより小さくすることができる点で、酸化ジルコニウムの結晶粒子の球状化率の平均値は、閉気孔の球状化率の平均値よりも大きい方がよい。酸化ジルコニウムの結晶粒子の球状化率の平均値は、例えば、閉気孔の球状化率の平均値よりも10%以上、具体的には14%以上20%以下程度大きい方がよい。酸化ジルコニウムの結晶粒子の球状化率の平均値は、例えば56%以上64%以下であってもよく、閉気孔の球状化率の平均値は、例えば40%以上46%以下であってもよい。 The average value of the spheroidization rate of zirconium oxide crystal particles is not limited. The average value of the spheroidization rate of the zirconium oxide crystal particles should be larger than the average value of the spheroidization rate of the closed pores in that the stress generated at the grain boundaries of zirconium oxide can be made smaller. The average value of the spheroidization rate of the zirconium oxide crystal particles should be, for example, 10% or more, specifically 14% or more and 20% or less, larger than the average value of the spheroidization rate of the closed pores. The average value of the spheroidization rate of the zirconium oxide crystal particles may be, for example, 56% or more and 64% or less, and the average value of the spheroidization rate of the closed pores may be, for example, 40% or more and 46% or less. ..

ここで、酸化ジルコニウムの結晶粒子および閉気孔のそれぞれの球状化率とは、黒鉛面積法で規定される比率を転用したものであり、概念的には、以下の式(1)および(2)で規定される。
酸化ジルコニウムの結晶粒子の球状化率(%)=(A/B)×100・・・(1)
A:酸化ジルコニウムの結晶粒子の実面積
B:酸化ジルコニウムの結晶粒子の最小外接円の面積
閉気孔の球状化率(%)=(C/D)×100・・・(2)
C:閉気孔の実面積
D:閉気孔の最小外接円の面積
Here, the spheroidization rates of the zirconium oxide crystal particles and the closed pores are obtained by diverting the ratios specified by the graphite area method, and conceptually, the following equations (1) and (2) are used. Specified in.
Spheroidization rate of zirconium oxide crystal particles (%) = (A / B) × 100 ... (1)
A: Actual area of zirconium oxide crystal particles B: Area of minimum circumscribed circle of zirconium oxide crystal particles Spheroidization rate of closed pores (%) = (C / D) × 100 ... (2)
C: Actual area of the closed pore D: Area of the minimum circumscribed circle of the closed pore

具体的には、酸化ジルコニウムの結晶粒子および閉気孔のそれぞれの球状化率の平均値は、いずれも上記観察像を対象として、粒子解析という手法で求めればよい。但し、酸化ジルコニウムの結晶粒子の球状化率の平均値を求めるための設定条件は、酸化ジルコニウムの結晶粒子の重心間距離の平均値を求めるのに用いた設定条件と同じにする。閉気孔の球状化率の平均値を求めるための設定条件は、閉気孔の面積率を求めるのに用いた設定条件と同じにする。 Specifically, the average value of the spheroidization rates of the zirconium oxide crystal particles and the closed pores may be obtained by a method called particle analysis for the above-mentioned observation image. However, the setting conditions for obtaining the average value of the spheroidization rate of the zirconium oxide crystal particles are the same as the setting conditions used for obtaining the average value of the distance between the centers of gravity of the zirconium oxide crystal particles. The setting conditions for obtaining the average value of the spheroidization rate of the closed pores are the same as the setting conditions used for obtaining the area ratio of the closed pores.

耐熱衝撃性部材が円筒状の溶接切断用またはプラズマ切断用ノズルである場合、軸方向に垂直な断面を鏡面研磨する。温度を1420℃としてサーマルエッチングした表面を上述した方法に従って、閉気孔および酸化ジルコニウムの重心間距離および円相当径の各平均値などを求めればよい。 When the heat-impact member is a cylindrical weld cutting or plasma cutting nozzle, the cross section perpendicular to the axial direction is mirror-polished. The surface that has been thermally etched at a temperature of 1420 ° C. may be obtained by the above-mentioned method to obtain the average values of the distance between the closed pores and the center of gravity of zirconium oxide and the equivalent circle diameter.

