JP2022077378A - Dry spray material for firing furnace - Google Patents

Dry spray material for firing furnace Download PDF

Info

Publication number
JP2022077378A
JP2022077378A JP2020188211A JP2020188211A JP2022077378A JP 2022077378 A JP2022077378 A JP 2022077378A JP 2020188211 A JP2020188211 A JP 2020188211A JP 2020188211 A JP2020188211 A JP 2020188211A JP 2022077378 A JP2022077378 A JP 2022077378A
Authority
JP
Japan
Prior art keywords
mass
raw materials
less
spray material
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020188211A
Other languages
Japanese (ja)
Other versions
JP6882587B1 (en
Inventor
篤史 徳富
Atsushi Tokutomi
正徳 古賀
Masanori Koga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2020188211A priority Critical patent/JP6882587B1/en
Application granted granted Critical
Publication of JP6882587B1 publication Critical patent/JP6882587B1/en
Publication of JP2022077378A publication Critical patent/JP2022077378A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

To provide a dry spray material for a firing furnace improved in durability by suppressing physical impact and erosion reaction from matters at the inside of the furnace.SOLUTION: A dry spray material for a firing furnace having a furnace wall temperature of 1,400°C or less comprises one or more kinds selected from powdery alkali silicate and alkali phosphate by 0.2 or more to 10 mass% or less in total, boron carbide by 0.3 or more to 5 mass% or less, and the balance, mainly, one or more kinds selected from alumina raw materials, silica raw materials, alumina-silica raw materials, silicon carbide raw materials, magnesia raw materials, magnesia-calcia raw materials, and refractory raw materials after use comprising at least one kind of these raw materials, and SiO2 components derived from raw materials with a grain size less than 75 μm are comprised by 7 mass% or more in 100 mass% total of the dry spray material.SELECTED DRAWING: None

Description

本発明は、焼却炉、流動床炉、産業廃棄物キルン処理炉、循環流動層(CFB)ボイラ用炉、セメント製造設備用炉、ガス化溶融炉、ストーカ炉等の焼成炉用の乾式吹付材に関する。 The present invention is a dry spray material for incinerators, fluidized bed furnaces, industrial waste kiln treatment furnaces, circulating fluidized bed (CFB) boiler furnaces, cement manufacturing equipment furnaces, gasification melting furnaces, stoker furnaces and other firing furnaces. Regarding.

従来、結合剤としてアルミナセメントを適用した吹付材が知られている(例えば、特許文献1参照)。特許文献1には、その用途として高炉樋、混銑車等のほかにも焼却炉に適用できる旨が記載されている。 Conventionally, a spraying material to which alumina cement is applied as a binder is known (see, for example, Patent Document 1). Patent Document 1 describes that it can be applied to an incinerator in addition to a blast furnace gutter, a torpedo wagon, and the like.

特許第4263917号公報Japanese Patent No. 4263917

焼却炉のように炉内物を熱処理(焼成・焼却)する焼成炉において、その炉壁となる吹付施工体は、炉内で流動している炉内物から物理的な衝撃や侵食反応を受けやすいという問題がある。 In a firing furnace that heat-treats (fires and incinerates) the contents of the furnace like an incinerator, the sprayed construction body that becomes the furnace wall receives physical impact and erosion reaction from the inside of the furnace that is flowing in the furnace. There is a problem that it is easy.

本発明者らは、焼成炉用の吹付材として、結合剤としてアルミナセメントを適用した乾式吹付材を検討したが、吹付施工体の損傷が激しく実用化できなかった。 The present inventors have studied a dry-type spraying material to which alumina cement is applied as a binder as a spraying material for a firing furnace, but the sprayed body is severely damaged and cannot be put into practical use.

本発明が解決しようとする課題は、焼成炉用の乾式吹付材において、炉内物からの物理的な衝撃や侵食反応を抑制し、耐用を向上させることにある。 An object to be solved by the present invention is to suppress physical impact and erosion reaction from the inside of a dry spray material for a firing furnace and improve the durability.

