JP2022096297A - Temperature measuring device, temperature measuring method, and atmosphere measuring system - Google Patents

Temperature measuring device, temperature measuring method, and atmosphere measuring system Download PDF

Info

Publication number
JP2022096297A
JP2022096297A JP2020209330A JP2020209330A JP2022096297A JP 2022096297 A JP2022096297 A JP 2022096297A JP 2020209330 A JP2020209330 A JP 2020209330A JP 2020209330 A JP2020209330 A JP 2020209330A JP 2022096297 A JP2022096297 A JP 2022096297A
Authority
JP
Japan
Prior art keywords
temperature
temperature data
atmosphere
measurement
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020209330A
Other languages
Japanese (ja)
Other versions
JP7393322B2 (en
Inventor
義徳 福田
Yoshinori Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Techno Research Corp
Original Assignee
JFE Techno Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Techno Research Corp filed Critical JFE Techno Research Corp
Priority to JP2020209330A priority Critical patent/JP7393322B2/en
Publication of JP2022096297A publication Critical patent/JP2022096297A/en
Application granted granted Critical
Publication of JP7393322B2 publication Critical patent/JP7393322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

To provide a temperature measuring device that can simply and easily perform temperature measurement in an actual environment.SOLUTION: A temperature measuring device acquires, with infrared cameras 1A, 1B, temperature data D1 being temperature data based on an infrared ray in a first wavelength range absorbed in the atmosphere, and temperature data D2 based on an infrared ray in a second wavelength range in which the amount of an infrared ray absorbed in the atmosphere is less than that of the infrared ray in the first wavelength range. The temperature measuring device specifies in advance an operational expression representing the temperature of the atmosphere in a measurement target space based on the pieces of temperature data D1, D2 for calibration acquired in the measurement target space, and stores the operational expression in a storage unit 2a, and calculates the temperature of the atmosphere in the measurement target space from the pieces of temperature data D1, D2 obtained by photographing the measurement target space with the infrared cameras 1A, 1B and the operational expression stored in the storage unit 2a.SELECTED DRAWING: Figure 1

Description

本発明は、温度測定装置、温度測定方法及び大気計測システムに関する。 The present invention relates to a temperature measuring device, a temperature measuring method and an atmospheric measuring system.

従来、空間内の大気の温度分布を測定する方法として数々の方法が提案されている。古典的な方法としては、空間内に温度センサを格子状に直接配置する方法がある。また、空間内に金属製や樹脂製の板或いは線状或いは網状の部材を配置し、その温度変化を赤外線カメラで測定する方法(例えば、特許文献1参照。)、また、空間内に温度に依存して変化する螢光塗料を塗布した細線を配置し、その蛍光をカメラで撮影する方法(例えば、特許文献2参照。)、さらに、空気に向けて超音波を発生させ音速を求める方法(例えば、特許文献3参照。)等により間接的に温度を測定する方法等が提案されている。 Conventionally, a number of methods have been proposed as methods for measuring the temperature distribution of the atmosphere in space. The classical method is to arrange the temperature sensors directly in the space in a grid pattern. Further, a method of arranging a metal or resin plate or a linear or net-like member in the space and measuring the temperature change with an infrared camera (see, for example, Patent Document 1), and the temperature in the space. A method of arranging thin lines coated with a luminescent paint that changes depending on the space and photographing the fluorescence with a camera (see, for example, Patent Document 2), and a method of generating ultrasonic waves toward the air to obtain the speed of sound (see, for example, Patent Document 2). For example, a method of indirectly measuring the temperature has been proposed according to Patent Document 3) and the like.

特開2010-19624号公報Japanese Unexamined Patent Publication No. 2010-19624 特開2017-15590号公報Japanese Unexamined Patent Publication No. 2017-15590 特開2003-130735号公報Japanese Patent Application Laid-Open No. 2003-130735 特開2020-52036号公報Japanese Unexamined Patent Publication No. 2020-52036

しかしながら、空間内に、温度センサや、温度変化を検出するための金属や樹脂製の測定用部材を配置する方法にあっては、これら温度センサや測定用部材を空間内に配置する必要があり、この配置作業に多くの手間が必要とされる。また、流れ場に温度センサや測定用部材等を配置すると、気流を阻害することから、実態に合わない温度分布測定が行われる可能性がある。 However, in the method of arranging the temperature sensor and the measuring member made of metal or resin for detecting the temperature change in the space, it is necessary to arrange these temperature sensors and the measuring member in the space. , This placement work requires a lot of labor. Further, if a temperature sensor, a measuring member, or the like is placed in the flow field, the air flow is obstructed, so that the temperature distribution measurement that does not match the actual situation may be performed.

また、超音波を発生させるようにした方法においては、超音波の音速変化を利用して温度測定を行うため、温度センサ等を配置する必要がない。しかしながら、超音波を用いた方法は、点測定ができるのみであって、温度分布を検出することはできない。 Further, in the method of generating ultrasonic waves, since the temperature is measured by utilizing the change in the sound velocity of the ultrasonic waves, it is not necessary to arrange a temperature sensor or the like. However, the method using ultrasonic waves can only measure points and cannot detect the temperature distribution.

そのため、実環境下での空間の温度を、簡易な構成で検出し、容易に温度分布を検出することの可能な温度の測定方法が望まれていた。 Therefore, there has been a demand for a temperature measuring method capable of detecting the temperature of a space in an actual environment with a simple configuration and easily detecting a temperature distribution.

この発明は上記従来の未解決の問題に着目してなされたものであり、実環境下での温度測定を簡易且つ容易に行い、温度分布を容易に検出することの可能な温度測定装置、温度測定方法及び大気計測システムを提供することを目的としている。 The present invention has been made by paying attention to the above-mentioned conventional unsolved problems, and is a temperature measuring device and a temperature capable of easily and easily measuring a temperature in an actual environment and easily detecting a temperature distribution. It is an object of the present invention to provide a measurement method and an atmospheric measurement system.

本発明の一態様によれば、赤外線センサを含み、赤外線センサの出力のうち大気により吸収される第一の波長帯の赤外線に基づく温度データである第一温度データと、大気により吸収される赤外線の量が、第一の波長帯の赤外線よりも少ない第二の波長帯の赤外線に基づく温度データである第二温度データと、を取得する温度データ取得部と、第一温度データ及び第二温度データに基づき測定対象空間における大気の温度を演算する演算処理部と、を備え、演算処理部は、温度データ取得部で取得した、測定対象空間における、校正用の第一温度データと第二温度データとに基づき予め設定された、測定対象空間における大気の温度を表す演算式を記憶している記憶部と、温度データ取得部で取得した、測定対象空間における、温度測定用の第一温度データ及び第二温度データと演算式とから測定対象空間における大気の温度を算出する温度算出部と、を備える、温度測定装置が提供される。 According to one aspect of the present invention, first temperature data including an infrared sensor, which is temperature data based on infrared rays in the first wavelength band absorbed by the atmosphere among the outputs of the infrared sensor, and infrared rays absorbed by the atmosphere. The temperature data acquisition unit for acquiring the second temperature data, which is the temperature data based on the infrared rays of the second wavelength band, the amount of which is smaller than that of the infrared rays of the first wavelength band, the first temperature data, and the second temperature. It is equipped with an arithmetic processing unit that calculates the temperature of the atmosphere in the measurement target space based on the data, and the arithmetic processing unit has the first temperature data and the second temperature for calibration in the measurement target space acquired by the temperature data acquisition unit. A storage unit that stores an arithmetic expression that represents the temperature of the atmosphere in the measurement target space, which is preset based on the data, and a first temperature data for temperature measurement in the measurement target space acquired by the temperature data acquisition unit. And a temperature measuring device including a temperature calculating unit for calculating the temperature of the atmosphere in the measurement target space from the second temperature data and the calculation formula are provided.

本発明の他の態様によれば、測定対象空間における大気の温度を演算する温度測定方法であって、赤外線センサを含み、赤外線センサの出力のうち大気により吸収される第一の波長帯の赤外線に基づく温度データである第一温度データと、大気により吸収される赤外線の量が、第一の波長帯の赤外線よりも少ない第二の波長帯の赤外線に基づく温度データである第二温度データと、を取得する温度データ取得部を有し、温度データ取得部により、測定対象空間における、校正用の第一温度データ及び第二温度データを取得するステップと、取得した校正用の第一温度データ及び第二温度データに基づき、測定対象空間における大気の温度を演算するための演算式を特定するステップと、温度データ取得部により、測定対象空間における、温度測定用の第一温度データ及び第二温度データを取得するステップと、温度測定用の第一温度データ及び第二温度データと、演算式とをもとに、前記測定対象空間における大気の温度を演算するステップと、を備える、温度測定方法が提供される。 According to another aspect of the present invention, it is a temperature measuring method for calculating the temperature of the atmosphere in the measurement target space, and includes an infrared sensor, and is an infrared ray in the first wavelength band of the output of the infrared sensor, which is absorbed by the atmosphere. The first temperature data, which is the temperature data based on the above, and the second temperature data, which is the temperature data based on the infrared rays in the second wavelength band, in which the amount of infrared rays absorbed by the atmosphere is smaller than the infrared rays in the first wavelength band. It has a temperature data acquisition unit that acquires, and the step of acquiring the first temperature data and the second temperature data for calibration in the measurement target space by the temperature data acquisition unit, and the acquired first temperature data for calibration. And the step of specifying the calculation formula for calculating the temperature of the atmosphere in the measurement target space based on the second temperature data, and the first temperature data and the second temperature data for temperature measurement in the measurement target space by the temperature data acquisition unit. Temperature measurement including a step of acquiring temperature data, a step of calculating the temperature of the atmosphere in the measurement target space based on the first temperature data and the second temperature data for temperature measurement, and a calculation formula. The method is provided.

さらに本発明の他の態様によれば、測定対象空間における大気の温度を演算する前記態様の温度測定装置と、測定対象空間における大気の流れを計測する流れ計測装置と、温度測定装置で演算した測定対象空間の複数地点における大気の温度を表す温度分布画像と、流れ計測装置で計測した測定対象空間における大気の流れを表す流れ計測画像と、を表示装置に表示する表示処理部と、を備え、表示処理部は、温度分布画像及び流れ計測画像を重畳表示又は並べて表示する、大気計測システムが提供される。 Further, according to another aspect of the present invention, the temperature measuring device of the above-described aspect for calculating the temperature of the atmosphere in the measurement target space, the flow measuring device for measuring the flow of the atmosphere in the measurement target space, and the temperature measuring device are used for the calculation. It is equipped with a display processing unit that displays a temperature distribution image showing the temperature of the atmosphere at a plurality of points in the measurement target space and a flow measurement image showing the flow of the atmosphere in the measurement target space measured by the flow measuring device on the display device. , The display processing unit is provided with an atmospheric measurement system that superimposes or displays a temperature distribution image and a flow measurement image side by side.

本発明の一態様によれば、空間内の大気の温度を簡易な構成で且つ実環境下で容易に検出することができ、その結果容易に温度分布を検出することができる。 According to one aspect of the present invention, the temperature of the atmosphere in the space can be easily detected in a simple configuration and in an actual environment, and as a result, the temperature distribution can be easily detected.

本発明の第一実施形態に係る温度測定装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the temperature measuring apparatus which concerns on 1st Embodiment of this invention. 校正用のパラメータの探索方法を説明するための説明図である。It is explanatory drawing for demonstrating the search method of the parameter for calibration. 画像処理装置の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure of an image processing apparatus. 校正用のパラメータの他の探索方法を説明するための説明図である。It is explanatory drawing for demonstrating another search method of a parameter for calibration. 温度分布の他の演算方法を説明するための説明図である。It is explanatory drawing for demonstrating another calculation method of a temperature distribution. 本発明の第二実施形態に係る温度測定装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the temperature measuring apparatus which concerns on 2nd Embodiment of this invention. フィルタホイールを備えたカメラの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the camera provided with a filter wheel. 赤外線の波長と、大気に対する透過率との対応を示す特性の一例である。This is an example of a characteristic that shows the correspondence between the wavelength of infrared rays and the transmittance to the atmosphere. 本発明の第三実施形態に係る温度測定装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the temperature measuring apparatus which concerns on 3rd Embodiment of this invention. 大気だけを温めたときの大気の温度変化の測定結果の一例である。This is an example of the measurement result of the temperature change of the atmosphere when only the atmosphere is warmed. 大気の流れと大気の温度分布とを重畳表示した画像の一例である。This is an example of an image in which the flow of the atmosphere and the temperature distribution of the atmosphere are superimposed and displayed. 本発明の第四実施形態に係る大気計測システムの一例を示す機能構成図である。It is a functional block diagram which shows an example of the atmosphere measurement system which concerns on 4th Embodiment of this invention. 切り出し窓幅及び解析ステップを説明するための図である。It is a figure for demonstrating the cut-out window width and analysis step. 温度変動分布解析時の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure at the time of temperature fluctuation distribution analysis. 時系列に並べた温度変動分布画像の一例である。This is an example of a temperature fluctuation distribution image arranged in chronological order. 大気計測システムにおける処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure in the atmosphere measurement system.

以下、図面を参照して本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

なお、以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の具体的な構成について記載されている。しかしながら、このような特定の具体的な構成に限定されることなく他の実施態様が実施できることは明らかである。また、以下の実施形態は、特許請求の範囲に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
<温度の演算方法>
It should be noted that the following detailed description describes many specific specific configurations to provide a complete understanding of the embodiments of the present invention. However, it is clear that other embodiments can be implemented without being limited to such specific specific configurations. Further, the following embodiments do not limit the invention according to the claims. Also, not all combinations of features described in the embodiments are essential to the means of solving the invention.
<Temperature calculation method>

まず、温度の演算方法を説明する。 First, the temperature calculation method will be described.

