JP2022084851A - Drive structure having shaft joint - Google Patents

Drive structure having shaft joint Download PDF

Info

Publication number
JP2022084851A
JP2022084851A JP2022049366A JP2022049366A JP2022084851A JP 2022084851 A JP2022084851 A JP 2022084851A JP 2022049366 A JP2022049366 A JP 2022049366A JP 2022049366 A JP2022049366 A JP 2022049366A JP 2022084851 A JP2022084851 A JP 2022084851A
Authority
JP
Japan
Prior art keywords
lcm
shaft joint
shaft
drive shaft
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022049366A
Other languages
Japanese (ja)
Other versions
JP7182740B2 (en
Inventor
勝雅 大口
Katsumasa Oguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oguchi Genki
Original Assignee
Oguchi Genki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oguchi Genki filed Critical Oguchi Genki
Publication of JP2022084851A publication Critical patent/JP2022084851A/en
Application granted granted Critical
Publication of JP7182740B2 publication Critical patent/JP7182740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a drive structure composed of a drive shaft, a driven component and a shaft joint for fixing and connecting these items, being a drive structure which allows phase adjustment with the driven component such as a cam with respect to a rotation angle of the drive shaft at a minute angle unit such as 5° to 0.5°, can finish phase adjustment work by the re-compression of the shaft joint, and is easily, exactly and favorably adjustable in reproductivity.
SOLUTION: In a drive structure having a drive shaft, a driven component and a shaft joint for relatively non-rotatably connecting the two components, the connection of two points of the drive shaft and the shaft joint, and the driven component and the shaft joint is composed of a first portion which is fit in a shape having an N-time rotation symmetry (N: an integer equal to or larger than 2), and a second portion which is fit in a shape having an M-time rotation symmetry (integer of M>N), the least common multiple LCM (N, M) of N and M is equal to or larger than 72, and larger than M (N<M<LCM(N, M)), and a marked line or a mark indicating the first and second join is imparted to surfaces of the three components at least one by one.
SELECTED DRAWING: Figure 4A
COPYRIGHT: (C)2022,JPO&INPIT

Description

本件発明は、駆動軸と被動部品を設定された位相角度で嵌合する軸継手を含む駆動
構造に関する
The present invention relates to a drive structure including a shaft joint in which a drive shaft and a driven component are fitted at a set phase angle.

駆動軸と被動部品/回転体を嵌合する軸継手はごく一般的な機械要素として様々な
機械に用いられている。その中でも駆動軸と被動体の回転位相を調整した上で一定の位相
に設定嵌合する軸継手は少ないながら一定のニーズがあり、主目的である位相の調整・設
定のためにいくつかの発明・考案がなされている。
Shaft joints that fit drive shafts and driven parts / rotating bodies are used in various machines as a very common mechanical element. Among them, there is a certain need for a shaft joint that is set to a constant phase after adjusting the rotational phase of the drive shaft and the driven body, although there are few, and some inventions have been made for the main purpose of adjusting and setting the phase.・ It has been devised.

特開2016-125532JP 2016-125532 特開2018-100715Japanese Patent Application Laid-Open No. 2018-100715 特開2015-152120JP 2015-152120

(背景技術の問題点)
特許文献1の図2に示されるすり割りを締め付ける方式が最も簡素でよく使われている。これは位相の調整と位相の設定を主目的とした構造を持ったものではないが、特定の位相角度に設定する用途にも流用されている。位相を調整するには当該機械を熟知した熟練者による作業が必要であり、しかし異常トルクで容易にずれてしまい、復旧は最初から調整のやり直しとなり、しかも位相角度の調整実績値を数値で把握することが軸継手部分では困難であり、カム等の出力側部分で位相角度の測定が毎回必要である。
特許文献2の方式では雌雄のセレーションをかみ合わせ、やはり締め付ける方式をとっており、一度設定された位相がずれることは破壊以外にありえなくなっている。しかし位相角度の調整においてはその調整角度単位は360°/セレーションの山数となりたとえば軸の直径30mm(円周長94.2mm)セレーション一山の幅が約2mmであれば山数は47、調整角度の単位は約7.7°となり、1°や2°といった小さい単位での微調整は不能である。
特許文献3の方式では角度調整はアナログ(無段階)に可能であり、またずれることも無く、初心者にも調整が容易であろうと推察されるが、機構が複雑大型になりすぎてかつコストアップになり、広く普及しているとは言い難い。
(Problems of background technology)
The method of tightening the grind shown in FIG. 2 of Patent Document 1 is the simplest and is often used. This does not have a structure whose main purpose is to adjust the phase and set the phase, but it is also used for setting a specific phase angle. In order to adjust the phase, it is necessary to work by a skilled person who is familiar with the machine, but it easily shifts due to abnormal torque, recovery is a re-adjustment from the beginning, and the actual value of adjusting the phase angle is grasped numerically. It is difficult to do this at the shaft joint part, and it is necessary to measure the phase angle every time at the output side part such as a cam.
In the method of Patent Document 2, the serrations of male and female are engaged and tightened, and the phase once set is deviated from the phase other than the destruction. However, in the adjustment of the phase angle, the adjustment angle unit is 360 ° / number of serrations. For example, if the shaft diameter is 30 mm (circumferential length 94.2 mm) and the width of one serration is about 2 mm, the number of peaks is 47. The unit of angle is about 7.7 °, and fine adjustment in small units such as 1 ° and 2 ° is not possible.
In the method of Patent Document 3, the angle can be adjusted in analog (stepless), and it is presumed that even a beginner can easily adjust the angle without deviation. However, the mechanism becomes too complicated and large, and the cost increases. It is hard to say that it is widely used.

本件発明の目的は従来の軸継手より簡便・安価でかつデジタルな機械的構造により、5°以下(望ましくは2°以下)の小さな角度単位での位相設定を可能とする軸継手を提供し熟練者でなくても正確で単純・簡便・再現しやすい位相設定作業を可能ならしめることを目的とする。 An object of the present invention is to provide a shaft joint capable of setting a phase in a small angle unit of 5 ° or less (preferably 2 ° or less) by a simpler, cheaper and digital mechanical structure than a conventional shaft joint. The purpose is to enable accurate, simple, simple, and easy-to-reproduce phase setting work even if you are not a person.

上記課題を解決するため本件発明は駆動軸と、被動部品と、それら2部品を相対回転不能に接続する軸継手を有する駆動構造であって、前記駆動軸と軸継手、前記被動部品と軸継手の2箇所の接続はN回回転対称(N:2以上の整数)を有する形状で嵌合している第1の部分と、M回回転対称(M>Nの整数)を有する形状で嵌合している第2の部分とからなり、前記Nと前記Mの最小公倍数LCM(N,M)は72以上であり、かつ前記最小公倍数LCM(N,M)はMより大きく( N<M<LCM(N,M))、前記駆動軸及び前記軸継手及び前記被動部品の相互の嵌合状態を示す標線または目印がそれぞれの表面に少なくとも各一つ付されている駆動構造である。 In order to solve the above problems, the present invention is a drive structure having a drive shaft, a driven component, and a shaft joint that connects these two components so as not to rotate relative to each other, the drive shaft and the shaft joint, and the driven component and the shaft joint. The two connections are fitted in a shape that has N-fold rotational symmetry (N: an integer of 2 or more) and a shape that has M-fold rotational symmetry (M> N integer). The least common multiple LCM (N, M) of the N and the M is 72 or more, and the least common multiple LCM (N, M) is larger than M (N <M <. It is a drive structure in which at least one marked line or mark indicating the mutual fitting state of the LCM (N, M)), the drive shaft, the shaft joint, and the driven component is attached to each surface.

ここで以下の明細書をわかりやすくするために数式上の記号を定義し説明する。
N: 接続箇所の第1の部分の回転対称数、2以上の整数
Y: 接続箇所の第1の部分のピッチ角度、360°/N=Y
M: 接続箇所の第2の部分の回転対称数、M>Nの整数
X: 接続箇所の第2の部分のピッチ角度、360°/M=X
LCM(N,M): NとMの最小公倍数
a: NとMの組み合わせで得られる調整可能な位相角度の最小単位(分解能) 36
0°/LCM(N,M)=a
A: 勘合形状の重ね合わせによって得られる分解能
T: 重ね合わせの個数
A=360/(T×LCM(N,M))=a/T
LLCM(N,M,θ1/θ2/・・・/θT-1):
またはLLCM(M,N,θ1/θ2/・・・/θT-1):
請求項2で定義された接続形状のメス側空間がT個、それぞれ位相差θkで配置された状態を示す式。( )内先頭の記号が重ね合わせをする側の回転対称数、通常はNである。
この時分解能A=360/(T×LCM(N,M))=a/T
L:NとMの最大公約数
また本明細書において特に断らない限り、角度は被動部品側から駆動軸側を見たとき、基準となるものから時計回り方向を正(+)方向として測定されるものである。
Here, in order to make the following specification easy to understand, mathematical symbols are defined and explained.
N: Rotational symmetry of the first part of the connection point, an integer of 2 or more Y: Pitch angle of the first part of the connection point, 360 ° / N = Y
M: Rotational symmetry number of the second part of the connection point, integer of M> N X: Pitch angle of the second part of the connection point, 360 ° / M = X
LCM (N, M): Least common multiple of N and M a: Minimum unit (resolution) of adjustable phase angle obtained by combining N and M 36
0 ° / LCM (N, M) = a
A: Resolution obtained by superimposing fitting shapes T: Number of superpositions
A = 360 / (T × LCM (N, M)) = a / T
LLCM (N, M, θ1 / θ2 / ... / θT-1):
Or LLCM (M, N, θ1 / θ2 / ... / θT-1):
An equation showing a state in which T female-side spaces of the connection shape defined in claim 2 are arranged with a phase difference θk, respectively. The symbol at the beginning of () is the number of rotational symmetries on the superposition side, usually N.
At this time, the resolution A = 360 / (T × LCM (N, M)) = a / T
L: Greatest common divisor of N and M Unless otherwise specified in the present specification, the angle is measured with the clockwise direction as the positive (+) direction from the reference when looking at the drive shaft side from the driven component side. It is a thing.