一実施形態に係る耐熱衝撃性部材に含まれるセラミックスは、マグネシウム、カルシウム、イットリウムおよびチタンからなる群より選択される少なくとも1種を、さらに含んでいてもよい。これらの元素の酸化物(MgO、CaO、YおよびTiO)は、酸化ジルコニウムの安定化剤として作用する。これらの元素は、酸化物(MgO、CaO、YおよびTiO)に換算して、例えば、合計で0.8質量%以上1.2質量%以下の割合で含まれていてもよい。 The ceramics contained in the thermostable impact member according to the embodiment may further contain at least one selected from the group consisting of magnesium, calcium, yttrium and titanium. Oxides of these elements (MgO, CaO , Y2O3 and TiO2 ) act as stabilizers for zirconium oxide. These elements may be contained in a total ratio of, for example, 0.8% by mass or more and 1.2% by mass or less in terms of oxides (MgO, CaO , Y2O3 and TiO2 ). ..

合計で0.8質量%以上の場合、酸化ジルコニウムの結晶について、室温で安定な正方晶および立方晶の割合が多くなる。その結果、一実施形態に係る耐熱衝撃性部材の破壊靭性、機械的強度などの機械的特性をより向上させることができる。合計で1.2質量%以下の場合、異常な粒成長の発生が抑制される。そのため、上記の機械的特性を維持することができる。 When the total is 0.8% by mass or more, the proportion of tetragonal and cubic crystals stable at room temperature increases in the zirconium oxide crystals. As a result, mechanical properties such as fracture toughness and mechanical strength of the thermostable impact member according to the embodiment can be further improved. When the total is 1.2% by mass or less, the occurrence of abnormal grain growth is suppressed. Therefore, the above mechanical properties can be maintained.

一実施形態に係る耐熱衝撃性部材に含まれるセラミックスは、リチウム、ナトリウムおよびカリウムからなる群より選択される少なくとも2種が、酸化物(LiO、NaOおよびKO)に換算して、合計で0.08質量%以下の割合で含まれていてもよい。 As for the ceramics contained in the heat-resistant impact-resistant member according to one embodiment, at least two kinds selected from the group consisting of lithium, sodium and potassium are converted into oxides (Li 2 O, Na 2 O and K 2 O). In total, it may be contained in a proportion of 0.08% by mass or less.

合計で0.08質量%以下であれば、誘電正接(tanδ)の上昇を抑制することができる。その結果、プラズマCVD装置に用いられる成膜用反応容器などのプラズマの分布に依存した温度のばらつきが発生する環境で耐熱衝撃性部材を使用したとしても、誘電正接(tanδ)が抑制されているため、熱のばらつきが生じにくい。そのため、クラックの発生がより抑制される。 If the total is 0.08% by mass or less, the increase in the dielectric loss tangent (tan δ) can be suppressed. As a result, even if the heat-impacting member is used in an environment where temperature variation depends on the distribution of plasma, such as a reaction vessel for film formation used in a plasma CVD apparatus, dielectric loss tangent (tan δ) is suppressed. Therefore, heat variation is unlikely to occur. Therefore, the occurrence of cracks is further suppressed.

一実施形態に係る耐熱衝撃性部材に含まれるセラミックスは、クロムをさらに含んでいてもよい。クロムの含有量は限定されず、例えば、Crに換算して0.5質量%以上2.5質量%以下の割合で含まれる。 The ceramics contained in the thermostable impact member according to the embodiment may further contain chromium. The content of chromium is not limited, and is, for example, contained in a proportion of 0.5% by mass or more and 2.5% by mass or less in terms of Cr 2 O 3 .

