JP2022086554A - All-solid-state battery - Google Patents

All-solid-state battery Download PDF

Info

Publication number
JP2022086554A
JP2022086554A JP2020198631A JP2020198631A JP2022086554A JP 2022086554 A JP2022086554 A JP 2022086554A JP 2020198631 A JP2020198631 A JP 2020198631A JP 2020198631 A JP2020198631 A JP 2020198631A JP 2022086554 A JP2022086554 A JP 2022086554A
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
layer
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020198631A
Other languages
Japanese (ja)
Inventor
秀明 渡邉
Hideaki Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020198631A priority Critical patent/JP2022086554A/en
Publication of JP2022086554A publication Critical patent/JP2022086554A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide an all-solid-state battery capable of suppressing battery expansion while suppressing reduction in charge/discharge efficiency even when a positive electrode active material of layer-like rock salt type structure and spinel-type structure is used.SOLUTION: The all-solid-state battery has a positive electrode active material layer containing a positive electrode active material and a negative electrode active material layer containing a negative electrode active material. The positive electrode active material includes: a first positive electrode active material 10 that includes particles 11 having a layer-like rock salt type structure and a coating layer 12 of a solid electrolyte coated on a particle with a thickness of 1% or more of the average particle diameter of the particles; and a second positive electrode active material 20 having a spinel-type structure. The negative electrode active material is selected from any of graphite, silicon, metallic lithium, and, lithium titaniumniobate.SELECTED DRAWING: Figure 1

Description

本開示は全固体電池に関する。 The present disclosure relates to an all-solid-state battery.

全固体電池は、正極活物質を含む正極、負極活物質を含む負極、及び、これらの間に配置された固体電解質を含む固体電解質層を備えている。
特許文献1には、容量低下、抵抗上昇の抑制を目的として、正極活物質の粒子の中心部が、菱面体晶系で空間群R-3mの層状岩塩型構造、外周部がスピネル型であることが開示されている。
特許文献2には、電池容量の増大、エネルギー密度の向上を目的として、層状岩塩型の結晶構造を有する1つの粒子の表面の一部にスピネル型の結晶構造を有するリチウムマンガン複合酸化物が開示されている。
The all-solid-state battery includes a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and a solid electrolyte layer containing a solid electrolyte arranged between them.
In Patent Document 1, for the purpose of suppressing volume decrease and resistance increase, the central part of the particles of the positive electrode active material is a rhombohedral crystal system with a layered rock salt type structure of space group R-3 m, and the outer peripheral part is a spinel type. Is disclosed.
Patent Document 2 discloses a lithium manganese composite oxide having a spinel-type crystal structure on a part of the surface of one particle having a layered rock salt-type crystal structure for the purpose of increasing battery capacity and energy density. Has been done.

特開2020-9562号公報Japanese Unexamined Patent Publication No. 2020-9562 特開2014-237579号公報Japanese Unexamined Patent Publication No. 2014-237579

層状岩塩型構造とスピネル型構造とを従来のように用いると両者の充放電時の膨張及び収縮が均一でないため活物質や電極に亀裂を生じたり、電池の膨張が大きくなったりして、充放電効率の低下を招く虞があった。
本開示は、層状岩塩型構造及びスピネル型構造の正極活物質を用いても電池の膨張を抑えるとともに充放電効率の低下を抑制することができる全固体電池を提供することを目的とする。
When the layered rock salt type structure and the spinel type structure are used as in the past, the expansion and contraction of both during charging and discharging are not uniform, so that the active material and electrodes are cracked and the expansion of the battery becomes large. There was a risk of lowering the discharge efficiency.
It is an object of the present disclosure to provide an all-solid-state battery capable of suppressing expansion of a battery and suppressing a decrease in charge / discharge efficiency even when a positive electrode active material having a layered rock salt type structure and a spinel type structure is used.

本開示は上記課題を解決するための一つの手段として、正極活物質を含む正極活物質層、及び、負極活物質を含む負極活物質層を有する全固体電池であって、正極活物質は、層状岩塩型構造を有する粒子、及び、この粒子の平均粒子径に対して1%以上の厚みを有して粒子に被覆された固体電解質による被覆層、を備える第一正極活物質と、スピネル型構造を有する第二正極活物質と、を備え、負極活物質は、黒鉛、シリコン、金属リチウム、及び、チタンニオブ酸リチウムから選ばれるいずれかである、全固体電池を開示する。 The present disclosure is an all-solid-state battery having a positive electrode active material layer containing a positive electrode active material and a negative electrode active material layer containing a negative electrode active material as one means for solving the above problems, and the positive electrode active material is a positive electrode active material. A first positive electrode active material comprising particles having a layered rock salt type structure and a coating layer made of a solid electrolyte having a thickness of 1% or more with respect to the average particle size of the particles and being coated with the particles, and a spinel type. Disclosed are all-solid-state batteries comprising a second positive electrode active material having a structure, wherein the negative electrode active material is any one selected from graphite, silicon, metallic lithium, and lithium titaniumniobate.

本開示の全固体電池によれば、電池の膨張を抑えるとともに、充放電効率の低下を抑制することができる。 According to the all-solid-state battery of the present disclosure, it is possible to suppress the expansion of the battery and suppress the decrease in charge / discharge efficiency.

正極活物質を説明する図である。It is a figure explaining the positive electrode active material. 全固体電池の概略を示す断面図である。It is sectional drawing which shows the outline of the all-solid-state battery. 効果を説明する図である。It is a figure explaining the effect. 効果を説明する図である。It is a figure explaining the effect. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example.