目的の分解能aまたはAを得るためのNとM、Tの組み合わせ方法を以下に説明する
分解能a=360°/LCM(N,M)となる。
a=5°以下(望ましくは2°以下)を得るためには、NとMの最小公倍数LCM(N,M)が72以上(望ましくは180以上)となるようにNとMを組み合わせる。
例1 N=8 M=45 LCM(N,M)=360 a=1
例2 N=16 M=45 LCM(N,M)=720 a=0.5
例3 N=20 M=36 LCM(N,M)=180 a=2
例4 N=24 M=25 LCM(N,M)=600 a=0.6
またT個の嵌合空間を重ね合わせる方式ではA=5°以下(望ましくは2°以下)を得るためにはT×LCM(N,M)が72以上(望ましくは180以上)となるようにNとM、Tを組み合わせる。
The resolution a = 360 ° / LCM (N, M) described below for the method of combining N, M, and T to obtain the desired resolution a or A.
In order to obtain a = 5 ° or less (preferably 2 ° or less), N and M are combined so that the least common multiple LCM (N, M) of N and M is 72 or more (preferably 180 or more).
Example 1 N = 8 M = 45 LCM (N, M) = 360 a = 1
Example 2 N = 16 M = 45 LCM (N, M) = 720 a = 0.5
Example 3 N = 20 M = 36 LCM (N, M) = 180 a = 2
Example 4 N = 24 M = 25 LCM (N, M) = 600 a = 0.6
Further, in the method of superimposing T fitting spaces, in order to obtain A = 5 ° or less (preferably 2 ° or less), T × LCM (N, M) should be 72 or more (preferably 180 or more). Combine N, M, and T.

本件発明によれば軸継手と駆動軸、軸継手とカム等の2箇所の嵌合を抜いてはずし、角度を変更して組みなおすことで簡単に5°以下といった微細な角度の設定が初心者にも簡単・単純に実施できるようになる。
また上記効果は軸継手などに設けられた標線や目印に駆動軸とカム等の標線や目印を合わせることにより調整実績値を数値で把握することで容易に再現可能とされている。例えば標線または目印を第一、第二の部分それぞれの回転対称数に一致させて設ければ、分解能aの角度単位で位相設定が容易に可能になる。
また予め所定量の位相が必要な場合はその位相が得られる位置に単一の標線または目印を例えばレーザー刻印等でそれぞれに設ければよい。
これにより同一の軸継手でありながら適用する製品・機種別に刻印位置を変更するだけで位相角度の異なるものが得られ部品の共通化ができる。
According to the present invention, a beginner can easily set a fine angle of 5 ° or less by removing the fitting of the shaft joint and the drive shaft, the shaft joint and the cam, etc., and reassembling by changing the angle. Will be easy and simple to carry out.
Further, the above effect can be easily reproduced by grasping the adjustment actual value numerically by aligning the mark line or mark of the drive shaft and the cam or the like with the mark line or mark provided on the shaft joint or the like. For example, if the marked line or the mark is provided so as to match the rotational symmetry number of each of the first and second portions, the phase can be easily set in the angle unit of the resolution a.
If a predetermined amount of phase is required in advance, a single marked line or mark may be provided at a position where the phase can be obtained, for example, by laser engraving.
As a result, even though the shaft joint is the same, different phase angles can be obtained by simply changing the marking position for each applicable product / model, and parts can be standardized.

さらにこの場合組付け指示線が1本だけとなるので1°、1/2°といった微細な調
位角度の軸継手においても、組み間違えることが少ない。
Further, in this case, since there is only one assembly instruction line, there is little mistake in assembling even in a shaft joint having a fine adjustment angle such as 1 ° or 1/2 °.

実施例1の全体外観図である。M=45 N=4 LCM(N、M)=180 の実施例である。It is an overall external view of Example 1. FIG. It is an example of M = 45 N = 4 LCM (N, M) = 180. 実施例1の断面図である。It is sectional drawing of Example 1. FIG. 実施例1の標線の展開図(原位置組付時)である。It is a development view (at the time of in-situ assembly) of the mark line of Example 1. FIG. 実施例1の進角22°に調整した状態の標線の展開図であるIt is a development view of the mark line in the state adjusted to the advance angle 22 ° of Example 1. 実施例2の全体外観図である。M=45 N=8 LCM(N,M)=360 の実施例である。It is an overall external view of Example 2. FIG. It is an example of M = 45 N = 8 LCM (N, M) = 360. 実施例2の断面図である。It is sectional drawing of Example 2. FIG. 実施例2の標線の展開図(原位置組付時)である。It is a development view (at the time of in-situ assembly) of the mark line of Example 2. FIG. 実施例2の進角33°に調整した状態の標線の展開図である。FIG. 3 is a developed view of a marked line adjusted to an advance angle of 33 ° according to the second embodiment. 実施例2の図2Bとは異なる形式の標線の説明図である。実施例2’として実施例2と区別するIt is explanatory drawing of the mark line of the form different from FIG. 2B of Example 2. FIG. Distinguish from Example 2 as Example 2' 図2Eの実施例の標線位置と位相角の関係を示す表である。2 is a table showing the relationship between the marked line position and the phase angle of the embodiment of FIG. 2E. 実施例3の全体外観図である。M=45 N=4 LCM(N,M)=180 T=2の2重化の実施例である。It is an overall external view of Example 3. FIG. This is an example of duplication of M = 45 N = 4 LCM (N, M) = 180 T = 2. 実施例3の断面図である。It is sectional drawing of Example 3. FIG. 実施例3の標線の展開図(原位置組付時)である。It is a development view (at the time of in-situ assembly) of the mark line of Example 3. FIG. 実施例3の進角9°に調整した状態の標線の展開図である。It is a development view of the mark line in the state adjusted to the advance angle 9 ° of Example 3. FIG. 実施例4の全体外観図である。M=45 N=4CM(N,M)=180 T=2の2重化の実施例である。It is an overall external view of Example 4. FIG. It is an example of duplication of M = 45 N = 4CM (N, M) = 180 T = 2. 実施例4の断面図である。It is sectional drawing of Example 4. FIG. 実施例4の標線の展開図(進角352°組付時)である。It is a development view (when assembling the advance angle 352 °) of the mark line of Example 4. FIG. 実施例5、M=40 N=3 LCM(N,M)=120 T=3の3重化の断面図である。FIG. 5 is a cross-sectional view of a triplet of Example 5, M = 40 N = 3 LCM (N, M) = 120 T = 3. 実施例5の標線の展開図である。進角82°に調整した状態の展開図である。It is a development view of the mark line of Example 5. It is a development view of the state adjusted to the advance angle 82 °. 実施例6-1、M=36 N=5 LCM(N,M)=180 T=2の2重化の断面図である。FIG. 6 is a cross-sectional view of a double of Example 6-1 and M = 36 N = 5 LCM (N, M) = 180 T = 2. 実施例6-1の位相調整目盛りの展開図である。進角155°に調整した状態の展開図である。It is a development view of the phase adjustment scale of Example 6-1. It is a development view of the state adjusted to the advance angle 155 °. 実施例6-2、M=36 N=5 LCM(N,M)=180 T=4の4重化の断面図である。6-2 is a cross-sectional view of the quadruple of Example 6-2, M = 36 N = 5 LCM (N, M) = 180 T = 4. 実施例6-2の標線の展開図である。進角123.5°に調整した状態の展開図である。It is a development view of the mark line of Example 6-2. It is a development view of the state adjusted to the advance angle 123.5 °. 実施例7の説明図である。N=8、M=9、LCM(N,M)=72、a=5°の説明図であるIt is explanatory drawing of Example 7. FIG. It is explanatory drawing of N = 8, M = 9, LCM (N, M) = 72, a = 5 °. 実施例7の標線の展開図である。進角45°に調整した状態の展開図である。It is a development view of the mark line of Example 7. It is a development view of the state adjusted to the advance angle 45 °. 実施例8の説明図である。N=8、M=30、LCM(N,M)=120、a=3°T=3、A=1の説明図であるIt is explanatory drawing of Example 8. FIG. It is explanatory drawing of N = 8, M = 30, LCM (N, M) = 120, a = 3 ° T = 3, A = 1. 実施例8の標線の展開図である。It is a development view of the mark line of Example 8.

