JP2022076233A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2022076233A
JP2022076233A JP2020186556A JP2020186556A JP2022076233A JP 2022076233 A JP2022076233 A JP 2022076233A JP 2020186556 A JP2020186556 A JP 2020186556A JP 2020186556 A JP2020186556 A JP 2020186556A JP 2022076233 A JP2022076233 A JP 2022076233A
Authority
JP
Japan
Prior art keywords
pipe
ultrasonic
flow rate
head portion
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020186556A
Other languages
Japanese (ja)
Other versions
JP7475047B2 (en
Inventor
勝 白石
Masaru Shiraishi
桂司 和田崎
Keiji Wadasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ICT Co Ltd
Original Assignee
ICT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ICT Co Ltd filed Critical ICT Co Ltd
Priority to JP2020186556A priority Critical patent/JP7475047B2/en
Publication of JP2022076233A publication Critical patent/JP2022076233A/en
Application granted granted Critical
Publication of JP7475047B2 publication Critical patent/JP7475047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

To provide an ultrasonic flowmeter capable of deriving an accurate flow rate even in piping having an unknown flow path cross-section due to rust and scale adhered to an inner surface thereof.SOLUTION: An ultrasonic flowmeter provided herein is configured to radially transmit ultrasonic waves W1, W2 from a head 3 thereof inserted to piping P to reach an axial center Lp thereof, and derive a total flow rate by measuring radial distances to a surrounding inner wall surface 10 and adding up flow rates.SELECTED DRAWING: Figure 1

Description

本発明は、超音波流量計に関する。 The present invention relates to an ultrasonic flow meter.

従来、図10に示すように、配管55内の流量を算出する超音波流量計は、流体の流れ方向51に対して斜めに対面状に配設される一対の超音波センサ52,53を備え、上流側の第1超音波センサ52から発信された第1超音波V1 が、流体の流れに乗って、下流側の第2超音波センサ53に受信されるまでの第1伝播(伝搬)時間を計測し、かつ、下流側の第2超音波センサ53から発信された第2超音波V2 が、流体の流れに逆らって、上流側の第1超音波センサ52に受信されるまでの第2伝播(伝搬)時間を計測し、第1伝播時間と第2伝播時間の差分から流速を求め、該求めた流速に基づいて流量を算出するトランジットタイム計測式の超音波流量計が公知である(例えば、特許文献1参照)。 Conventionally, as shown in FIG. 10, the ultrasonic flow meter for calculating the flow rate in the pipe 55 includes a pair of ultrasonic sensors 52 and 53 arranged diagonally and face-to-face with respect to the flow direction 51 of the fluid. , The first propagation (propagation) until the first ultrasonic wave V 1 transmitted from the first ultrasonic sensor 52 on the upstream side is received by the second ultrasonic sensor 53 on the downstream side on the flow of fluid. The time is measured and the second ultrasonic wave V 2 transmitted from the second ultrasonic sensor 53 on the downstream side is received by the first ultrasonic sensor 52 on the upstream side against the flow of fluid. A transit time measurement type ultrasonic flowmeter that measures the second propagation (propagation) time, obtains the flow velocity from the difference between the first propagation time and the second propagation time, and calculates the flow rate based on the obtained flow velocity is known. (See, for example, Patent Document 1).

また、従来、トランジットタイム計測式の超音波流量計として、図11に示す如く、流体が流れる配管55内に測定ユニット56を配管軸心に直交する方向から配管55内に挿入(差込み)して保持し、計測を行うものが知られている(特許文献2参照)。即ち、図11に於て、S1 が第1超音波センサ、S2 が第2超音波センサであり、反射板58にて、第1・第2超音波センサS1 ,S2 からの超音波を反射して、その反射した超音波を、第2・第1超音波センサS2 ,S1 で受信し、流速を計測するものである。さらに、従来から、図12に示すように、第1超音波センサS1 と第2超音波センサS2 を測定路(窓部)61の上端面61Aに設けると共に、下端面61Bを超音波の反射面とした測定ユニット57を、配管軸心Lp に直交する方向から深く配管55内に差込み、流速を計測する装置が公知であった。 Further, conventionally, as a transit time measurement type ultrasonic flow meter, as shown in FIG. 11, the measuring unit 56 is inserted (inserted) into the pipe 55 from the direction orthogonal to the pipe axis in the pipe 55 through which the fluid flows. Those that hold and measure are known (see Patent Document 2). That is, in FIG. 11, S 1 is a first ultrasonic sensor and S 2 is a second ultrasonic sensor. A sound wave is reflected, and the reflected ultrasonic wave is received by the second and first ultrasonic sensors S2 and S1, and the flow velocity is measured. Further, conventionally, as shown in FIG. 12, a first ultrasonic sensor S 1 and a second ultrasonic sensor S 2 are provided on the upper end surface 61A of the measurement path (window portion) 61, and the lower end surface 61B is provided with ultrasonic waves. A device for measuring a flow velocity by inserting a measurement unit 57 as a reflective surface deeply into a pipe 55 from a direction orthogonal to the pipe axis Lp has been known.