本発明の一観点によれば、次の焼成炉用の乾式吹付材が提供される。
炉壁温度が1400℃以下の焼成炉用の乾式吹付材であって、
粉末状の珪酸アルカリ及びリン酸アルカリのうちの1種又は2種以上を合計で0.2質量%以上10質量%以下、炭化硼素を0.3質量%以上5質量%以下、残部に主として、アルミナ原料、シリカ原料、アルミナ-シリカ質原料、炭化珪素原料、マグネシア原料、マグネシア-カルシア質原料、及びこれらの原料の少なくとも1種を含む使用後耐火物原料から選択される1種又は2種以上を含有し、
当該乾式吹付材の総量100質量%中に、粒径75μm未満の原料由来のSiO成分を7質量%以上含有する、焼成炉用の乾式吹付材。
According to one aspect of the present invention, a drywall spray material for the next firing furnace is provided.
A drywall spray material for firing furnaces with a furnace wall temperature of 1400 ° C or less.
A total of 0.2% by mass or more and 10% by mass or less of one or two or more of powdered alkali silicate and alkali phosphate, 0.3% by mass or more and 5% by mass or less of boron carbide, mainly in the balance. One or more selected from post-use refractory raw materials including alumina raw materials, silica raw materials, alumina-silicic raw materials, silicon carbide raw materials, magnesia raw materials, magnesia-calcia raw materials, and at least one of these raw materials. Contains,
A dry-type spray material for a firing furnace, which contains 7% by mass or more of a SiO 2 component derived from a raw material having a particle size of less than 75 μm in a total amount of 100% by mass of the dry-type spray material.

本発明によれば、詳細は後述するが、主として粒径75μm未満の原料由来のSiO成分と珪酸アルカリ又はリン酸アルカリとの反応によりガラス被膜を形成し、さらに、炭化硼素の表面とガラス被膜とが反応して硼珪酸ガラスを生成することで、原料粒子同士(炭化硼素と他の耐火原料)の結合が強くなり、しかも、高い硬度を有する炭化硼素が残存するため、炉内物からの物理的な衝撃や侵食反応を抑制し、耐用を向上させることができる。 According to the present invention, the details will be described later, but a glass film is formed mainly by the reaction between the SiO 2 component derived from a raw material having a particle size of less than 75 μm and an alkali silicate or an alkali phosphate, and further, the surface of boron carbide and the glass film. By reacting with and to form borosilicate glass, the bonds between the raw material particles (boron carbide and other fire-resistant raw materials) become stronger, and boron carbide with high hardness remains, so from the inside of the furnace. It can suppress physical impact and erosion reaction and improve durability.

本発明の乾式吹付材は、炉壁温度が1400℃以下の焼成炉用の乾式吹付材であって、粉末状の珪酸アルカリ及びリン酸アルカリのうちの1種又は2種以上を合計で0.2質量%以上10質量%以下、炭化硼素を0.3質量%以上5質量%以下含有し、当該乾式吹付材の総量100質量%中に、粒径75μm未満の原料由来のSiO成分を7質量%以上含有することを特徴的な構成要件としている。以下、この特徴的な構成要件による作用効果を説明する。 The dry spray material of the present invention is a dry spray material for a firing furnace having a furnace wall temperature of 1400 ° C. or less, and one or more of powdered alkali silicate and alkali phosphate are used in total of 0. Containing 2% by mass or more and 10% by mass or less, and 0.3% by mass or more and 5% by mass or less of boron carbide, 7 SiO 2 components derived from a raw material having a particle size of less than 75 μm are contained in 100% by mass of the total amount of the dry spray material. It is a characteristic constituent requirement that it contains more than mass%. Hereinafter, the action and effect of this characteristic constituent requirement will be described.