本実施形態に係る温度の演算方法では、赤外線センサとして赤外線カメラを用い、赤外線カメラにより空間を撮影し、壁等の空間を形成する部材が発生する赤外線を、波長帯域の異なる二つの温度データとして取得し、この波長帯域の異なる2種類の温度データを用いて空間の温度を検出する。 In the temperature calculation method according to the present embodiment, an infrared camera is used as an infrared sensor, the space is photographed by the infrared camera, and infrared rays generated by members forming the space such as a wall are used as two temperature data having different wavelength bands. The temperature of the space is detected by acquiring and using two kinds of temperature data having different wavelength bands.

簡単のために、ここでは、2台の赤外線カメラ(温度データ取得部)1A、1Bを用いて空間の温度を検出する方法を説明する。 For the sake of simplicity, a method of detecting the temperature of the space using two infrared cameras (temperature data acquisition units) 1A and 1B will be described here.

2台の赤外線カメラ1A、1Bは、異なる波長帯に感度を有する。一方の赤外線カメラ(第一赤外線カメラ)1Aは、大気により吸収される赤外線の量が比較的大きい波長帯である第一の波長帯に感度を有し、この第一の波長帯を除く帯域に対する感度は零である。他方の赤外線カメラ(第二赤外線カメラ)1Bは、大気により吸収される赤外線の量が比較的小さい波長帯である第二の波長帯に感度を有し、この第二の波長帯を除く帯域に対する感度は零である。つまり、第一の波長帯と第二の波長帯とは異なる波長帯であり、赤外線カメラ1Bが感度を有する第一の波長帯において大気により吸収される赤外線の量は、赤外線カメラ1Aが感度を有する第二の波長帯において大気により吸収される赤外線の量よりも少ない。 The two infrared cameras 1A and 1B have sensitivity to different wavelength bands. On the other hand, the infrared camera (first infrared camera) 1A has sensitivity in the first wavelength band, which is a wavelength band in which the amount of infrared rays absorbed by the atmosphere is relatively large, and with respect to the band other than this first wavelength band. The sensitivity is zero. The other infrared camera (second infrared camera) 1B has sensitivity in the second wavelength band, which is a wavelength band in which the amount of infrared rays absorbed by the atmosphere is relatively small, and has a sensitivity to the band other than this second wavelength band. The sensitivity is zero. That is, the first wavelength band and the second wavelength band are different wavelength bands, and the infrared camera 1A determines the sensitivity of the amount of infrared rays absorbed by the atmosphere in the first wavelength band having the sensitivity of the infrared camera 1B. It has less than the amount of infrared rays absorbed by the atmosphere in the second wavelength band.

具体的には、赤外線カメラ1Aは、例えば、3μm以上5μm以下の中赤外域の波長帯に感度を持ち、3μm以上5μm以下を除く波長帯に対する感度は零である。赤外線カメラ1Bは、例えば7μm以上14μm以下の遠赤外域の波長帯に感度を持ち、7μm以上14μm以下を除く波長帯に対する感度は零である。また、赤外線カメラ1Aは、1μm以上5μm以下の波長帯に感度を持ち、この波長帯を除く帯域に対する感度は零であり、他方の赤外線カメラ1Bは、7μm以上13μm以下の波長帯に感度を持ち、この波長帯を除く帯域に対する感度は零とすることもできる。 Specifically, the infrared camera 1A has sensitivity in a wavelength band in the mid-infrared region of 3 μm or more and 5 μm or less, and has zero sensitivity in a wavelength band other than 3 μm or more and 5 μm or less. The infrared camera 1B has sensitivity in a wavelength band in the far infrared region of, for example, 7 μm or more and 14 μm or less, and has zero sensitivity to wavelength bands other than 7 μm or more and 14 μm or less. Further, the infrared camera 1A has sensitivity in the wavelength band of 1 μm or more and 5 μm or less, the sensitivity to the band other than this wavelength band is zero, and the other infrared camera 1B has sensitivity in the wavelength band of 7 μm or more and 13 μm or less. , The sensitivity to the band other than this wavelength band can be set to zero.

なお、赤外線カメラ1Aが有する大気により吸収される赤外線の量が比較的大きい第一の波長帯及び、赤外線カメラ1Bが有する大気により吸収される赤外線の量が比較的小さい第二の波長帯の組み合わせは、3μm以上5μm以下と7μm以上14μm以下の波長帯の組み合わせ、1μm以上5μm以下と7μm以上13μm以下の波長帯の組み合わせに限るものではない。第一の波長帯と第二の波長体とは、赤外線カメラ1Aが有する大気により吸収される赤外線の量が比較的大きい波長帯と赤外線カメラ1Bが有する大気により吸収される赤外線の量が比較的小さい波長帯との組み合わせであればよいが、前述の3μm以上5μm以下と7μm以上14μm以下の波長帯の組み合わせ、また、1μm以上5μm以下と7μm以上13μm以下の波長帯の組み合わせであれば、赤外線カメラ1A及び赤外線カメラ1Bとして、中赤外域の波長帯を感度に持つ市販されている赤外線カメラや、遠赤外域の波長帯に感度を持つ市販されている赤外線カメラを適用することができ、入手しやすい。 A combination of a first wavelength band having a relatively large amount of infrared rays absorbed by the atmosphere of the infrared camera 1A and a second wavelength band having a relatively small amount of infrared rays absorbed by the atmosphere of the infrared camera 1B. Is not limited to the combination of wavelength bands of 3 μm or more and 5 μm or less and 7 μm or more and 14 μm or less, and the combination of wavelength bands of 1 μm or more and 5 μm or less and 7 μm or more and 13 μm or less. In the first wavelength band and the second wavelength body, the amount of infrared rays absorbed by the atmosphere of the infrared camera 1A is relatively large, and the amount of infrared rays absorbed by the atmosphere of the infrared camera 1B is relatively large. Any combination with a small wavelength band may be used, but if it is a combination of the above-mentioned wavelength bands of 3 μm or more and 5 μm or less and 7 μm or more and 14 μm or less, or a combination of 1 μm or more and 5 μm or less and 7 μm or more and 13 μm or less, infrared rays. As the camera 1A and the infrared camera 1B, a commercially available infrared camera having a sensitivity in the mid-infrared region and a commercially available infrared camera having a sensitivity in the far-infrared region can be applied and obtained. It's easy to do.

これら2台の赤外線カメラ1A及び1Bを、互いの視野が同一となるように配置する。これら2台の赤外線カメラ1A及び1Bは、同一の背景(壁面)を測定する際に、温度校正が適切になされているものとする。 These two infrared cameras 1A and 1B are arranged so that their fields of view are the same. It is assumed that these two infrared cameras 1A and 1B have been appropriately temperature-calibrated when measuring the same background (wall surface).

ここで、以下の演算では、赤外線カメラ1Aで測定される画素毎の温度データの平均値を、温度データD1とし、赤外線カメラ1Bで測定される画素毎の温度データの平均値を、温度データD2として説明する。
赤外線カメラ1Aで測定される温度データ(第一温度データ)D1は、測定対象の空間を形成する壁面からの温度TWと、大気からの温度(以後、大気の温度ともいう。)TAとの和となり、次式(1)で近似することができる。
Here, in the following calculation, the average value of the temperature data for each pixel measured by the infrared camera 1A is set as the temperature data D1, and the average value of the temperature data for each pixel measured by the infrared camera 1B is used as the temperature data D2. It is explained as.
The temperature data (first temperature data) D1 measured by the infrared camera 1A is the sum of the temperature TW from the wall surface forming the space to be measured and the temperature from the atmosphere (hereinafter, also referred to as the temperature of the atmosphere) TA. And can be approximated by the following equation (1).

D1=TA×α1+TW×(1-α1)+β1 ……(1) D1 = TA x α1 + TW x (1-α1) + β1 …… (1)

同様に、赤外線カメラ1Bで測定される温度データ(第二温度データ)D2は、測定対象の空間を形成する壁面からの温度TWと、大気の温度TAとの和となり、次式(2)で近似することができる。 Similarly, the temperature data (second temperature data) D2 measured by the infrared camera 1B is the sum of the temperature TW from the wall surface forming the space to be measured and the temperature TA of the atmosphere, and is expressed by the following equation (2). Can be approximated.

D2=TA×α2+TW×(1-α2)+β2 ……(2) D2 = TA x α2 + TW x (1-α2) + β2 …… (2)

(1)式及び(2)式は、次式(3)及び(4)と表すことができる。 Equations (1) and (2) can be expressed as the following equations (3) and (4).

D1×(1-α2) D1 × (1-α2)

=TA×α1×(1-α2)+TW×(1-α1)×(1-α2) = TA x α1 x (1-α2) + TW x (1-α1) x (1-α2)

+β1×(1-α2) ……(3) + Β1 × (1-α2) …… (3)

D2×(1-α1) D2 × (1-α1)

=TA×α2×(1-α1)+TW×(1-α2)×(1-α1) = TA x α2 x (1-α1) + TW x (1-α2) x (1-α1)

+β2×(1-α1) ……(4) + Β2 × (1-α1) …… (4)

(3)式及び(4)式の差分は次式(5)で表すことができる。 The difference between the equations (3) and (4) can be expressed by the following equation (5).

D1×(1-α2)-D2×(1-α1) D1 × (1-α2) -D2 × (1-α1)

=TA×(α1×(1-α2)-α2×(1-α1)) = TA x (α1 x (1-α2) -α2 x (1-α1))

+β1×(1-α2)-β2×(1-α1)……(5) + Β1 × (1-α2) -β2 × (1-α1) …… (5)

(5)式から、TAを表す次式(6)を導くことができる。 From the equation (5), the following equation (6) representing TA can be derived.

TA TA

=(D1×(1-α2)-D2×(1-α1)-β1×(1-α2) = (D1 × (1-α2) -D2 × (1-α1) -β1 × (1-α2)

+β2×(1-α1))/(α1×(1-α2)-α2×(1-α1)) + Β2 × (1-α1)) / (α1 × (1-α2) -α2 × (1-α1))

……(6) …… (6)

(6)式から、パラメータα1、α2、β1、β2を別途校正データとして取得しておけば、大気の温度を検出できることがわかる。 From the equation (6), it can be seen that the temperature of the atmosphere can be detected if the parameters α1, α2, β1 and β2 are separately acquired as calibration data.

厳密には、パラメータα1、α2、β1、β2は、背景つまり壁面までの距離の関数となる。そのため、より正確に大気の温度を算出するためには、背景までの距離に応じて、校正データを取得すればよい。また、本測定においては、測定波長帯の異なる2つの赤外線カメラ1A、1Bにおいて、ほぼ同一の放射率の壁面を選択することが重要となる。 Strictly speaking, the parameters α1, α2, β1 and β2 are functions of the distance to the background, that is, the wall surface. Therefore, in order to calculate the temperature of the atmosphere more accurately, calibration data may be acquired according to the distance to the background. Further, in this measurement, it is important to select walls having substantially the same emissivity in the two infrared cameras 1A and 1B having different measurement wavelength bands.

なお、大気による吸収が少ない波長帯を測定波長帯として有する赤外線カメラ1Bにおいて、大気による吸収が十分無視できるとすると、α2=0とすることができる。そのため、(6)式は、次式(7)となる。 In the infrared camera 1B having a wavelength band with little absorption by the atmosphere as the measurement wavelength band, if the absorption by the atmosphere is sufficiently negligible, α2 = 0 can be set. Therefore, the equation (6) becomes the following equation (7).

TA=(D1-β1-(D2-β2)×(1-α1))/α1 ……(7)
<変形例>
TA = (D1-β1- (D2-β2) × (1-α1)) / α1 …… (7)
<Modification example>

なお、ここでは、説明を簡単にするため、測定波長域が異なる2台の赤外線カメラ1A、1Bによって、温度データD1及びD2を取得しているが、これに限るものではない。例えば1台の赤外線カメラにおいて、2つ以上の光学フィルタを設け、一方の光学フィルタは大気による吸収の大きい波長帯を抽出し、他方の光学フィルタでは、大気による吸収がより小さい波長帯の温度データを取得する構成としてもよい。光学フィルタを切り替え、大気による吸収の大きい波長帯と、大気による吸収がより小さい波長帯とを切り替えることで、波長帯の異なる複数種類の温度データを取得することができる。この場合、2台の赤外線カメラを用いる場合のように、視野を合わせる必要がないため、より簡単に、空間内の大気の温度を測定することができる。 Here, for the sake of simplicity, the temperature data D1 and D2 are acquired by two infrared cameras 1A and 1B having different measurement wavelength ranges, but the present invention is not limited to this. For example, in one infrared camera, two or more optical filters are provided, one optical filter extracts a wavelength band with a large absorption by the atmosphere, and the other optical filter has temperature data in a wavelength band with a small absorption by the atmosphere. It may be configured to acquire. By switching the optical filter and switching between the wavelength band with large absorption by the atmosphere and the wavelength band with small absorption by the atmosphere, it is possible to acquire a plurality of types of temperature data having different wavelength bands. In this case, unlike the case of using two infrared cameras, it is not necessary to align the fields of view, so that the temperature of the atmosphere in the space can be measured more easily.