クロムがCrに換算して0.5質量%以上2.5質量%以下の割合で含まれることによって、一実施形態に係る耐熱衝撃性部材に含まれるセラミックスの表面がピンク色を呈する。その結果、一実施形態に係る耐熱衝撃性部材の需要者に対し、高級感、美的満足感および癒し効果を与えることができる。 When chromium is contained in a proportion of 0.5% by mass or more and 2.5% by mass or less in terms of Cr 2 O 3 , the surface of the ceramics contained in the heat-impacting member according to the embodiment exhibits a pink color. .. As a result, it is possible to provide a high-class feeling, an aesthetic satisfaction and a healing effect to the consumer of the heat-resistant impact-resistant member according to the embodiment.

耐熱衝撃性部材に含まれるセラミックスを構成する成分は、CuKα線を用いたX線回折装置による測定結果からJCPDSカードによって同定すればよい。各成分の割合は、成分を同定した後、蛍光X線分析装置(XRF)またはICP発光分光分析装置を用いて、成分を構成する元素の含有量を求め、同定された成分に換算すればよい。 The components constituting the ceramics contained in the thermostable impact member may be identified by a JCPDS card from the measurement results by an X-ray diffractometer using CuKα rays. The ratio of each component may be determined by determining the content of the elements constituting the component using a fluorescent X-ray analyzer (XRF) or an ICP emission spectroscopic analyzer after identifying the component and converting it into the identified component. ..

耐熱衝撃部材は、文字、記号、図形、ロゴ、マーク、QRコード((株)デンソーウェーブ、登録商標)などが施されていてもよい。これら文字などは、レーザー光による照射によって得ることができる。レーザー光によって照射された文字等は、高温(例えば、500℃~1200℃)で用いられても、消失することがないので、製品管理に有効である。 The heat-resistant impact member may be provided with characters, symbols, figures, logos, marks, QR codes (Denso Wave Co., Ltd., registered trademark) and the like. These characters and the like can be obtained by irradiation with a laser beam. Characters and the like irradiated with laser light do not disappear even when used at a high temperature (for example, 500 ° C to 1200 ° C), which is effective for product management.

一実施形態に係る耐熱衝撃性部材を製造する方法は限定されず、例えば下記のような手順で製造される。 The method for manufacturing the thermostable impact member according to the embodiment is not limited, and for example, it is manufactured by the following procedure.

まず、酸化アルミニウム粉末、酸化ジルコニウム粉末を準備、調合して、調合粉末とする。これらの粉末の純度は限定されない。これらの粉末は、例えば、99質量%以上の純度を有しているのがよい。酸化アルミニウム粉末は、調合粉末100質量%中、例えば80質量%以上の割合で配合され、酸化ジルコニウム粉末は、例えば10質量%以上15質量%以下の割合で配合される。 First, aluminum oxide powder and zirconium oxide powder are prepared and blended to obtain a blended powder. The purity of these powders is not limited. These powders are preferably, for example, having a purity of 99% by mass or more. The aluminum oxide powder is blended in a proportion of, for example, 80% by mass or more in 100% by mass of the blended powder, and the zirconium oxide powder is blended in a proportion of, for example, 10% by mass or more and 15% by mass or less.

必要に応じて、酸化クロム粉末、酸化マグネシウム粉末、酸化カルシウム粉末、酸化イットリウム粉末、酸化チタン粉末、酸化リチウム粉末、酸化ナトリウム粉末、酸化カリウム粉末などが、特定の割合で配合されていてもよい。具体的には、酸化クロム粉末は調合粉末100質量%中、0.5質量%以上2.5質量%以下の割合で配合されていてもよく、酸化マグネシウム粉末、酸化カルシウム粉末、酸化イットリウム粉末および酸化チタン粉末の少なくとも1種は、合計で0.8質量%以上1.2質量%以下の割合で配合されていてもよい。酸化リチウム粉末、酸化ナトリウム粉末および酸化カリウム粉末については、少なくともこれらの2種が、合計で0.08質量%以下の割合で配合されていてもよい。 If necessary, chromium oxide powder, magnesium oxide powder, calcium oxide powder, yttrium oxide powder, titanium oxide powder, lithium oxide powder, sodium oxide powder, potassium oxide powder and the like may be blended in a specific ratio. Specifically, the chromium oxide powder may be blended in a proportion of 0.5% by mass or more and 2.5% by mass or less in 100% by mass of the compounded powder, and magnesium oxide powder, calcium oxide powder, yttrium oxide powder and the like. At least one kind of titanium oxide powder may be blended in a ratio of 0.8% by mass or more and 1.2% by mass or less in total. Regarding lithium oxide powder, sodium oxide powder and potassium oxide powder, at least these two types may be blended in a total ratio of 0.08% by mass or less.