炉壁温度1400℃以下という温度領域において、主として粒径75μm未満の原料由来のSiO成分と、珪酸アルカリ又はリン酸アルカリ由来のアルカリ成分とが反応し、ガラス被膜を形成する。さらに、炭化硼素の表面とガラス被膜とが反応して硼珪酸ガラスを生成し、他の耐火原料と炭化硼素とが強固に接着する。炭化硼素とガラス被膜との反応は炭化硼素粒子の表面のみであるため、吹付施工体中には反応せず残存した炭化硼素が存在する。したがって、粒子同士(炭化硼素と他の耐火原料)の結合が強くなり、しかも、高い硬度を有する炭化硼素が残存するため、吹付施工体の耐摩耗性向上に寄与する。これにより、炉内物からの物理的な衝撃及び侵食反応による吹付施工体の損傷を低減することができる。
なお、1400℃を超える温度領域では、ガラス被膜が溶融するので上述の効果は得られない。そのため、本発明の乾式吹付材の用途は、炉壁温度が1400℃以下の焼成炉用に限定している。炉壁温度は1200℃以下であることが好ましい。炉壁温度の下限は特に限定されず、その焼成炉の焼成温度の下限により決まるが、ガラス被膜生成による効果を確実に得る点から概ね800℃以上であることが好ましい。
In the temperature range of the furnace wall temperature of 1400 ° C. or lower, the SiO 2 component mainly derived from a raw material having a particle size of less than 75 μm reacts with an alkali component derived from an alkali silicate or an alkali phosphate to form a glass film. Further, the surface of boron carbide reacts with the glass film to form borosilicate glass, and other fire-resistant raw materials and boron carbonized bond are firmly adhered to each other. Since the reaction between the boron carbide and the glass coating is only on the surface of the boron carbide particles, there is residual carbonized boron that does not react in the sprayed body. Therefore, the bonds between the particles (boron carbide and other fire-resistant raw materials) become stronger, and boron carbide having high hardness remains, which contributes to the improvement of wear resistance of the sprayed body. As a result, it is possible to reduce damage to the sprayed construction body due to physical impact from the inside of the furnace and erosion reaction.
In the temperature range exceeding 1400 ° C., the glass film melts, so that the above-mentioned effect cannot be obtained. Therefore, the use of the drywall spray material of the present invention is limited to a firing furnace having a furnace wall temperature of 1400 ° C. or lower. The furnace wall temperature is preferably 1200 ° C. or lower. The lower limit of the furnace wall temperature is not particularly limited and is determined by the lower limit of the firing temperature of the firing furnace, but it is preferably about 800 ° C. or higher from the viewpoint of surely obtaining the effect of forming the glass film.

珪酸アルカリ及びリン酸アルカリのうちの1種又は2種以上の含有量が合計で0.2質量%未満であるとガラス被膜生成による効果が得られない。一方、10質量%を超えると、低融物を生成して耐食性が低下する。珪酸アルカリ及びリン酸アルカリのうちの1種又は2種以上の含有量は合計で1質量%以上5質量%以下であることが好ましい。
ここで、珪酸アルカリは、典型的には珪酸ソーダ、珪酸リチウム、珪酸カリウム及び珪酸カルシウムのうちの1種又は2種以上からなる。またリン酸アルカリは、典型的にはリン酸ソーダ、リン酸リチウム、リン酸カリウム及びリン酸カルシウムのうちの1種又は2種以上からなる。
If the total content of one or more of the alkali silicate and the alkali phosphate is less than 0.2% by mass, the effect of forming the glass film cannot be obtained. On the other hand, if it exceeds 10% by mass, a low melt is produced and the corrosion resistance is lowered. The total content of one or more of the alkali silicate and the alkali phosphate is preferably 1% by mass or more and 5% by mass or less.
Here, the alkali silicate typically comprises one or more of sodium silicate, lithium silicate, potassium silicate and calcium silicate. Further, the alkali phosphate is typically composed of one or more of sodium phosphate, lithium phosphate, potassium phosphate and calcium phosphate.

炭化硼素の含有量が0.3質量%未満であると、残存する炭化硼素が少なくなり上述の耐摩耗性向上効果が得られない。また炭化硼素の含有量が5質量%超であると、低融物を生成して耐食性が低下すると共に粒子同士(炭化硼素と他の耐火原料)の結合が強くなり過ぎて耐スポーリング性が低下する。さらにコストが高くなるという問題もある。炭化硼素の含有量は0.5質量%以上3質量%以下であることが好ましい。
また、炭化硼素の粒度構成は、粒径0.5mm未満が50質量%以上であることが好ましい。粒径0.5mm未満が50質量%以上であることにより、吹付施工体中に炭化硼素が万遍なく分散されるため耐摩耗性をさらに向上させることができる。
When the content of boron carbide is less than 0.3% by mass, the amount of boron carbide remaining is small and the above-mentioned effect of improving wear resistance cannot be obtained. If the content of boron carbide is more than 5% by mass, low melt is generated and the corrosion resistance is lowered, and the bonds between the particles (boron carbonized and other refractory raw materials) become too strong and the spalling resistance is improved. descend. There is also the problem of higher costs. The content of boron carbide is preferably 0.5% by mass or more and 3% by mass or less.
Further, it is preferable that the particle size composition of boron carbide is 50% by mass or more when the particle size is less than 0.5 mm. When the particle size of less than 0.5 mm is 50% by mass or more, the boron carbide is evenly dispersed in the sprayed body, so that the wear resistance can be further improved.