このように、赤外線カメラ1Aで測定される温度データD1及び赤外線カメラ1Bで測定される温度データD2は、それぞれ測定対象の空間を形成する壁面からの温度TWと、大気の温度TAとの和で表すことができ、2つの変数を有する一次関数で表すことができる。そのため、この2つの変数を有する一次関数と、既知の温度データD1及びD2とから、大気の温度TAを演算するための演算式、すなわち(6)式を導くことができる。 As described above, the temperature data D1 measured by the infrared camera 1A and the temperature data D2 measured by the infrared camera 1B are the sum of the temperature TW from the wall surface forming the space to be measured and the temperature TA of the atmosphere. It can be represented by a linear function with two variables. Therefore, from the linear function having these two variables and the known temperature data D1 and D2, an arithmetic expression for calculating the temperature TA of the atmosphere, that is, the equation (6) can be derived.

その結果、2つの赤外線測定帯域で、赤外線カメラ1A及び1Bによる温度測定を行って2つの温度データD1、D2を取得することにより、これら2つの温度データD1及びD2と演算式(6)式とから、空間内の大気の温度TAを得ることができる。さらに、大気による吸収が少ない波長帯を測定波長帯として有する赤外線カメラ1Bにおいて、大気による吸収が十分無視できる場合には、温度測定を行って取得した温度データD1及びD2と演算式(7)式とから、空間内の大気の温度TAを得ることができる。
そして、以上の演算の説明に用いた温度データD1及びD2は、赤外線カメラ1A及び1Bから得られた温度データの平均値である。そのため、式(6)又は式(7)から得られる大気の温度TAは、測定対象空間内の、赤外線カメラ1A及び1Bの視野内の領域に対応する領域の平均温度を表す。
As a result, by measuring the temperature with the infrared cameras 1A and 1B in the two infrared measurement bands and acquiring the two temperature data D1 and D2, these two temperature data D1 and D2 and the arithmetic formula (6) are used. From, the temperature TA of the atmosphere in the space can be obtained. Further, in the infrared camera 1B having a wavelength band with little absorption by the atmosphere as the measurement wavelength band, if the absorption by the atmosphere can be sufficiently ignored, the temperature data D1 and D2 obtained by performing the temperature measurement and the calculation formula (7) are used. From, the temperature TA of the atmosphere in the space can be obtained.
The temperature data D1 and D2 used in the explanation of the above calculation are average values of the temperature data obtained from the infrared cameras 1A and 1B. Therefore, the atmospheric temperature TA obtained from the formula (6) or the formula (7) represents the average temperature of the region corresponding to the region in the field of view of the infrared cameras 1A and 1B in the measurement target space.

ここで、赤外線カメラ1A及び1Bにより得た画素毎の温度データのうち、測定対象空間内のある一つの地点Xに対応する画素の温度データをもとに大気の温度TAを演算すれば、測定対象空間内のある一つの地点Xにおける大気の温度TAを得ることができる。そして、画素毎にその温度データを用いて大気の温度TAを演算すれば、測定対象空間内の、赤外線カメラ1A及び1Bの視野に対応する領域の大気の温度TAを画素単位で得ることができる。したがって、取得した各画素に対応する大気の温度TAを、各画素と対応付けて表示することによって、赤外線カメラ1A及び1Bの視野に対応する測定対象空間内の領域の温度分布を得ることができる。
〔第1実施形態〕
Here, among the temperature data for each pixel obtained by the infrared cameras 1A and 1B, the temperature TA of the atmosphere can be calculated based on the temperature data of the pixel corresponding to one point X in the measurement target space. The temperature TA of the atmosphere at a certain point X in the target space can be obtained. Then, if the temperature TA of the atmosphere is calculated for each pixel using the temperature data, the temperature TA of the atmosphere in the region corresponding to the visual field of the infrared cameras 1A and 1B in the measurement target space can be obtained in pixel units. .. Therefore, by displaying the temperature TA of the atmosphere corresponding to each acquired pixel in association with each pixel, it is possible to obtain the temperature distribution of the region in the measurement target space corresponding to the visual field of the infrared cameras 1A and 1B. ..
[First Embodiment]

次に、前記(7)式を用いて大気温度を測定する温度測定装置について説明する。 Next, a temperature measuring device for measuring the atmospheric temperature using the above equation (7) will be described.

まず、第1実施形態に係る温度測定装置を説明する。 First, the temperature measuring device according to the first embodiment will be described.

図1は、第1実施形態に係る温度測定装置10の一例を示す概略構成図である。 FIG. 1 is a schematic configuration diagram showing an example of the temperature measuring device 10 according to the first embodiment.

図1に示すように、温度測定装置10は、異なる波長帯に感度を有する二つの赤外線カメラ1A及び1Bと、パーソナルコンピュータ等からなる画像処理装置2とを備える。画像処理装置2は、図示しない入力装置及び表示装置を備え、赤外線カメラ1A及び1Bから予め設定した所定周期で画像データからなる温度データを、測定用温度データとして取得し、記憶部2aに記憶する。また、画像処理装置(演算処理部)2は、記憶部2aに記憶した赤外線カメラ1A及び1Bで取得した2種類の温度データから、赤外線カメラ1A及び1Bで撮影した空間の温度を演算し表示装置に表示する。 As shown in FIG. 1, the temperature measuring device 10 includes two infrared cameras 1A and 1B having sensitivities in different wavelength bands, and an image processing device 2 including a personal computer or the like. The image processing device 2 includes an input device and a display device (not shown), acquires temperature data consisting of image data from the infrared cameras 1A and 1B at predetermined cycles set in advance as measurement temperature data, and stores the temperature data in the storage unit 2a. .. Further, the image processing device (calculation processing unit) 2 calculates and displays the temperature of the space photographed by the infrared cameras 1A and 1B from the two types of temperature data acquired by the infrared cameras 1A and 1B stored in the storage unit 2a. Display on.

赤外線カメラ1Aは、大気による吸収が比較的大きい波長帯に感度を有し、例えば3μm以上5μm以下の中赤外線の帯域に感度を持ち、3μm以上5μm以下を除く帯域に対する感度は零である。赤外線カメラ1Aとして、中赤外帯域の冷却型(素子InSb)の赤外線カメラを用いることができる。赤外線カメラ1Aの画素数は640×512画素である。 The infrared camera 1A has sensitivity in a wavelength band in which absorption by the atmosphere is relatively large, for example, in a mid-infrared band of 3 μm or more and 5 μm or less, and has zero sensitivity in a band other than 3 μm or more and 5 μm or less. As the infrared camera 1A, a cooling type (element InSb) infrared camera in the mid-infrared band can be used. The number of pixels of the infrared camera 1A is 640 × 512 pixels.

赤外線カメラ1Bは、赤外線カメラ1Aが感度を有する波長帯よりも長い波長帯であり、大気による吸収量が赤外線カメラ1Aが感度を有する波長帯における吸収量よりも小さい波長帯に感度を有し、例えば7μm以上14μm以下の遠赤外帯域に感度を持つ。赤外線カメラ1Bとして、遠赤外帯域の非冷却型(素子マイクロボロメータ)の赤外線カメラを用いることができる。赤外線カメラ1Bの画素数は640×480画素である。 The infrared camera 1B has a wavelength band longer than the wavelength band in which the infrared camera 1A has sensitivity, and has sensitivity in a wavelength band in which the absorption amount by the atmosphere is smaller than the absorption amount in the wavelength band in which the infrared camera 1A has sensitivity. For example, it has sensitivity in the far infrared band of 7 μm or more and 14 μm or less. As the infrared camera 1B, an uncooled (element microbolometer) infrared camera in the far infrared band can be used. The number of pixels of the infrared camera 1B is 640 × 480 pixels.

温度測定装置10は、2台の赤外線カメラ1A及び1Bで室内の壁面の撮影を行い、2台の赤外線カメラ1A及び1Bと壁面との間の空間の、大気の温度測定を目的とする。2台の赤外線カメラ1A及び1Bは、これら2台の赤外線カメラ1A、1Bの視野内にほぼ同一の領域が含まれるように配置される。赤外線カメラ1A及び1Bは、これら赤外線カメラ1A及び1Bそれぞれの温度データを用いて、赤外線カメラ1A及び1Bと壁面との間の大気の温度を測定する観点から、同程度の画角とし、壁面から各赤外線カメラ1A及び1Bまでの距離が同等程度となる位置に配置されることが好ましい。 The temperature measuring device 10 photographs the wall surface of the room with two infrared cameras 1A and 1B, and aims to measure the temperature of the atmosphere in the space between the two infrared cameras 1A and 1B and the wall surface. The two infrared cameras 1A and 1B are arranged so that substantially the same region is included in the field of view of the two infrared cameras 1A and 1B. The infrared cameras 1A and 1B have the same angle of view from the wall surface from the viewpoint of measuring the temperature of the atmosphere between the infrared cameras 1A and 1B and the wall surface using the temperature data of each of the infrared cameras 1A and 1B. It is preferable that the infrared cameras are arranged at positions where the distances to the cameras 1A and 1B are about the same.

ここでは、撮影フレームレートは、25Hz、撮影時間は30秒とし、30秒間の平均の温度値をデータとして用いた。
<温度測定時の処理手順>
Here, the shooting frame rate was 25 Hz, the shooting time was 30 seconds, and the average temperature value for 30 seconds was used as the data.
<Processing procedure for temperature measurement>

温度測定装置10では、まず、校正データの取得を行う。 The temperature measuring device 10 first acquires calibration data.

具体的には、室内の大気の温度を17℃から30℃に変化させ、2台の赤外線カメラ1A及び1Bで壁面を撮影した。なお、赤外線カメラ1A、1Bから壁面までの距離は3.3mである。また、室内の大気の温度は熱電対で測定した。 Specifically, the temperature of the atmosphere in the room was changed from 17 ° C. to 30 ° C., and the wall surface was photographed with two infrared cameras 1A and 1B. The distance from the infrared cameras 1A and 1B to the wall surface is 3.3 m. The temperature of the atmosphere in the room was measured with a thermocouple.

ここで、(7)式は、次式(8)で表す一次式に変形することができる。 Here, the equation (7) can be transformed into a linear equation represented by the following equation (8).

TA=(D1-β1-(D2-β2)×(1-α1))/α1 TA = (D1-β1- (D2-β2) × (1-α1)) / α1

=(D1-D2×(1-α1)-β1+β2×(1-α1))/α1 = (D1-D2 × (1-α1) -β1 + β2 × (1-α1)) / α1

=(D1-D2×(1-α1)/α1+(-β1+β2×(1-α1))/α1 = (D1-D2 × (1-α1) / α1 + (-β1 + β2 × (1-α1)) / α1

=(D1-D2×(1-α1))/α1+γ = (D1-D2 × (1-α1)) / α1 + γ

γ=(-β1+β2×(1-α1))/α1 ……(8) γ = (-β1 + β2 × (1-α1)) / α1 …… (8)

つまり、(8)式に示すように、大気の温度TAは、(D1-D2×(1-α1))/α1にバイアス値γを加えたものとなる。 That is, as shown in the equation (8), the temperature TA of the atmosphere is (D1-D2 × (1-α1)) / α1 plus the bias value γ.

すなわち、(D1-D2×(1-α1))/α1とTAとの関係が傾き「1」となるようにα1を適切に設定すれば、この関係の切片からバイアス値γを求めることができる。 That is, if α1 is appropriately set so that the relationship between (D1-D2 × (1-α1)) / α1 and TA has a slope of “1”, the bias value γ can be obtained from the intercept of this relationship. ..

本実施例においては、図2に示すように、α1を0.15としたときに、(D1-D2×(1-α1))/α1と大気の温度TAとの関係の傾きが「1」となった。また、このときの切片γは4.37であった。なお、図2において、横軸は(D1-D2×(1-α1))/α1〔℃〕、縦軸は大気の温度TA〔℃〕である。 In this embodiment, as shown in FIG. 2, when α1 is 0.15, the slope of the relationship between (D1-D2 × (1-α1)) / α1 and the atmospheric temperature TA is “1”. It became. The intercept γ at this time was 4.37. In FIG. 2, the horizontal axis is (D1-D2 × (1-α1)) / α1 [° C.], and the vertical axis is the atmospheric temperature TA [° C.].

したがって、(8)式より、大気の温度TAは次式(9)で求めることができる。 Therefore, from the equation (8), the atmospheric temperature TA can be obtained by the following equation (9).

TA=(D1-D2×0.85)/0.15+4.37 ……(9) TA = (D1-D2 × 0.85) /0.15+4.37 …… (9)

大気の温度、つまり熱電対で測定した室内の温度が28℃である状態で、赤外線カメラ1A及び1Bによって室内を撮影し、温度データD1及びD2を取得した。取得した温度データD1及びD2それぞれについて、各画素の温度データの平均値を求め、求めた平均値を温度データD1、D2とした。そして、求めた温度データD1、D2を、(9)式に当てはめ、室内の大気の温度TAを演算したところ、室内の大気の平均温度は27.8℃であった。室内の温度測定値28℃との差は0.2℃であった。 With the temperature of the atmosphere, that is, the temperature of the room measured by the thermocouple being 28 ° C., the room was photographed by the infrared cameras 1A and 1B, and the temperature data D1 and D2 were acquired. For each of the acquired temperature data D1 and D2, the average value of the temperature data of each pixel was obtained, and the obtained average value was used as the temperature data D1 and D2. Then, when the obtained temperature data D1 and D2 were applied to the equation (9) and the temperature TA of the indoor atmosphere was calculated, the average temperature of the indoor atmosphere was 27.8 ° C. The difference from the indoor temperature measurement value of 28 ° C. was 0.2 ° C.