回転対称ピッチ角度の組み合わせを決定するのに、2段階の手順がある。すなわち目標となる分解能a又はAを得るには、a×LCM(N,M)=360°となるNとMの組み合わせ、またはN、M、Tの組み合わせを求めればよい。通常は複数の組み合わせが抽出できるはずである。
次に製造しやすさ、組付け及び進角調節のしやすさから軸継手の直径と勘案し、軸継手の「円周長さ/回転対称数M」が軸継手の円周表面上で1mm程度以上になるような回転対
称数Mを選びこれと組み合わせて、前記最小公倍数LCM(N,M)を得るNを求める。1mmを目安においたのは使い慣れた定規の目盛りと同程度の幅であれば目視で容易に合わせられるという判断による。
There are two steps to determine the combination of rotationally symmetric pitch angles. That is, in order to obtain the target resolution a or A, a combination of N and M or a combination of N, M, and T at which a × LCM (N, M) = 360 ° may be obtained. Normally, multiple combinations should be able to be extracted.
Next, considering the diameter of the shaft joint from the ease of manufacturing, assembling, and adjusting the advance angle, the "circumferential length / rotational symmetry number M" of the shaft joint is 1 mm on the circumferential surface of the shaft joint. A rotational symmetry number M having a degree or higher is selected and combined with this to obtain N to obtain the least common multiple LCM (N, M). The reason why 1 mm is used as a guide is that it can be easily adjusted visually if the width is about the same as the scale of a familiar ruler.

以下の段落で本件発明の実施例を示す。本件発明の理解を容易にするため発明の初期の形態から順に呈示する。後の実施例ほど、より使い勝手のよい実施例になるが原理的な理解は逆にわかりにくくなる。
以下の実施例ではいずれも被動部品側から駆動軸側を見たとき、駆動軸が時計回り回転する方向を正転とし、駆動軸の基準位置(基準線200)から、被動部品の基準位置(0°位置または基準線310)の位相を正転方向で測った角度を進角とする。
またセレーション等の山をギアと同様に歯と呼び換え、その数を「枚」の単位で記述する。
ここで時計回り方向を正転としたのは本明細書をわかり易くするための便宜的な処置であり、反時計方向を正転とした場合も発明の効果は同一である。
Examples of the present invention are shown in the following paragraphs. In order to facilitate the understanding of the present invention, the present inventions are presented in order from the initial form of the invention. The later examples are more convenient to use, but the principle understanding is conversely difficult to understand.
In all of the following examples, when the drive shaft side is viewed from the driven component side, the direction in which the drive shaft rotates clockwise is defined as normal rotation, and the reference position of the driven component (reference line 200) from the reference position of the drive shaft (reference line 200). The angle obtained by measuring the phase of the 0 ° position or the reference line 310) in the normal rotation direction is defined as the advance angle.
In addition, piles such as serrations are called teeth like gears, and the number is described in units of "sheets".
Here, the fact that the clockwise direction is set to normal rotation is a convenient measure for making the present specification easy to understand, and the effect of the invention is the same even when the counterclockwise direction is set to normal rotation.

図1Aより図1Dに実施例1を示す。この実施例では軸継手10と駆動軸20の嵌合は回転対称数N=4の第一の部分であり、ピッチ角度Y=90°であり、嵌合方法はピッチ角度に配列されたねじによる取付けである。軸継手10とカム30(被動物)の嵌合はセレーションによる嵌合であり、回転対称数M=45(45枚歯、ピッチ角度X=8°)となっている。
軸接手10上の位相調節目盛102、104、106は下部で各ねじ穴10D、10C、10Bの中央と一致しているが、上部では正転側直近のセレーション頂点位置に斜行している。なお位相調節目盛100は一つのセレーションの頂点からねじ穴10Aの中央を通り、かつ駆動軸の軸に平行に引かれている。
図1B・図1Cでは軸継手10側目盛角度0°の位相調節目盛100に、駆動軸20に刻印された基準線200が、カム30側目盛角度0°が組み合わされた状態が図示されている。この位置を原位置と呼ぶこととする。
被動物側から駆動軸側を見たとき、時計回り方向を正転と決めたので、カムなどの被動物が原位置より時計回り方向にシフトすることを進角度+とする。
すなわち軸継手10や被動物30を原位置より時計回り方向にシフトして組み付けるとき駆動軸20の基準線200に一致する角度に軸継手上に刻印される位相調節目盛にその進角度を付記するので、位相調節目盛は原位置から反時計まわり方向に組み付けピッチ数の小さい順に整列する。
正転方向で表現すると位相調節目盛は調節角の大きい順に並ぶ。
ここで「調節角」とは第一の部分Nの各嵌合位置に刻印された標線に付記された進角度の数値を言う。(標線の斜行による進角の量)
図1Dでは駆動軸20とカム30を軸継手10から取り外し、軸継手10を3ピッチ(270°)正転(右回転)させて、駆動軸基準線200と軸継手側位相調節目盛り106を合致させて取り付けると、駆動軸基準線200に正転側直近の軸継手側セレーションの頂点は原位置から6°進んだ位置となる。軸継手上の位相調節目盛り106は下部で駆動軸20の基準線200と一致しているが上部では正転方向(左)に6°ずれた位置に位置合わせ線が斜行して軸継手側セレーションの歯の頂点に一致している。
この調節角6°の調節目盛線106にカム30の0°の線を合わせて組付ければカムは原位置より6°進角して組付けされることになる。
このときの進角6°が調整角として目盛のわきに表示されている。
図1Dでは6°の調節目盛りにカム側目盛り16°の線を合わせて組付け、カム30の進角が22°となっている。すなわち 「カム30の進角度=調節角+カム上の目盛り」となり組付け作業者にわかりやすい目盛り表示となる。
取付けねじに皿ねじ4本を使ったのは、ねじを締め終わったときに回転方向の遊びが無く、かつ軸継手10と駆動軸20の同芯精度を向上するためである。
なお、図1A、2A、2E、3A、4Aの全体外観図においては第2の部分のセレーションによる嵌合部はデフォルメして作図している。正しい形状は断面図を参照されたい
FIG. 1D shows Example 1 from FIG. 1A. In this embodiment, the fitting of the shaft joint 10 and the drive shaft 20 is the first part of the rotational symmetry number N = 4, the pitch angle Y = 90 °, and the fitting method is based on the screws arranged at the pitch angle. It is an installation. The fitting of the shaft joint 10 and the cam 30 (animal) is a fitting by serration, and the rotational symmetry number M = 45 (45 teeth, pitch angle X = 8 °).
The phase adjustment scales 102, 104, and 106 on the shaft contact 10 coincide with the center of each screw hole 10D, 10C, and 10B at the lower part, but are oblique to the serration apex position closest to the normal rotation side at the upper part. The phase adjustment scale 100 is drawn from the apex of one serration through the center of the screw hole 10A and parallel to the axis of the drive shaft.
1B and 1C show a state in which the phase adjustment scale 100 having a scale angle of 0 ° on the 10 side of the shaft joint is combined with the reference line 200 engraved on the drive shaft 20 and the scale angle of 0 ° on the cam 30 side. .. This position is called the original position.
When the drive shaft side is viewed from the animal side, the clockwise direction is determined to be normal rotation, so that the animal such as the cam shifts clockwise from the original position is defined as the advance angle +.
That is, when the shaft joint 10 or the animal 30 is shifted clockwise from the original position and assembled, the advance angle is added to the phase adjustment scale engraved on the shaft joint at an angle corresponding to the reference line 200 of the drive shaft 20. Therefore, the phase adjustment scales are assembled in the counterclockwise direction from the original position and arranged in ascending order of the number of pitches.
Expressed in the normal direction, the phase adjustment scales are arranged in descending order of adjustment angle.
Here, the "adjustment angle" means a numerical value of the advance angle added to the marked line engraved at each fitting position of the first portion N. (Amount of advance angle due to skew of marked line)
In FIG. 1D, the drive shaft 20 and the cam 30 are removed from the shaft joint 10, and the shaft joint 10 is rotated forward (clockwise) by 3 pitches (270 °) to match the drive shaft reference line 200 with the phase adjustment scale 106 on the shaft joint side. When attached to the drive shaft reference line 200, the apex of the shaft joint side serration near the normal rotation side is at a position 6 ° ahead of the original position. The phase adjustment scale 106 on the shaft joint coincides with the reference line 200 of the drive shaft 20 at the lower part, but at the upper part, the alignment line is slanted at a position shifted by 6 ° in the normal rotation direction (left) and the shaft joint side. It coincides with the apex of the serration tooth.
If the 0 ° line of the cam 30 is aligned with the adjustment scale line 106 having an adjustment angle of 6 °, the cam is assembled by advancing it by 6 ° from the original position.
The advance angle of 6 ° at this time is displayed beside the scale as an adjustment angle.
In FIG. 1D, the 6 ° adjustment scale is assembled by aligning the line of the cam side scale 16 °, and the advance angle of the cam 30 is 22 °. That is, "advance angle of cam 30 = adjustment angle + scale on cam", and the scale display is easy for the assembly operator to understand.
The reason why four countersunk screws are used for the mounting screws is that there is no play in the rotation direction when the screws are tightened, and the concentric accuracy of the shaft joint 10 and the drive shaft 20 is improved.
In the overall external view of FIGS. 1A, 2A, 2E, 3A, and 4A, the fitting portion by serration of the second portion is deformed and drawn. Please refer to the cross section for the correct shape.

