JP2022089460A - Thick film conductor, composition for formation thereof and thick film conductor paste containing the composition for formation thereof - Google Patents

Thick film conductor, composition for formation thereof and thick film conductor paste containing the composition for formation thereof Download PDF

Info

Publication number
JP2022089460A
JP2022089460A JP2020201873A JP2020201873A JP2022089460A JP 2022089460 A JP2022089460 A JP 2022089460A JP 2020201873 A JP2020201873 A JP 2020201873A JP 2020201873 A JP2020201873 A JP 2020201873A JP 2022089460 A JP2022089460 A JP 2022089460A
Authority
JP
Japan
Prior art keywords
thick film
glass
film conductor
powder
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020201873A
Other languages
Japanese (ja)
Inventor
慎吾 粟ケ窪
Shingo Awagakubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2020201873A priority Critical patent/JP2022089460A/en
Publication of JP2022089460A publication Critical patent/JP2022089460A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Glass Compositions (AREA)
  • Conductive Materials (AREA)

Abstract

To provide a composition for forming a thick film conductor, preventing a glass component from appearing on a surface of a conductor layer formed on a surface of a glass glazed substrate.SOLUTION: A composition for forming a thick film conductor is to be used as a raw material for a thick film conductor paste through kneading with a vehicle. The composition includes: a conductive powder containing an elemental metal powder or alloy powder selected from a group composed preferably of Au, Ag, Pd and Pt; and a lead-free glass powder containing vanadium and zinc, preferably with a glass transition point of 350°C to 550°C, inclusive. The composition is to be used as a raw material for a thick film conductor formed through calcination on a substrate with a film containing glass formed on a surface thereof.SELECTED DRAWING: None

Description

本発明は、ガラスグレーズ基板等のガラスを含有する膜が表面に形成された基板上に形成される厚膜導体及びその形成用組成物、並びに該形成用組成物を含んだ厚膜導体ペーストに関する。 The present invention relates to a thick film conductor and a composition for forming the thick film conductor formed on a substrate on which a glass-containing film such as a glass glaze substrate is formed on the surface, and a thick film conductor paste containing the forming composition. ..

熱反応材料からなる熱感紙や熱転写リボンなどの紙媒体に熱によって印字を行う印字装置の1種であるサーマルプリンタは、低価格、低騒音、メンテナンスフリー等の特徴があり、家庭用ファクシミリ、券売機などの幅広い用途に用いられている。このサーマルプリンタのうち、上記の紙媒体に印字するデバイスであるサーマルプリントヘッドは、ガラスグレーズ基板と、その表面に形成された所定のパターンを有する電極と、該電極による通電により発熱する抵抗体と、これらを駆動するドライバICとから主に構成される。 Thermal printers, which are a type of printing device that prints on paper media such as thermal paper and heat transfer ribbons made of heat-reactive materials by heat, are characterized by low cost, low noise, maintenance-free, etc. It is used in a wide range of applications such as ticket vending machines. Among the thermal printers, the thermal printhead, which is a device for printing on the above-mentioned paper medium, includes a glass glaze substrate, an electrode having a predetermined pattern formed on the surface thereof, and a resistor that generates heat when energized by the electrode. , Mainly composed of a driver IC for driving them.

例えば特許文献1には、アルミナ等のセラミック基板の表面にガラスペーストなどを印刷して焼成することで形成されたガラスグレーズ層を有するガラスグレーズ基板と、このガラスグレーズ基板の表面に導電ペースト及び抵抗ペーストをそれぞれ原料に用いて厚膜技術により形成された電極及び発熱抵抗体と、これら電極及び発熱抵抗体を覆うようにガラスペーストを塗布して焼成することで形成された耐摩耗性及び平滑性を備えた保護層とから構成されるサーマルプリントヘッドが開示されている。 For example, Patent Document 1 describes a glass glaze substrate having a glass glaze layer formed by printing and firing a glass paste or the like on the surface of a ceramic substrate such as alumina, and conductive paste and resistance on the surface of the glass glaze substrate. Abrasion resistance and smoothness formed by applying and firing glass paste so as to cover the electrodes and heat-generating resistors formed by thick film technology using the paste as raw materials, respectively. A thermal printhead comprising a protective layer comprising the above is disclosed.

上記の導体ペーストは、一般に銀粉末などの金属粉末と、結合剤となるガラス粉末とを糊状のビヒクルに分散させることで作製される。一方、上記の抵抗ペーストは、ルテニウム酸化物などの導電性粉末と、結合剤となるガラス粉末とを糊状のビヒクルに分散させることで作製される。なお、上記の導電ペーストや抵抗ペーストに用いるビヒクルは、有機溶剤に樹脂等を溶解することで一般に作製される。 The above conductor paste is generally produced by dispersing a metal powder such as silver powder and a glass powder serving as a binder in a paste-like vehicle. On the other hand, the above-mentioned resistance paste is produced by dispersing a conductive powder such as ruthenium oxide and a glass powder serving as a binder in a paste-like vehicle. The vehicle used for the above-mentioned conductive paste or resistance paste is generally produced by dissolving a resin or the like in an organic solvent.

特開2002-127483号公報Japanese Unexamined Patent Publication No. 2002-127843

上記のように、サーマルプリントヘッドの基板は、ガラス質のガラスグレーズ層で表面が覆われたセラミック基板を用いるため、セラミック基板の表面に直に電極等の導体層を形成する場合の材料として使用する厚膜導体ペーストをそのまま使用すると問題が生ずることがあった。すなわち、セラミック基板の表面に直に導体層を形成する場合の材料として使用する厚膜導体組成物を含んだ厚膜導体ペーストを、ガラスグレーズ層の表面に印刷して焼成すると、これにより形成される導体層の表面にガラス成分の浮き出し(染み出しと称することもある)が生じ、該導体層の表面を電気的接続用の端子として使用する場合や、該導体層の表面に電気的接続された状態で抵抗体等の素子を形成する場合にそれらの電気的接続が不良又は不安定になることがあった。 As described above, since the substrate of the thermal printhead uses a ceramic substrate whose surface is covered with a glassy glass glaze layer, it is used as a material for forming a conductor layer such as an electrode directly on the surface of the ceramic substrate. If the thick film conductor paste used as it is is used as it is, a problem may occur. That is, when a thick film conductor paste containing a thick film conductor composition used as a material for forming a conductor layer directly on the surface of a ceramic substrate is printed on the surface of a glass glaze layer and fired, it is formed thereby. When the surface of the conductor layer is used as a terminal for electrical connection, or when the surface of the conductor layer is used as a terminal for electrical connection, or when the surface of the conductor layer is electrically connected to the surface of the conductor layer. When elements such as resistors are formed in this state, their electrical connections may be defective or unstable.

本発明は上記した事情に鑑みてなされたものであり、ガラスグレーズ基板にように、ガラスを含有する膜が表面に形成されている基板上に焼成により厚膜導体層を形成しても、その表面にガラス成分が浮き出すことのない厚膜導体形成用組成物及びこれを含んだ厚膜導体ペーストを提供することを目的としている。 The present invention has been made in view of the above circumstances, and even if a thick-film conductor layer is formed by firing on a substrate having a glass-containing film formed on the surface thereof, such as a glass glaze substrate, the present invention can be made. It is an object of the present invention to provide a composition for forming a thick film conductor in which a glass component does not emerge on the surface and a thick film conductor paste containing the composition.

上記目的を達成するため、本発明に係る厚膜導体形成用組成物は、導電粉末と、バナジウム及び亜鉛を含有する鉛フリーガラス粉末とを含み、ガラスを含有する膜が表面に形成された基板上に焼成により形成される厚膜導体層の原料として使用されることを特徴としている。 In order to achieve the above object, the thick film conductor forming composition according to the present invention contains a conductive powder and a lead-free glass powder containing vanadium and zinc, and a substrate having a glass-containing film formed on the surface thereof. It is characterized in that it is used as a raw material for a thick-film conductor layer formed on top by firing.