また、熱電対で測定した室内の温度が18℃である状態で、赤外線カメラ1A及び1Bによって室内を撮影し、温度データD1及びD2を取得した。取得した温度データD1及びD2を(9)式に当てはめ、室内の大気の温度TAを演算したところ、室内の大気の平均温度は18.1℃であった。室内の温度測定値18℃との差は0.1℃であった。 Further, the room was photographed by the infrared cameras 1A and 1B in a state where the temperature in the room measured by the thermocouple was 18 ° C., and the temperature data D1 and D2 were acquired. When the acquired temperature data D1 and D2 were applied to the equation (9) and the temperature TA of the indoor atmosphere was calculated, the average temperature of the indoor atmosphere was 18.1 ° C. The difference from the indoor temperature measurement value of 18 ° C. was 0.1 ° C.

以上から、前記(9)式から精度よく空間内の大気の温度が得られることが確認された。 From the above, it was confirmed that the temperature of the atmosphere in the space can be obtained accurately from the above equation (9).

図3は、画像処理装置2における処理手順の一例を示すフローチャートである。 FIG. 3 is a flowchart showing an example of a processing procedure in the image processing apparatus 2.

画像処理装置2では、まず、部屋等といった大気温度の測定対象の空間において、赤外線カメラ1A及び1Bを用いて校正用の温度データ(校正用の第一温度データ及び第二温度データ)を取得する(ステップS1)。次いで、取得した温度データをもとに、前記(8)式における所定の校正用パラメータを探索する(ステップS2)。すなわち、(D1-D2×(1-α1)/α1)とTAとの関係が傾き「1」となるα1と、α1であるときのバイアス値γとを探索する。 The image processing apparatus 2 first acquires temperature data for calibration (first temperature data and second temperature data for calibration) using infrared cameras 1A and 1B in a space such as a room where the atmospheric temperature is to be measured. (Step S1). Next, based on the acquired temperature data, a predetermined calibration parameter in the above equation (8) is searched for (step S2). That is, α1 in which the relationship between (D1-D2 × (1-α1) / α1) and TA has a slope of “1” and the bias value γ when the relationship is α1 are searched.

次いで、取得した校正用パラメータα1とバイアス値γとから、大気の温度TAの演算式(9)を特定し、記憶部2aに格納する(ステップS3)。以上の処理(ステップS1~S3 前処理部)によって、温度測定時の前処理が終了する。 Next, the calculation formula (9) for the temperature TA of the atmosphere is specified from the acquired calibration parameter α1 and the bias value γ, and stored in the storage unit 2a (step S3). By the above processing (steps S1 to S3 pretreatment unit), the pretreatment at the time of temperature measurement is completed.

次いで、ステップS4に移行し、大気温度の測定対象の空間において、赤外線カメラ1A及び1Bを用いて温度測定用の温度データを取得し、記憶部2aに格納する。なお、赤外線カメラ1A及び1Bは、温度測定時の前処理を行ったときの設置場所に配置することが望ましい。 Next, the process proceeds to step S4, and the temperature data for temperature measurement is acquired by using the infrared cameras 1A and 1B in the space to be measured for the atmospheric temperature, and stored in the storage unit 2a. It is desirable that the infrared cameras 1A and 1B are arranged at the installation location when the pretreatment for temperature measurement is performed.

次いで、記憶部2aに格納した赤外線カメラ1A及び1Bの温度測定用の温度データをもとに、前記(9)式を用いて、大気の温度TAを演算し(ステップS5、温度算出部)、取得した大気の温度TAを、表示装置に表示する(ステップS6)。例えば、大気の温度TAの大きさに応じて異なる表示色で表示すること、或いは、温度を数値表示すること等により、大気温度の測定対象の空間における温度を表示する。これによって、ユーザは、大気温度の測定対象の空間における温度を容易に認識することができる。 Next, based on the temperature data for temperature measurement of the infrared cameras 1A and 1B stored in the storage unit 2a, the temperature TA of the atmosphere is calculated using the above equation (9) (step S5, temperature calculation unit). The acquired atmospheric temperature TA is displayed on the display device (step S6). For example, the temperature in the space where the atmospheric temperature is to be measured is displayed by displaying it in a different display color according to the magnitude of the atmospheric temperature TA, or displaying the temperature numerically. This allows the user to easily recognize the temperature in the space where the atmospheric temperature is measured.

このとき、例えば、赤外線カメラ1A、1Bの温度データ毎に、各画素の温度データの平均値を求め、これを赤外線カメラ1A、1Bの温度データD1、D2として、温度を演算すれば、測定対象空間内における、視野に対応する領域の平均温度を得ることができる。また、画素単位の温度データ毎に、大気の温度TAを演算すれば、測定対象空間内における視野に対応する領域の温度分布を得ることができる。特に温度分布を取得した場合には、温度に応じて異なる表示色で表示すること或いは、温度分布に対応して温度を数値で表すこと等によって、測定対象空間内の温度分布を視覚的に容易に認識することができる。 At this time, for example, if the average value of the temperature data of each pixel is obtained for each temperature data of the infrared cameras 1A and 1B and the temperature is calculated as the temperature data D1 and D2 of the infrared cameras 1A and 1B, the measurement target is obtained. It is possible to obtain the average temperature of the region corresponding to the visual field in the space. Further, if the temperature TA of the atmosphere is calculated for each pixel-based temperature data, the temperature distribution in the region corresponding to the visual field in the measurement target space can be obtained. In particular, when the temperature distribution is acquired, it is easy to visually easily display the temperature distribution in the measurement target space by displaying it in a different display color according to the temperature or by expressing the temperature numerically corresponding to the temperature distribution. Can be recognized.

また、このとき、より長い時間撮影し、30秒間毎に、この30秒間の平均の温度値を用いて、温度分布を演算し、時系列に表示することによって、大気温度の測定対象空間における30秒毎の温度の変化状況又は温度分布の変化状況を表すことができる。 Also, at this time, by taking a picture for a longer time and calculating the temperature distribution every 30 seconds using the average temperature value for this 30 seconds and displaying it in chronological order, 30 in the space for measuring the atmospheric temperature. It can represent a change in temperature or a change in temperature distribution every second.

このように、第1実施形態における温度測定装置10は、簡易な構成で温度測定を行うことができる。また、赤外線カメラ1A、1Bを、所定の位置に設置するだけでよいため、実環境下での温度測定を容易に行うことができ、すなわち温度分布測定も容易に行うことができる。特に、測定対象空間内の温度分布を測定する場合には、赤外線カメラ1A、1Bを所定の位置に設置するだけで、複数地点の温度データを取得することができる。そのため、赤外線カメラ1A及び1Bによる1度の撮影によって、測定対象空間内の複数地点の温度データを取得することができ、測定対象空間内の温度分布を容易に取得することができる。
また、従来の温度計等のセンサを用いて温度測定を行う場合には、センサを、測定対象空間内の温度を測定したい地点に配置する必要がある。これに対し第1実施形態に係る温度測定装置10は、温度を測定したい地点に赤外線カメラ1A、1Bを配置する必要はない。そのため、温度測定を行うためのセンサ、つまり、赤外線カメラ1A、1Bを容易に設置することができる。
<第1実施形態の変形例1>
As described above, the temperature measuring device 10 in the first embodiment can measure the temperature with a simple configuration. Further, since the infrared cameras 1A and 1B need only be installed at predetermined positions, the temperature can be easily measured in an actual environment, that is, the temperature distribution can be easily measured. In particular, when measuring the temperature distribution in the measurement target space, it is possible to acquire temperature data at a plurality of points simply by installing the infrared cameras 1A and 1B at predetermined positions. Therefore, the temperature data of a plurality of points in the measurement target space can be acquired by one-time imaging with the infrared cameras 1A and 1B, and the temperature distribution in the measurement target space can be easily acquired.
Further, when measuring the temperature using a sensor such as a conventional thermometer, it is necessary to arrange the sensor at a point in the measurement target space where the temperature is to be measured. On the other hand, in the temperature measuring device 10 according to the first embodiment, it is not necessary to arrange the infrared cameras 1A and 1B at the points where the temperature is desired to be measured. Therefore, a sensor for measuring the temperature, that is, infrared cameras 1A and 1B can be easily installed.
<Modification 1 of the first embodiment>

実験室以外の、実際の測定現場において、校正を行うこと、つまり、(8)式中のパラメータα1及びγを求めることは、空間の温度を種々変化させて測定を行わなければならず、非常に困難であり実用的ではない。 Performing calibration at an actual measurement site other than in the laboratory, that is, obtaining the parameters α1 and γ in Eq. (8) requires measurement by changing the temperature of the space in various ways. It is difficult and impractical.

ここで、校正用パラメータα1及びγは、前述のように、実際には赤外線カメラ1A、1Bから壁面までの距離の関数となる。 Here, the calibration parameters α1 and γ are actually functions of the distance from the infrared cameras 1A and 1B to the wall surface, as described above.

そこで、校正作業を軽減するため、表1に示すように、実験室等で赤外線カメラ1A、1B等から壁面までの距離に応じて予め校正用パラメータα1及びγを求めておき、実際の測定現場で大気の温度を測定する場合には、予め求めていた校正用パラメータα1及びγのうち、温度測定時の、赤外線カメラ1A、1Bと、壁面との間の距離に応じて対応する構成用パラメータを選択して用いるように構成してもよい。

Figure 2022096297000002

<第1実施形態の変形例2> Therefore, in order to reduce the calibration work, as shown in Table 1, the calibration parameters α1 and γ are obtained in advance according to the distance from the infrared cameras 1A, 1B, etc. to the wall surface in a laboratory or the like, and the actual measurement site. When measuring the temperature of the atmosphere in the above, among the calibration parameters α1 and γ obtained in advance, the corresponding configuration parameters according to the distance between the infrared cameras 1A and 1B and the wall surface at the time of temperature measurement. May be configured to be selected and used.

Figure 2022096297000002

<Modification 2 of the first embodiment>

空間の温度TAを演算するためには、校正用パラメータとしてα1とバイアス値γとが必要である。このうちバイアス値γの値はα1、β1、β2が関与するため、誤差要因となる比率が高い。 In order to calculate the temperature TA of the space, α1 and the bias value γ are required as calibration parameters. Of these, the value of the bias value γ involves α1, β1, and β2, and therefore has a high ratio of causing an error.

そこで、より正確な温度を得るためには、図4に示すように、室内の1点或いは複数点の温度を熱電対等の温度計1aにより実測し、これをもとに校正用パラメータγを求め、この校正用パラメータを用いて、大気の温度TAを補正するようにしてもよい。つまり、例えば、室内の複数点の温度を温度計1aにより実測する。この実測値は大気の温度TAに相当する。また、赤外線カメラ1A及び1Bから温度計1aの設置場所における温度データD1及びD2を取得する。そして、温度計1aで実測した大気の温度TA(実測値)と、温度計1aの設置場所における温度データD1及びD2と、(D1-D2×(1-α1))/α1とTAとの関係から求めたα1と、前記(8)式とから、未知数γを演算するようにしてもよい。
<第1実施形態の変形例3>
Therefore, in order to obtain a more accurate temperature, as shown in FIG. 4, the temperature at one point or a plurality of points in the room is actually measured with a thermometer 1a such as a thermoelectric pair, and the calibration parameter γ is obtained based on this. , This calibration parameter may be used to correct the atmospheric temperature TA. That is, for example, the temperature at a plurality of points in the room is actually measured by the thermometer 1a. This measured value corresponds to the temperature TA of the atmosphere. In addition, temperature data D1 and D2 at the installation location of the thermometer 1a are acquired from the infrared cameras 1A and 1B. Then, the relationship between the atmospheric temperature TA (measured value) actually measured by the thermometer 1a, the temperature data D1 and D2 at the installation location of the thermometer 1a, and (D1-D2 × (1-α1)) / α1 and TA. The unknown number γ may be calculated from α1 obtained from the above equation (8).
<Modification 3 of the first embodiment>

空間の温度を取得するために赤外線カメラ1A及び1Bで測定対象空間の壁面等を撮影する場合、実施の測定現場においては、壁面の形状の凹凸や、壁面の放射率の違い、2台の赤外線カメラ1A及び1Bの視野の誤差等によって、正確な大気の温度測定を行うことができず、ノイズが重畳する可能性がある。 When photographing the wall surface of the measurement target space with infrared cameras 1A and 1B in order to acquire the temperature of the space, the unevenness of the shape of the wall surface and the difference in the emissivity of the wall surface are different at the measurement site of the measurement. Due to an error in the visual field of the cameras 1A and 1B, accurate atmospheric temperature measurement cannot be performed, and noise may be superimposed.

その一方で、大気の温度の評価は、赤外線カメラ1Aの画素数(640×512画素)ほど、空間的に厳密に評価する必要がない場合がある。例えば、測定対象空間のある領域の温度が上昇し、他の領域の温度が低下したことがわかれば十分なケースがある。 On the other hand, it may not be necessary to evaluate the temperature of the atmosphere as strictly spatially as the number of pixels (640 × 512 pixels) of the infrared camera 1A. For example, there are cases where it is sufficient to know that the temperature in a certain area of the measurement target space has increased and the temperature in another area has decreased.

そこで、図5に示すように、赤外線カメラ1Aで測定した640×512画素からなる画像(図5(a))を、例えば、128×128画素毎の5×4の計20の区画に分割し(図5(b))、区画毎の平均の温度を演算するようにしてもよい。このようにすることによって、測定誤差の程度を緩和することができる。また、5×4の区画毎に平均温度を演算すればよいため、画像処理装置2の処理負荷を軽減することができる。 Therefore, as shown in FIG. 5, an image consisting of 640 × 512 pixels (FIG. 5A) measured by the infrared camera 1A is divided into, for example, 5 × 4 sections of 128 × 128 pixels for a total of 20 sections. (FIG. 5 (b)), the average temperature for each section may be calculated. By doing so, the degree of measurement error can be alleviated. Further, since the average temperature may be calculated for each 5 × 4 section, the processing load of the image processing device 2 can be reduced.