図2Aより図2Fに実施例2を示す。実施例1では360/LCM(4、 45)=2°が分解能となっていたのを、1°とするべくLCM(N,M)=360となるようM=45、N=8と回転対称数Nを倍に変更したものであり回転対称数Mは実施例1と同じM=45である。軸継手10には45°ピッチで8個の穴が設けられ、45°ピッチ8分割での軸継手組み換えを可能にしている。N=8の形式的な回転対称であるねじ8個、駆動軸のねじ穴も8個とすると組み換え作業が不必要に煩雑になるので、ねじ本数と駆動軸のねじ穴ともに半分の4個に省略している。
この実施例においては軸継手10を45°ずつ正転させて組み替えていくとその調節角は、90°、180°、270°では実施例1と同じ2°、4°、6°になるが、45°単位の位置では原点から軸継手10を45°ずつ正転させて組み替えていくとその調節角は順に0°、5°、2°、7°、4°、1°、6°、3°、の順不同になってしまい、1°単位での位相調整が可能ではあるが使い勝手の悪いものになってしまう。
なおこの実施例では継手10とカム30に角度表示を行ったが、図2-Eに示すように継手10の外周だけにN、Mに対応した0からの英数の符号を付け駆動軸20、カム30の側には1本の標線だけとしても良い。
駆動軸20は市販の汎用モーター、被動物30も市販の汎用ギアであっても、細密な目盛りの刻印を継手側に集中することで、既製品の駆動軸や被動物に対しても本件発明の適用が容易となる。また、軸継手10に刻印される目盛りに付記される符号に変えて、数字の序数やかな文字を符号として用いても良い。
なお図2Fの表は図2Eの実施例2‘において、所定の位相角θを得るため第一の部分の標線の合わせ位置αと、第二の部分の標線の合わせ位置βの組み合わせを示すものである。
特定の用途で量産される機器では予め所定の位相角θが決まっており、その場合その位相角θとなるαとβの位置のみに標線を設けた軸継手を使用しても良い。
この実施例2ではN=8、M=45の請求項1の実施例ともみなせるし、N=4の第1の空間のメス側空間をT=2個重ね合わせた請求項2の実施例ともみなせる。
Example 2 is shown in FIG. 2F from FIG. 2A. In Example 1, 360 / LCM (4, 45) = 2 ° was the resolution, but it is rotationally symmetric with M = 45, N = 8 so that LCM (N, M) = 360 to be 1 °. The number N is doubled, and the rotational symmetry number M is the same as in the first embodiment, M = 45. The shaft joint 10 is provided with eight holes at a 45 ° pitch, enabling the shaft joint to be recombined at a 45 ° pitch of eight divisions. If 8 screws are formally rotationally symmetric with N = 8 and 8 screw holes are used for the drive shaft, the recombination work becomes unnecessarily complicated, so the number of screws and the screw holes for the drive shaft are both halved to 4 screws. It is omitted.
In this embodiment, when the shaft joint 10 is rotated forward by 45 ° and rearranged, the adjustment angles are 90 °, 180 °, and 270 °, which are the same as in the first embodiment, 2 °, 4 °, and 6 °. At the position in units of 45 °, when the shaft joint 10 is rotated forward by 45 ° from the origin and rearranged, the adjustment angles are 0 °, 5 °, 2 °, 7 °, 4 °, 1 °, 6 °, respectively. The order of 3 ° is random, and although it is possible to adjust the phase in 1 ° increments, it is not easy to use.
In this embodiment, the angle is displayed on the joint 10 and the cam 30, but as shown in FIG. 2-E, only the outer circumference of the joint 10 is assigned an alphanumeric code from 0 corresponding to N and M, and the drive shaft 20 is used. , Only one marked line may be used on the side of the cam 30.
Even if the drive shaft 20 is a commercially available general-purpose motor and the animal 30 is also a commercially available general-purpose gear, the present invention can be applied to off-the-shelf drive shafts and animals by concentrating fine scale markings on the joint side. Is easy to apply. Further, instead of the code added to the scale engraved on the shaft joint 10, the ordinal number or kana characters of the numbers may be used as the code.
Note that the table of FIG. 2F shows the combination of the alignment position α of the marked line of the first portion and the alignment position β of the marked line of the second portion in order to obtain a predetermined phase angle θ in the second embodiment of FIG. 2E. It shows.
In the equipment mass-produced for a specific application, a predetermined phase angle θ is predetermined, and in that case, a shaft joint in which a marked line is provided only at the positions of α and β which are the phase angles θ may be used.
In the second embodiment, it can be regarded as the first embodiment of N = 8 and M = 45, and also the second embodiment in which two female-side spaces of the first space of N = 4 are superposed. Can be regarded.

図3Aより図3Dに実施例3を示す。実施例2で調節角が順不同に配列されてしまうのを大小順に並ぶよう改良したものである。実施例1の取り付けねじ4本の90°ピッチ配列に加えて、駆動軸(請求項2のメス側の部材に該当)の原点から正転49°を起点に90°ピッチでねじ穴4個(請求項2の空間形状S1に該当)を駆動軸に追加したものである。すなわち49°、90°、139°、180°、229°、270°、319°、360(0)°にねじ穴を配置する。取付けねじは4本であり、軸継手10の穴は4箇所、駆動軸20のねじ穴は前記角度の8箇所となる。軸継手10と駆動軸20の穴個数を実施例2に対して逆転させ嵌合の内側を8個としたのは、運転時に使っていない穴への異物侵入対策である。
図3Cに示すとおり位相調整単位角度は1°であり、正転方向に進角度の大きい目盛から順に並ぶ配列になる。
なお、本実施例ではオス側の部材に相当する構成は継手10の第一の部分と4本の取付ねじである。
Example 3 is shown in FIG. 3D from FIG. 3A. In Example 2, the adjustment angles are arranged in random order, which is improved so as to be arranged in order of magnitude. In addition to the 90 ° pitch arrangement of the four mounting screws of the first embodiment, four screw holes (corresponding to the member on the female side of claim 2) have four screw holes at a 90 ° pitch starting from a forward rotation of 49 ° from the origin. (Corresponding to the spatial shape S1 of claim 2) is added to the drive shaft. That is, the screw holes are arranged at 49 °, 90 °, 139 °, 180 °, 229 °, 270 °, 319 °, and 360 (0) °. There are four mounting screws, the shaft joint 10 has four holes, and the drive shaft 20 has eight screw holes at the angle. The number of holes in the shaft joint 10 and the drive shaft 20 is reversed with respect to the second embodiment so that the inside of the fitting is eight, as a measure against foreign matter invading the holes not used during operation.
As shown in FIG. 3C, the phase adjustment unit angle is 1 °, and the arrangement is arranged in order from the scale having the largest advance angle in the forward rotation direction.
In this embodiment, the configuration corresponding to the male side member is the first portion of the joint 10 and four mounting screws.

実施例3では駆動軸20と継手10を接続する第1の部分においてメス側の部材である駆動軸20の8個のねじ穴は、回転対称数4の2つの空間形状が49°ずらされて重ね合わされている様に配置されている。
この配置をLLCM(4,45,49°)と表記することとする。記号で書くとLLCM(N,M,θ1) ここでθ1は空間重ね合わせのシフト量(位相差)であり、この実施例では49°である。
この実施例3の図ではシフト量が49°であったが、9、17、25、、、、、41、49、57、、、、89°(=X×n+A、nは任意の整数)であっても同じ効果が得られる。
In the third embodiment, the eight screw holes of the drive shaft 20, which is a member on the female side in the first portion connecting the drive shaft 20 and the joint 10, are displaced by 49 ° from the two spatial shapes having the rotational symmetry number 4. They are arranged so that they are overlapped.
This arrangement will be referred to as LLCM (4,45,49 °). When written in symbols, LLCM (N, M, θ1) where θ1 is the shift amount (phase difference) of spatial superposition, which is 49 ° in this embodiment.
In the figure of Example 3, the shift amount was 49 °, but 9, 17, 25 ,,,, 41, 49, 57 ,,,, 89 ° (= X × n + A, n are arbitrary. The same effect can be obtained even if it is an integer).