本発明によれば、ガラスを含有する膜が表面に形成された基板上に焼成により厚膜導体層を形成しても、その表面にガラス成分が浮き出すのを抑えることが可能になる。 According to the present invention, even if a thick film conductor layer is formed by firing on a substrate on which a glass-containing film is formed on the surface, it is possible to suppress the glass component from embossing on the surface.

本発明の比較例の厚膜導体のSEM写真(×5000)である。It is an SEM photograph (× 5000) of the thick film conductor of the comparative example of this invention. 本発明の実施例の厚膜導体のSEM写真(×5000)である。It is an SEM photograph (x 5000) of the thick film conductor of the Example of this invention.

1.厚膜導体形成用組成物
本発明の実施形態の厚膜導体形成用組成物は、基板表面にガラスグレーズ層が形成されたにガラスグレーズ基板のように、ガラスを含有する膜が表面に形成された基板上に焼成により形成される厚膜導体層の原料として使用されるものであり、導電粉末と、バナジウム及び亜鉛を含有する鉛フリーガラス粉末とを含んでいる。以下、これら導電粉末及び鉛フリーガラス粉末の各々について説明した後、厚膜導体形成用組成物について詳細に説明する。
1. 1. Composition for forming a thick film conductor In the composition for forming a thick film conductor according to the embodiment of the present invention, a glass-containing film is formed on the surface of the substrate, like a glass glaze substrate. It is used as a raw material for a thick-film conductor layer formed by firing on a substrate, and contains a conductive powder and a lead-free glass powder containing vanadium and zinc. Hereinafter, each of these conductive powder and lead-free glass powder will be described, and then the composition for forming a thick film conductor will be described in detail.

1.1 導電粉末
上記した本発明の実施形態の厚膜導体形成用組成物の一方の主構成要素である導電粉末は、一般的な厚膜導体の材料に用いるものでよく、例えば、Au、Ag、Pd、及びPtなどの貴金属が好適に用いられ、これらの貴金属からなる群から選んだ1種のみから構成される単体の金属粉末若しくはその合金粉末、又はそれら単体の金属粉末や合金粉末の2種以上を組み合わせた混合粉末の形態で用いられる。これらの中では、融点が低い点やコストの観点からAg単体の粉末若しくはそれとPd単体との混合粉末、Ag及びPdの合金粉末、又はそれらの混合粉末を使用することが好ましい。
1.1 Conductive powder The conductive powder, which is one of the main constituents of the thick film conductor forming composition of the above-described embodiment of the present invention, may be used as a material for general thick film conductors, for example, Au. Noble metals such as Ag, Pd, and Pt are preferably used, and a single metal powder or an alloy powder thereof composed of only one selected from the group consisting of these noble metals, or a single metal powder or an alloy powder thereof. It is used in the form of a mixed powder in which two or more kinds are combined. Among these, from the viewpoint of low melting point and cost, it is preferable to use a powder of Ag alone or a mixed powder of Ag and Pd alone, an alloy powder of Ag and Pd, or a mixed powder thereof.

上記の導電粉末の数平均粒径は、10μm以下であることが好ましく、厚膜導体ペーストの形態に調製したときの塗布性の観点から0.1μm以上5.0μm以下であることがより好ましい。この数平均粒径が10μmを超えると、焼成の際に昇温時間がかかりすぎる場合がある。また、Ag粉末及びPd粉末の混合粉末ように2種類以上の混合粉末を用いる場合には、厚膜導体ペーストの形態に調製したときの塗布性の観点やこれら異なる種類の粉末の均質な分散の観点から、これら異なる種類の粉末は数平均粒径が互いに異なるものを用いるのが好ましく、例えば上記の0.1μm以上5.0μm以下の金属粉末に対して数平均粒径が1/10~1/2程度の小粒径の金属粉末を配合するのが好ましい。具体的には、Ag粉末及びPd粉末の混合粉末の場合は、Ag粉末の数平均粒径を0.1μm以上3.0μm以下とし、Pd粉末の数平均粒径を0.01μm以上0.3μm以下とすることが好ましい。 The number average particle size of the above conductive powder is preferably 10 μm or less, and more preferably 0.1 μm or more and 5.0 μm or less from the viewpoint of coatability when prepared in the form of a thick film conductor paste. If this number average particle size exceeds 10 μm, it may take too much time to raise the temperature during firing. Further, when two or more kinds of mixed powders such as a mixed powder of Ag powder and Pd powder are used, from the viewpoint of coatability when prepared in the form of a thick film conductor paste and uniform dispersion of these different kinds of powders. From the viewpoint, it is preferable to use powders of these different types having different number average particle diameters, for example, the number average particle diameter is 1/10 to 1 with respect to the above-mentioned metal powder of 0.1 μm or more and 5.0 μm or less. It is preferable to mix a metal powder having a small particle size of about / 2. Specifically, in the case of a mixed powder of Ag powder and Pd powder, the number average particle size of Ag powder is 0.1 μm or more and 3.0 μm or less, and the number average particle size of Pd powder is 0.01 μm or more and 0.3 μm. The following is preferable.

上記のように2種類以上の混合粉末を用いる場合は、混合粉末全体を100質量部としたとき、最も大きな数平均粒径を有する種類の金属粉末が10~80質量部含まれるように配合するのが好ましい。ここで数平均粒径とは、測定対象となる粉末を走査型電子顕微鏡で撮像することで得たSEM画像中の粒子群の長さを算術平均したものである。なお、導電粉末の形状については特に限定はなく、粒状、塊状、フレーク状等の種々の形状のものを用いることができる。なお、用途に応じて好適な形状が適宜選択されることがある。この導電粉末を用いて後述するように厚膜導電ペーストを調製し、これを塗布及び焼成することにより、所定のパターン形状を有する厚膜導体層を形成することができる。 When two or more kinds of mixed powders are used as described above, when the whole mixed powder is 100 parts by mass, the metal powder of the kind having the largest number average particle size is mixed so as to contain 10 to 80 parts by mass. Is preferable. Here, the number average particle size is an arithmetic mean of the lengths of the particle groups in the SEM image obtained by imaging the powder to be measured with a scanning electron microscope. The shape of the conductive powder is not particularly limited, and various shapes such as granular, lumpy, and flake can be used. A suitable shape may be appropriately selected depending on the intended use. By preparing a thick film conductive paste as described later using this conductive powder, applying and firing the thick film conductive paste, a thick film conductor layer having a predetermined pattern shape can be formed.

1.2 V及びZnを含有する鉛フリーガラス粉末
上記した本発明の実施形態の厚膜導体形成用組成物のもう一方の主構成要素である鉛フリーガラス粉末は、V及びZnを含有している。この鉛フリーガラス粉末は、更にBaやCaなどのアルカリ土類元素を含んでもよいし、B、Bi、Alを含んでもよい。このような鉛フリーガラスとしては、V-ZnO-アルカリ土類酸化物系ガラス粉末や、V-ZnO-B系ガラス粉末や、V-ZnO-Bi系ガラス粉末等のガラス粉末を挙げることができる。また、上記の添加元素のほかSi、Fe、Cuなどを鉛フリーガラス粉末に加えてもよい。
1.2 Lead-free glass powder containing V and Zn The lead-free glass powder, which is the other main component of the composition for forming a thick film conductor according to the above-described embodiment of the present invention, contains V and Zn. There is. The lead-free glass powder may further contain an alkaline earth element such as Ba or Ca, or may contain B, Bi, or Al. Examples of such lead-free glass include V2O5 -ZnO-alkali earth oxide-based glass powder, V2O5 - ZnO-B2O - 3 -based glass powder, and V2O5 - ZnO - Bi. Examples of glass powder such as 2O3 glass powder can be mentioned. Further, in addition to the above-mentioned additive elements, Si, Fe, Cu and the like may be added to the lead-free glass powder.