また、視野内の一部の領域の温度測定を行う場合等には、図5(b)に示す複数の区画において、温度測定対象である「一部の領域」を含む区画についてのみ温度測定を行えばよい。この場合には、区画の平均温度を演算するようにしてもよく、また、「一部の領域」を含む区画について、当該区画に含まれる画素毎に温度測定を行い、「一部の領域」を含む区画について温度分布を測定するようにしてもよい。
〔第2実施形態〕
In addition, when measuring the temperature of a part of the area in the visual field, in the plurality of sections shown in FIG. 5B, the temperature is measured only in the section including the "partial area" to be measured. Just do it. In this case, the average temperature of the section may be calculated, or the temperature of the section including the "partial area" may be measured for each pixel included in the section, and the "partial area" may be calculated. The temperature distribution may be measured for the compartment containing the above.
[Second Embodiment]

次に、本発明の第2実施形態に係る温度測定装置10-1を説明する。 Next, the temperature measuring device 10-1 according to the second embodiment of the present invention will be described.

図6は、第2実施形態に係る温度測定装置10-1の一例を示す概略構成図である。 FIG. 6 is a schematic configuration diagram showing an example of the temperature measuring device 10-1 according to the second embodiment.

温度測定装置10-1は、1台の赤外線カメラ1Cと、パーソナルコンピュータ等からなる画像処理装置2と、記憶部2aとを備える。赤外線カメラ1Cは、大気による吸収が比較的大きい波長帯に感度を有し、例えば3μm以上5μm以下の中赤外線の帯域に感度を持つ。赤外線カメラ1Cとして、中赤外帯域の冷却型(素子InSb)の赤外線カメラを用いることができる。赤外線カメラ1Cの画素数は640×512画素である。また、赤外線カメラ1Cには、図7に示すように、赤外線バンドパスフィルタの通過帯域(透過波長)を選択することの可能な、通過帯域(透過波長)の異なる複数の光学フィルタ3aを有するフィルタホイール3が設けられている。 The temperature measuring device 10-1 includes one infrared camera 1C, an image processing device 2 including a personal computer or the like, and a storage unit 2a. The infrared camera 1C has sensitivity in a wavelength band in which absorption by the atmosphere is relatively large, for example, in a mid-infrared band of 3 μm or more and 5 μm or less. As the infrared camera 1C, a cooling type (element InSb) infrared camera in the mid-infrared band can be used. The number of pixels of the infrared camera 1C is 640 × 512 pixels. Further, as shown in FIG. 7, the infrared camera 1C has a plurality of optical filters 3a having different pass bands (transmission wavelengths) capable of selecting the pass band (transmission wavelength) of the infrared bandpass filter. A wheel 3 is provided.

ここで、赤外線の波長の、大気に対する透過率は、図8に示す特性を有することが文献等によって知られている。 Here, it is known from the literature and the like that the transmittance of the infrared wavelength with respect to the atmosphere has the characteristics shown in FIG.

図8に示すように、中赤外線の3μm以上5μm以下の帯域では、4.2μm近傍で透過率が小さく(吸収が大きい)、3.7μm近傍で透過率が大きい(吸収が小さい)。そこで、フィルタホイール3には、光学フィルタ3aとして、4.2μm近傍のバンドパスフィルタと、3.7μm近傍のバンドパスフィルタとを設ける。そして、例えば、5秒毎に2つの光学フィルタ3aを切り替え交互に2つの波長帯域で測定する。 As shown in FIG. 8, in the band of mid-infrared rays of 3 μm or more and 5 μm or less, the transmittance is small (high absorption) near 4.2 μm and large (small absorption) near 3.7 μm. Therefore, the filter wheel 3 is provided with a bandpass filter in the vicinity of 4.2 μm and a bandpass filter in the vicinity of 3.7 μm as the optical filter 3a. Then, for example, the two optical filters 3a are switched every 5 seconds to alternately measure in two wavelength bands.

これによって、大気による吸収の大きい温度データと、大気による吸収の小さい温度データとを、ほぼ同時に取得することができ、上記第一実施形態と同様の手順で大気の温度を取得することができる。 Thereby, the temperature data with large absorption by the atmosphere and the temperature data with small absorption by the atmosphere can be acquired almost at the same time, and the temperature of the atmosphere can be acquired by the same procedure as in the first embodiment.

また、1台の赤外線カメラ1Cで測定が完結するため、2台の赤外線カメラを用いる場合のように、2台の赤外線カメラの視野を調整する必要がなく、温度測定を容易に行うことができる。
〔第3実施形態〕
Further, since the measurement is completed by one infrared camera 1C, it is not necessary to adjust the fields of view of the two infrared cameras as in the case of using two infrared cameras, and the temperature can be easily measured. ..
[Third Embodiment]

次に、本発明の第3実施形態に係る温度測定装置10-2を説明する。 Next, the temperature measuring device 10-2 according to the third embodiment of the present invention will be described.

図9は、第3実施形態に係る温度測定装置10-2の一例を示す概略構成図である。 FIG. 9 is a schematic configuration diagram showing an example of the temperature measuring device 10-2 according to the third embodiment.

温度測定装置10-2は、1台の赤外線カメラ1Aと、パーソナルコンピュータなどからなる画像処理装置2とを備える。赤外線カメラ1Aは、上記第1実施形態における赤外線カメラ1Aと同様に、大気による吸収が比較的大きい波長帯に感度を有し、例えば3μm以上5μm以下の中赤外線の帯域に感度を持つ。赤外線カメラ1Aとして、中赤外帯域の冷却型(素子InSb)の赤外線カメラを用いることができる。赤外線カメラ1Aの画素数は640×512画素である。 The temperature measuring device 10-2 includes one infrared camera 1A and an image processing device 2 including a personal computer or the like. Similar to the infrared camera 1A in the first embodiment, the infrared camera 1A has sensitivity in a wavelength band in which absorption by the atmosphere is relatively large, for example, in a mid-infrared band of 3 μm or more and 5 μm or less. As the infrared camera 1A, a cooling type (element InSb) infrared camera in the mid-infrared band can be used. The number of pixels of the infrared camera 1A is 640 × 512 pixels.

ここで、気流によって生じる極短時間での大気の温度変化を想定した場合、大気の温度変化は壁面には伝わらず、大気だけが温度変化する。 Here, assuming the temperature change of the atmosphere caused by the air flow in a very short time, the temperature change of the atmosphere is not transmitted to the wall surface, and only the atmosphere changes.

また、気流による大気の温度変化の効果を調べたい場合、大気の絶対温度を測定する必要はなく、気流の発生前後の温度変化量がわかればよい。 Further, when it is desired to investigate the effect of the temperature change of the atmosphere due to the air flow, it is not necessary to measure the absolute temperature of the atmosphere, and it is sufficient to know the amount of the temperature change before and after the generation of the air flow.

このような場合には、大気による吸収が比較的大きい波長帯に感度を有する赤外線カメラ1Aだけで温度を測定すればよい。 In such a case, the temperature may be measured only by the infrared camera 1A having sensitivity in a wavelength band in which absorption by the atmosphere is relatively large.

つまり、温度変化前後での大気の温度を、TA(0)(変化前)、TA(1)(変化後)とし、大気による赤外線の吸収が比較的大きい帯域を測定波長帯として有する赤外線カメラで測定される温度データを、D1(0)(変化前)、D1(1)(変化後)、大気による赤外線の吸収が比較的小さい帯域を測定波長帯として有する赤外線カメラで測定される温度データをD2(0)(変化前)、D2(1)(変化後)とすると、前記(8)式は、次式(10)で表すことができる。 That is, with an infrared camera, the temperature of the atmosphere before and after the temperature change is set to TA (0) (before the change) and TA (1) (after the change), and the infrared camera has a band in which the absorption of infrared rays by the atmosphere is relatively large as the measurement wavelength band. The temperature data to be measured is D1 (0) (before change), D1 (1) (after change), and the temperature data measured by an infrared camera having a band where infrared absorption by the atmosphere is relatively small as a measurement wavelength band. Assuming that D2 (0) (before change) and D2 (1) (after change), the above equation (8) can be expressed by the following equation (10).

TA(0)=(D1(0)-D2(0)×(1-α1))/α1+γ TA (0) = (D1 (0) -D2 (0) x (1-α1)) / α1 + γ

TA(1)=(D1(1)-D2(1)×(1-α1))/α1+γ TA (1) = (D1 (1) -D2 (1) x (1-α1)) / α1 + γ

γ=(-β1+β2×(1-α1))/α1 ……(10) γ = (-β1 + β2 × (1-α1)) / α1 …… (10)

大気による赤外線の吸収が比較的小さい波長を測定波長帯として有する赤外線カメラでは、壁の温度だけが測定される。そのため、D2(0)=D2(1)とすると、大気の温度変化ΔTAは、次式(11)で表すことができる。 In an infrared camera having a wavelength in which the absorption of infrared rays by the atmosphere is relatively small as a measurement wavelength band, only the wall temperature is measured. Therefore, if D2 (0) = D2 (1), the temperature change ΔTA of the atmosphere can be expressed by the following equation (11).

ΔTA=TA(1)-TA(0)=(D1(1)-D1(0))/α1 ΔTA = TA (1) -TA (0) = (D1 (1) -D1 (0)) / α1

……(11) …… (11)

したがって、大気による赤外線の吸収が比較的大きい波長を測定波長帯として有する赤外線カメラ1Aだけで、大気の温度変化を演算することができる。 Therefore, the temperature change of the atmosphere can be calculated only by the infrared camera 1A having a wavelength in which the absorption of infrared rays by the atmosphere is relatively large as the measurement wavelength band.

したがって、赤外線カメラ1Aからの温度データをもとに、画素の温度データ毎に(11)式から大気の温度変化ΔTAを演算することによって、測定対象空間内の、赤外線カメラ1Aの視野に対応する領域の温度変化ΔTAを得ることができる。
図10は、ドライヤにより大気だけを温めたときの、大気の温度変化の測定結果である。図10に示すように、ドライヤの熱により温度変化が生じた大気の領域と、温度変化が生じていない大気の領域とが明瞭に区別されることがわかる。
〔第4実施形態〕
Therefore, by calculating the atmospheric temperature change ΔTA from the equation (11) for each pixel temperature data based on the temperature data from the infrared camera 1A, the field of view of the infrared camera 1A in the measurement target space is supported. The temperature change ΔTA in the region can be obtained.
FIG. 10 shows the measurement results of the temperature change of the atmosphere when only the atmosphere is warmed by the dryer. As shown in FIG. 10, it can be seen that the region of the atmosphere in which the temperature changes due to the heat of the dryer and the region of the atmosphere in which the temperature does not change are clearly distinguished.
[Fourth Embodiment]

次に、本発明の第4実施形態を説明する。 Next, a fourth embodiment of the present invention will be described.

この第4実施形態は、大気の温度分布と共に、大気の流れも表示するようにしたものである。 In this fourth embodiment, not only the temperature distribution of the atmosphere but also the flow of the atmosphere is displayed.

つまり、大気の温度分布測定は、エアーコンディショナー等の空調機器の効率を評価するために行われることが多い。また、多くの場合、大気の温度分布の変化は、自然対流や空調機器からの強制対流によって生じる。ここで、大気の流れは、特許文献4に記載されているように、大気により吸収される赤外線の量が比較的大きい赤外線を用いることで測定することができる。 That is, the temperature distribution measurement of the atmosphere is often performed to evaluate the efficiency of air conditioning equipment such as an air conditioner. Also, in many cases, changes in the temperature distribution of the atmosphere are caused by natural convection or forced convection from air conditioning equipment. Here, the flow of the atmosphere can be measured by using infrared rays having a relatively large amount of infrared rays absorbed by the atmosphere, as described in Patent Document 4.

そのため、特許文献4に記載の流体の流れの計測方法を用いることによって、大気の流れを表す画像を取得することができる。そこで、大気の温度分布の画像と共に、大気の流れの画像を重畳表示することによって、大気の流れと、その温度分布とを容易に認識することができる。そのため、空調機器の効率評価等を、視覚的に容易に行うことができ、効率評価に要する時間を削減することができる。 Therefore, by using the method for measuring the flow of fluid described in Patent Document 4, it is possible to obtain an image showing the flow of the atmosphere. Therefore, the atmospheric flow and its temperature distribution can be easily recognized by superimposing and displaying the image of the atmospheric flow together with the image of the atmospheric temperature distribution. Therefore, the efficiency evaluation of the air conditioner can be easily performed visually, and the time required for the efficiency evaluation can be reduced.

大気の温度分布と大気の流れとを表示する方法として、例えば、図11に示すように、大気の流れ画像に大気の等温線を重ね合わせる方法が考えられる。 As a method of displaying the temperature distribution of the atmosphere and the flow of the atmosphere, for example, as shown in FIG. 11, a method of superimposing the isotherm of the atmosphere on the flow image of the atmosphere can be considered.

また、大気の温度分布と大気の流れとを二つ並べて表示するようにしてもよい。 Further, the temperature distribution of the atmosphere and the flow of the atmosphere may be displayed side by side.