本発明の乾式吹付材は、上述のとおり粉末状の珪酸アルカリ及び/又はリン酸アルカリと、炭化硼素を含むが、その残部は、主として、アルミナ原料、シリカ原料、アルミナ-シリカ質原料、炭化珪素原料、マグネシア原料、マグネシア-カルシア質原料、及びこれらの原料の少なくとも1種を含む使用後耐火物原料から選択される1種又は2種以上の耐火原料からなる。なお、残部として挙げた上記の耐火原料は、残部の「主として」であり、残部には上記の耐火原料以外の耐火原料や、珪酸アルカリ及びリン酸アルカリ以外の結合剤(アルミナセメント等)、硬化調整剤(硫酸塩、消石灰等)、爆裂防止剤(有機繊維等)などを適宜含み得る。ただし、アルミナセメントを多量に含有すると水和物が多量に生成することによって、乾燥時の爆裂が起こりやすくなるので、アルミナセメントの含有量は10質量%以下(0を含む。)であることが好ましく、5質量%以下(0を含む。)であることがより好ましい。 As described above, the dry spray material of the present invention contains powdered alkali silicate and / or alkali phosphate and boron carbide, the remainder of which is mainly alumina raw material, silica raw material, alumina-silicic raw material, silicon carbide. It comprises one or more refractory raw materials selected from post-use refractory raw materials including raw materials, magnesia raw materials, magnesia-silicic raw materials, and at least one of these raw materials. The above-mentioned fire-resistant raw material mentioned as the balance is "mainly" of the balance, and the balance includes fire-resistant raw materials other than the above-mentioned fire-resistant raw materials, binders other than alkali silicate and alkali phosphate (alumina cement, etc.), and hardening. A modifier (sulfate, slaked lime, etc.), an explosion inhibitor (organic fiber, etc.) and the like may be appropriately contained. However, if a large amount of alumina cement is contained, a large amount of hydrate is generated, which tends to cause explosion during drying. Therefore, the content of alumina cement may be 10% by mass or less (including 0). It is preferably 5% by mass or less (including 0), more preferably.

このような乾式吹付材の総量100質量%中の、粒径75μm未満の原料由来のSiO成分の含有量が7質量%未満であると、上述のガラス被膜生成による効果及び耐摩耗性向上効果が得られない。粒径75μm未満の原料由来のSiO成分含有量の上限は、ガラス被膜生成という観点からは特に限定する必要はないが、吹付施工体の性状のバランスを考慮すると概ね40質量%以下とすることができる。また、粒径75μm未満の原料由来のSiO成分含有量の好ましい範囲は、15質量%以上35質量%以下である。
ここで、粒径75μm未満の原料由来のSiO成分は、粒径75μm未満の耐火原料(炭化硼素、アルミナ原料、アルミナ-シリカ質原料、シリカ質原料等)及びその他原料(硬化調整剤等)に含まれる主成分又は不純物成分としてのSiO成分、並びに粒径75μm未満の珪酸アルカリ及びリン酸アルカリに含まれる主成分又は不純物成分としてのSiO成分の合量であり、これは乾式吹付材の原料配合により特定することができる。
When the content of the SiO 2 component derived from the raw material having a particle size of less than 75 μm is less than 7% by mass in the total amount of 100% by mass of the drywall spray material, the effect of forming the glass film and the effect of improving the wear resistance are improved. Cannot be obtained. The upper limit of the content of the SiO 2 component derived from the raw material having a particle size of less than 75 μm is not particularly limited from the viewpoint of forming a glass film, but it should be approximately 40% by mass or less in consideration of the balance of the properties of the sprayed body. Can be done. Further, the preferable range of the SiO 2 component content derived from the raw material having a particle size of less than 75 μm is 15% by mass or more and 35% by mass or less.
Here, the SiO 2 component derived from a raw material having a particle size of less than 75 μm includes a fire-resistant raw material having a particle size of less than 75 μm (borin dioxide, an alumina raw material, an alumina-silicic raw material, a siliceous raw material, etc.) and other raw materials (curing modifier, etc.). It is the total amount of the SiO 2 component as the main component or the impurity component contained in the above, and the SiO 2 component as the main component or the impurity component contained in the alkali silicate and the alkali phosphate having a particle size of less than 75 μm, which is a dry spray material. It can be specified by the composition of raw materials.