1.正極活物質
図1に正極活物質を模式的に示した。図1に示すように本形態の正極活物質は、第一正極活物質10及び第二正極活物質20を有している。
1. 1. Positive Electrode Active Material Figure 1 schematically shows the positive electrode active material. As shown in FIG. 1, the positive electrode active material of this embodiment has a first positive electrode active material 10 and a second positive electrode active material 20.

1.1.第一正極活物質
第一正極活物質10は粒子状であり、層状岩塩型構造を有する中心粒子11、及び、該中心粒子11を被覆するように設けられた固体電解質からなる被覆層12を有している。
1.1. First Positive Electrode Active Material The first positive electrode active material 10 is in the form of particles, and has a central particle 11 having a layered rock salt type structure and a coating layer 12 made of a solid electrolyte provided so as to cover the central particle 11. is doing.

中心粒子11は層状岩塩型構造を有している粒子であり、例えばニッケルコバルトアルミニウム酸リチウム(NCA)、ニッケルコバルトマンガン酸リチウム(NCM)等からなることを挙げることができる。 The central particle 11 is a particle having a layered rock salt type structure, and examples thereof include nickel cobalt lithium aluminometate (NCA), nickel cobalt manganate lithium (NCM), and the like.

被覆層12は固体電解質からなり、中心粒子の外周を被覆するように設けられている。固体電解質としては例えば硫化物固体電解質を用いることができる。硫化物固体電解質材としては、例えば、LiS-P、LiS-P-LiI、LiS-P-LiO、LiS-P-LiO-LiI、LiS-SiS、LiS-SiS-LiI、LiS-SiS-LiBr、LiS-SiS-LiCl、LiS-SiS-B-LiI、LiS-SiS-P-LiI、LiS-B、Li2S-P-ZmSn(ただし、m、nは正の数。Zは、Ge、Zn、Gaのいずれか。)、LiS-GeS、LiS-SiS-LiPO、LiS-SiS-LiMO(ただし、x、yは正の数。Mは、P、Si、Ge、B、Al、Ga、Inのいずれか。)等を挙げることができる。なお、上記「LiS-P」の記載は、LiSおよびPを含む原料組成物を用いてなる硫化物固体電解質材を意味し、他の記載についても同様である。 The coating layer 12 is made of a solid electrolyte and is provided so as to cover the outer periphery of the central particle. As the solid electrolyte, for example, a sulfide solid electrolyte can be used. Examples of the sulfide solid electrolyte material include Li 2 SP 2 S 5 , Li 2 SP 2 S 5 -Li I, Li 2 SP 2 S 5 -Li 2 O, Li 2 SP 2 S. 5 -Li 2 O-LiI, Li 2 S-SiS 2 , Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 SB 2 S 3 , Li 2S-P 2 S 5 -ZmSn (where m and n are positive numbers. Z is a positive number. , Ge, Zn, Ga.), Li 2 S-GeS 2 , Li 2 S-SiS 2 -Li 3 PO 4 , Li 2 S-SiS 2 -Li x MO y (where x, y are positive) M can be any of P, Si, Ge, B, Al, Ga, In) and the like. The above description of "Li 2 SP 2 S 5" means a sulfide solid electrolyte material using a raw material composition containing Li 2 S and P 2 S 5 , and the same applies to other descriptions. be.

被覆層12の厚みは特に限定されることはないが、第一正極活物質10の平均粒子径に対して1%以上であることが好ましい。これにより効果がより顕著となる。
本開示において、粒子の平均粒子径は、レーザー回折・散乱式粒子径分布測定により測定される体積基準のメディアン径(D50)の値である。メディアン径(D50)とは、粒径の小さい粒子から順に並べた場合に、粒子の累積体積が全体の半分(50%)となる径(体積平均径)である。
また、被覆層12の厚みを調べる方法として、正極活物質層の断面のSEM観察を行い、任意の5点で被覆層の厚みを測定し平均厚みとする方法が挙げられる。
The thickness of the coating layer 12 is not particularly limited, but is preferably 1% or more with respect to the average particle size of the first positive electrode active material 10. This makes the effect more pronounced.
In the present disclosure, the average particle size of the particles is the value of the median diameter (D50) on the volume basis measured by the laser diffraction / scattering type particle size distribution measurement. The median diameter (D50) is a diameter (volume average diameter) in which the cumulative volume of the particles is half (50%) of the total when the particles are arranged in order from the smallest particle size.
Further, as a method of examining the thickness of the coating layer 12, a method of observing the cross section of the positive electrode active material layer by SEM and measuring the thickness of the coating layer at any five points to obtain the average thickness can be mentioned.

中心粒子11に被覆層12としての固体電解質を被覆する方法の一例として、乾式粒子複合化装置を用いる方法が挙げられる。装置内に中心粒子となる活物質および被覆層となる固体電解質をチャンバに投入し、チャンバ内でローターを回転させることにより処理を行う。このとき、ローターの回転数、処理時間を変更することにより、被覆する固体電解質の量及び厚みを調整することができる。 As an example of the method of coating the central particles 11 with the solid electrolyte as the coating layer 12, a method using a dry particle composite device can be mentioned. The active material as the central particle and the solid electrolyte as the coating layer are put into the chamber in the apparatus, and the treatment is performed by rotating the rotor in the chamber. At this time, the amount and thickness of the solid electrolyte to be coated can be adjusted by changing the rotation speed and the processing time of the rotor.

第一正極活物質の平均粒子径は特に限定されることはないが、1μm以上10μm以下の範囲の粒子を用いることができる。 The average particle size of the first positive electrode active material is not particularly limited, but particles in the range of 1 μm or more and 10 μm or less can be used.