実施例3に限らず、より微細な分解能と調節角の大小順配列を両立させるためには、単純な回転対称数の増大ではだめで「メス側空間の重ね合わせ」が有効であるが、いくつかの条件がある。
(条件α)より微細な分解能を得るには、T個の空間形状を以下のように配置する必要がある。
(α1)重ね合わせる空間形状を回転対称数Nの第1の部分(または第2の部分)のメス側空間とし、これをT個重ね合わせるとき、基準となる最初の空間S0の一つの頂点と隣の頂点の間に、重ねあわされるT-1個の各空間がそれぞれθk(k:1~T-1の整数)のシフト量(位相差)で配置される。この時T-1個の重ね合わせた空間を元の空間S0よりのシフト量の小さい方から1,2,3、、、T-1番目の順に番号を付ける
S0に対しS1、S2、、、、、ST-1であり、それぞれのシフト量をθ1~θT-1とすると
0°<θ1<θ2<、、、、、θT-1<Y360°/N・・・・式1である
ここで式1は2つの空間SiとSjにおいてi>jならばθi>θjと同値である。
(α2)各空間はオス側の部材(軸継手と4本の取付ねじ)と同軸上に配置される
(α3)各空間はその軸方向に重なっており位相差を有する。
(α4)基準となる最初の空間S0と他の空間Skの位相差θk°は全てのk(1≦k≦T-1を満たす整数)について以下を満たす
θk=(n×a)+(a/T)×k
但しnは0以上の任意の整数であり、a=360°/LCM(N,M)である
このときの分解能は A=360/(LCM(N、M)×T)=a/Tとなる
(条件β)調節角が大小順に配列されるためには
(β1)重ね合わせの元になるNとMの組み合わせが既に調節角の大小順になっていなければならない
NとMの組み合わせが互いに素である時、M÷Nの余りが1の場合、正転方向に調節角の大きい標線から順に配列される。
また、M÷Nの余りがN-1のとき標線は正転方向に調整角の小さい順に配列される。
NとMが2以上の最大公約数Lを持つ(互いに素でない)とき、N、MのうちLを1つだけ持つ片方をを最大公約数で割って互いに素にし、またはN、M両方をLで割った値で上記評価を行えばよい。
(β2)そして前記余りが1の時、調節角の目盛の配列が大きいほうから正転順に並ぶには θk=(n×X)+(a/T)×k
このとき継手10を回転軸に対し1ピッチずつ正転方向に組み替えると軸継手の0°標線より逆転方向に小さい順に刻印された標線の調整角が順に駆動軸20の基準線に一致する。
また前記余りがN-1のとき元のNとMの組み合わせであるS0の調節角が正転方向に小さい順に並ぶので、これに合わせてS1以降のメス側空間を正転方向に小さい順に並べるには θk=(n×X)-(a/T)×k
但しXは第2の部分のピッチ角度(360/M)である。
なおnの値として小さいほうから順にS1、S2、、、Sk、、、、に割りあてればkの値が大きいほどθkの値は大きくなり、式1を満たすことができる。
Not limited to Example 3, in order to achieve both finer resolution and large / small forward arrangement of adjustment angles, it is not possible to simply increase the number of rotational symmetries, and "superposition of the female side space" is effective. There is such a condition.
(Condition α) In order to obtain finer resolution, it is necessary to arrange T spatial shapes as follows.
(Α1) The space shape to be overlapped is the female side space of the first part (or the second part) of the rotational symmetry number N, and when T pieces are overlapped, it is combined with one vertex of the first space S0 as a reference. Between the adjacent vertices, each of the T-1 spaces to be overlapped is arranged with a shift amount (phase difference) of θk (an integer of k: 1 to T-1). At this time, S1, S2, ... ,, ST-1, and if the respective shift amounts are θ1 to θT-1, 0 ° <θ1 <θ2 <,,,,, θT-1 <Y360 ° / N .... Equation 1 is used here. Equation 1 has the same value as θi> θj if i> j in the two spaces Si and Sj.
(Α2) Each space is arranged coaxially with a member on the male side (shaft joint and four mounting screws). (α3) Each space overlaps in the axial direction and has a phase difference.
(Α4) The phase difference θk ° between the first space S0 as a reference and the other space Sk satisfies the following for all k (integers satisfying 1 ≦ k ≦ T-1) θk = (n × a) + (a) / T) × k
However, n is an arbitrary integer of 0 or more, and a = 360 ° / LCM (N, M), and the resolution at this time is A = 360 / (LCM (N, M) × T) = a / T. (Condition β) In order for the adjustment angles to be arranged in order of magnitude (β1), the combination of N and M that is the basis of superposition must already be in the order of magnitude of adjustment angle. At one point, if the remainder of M ÷ N is 1, they are arranged in order from the marked line with the largest adjustment angle in the normal rotation direction.
Further, when the remainder of M ÷ N is N-1, the marked lines are arranged in the forward rotation direction in ascending order of adjustment angle.
When N and M have the greatest common divisor L of 2 or more (not relatively prime), divide one of N and M with only one L by the greatest common divisor to make them relatively prime, or both N and M. The above evaluation may be performed by the value divided by L.
(Β2) And when the remainder is 1, θk = (n × X) + (a / T) × k to arrange in the order of normal rotation from the largest arrangement of the adjustment angle scales.
At this time, when the joint 10 is rearranged in the forward rotation direction by one pitch with respect to the rotation axis, the adjustment angle of the marked line engraved in ascending order from the 0 ° marked line of the shaft joint in the reverse direction coincides with the reference line of the drive shaft 20 in order. ..
Further, when the remainder is N-1, the adjustment angles of S0, which is the original combination of N and M, are arranged in ascending order in the normal rotation direction. Θk = (n × X)-(a / T) × k
However, X is the pitch angle (360 / M) of the second portion.
If the value of n is assigned to S1, S2 ,,, Sk ,,, in order from the smallest value, the larger the value of k, the larger the value of θk, and the equation 1 can be satisfied.

図4Aより図4Cに実施例4を示す。この実施例では回転対称数N、Mの数値は実施例3と同一であり当然最小公倍数LCM(N,M)も同じである。2重化の角度シフト量が41°(n=5)と変化しているが実施例3の49°と等価である。違いは駆動軸10と軸継手20の嵌合形式が改良されている。駆動軸20は正4角柱(オス側の部材)になり、軸継手10側は変形した八芒星型穴(メス側の空間形状)が設けられ、8個の頂点のうち
一個おきの4頂点が正方形を成しており、この正方形形状で駆動軸20の4角柱と嵌合する。
このようにメス側空間形状を多重化することによりオス側部材を簡素な形状とすることができる。
二つの正方形は実施例3と等価の41°シフトにて配置されている。六角ボルトを締める「めがねレンチ」に類似した嵌合形状となる。
この形態の嵌合方式を採用すると実施例3とオスメスが逆になる。
また回転方向の遊びをなくす方策を変更することが可能となる。一つの方法
として、四角柱及び八芒星型の穴にテーパーを持たせることが考えられる。
この場合図に示す取り付けねじは異常トルクに対する回転方向の機械的強度やバックラッシの除去といった役割を失い、抜け止めの役割以外に機能が無くなりねじ本数を減らすことが可能になる。
例えば円筒面上のねじ穴を廃止し、駆動軸上端の正方形中心に大径のねじ穴を一個設け、ねじ一本で3部品を固定すれば位相調整時のねじ緩め本数が減り作業性が向上する
Example 4 is shown in FIG. 4C from FIG. 4A. In this embodiment, the numerical values of the rotational symmetry numbers N and M are the same as those in the third embodiment, and naturally the least common multiple LCM (N, M) is also the same. The amount of the double angle shift changes to 41 ° (n = 5), which is equivalent to 49 ° in Example 3. The difference is that the fitting form of the drive shaft 10 and the shaft joint 20 has been improved. The drive shaft 20 is a regular quadrangular prism (member on the male side), and the shaft joint 10 side is provided with a deformed octagram-shaped hole (spatial shape on the female side), and every other four vertices out of eight vertices. Form a square, and this square shape fits with the quadrangular prism of the drive shaft 20.
By multiplexing the female side spatial shape in this way, the male side member can be made into a simple shape.
The two squares are arranged with a 41 ° shift equivalent to that of the third embodiment. It has a fitting shape similar to a "glass wrench" that tightens hexagon bolts.
When this form of fitting method is adopted, the male and female are reversed from the third embodiment.
It is also possible to change the measures to eliminate the play in the rotation direction. One method is to make the quadrangular prism and the octagram-shaped hole tapered.
In this case, the mounting screws shown in the figure lose their roles such as mechanical strength in the rotation direction and removal of backlash against abnormal torque, and have no function other than the role of preventing the backlash, and the number of screws can be reduced.
For example, if the screw holes on the cylindrical surface are eliminated, one large-diameter screw hole is provided in the center of the square at the upper end of the drive shaft, and three parts are fixed with one screw, the number of loosening screws during phase adjustment is reduced and workability is improved. do

図5A及び図5Bに実施例5を示す。この実施例では駆動軸20が正3角形になり、軸継手10の側には正3角形3つが重ねられた九芒星形の穴が設けられている、これにより位相調整用に9ポジションの嵌合位置が得られるので、1°の位相調整単位角度を得るためにはX=9°すなわちM=40 (360/9、40枚セレーション)のMが組み合わされる。シフト量θ1=37=9°×4+1°、θ2=83=9°×9+2°でありLCM(3,40)、LLCM(3,40,37°/83°)と表記する。
実施例4に対し軸継手10と駆動軸20の嵌合面が大きくなり大きなトルクへの耐久性が向上する。
5A and 5B show Example 5. In this embodiment, the drive shaft 20 has an equilateral triangle shape, and a nine-pointed star-shaped hole in which three equilateral triangles are stacked is provided on the side of the shaft joint 10, whereby the nine positions for phase adjustment are provided. Since the fitting position is obtained, M of X = 9 °, that is, M = 40 (360/9, 40 serrations) is combined in order to obtain a phase adjustment unit angle of 1 °. The shift amount θ1 = 37 = 9 ° × 4 + 1 °, θ2 = 83 = 9 ° × 9 + 2 °, and are expressed as LCM (3,40) and LLCM (3,40,37 ° / 83 °).
Compared to the fourth embodiment, the fitting surface of the shaft joint 10 and the drive shaft 20 becomes larger, and the durability against a large torque is improved.