本発明の焼成炉用の乾式吹付材は、乾式吹付施工方法によって焼成炉へ吹付施工される。乾式吹付施工方法とは周知のとおり、吹付ノズルの先端部において乾粉状の吹付材(乾式吹付材)に水を添加して吹き付ける施工方法である。その添加水量は、乾式吹付材の吹付軟度が適切な範囲となるように適宜決定すればよいが、乾式吹付材の総量100質量%に対して外掛けで概ね10質量%以上15質量%以下である。 The dry-type spraying material for a firing furnace of the present invention is sprayed onto a firing furnace by a dry-type spraying method. As is well known, the dry spray construction method is a construction method in which water is added to a dry powder spray material (dry spray material) at the tip of a spray nozzle and sprayed. The amount of added water may be appropriately determined so that the spray softness of the drywall spray material is within an appropriate range, but is approximately 10% by mass or more and 15% by mass or less with respect to the total amount of 100% by mass of the drywall spray material. Is.

表1に示す各例の乾式吹付材について、耐摩耗性、耐食性及び耐スポーリング性を評価し、これらの評価結果に基づき総合評価を行った。また、実施例8と比較例1については実炉試験に供した。なお、表1において、「珪酸アルカリ」とは、珪酸ソーダ、珪酸リチウム、珪酸カリウム及び珪酸カルシウムのうちの1種又は2種以上であり、「リン酸アルカリ」とは、リン酸ソーダ、リン酸リチウム、リン酸カリウム及びリン酸カルシウムのうちの1種又は2種以上である。 The drywall spray materials of each example shown in Table 1 were evaluated for wear resistance, corrosion resistance and spalling resistance, and a comprehensive evaluation was performed based on these evaluation results. Further, Example 8 and Comparative Example 1 were subjected to an actual furnace test. In Table 1, "alkali silicate" is one or more of sodium silicate, lithium silicate, potassium silicate and calcium silicate, and "alkali phosphate" is sodium phosphate and phosphoric acid. One or more of lithium, potassium phosphate and calcium phosphate.

Figure 2022077378000001
Figure 2022077378000001

各評価項目の評価方法及び評価基準は以下のとおりである。
<耐摩耗性>
適切な吹付軟度を想定した水量で混錬し、成形した試料を焼成炉の炉壁温度を想定した焼成温度(表1参照)で焼成した後、サンドブラストで摩耗量を評価した。
摩耗量が10cc未満の場合を〇(優良)、10cc以上15cc未満の場合を△(良好)、15cc以上の場合を×(不良)とした。
The evaluation methods and evaluation criteria for each evaluation item are as follows.
<Abrasion resistance>
The sample was kneaded with an amount of water assuming an appropriate spray softness, and the molded sample was fired at a firing temperature (see Table 1) assuming the furnace wall temperature of the firing furnace, and then the amount of wear was evaluated by sandblasting.
When the amount of wear was less than 10 cc, it was evaluated as 〇 (excellent), when it was 10 cc or more and less than 15 cc, it was evaluated as Δ (good), and when it was 15 cc or more, it was evaluated as × (defective).

<耐食性>
適切な吹付軟度を想定した水量で混練し、るつぼ形状に成形し、焼成炉の炉壁温度を想定した焼成温度(表1参照)で焼成した後、るつぼに侵食剤を30g入れ、さらに上述の炉壁温度を想定した焼成温度で12時間加熱し、侵食状態を確認した。侵食剤としては、CaO:60質量%、MgO:10質量%、KO:10質量%、P:20質量%の合成スラグを用いた。各例の最大溶損面積を測定し、実施例3を100とした相対値を求めた。この相対値が小さいほど耐食性に優れるということである。
この相対値が100未満の場合を〇(優良)、100以上120未満の場合を△(良好)、120以上の場合を×(不良)とした。
<Corrosion resistance>
After kneading with an amount of water assuming appropriate spray softness, forming into a crucible shape, and firing at a firing temperature (see Table 1) assuming the furnace wall temperature of the firing furnace, 30 g of an erosion agent is added to the crucible, and further described above. It was heated for 12 hours at a firing temperature assuming the furnace wall temperature of the crucible, and the erosion state was confirmed. As the erosion agent, synthetic slag having CaO: 60% by mass, MgO: 10% by mass, K2O: 10% by mass, and P2O 5 : 20 % by mass was used. The maximum melting area of each example was measured, and a relative value was obtained with Example 3 as 100. The smaller this relative value is, the better the corrosion resistance is.
When the relative value is less than 100, it is evaluated as 〇 (excellent), when it is 100 or more and less than 120, it is evaluated as Δ (good), and when it is 120 or more, it is evaluated as × (poor).