1.2.第二正極活物質
第二正極活物質20は粒子状であり、スピネル型構造を有する。例えばマンガン酸リチウム(LiMn)、ニッケルマンガン酸リチウム(LiNi0.5Mn1.5)を用いることができる。
1.2. Second Positive Electrode Active Material The second positive electrode active material 20 is in the form of particles and has a spinel-type structure. For example, lithium manganate (LiMn 2 O 4 ) and lithium nickel manganate (LiNi 0.5 Mn 1.5 O 4 ) can be used.

第二正極活物質20は、第一正極活物質10と同様に固体電解質で被覆されていてもよいし、被覆されていなくてもよい。 The second positive electrode active material 20 may or may not be coated with a solid electrolyte in the same manner as the first positive electrode active material 10.

第二正極活物質の平均粒子径は特に限定されることはないが、1μm以上10μm以下の範囲の粒子を用いることができる。 The average particle size of the second positive electrode active material is not particularly limited, but particles in the range of 1 μm or more and 10 μm or less can be used.

1.3.正極活物質の機能
以上のような正極活物質によれば、これを正極活物質層に用いて全固体電池に適用することにより、充電時に膨張する負極活物質層との組み合わせで電池の膨張率を低く抑えるとともに、充放電効率低下を抑制することができる。より詳しくは後で説明する。
1.3. Functions of the positive electrode active material According to the positive electrode active material as described above, by using this as the positive electrode active material layer and applying it to an all-solid-state battery, the expansion rate of the battery in combination with the negative electrode active material layer that expands during charging. Can be suppressed to a low level, and a decrease in charge / discharge efficiency can be suppressed. More details will be described later.

2.全固体電池
次に、上記正極活物質を適用した全固体電池について説明する。
図2に全固体電池の一例を示す概略断面図を示した。図2に示すように、全固体電池30は、正極活物質を含有する正極活物質層31、負極活物質を含有する負極活物質層32、正極活物質層31と負極活物質層32との間に形成された固体電解質層33、正極活物質層31の集電を行う正極集電体層34、負極活物質層32の集電を行う負極集電体層35、及び、これらの部材を収納する電池ケース36を有する。本形態では正極活物質層31に上記した正極活物質を含有する。
以下、全固体電池30の各構成について説明する。
2. 2. All-solid-state battery Next, an all-solid-state battery to which the positive electrode active material is applied will be described.
FIG. 2 shows a schematic cross-sectional view showing an example of an all-solid-state battery. As shown in FIG. 2, the all-solid battery 30 includes a positive electrode active material layer 31 containing a positive electrode active material, a negative electrode active material layer 32 containing a negative electrode active material, a positive electrode active material layer 31, and a negative electrode active material layer 32. The solid electrolyte layer 33 formed between them, the positive electrode current collector layer 34 that collects electricity from the positive electrode active material layer 31, the negative electrode current collector layer 35 that collects electricity from the negative electrode active material layer 32, and these members are used. It has a battery case 36 for storing. In this embodiment, the positive electrode active material layer 31 contains the above-mentioned positive electrode active material.
Hereinafter, each configuration of the all-solid-state battery 30 will be described.

2.1.正極活物質層
正極活物質層31は、上記の正極活物質を含有する層であり、必要に応じて、さらに固体電解質材、導電材及び結着材の少なくとも一つを含有していてもよい。
固体電解質材は特に限定されることはないが、第一正極活物質の被覆層に用いた固体電解質とすることが好ましい。
導電材は、その添加により、正極活物質層の電子伝導性を向上させることができる。導電材としては、特に限定されることはなく、公知の炭素材料、金属材料を挙げることができる。
結着材は、化学的、電気的に安定なものであれば特に限定されるものではないが、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系結着材、スチレンブタジエンゴム(SBR)等のゴム系結着材、ポリプロピレン(PP)、ポリエチレン(PE)等のオレフィン系結着材、カルボキシメチルセルロース(CMC)等のセルロース系結着材等を挙げることができる。
2.1. Positive electrode active material layer The positive electrode active material layer 31 is a layer containing the above-mentioned positive electrode active material, and may further contain at least one of a solid electrolyte material, a conductive material, and a binder, if necessary. ..
The solid electrolyte material is not particularly limited, but it is preferably a solid electrolyte used for the coating layer of the first positive electrode active material.
By adding the conductive material, the electron conductivity of the positive electrode active material layer can be improved. The conductive material is not particularly limited, and examples thereof include known carbon materials and metal materials.
The binder is not particularly limited as long as it is chemically and electrically stable, but for example, a fluorine-based binder such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), and styrene. Examples thereof include rubber-based binders such as butadiene rubber (SBR), olefin-based binders such as polypropylene (PP) and polyethylene (PE), and cellulose-based binders such as carboxymethyl cellulose (CMC).

正極活物質層31の作製方法は特に限定されるものではなく、乾式で、又は、湿式で作製可能である。乾式であれば例えば上記の材料を乾式混合し、プレス成形する等して正極活物質層31を得ることができる。湿式であれば、上記の材料を適当な溶媒に添加してスラリーとし、当該スラリーを基材(正極集電体又は固体電解質層であってもよい。)の表面に塗布した後乾燥させることによって正極活物質層31を作製できる。 The method for producing the positive electrode active material layer 31 is not particularly limited, and the positive electrode active material layer 31 can be produced by a dry method or a wet method. If it is a dry type, for example, the positive electrode active material layer 31 can be obtained by dry-mixing the above materials and press-molding. If it is wet, the above material is added to an appropriate solvent to form a slurry, and the slurry is applied to the surface of a base material (which may be a positive electrode current collector or a solid electrolyte layer) and then dried. The positive electrode active material layer 31 can be produced.