これらの粉末以外に、セラミックスの原料となる粉末を使用してもよい。このような粉末としては、シリカ(二酸化ケイ素)、酸化ハフニウム、酸化イットリウムなどの粉末が挙げられる。 In addition to these powders, powders that are raw materials for ceramics may be used. Examples of such a powder include powders such as silica (silicon dioxide), hafnium oxide, and yttrium oxide.

次いで、これらの粉末と溶媒(例えば、イオン交換水など)とを、粉砕用ミルに投入する。次いで、粉末の平均粒径(D50)が1.5μm以下になるまで粉砕した後、有機結合剤と粉末を分散させる分散剤とを添加し、混合してスラリーを得る。分散剤としては、例えば、アクリル酸エステル共重合体、クエン酸などが挙げられる。有機結合剤としては、例えば、アクリルエマルジョン、ポリビニールアルコール、ポリエチレングリコール、ポリエチレンオキサイドなどが挙げられる。 Then, these powders and a solvent (for example, ion-exchanged water) are put into a pulverizing mill. Then, after pulverizing until the average particle size (D50) of the powder becomes 1.5 μm or less, an organic binder and a dispersant for dispersing the powder are added and mixed to obtain a slurry. Examples of the dispersant include acrylic acid ester copolymers and citric acid. Examples of the organic binder include acrylic emulsions, polyvinyl alcohols, polyethylene glycols, polyethylene oxides and the like.

得られたスラリーを噴霧造粒して顆粒を得た後、1軸プレス成形装置あるいは冷間静水圧プレス成形装置を用いて、成形圧を78MPa以上160MPa以下として加圧してセラミックスの元となる成形体を得た後、必要に応じて切削加工を施す。この成形体を、大気雰囲気中、1500℃以上1700℃以下および4時間以上6時間以下の条件で焼成することによって、セラミックスが得られる。得られたセラミックスを所望の形状に加工して、一実施形態に係る耐熱衝撃性部材が得られる。 After the obtained slurry is spray-granulated to obtain granules, the molding pressure is set to 78 MPa or more and 160 MPa or less by using a uniaxial press molding device or a cold hydrostatic pressure press molding device to form the original ceramics. After obtaining the body, it is cut if necessary. Ceramics can be obtained by firing this molded product in an air atmosphere under the conditions of 1500 ° C. or higher and 1700 ° C. or lower and 4 hours or longer and 6 hours or lower. The obtained ceramics are processed into a desired shape to obtain a thermostable impact member according to an embodiment.

あるいは、所望の耐熱衝撃性部材の形状に応じた成形型に、得られた顆粒を充填して成形体を得、得られた成形体を焼成して、セラミックスで形成された一実施形態に係る耐熱衝撃性部材を製造してもよい。成形体を得るための加圧条件および成形体を焼成する条件は、上述のとおりであり、詳細な説明は省略する。 Alternatively, the present invention relates to an embodiment formed of ceramics by filling a molding die corresponding to a desired shape of a heat-resistant impact-resistant member with the obtained granules to obtain a molded body, and firing the obtained molded body. A thermostable impact member may be manufactured. The pressure conditions for obtaining the molded product and the conditions for firing the molded product are as described above, and detailed description thereof will be omitted.