図6-1A及び図6-1Bに実施例6-1を示す。この実施例では回転対称数M=36(X°=10°、36枚歯)、回転対称数N=5で2重の重ね合わせシフト量θ=31°=10°×3+1であり、軸継手の仕様数値はLLCM(5,36,31°)分解能Aは1°である。
特にこの場合M側の目盛り単位は10°ピッチ、N側の調節角の目盛りは1°ピッチで0~9°となり、位相調整作業が10進法となり判り易くなる。
Examples 6-1 are shown in FIGS. 6-1A and 6-1B. In this embodiment, the rotational symmetry number M = 36 (X ° = 10 °, 36 teeth), the rotational symmetry number N = 5, and the double superposition shift amount θ = 31 ° = 10 ° × 3 + 1, and the shaft joint The specification value of is LLCM (5,36,31 °) and the resolution A is 1 °.
In particular, in this case, the scale unit on the M side is 10 ° pitch, and the scale of the adjustment angle on the N side is 0 to 9 ° at 1 ° pitch, so that the phase adjustment work is in decimal and easy to understand.

図6-2A及び図6-2Bに実施例6の変形例を示す。図6-1Aでは駆動軸の断面形状が正五角形であったのを星印のような鋭角の突起で構成された五芒星型に変えたものである。6-1のように正五角形または鈍角で構成された形状であると、分解能Aをより小さくするため、正五角形等をさらに2倍の4枚重ねるとしたら、メス側の嵌合形状がより円に近づいてしまい異常トルクの場合に軸との嵌合がズレてしまい易い。
この実施例では回転対称数M=36(X=10°、36枚歯)、回転対称数N=5でT=4の重ね合わせである。
シフト量θ1=20.5 θ2=31 θ3=41.5°であり、軸継手の仕様数値はLLCM(4,36,20.5°/31°/41.5°)位相調節単位角度Aは0.5°である。
なお、本実施例では、駆動軸20が嵌合される部分のみをメス側形状とし、駆動軸20が嵌合可能な空間を3つ配置したが、これに加え被動物が嵌合される部分にも適用してもよい。この場合、第2の部分は歯数36の単純なメス側セレーションとなり、これに嵌合する被動部品は正6角柱(重ね合わせ空間数T=6)または正4角柱(T=9)または正3角柱(T=12)となる。この重ね合わせはより細かい分解能を得る目的ではなく、被動部品の形状をより単純化することを目的としている。
6-2A and 6-2B show modifications of Example 6. In FIG. 6-1A, the cross-sectional shape of the drive shaft is changed from a regular pentagon to a pentagram composed of acute-angled protrusions such as stars. If the shape is composed of regular pentagons or obtuse angles as in 6-1 and the resolution A is made smaller, if four regular pentagons and the like are further doubled, the fitting shape on the female side will be more circular. In the case of abnormal torque, the fitting with the shaft tends to be misaligned.
In this embodiment, the rotational symmetry number M = 36 (X = 10 °, 36 teeth), the rotational symmetry number N = 5, and T = 4 are superimposed.
The shift amount θ1 = 20.5 θ2 = 31 θ3 = 41.5 °, and the specification value of the shaft joint is LLCM (4,36,20.5 ° / 31 ° / 41.5 °). It is 0.5 °.
In this embodiment, only the portion where the drive shaft 20 is fitted is formed on the female side, and three spaces where the drive shaft 20 can be fitted are arranged. In addition to this, the portion where the animal is fitted. It may also be applied to. In this case, the second part is a simple female side serration with 36 teeth, and the driven part fitted to this is a regular hexagonal prism (overlapping space number T = 6) or a regular tetragonal prism (T = 9) or positive. It becomes a triangular prism (T = 12). This superposition is not intended to obtain finer resolution, but to simplify the shape of the driven component.

図7A及び図7Bに実施例7を示す。
N=8、M=9、LCM(N,M)=72、a=5°この実施例では既存の汎用サーボモータ等の軸、及び既存のカムなどに本件発明を適用するために、嵌合形状の「歯」の部分を既存のモーター軸や既存の被動物に追加する様に、後付可能な付属部品として継手とセットで提供できるよう考慮されたものである。
図では鋸刃状凹凸を向かい合わせた形状が2箇所の嵌合の両方に採用されているが、どちらか片方の嵌合(形状自由度が高い被動物側が有望)を回転対称数を大きく出来るセレーションなどの嵌合に置き換えても良い。
Mが大きくなり、M/N<2となれば、のこぎり形状の「重ね合わせ」が可能となる。
7A and 7B show Example 7.
N = 8, M = 9, LCM (N, M) = 72, a = 5 ° In this embodiment, a fitting is used to apply the present invention to an existing shaft of a general-purpose servomotor, an existing cam, or the like. It is designed to be provided as a set with a fitting as a retrofittable accessory, such as adding a "tooth" part of the shape to an existing motor shaft or an existing subject.
In the figure, the shape with saw blade-shaped irregularities facing each other is adopted for both fittings at two places, but one of the fittings (the animal side with a high degree of freedom in shape is promising) can increase the number of rotational symmetries. It may be replaced with a fitting such as serration.
When M becomes large and M / N <2, saw-shaped "superposition" becomes possible.

図8A及び図8Bに実施例8を示す。
N=8、Y=45、M=30、X=12、LCM(N,M)=120、a=3、T=3、A=1であり
L=GCD(N、M)=2、MOD(M/L,N/L)=3=N/L-1
標線の配列が調節角の小さい順になる実施例である
8A and 8B show Example 8.
N = 8, Y = 45, M = 30, X = 12, LCM (N, M) = 120, a = 3, T = 3, A = 1, L = GCD (N, M) = 2, MOD (M / L, N / L) = 3 = N / L-1
This is an example in which the arrangement of the marked lines is in ascending order of the adjustment angle.

10: 軸継手
11: 軸継手側セレーション
100~109:軸継手側位相調節目盛り
10A~10H:軸継手取付ねじ穴(通し穴)
15: 軸継手側軸嵌合突起(原点)
16: 軸継手側軸嵌合突起(原点以外)
17: 軸継手側軸嵌合突起(原点以外)
20: 駆動軸
200: 駆動軸側原位置指示線
20A~20H:軸継手取付ねじ穴(メスねじ)
20X: 分離式嵌合部品(軸側)
30: カム
31: カム側セレーション
300: カム側位相調節目盛り
310 カム側基準線
30X: 分離式嵌合部品(被動物側)
390: 位置決めピン






10: Shaft joint 11: Shaft joint side serration 100 to 109: Shaft joint side phase adjustment scale 10A to 10H: Shaft joint mounting screw hole (through hole)
15: Shaft fitting protrusion on the shaft joint side (origin)
16: Shaft fitting protrusion on the shaft joint side (other than the origin)
17: Shaft fitting protrusion on the shaft joint side (other than the origin)
20: Drive shaft 200: Drive shaft side original position indicator line 20A to 20H: Shaft joint mounting screw hole (female screw)
20X: Separate fitting part (shaft side)
30: Cam 31: Cam side serration 300: Cam side phase adjustment scale 310 Cam side reference line 30X: Separate fitting part (animal side)
390: Positioning pin






上記課題を解決するため本件発明は駆動軸と、被動部品と、それら2部品を相対回転不能に接続する軸継手を有する駆動構造であって、駆動軸と軸継手、被動部品と軸継手の2箇所の接続はN回回転対称(N:2以上の整数)を有する形状で嵌合している第1の部分と、M回回転対称(M>Nの整数)を有する形状で嵌合している第2の部分とからなり最小公倍数LCM(N,M)はMより大きく(N<M<LCM(N,M))、駆動軸及び軸継手及び被動部品の相互の嵌合状態を示す標線または目印がそれぞれの表面に少なくとも各一つ付され、
第1の部分と前記第2の部分のいずれか一方の接続のメス側の部材の空間形状を、オス側の形状に対応したT個(T:2以上の整数)の空間を所定の位相差で重ね合わせ配置し、LCM(N、M)×Tが72以上である駆動構造である。
In order to solve the above problems, the present invention is a drive structure having a drive shaft, a driven component, and a shaft joint that connects these two components so that they cannot rotate relative to each other. The connection of the points is fitted with the first part fitted in a shape having N-fold rotational symmetry (N: an integer of 2 or more) and in a shape having M-fold rotational symmetry (integer of M> N). The least common multiple LCM (N , M) is larger than M (N <M <LCM (N, M)), indicating the mutual fitting state of the drive shaft, the shaft joint, and the driven component. At least one marker or mark is attached to each surface,
A predetermined phase difference between the space shape of the female side member of the connection of either the first part and the second part and the space of T pieces (T: an integer of 2 or more) corresponding to the shape of the male side. It is a drive structure in which LCM (N, M) × T is 72 or more.