2.2.負極活物質層
負極活物質層22は、少なくとも負極活物質を含有する層であり、必要に応じて、固体電解質材、導電材および結着材の少なくとも一つを含有していてもよい。固体電解質材、導電材および結着材については正極活物質層32と同様に考えることができる。
2.2. Negative electrode active material layer The negative electrode active material layer 22 is a layer containing at least a negative electrode active material, and may contain at least one of a solid electrolyte material, a conductive material, and a binder, if necessary. The solid electrolyte material, the conductive material and the binder can be considered in the same manner as in the positive electrode active material layer 32.

負極活物質は充電時に膨張する材料が用いられる。具体的には特に限定されることはないが、黒鉛、シリコン、金属リチウム、チタンニオブ酸リチウムなどが挙げられる。負極活物質の膨張により負極活物質層が少なくとも3%以上膨張すればよく、10%以上の膨張であってもよい。 As the negative electrode active material, a material that expands during charging is used. Specific examples thereof include, but are not limited to, graphite, silicon, metallic lithium, lithium titaniumniobate, and the like. The expansion of the negative electrode active material may cause the negative electrode active material layer to expand by at least 3% or more, and may expand by 10% or more.

負極活物質層32の作製方法は特に限定されるものではなく、乾式で、又は、湿式で作製可能である。乾式であれば例えば上記の成分を乾式混合し、プレス成形する等して負極活物質層32を得ることができる。湿式であれば、上記の成分を適当な溶媒に添加してスラリーとし、当該スラリーを基材(正極集電体層又は固体電解質層であってもよい。)の表面に塗布した後乾燥させることによって負極活物質層32を作製できる。 The method for producing the negative electrode active material layer 32 is not particularly limited, and the negative electrode active material layer 32 can be produced by a dry method or a wet method. If it is a dry type, for example, the negative electrode active material layer 32 can be obtained by dry-mixing the above components and press-molding. If it is wet, the above components are added to an appropriate solvent to form a slurry, and the slurry is applied to the surface of a base material (which may be a positive electrode current collector layer or a solid electrolyte layer) and then dried. The negative electrode active material layer 32 can be produced by the above method.

2.3.固体電解質層
固体電解質層33は、正極活物質層31および負極活物質層32の間に形成される層である。固体電解質層33は、少なくとも固体電解質材を含有する。固体電解質材としては、第一正極活物質10で説明した被覆層12に用いたものと同様に考えることができる。
2.3. Solid electrolyte layer The solid electrolyte layer 33 is a layer formed between the positive electrode active material layer 31 and the negative electrode active material layer 32. The solid electrolyte layer 33 contains at least a solid electrolyte material. As the solid electrolyte material, it can be considered in the same manner as that used for the coating layer 12 described in the first positive electrode active material 10.

2.4.集電体層
集電体は、正極活物質層31の集電を行う正極集電体層34、及び負極活物質層32の集電を行う負極集電体層35である。正極集電体層34を構成する材料としては、例えばステンレス鋼、アルミニウム、ニッケル、鉄、チタンおよびカーボン等を挙げることができる。一方、負極集電体層35を構成する材料としては、例えばステンレス鋼、銅、ニッケルおよびカーボン等を挙げることができる。
2.4. Current collector layer The current collector is a positive electrode current collector layer 34 that collects electricity from the positive electrode active material layer 31, and a negative electrode current collector layer 35 that collects electricity from the negative electrode active material layer 32. Examples of the material constituting the positive electrode current collector layer 34 include stainless steel, aluminum, nickel, iron, titanium and carbon. On the other hand, as the material constituting the negative electrode current collector layer 35, for example, stainless steel, copper, nickel, carbon and the like can be mentioned.

2.5.電池ケース
電池ケース36は各部材を収納するケースであり、例えばステンレス製の電池ケース等を挙げることができる。
2.5. Battery case The battery case 36 is a case for storing each member, and examples thereof include a stainless steel battery case.

2.6.全固体二次電池の製造
全固体二次電池30の製造方法は特に限定されるものではなく、一般的な全固体二次電池における製造方法と同様である。
2.6. Manufacture of the all-solid-state secondary battery The manufacturing method of the all-solid-state secondary battery 30 is not particularly limited, and is the same as the manufacturing method in a general all-solid-state secondary battery.

2.7.効果等
本開示によれば、電池の充放電時における電池の膨張を小さく抑えることができるとともに、充放電効率の低下も抑えることが可能となる。これは次のように考えることができる。図3、図4に説明のための図を示した。
2.7. Effects, etc. According to the present disclosure, it is possible to suppress the expansion of the battery during charging / discharging, and also to suppress the decrease in charging / discharging efficiency. This can be thought of as follows. FIGS. 3 and 4 show diagrams for explanation.