上記のV及びZnを含有する鉛フリーガラス粉末は、Vがその酸化物V換算で30~60質量%含まれ、Zがその酸化物ZnO換算で20~50質量%含まれるように配合するのが好ましい。Vが添加されることで鉛フリーガラスは熱による溶融性が変わるため、Vが酸化物V換算で30質量%未満では、ガラス転移点が後述する望ましい温度範囲の上限より高くなり、逆に60質量%を超えるとガラス転移点がこの望ましい温度範囲の下限より低くなる。 The lead-free glass powder containing V and Zn contains 30 to 60% by mass of V in terms of its oxide V 2 O 5 and 20 to 50% by mass of Z in terms of its oxide Zn O. It is preferable to mix. Since the meltability of lead-free glass changes due to heat due to the addition of V, if V is less than 30% by mass in terms of oxide V2O3 , the glass transition point becomes higher than the upper limit of the desirable temperature range described later. On the contrary, when it exceeds 60% by mass, the glass transition point becomes lower than the lower limit of this desirable temperature range.

一方、Znが酸化物ZnO換算で50質量%を超えるとガラス化しにくくなり、逆に20質量%未満ではZnを添加した効果が生じにくくなる。このV及びZnを含有する鉛フリーガラスは、結晶化ガラスでもよいし、結晶化しないガラスでもよい。なお、本発明においては、鉛フリーガラス粉末を、鉛を含まないガラス粉末か、又は不可避的不純物として鉛を100質量ppm以下含むガラス粉末と定義する。 On the other hand, if Zn exceeds 50% by mass in terms of oxide ZnO, it becomes difficult to vitrify, and conversely, if it is less than 20% by mass, the effect of adding Zn is difficult to occur. The lead-free glass containing V and Zn may be crystallized glass or non-crystallized glass. In the present invention, the lead-free glass powder is defined as a lead-free glass powder or a glass powder containing 100% by mass or less of lead as an unavoidable impurity.

厚膜導電ペーストを焼成処理することで厚膜導体を形成する際の焼成温度を考慮して、このV及びZnを含有する鉛フリーガラス粉末はガラス転移点が350℃以上550℃以下であることが望ましい。このガラス転移点が350℃未満では厚膜導体の表面に後述するガラス浮き出しが生じる可能性がある。逆に、このガラス転移点が550℃を超えると後述するステインが発生する可能性がある。ここで、ガラス転移点は、測定対象のガラス粉末を再溶融などにより成形したロッド状の試料に対して、熱機械分析法(TMA)にて大気中で測定して得た熱膨張曲線の屈曲点を示す箇所の温度として求めることができる。 Considering the firing temperature when forming a thick film conductor by firing the thick film conductive paste, the lead-free glass powder containing V and Zn has a glass transition point of 350 ° C. or higher and 550 ° C. or lower. Is desirable. If the glass transition point is less than 350 ° C., glass embossment, which will be described later, may occur on the surface of the thick film conductor. On the contrary, when the glass transition point exceeds 550 ° C., stain described later may occur. Here, the glass transition point is the bending of the thermal expansion curve obtained by measuring in the atmosphere by a thermomechanical analysis method (TMA) with respect to a rod-shaped sample formed by remelting the glass powder to be measured. It can be obtained as the temperature of the point indicating the point.

V及びZnを含有する鉛フリーガラス粉末の形状については特に限定はなく、球状や針状等の種々の形状のものを用いることができる。また、V及びZnを含有する鉛フリーガラス粉末は、レーザー回折を利用した粒度分布計により測定した体積累計粒度分布のD50径(メジアン径)が0.5μm以上30μm以下であることが好ましい。この範囲内の粒度分布を有する鉛フリーガラス粉末であれば、本発明の実施形態の厚膜導体形成用組成物を製造すべく前述した導電粉末と混合する際、この鉛フリーガラス粉末が効率よく磨砕されるので、より細かくなって導電粉末と鉛フリーガラス粉末とを均質に分散させることができる。 The shape of the lead-free glass powder containing V and Zn is not particularly limited, and various shapes such as spherical and needle-shaped can be used. Further, the lead-free glass powder containing V and Zn preferably has a D50 diameter (median diameter) of 0.5 μm or more and 30 μm or less in the volume cumulative particle size distribution measured by a particle size distribution meter using laser diffraction. If the lead-free glass powder has a particle size distribution within this range, the lead-free glass powder is efficiently mixed with the above-mentioned conductive powder in order to produce the composition for forming a thick film conductor according to the embodiment of the present invention. Since it is ground, it becomes finer and the conductive powder and the lead-free glass powder can be uniformly dispersed.

1.3 厚膜導体形成用組成物
厚膜導体形成用組成物に上記の導体粉末とガラス粉末とを含めることで、これを導体ペーストの形態に調製してアルミナ等のセラミック基板の表面に塗布及び焼成することで厚膜導体を形成したとき、当該ガラス粉末はセラミック基板と厚膜導体との互いの接着がより一層強固になるように作用する。
1.3 Composition for forming a thick film conductor By including the above conductor powder and glass powder in the composition for forming a thick film conductor, this is prepared in the form of a conductor paste and applied to the surface of a ceramic substrate such as alumina. When the thick film conductor is formed by firing, the glass powder acts so that the adhesion between the ceramic substrate and the thick film conductor becomes stronger.

ところで、上記のように厚膜導体組成物にガラスを含めることで、これを材料に用いてセラミック基板の表面に形成した厚膜導体の接着強度が高まるのであれば、セラミック基板の表面にガラスグレーズ層のようなガラスを含有する膜が形成されている場合は、その表面に形成する厚膜導体の材料となる厚膜導体形成用組成物には、セラミック基板との接着を強固にするためにガラス粉末を含有させる必要はないように思われる。 By the way, if the inclusion of glass in the thick film conductor composition as described above increases the adhesive strength of the thick film conductor formed on the surface of the ceramic substrate by using this as a material, glass glaze on the surface of the ceramic substrate. When a glass-containing film such as a layer is formed, the thick film conductor forming composition, which is the material of the thick film conductor formed on the surface thereof, is used to strengthen the adhesion to the ceramic substrate. It seems that it is not necessary to contain glass powder.

しかしながら、厚膜導体形成用組成物にガラス粉末を含有させずにAg粉末などの導電粉末のみを含有させた場合は、この厚膜導体形成用組成物を材料に用いてガラスグレーズ層の表面に形成した厚膜導体は、その表面にガラス成分が浮き出して導電性を低下させる問題が発生することがある。厚膜導体形成用組成物にはガラス粉末を含有させなかったので、この浮き出したガラス成分はガラスグレーズ層に由来するものである。 However, when the thick film conductor forming composition contains only the conductive powder such as Ag powder without containing the glass powder, this thick film conductor forming composition is used as a material on the surface of the glass glaze layer. The formed thick-film conductor may have a problem that the glass component is raised on the surface thereof and the conductivity is lowered. Since the composition for forming a thick film conductor did not contain glass powder, this raised glass component is derived from the glass glaze layer.

この場合、ガラスグレーズ層の表面に形成した厚膜導体の表面にガラス成分の浮き出しが発生するのを予測するのは難しい。なぜなら、厚膜導体の形成の際、セラミック基板の表面にガラスグレーズ層の材料であるガラス粉末を含んだガラスペーストが塗布されたままで未焼成のとき、このガラスペースト層の表面に厚膜導体形成用組成物を含んだ厚膜導電ペーストを塗布し、これら未焼成のガラスペースト層と厚膜導電ペースト層とを同時に焼成するのであれば、この未焼成のガラスペースト層のガラス粉末の溶融が進行するので、ガラス成分の濃度がゼロの厚膜導体形成用組成物に向ってガラス成分の濃度過剰なガラスペースト層から該ガラス成分が拡散し、これにより焼成後の厚膜導体の表面にガラス成分が浮き出しやすくなると考えることができる。他方、既に膜状に焼成されたガラスを含む膜であるガラスグレーズ層の表面に厚膜導電ペーストを塗布及び焼成することで厚膜導体を形成する場合は、その表面までガラス成分が拡散して浮き出ることを予測するのは難しい。 In this case, it is difficult to predict that the glass component will be embossed on the surface of the thick film conductor formed on the surface of the glass glaze layer. This is because, when the glass paste containing the glass powder which is the material of the glass glaze layer is applied to the surface of the ceramic substrate and is not fired when the thick film conductor is formed, the thick film conductor is formed on the surface of the glass paste layer. If the thick film conductive paste containing the composition for use is applied and the unfired glass paste layer and the thick film conductive paste layer are fired at the same time, the glass powder of the unfired glass paste layer is melted. Therefore, the glass component diffuses from the glass paste layer having an excessive concentration of the glass component toward the composition for forming a thick film conductor having a zero concentration of the glass component, whereby the glass component is diffused on the surface of the thick film conductor after firing. Can be considered to be easy to emerge. On the other hand, when a thick film conductor is formed by applying and firing a thick film conductive paste on the surface of a glass glaze layer which is a film containing glass that has already been fired into a film, the glass component diffuses to the surface. It is difficult to predict that it will emerge.