図12は、大気の温度分布の測定と大気の流れの計測とを共に行うことの可能な大気計測システム20の一例を示す機能構成図である。大気計測システム20は、上記第1実施形態における温度測定装置10と同様に、赤外線センサとしての、測定波長帯の異なる2台の赤外線カメラ1A及び赤外線カメラ1Bと、画像処理装置2と記憶部2aとを備える。 FIG. 12 is a functional configuration diagram showing an example of an atmospheric measurement system 20 capable of both measuring the temperature distribution of the atmosphere and measuring the flow of the atmosphere. Similar to the temperature measuring device 10 in the first embodiment, the atmospheric measurement system 20 includes two infrared cameras 1A and infrared cameras 1B having different measurement wavelength bands, an image processing device 2 and a storage unit 2a as infrared sensors. And prepare.

大気計測システム20は、大気の温度分布の測定対象の空間を、例えば2台の赤外線カメラ1A及び1Bで撮影した温度データを取得し、第1実施形態における画像処理装置2の処理と同様の手順で、大気の温度TAを演算し測定対象の空間の大気の温度分布画像を生成する温度測定部(温度測定装置)11と、大気の流れを計測する流れ計測部(流れ計測装置)12と、温度測定部11で生成した温度分布画像と、流れ計測部12で計測した大気の流れを表す流れ計測画像とのうち、表示装置13に表示する画像を選択する選択部14と、選択部14で選択された画像を、表示装置13に表示する表示処理部15と、を備える。 The atmosphere measurement system 20 acquires temperature data obtained by, for example, two infrared cameras 1A and 1B in the space to be measured for the temperature distribution of the atmosphere, and has the same procedure as the processing of the image processing device 2 in the first embodiment. Then, a temperature measuring unit (temperature measuring device) 11 that calculates the temperature TA of the atmosphere and generates an image of the temperature distribution of the atmosphere in the space to be measured, a flow measuring unit (flow measuring device) 12 that measures the flow of the atmosphere, and Of the temperature distribution image generated by the temperature measuring unit 11 and the flow measuring image representing the flow of the atmosphere measured by the flow measuring unit 12, the selection unit 14 for selecting the image to be displayed on the display device 13 and the selection unit 14 A display processing unit 15 for displaying the selected image on the display device 13 is provided.

流れ計測部12は、大気による赤外線の吸収が比較的大きい帯域を測定対象域として有する赤外線カメラ1Aの画像データをもとに、大気の流れ計測を行う。選択部14は、例えばタッチパネル等の入力装置で構成され、温度測定部11で取得した温度分布画像と、流れ計測部12で計測した流れ計測画像と、のうち、いずれの画像を表示するか、また両方の画像を共に表示するかを選択する。 The flow measurement unit 12 measures the flow of the atmosphere based on the image data of the infrared camera 1A having a band in which the absorption of infrared rays by the atmosphere is relatively large as the measurement target area. The selection unit 14 is composed of an input device such as a touch panel, and which image is to be displayed, the temperature distribution image acquired by the temperature measurement unit 11 or the flow measurement image measured by the flow measurement unit 12. Also, select whether to display both images together.

表示処理部15は、選択部14で選択された画像を、表示装置13に表示する表示処理を行う。すなわち、選択部14で温度分布画像及び流れ計測画像の一方が選択されたときには、選択された画像を表示装置13に表示し、温度分布画像及び流れ計測画像が共に選択されたときには、これら画像を共に表示する。表示方法は選択部14で設定するようにしてもよく、例えば選択部14での表示方法の選択に応じて、二つの画像を重畳表示してもよく、また左右又は上下に並べて表示してもよい。
<流れ計測部12の処理手順>
The display processing unit 15 performs display processing for displaying the image selected by the selection unit 14 on the display device 13. That is, when one of the temperature distribution image and the flow measurement image is selected by the selection unit 14, the selected image is displayed on the display device 13, and when both the temperature distribution image and the flow measurement image are selected, these images are displayed. Display together. The display method may be set by the selection unit 14, for example, two images may be superimposed and displayed depending on the selection of the display method by the selection unit 14, or may be displayed side by side or side by side. good.
<Processing procedure of flow measurement unit 12>

次に、流れ計測部12の処理手順の一例を説明する。この流れ計測部12では、例えば特許文献4に記載の流体の流れ計測装置における処理と同様に処理を行う。 Next, an example of the processing procedure of the flow measuring unit 12 will be described. The flow measuring unit 12 performs processing in the same manner as the processing in the fluid flow measuring device described in Patent Document 4, for example.

具体的には、流れ計測部12では、温度測定部11による処理によって、赤外線カメラ1Aにより予め設定された周期で撮影された温度画像データを、予め設定した所定期間の間取得し、取得した温度画像データを記憶部2aに時系列に格納する。 Specifically, the flow measuring unit 12 acquires temperature image data taken by the infrared camera 1A at a preset cycle by processing by the temperature measuring unit 11 for a predetermined period set in advance, and acquires the temperature. Image data is stored in the storage unit 2a in chronological order.

流れ計測部12は、記憶部2aに格納された時系列の温度画像データ及び、予め記憶部2aに格納されている温度変動分布解析に必要なデータベースをもとに、流体の流れ解析を行う。 The flow measuring unit 12 analyzes the flow of the fluid based on the time-series temperature image data stored in the storage unit 2a and the database necessary for the temperature fluctuation distribution analysis stored in the storage unit 2a in advance.

流れ計測部12は、図13(a)に示すように、時系列温度データの一部を、一定期間の切り出し窓幅Δt1の単位で切り出し、切り出した温度データを部分温度データとする。このとき、時系列温度データから部分温度データを切り出す時刻は、図13(b)に示すように一定の解析ステップずつずらすものとする。これにより、切り出し窓幅相当分の期間データを有する温度データからなる部分温度データが複数切り出される。 As shown in FIG. 13A, the flow measuring unit 12 cuts out a part of the time-series temperature data in units of the cut-out window width Δt1 for a certain period, and sets the cut-out temperature data as partial temperature data. At this time, the time for cutting out the partial temperature data from the time-series temperature data shall be shifted by a certain analysis step as shown in FIG. 13 (b). As a result, a plurality of partial temperature data consisting of temperature data having period data corresponding to the width of the cut-out window are cut out.

なお、解析される時系列温度データの温度変動に欠落が生じることを防ぐため、連続する部分温度データどうしは、温度データの一部が重なるように切り出されることが望ましい。流れ計測部12は、切り出した部分温度データそれぞれに対してフーリエ変換を行う。 In order to prevent the temperature fluctuation of the time-series temperature data to be analyzed from being lost, it is desirable that the continuous partial temperature data are cut out so that part of the temperature data overlaps. The flow measuring unit 12 performs a Fourier transform on each of the cut out partial temperature data.

切り出し窓幅とは、図13(b)に示すように、部分温度データとして切り出す期間を規定するものであり、例えばΔt1期間分の部分温度データを抽出する場合には、Δt1が切り出し窓幅となる。また、解析ステップとは、図13(b)に示すように、部分温度データを抽出する際の切り出し窓のずれ量を表し、ずれ量がΔt2である場合には、Δt2ずつずれた時点における、Δt1期間分の部分温度データが抽出される。 As shown in FIG. 13B, the cut-out window width defines a period for cutting out as partial temperature data. For example, when extracting partial temperature data for a Δt1 period, Δt1 is the cut-out window width. Become. Further, as shown in FIG. 13B, the analysis step represents the amount of deviation of the cutout window when extracting the partial temperature data, and when the amount of deviation is Δt2, the time when the amount of deviation is Δt2. Partial temperature data for the Δt1 period is extracted.

流れ計測部12は、切り出した部分温度データ毎に周波数解析法により、温度変動分布解析を行い、解析結果を表示装置に時系列に表示する。なお、本実施形態においては、時系列の温度データに対し、短時間の窓関数を順次ずらしながら掛けて切り出し、それに対してフーリエ変換を行っており、この方法を短時間フーリエ変換法という。短時間フーリエ変換法を用いることにより、時間変化に伴う温度変動を得ることができる。 The flow measurement unit 12 analyzes the temperature fluctuation distribution for each of the cut out partial temperature data by the frequency analysis method, and displays the analysis results on the display device in chronological order. In the present embodiment, the time-series temperature data is cut out by multiplying the time-series temperature data while sequentially shifting the window function for a short time, and the Fourier transform is performed on the data. This method is called the short-time Fourier transform method. By using the short-time Fourier transform method, it is possible to obtain temperature fluctuations with time changes.

一般に、流体の温度は一様ではなくばらつきがある。特に気体の流れを知りたいような対象、例えば、エアーコンディショナーから送出される空気の流れ、車両の排気管から排出される排気ガスの流れ、ドライヤから送出される熱風の流れ等、温度が大きく異なる気体が検知対象として挙げられることが多い。 In general, the temperature of a fluid is not uniform and varies. In particular, a gas whose temperature varies greatly, such as an object for which you want to know the flow of gas, for example, the flow of air sent from an air conditioner, the flow of exhaust gas discharged from the exhaust pipe of a vehicle, the flow of hot air sent from a dryer, etc. Is often mentioned as a detection target.

ここで、計測された温度範囲に比べて温度変動量がわずかな場合、温度画像データそのものからは流れを認識することはできない。例えば、計測する温度範囲を15℃から25℃とし、温度変動を0.1℃とすると、温度画像データを表示する場合、ダイナミックレンジに対する変化量は1/100となるため、温度変動成分は、背景に埋もれてしまい、流れとして表現することはできない。つまり、温度画像データを時系列に表示したとしても、温度画像データから温度変動成分を認識することは困難である。 Here, when the amount of temperature fluctuation is small compared to the measured temperature range, the flow cannot be recognized from the temperature image data itself. For example, if the temperature range to be measured is 15 ° C to 25 ° C and the temperature fluctuation is 0.1 ° C, when displaying the temperature image data, the amount of change with respect to the dynamic range is 1/100, so that the temperature fluctuation component is It is buried in the background and cannot be expressed as a flow. That is, even if the temperature image data is displayed in time series, it is difficult to recognize the temperature fluctuation component from the temperature image data.

そのため、一定期間内での解析により温度変動成分を算出し、これを指標とすることで、表示の温度範囲を狭めることができ、その結果、温度変動成分を、背景温度に埋もれることなく流体の流れとして表現することができる。特に背景の温度範囲が広い場合、つまり、ダイナミックレンジが広い場合に、効果的である。 Therefore, by calculating the temperature fluctuation component by analysis within a certain period and using this as an index, the displayed temperature range can be narrowed, and as a result, the temperature fluctuation component is not buried in the background temperature of the fluid. It can be expressed as a flow. This is especially effective when the temperature range of the background is wide, that is, when the dynamic range is wide.

記憶部2aに格納されているデータベースには、例えば計測対象が大気であるときの、切り出し窓幅、解析ステップ及び解析周波数等を含む。 The database stored in the storage unit 2a includes, for example, the cut-out window width, the analysis step, the analysis frequency, and the like when the measurement target is the atmosphere.

このデータベースは、計測対象の大気に対して温度変動分布解析を行ったときに、新規登録または更新設定される。 This database is newly registered or updated when the temperature fluctuation distribution analysis is performed on the atmosphere to be measured.

流れ計測部12では、空間内の大気について処理を実行する場合には、データベースに登録された切り出し窓幅、解析ステップ、解析周波数を読み出し、これに基づき温度変動分布解析を行う。 When the flow measurement unit 12 executes the processing for the atmosphere in the space, the cut-out window width, the analysis step, and the analysis frequency registered in the database are read out, and the temperature fluctuation distribution analysis is performed based on these.

具体的には、流れ計測部12では、赤外線カメラ1Aから予め設定されたフレームレートで撮影された計測対象の流体の温度画像データを記憶部2aに時系列に格納する。 Specifically, the flow measuring unit 12 stores the temperature image data of the fluid to be measured taken from the infrared camera 1A at a preset frame rate in the storage unit 2a in chronological order.

そして、温度変動分布解析を行うときには、図14のフローチャートに示すように、まず、記憶部2aに格納された温度画像データを読み込み(ステップS11)、続いて入力装置により計測対象の流体として大気が設定されると、流れ計測部12では、記憶部2aのデータベースに登録されている切り出し窓幅、解析ステップ及び解析周波数を読み出し、これらを温度変動分布解析用のパラメータ値として設定する(ステップS14)。 Then, when performing the temperature fluctuation distribution analysis, as shown in the flowchart of FIG. 14, first, the temperature image data stored in the storage unit 2a is read (step S11), and then the atmosphere is used as the fluid to be measured by the input device. Once set, the flow measuring unit 12 reads out the cutout window width, the analysis step, and the analysis frequency registered in the database of the storage unit 2a, and sets these as parameter values for temperature fluctuation distribution analysis (step S14). ..

そして、流れ計測部12は、ステップS14で設定された切り出し窓幅と解析ステップで、時系列温度データから部分温度データを切り出し(ステップS16)、切り出した部分温度データそれぞれについて短時間フーリエ変換法を用いて温度変動分布解析を行う( ステップS17)。具体的には、温度変動分布解析用のパラメータ値として設定された解析周波数の正弦波信号と余弦波信号を用いて、切り出した部分温度データ信号に対し、サイン変換とコサイン変換からなるフーリエ変換を行う。 Then, the flow measuring unit 12 cuts out the partial temperature data from the time-series temperature data in the cut-out window width and the analysis step set in step S14 (step S16), and performs a short-time Fourier transform method for each of the cut-out partial temperature data. The temperature fluctuation distribution analysis is performed using the data (step S17). Specifically, a Fourier transform consisting of a sine transform and a cosine transform is performed on the cut out partial temperature data signal using a sine wave signal and a cosine wave signal of the analysis frequency set as parameter values for temperature fluctuation distribution analysis. conduct.