充電により、正極活物質層ではスピネル型構造を有する第二正極活物質は収縮し、図3の上側の図に示したように周囲から剥離して空隙を生じる。従って第二正極活物質の他の部位への接触が希薄となり電池の効率が低下する。
一方、充電により負極活物質が膨張することにより負極活物質層が膨張し、図3の下側の図にFで示したように負極活物質層が正極活物質層を押圧する。ここで図3に示した例では正極活物質層中の第一正極活物質は比較的硬い層状岩塩型構造を有しているとともに被覆層を備えていないことから、押圧力Fを受けても隣り合う第一正極活物質同士が衝突するのみで移動がほとんどない。これにより、正極活物質層も変形できないため、第二正極活物質の周りに生じた間隙はそのままであり、負極活物質層の膨張がそのまま電池の膨張となる。
従って図3の例によれば、充放電の効率が低下するとともに電池の膨張も大きなものになる。
Upon charging, the second positive electrode active material having a spinel-type structure shrinks in the positive electrode active material layer and peels off from the surroundings to form voids as shown in the upper figure of FIG. Therefore, the contact of the second positive electrode active material with other parts is diluted, and the efficiency of the battery is lowered.
On the other hand, the negative electrode active material expands due to the expansion of the negative electrode active material due to charging, and the negative electrode active material layer expands, and the negative electrode active material layer presses the positive electrode active material layer as shown by F in the lower figure of FIG. Here, in the example shown in FIG. 3, since the first positive electrode active material in the positive electrode active material layer has a relatively hard layered rock salt type structure and does not have a coating layer, even if it receives a pressing force F. Adjacent first positive electrode active materials only collide with each other and there is almost no movement. As a result, since the positive electrode active material layer cannot be deformed, the gap generated around the second positive electrode active material remains as it is, and the expansion of the negative electrode active material layer becomes the expansion of the battery as it is.
Therefore, according to the example of FIG. 3, the charging / discharging efficiency is lowered and the expansion of the battery is also large.

これに対して本開示によれば第一正極活物質層10にはその周囲に比較的柔らかい固体電解質による被覆層12が具備されている。これにより図4の下側の図に示したように、負極活物質層の膨張による押圧力Fに対して被覆層12が変形して矢印Tで示したように第一正極活物質10が移動できる。この移動により、第一正極活物質10が空隙を通過して第二正極活物質20に接触する。これにより第二正極活物質20の他の部位への接触が確保され充放電の効率の低下が抑えられる。また、負極活物質層の膨張に対して正極活物質層が変形するので、電池全体としての膨張は低く抑えられる。 On the other hand, according to the present disclosure, the first positive electrode active material layer 10 is provided with a coating layer 12 made of a relatively soft solid electrolyte around the first positive electrode active material layer 10. As a result, as shown in the lower figure of FIG. 4, the coating layer 12 is deformed by the pressing force F due to the expansion of the negative electrode active material layer, and the first positive electrode active material 10 moves as shown by the arrow T. can. Due to this movement, the first positive electrode active material 10 passes through the voids and comes into contact with the second positive electrode active material 20. As a result, contact with other parts of the second positive electrode active material 20 is ensured, and a decrease in charge / discharge efficiency is suppressed. Further, since the positive electrode active material layer is deformed with respect to the expansion of the negative electrode active material layer, the expansion of the battery as a whole can be suppressed to a low level.

3.実施例
3.1.実施例1から実施例4、比較例7及び比較例8の全固体電池の作製
[正極活物質の作製]
第一正極活物質の中心粒子となるニッケルコバルトアルミニウム酸リチウム(平均粒径:6.1μm)、及び、第二正極活物質となるスピネル型マンガン酸リチウム(平均粒径:5.9μm)の表面上にそれぞれ、転動流動コーティング装置(パウレック製MP-01)を用いてLiNbO前駆体ゾルゲル溶液を塗工し、乾燥後に200℃、5時間にて焼成し、厚さ10nmの反応抑制層を形成した。
これによりスピネル型マンガン酸リチウムによる第二正極活物質を得た。
一方、反応抑制層を形成したニッケルコバルトアルミニウム酸リチウムについては、固体電解質である硫化物固体電解質(LiIを含むLiS-P系ガラスセラミックス、平均粒径:0.8μm)、導電材(球状カーボン、比表面積93m/g)を合計30gとなるよう投入し、粒子複合化装置(ホソカワミクロン社製NOB-MINI)を用いて、圧縮せん断ローターの回転羽根(ブレード)にて、処理容器内壁の間隔を1mm、圧力を100Pa、ブレード周速を26.4m/s、処理時間を12.5分間の条件で、圧縮せん断処理を行って被覆層を形成し、第一正極活物質を得た。
3. 3. Example 3.1. Preparation of all-solid-state batteries of Examples 1 to 4, Comparative Example 7 and Comparative Example 8 [Preparation of positive electrode active material]
Surfaces of lithium nickel cobalt aluminum acid (average particle size: 6.1 μm), which is the central particle of the first positive electrode active material, and spinel-type lithium manganate (average particle size: 5.9 μm), which is the second positive electrode active material. A LiNbO3 precursor solgel solution was applied onto each of them using a rolling fluid coating device (MP-01 manufactured by Paulec), dried, and then fired at 200 ° C. for 5 hours to form a reaction-suppressing layer having a thickness of 10 nm. Formed.
As a result, a second positive electrode active material made of spinel-type lithium manganate was obtained.
On the other hand, for the lithium cobalt nickel aluminate on which the reaction suppression layer was formed, the sulfide solid electrolyte (Li 2 SP 2 S 5 series glass ceramics containing LiI, average particle size: 0.8 μm), which is a solid electrolyte, was conductive. The material (spherical carbon, specific surface area 93 m 2 / g) is charged to a total of 30 g, and treated with a rotary blade of a compression shear rotor using a particle compounding device (NOB-MINI manufactured by Hosokawa Micron). A coating layer is formed by performing compression shear treatment under the conditions that the distance between the inner walls of the container is 1 mm, the pressure is 100 Pa, the blade peripheral speed is 26.4 m / s, and the treatment time is 12.5 minutes. Obtained.