ここで以下の明細書をわかりやすくするために数式上の記号を定義し説明する。
N: 接続箇所の第1の部分の回転対称数、2以上の整数
Y: 接続箇所の第1の部分のピッチ角度、360°/N=Y
M: 接続箇所の第2の部分の回転対称数、M>Nの整数
X: 接続箇所の第2の部分のピッチ角度、360°/M=X
LCM(N,M): NとMの最小公倍数
a: NとMの組み合わせで得られる調整可能な位相角度の最小単位(分解能) 360°/LCM(N,M)=a
A: 勘合形状の重ね合わせによって得られる分解能
T: 重ね合わせの個数
A=360/(T×LCM(N,M))=a/T
LLCM(N,M,θ1/θ2/・・・/θT-1):
またはLLCM(M,N,θ1/θ2/・・・/θT-1):
請求項で定義された接続形状のメス側空間がT個、それぞれ位相差θkで配置された状態を示す式。( )内先頭の記号が重ね合わせをする側の回転対称数、通常はNである。
この時分解能A=360/(T×LCM(N,M))=a/T
L:NとMの最大公約数
また本明細書において特に断らない限り、角度は被動部品側から駆動軸側を見たとき、基準となるものから時計回り方向を正(+)方向として測定されるものである。
Here, in order to make the following specification easy to understand, mathematical symbols are defined and explained.
N: Rotational symmetry of the first part of the connection point, an integer of 2 or more Y: Pitch angle of the first part of the connection point, 360 ° / N = Y
M: Rotational symmetry number of the second part of the connection point, integer of M> N X: Pitch angle of the second part of the connection point, 360 ° / M = X
LCM (N, M): Least common multiple of N and M a: Minimum unit (resolution) of adjustable phase angle obtained by combining N and M 360 ° / LCM (N, M) = a
A: Resolution obtained by superimposing the mating shapes T: Number of superpositions A = 360 / (T × LCM (N, M)) = a / T
LLCM (N, M, θ1 / θ2 / ... / θT-1):
Or LLCM (M, N, θ1 / θ2 / ... / θT-1):
An equation showing a state in which T female-side spaces of the connection shape defined in claim 1 are arranged with a phase difference θk, respectively. The symbol at the beginning of () is the number of rotational symmetries on the superposition side, usually N.
At this time, the resolution A = 360 / (T × LCM (N, M)) = a / T
L: Greatest common divisor of N and M Unless otherwise specified in the present specification, the angle is measured with the clockwise direction as the positive (+) direction from the reference when looking at the drive shaft side from the driven component side. It is a thing.

図2Aより図2Fに実施例2を示す。実施例1では360/LCM(4、 45)=2°が分解能となっていたのを、1°とするべくLCM(N,M)=360となるようM=45、N=8と回転対称数Nを倍に変更したものであり回転対称数Mは実施例1と同じM=45である。軸継手10には45°ピッチで8個の穴が設けられ、45°ピッチ8分割での軸継手組み換えを可能にしている。N=8の形式的な回転対称であるねじ8個、駆動軸のねじ穴も8個とすると組み換え作業が不必要に煩雑になるので、ねじ本数と駆動軸のねじ穴ともに半分の4個に省略している。
この実施例においては軸継手10を45°ずつ正転させて組み替えていくとその調節角は、90°、180°、270°では実施例1と同じ2°、4°、6°になるが、45°単位の位置では原点から軸継手10を45°ずつ正転させて組み替えていくとその調節角は順に0°、5°、2°、7°、4°、1°、6°、3°、の順不同になってしまい、1°単位での位相調整が可能ではあるが使い勝手の悪いものになってしまう。
なおこの実施例では継手10とカム30に角度表示を行ったが、図2-Eに示すように継手10の外周だけにN、Mに対応した0からの英数の符号を付け駆動軸20、カム30の側には1本の標線だけとしても良い。
駆動軸20は市販の汎用モーター、被動物30も市販の汎用ギアであっても、細密な目盛りの刻印を継手側に集中することで、既製品の駆動軸や被動物に対しても本件発明の適用が容易となる。また、軸継手10に刻印される目盛りに付記される符号に変えて、数字の序数やかな文字を符号として用いても良い。
なお図2Fの表は図2Eの実施例2‘において、所定の位相角θを得るため第一の部分の標線の合わせ位置αと、第二の部分の標線の合わせ位置βの組み合わせを示すものである。
特定の用途で量産される機器では予め所定の位相角θが決まっており、その場合その位相角θとなるαとβの位置のみに標線を設けた軸継手を使用しても良い。
この実施例2ではN=4の第1の空間のメス側空間をT=2個重ね合わせた請求項の実施例みなせる。
Example 2 is shown in FIG. 2F from FIG. 2A. In Example 1, 360 / LCM (4, 45) = 2 ° was the resolution, but it is rotationally symmetric with M = 45, N = 8 so that LCM (N, M) = 360 to be 1 °. The number N is doubled, and the rotational symmetry number M is the same as in the first embodiment, M = 45. The shaft joint 10 is provided with eight holes at a 45 ° pitch, enabling the shaft joint to be recombined at a 45 ° pitch of eight divisions. If 8 screws are formally rotationally symmetric with N = 8 and 8 screw holes are used for the drive shaft, the recombination work becomes unnecessarily complicated, so the number of screws and the screw holes for the drive shaft are both halved to 4 screws. It is omitted.
In this embodiment, when the shaft joint 10 is rotated forward by 45 ° and rearranged, the adjustment angles are 90 °, 180 °, and 270 °, which are the same as in the first embodiment, 2 °, 4 °, and 6 °. At the position in units of 45 °, when the shaft joint 10 is rotated forward by 45 ° from the origin and rearranged, the adjustment angles are 0 °, 5 °, 2 °, 7 °, 4 °, 1 °, 6 °, respectively. The order of 3 ° is random, and although it is possible to adjust the phase in 1 ° increments, it is not easy to use.
In this embodiment, the angle is displayed on the joint 10 and the cam 30, but as shown in FIG. 2-E, only the outer circumference of the joint 10 is assigned an alphanumeric code from 0 corresponding to N and M, and the drive shaft 20 is used. , Only one marked line may be used on the side of the cam 30.
Even if the drive shaft 20 is a commercially available general-purpose motor and the animal 30 is also a commercially available general-purpose gear, the present invention can be applied to off-the-shelf drive shafts and animals by concentrating fine scale markings on the joint side. Is easy to apply. Further, instead of the code added to the scale engraved on the shaft joint 10, the ordinal number or kana characters of the numbers may be used as the code.
Note that the table of FIG. 2F shows the combination of the alignment position α of the marked line of the first portion and the alignment position β of the marked line of the second portion in order to obtain a predetermined phase angle θ in the second embodiment of FIG. 2E. It shows.
In the equipment mass-produced for a specific application, a predetermined phase angle θ is predetermined, and in that case, a shaft joint in which a marked line is provided only at the positions of α and β which are the phase angles θ may be used.
In the second embodiment, it can be regarded as the first embodiment in which the female side space of the first space of N = 4 is overlapped with two T = two.

図3Aより図3Dに実施例3を示す。実施例2で調節角が順不同に配列されてしまうのを大小順に並ぶよう改良したものである。実施例1の取り付けねじ4本の90°ピッチ配列に加えて、駆動軸(請求項のメス側の部材に該当)の原点から正転49°を起点に90°ピッチでねじ穴4個(請求項の空間形状S1に該当)を駆動軸に追加したものである。すなわち49°、90°、139°、180°、229°、270°、319°、360(0)°にねじ穴を配置する。取付けねじは4本であり、軸継手10の穴は4箇所、駆動軸20のねじ穴は前記角度の8箇所となる。軸継手10と駆動軸20の穴個数を実施例2に対して逆転させ嵌合の内側を8個としたのは、運転時に使っていない穴への異物
侵入対策である。
図3Cに示すとおり位相調整単位角度は1°であり、正転方向に進角度の大きい目盛から順に並ぶ配列になる。
なお、本実施例ではオス側の部材に相当する構成は継手10の第一の部分と4本の取付ねじである。
Example 3 is shown in FIG. 3D from FIG. 3A. In Example 2, the adjustment angles are arranged in random order, which is improved so as to be arranged in order of magnitude. In addition to the 90 ° pitch arrangement of the four mounting screws of the first embodiment, four screw holes (corresponding to the member on the female side of claim 1 ) have four screw holes at a 90 ° pitch starting from a forward rotation of 49 ° from the origin. The space shape S1 of claim 1 ) is added to the drive shaft. That is, the screw holes are arranged at 49 °, 90 °, 139 °, 180 °, 229 °, 270 °, 319 °, and 360 (0) °. There are four mounting screws, the shaft joint 10 has four holes, and the drive shaft 20 has eight screw holes at the angle. The number of holes in the shaft joint 10 and the drive shaft 20 is reversed with respect to the second embodiment so that the inside of the fitting is eight, as a measure against foreign matter invading the holes not used during operation.
As shown in FIG. 3C, the phase adjustment unit angle is 1 °, and the arrangement is arranged in order from the scale having the largest advance angle in the forward rotation direction.
In this embodiment, the configuration corresponding to the male side member is the first portion of the joint 10 and four mounting screws.