これに対して、本発明の実施形態の厚膜導体形成用組成物は、前述したようにV及びZnを含有する鉛フリーガラスを含有しているので、ガラスグレーズ基板のようにセラミック基板の表面にガラス粉末を含んだガラスペーストを塗布及び焼結することで形成したガラスを含有する膜の表面に、該厚膜導体形成用組成物を含んだ厚膜導電ペーストを塗布及び焼成して厚膜導体層を形成した場合であっても、この厚膜導体層の表面にガラス成分が浮きだすのを抑制することができる。 On the other hand, since the composition for forming a thick film conductor according to the embodiment of the present invention contains lead-free glass containing V and Zn as described above, the surface of the ceramic substrate is like a glass glaze substrate. A thick film conductive paste containing the composition for forming a thick film conductor is applied and fired on the surface of a film containing glass formed by applying and sintering a glass paste containing glass powder to a thick film. Even when the conductor layer is formed, it is possible to prevent the glass component from floating on the surface of the thick film conductor layer.

本発明の実施形態の厚膜導体形成用組成物は、導電粉末100質量部に対してV及びZnを含有する鉛フリーガラスを0.8質量部以上4質量部以下含有するように配合することが望ましい。このV及びZnを含有する鉛フリーガラスの配合割合が0.8質量部未満では、焼成後の厚膜導体の表面のガラス成分の浮き出しを抑制できないことがある。逆に、このV及びZnを含有する鉛フリーガラスの配合割合が4質量部を超えてもガラス成分の浮き出し抑制の効果がほとんど変わらないので不経済になる。 The composition for forming a thick film conductor according to the embodiment of the present invention is blended so that lead-free glass containing V and Zn is contained in an amount of 0.8 parts by mass or more and 4 parts by mass or less with respect to 100 parts by mass of the conductive powder. Is desirable. If the blending ratio of the lead-free glass containing V and Zn is less than 0.8 parts by mass, it may not be possible to suppress the embossment of the glass component on the surface of the thick film conductor after firing. On the contrary, even if the blending ratio of the lead-free glass containing V and Zn exceeds 4 parts by mass, the effect of suppressing the embossing of the glass component is almost unchanged, which is uneconomical.

なお、V及びZnを含有する鉛フリーガラスの代わりにV粉末を含有させた厚膜導体形成用組成物を材料に用いた場合であっても、焼成により形成される厚膜導体の表面にガラス成分が浮き出るのを抑制できるが、この場合は、厚膜導体の周囲のガラスグレーズ層の表面に、走査型電子顕微鏡(SEM)で観察されるステインと称するシミ状の模様が発生することがある。 Even when a composition for forming a thick film conductor containing V 2 O 5 powder is used as a material instead of lead-free glass containing V and Zn, the thick film conductor formed by firing is used. It is possible to suppress the appearance of the glass component on the surface, but in this case, a stain-like pattern called a stain observed by a scanning electron microscope (SEM) is generated on the surface of the glass glaze layer around the thick film conductor. Sometimes.

このステインは厚膜導体に悪影響を及ぼすおそれがあり、該厚膜導体に電気的接続用の端子の役割を担わせる際や、該厚膜導体に電気的接続された状態で抵抗体等の素子を形成する際に、その電気的接続が不良又は不安定になることがある。これに対して、本発明の実施形態の厚膜導体形成用組成物では、焼成後に得られる厚膜導体の表面にガラス成分の浮き出しやステインが発生するのをいずれも効果的に抑制することができるので、上記の電気的接続の問題が生じにくくなる。 This stain may adversely affect the thick film conductor, and when the thick film conductor plays the role of a terminal for electrical connection, or when the thick film conductor is electrically connected to the element such as a resistor. The electrical connection may be poor or unstable as it forms. On the other hand, in the composition for forming a thick film conductor according to the embodiment of the present invention, it is possible to effectively suppress the embossing and stain of the glass component on the surface of the thick film conductor obtained after firing. As a result, the above-mentioned electrical connection problem is less likely to occur.

本発明の実施形態の厚膜導体形成用組成物は、上記のV及びZnを含有する鉛フリーガラスに加えて、Vを含有しないガラス粉末を含有させてもよい。これにより、厚膜導体の表面にNi電気めっきを施したりする際に、該厚膜導体に対して耐薬品性の向上などの特性を付与することができる。なお、Vを含有しないガラス粉末を含有させる場合であっても、上記のV及びZnを含有する鉛フリーガラスは導電粉末100質量部に対して0.8質量部以上含有させるのが好ましく、これにより、前述した厚膜導体の表面のガラス成分の浮き出しを抑制することができる。Vを含有しないガラス粉末の添加量は特に限定はなく、厚膜導体の使用目的に応じて適宜選択できるが、一般的には導電粉末100質量部に対し0.8質量部から3質量部含有させることが望ましい。 The composition for forming a thick film conductor according to the embodiment of the present invention may contain glass powder containing no V in addition to the lead-free glass containing V and Zn as described above. This makes it possible to impart properties such as improved chemical resistance to the thick film conductor when Ni electroplating is applied to the surface of the thick film conductor. Even when the glass powder containing no V is contained, it is preferable that the lead-free glass containing V and Zn is contained in an amount of 0.8 parts by mass or more with respect to 100 parts by mass of the conductive powder. As a result, it is possible to suppress the embossing of the glass component on the surface of the thick film conductor described above. The amount of V-free glass powder added is not particularly limited and may be appropriately selected depending on the intended use of the thick film conductor, but generally contains 0.8 to 3 parts by mass with respect to 100 parts by mass of the conductive powder. It is desirable to let it.

Vを含有しないガラス粉末には、SiO-B-アルカリ土類酸化物系ガラス粉末や、Bi-SiO-B系ガラス粉末や、ZnO-SiO-B系ガラス粉末等の鉛フリーガラス粉末を用いてもよいし、SiO-B-PbO系ガラス粉末を用いてもよい。これらの中では、近年の環境保護を考慮して鉛フリーガラス粉末を用いることが望ましい。また、厚膜導体を焼成により形成する際の焼成温度を考慮して、上記のVを含有しない鉛フリーガラス粉末は、ガラス転移点が400℃以上600℃以下であるか、若しくは軟化点が500℃以上700℃以下であるか、又はこれらガラス転移点の温度条件と軟化点の温度条件の両方を満たすのが好ましい。 V-free glass powder includes SiO 2 -B 2 O 3 -alkali earth oxide-based glass powder, Bi 2 O 3 -SiO 2 -B 2 O 3 -based glass powder, and ZnO-SiO 2 -B. Lead - free glass powder such as 2O3 glass powder may be used, or SiO- 2 - B2O3 - PbO glass powder may be used. Among these, it is desirable to use lead-free glass powder in consideration of recent environmental protection. Further, in consideration of the firing temperature when forming the thick film conductor by firing, the above-mentioned V-free lead-free glass powder has a glass transition point of 400 ° C. or higher and 600 ° C. or lower, or a softening point of 500. It is preferable that the temperature is not less than or equal to 700 ° C., or both the temperature condition of the glass transition point and the temperature condition of the softening point are satisfied.