具体的に、次の処方によって、一実施形態に係る耐熱衝撃性部材に含まれるセラミックスを得た。まず、酸化アルミニウム粉末を約80.2質量%、酸化ジルコニウム粉末を約12.2質量%、二酸化ケイ素粉末を約4.7質量%、酸化クロム粉末を約1.53質量%、酸化マグネシウム粉末を約0.57質量%、酸化カルシウム粉末を約0.33質量%、酸化イットリウム粉末を約0.03質量%、酸化チタン粉末を約0.06質量%、酸化ナトリウム粉末を約0.05質量%、酸化カリウム粉末を約0.01質量%、およびその他微量成分を含む混合粉末と、イオン交換水とを粉砕用ミルに投入した。 Specifically, the ceramics contained in the thermostable impact-resistant member according to the embodiment were obtained by the following formulation. First, aluminum oxide powder is about 80.2% by mass, zirconium oxide powder is about 12.2% by mass, silicon dioxide powder is about 4.7% by mass, chromium oxide powder is about 1.53% by mass, and magnesium oxide powder is used. About 0.57% by mass, calcium oxide powder about 0.33% by mass, yttrium oxide powder about 0.03% by mass, titanium oxide powder about 0.06% by mass, sodium oxide powder about 0.05% by mass , About 0.01% by mass of potassium oxide powder, and a mixed powder containing other trace components and ion-exchanged water were put into a mill for grinding.

次いで、粉末の平均粒径(D50)が1.5μm以下になるまで粉砕した後、有機結合剤(ポリビニールアルコールおよびポリエチレングリコール)と粉末を分散させる分散剤(アクリル酸エステル共重合体)とを添加し、混合してスラリーを得た。得られたスラリーを噴霧造粒して顆粒を得た後、1軸プレス成形装置を用いて98MPa程度加圧し、セラミックスの元となる角柱状および円柱状の成形体を得た。 Next, after pulverizing the powder until the average particle size (D50) becomes 1.5 μm or less, an organic binder (polyvinyl alcohol and polyethylene glycol) and a dispersant (acrylic acid ester copolymer) for dispersing the powder are added. It was added and mixed to obtain a slurry. The obtained slurry was spray-granulated to obtain granules, and then pressed by about 98 MPa using a uniaxial press molding device to obtain prismatic and columnar molded bodies which are the basis of ceramics.

次いで、得られた成形体を、大気雰囲気中、表1に示す温度で2時間、焼成することによって、セラミックスからなる試料No.1~6を得た。試料No.1~6について、上述の差(A)および差(B)は、円柱状のセラミックスからなる試料を用いて上述した測定方法により求めた。試料No.1~6の閉気孔の面積率を、上述した測定方法により測定した。測定した結果、いずれも12%以上16%以下であった。 Next, the obtained molded product was fired in an air atmosphere at the temperature shown in Table 1 for 2 hours to obtain a sample No. 1 made of ceramics. I got 1-6. Sample No. With respect to 1 to 6, the above-mentioned difference (A) and difference (B) were determined by the above-mentioned measuring method using a sample made of columnar ceramics. Sample No. The area ratio of the closed pores 1 to 6 was measured by the above-mentioned measuring method. As a result of the measurement, it was 12% or more and 16% or less in each case.

試料No.1~6について、機械的特性を示す3点曲げ強度は、JIS R 1601:2005に準拠して角柱状のセラミックスからなる試料を用いて測定した。試料No.1~6について、耐熱衝撃性を示す耐熱衝撃温度は、JIS R 1648:2002で規定する精密法に準拠して円柱状のセラミックスからなる試料を用いて測定した。 Sample No. For 1 to 6, the three-point bending strength showing mechanical properties was measured using a sample made of prismatic ceramics in accordance with JIS R 1601: 2005. Sample No. For 1 to 6, the heat-resistant impact temperature indicating the heat-resistant impact was measured using a sample made of columnar ceramics in accordance with the precision method specified in JIS R 1648: 2002.

試料No.1~6について、差(A)、差(B)、比の値(A)/(B)、3点曲げ強度および耐熱衝撃温度を、表1に示す。 Sample No. Table 1 shows the difference (A), the difference (B), the ratio value (A) / (B), the three-point bending strength, and the heat-resistant impact temperature for 1 to 6.