<耐スポーリング性>
適切な吹付軟度を想定した水量で混練し、成形した試料を焼成炉の炉壁温度を想定した焼成温度(表1参照)の雰囲気に15分、空冷15分を10回繰り返し、亀裂の度合いにより評価した。
亀裂無し又は亀裂幅が1mm以内の場合を○(優良)、亀裂幅が1mm超2mm以下の場合を△(良好)、亀裂幅が2mm超の場合を×(不良)とした。
<Spalling resistance>
Knead the sample with an amount of water assuming an appropriate spraying softness, and repeat 10 times for 15 minutes and 15 minutes of air cooling in an atmosphere of firing temperature (see Table 1) assuming the furnace wall temperature of the firing furnace, and the degree of cracking. Evaluated by.
The case where there was no crack or the crack width was within 1 mm was evaluated as ◯ (excellent), the case where the crack width was more than 1 mm and 2 mm or less was evaluated as Δ (good), and the case where the crack width was more than 2 mm was evaluated as × (poor).

<総合評価>
全ての評価が○の場合を〇(優良)、×がなくいずれか1つでも△がある場合を△(良好)、いずれか1つでも×がある場合を×(不良)とした。
<Comprehensive evaluation>
When all the evaluations were ○, it was evaluated as 〇 (excellent), when there was no × and any one had Δ, it was evaluated as Δ (good), and when any one of them had ×, it was evaluated as × (poor).

<実炉評価>
炉壁温度が1200℃の焼成炉の炉壁として2ケ月使用後、10カ所ランダムに測定した平均値において、元の施工厚に対して残存厚みが90%以上の場合を〇(合格)、90%未満の場合を×(不合格)とした。
<Actual furnace evaluation>
After using it as a furnace wall for a baking furnace with a furnace wall temperature of 1200 ° C for 2 months, if the remaining thickness is 90% or more of the original construction thickness in the average value measured randomly at 10 locations, it is 〇 (pass), 90. If it was less than%, it was marked as x (failed).

表1中、実施例1~12は本発明の範囲内にある乾式吹付材である。これらの総合評価は〇(優良)又は△(良好)であり、耐摩耗性、耐食性、耐スポーリング性のいずれも良好な評価が得られた。なかでも実施例8~11は、珪酸アルカリ及びリン酸アルカリの含有量、炭化硼素の含有量、炭化硼素の粒度構成、及び粒径75μm未満の原料由来のSiO成分の含有量が上述の好ましい範囲内にある乾式吹付材である。その総合評価は〇(優良)であり、その他の実施例に比べてより良好な評価が得られた。 In Table 1, Examples 1 to 12 are drywall spray materials within the scope of the present invention. These comprehensive evaluations were 〇 (excellent) or Δ (good), and good evaluations were obtained in all of wear resistance, corrosion resistance, and spalling resistance. Among them, in Examples 8 to 11, the above-mentioned preferable contents are the content of alkali silicate and alkali phosphate, the content of boron carbide, the particle size composition of boron carbide, and the content of SiO 2 component derived from a raw material having a particle size of less than 75 μm. It is a dry spray material within the range. The overall evaluation was 〇 (excellent), and a better evaluation was obtained as compared with the other examples.

比較例1は、炭化硼素の含有量が少ない例であり、耐摩耗性の評価が×(不良)となった。
一方、比較例2は、炭化硼素の含有量が多い例であり、耐食性及び耐スポーリング性の評価が×(不良)となった。
Comparative Example 1 is an example in which the content of boron carbide is small, and the evaluation of wear resistance is × (defective).
On the other hand, Comparative Example 2 was an example in which the content of boron carbide was high, and the evaluation of corrosion resistance and spalling resistance was x (poor).

比較例3は、粒径75μm未満の原料由来のSiO成分の含有量が少ない例であり、耐摩耗性及び耐食性の評価が×(不良)となった。 Comparative Example 3 is an example in which the content of the SiO 2 component derived from a raw material having a particle size of less than 75 μm is small, and the evaluation of wear resistance and corrosion resistance is × (defective).

比較例4は、珪酸アルカリ及びリン酸アルカリを含有しない例であり、耐摩耗性の評価が×(不良)となった。
一方、比較例5は、珪酸アルカリの含有量が多い例であり、耐食性の評価が×(不良)となった。
Comparative Example 4 is an example in which the alkali silicate and the alkali phosphate are not contained, and the evaluation of wear resistance is × (defective).
On the other hand, Comparative Example 5 is an example in which the content of alkali silicate is high, and the evaluation of corrosion resistance is × (poor).