このとき、入力装置からパラメータ値が再度設定されたならばステップS16の処理を再度行い、例えば確定操作が行われたとき、このときのパラメータ値を温度変動分布解析用のパラメータ値としてデータベースに記憶する。さらに、部分温度データ毎の短時間フーリエ変換による温度変動分布解析の結果について、振幅を温度変動値とし、位相から温度変動の正負を判断する。 At this time, if the parameter value is set again from the input device, the process of step S16 is performed again. For example, when the confirmation operation is performed, the parameter value at this time is stored in the database as the parameter value for temperature fluctuation distribution analysis. do. Further, regarding the result of the temperature fluctuation distribution analysis by the short-time Fourier transform for each partial temperature data, the amplitude is used as the temperature fluctuation value, and the positive or negative of the temperature fluctuation is determined from the phase.

なお、ここでは、正弦波信号と余弦波信号とを用いてフーリエ変換を行っているが、正弦波信号及び余弦波信号のうちのいずれか一方のみを用いた変換処理を行ってもよい。 Here, although the Fourier transform is performed using the sine wave signal and the cosine wave signal, the conversion process using only one of the sine wave signal and the cosine wave signal may be performed.

そして、記憶した温度変動分布解析用のパラメータ値を用いて、一つの画素の温度変動分布解析を行ったならば、次の画素について同様に処理を行う。そして、全ての画素について温度変動分布解析を行ったならば、次の部分温度データについて同様に温度変動分布解析を行い、全ての部分温度データについて温度変動分布解析を行ったならば、ステップS18に移行し、解析結果の表示処理を行う。具体的には、部分温度データの単位で、温度変動分布解析の結果を時系列に表示する。 Then, if the temperature fluctuation distribution analysis of one pixel is performed using the stored parameter values for temperature fluctuation distribution analysis, the same processing is performed for the next pixel. Then, if the temperature fluctuation distribution analysis is performed for all the pixels, the temperature fluctuation distribution analysis is performed for the next partial temperature data in the same manner, and if the temperature fluctuation distribution analysis is performed for all the partial temperature data, the step S18 is performed. Migrate and display the analysis result. Specifically, the results of temperature fluctuation distribution analysis are displayed in chronological order in units of partial temperature data.

ステップS18での、解析結果の表示処理は、例えば、図15に示すように、赤外線カメラ1Aによる温度画像における各画素について同一時点における部分温度データから得た、各画素の温度変動値からなる温度変動分布画像を、温度変動値の大きさに応じて表示形態を変える等して、表示装置に表示する。図15に示すように、各部分温度データから得た温度変動分布画像を時系列に表示することによって、温度変動分布の変化状況を表示することができる。なお、図15は、気流を計測対象としたものであり、天井における気流の流れを可視化したものである。 In the display process of the analysis result in step S18, for example, as shown in FIG. 15, the temperature consisting of the temperature fluctuation value of each pixel obtained from the partial temperature data at the same time point for each pixel in the temperature image by the infrared camera 1A. The fluctuation distribution image is displayed on the display device by changing the display form according to the magnitude of the temperature fluctuation value. As shown in FIG. 15, by displaying the temperature fluctuation distribution image obtained from each partial temperature data in chronological order, the change status of the temperature fluctuation distribution can be displayed. It should be noted that FIG. 15 is for measuring the air flow, and is a visualization of the flow of the air flow on the ceiling.

ここで、気流があるということは、ある一つの地点では、温度変動が現れることになる。そのため、温度変動の分布を計測し、温度変動の分布を時系列に表示することによって、計測対象の気流の流れを可視化することができる。つまり、流れがある場合、単位時間に温度変動が凸になる場合と温度変動が凹になる場合とが、交互に繰り返されるが、これを時間的に連続して描画することで、気流の流れを可視化することができる。つまり、大気の流れ計測画像を表示することができる。
<第4実施形態の動作>
Here, the presence of airflow means that temperature fluctuations will appear at a certain point. Therefore, by measuring the distribution of temperature fluctuations and displaying the distribution of temperature fluctuations in chronological order, it is possible to visualize the flow of the air flow to be measured. In other words, when there is a flow, the case where the temperature fluctuation becomes convex and the case where the temperature fluctuation becomes concave in a unit time are repeated alternately, but by drawing this continuously in time, the flow of the air flow. Can be visualized. That is, the atmospheric flow measurement image can be displayed.
<Operation of the fourth embodiment>

次に、大気計測システム20における処理手順の一例を示すフローチャート(図16)を伴って、動作を説明する。 Next, the operation will be described with reference to a flowchart (FIG. 16) showing an example of the processing procedure in the atmospheric measurement system 20.

まず、選択部14の機能により、ユーザは、画像処理装置2を操作して流れ計測画像を表示するか否かを設定する。また、流れ計測画像を表示する場合には、流れ計測画像と温度分布画像とを表示装置13に重畳表示するのか、上下又は左右に並べて表示するのか、等の表示型式を設定する。 First, by the function of the selection unit 14, the user operates the image processing device 2 to set whether or not to display the flow measurement image. Further, when displaying the flow measurement image, a display type such as whether the flow measurement image and the temperature distribution image are superimposed and displayed on the display device 13 or displayed vertically or horizontally side by side is set.

画像処理装置2では、ユーザによる選択情報を読み込むと(ステップS21)、温度測定部11の機能により、大気の温度分布測定処理を行う(ステップS22)。具体的には、例えば上記第1実施形態における処理手順と同様の手順で、校正用温度データを取得し、大気温度の演算式を確定した後、温度データを取得し、確定した大気温度の演算式を用いて例えば画素毎に大気の温度TAを演算し、測定対象空間の大気の温度分布を取得して記憶部2aに格納する。 When the image processing apparatus 2 reads the selection information by the user (step S21), the temperature distribution measurement process of the atmosphere is performed by the function of the temperature measuring unit 11 (step S22). Specifically, for example, in the same procedure as the processing procedure in the first embodiment, the calibration temperature data is acquired, the calculation formula of the atmospheric temperature is determined, the temperature data is acquired, and the determined atmospheric temperature is calculated. For example, the temperature TA of the atmosphere is calculated for each pixel using the equation, and the temperature distribution of the atmosphere in the measurement target space is acquired and stored in the storage unit 2a.

続いて、ステップS21の処理で、流れ計測画像の表示が指示されている場合には(ステップS23)、ステップS24に移行し、流れ計測部12の機能により、大気の流れ計測処理を行う。なお、流れ計測部12で用いる温度データは、大気の温度分布測定処理によって記憶部2aに格納した温度データを用いることが好ましい。 Subsequently, if the display of the flow measurement image is instructed in the process of step S21 (step S23), the process proceeds to step S24, and the flow measurement process of the atmosphere is performed by the function of the flow measurement unit 12. As the temperature data used in the flow measuring unit 12, it is preferable to use the temperature data stored in the storage unit 2a by the temperature distribution measurement process of the atmosphere.

ステップS21の処理で、流れ計測画像の表示が指示されていない場合、また、ステップS24で大気の流れ計測処理が終了したならば、ステップS25に移行し表示処理を行う。このとき、ステップS21で流れ計測画像の表示が指示されていない場合には、大気の温度分布画像を表示装置13に表示する。また、流れ計測画像の表示が指示されている場合には、同じ時刻に対応する大気の温度分布画像と流れ計測画像とを、重畳表示する、或いは、左右に並べて表示する等の指示にしたがって表示装置13に表示する。 If the display of the flow measurement image is not instructed in the process of step S21, or if the flow measurement process of the atmosphere is completed in step S24, the process proceeds to step S25 and the display process is performed. At this time, if the display of the flow measurement image is not instructed in step S21, the temperature distribution image of the atmosphere is displayed on the display device 13. When the display of the flow measurement image is instructed, the temperature distribution image of the atmosphere corresponding to the same time and the flow measurement image are displayed in an superimposed manner or according to an instruction such as displaying them side by side. Displayed on the device 13.

そして、選択部14の機能により、表示画面の切り替えが指示されたならば(ステップS26)、ステップS25に戻って指示に応じて表示画面を切り替える。そして、大気の温度分布画像及び流れ計測画像の表示の終了操作が行われなければステップS27からステップS25に戻って引き続き指定された画像の表示処理を実行し、終了操作が行われたとき(ステップS27)、処理を終了する。 Then, if the function of the selection unit 14 instructs to switch the display screen (step S26), the process returns to step S25 and the display screen is switched according to the instruction. Then, if the end operation of displaying the temperature distribution image and the flow measurement image of the atmosphere is not performed, the process returns from step S27 to step S25 to continuously execute the display process of the designated image, and when the end operation is performed (step). S27), the process is terminated.

このように、第4実施形態に係る大気計測システム20では、流れ計測画像と、温度分布画像とを共に表示することができるため、両者を参照することによって、どの程度の温度の大気がどのように流れているかを視覚的に容易に認識することができる。そのため、温度分布画像を用いた解析等を容易に行うことができ、特に、エアーコンディショナー等の空調機器の効率を評価するのに好適である。 As described above, in the atmosphere measurement system 20 according to the fourth embodiment, both the flow measurement image and the temperature distribution image can be displayed. Therefore, by referring to both, what kind of temperature and how the atmosphere is? It is possible to easily visually recognize whether or not the temperature is flowing. Therefore, analysis using a temperature distribution image or the like can be easily performed, and it is particularly suitable for evaluating the efficiency of air conditioning equipment such as an air conditioner.

なお、第4実施形態においては、温度測定部11として、第1実施形態における温度測定装置10を適用した場合について説明したが、温度測定部11として第2実施形態における温度測定装置10-1又は第3実施形態における温度測定装置10-2を適用することも可能である。 In the fourth embodiment, the case where the temperature measuring device 10 in the first embodiment is applied as the temperature measuring unit 11 has been described, but the temperature measuring device 10-1 or the temperature measuring device 10-1 in the second embodiment has been described as the temperature measuring unit 11. It is also possible to apply the temperature measuring device 10-2 according to the third embodiment.

また、第4実施形態においては、流れ計測部12では、大気の温度測定処理によって記憶部2aに時系列に格納した温度データを用いて、短時間フーリエ変換法により温度変動分布の解析を行い流れ計測画像を表示しているが、これに限るものではない。特許文献4に記載されているように、短時間フーリエ変換法を用いて流れ計測画像を取得する方法と、リアルタイムで温度変動分布を取得するバンドパスフィルタ法を用いて流れ計測画像を取得する方法とのいずれかの方法で流れ計測画像を取得できるように構成してもよく、また、バンドパスフィルタ法のみを用いて流れ計測画像を取得するように構成してもよい。大気の流れ計測画像を表示することができれば、温度変動分布の取得方法は制限されない。 Further, in the fourth embodiment, the flow measurement unit 12 analyzes the temperature fluctuation distribution by the short-time Fourier transform method using the temperature data stored in the storage unit 2a in time series by the temperature measurement process of the atmosphere. The measured image is displayed, but it is not limited to this. As described in Patent Document 4, a method of acquiring a flow measurement image by using a short-time Fourier transform method and a method of acquiring a flow measurement image by using a bandpass filter method of acquiring a temperature fluctuation distribution in real time. It may be configured so that the flow measurement image can be acquired by any of the above methods, or it may be configured to acquire the flow measurement image using only the bandpass filter method. As long as the atmospheric flow measurement image can be displayed, the method of acquiring the temperature fluctuation distribution is not limited.

なお、上記各実施形態においては、赤外線センサとして赤外線カメラを用いているが、赤外線センサとして赤外線受光素子を用いてもよい。この場合には、赤外線カメラ1A及び1Bの感度特性と同等の感度特性を有する赤外線受光素子を、赤外線カメラ1A、1Bそれぞれに対応する赤外線受光素子として用いればよい。この場合も、測定対象空間内の測定地点に赤外線受光素子を配置する必要はないため、赤外線受光素子を容易に設置することができる。特に、測定対象空間内の温度分布を検出するためには、測定地点毎に赤外線受光素子を配置することになるが、本実施形態に係る温度測定装置10によれば、測定対象空間内の測定地点に赤外線受光素子を配置する必要はないため、複数の赤外線受光素子を配置する場合でも、容易に配置することができる。 In each of the above embodiments, an infrared camera is used as the infrared sensor, but an infrared light receiving element may be used as the infrared sensor. In this case, an infrared light receiving element having a sensitivity characteristic equivalent to that of the infrared cameras 1A and 1B may be used as the infrared light receiving element corresponding to each of the infrared cameras 1A and 1B. Also in this case, since it is not necessary to arrange the infrared light receiving element at the measurement point in the measurement target space, the infrared light receiving element can be easily installed. In particular, in order to detect the temperature distribution in the measurement target space, an infrared light receiving element is arranged at each measurement point, but according to the temperature measuring device 10 according to the present embodiment, the measurement in the measurement target space is performed. Since it is not necessary to arrange the infrared light receiving element at the point, even when a plurality of infrared light receiving elements are arranged, they can be easily arranged.

なお、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本発明の範囲は、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画され得る。 It should be noted that the scope of the present invention is not limited to the exemplary embodiments illustrated and described, but also includes all embodiments that bring about an effect equal to that of the object of the present invention. Moreover, the scope of the invention can be defined by any desired combination of specific features of all disclosed features.