Figure 2022103596000001
Figure 2022103596000001

表1に示すように、差(A)が差(B)の0.7倍以上1.3倍以下である試料No.2~5は、高い機械的特性と高い耐熱衝撃性とを兼ね備えていることがわかる。一方、差(A)が差(B)の1.3倍を超える試料No.1は、良好な耐熱衝撃性を有するものの、機械的特性に乏しいことがわかる。差(A)が差(B)の0.7倍未満である試料No.6は、良好な機械的特性を有するものの、耐熱衝撃性に乏しいことがわかる。 As shown in Table 1, the sample No. in which the difference (A) is 0.7 times or more and 1.3 times or less the difference (B). It can be seen that Nos. 2 to 5 have both high mechanical properties and high thermal shock resistance. On the other hand, the sample No. in which the difference (A) exceeds 1.3 times the difference (B). It can be seen that No. 1 has good thermal shock resistance but lacks mechanical properties. The sample No. in which the difference (A) is less than 0.7 times the difference (B). It can be seen that No. 6 has good mechanical properties but lacks thermal impact resistance.

本開示に係る耐熱衝撃性部材は、ZTAが有する機械的強度および耐熱衝撃性を十分に発揮し得る。したがって、本開示の耐熱衝撃性部材は、例えば、溶接切断用またはプラズマ切断用ノズル、接点装置用絶縁部材、電子部品を熱処理するための治具などの材料として使用される。 The thermostable impact member according to the present disclosure can sufficiently exhibit the mechanical strength and thermostable impact resistance of ZTA. Therefore, the heat-resistant impact-resistant member of the present disclosure is used as a material for, for example, a nozzle for welding cutting or plasma cutting, an insulating member for a contact device, a jig for heat-treating an electronic component, and the like.

Claims (8)

酸化アルミニウムを主成分とし、酸化ジルコニウムを含み、閉気孔の面積率が10%以上20%以下であるセラミックスを含み、
該セラミックスにおいて、隣り合う前記酸化ジルコニウムの結晶粒子の重心間距離の平均値と前記酸化ジルコニウムの結晶粒子の円相当径の平均値との差(A)が、隣り合う前記閉気孔の重心間距離の平均値と前記閉気孔の円相当径の平均値との差(B)の0.7倍以上1.3倍以下である、
耐熱衝撃性部材。
It contains aluminum oxide as the main component, zirconium oxide, and ceramics having a closed pore area ratio of 10% or more and 20% or less.
In the ceramics, the difference (A) between the average value of the distance between the centers of gravity of the adjacent zirconium oxide crystal particles and the average value of the equivalent circle diameters of the zirconium oxide crystal particles is the distance between the centers of gravity of the adjacent closed pores. It is 0.7 times or more and 1.3 times or less of the difference (B) between the average value of the above and the average value of the circle equivalent diameter of the closed pores.
Heat resistant impact member.
前記酸化ジルコニウムの結晶粒子における球状化率の平均値が、前記閉気孔の球状化率の平均値よりも大きい、請求項1に記載の耐熱衝撃性部材。 The heat-resistant impact member according to claim 1, wherein the average value of the spheroidization rate of the zirconium oxide crystal particles is larger than the average value of the spheroidization rate of the closed pores. 前記酸化ジルコニウムが、前記セラミックス中に10質量%以上15質量%以下の割合で含まれる、請求項1または2に記載の耐熱衝撃性部材。 The heat-resistant impact-resistant member according to claim 1 or 2, wherein the zirconium oxide is contained in the ceramics in a proportion of 10% by mass or more and 15% by mass or less. 前記セラミックスがクロムをさらに含み、Crに換算した含有量が0.5質量%以上2.5質量%以下である、請求項1~3のいずれかに記載の耐熱衝撃性部材。 The heat impact resistant member according to any one of claims 1 to 3, wherein the ceramic further contains chromium and the content converted into Cr 2 O 3 is 0.5% by mass or more and 2.5% by mass or less. 前記セラミックスが、マグネシウム、カルシウム、イットリウムおよびチタンからなる群より選択される少なくとも1種をさらに含み、MgO、CaO、YおよびTiOに換算した含有量の合計が0.8質量%以上1.2質量%以下である、請求項1~4のいずれかに記載の耐熱衝撃性部材。 The ceramic further contains at least one selected from the group consisting of magnesium, calcium, yttrium and titanium, and the total content in terms of MgO, CaO , Y2O3 and TiO2 is 0.8% by mass or more. The heat-resistant impact-resistant member according to any one of claims 1 to 4, which is 1.2% by mass or less. 前記セラミックスが、リチウム、ナトリウムおよびカリウムからなる群より選択される少なくとも2種をさらに含み、LiO、NaOおよびKOに換算した含有量の合計が0.08質量%以下である、請求項1~5のいずれかに記載の耐熱衝撃性部材。 The ceramic further contains at least two selected from the group consisting of lithium, sodium and potassium, and the total content converted into Li 2 O, Na 2 O and K 2 O is 0.08% by mass or less. , The heat-resistant impact-resistant member according to any one of claims 1 to 5. 請求項1~6のいずれかに記載の耐熱衝撃性部材を含む、溶接切断用またはプラズマ切断用ノズル。 A nozzle for welding cutting or plasma cutting, which comprises the thermostable impact member according to any one of claims 1 to 6. 請求項1~6のいずれかに記載の耐熱衝撃性部材を含む、接点装置用絶縁部材。 An insulating member for a contact device including the heat-resistant impact-resistant member according to any one of claims 1 to 6.
JP2020218329A 2020-12-28 2020-12-28 Thermal shock resistant member Pending JP2022103596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020218329A JP2022103596A (en) 2020-12-28 2020-12-28 Thermal shock resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020218329A JP2022103596A (en) 2020-12-28 2020-12-28 Thermal shock resistant member