[正極の作製]
フィルミックス装置(プライミクス製30-L型)の混練容器に、酪酸ブチルと、ポリフッ化ビニリデン系バインダーの5重量%酪酸ブチル溶液と、導電助剤として気相成長炭素繊維(VGCF)と、硫化物固体電解質(LiIを含むLiS-P系ガラスセラミックス、平均粒径:0.8μm)とを添加し、20000rpm、30分間撹拌した。
作製した第一正極活物質及び第二正極活物質を、表1に記載の比率で混合し、かつ正極活物質と硫化物固体電解質材料との体積比率が7:3となるように、混練容器に投入し、フィルミックス装置で15000rpm、60分間撹拌した。その後、アプリケーターを用いて、ブレード法により、Al箔上に塗工した。塗工した電極を、自然乾燥後、100℃のホットプレート上で30分間乾燥させた。これにより、正極活物質層を得た。
[Preparation of positive electrode]
In a kneading container of a fill mix device (Primix 30-L type), butyl butyrate, a 5 wt% butyl butyrate solution of a polyvinylidene fluoride-based binder, gas phase growth carbon fiber (VGCF) as a conductive auxiliary agent, and a sulfide. A solid electrolyte (Li 2 SP 2 S 5 series glass ceramics containing LiI, average particle size: 0.8 μm) was added, and the mixture was stirred at 20000 rpm for 30 minutes.
The prepared first positive electrode active material and the second positive electrode active material are mixed at the ratio shown in Table 1, and the kneading container is such that the volume ratio of the positive electrode active material and the sulfide solid electrolyte material is 7: 3. And stirred with a fill mix device at 15,000 rpm for 60 minutes. Then, using an applicator, it was applied onto the Al foil by the blade method. The coated electrode was air-dried and then dried on a hot plate at 100 ° C. for 30 minutes. As a result, a positive electrode active material layer was obtained.

[負極活物質層の作製]
ポリプロピレン製容器に、酪酸ブチルと、ポリフッ化ビリニデン系バインダーの5重量%酪酸ブチル溶液と、負極活物質としてシリコン粒子(平均粒径:2.5μm)と、硫化物固体電解質材料(LiIを含むLiS-P系ガラスセラミックス、平均粒径D50:0.8μm)とを添加した。
次に、超音波分散装置(エスエムテー製、UH-50)でポリプロピレン製容器を30秒間撹拌した。
次に、ポリプロピレン製容器を振とう器(柴田科学社製、TTM-1)で30分間振とうさせた。その後、アプリケーターを用いて、ブレード法により、Cu箔上に塗工した。塗工した電極は、自然乾燥後、100℃のホットプレート上で30分間乾燥させた。これにより、負極活物質層を得た。
[Preparation of negative electrode active material layer]
In a polypropylene container, butyl butyrate, a 5 wt% butyl butyrate solution of a polyvinylidene polyfluoride binder, silicon particles (average particle size: 2.5 μm) as a negative electrode active material, and a sulfide solid electrolyte material (Li containing LiI). 2 SP 2 S 5 series glass ceramics, average particle size D50: 0.8 μm) was added.
Next, the polypropylene container was stirred for 30 seconds with an ultrasonic disperser (M.M., UH-50).
Next, the polypropylene container was shaken with a shaker (manufactured by Shibata Scientific Technology, TTM-1) for 30 minutes. Then, using an applicator, the coating was applied onto the Cu foil by the blade method. The coated electrode was air-dried and then dried on a hot plate at 100 ° C. for 30 minutes. As a result, a negative electrode active material layer was obtained.

[固体電解質層の作製]
ポリプロピレン製容器に、ヘプタンと、ブチレンゴム系バインダーの5重量%ヘプタン溶液と、硫化物固体電解質材料(LiIを含むLiS-P系ガラスセラミックス、平均粒径:2.5μm)とを添加した。次に、超音波分散装置(エスエムテー製UH-50)でポリプロピレン製容器を30秒間撹拌した。
次に、ポリプロピレン製容器を振とう器(柴田科学社製、TTM-1)で30分間振とうさせ、その後、アプリケーターを用いて、ブレード法により、Al箔上に塗工した。塗工した固体電解質層は、自然乾燥後、100℃のホットプレート上で30分間乾燥させた。これにより、固体電解質層を得た。
[Preparation of solid electrolyte layer]
In a polypropylene container, heptane, a 5 wt% heptane solution of a butylene rubber binder, and a sulfide solid electrolyte material (Li 2 SP 2 S 5 glass ceramics containing LiI, average particle size: 2.5 μm) are placed. Added. Next, the polypropylene container was stirred for 30 seconds with an ultrasonic disperser (UH-50 manufactured by SMT).
Next, the polypropylene container was shaken with a shaker (TTM-1 manufactured by Shibata Scientific Technology Co., Ltd.) for 30 minutes, and then coated on the Al foil by the blade method using an applicator. The coated solid electrolyte layer was air-dried and then dried on a hot plate at 100 ° C. for 30 minutes. As a result, a solid electrolyte layer was obtained.

[評価用全固体電池の作製]
1cmの金型に固体電解質層を入れて1t(トン)/cmでプレスした。次に、固体電解質層の一方側に正極活物質層を配置し、1t/cmでプレスした。次に、固体電解質層の他方側に負極活物質層を配置し、6t/cmでプレスした。プレス後に得られた積層体に正極および負極の端子を接続し、ラミネートフィルムで挟んで溶着することにより、評価用の全固体電池を作製した。次に、得られた全固体電池に5MPaの圧力がかかるように金属板で拘束した。
[Manufacturing of all-solid-state battery for evaluation]
A solid electrolyte layer was placed in a 1 cm 2 die and pressed at 1 t (ton) / cm 2 . Next, a positive electrode active material layer was placed on one side of the solid electrolyte layer and pressed at 1 t / cm 2 . Next, the negative electrode active material layer was placed on the other side of the solid electrolyte layer and pressed at 6 t / cm 2 . The positive electrode and negative electrode terminals were connected to the laminated body obtained after pressing, sandwiched between laminated films and welded to prepare an all-solid-state battery for evaluation. Next, the obtained all-solid-state battery was restrained with a metal plate so that a pressure of 5 MPa was applied.