更に、上記のVを含有しない鉛フリーガラスのガラス転移点が、セラミック基板の表面に形成されるガラスを含有する膜を構成するガラスのガラス転移点以下であるか、あるいは上記のVを含有しない鉛フリーガラスの軟化点が、セラミック基板の表面に形成されるガラスを含有する膜を構成するガラスの軟化点以下であることが望ましい。なお、前述したV及びZnを含有する鉛フリーガラス粉末のガラス転移点と同様に、Vを含有しない鉛フリーガラス粉末のガラス転移点は、測定対象のガラス粉末を再溶融により形成したロッド状の試料に対して、熱機械分析法(TMA)にて大気中で測定して得た熱膨張曲線の屈曲点を示す箇所の温度として求めることができる。 Further, the glass transition point of the lead-free glass containing no V is equal to or less than the glass transition point of the glass constituting the glass-containing film formed on the surface of the ceramic substrate, or the above V is not contained. It is desirable that the softening point of the lead-free glass is equal to or lower than the softening point of the glass constituting the glass-containing film formed on the surface of the ceramic substrate. Similar to the above-mentioned glass transition point of the lead-free glass powder containing V and Zn, the glass transition point of the lead-free glass powder containing no V is a rod-like shape formed by remelting the glass powder to be measured. It can be obtained as the temperature at a point indicating the bending point of the thermal expansion curve obtained by measuring the sample in the atmosphere by thermomechanical analysis (TMA).

上記のVを含有しないガラス粉末のガラス転移点や軟化点の条件は、そのガラス組成を適宜調整することで満たすことができる。また、上記のVを含有しないガラス粉末は、SiOの含有量が15質量%以上60質量%以下であることが好ましい。このSiOの含有量が15質量%未満では、厚膜導体中のガラスの耐候性、耐水性及び耐薬品性が低下しやすくなり、その結果、厚膜導体にNiめっき等を行う際にめっき不良等の問題が発生するおそれがある。逆に、SiOの含有量が60質量%を超えると、ガラスが軟化する温度が高くなりすぎて厚膜導体とセラミックス基板との密着性が低下するおそれがある。 The above-mentioned conditions of the glass transition point and the softening point of the glass powder containing no V can be satisfied by appropriately adjusting the glass composition. Further, the V-free glass powder preferably has a SiO 2 content of 15% by mass or more and 60% by mass or less. If the content of SiO 2 is less than 15% by mass, the weather resistance, water resistance, and chemical resistance of the glass in the thick film conductor are likely to decrease, and as a result, plating is performed when Ni plating or the like is performed on the thick film conductor. Problems such as defects may occur. On the contrary, if the content of SiO 2 exceeds 60% by mass, the temperature at which the glass softens becomes too high, and the adhesion between the thick film conductor and the ceramic substrate may decrease.

前述したV及びZnを含有する鉛フリーガラスと同様に、Vを含有しない鉛フリーガラスは、結晶化ガラスでもよいし結晶化しないガラスでもよい。また、Vを含有しないガラス粉末の形状についても特に限定はなく、球状や針状等の種々の形状のものを用いることができる。但し、前述したV及びZnを含有する鉛フリーガラス粉末とは異なり、Vを含有しない鉛フリーガラス粉末はレーザー回折を利用した粒度分布計により測定した体積累計粒度分布のD50径(メジアン径)が、1μm以上10μm以下であることが好ましく、厚膜導体ペーストの形態に調製したときの塗布性や、導電粉末との均質な分散の観点から0.5μm以上3μm以下であることがより好ましい。このD50径が10μmを超えると、Vを含有しない鉛フリーガラス粉末と導電粉末とを互いに均質に分散させるのが困難になりやすく、その結果、厚膜導電ペーストに調製したときにVを含有しないガラス粉末が該ペースト内で偏在して厚膜導体と基板との接着強度が低下するおそれがある。 Similar to the lead-free glass containing V and Zn described above, the lead-free glass containing no V may be crystallized glass or non-crystallized glass. Further, the shape of the glass powder containing no V is not particularly limited, and various shapes such as spherical and needle-shaped can be used. However, unlike the lead-free glass powder containing V and Zn described above, the lead-free glass powder not containing V has a D50 diameter (median diameter) of the cumulative volume particle size distribution measured by a particle size distribution meter using laser diffraction. It is preferably 1 μm or more and 10 μm or less, and more preferably 0.5 μm or more and 3 μm or less from the viewpoint of coatability when prepared in the form of a thick film conductor paste and uniform dispersion with the conductive powder. If the D50 diameter exceeds 10 μm, it tends to be difficult to uniformly disperse the V-free lead-free glass powder and the conductive powder with each other, and as a result, the thick film conductive paste does not contain V. The glass powder may be unevenly distributed in the paste and the adhesive strength between the thick film conductor and the substrate may decrease.

本発明の実施形態の厚膜導体形成用組成物は、上記したV及びZnを含有する鉛フリーガラス粉末のほか、本発明の効果を阻害しない範囲で添加物として酸化物を添加してもよい。このような酸化物としては、例えば、厚膜導体の接着強度、耐酸性、はんだ濡れ性などを向上させる働きを有する、Bi、SiO、CuO、ZnO、TiO、ZrO、Mnなどを挙げることができ、これら酸化物の粉末を必要に応じて1種又は2種以上添加してもよい。但し、抵抗値の温度の上昇を抑える観点から、これら酸化物の合計含有量は、導電粉末100質量部に対して10質量部程度を上限にすることが好ましい。 In the composition for forming a thick film conductor according to the embodiment of the present invention, in addition to the lead-free glass powder containing V and Zn described above, an oxide may be added as an additive as long as the effect of the present invention is not impaired. .. Examples of such oxides include Bi 2O 3 , SiO 2 , CuO, ZnO, TiO 2 , ZrO 2 , and Mn, which have functions of improving the adhesive strength, acid resistance, and solder wettability of thick film conductors. 3 O 4 and the like can be mentioned, and one or more of these oxide powders may be added as needed. However, from the viewpoint of suppressing an increase in the temperature of the resistance value, the total content of these oxides is preferably limited to about 10 parts by mass with respect to 100 parts by mass of the conductive powder.

2.厚膜導体ペースト及びその調製方法
上記した本発明の実施形態の厚膜導体形成用組成物を作製する場合は、先ず必須の構成要素として、導電粉末と、V及びZnを含有する鉛フリーガラス粉末とを用意し、更に必要に応じてVを含有しないガラス粉末や酸化物を用意する。そして、これらを所定の配合割合となるように秤取って一般的な粉体混合機で混合する。これにより、粉末状の厚膜導体形成用組成物を作製することができる。この粉末状の厚膜導体形成用組成物に対して、溶剤及び樹脂を所定の配合割合となるように添加して混練することで厚膜導体ペーストを調製することができる。上記の溶剤には、一般的な導電ペーストで用いられるターピネオールやブチルカルビトール等を好適に用いることができる。また、上記の樹脂についても、一般的な導電ペーストで用いられるエチルセルロースやメタクリレートなどを好適に用いることができる。
2. 2. Thick film conductor paste and its preparation method When producing the thick film conductor forming composition of the above-described embodiment of the present invention, first, as essential components, a conductive powder and a lead-free glass powder containing V and Zn are used. And, if necessary, prepare glass powder or oxide that does not contain V. Then, these are weighed so as to have a predetermined mixing ratio and mixed with a general powder mixer. This makes it possible to prepare a powdery thick film conductor forming composition. A thick film conductor paste can be prepared by adding a solvent and a resin to the powdery thick film conductor forming composition in a predetermined mixing ratio and kneading them. As the above solvent, tarpineol, butyl carbitol and the like used in general conductive pastes can be preferably used. Further, as the above resin, ethyl cellulose or methacrylate used in a general conductive paste can be preferably used.