比較例6は、焼成炉の炉壁温度を想定した焼成温度が高い例であり、耐食性の評価が×(不良)となった。 Comparative Example 6 is an example in which the firing temperature assuming the furnace wall temperature of the firing furnace is high, and the evaluation of corrosion resistance is × (defective).

Claims (3)

炉壁温度が1400℃以下の焼成炉用の乾式吹付材であって、
粉末状の珪酸アルカリ及びリン酸アルカリのうちの1種又は2種以上を合計で0.2質量%以上10質量%以下、炭化硼素を0.3質量%以上5質量%以下、残部に主として、アルミナ原料、シリカ原料、アルミナ-シリカ質原料、炭化珪素原料、マグネシア原料、マグネシア-カルシア質原料、及びこれらの原料の少なくとも1種を含む使用後耐火物原料から選択される1種又は2種以上を含有し、
当該乾式吹付材の総量100質量%中に、粒径75μm未満の原料由来のSiO成分を7質量%以上含有する、焼成炉用の乾式吹付材。
A drywall spray material for firing furnaces with a furnace wall temperature of 1400 ° C or less.
A total of 0.2% by mass or more and 10% by mass or less of one or two or more of powdered alkali silicate and alkali phosphate, 0.3% by mass or more and 5% by mass or less of boron carbide, mainly in the balance. One or more selected from post-use refractory raw materials including alumina raw materials, silica raw materials, alumina-silicic raw materials, silicon carbide raw materials, magnesia raw materials, magnesia-calcia raw materials, and at least one of these raw materials. Contains,
A dry-type spray material for a firing furnace, which contains 7% by mass or more of a SiO 2 component derived from a raw material having a particle size of less than 75 μm in a total amount of 100% by mass of the dry-type spray material.
前記珪酸アルカリ及びリン酸アルカリのうちの1種又は2種以上の含有量が合計で1質量%以上5質量%以下、前記炭化硼素の含有量が0.5質量%以上3質量%以下、当該乾式吹付材の総量100質量%中の、粒径75μm未満の原料由来のSiO成分の含有量が15質量%以上35質量%以下である、請求項1に記載の焼成炉用の乾式吹付材。 The total content of one or more of the alkali silicate and the alkali phosphate is 1% by mass or more and 5% by mass or less, and the content of the boron carbide is 0.5% by mass or more and 3% by mass or less. The dry spray material for a firing furnace according to claim 1, wherein the content of the SiO 2 component derived from a raw material having a particle size of less than 75 μm is 15% by mass or more and 35% by mass or less in the total amount of the dry spray material of 100% by mass. .. 前記炭化硼素の粒度構成は、粒径0.5mm未満が50質量%以上である、請求項1又は2に記載の焼成炉用の乾式吹き付け材。 The drywall spray material for a firing furnace according to claim 1 or 2, wherein the particle size composition of the boron carbide is 50% by mass or more when the particle size is less than 0.5 mm.
JP2020188211A 2020-11-11 2020-11-11 Dry spray material for firing pots Active JP6882587B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020188211A JP6882587B1 (en) 2020-11-11 2020-11-11 Dry spray material for firing pots

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020188211A JP6882587B1 (en) 2020-11-11 2020-11-11 Dry spray material for firing pots

Publications (2)

Publication Number Publication Date
JP6882587B1 JP6882587B1 (en) 2021-06-02
JP2022077378A true JP2022077378A (en) 2022-05-23

Family

ID=76083946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020188211A Active JP6882587B1 (en) 2020-11-11 2020-11-11 Dry spray material for firing pots

Country Status (1)

Country Link
JP (1) JP6882587B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7024147B1 (en) * 2021-08-06 2022-02-22 黒崎播磨株式会社 Dry spraying material for firing furnaces