Publications (1)

Publication Number Publication Date
JP2022103596A true JP2022103596A (en) 2022-07-08

Family

ID=82281477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020218329A Pending JP2022103596A (en) 2020-12-28 2020-12-28 Thermal shock resistant member

Country Status (1)

Country Link
JP (1) JP2022103596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085313A1 (en) * 2021-11-12 2023-05-19 京セラ株式会社 Sliding member and false twister disc using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085313A1 (en) * 2021-11-12 2023-05-19 京セラ株式会社 Sliding member and false twister disc using same

Similar Documents

Publication Publication Date Title
KR102376825B1 (en) Alumina sintered body and ground substrate for optical element
Palmero et al. Surface and mechanical properties of transparent polycrystalline YAG fabricated by SPS
JP6636307B2 (en) Alumina sintered body with excellent high temperature properties and corrosion resistance
KR101794410B1 (en) Sintered silicon nitride having high thermal conductivity and Manufacturing method thereof
CN101218188B (en) Sintered yttria, anticorrosion member and process for producing the same
Benameur et al. Sintering analysis of a fine‐grained alumina–magnesia spinel powder
JP2005314215A (en) Dense cordierite sintered body and method of manufacturing the same
JP2009263187A (en) Yttria sintered compact and member for plasma processing device
WO2014122865A1 (en) Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body
EP3218324A1 (en) Sintered ceramic component and a process of forming the same
JP2022103596A (en) Thermal shock resistant member
CN116209648A (en) Multilayer sintered ceramic body and method for producing same
JP2011088759A (en) Alumina refractory and method of producing the same
JP4836348B2 (en) Heat-treating member made of an alumina sintered body with excellent durability
JP4721947B2 (en) Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
JP3904874B2 (en) Components for semiconductor manufacturing equipment
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2011116615A (en) Alumina sintered compact
JP2008174432A (en) Translucent ceramic, its manufacturing method, and optical member
JP2014024740A (en) Ceramic sintered body, and member for heat treatment
JP5944996B2 (en) Silicon nitride sintered body and heat conductive member
JP3737917B2 (en) Thermal shock-resistant alumina sintered body and heat treatment member comprising the same
JP2006327924A (en) Ceramic-made blade and method manufacturing the same
JP2004307323A (en) Alumina ceramic composition, and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230818