上記の樹脂及び溶剤は、予め混合することで有機ビヒクルを作製し、この有機ビヒクルを粉末状の厚膜導体形成用組成物と混練することで厚膜導体ペーストを調製してもよい。この有機ビヒクルには、コストや取扱いの容易性の観点から、例えば、エチルセルロースをターピネオールに溶解したものが好適に用いられる。この有機ビヒクルを構成する樹脂と溶剤との配合割合は、最終的に調製される厚膜導体ペーストの印刷性や塗布方法を考慮して適宜定められるが、一般的には樹脂100質量部に対して溶剤100~2000質量部程度の配合割合が好ましい。 The above resin and solvent may be mixed in advance to prepare an organic vehicle, and the organic vehicle may be kneaded with a powdery thick film conductor forming composition to prepare a thick film conductor paste. For this organic vehicle, for example, ethyl cellulose dissolved in turpineol is preferably used from the viewpoint of cost and ease of handling. The blending ratio of the resin constituting this organic vehicle and the solvent is appropriately determined in consideration of the printability and the coating method of the finally prepared thick film conductor paste, but is generally determined with respect to 100 parts by mass of the resin. A mixing ratio of about 100 to 2000 parts by mass of the solvent is preferable.

上記の有機ビヒクルを用いて厚膜導体ペーストを調製する場合は、導電粉末100質量部に対して、有機ビヒクルの配合割合を15質量部以上250質量部以下にすることが好ましく、印刷性や塗布の容易性、厚膜導体ペースト内での粒子の沈降の抑制や厚膜導体の緻密性を考慮すると、20質量部以上100質量部以下にすることがより好ましい。この有機ビヒクルの配合割合が15質量部未満では、厚膜導体ペーストの粘度が高くなりすぎて塗布が実質的に不可能となる場合があり、逆にこの配合割合が250質量部を超えると厚膜導体ペースト内で粒子の沈降が生じたり焼成後の厚膜導体膜の緻密性が大きく低下したりする問題が生じるおそれがある。 When preparing a thick film conductor paste using the above organic vehicle, it is preferable that the mixing ratio of the organic vehicle is 15 parts by mass or more and 250 parts by mass or less with respect to 100 parts by mass of the conductive powder, and the printability and coating are preferable. It is more preferable to use 20 parts by mass or more and 100 parts by mass or less in consideration of ease of use, suppression of particle settling in the thick film conductor paste, and denseness of the thick film conductor. If the blending ratio of the organic vehicle is less than 15 parts by mass, the viscosity of the thick film conductor paste may become too high and coating may be practically impossible. On the contrary, if the blending ratio exceeds 250 parts by mass, the thickness may be increased. There is a possibility that particles may settle in the film conductor paste and the density of the thick film conductor film after firing may be significantly reduced.

上記した厚膜導体ペーストの調製の際に行われる粉末状の厚膜導体形成用組成物と有機ビヒクルとの混練方法、又は該組成物と溶剤と樹脂との混練方法には特に限定はないが、湿式混練ミル、ロールミル、テーパロールミルなどの混練機を用いることが好ましく、これにより効率よく混練することができる。 The method for kneading the powdery thick film conductor forming composition and the organic vehicle, which is performed when preparing the thick film conductor paste described above, or the method for kneading the composition, the solvent, and the resin is not particularly limited. , It is preferable to use a kneader such as a wet kneading mill, a roll mill, or a taper roll mill, whereby efficient kneading can be performed.

3.厚膜導体及びその形成方法
本発明の実施形態の厚膜導体組成物は、上記した厚膜導体ペーストの形態でガラスグレーズ基板のようなガラスを含有する膜が表面に形成された基板上に所定の印刷パターンとなるように塗布された後、好適にはピーク温度550~900℃の範囲内で厚膜導体の用途に応じた焼成温度で焼成処理が施されて厚膜導体が形成される。
3. 3. Thick-film conductor and method for forming the thick-film conductor The thick-film conductor composition of the embodiment of the present invention is predetermined on a substrate in which a glass-containing film such as a glass glaze substrate is formed on the surface in the form of the above-mentioned thick-film conductor paste. After being applied so as to have a printed pattern of, the thick film conductor is preferably subjected to a firing treatment at a firing temperature within a peak temperature range of 550 to 900 ° C. according to the intended use of the thick film conductor to form a thick film conductor.

上記のガラスグレーズ基板は、ガラス転移点が400℃以上のガラス粉末を含有するガラスペーストをアルミナ等のセラミック基板の表面に塗布して焼成することにより作製することができ、これにより形成されるガラスグレーズ層は、上記の焼成の際にガラス粉末を構成する粒子群が互いに融着したり熔融したりすることで形成されるガラスを含む膜である。このガラスグレーズ層は、用途に応じたガラス転移点を有するように、ガラスを構成するガラス粉末としてSiOのほか、種々の酸化物を一般に含んでいる。なお、厚膜導体とは、スパッタリング等の薄膜技術によって形成される薄膜導体に対して用いられる用語であり、その膜厚は一般的には5~15μm程度である。 The above glass glaze substrate can be produced by applying a glass paste containing a glass powder having a glass transition point of 400 ° C. or higher to the surface of a ceramic substrate such as alumina and firing the glass, and the glass formed thereby. The glaze layer is a film containing glass formed by the group of particles constituting the glass powder being fused or fused with each other during the above firing. This glass glaze layer generally contains various oxides in addition to SiO 2 as the glass powder constituting the glass so as to have a glass transition point depending on the application. The thick film conductor is a term used for a thin film conductor formed by a thin film technique such as sputtering, and the film thickness is generally about 5 to 15 μm.

以上、本発明の実施形態の厚膜導体形成用組成物及びこれを材料に用いて調製された厚膜導体ペーストについて、ガラスグレーズ基板の表面に該厚膜導体ペーストを塗布及び焼成することで厚膜導体を形成する場合を例に挙げて説明したが、これに限定されるものではなく、ガラスグレーズ基板以外にほうろう基板の表面に該厚膜導体ペーストを塗布及び焼成することで厚膜導体を形成する場合にも好適に適用することができる。更には、厚膜抵抗体の表面に該厚膜導体ペーストを塗布及び焼成することで厚膜導体を形成する場合にも好適に適用することができる。 As described above, the thick film conductor forming composition of the embodiment of the present invention and the thick film conductor paste prepared by using the composition are applied to the surface of the glass glaze substrate and fired to make the thick film conductor paste thick. The case of forming a film conductor has been described as an example, but the present invention is not limited to this, and the thick film conductor can be formed by applying and firing the thick film conductor paste on the surface of a broom substrate other than the glass glaze substrate. It can also be suitably applied to the case of forming. Further, it can be suitably applied to the case where the thick film conductor is formed by applying and firing the thick film conductor paste on the surface of the thick film resistor.

例えば、特許第2777206号に開示されているように、セラミック基板の表面に、先ずRuO粉末、ガラス粉末、及び有機ビヒクルを含有する抵抗ペーストを塗布、乾燥、及び焼成することにより抵抗被膜を形成し、次にAg等の導電粉末、ガラス粉末、及び有機ビヒクルを含有する導電ペーストを塗布、乾燥、及び焼成することにより電極を形成することで厚膜抵抗器を作製する場合は、この導電ペーストの材料に本発明の実施形態の厚膜導体形成用組成物を好適に用いることができる。次に、本発明の厚膜導体形成用組成物について、実施例を挙げてより具体的に説明を行うが、本発明はこの実施例により何ら制限されるものではない。 For example, as disclosed in Japanese Patent No. 2777206, a resistance coating containing RuO 2 powder, glass powder, and an organic vehicle is first applied to the surface of a ceramic substrate, dried, and fired to form a resistance film. Next, when a thick film resistor is produced by forming an electrode by applying, drying, and firing a conductive paste containing a conductive powder such as Ag, a glass powder, and an organic vehicle, this conductive paste is used. The thick film conductor forming composition of the embodiment of the present invention can be preferably used as the material of the above. Next, the composition for forming a thick film conductor of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

組成がそれぞれ異なる複数種類の厚膜導体形成用組成物を作製し、それらの各々を用いて調製した厚膜導体ペーストをガラスグレーズ層が表面に形成されたセラミック基板上に塗布して焼成することで厚膜導体を形成し、その表面の状態を評価した。以下、厚膜導体形成用組成物粉末の作製、厚膜導電ペーストの作製、厚膜導体の作製、及び厚膜導体の評価の順に説明する。 Multiple types of thick film conductor forming compositions having different compositions are prepared, and a thick film conductor paste prepared using each of them is applied onto a ceramic substrate having a glass glaze layer formed on the surface and fired. A thick-film conductor was formed with, and the state of its surface was evaluated. Hereinafter, the preparation of the composition powder for forming a thick film conductor, the production of the thick film conductive paste, the production of the thick film conductor, and the evaluation of the thick film conductor will be described in this order.