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327436A (en) * 1999-05-11 2000-11-28 Asahi Glass Co Ltd Monolithic refractory and waste melting furnace using the same
JP2001302362A (en) * 2000-04-21 2001-10-31 Shinagawa Refract Co Ltd Monolithic refractory and method of executing the same
JP2003171184A (en) * 2001-09-28 2003-06-17 Nippon Steel Corp SiC FOR MONOLITHIC REFRACTORY HAVING EXCELLENT CORROSION RESISTANCE, SPALLING RESISTANCE AND DRYNESS, PRODUCTION METHOD THEREFOR, AND RAW MATERIAL FOR THE MONOLITHIC REFRACTORY
WO2005121676A1 (en) * 2004-06-07 2005-12-22 Krosakiharima Corporation Method of spray application of monolithic refractory, spray material for use therein, and application apparatus
JP2007039255A (en) * 2005-07-29 2007-02-15 Kurosaki Harima Corp Spraying material for repairing lining of steelmaking electric furnace and method for repairing lining of steelmaking electric furnace using the same
JP2010235342A (en) * 2009-03-30 2010-10-21 Kurosaki Harima Corp Monolithic refractory for blast furnace iron spout
WO2017146254A1 (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 Precast-block refractory for coke oven
JP2018052752A (en) * 2016-09-26 2018-04-05 黒崎播磨株式会社 Monolithic refractory for use in extending work of blast furnace trough and its construction method
JP2020055710A (en) * 2018-10-02 2020-04-09 黒崎播磨株式会社 Dry type spray material for hot working, and hot working dry type spray construction method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327436A (en) * 1999-05-11 2000-11-28 Asahi Glass Co Ltd Monolithic refractory and waste melting furnace using the same
JP2001302362A (en) * 2000-04-21 2001-10-31 Shinagawa Refract Co Ltd Monolithic refractory and method of executing the same
JP2003171184A (en) * 2001-09-28 2003-06-17 Nippon Steel Corp SiC FOR MONOLITHIC REFRACTORY HAVING EXCELLENT CORROSION RESISTANCE, SPALLING RESISTANCE AND DRYNESS, PRODUCTION METHOD THEREFOR, AND RAW MATERIAL FOR THE MONOLITHIC REFRACTORY
WO2005121676A1 (en) * 2004-06-07 2005-12-22 Krosakiharima Corporation Method of spray application of monolithic refractory, spray material for use therein, and application apparatus
JP2007039255A (en) * 2005-07-29 2007-02-15 Kurosaki Harima Corp Spraying material for repairing lining of steelmaking electric furnace and method for repairing lining of steelmaking electric furnace using the same
JP2010235342A (en) * 2009-03-30 2010-10-21 Kurosaki Harima Corp Monolithic refractory for blast furnace iron spout
WO2017146254A1 (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 Precast-block refractory for coke oven
JP2018052752A (en) * 2016-09-26 2018-04-05 黒崎播磨株式会社 Monolithic refractory for use in extending work of blast furnace trough and its construction method
JP2020055710A (en) * 2018-10-02 2020-04-09 黒崎播磨株式会社 Dry type spray material for hot working, and hot working dry type spray construction method

Also Published As

Publication number Publication date
JP6882587B1 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP6882587B1 (en) Dry spray material for firing pots
JP7024147B1 (en) Dry spraying material for firing furnaces
GB2147893A (en) Method of manufacturing refractory bodies or compositions
KR102228508B1 (en) Ceramic welding composition with high durability
JP6756794B2 (en) Hot dry spray material and hot dry spray construction method
KR20090095294A (en) Refractories for industrial iron and steel
KR101489381B1 (en) Refractory composition and furnace runner cover of using it
JP5896515B2 (en) Indeterminate refractories for dry spraying
JPS6215508B2 (en)
JP2021031319A (en) Dry spraying material for fluidized bed furnace
JP3103523B2 (en) Thermal spray material
JP2004352600A (en) Chromium-free monolithic refractory for waste melting furnace and waste melting furnace using the same for lining
JPH0648846A (en) Hot repairing spraying material for converter under less slag operation
JP6280427B2 (en) Refractory for spray construction
JP7202245B2 (en) Brick lining for calcium phosphate firing furnace
JP2549035B2 (en) Fireproof powder for thermal spraying
JPS62176963A (en) Filling material around blast furnace tapping hole constructed by flow-in
JPH0648844A (en) Hot repairing spraying material for converter under less slag operation
JPH01131077A (en) Lance-coating material
JP2001058879A (en) Substrate-treating agent for material for spray- repairing blast furnace gutter, material for spray- repairing blast furnace gutter, and spray application of blast furnace gutter
JP2024044395A (en) Thermal spray material powder
JP3470588B2 (en) Powder mixture for flame spray repair
KR19980051172A (en) Basic dry-ning fireproof composition with excellent corrosion resistance and adhesion
JPH11199333A (en) Repairing material for thermal spraying
JPS60157857A (en) Manufacture of unburned fire brick

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201209

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201209

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210506

R150 Certificate of patent or registration of utility model

Ref document number: 6882587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250