3.2.比較例1から比較例6の全固体電池の作製
[正極活物質の作製]
ニッケルコバルトアルミニウム酸リチウム(平均粒径:6.1μm)及びスピネル型マンガン酸リチウム(平均粒径:5.9μm)の表面上にそれぞれ、転動流動コーティング装置(パウレック製、MP-01)を用いてLiNbO前駆体ゾルゲル溶液を塗工し、乾燥後に200℃、5時間にて焼成し、厚さ10nmの反応抑制層を有する第一正極活物質及び第二正極活物質を得た。
3.2. Fabrication of all-solid-state batteries of Comparative Examples 1 to 6 [Preparation of positive electrode active material]
A rolling flow coating device (Paurek, MP-01) was used on the surfaces of lithium nickel cobalt aluminum acid (average particle size: 6.1 μm) and spinel-type lithium manganate (average particle size: 5.9 μm), respectively. The LiNbO3 precursor solgel solution was applied, dried, and then fired at 200 ° C. for 5 hours to obtain a first positive electrode active material and a second positive electrode active material having a reaction inhibitory layer having a thickness of 10 nm.

[評価用全固体電池の作製]
このようにして得られた正極活物質を用いること以外は実施例1から実施例4、比較例1、及び比較例2の全固体電池と同じ手順で全固体電池を作製した。
[Manufacturing of all-solid-state battery for evaluation]
An all-solid-state battery was produced in the same procedure as the all-solid-state batteries of Examples 1 to 4, Comparative Example 1, and Comparative Example 2 except that the positive electrode active material thus obtained was used.

3.3.評価
全固体電池作製後、1/3Cレートにて定電流―定電圧充電及び放電での容量確認を行い、充放電の効率を求めた。初回の充電容量を、セル内の正極活物質の総重量で除して充電比容量を求めた。
また、電池の膨張率測定として、電池の拘束圧力をモニタリングし、上記充放電時の拘束圧力変動を測定した。このとき、初回充電時の拘束圧力変動を電池膨張とし、比較例1の電池膨張に対する比率を電池膨張率とした。
3.3. Evaluation After manufacturing the all-solid-state battery, the capacity was confirmed by constant current-constant voltage charging and discharging at 1/3 C rate, and the charging / discharging efficiency was determined. The charge specific capacity was obtained by dividing the initial charge capacity by the total weight of the positive electrode active material in the cell.
Further, as a measurement of the expansion coefficient of the battery, the restraint pressure of the battery was monitored, and the fluctuation of the restraint pressure during charging and discharging was measured. At this time, the constraint pressure fluctuation at the time of initial charging was defined as the battery expansion, and the ratio to the battery expansion of Comparative Example 1 was defined as the battery expansion rate.

3.4.結果
結果を表1に表した。また、図5には第二正極活物質の質量比と電池膨張率との関係、図6には、第二正極活物質の質量比と効率との関係を示した。
3.4. Results The results are shown in Table 1. Further, FIG. 5 shows the relationship between the mass ratio of the second positive electrode active material and the battery expansion rate, and FIG. 6 shows the relationship between the mass ratio of the second positive electrode active material and the efficiency.

Figure 2022086554000002
Figure 2022086554000002

第一正極活物質に対する第二正極活物質の質量比を上げることにより、実施例及び比較例ともに電池膨張率は低下する。ただし、同じ質量比で比べると(例えば実施例1と比較例2)、実施例の方が比較例に比べて電池膨張率が低いことがわかる。
また、第一正極活物質に対する第二正極活物質の質量比を上げることにより、第二正極活物質の収縮により第二正極活物質と固体電解質との界面が剥離するため、実施例及び比較例ともに充放電の効率が低下する。ただし、これについても同じ混合比を比べると(例えば実施例1と比較例2)、実施例の方が比較例に比べて効率がよいことがわかる。これは、上記したように実施例1から実施例4のように第一正極活物質に固体電解質による被覆層を設けることで、第二正極活物質と第一正極活物質の被覆層とが接触し、充放電の効率の低下を抑制することができたと考えられる。
By increasing the mass ratio of the second positive electrode active material to the first positive electrode active material, the battery expansion coefficient decreases in both the examples and the comparative examples. However, when compared with the same mass ratio (for example, Example 1 and Comparative Example 2), it can be seen that the battery expansion coefficient of the example is lower than that of the comparative example.
Further, by increasing the mass ratio of the second positive electrode active material to the first positive electrode active material, the interface between the second positive electrode active material and the solid electrolyte is peeled off due to the shrinkage of the second positive electrode active material. In both cases, the charging / discharging efficiency decreases. However, when the same mixing ratio is compared (for example, Example 1 and Comparative Example 2), it can be seen that the examples are more efficient than the comparative examples. This is because the first positive electrode active material is provided with a coating layer made of a solid electrolyte as in Examples 1 to 4 as described above, so that the second positive electrode active material and the coating layer of the first positive electrode active material come into contact with each other. However, it is considered that the decrease in charging / discharging efficiency could be suppressed.