[厚膜導体形成用組成物粉末の作製]
先ず、厚膜導体形成用組成物を構成する導電粉末として、形状の異なる3種類の銀粉末A、B及びCと、銀及びパラジウムの合金粉末とを用意した。銀粉末Aは数平均粒径が0.3μmの球状粉末であり、銀粉末Bは数平均粒径が15.0μmの鱗片状粉末であり、銀粉末Cは数平均粒径が1.0μmの塊状粉末である。他方、銀及びパラジウムの合金粉末は、数平均粒径が0.2μmの球状粉末である。また、上記厚膜導体形成用組成物を構成する鉛フリーガラス粉末として下記表1に示すV及びZnを含有する鉛フリーガラス粉末と、下記表2に示すVを含有しない鉛フリーガラス粉末とを用意した。
[Preparation of composition powder for forming thick film conductors]
First, as conductive powders constituting the thick film conductor forming composition, three kinds of silver powders A, B and C having different shapes and an alloy powder of silver and palladium were prepared. Silver powder A is a spherical powder having a number average particle size of 0.3 μm, silver powder B is a scaly powder having a number average particle size of 15.0 μm, and silver powder C has a number average particle size of 1.0 μm. It is a lumpy powder. On the other hand, the silver and palladium alloy powder is a spherical powder having a number average particle size of 0.2 μm. Further, as the lead-free glass powder constituting the thick film conductor forming composition, a lead-free glass powder containing V and Zn shown in Table 1 below and a lead-free glass powder containing no V shown in Table 2 below are used. I prepared it.

Figure 2022089460000001
Figure 2022089460000001

Figure 2022089460000002
Figure 2022089460000002

なお、上記表1に示すV及びZnを含有する鉛フリーガラス粉末のガラス転移点はTMAで測定した。また、上記表2に示すVを含有しない鉛フリーガラス粉末の軟化点は、ガラス粉末を示差熱分析法(TG-DTA)で分析することで得た示差熱曲線の最も低温側の示差熱曲線の減少が発現する温度よりも高温側の次の示差熱曲線が減少するピークの温度で求めた。更に、添加物として粉末状のBi及びVを用意した。これら導電粉末、鉛フリーガラス粉末、及び添加物を下記表3に示す配合割合となるようにそれぞれ秤り取って粉体混合機で混合することで実施例1~9及び比較例1~5の厚膜導体形成用組成を作製した。なお、総ガラス質量部とは導電粉末100質量部に対するV及びZnを含有する鉛フリーガラス粉末とVを含有しない鉛フリーガラス粉末の合計量であり、Vガラス質量部とは導電粉末100質量部に対するV及びZnを含有する鉛フリーガラス粉末の量である。 The glass transition point of the lead-free glass powder containing V and Zn shown in Table 1 above was measured by TMA. The softening point of the lead-free glass powder containing no V shown in Table 2 above is the differential thermal curve on the lowest temperature side of the differential thermal curve obtained by analyzing the glass powder by a differential thermal analysis method (TG-DTA). It was determined by the temperature of the peak at which the next differential thermal curve on the higher temperature side than the temperature at which the decrease appears decreases. Further, powdered Bi 2 O 3 and V 2 O 5 were prepared as additives. Examples 1 to 9 and Comparative Examples 1 to 5 are obtained by weighing each of the conductive powder, the lead-free glass powder, and the additive so as to have the blending ratios shown in Table 3 below and mixing them with a powder mixer. A composition for forming a thick film conductor was prepared. The total glass mass is the total amount of the lead-free glass powder containing V and Zn and the lead-free glass powder not containing V with respect to 100 parts by mass of the conductive powder, and the V glass mass is 100 parts by mass of the conductive powder. The amount of lead-free glass powder containing V and Zn.

Figure 2022089460000003
Figure 2022089460000003

[厚膜導電ペーストの作製]
次に、エチルセルロースが7質量%、及び溶剤としてのターピネオール溶液が93質量%の配合割合となるようにそれぞれ秤取って混合した後、加熱によりエチルセルロースを溶解させて有機ビヒクルを作製した。得られた有機ビヒクルを、上記にて作製した実施例1~9及び比較例1~5の厚膜導体形成用組成物粉末の各々に対して上記表3の配合割合となるように秤取って3本ロールミルに装入し、それらを混練することにより厚膜導体ペーストを調製した。
[Preparation of thick film conductive paste]
Next, the ethyl cellulose was weighed and mixed so that the blending ratio was 7% by mass and the tarpineol solution as a solvent was 93% by mass, and then the ethyl cellulose was dissolved by heating to prepare an organic vehicle. The obtained organic vehicle was weighed so as to have the blending ratio shown in Table 3 above with respect to each of the thick film conductor forming composition powders of Examples 1 to 9 and Comparative Examples 1 to 5 prepared above. A thick-film conductor paste was prepared by charging into a three-roll mill and kneading them.

[厚膜導体の作製]
このようにして調製した実施例1~9、比較例1~5の厚膜導体形成用組成物をそれぞれ含む14種類の厚膜導体ペーストをガラスグレーズ基板の表面にスクリーン印刷機によりスクリーン印刷し(塗布工程)、ベルト式乾燥炉を用いて150℃で5分間かけて乾燥処理し(乾燥工程)、ベルト炉を用いてピーク温度600℃で5分間かけて焼成処理した(焼成工程)。なお、厚膜導体ペーストのスクリーン印刷では、焼成後の膜厚が10μmとなるよう印刷条件を調整した。これにより14種類の厚膜導体を製造した。
[Manufacturing of thick film conductor]
14 kinds of thick film conductor pastes containing the thick film conductor forming compositions of Examples 1 to 9 and Comparative Examples 1 to 5 prepared in this manner were screen-printed on the surface of the glass glaze substrate by a screen printing machine ( (Applying step), drying treatment was performed at 150 ° C. for 5 minutes using a belt-type drying furnace (drying step), and firing treatment was performed at a peak temperature of 600 ° C. for 5 minutes using a belt furnace (baking step). In the screen printing of the thick film conductor paste, the printing conditions were adjusted so that the film thickness after firing was 10 μm. As a result, 14 types of thick film conductors were manufactured.