Claims (3)

駆動軸と、被動部品と、この2部品を相対回転不能に接続する軸継手を有する駆動構造であって、前記駆動軸と軸継手、前記被動部品と軸継手の2箇所の接続はN回回転対称(N:2以上の整数)を有する形状で嵌合している第1の部分と、M回回転対称(M>Nの整数)を有する形状で嵌合している第2の部分とからなり、前記Nと前記Mの最小公倍数LCM(N,M)は72以上であり、かつ前記最小公倍数LCM(N,M)はMより大きく( N<M<LCM(N,M))、前記駆動軸及び前記軸継手及び前記被動部品の相互の嵌合状態を示す標線または目印がそれぞれの表面に少なくとも各一つ付されている駆動構造。 It is a drive structure having a drive shaft, a driven component, and a shaft joint that connects these two components so that they cannot rotate relative to each other. From the first part fitted in a shape with symmetry (N: an integer of 2 or more) and the second part fitted in a shape with M-turn rotational symmetry (M> N integer) The least common multiple LCM (N, M) of the N and the M is 72 or more, and the least common multiple LCM (N, M) is larger than M (N <M <LCM (N, M)). A drive structure in which at least one marked line or mark indicating the mutual fitting state of the drive shaft, the shaft joint, and the driven component is attached to each surface. 駆動軸と、被動部品と、この2部品を相対回転不能に接続する軸継手を有する駆動構造であって、前記駆動軸と軸継手、前記被動部品と軸継手の2箇所の接続はN回回転対称(N:2以上の整数)を有する形状で嵌合している第1の部分と、M回回転対称(M>Nの整数)を有する形状で嵌合している第2の部分とからなり、前記第1の部分と前記第2の部分のいずれか一方の接続のメス側の部材の空間形状を、オス側の形状に対応した空間をT個(T:2以上の整数)重ね合わせ、かつ下記条件を全て満たすよう配置した駆動構造。
1) 各空間はオス側の部材と同軸上に配置される
2) 各空間はその軸方向に重なっており位相差を有する
3) 基準となる最初の空間S0と他の空間Skの位相差θk°は全てのk(1≦k≦T-1を満たす整数)について以下を満たす
θk=(n×a)+(a/T)×k
但しnは任意の整数であり、a=360°/LCM(N、M)である
このときの分解能は A=360°/(LCM(N、M)×T)となる
It is a drive structure having a drive shaft, a driven component, and a shaft joint that connects these two components so that they cannot rotate relative to each other. From the first part fitted in a shape having symmetry (N: an integer of 2 or more) and the second part fitted in a shape having M-fold rotational symmetry (M> N integer). Therefore, the space shape of the member on the female side of the connection of either the first part or the second part is superposed on T pieces (T: integers of 2 or more) corresponding to the shape on the male side. And a drive structure arranged so as to satisfy all of the following conditions.
1) Each space is arranged coaxially with the member on the male side. 2) Each space overlaps in the axial direction and has a phase difference. 3) The phase difference θk between the reference first space S0 and the other space Sk. ° is θk = (n × a) + (a / T) × k that satisfies the following for all k (integers that satisfy 1 ≦ k ≦ T-1).
However, n is an arbitrary integer, and a = 360 ° / LCM (N, M), and the resolution at this time is A = 360 ° / (LCM (N, M) × T).
請求項2の駆動構造において、MとNの最大公約数をLとするとき、M/LをN/Lで割った時の余り MOD(M/L,N/L)が1またはN/L-1となるMとN、Lであり、この駆動構造の第1の部分のメス側空間形状を複数個、下記2条件両方をを満たすよう重ね合わせて成る請求項2の駆動構造
条件1) 重ね合わせの基準になる最初の空間S0と他の空間Skの位相差θk°は全てのk(1≦k≦T-1を満たす整数)について以下を満たす
MOD(M/L,N/L)が1の場合
θk=(n×360/M)+(a/T)×k
MOD(M/L,N/L)がN-1の場合
θk=(n×360/M)-(a/T)×k
但し、0°<θk<(360°/N)である。
条件2)前記他の空間Skの任意の2つ(Si、SJ 但しi>J)を選択したとき、前記位相差θi、θJはθi>θJである


In the drive structure of claim 2, when the greatest common divisor of M and N is L, the remainder MOD (M / L, N / L) when M / L is divided by N / L is 1 or N / L. Drive structure condition 1 of claim 2 which is M, N, and L which becomes -1, and a plurality of female side spatial shapes of the first part of this drive structure are superposed so as to satisfy both of the following two conditions. The phase difference θk ° between the first space S0 and the other space Sk, which is the reference for superposition, is MOD (M / L, N / L) that satisfies the following for all k (integers satisfying 1 ≦ k ≦ T-1). When is 1, θk = (n × 360 / M) + (a / T) × k
When MOD (M / L, N / L) is N-1, θk = (n × 360 / M)-(a / T) × k
However, 0 ° <θk <(360 ° / N).
Condition 2) When any two (Si, SJ, i> J) of the other space Sk are selected, the phase differences θi and θJ are θi> θJ.


JP2022049366A 2020-11-26 2022-03-25 Drive structure with shaft coupling Active JP7182740B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020196049 2020-11-26
JP2020196049 2020-11-26
JP2021155420A JP2022084518A (en) 2020-11-26 2021-09-24 Drive structure having shaft joint

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021155420A Division JP2022084518A (en) 2020-11-26 2021-09-24 Drive structure having shaft joint

Publications (2)

Publication Number Publication Date
JP2022084851A true JP2022084851A (en) 2022-06-07
JP7182740B2 JP7182740B2 (en) 2022-12-02

Family

ID=81868349

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021155420A Pending JP2022084518A (en) 2020-11-26 2021-09-24 Drive structure having shaft joint
JP2022049366A Active JP7182740B2 (en) 2020-11-26 2022-03-25 Drive structure with shaft coupling

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021155420A Pending JP2022084518A (en) 2020-11-26 2021-09-24 Drive structure having shaft joint

Country Status (1)

Country Link
JP (2) JP2022084518A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230951U (en) * 1975-08-28 1977-03-04
JP2005273760A (en) * 2004-03-24 2005-10-06 Yamatake Corp Mounting mechanism

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS488991Y1 (en) * 1968-06-05 1973-03-09
JPS4925537Y1 (en) * 1970-03-13 1974-07-10
JP5230951B2 (en) 2007-02-07 2013-07-10 株式会社シマノ Fishing footwear

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230951U (en) * 1975-08-28 1977-03-04
JP2005273760A (en) * 2004-03-24 2005-10-06 Yamatake Corp Mounting mechanism

Also Published As

Publication number Publication date
JP2022084518A (en) 2022-06-07
JP7182740B2 (en) 2022-12-02

Similar Documents

Publication Publication Date Title
EP2537617A1 (en) Segment for a milling tool and milling tool
US20100216585A1 (en) Rolling Ball Type Two-Stage Low Speed Changer Device
US10730118B2 (en) Rotatable cutting tool and key therefor
JP2022084851A (en) Drive structure having shaft joint
US7647852B1 (en) Ratchet screwdriver and connection arrangement
TW201241330A (en) Force application
JP7227428B2 (en) Gear chamfering method
JP5425550B2 (en) Deflection meshing gear device and method for determining tooth profile of flexure meshing gear device
JP6645891B2 (en) Magnetic gear device
JP2013068243A (en) Bearing mounting device
US3400602A (en) Universal high speed ratchet adapter
JP2008057702A (en) Deflective meshing type gear device, housing of deflective meshing type gear device and method of manufacturing internal tooth gear of deflective meshing type gear device
JP6007024B2 (en) Rotation transmission device
JP6624904B2 (en) Resin helical gear
JP4844671B2 (en) Thrust bearing adjustment mechanism
TW201302390A (en) Dual hex pattern open end wrench
CN109154793B (en) Train mechanism for timepiece
US2654262A (en) Fine adjustment device
JP2007099105A (en) Power steering drive device
US20050060903A1 (en) Gear checker apparatus
JPH01228718A (en) Variable addendum hob
JP3523888B2 (en) Ball screw
US2718793A (en) Gear
TWI696770B (en) Hub structure with multi-engagement block
JP2018034376A (en) Screw element assembling auxiliary tool

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220411

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

R150 Certificate of patent or registration of utility model

Ref document number: 7182740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150