1A、1B、1C 赤外線カメラ
2 画像処理装置
2a 記憶部
3 フィルタホイール
3a 光学フィルタ
10、10-1、10-2 温度測定装置
11 温度測定部
12 流れ計測部
13 表示装置
14 選択部
15 表示処理部
20 大気計測システム
1A, 1B, 1C Infrared camera 2 Image processing device 2a Storage unit 3 Filter wheel 3a Optical filter 10, 10-1, 10-2 Temperature measurement device 11 Temperature measurement unit 12 Flow measurement unit 13 Display device 14 Selection unit 15 Display processing unit 20 Atmospheric measurement system

Claims (10)

赤外線センサを含み、当該赤外線センサの出力のうち大気により吸収される第一の波長帯の赤外線に基づく温度データである第一温度データと、大気により吸収される赤外線の量が、前記第一の波長帯の赤外線よりも少ない第二の波長帯の赤外線に基づく温度データである第二温度データと、を取得する温度データ取得部と、
前記第一温度データ及び前記第二温度データに基づき測定対象空間における大気の温度を演算する演算処理部と、を備え、
前記演算処理部は、前記温度データ取得部で取得した、前記測定対象空間における、校正用の前記第一温度データと前記第二温度データとに基づき予め設定された、前記測定対象空間における大気の温度を表す演算式を記憶している記憶部と、
前記温度データ取得部で取得した、前記測定対象空間における、温度測定用の前記第一温度データ及び前記第二温度データと前記演算式とから前記測定対象空間における大気の温度を算出する温度算出部と、
を備えることを特徴とする温度測定装置。
The first temperature data, which includes an infrared sensor and is based on infrared rays in the first wavelength band absorbed by the atmosphere among the outputs of the infrared sensor, and the amount of infrared rays absorbed by the atmosphere are the first. A temperature data acquisition unit that acquires second temperature data, which is temperature data based on infrared rays in the second wavelength band, which is less than infrared rays in the wavelength band.
It is provided with an arithmetic processing unit that calculates the temperature of the atmosphere in the measurement target space based on the first temperature data and the second temperature data.
The arithmetic processing unit is set in advance based on the first temperature data for calibration and the second temperature data in the measurement target space acquired by the temperature data acquisition unit, and is the atmosphere in the measurement target space. A storage unit that stores an arithmetic expression that expresses temperature,
A temperature calculation unit that calculates the temperature of the atmosphere in the measurement target space from the first temperature data for temperature measurement, the second temperature data, and the calculation formula acquired by the temperature data acquisition unit. When,
A temperature measuring device characterized by being provided with.
前記演算処理部は、
複数時点における前記校正用の前記第一温度データ及び前記第二温度データと、当該校正用の第一温度データと前記第二温度データとの関係を表す一次式と、をもとに、前記一次式を特定するパラメータ値を探索して前記演算式を特定する前処理部をさらに備えることを特徴とする請求項1に記載の温度測定装置。
The arithmetic processing unit is
Based on the first temperature data and the second temperature data for the calibration at a plurality of time points, and a linear expression expressing the relationship between the first temperature data for the calibration and the second temperature data, the primary The temperature measuring device according to claim 1, further comprising a preprocessing unit that searches for a parameter value that specifies an expression and specifies the arithmetic expression.
前記演算式は、次式(1)で表されることを特徴とする請求項1又は請求項2に記載の温度測定装置。
TA=(D1-D2×(1-α1))/α1+γ
γ=(-β1+β2×(1-α1))/α1) ……(1)
TAは大気からの温度、D1は第一温度データ、D2は第二温度データ、α1は、第一温度データD1に含まれる、大気からの温度の割合、β1は第一温度データD1のバイアス値、β2は第二温度データD2のバイアス値、である。
The temperature measuring device according to claim 1 or 2, wherein the calculation formula is represented by the following formula (1).
TA = (D1-D2 × (1-α1)) / α1 + γ
γ = (-β1 + β2 × (1-α1)) / α1) …… (1)
TA is the temperature from the atmosphere, D1 is the first temperature data, D2 is the second temperature data, α1 is the ratio of the temperature from the atmosphere contained in the first temperature data D1, and β1 is the bias value of the first temperature data D1. , Β2 is the bias value of the second temperature data D2.
前記温度データ取得部は、
前記第一の波長帯に感度を有する第一赤外線カメラと、
前記第二の波長帯に感度を有する第二赤外線カメラと、を前記赤外線センサとして備えることを特徴とする請求項1から請求項3のいずれか一項に記載の温度測定装置。
The temperature data acquisition unit
The first infrared camera having sensitivity in the first wavelength band,
The temperature measuring device according to any one of claims 1 to 3, further comprising a second infrared camera having sensitivity in the second wavelength band as the infrared sensor.
前記第一赤外線カメラは、3μm以上5μm以下の波長帯に感度を有することを特徴とする請求項4に記載の温度測定装置。 The temperature measuring device according to claim 4, wherein the first infrared camera has sensitivity in a wavelength band of 3 μm or more and 5 μm or less. 前記第二赤外線カメラは、7μm以上14μm以下の波長帯に感度を有することを特徴とする請求項4又は請求項5に記載の温度測定装置。 The temperature measuring device according to claim 4 or 5, wherein the second infrared camera has sensitivity in a wavelength band of 7 μm or more and 14 μm or less. 前記温度データ取得部は、
前記赤外線センサとしての一台の赤外線カメラと、
当該赤外線カメラに取り付けられ、少なくとも2つの異なる透過波長を有する光学フィルタと、を備え、
前記透過波長は前記第一の波長帯又は前記第二の波長帯であり、
前記光学フィルタを切り替え、前記第一の波長帯を透過した温度データを前記第一温度データとし、前記第二の波長帯を透過した温度データを前記第二温度データとして取得することを特徴とする請求項2又は請求項3に記載の温度測定装置。
The temperature data acquisition unit
One infrared camera as the infrared sensor and
Attached to the infrared camera, equipped with an optical filter having at least two different transmission wavelengths.
The transmission wavelength is the first wavelength band or the second wavelength band.
The optical filter is switched, and the temperature data transmitted through the first wavelength band is used as the first temperature data, and the temperature data transmitted through the second wavelength band is obtained as the second temperature data. The temperature measuring device according to claim 2 or 3.
測定対象空間における大気の温度を演算する温度測定方法であって、
赤外線センサを含み、当該赤外線センサの出力のうち大気により吸収される第一の波長帯の赤外線に基づく温度データである第一温度データと、大気により吸収される赤外線の量が、前記第一の波長帯の赤外線よりも少ない第二の波長帯の赤外線に基づく温度データである第二温度データと、を取得する温度データ取得部を有し、
前記温度データ取得部により、前記測定対象空間における、校正用の前記第一温度データ及び前記第二温度データを取得するステップと、
取得した校正用の前記第一温度データ及び前記第二温度データに基づき、前記測定対象空間における大気の温度を演算するための演算式を特定するステップと、
前記温度データ取得部により、前記測定対象空間における、温度測定用の前記第一温度データ及び前記第二温度データを取得するステップと、
前記温度測定用の前記第一温度データ及び前記第二温度データと、前記演算式とをもとに、前記測定対象空間における大気の温度を演算するステップと、を備えることを特徴とする温度測定方法。
It is a temperature measurement method that calculates the temperature of the atmosphere in the measurement target space.
The first temperature data, which includes an infrared sensor and is based on infrared rays in the first wavelength band absorbed by the atmosphere among the outputs of the infrared sensor, and the amount of infrared rays absorbed by the atmosphere are the first. It has a temperature data acquisition unit that acquires second temperature data, which is temperature data based on infrared rays in the second wavelength band, which is less than infrared rays in the wavelength band.
The step of acquiring the first temperature data and the second temperature data for calibration in the measurement target space by the temperature data acquisition unit, and
A step of specifying an arithmetic expression for calculating the temperature of the atmosphere in the measurement target space based on the acquired first temperature data and the second temperature data for calibration, and
The step of acquiring the first temperature data and the second temperature data for temperature measurement in the measurement target space by the temperature data acquisition unit, and
A temperature measurement including a step of calculating the temperature of the atmosphere in the measurement target space based on the first temperature data and the second temperature data for temperature measurement and the calculation formula. Method.
測定対象空間における大気の温度を演算する請求項1から請求項7のいずれか一項に記載の温度測定装置と、
前記測定対象空間における大気の流れを計測する流れ計測装置と、
前記温度測定装置で演算した前記測定対象空間の複数地点における前記大気の温度を表す温度分布画像と、前記流れ計測装置で計測した前記測定対象空間における前記大気の流れを表す流れ計測画像と、を表示装置に表示する表示処理部と、を備え、
前記表示処理部は、前記温度分布画像及び前記流れ計測画像を重畳表示又は並べて表示することを特徴とする大気計測システム。
The temperature measuring device according to any one of claims 1 to 7, which calculates the temperature of the atmosphere in the measurement target space.
A flow measuring device that measures the flow of the atmosphere in the measurement target space,
A temperature distribution image showing the temperature of the atmosphere at a plurality of points in the measurement target space calculated by the temperature measuring device and a flow measurement image showing the flow of the atmosphere in the measurement target space measured by the flow measuring device. It is equipped with a display processing unit that displays on the display device.
The display processing unit is an atmospheric measurement system characterized by superimposing or displaying the temperature distribution image and the flow measurement image side by side.
前記温度分布画像と前記流れ計測画像とのうち、いずれの画像を表示するかを選択する選択部を備え、
前記表示処理部は、前記選択部での選択に応じて、前記温度分布画像と前記流れ計測画像のうちのいずれか一方、又は両方を、前記表示装置に表示することを特徴とする請求項9に記載の大気計測システム。
A selection unit for selecting which image to display from the temperature distribution image and the flow measurement image is provided.
9. The display processing unit is characterized in that, depending on the selection made by the selection unit, one or both of the temperature distribution image and the flow measurement image is displayed on the display device. Atmospheric measurement system described in.
JP2020209330A 2020-12-17 2020-12-17 Temperature measurement device, temperature measurement method and atmospheric measurement system Active JP7393322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020209330A JP7393322B2 (en) 2020-12-17 2020-12-17 Temperature measurement device, temperature measurement method and atmospheric measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020209330A JP7393322B2 (en) 2020-12-17 2020-12-17 Temperature measurement device, temperature measurement method and atmospheric measurement system

Publications (2)

Publication Number Publication Date
JP2022096297A true JP2022096297A (en) 2022-06-29
JP7393322B2 JP7393322B2 (en) 2023-12-06

Family

ID=82163826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020209330A Active JP7393322B2 (en) 2020-12-17 2020-12-17 Temperature measurement device, temperature measurement method and atmospheric measurement system

Country Status (1)

Country Link
JP (1) JP7393322B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4016113B2 (en) 2004-12-06 2007-12-05 防衛省技術研究本部長 Two-wavelength infrared image processing method
JP4257436B2 (en) 2006-03-06 2009-04-22 防衛省技術研究本部長 Infrared dual wavelength processing method
JP2009122050A (en) 2007-11-16 2009-06-04 Nissan Motor Co Ltd Method and device for measuring object to be measured
JP5125544B2 (en) 2008-01-24 2013-01-23 日本電気株式会社 Gas measuring device and gas measuring method
JP5734263B2 (en) 2012-11-16 2015-06-17 三菱電機株式会社 Air conditioner indoor unit
US10161799B2 (en) 2015-02-25 2018-12-25 The University Of Tokyo Temperature measuring device and temperature measuring method
JP6602335B2 (en) 2017-04-14 2019-11-06 シャープ株式会社 Infrared detection system, method and program
JP7065060B2 (en) 2018-08-20 2022-05-11 Jfeテクノリサーチ株式会社 Fluid flow measuring device and gas detecting device
WO2020089996A1 (en) 2018-10-30 2020-05-07 三菱電機株式会社 Remote operation terminal and air-conditioning system

Also Published As

Publication number Publication date
JP7393322B2 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
US8374438B1 (en) Visual template-based thermal inspection system
US20190364227A1 (en) Visible light and ir combined image camera
EP1831657B1 (en) Method for a visible light and ir combined image camera
EP1811771B1 (en) Camera with visible light and infrared image blending
US20080265162A1 (en) Method for displaying a thermal image in a IR camera and an IR camera
JP6216635B2 (en) Method for self-calibration of microscope apparatus
JP6468439B2 (en) Gas detection image processing apparatus, gas detection image processing method, and gas detection image processing program
JP7006104B2 (en) Airflow measuring device
JP7065060B2 (en) Fluid flow measuring device and gas detecting device
US9702555B2 (en) Equipment and method for furnace visualization using virtual interactive windows
JP2022096297A (en) Temperature measuring device, temperature measuring method, and atmosphere measuring system
Goviazin et al. A comparative study of the performance of IR detectors vs. high-speed cameras under dynamic loading conditions
EP2154499A1 (en) Video thermometry
Chrzanowski et al. Virtual MRTD–an indirect method to measure MRTD of thermal imagers using computer simulation
JP6669189B2 (en) Infrared microscope
RU2659457C2 (en) Method of investing the object surface by the infrared device
JPH04205570A (en) Three-dimensional temperature distribution display method
Wetzel et al. Limitations of temperature measurements with holographic interferometry in the presence of pressure variations
Rangel et al. Characterization and evaluation of spatial jitter's influence on the intrinsic geometric calibration of an infrared camera for gas visualization
JP6750672B2 (en) Gas observation method
Sauger et al. Investigating the use of infrared cameras to detect VOCs
Singh et al. Auto-minimum resolvable temperature difference method for thermal imagers
WO2019172386A1 (en) Temperature distribution measurement device, temperature distribution measurement method, fluid flow measurement device, and gas sensing device
Khare et al. Development and validation of a quantitative model for the subjective and objective minimum resolvable temperature difference of thermal imaging systems
Debernardis et al. A System to Exploit Thermographic Data Using Projected Augmented Reality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231124

R150 Certificate of patent or registration of utility model

Ref document number: 7393322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150