また、正極活物質層の大部分を正極活物質が占めるために、第二正極活物質が収縮した際、比較例1から比較例6では、硬い第一正極活物質同士がぶつかり合ってしまうことで、それ以上正極活物質層が収縮できなくなり、電極膨張率の低下が鈍くなる。一方、実施例1から実施例4のように第一正極活物に比較的柔らかい固体電解質による被覆層が設けられているので、被覆層が変形して正極活物質層が移動したため、負極活物質の膨張の一部を正極活物質層が吸収して、電池の膨張率を小さくすることができたと考える。
比較例8のように第二正極活物質が100質量%では、活物質の収縮が大きいために、充放電効率の低下を抑制することができない。
Further, since the positive electrode active material occupies most of the positive electrode active material layer, when the second positive electrode active material contracts, the hard first positive electrode active materials collide with each other in Comparative Examples 1 to 6. Then, the positive electrode active material layer cannot shrink any more, and the decrease in the electrode expansion rate becomes slow. On the other hand, since the first positive electrode active material is provided with a coating layer made of a relatively soft solid electrolyte as in Examples 1 to 4, the coating layer is deformed and the positive electrode active material layer is moved, so that the negative electrode active material is used. It is considered that the positive electrode active material layer absorbed a part of the expansion of the battery, and the expansion rate of the battery could be reduced.
When the second positive electrode active material is 100% by mass as in Comparative Example 8, the shrinkage of the active material is large, so that the decrease in charge / discharge efficiency cannot be suppressed.

10 第一正極活物質
11 中心粒子
12 被覆層
20 第二正極活物質
30 全固体電池
31 正極活物質層
32 負極活物質層
33 固体電解質層
34 正極集電体層
35 負極集電体層
10 First positive electrode active material 11 Central particles 12 Coating layer 20 Second positive electrode active material 30 All-solid-state battery 31 Positive electrode active material layer 32 Negative electrode active material layer 33 Solid electrolyte layer 34 Positive electrode current collector layer 35 Negative electrode current collector layer

Claims (1)

正極活物質を含む正極活物質層、及び、負極活物質を含む負極活物質層を有する全固体電池であって、
前記正極活物質は、
層状岩塩型構造を有する粒子、及び、前記粒子の平均粒子径に対して1%以上の厚みを有して前記粒子に被覆された固体電解質による被覆層、を備える第一正極活物質と、
スピネル型構造を有する第二正極活物質と、を備え、
前記負極活物質は、
黒鉛、シリコン、金属リチウム、及び、チタンニオブ酸リチウムから選ばれるいずれかである、
全固体電池。
An all-solid-state battery having a positive electrode active material layer containing a positive electrode active material and a negative electrode active material layer containing a negative electrode active material.
The positive electrode active material is
A first positive electrode active material comprising particles having a layered rock salt structure and a coating layer made of a solid electrolyte having a thickness of 1% or more with respect to the average particle diameter of the particles and being coated with the particles.
With a second positive electrode active material having a spinel-type structure,
The negative electrode active material is
One selected from graphite, silicon, metallic lithium, and lithium titaniumniobate,
All-solid-state battery.
JP2020198631A 2020-11-30 2020-11-30 All-solid-state battery Pending JP2022086554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020198631A JP2022086554A (en) 2020-11-30 2020-11-30 All-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020198631A JP2022086554A (en) 2020-11-30 2020-11-30 All-solid-state battery

Publications (1)

Publication Number Publication Date
JP2022086554A true JP2022086554A (en) 2022-06-09

Family

ID=81894027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020198631A Pending JP2022086554A (en) 2020-11-30 2020-11-30 All-solid-state battery

Country Status (1)

Country Link
JP (1) JP2022086554A (en)

Similar Documents

Publication Publication Date Title
JP6497282B2 (en) Negative electrode for all-solid-state battery
JP7028354B2 (en) All-solid-state lithium-ion secondary battery
JP6776994B2 (en) Manufacturing method of all-solid-state lithium-ion secondary battery
JP6927292B2 (en) All-solid-state lithium-ion secondary battery
JP2015005398A (en) Positive electrode for all-solid lithium ion battery
US10297818B2 (en) Device and method for producing composite active material powder using a production device including a rotating body with blades each having a tapered section at an end part thereof on a front side in a rotation/movement direction of the rotating body
WO2016208314A1 (en) Negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
JP2018120710A (en) Method for manufacturing all-solid battery
JP7207265B2 (en) Method for manufacturing all-solid-state battery
KR20240045188A (en) All solid state battery and method for producing all solid state battery
JP2023547117A (en) Electrode powder for producing a dry electrode for secondary batteries, a method for producing the same, a method for producing a dry electrode using the same, a dry electrode, a secondary battery including the same, an energy storage device, and an apparatus for producing a dry electrode
WO2020241691A1 (en) All-solid-state battery and method for producing same
JP2018181706A (en) Method for manufacturing all-solid lithium ion secondary battery
US20220115691A1 (en) Method for producing all solid-state battery, and all solid-state battery
WO2022070542A1 (en) Electrode and method for producing electrode
JP2020053300A (en) All-solid battery
JP2016189294A (en) Negative electrode active material for lithium ion secondary battery and manufacturing method for the same
JP7226359B2 (en) Negative electrode for all-solid-state battery
JP2022086554A (en) All-solid-state battery
CN112825351A (en) All-solid-state battery
JP6988738B2 (en) Negative electrode for sulfide all-solid-state battery and sulfide all-solid-state battery
JP2020042931A (en) Solid-state battery
WO2021176759A1 (en) Electrode material and battery
JP7484790B2 (en) All-solid-state battery
WO2023238582A1 (en) Coated active material, electrode material, and battery