上記のガラスグレーズ基板には、96%アルミナ基板(縦25.4mm×横25.4mm×厚み1mm)の全表面に膜厚20μmのガラスグレーズ層が焼成により形成されたものを用いた。このガラスグレーズ層は、TG-DTAで測定した軟化点600℃の鉛フリーガラス粉末(Bの酸化物Bを1質量%、SiOを22質量%、Alを3質量%、ZnOを1質量%、Biを73質量%をそれぞれ含有する)80質量%と、上記の厚膜導体ペーストで使用したものと同じ有機ビヒクル20質量%とを3本ロールミルで混練して調製したガラスグレーズペーストを上記96%アルミナ基板に塗布した後、ベルト式乾燥炉を用いて150℃で5分間かけて乾燥処理し、得られた乾燥膜をベルト炉を用いてピーク温度600℃保持時間で5分間かけて焼成処理することで形成した。 As the above glass glaze substrate, a 96% alumina substrate (length 25.4 mm × width 25.4 mm × thickness 1 mm) having a glass glaze layer having a film thickness of 20 μm formed on the entire surface by firing was used. This glass glaze layer is a lead-free glass powder having a softening point of 600 ° C. measured by TG-DTA (1% by mass of oxide B 2 O 3 of B, 22% by mass of SiO 2 and 3% by mass of Al 2 O 3 ). , ZnO is contained in 1 % by mass and Bi 2O3 is contained in 73% by mass) 80% by mass and 20% by mass of the same organic vehicle used in the above thick film conductor paste are kneaded with a three-roll mill. After applying the glass glaze paste prepared above to the 96% alumina substrate, it was dried at 150 ° C. for 5 minutes using a belt-type drying furnace, and the obtained dried film was dried at a peak temperature of 600 ° C. using a belt furnace. It was formed by baking for 5 minutes with a holding time.

[厚膜導体の評価]
上記にて作製した14種類の厚膜導体の各々に対して、先ず表面の状態を評価するため、SEMで撮像し、ガラス成分の浮き出しの有無を調べた。その結果、比較例5を除く全ての比較例で厚膜導体の表面にガラス成分とみられる物質の浮き出しが確認された。なお、図1に比較例1の厚膜導体のSEM写真を示す。この図1では、浮き出したガラス成分からなる膜の下部に導電粉末を構成する粒子群が焼結している状態が確認できる。一方、実施例1~9の全てにおいて厚膜導体の表面には比較例1~4のようなガラス成分とみられる物質の浮き出しは確認されなかった。なお、図2に実施例1の厚膜導体のSEM写真を示す。
[Evaluation of thick film conductor]
For each of the 14 types of thick film conductors produced above, first, in order to evaluate the state of the surface, an image was taken with an SEM, and the presence or absence of embossment of the glass component was examined. As a result, in all the comparative examples except Comparative Example 5, it was confirmed that the substance considered to be a glass component was embossed on the surface of the thick film conductor. Note that FIG. 1 shows an SEM photograph of the thick film conductor of Comparative Example 1. In FIG. 1, it can be confirmed that the particles constituting the conductive powder are sintered in the lower part of the film made of the raised glass component. On the other hand, in all of Examples 1 to 9, no embossing of a substance considered to be a glass component as in Comparative Examples 1 to 4 was confirmed on the surface of the thick film conductor. Note that FIG. 2 shows an SEM photograph of the thick film conductor of Example 1.

また、SEMで撮像し、ガラスグレーズ層の表面のうち厚膜導体の周囲にステインが発生しているか否か確認した。その結果、比較例4と5で厚膜導体の周囲のガラスグレーズ層の表面にステインが確認されたが、それ以外では確認されなかった。 In addition, an image was taken with SEM to confirm whether or not stain was generated around the thick film conductor on the surface of the glass glaze layer. As a result, stains were confirmed on the surface of the glass glaze layer around the thick film conductor in Comparative Examples 4 and 5, but were not confirmed in other cases.

Claims (7)

導電粉末と、バナジウム及び亜鉛を含有する鉛フリーガラス粉末とを含み、ガラスを含有する膜が表面に形成された基板上に焼成により形成される厚膜導体層の原料として使用されることを特徴とする厚膜導体形成用組成物。 It contains conductive powder and lead-free glass powder containing vanadium and zinc, and is characterized by being used as a raw material for a thick-film conductor layer formed by firing on a substrate having a glass-containing film formed on the surface. A composition for forming a thick film conductor. 前記導電粉末が、Au、Ag、Pd、及びPtからなる群から選ばれる単体の金属粉末又は合金粉末であることを特徴とする、請求項1に記載の厚膜導体形成用組成物。 The composition for forming a thick film conductor according to claim 1, wherein the conductive powder is a simple substance metal powder or alloy powder selected from the group consisting of Au, Ag, Pd, and Pt. 前記鉛フリーガラス粉末は、ガラス転移点が350℃以上550℃以下であることを特徴とする、請求項1又は2に記載の厚膜導体形成用組成物。 The composition for forming a thick film conductor according to claim 1 or 2, wherein the lead-free glass powder has a glass transition point of 350 ° C. or higher and 550 ° C. or lower. バナジウムを含有しないガラス粉末を更に含むことを特徴とする、請求項1から3のいずれか1項に記載の厚膜導体形成用組成物。 The composition for forming a thick film conductor according to any one of claims 1 to 3, further comprising a glass powder containing no vanadium. 請求項1から4のいずれか1項に記載の厚膜導体形成用組成物とビヒクルとを含むことを特徴とする厚膜導体ペースト。 A thick film conductor paste comprising the thick film conductor forming composition according to any one of claims 1 to 4 and a vehicle. 基板の上に形成されたガラスを含有する膜の表面に形成され、導電物及びガラスを含み、該ガラスがバナジウム及び亜鉛を含むことを特徴とする厚膜導体。 A thick film conductor formed on the surface of a glass-containing film formed on a substrate, comprising a conductor and glass, wherein the glass contains vanadium and zinc. 前記導電物が、Au、Ag、Pd、及びPtからなる群から選ばれる単体又は合金であることを特徴とする、請求項6に記載の厚膜導体。 The thick film conductor according to claim 6, wherein the conductor is a simple substance or an alloy selected from the group consisting of Au, Ag, Pd, and Pt.
JP2020201873A 2020-12-04 2020-12-04 Thick film conductor, composition for formation thereof and thick film conductor paste containing the composition for formation thereof Pending JP2022089460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020201873A JP2022089460A (en) 2020-12-04 2020-12-04 Thick film conductor, composition for formation thereof and thick film conductor paste containing the composition for formation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020201873A JP2022089460A (en) 2020-12-04 2020-12-04 Thick film conductor, composition for formation thereof and thick film conductor paste containing the composition for formation thereof

Publications (1)

Publication Number Publication Date
JP2022089460A true JP2022089460A (en) 2022-06-16

Family

ID=81989158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020201873A Pending JP2022089460A (en) 2020-12-04 2020-12-04 Thick film conductor, composition for formation thereof and thick film conductor paste containing the composition for formation thereof

Country Status (1)

Country Link
JP (1) JP2022089460A (en)

Similar Documents

Publication Publication Date Title
KR102488165B1 (en) Conductive composition, method for producing a conductor, and method for forming wiring of electronic parts
US7267713B2 (en) Conductive paste and glass circuit structure
KR101172723B1 (en) Copper conductor paste, conductor circuit board and electronic part
TWI590417B (en) Thick film resistor and manufacturing method thereof
KR102488162B1 (en) Manufacturing method of conductive composition and terminal electrode
US4414143A (en) Conductor compositions
JP6623919B2 (en) Conductive composition, method for producing conductor, and method for forming wiring of electronic component
WO2021221173A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP6769208B2 (en) Lead-free conductive paste
EP1632958A1 (en) A glass composition, a thick-film resistor paste comprising the glass composition, a thick-film resistor comprising the thick-film resistor paste and an electronic device comprising the thick-film resistor
JP2022089460A (en) Thick film conductor, composition for formation thereof and thick film conductor paste containing the composition for formation thereof
JP6623920B2 (en) Method for producing conductive composition and terminal electrode
CN109994246B (en) Powder composition for forming thick-film conductor and slurry for forming thick-film conductor
JPH0346705A (en) Copper paste
JP7322534B2 (en) Powder composition for forming thick film conductor and paste for forming thick film conductor
JP7187832B2 (en) Powder composition for forming thick film conductor and paste for forming thick film conductor
JP7279551B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
WO2021221174A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP2005244119A (en) Resistor paste and resistor using the same
JP2004362862A (en) Conductive paste composition for thick-film conductor
JP3926142B2 (en) Conductor paste
WO2021221172A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JPH06223617A (en) Conductive paste composition
JP2006054061A (en) Conductive paste
JPH06223616A (en) Conductive paste composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240517