特開昭59-9518号公報Japanese Unexamined Patent Publication No. 59-9518 特開平11-201790号公報Japanese Unexamined Patent Publication No. 11-201790

しかし、図10~図12、及び、上記特許文献1,2に示された超音波流量計は、いずれも、配管内の流路全体の断面積のほんの僅かな一部位についてのみ平均流速を求め、その平均流速に流路の横断面積を乗じて、流量を算出していたため、(配管内を流れる)全体の流量を精度良く算出できなかった。 However, in each of the ultrasonic flowmeters shown in FIGS. 10 to 12 and Patent Documents 1 and 2 above, the average flow velocity is obtained only for a small part of the cross-sectional area of the entire flow path in the pipe. Since the flow rate was calculated by multiplying the average flow velocity by the cross-sectional area of the flow path, the total flow rate (flowing in the pipe) could not be calculated accurately.

しかも、上記流路横断面積自体が、配管内面への錆・スケール等の付着に伴って、経年変化している場合には、全体流量の算出値は、さらに不正確となるという問題があった。
また、配管記録(ドキュメント)が紛失する等によって、配管の内径寸法が不明である場合には、流量を算出できないという問題が発生する。
Moreover, if the cross-sectional area of the flow path itself changes over time due to rust, scale, etc. adhering to the inner surface of the pipe, there is a problem that the calculated value of the total flow rate becomes more inaccurate. ..
In addition, if the inner diameter of the pipe is unknown due to loss of the pipe record (document), there arises a problem that the flow rate cannot be calculated.

そこで、本発明は、配管内面への錆・スケール等が付着して流路横断面積が変化していたり、上記ドキュメント紛失に伴って配管の内径寸法が不明───従って流路横断面積が不明───であっても、精度良く流量を算出できる超音波計を提供することを目的とする。 Therefore, in the present invention, the inner diameter of the pipe is unknown due to rust, scale, etc. adhering to the inner surface of the pipe and the cross-channel area of the flow path is changed, or the inner diameter of the pipe is unknown due to the loss of the above document. Even if it is ───, the purpose is to provide an ultrasonic meter that can calculate the flow rate with high accuracy.

本発明に係る超音波流量計は、配管の周囲壁に設けられている孔部から配管軸心に直交する方向に差込まれる挿入細管と、該挿入細管の先端に設けられたヘッド部とを、備えた超音波流量計に於て;上記ヘッド部は、上流側の第1超音波センサと下流側の第2超音波センサから成るセンサユニットを複数具備し;上記複数のセンサユニットは、ヘッド軸心廻りに等分配角度をもって、配設され;上記ヘッド軸心を上記配管軸心に略一致させるように上記挿入細管とヘッド部を配管内へ差込んだ流量測定姿勢において、上記ヘッド部の複数の上記センサユニットから配管の周囲壁内面に対して、超音波を放射線状に発信し、上記周囲壁内面から反射した各超音波を受信し、上記ヘッド部から上記周囲壁内面までの各周方向位置毎の半径方向距離を測定すると共に;上記等分配角度を中心角度とする略扇型の分割区域の各流路面積及び各流量を算出し;各流量を合算して、配管全体の流量を求めるように構成した。 The ultrasonic flow meter according to the present invention has an insertion thin tube inserted in a direction orthogonal to the pipe axis from a hole provided in the peripheral wall of the pipe, and a head portion provided at the tip of the insertion thin tube. The head portion includes a plurality of sensor units including a first ultrasonic sensor on the upstream side and a second ultrasonic sensor on the downstream side; the plurality of sensor units are heads. The head portion is arranged around the axis with an equal distribution angle; in the flow measurement posture in which the insertion thin tube and the head portion are inserted into the pipe so that the head axis is substantially aligned with the pipe axis. Ultrasonic waves are radially transmitted from the plurality of sensor units to the inner surface of the peripheral wall of the pipe, each ultrasonic wave reflected from the inner surface of the peripheral wall is received, and each circumference from the head portion to the inner surface of the peripheral wall. While measuring the radial distance for each directional position; calculate each flow path area and each flow rate of the substantially fan-shaped divided area with the above equal distribution angle as the center angle; add up each flow rate and flow rate of the entire pipe. Was configured to ask for.

本発明によれば、高精度な流量計測が可能となる。特に、配管の内面に錆・スケールが付着して配管の内部断面積が減少したり、あるいは逆に、セメントライニング管等で内部断面積が増加していても、高精度に全体の流量を算出できる。さらには、ドキュメント紛失等で内径不明の配管(内径不明管)であっても、正確に流量測定が可能である。 According to the present invention, highly accurate flow rate measurement is possible. In particular, even if rust or scale adheres to the inner surface of the pipe and the internal cross-sectional area of the pipe decreases, or conversely, the internal cross-sectional area of the cement lining pipe increases, the overall flow rate is calculated with high accuracy. can. Furthermore, even if the inner diameter of the pipe is unknown (inner diameter unknown pipe) due to loss of a document or the like, the flow rate can be accurately measured.

本発明の実施の一形態を示し、配管軸心方向から見た一部断面図である。An embodiment of the present invention is shown, and is a partial cross-sectional view seen from the direction of the pipe axis. 超音波流量計の全体の正面図である。It is a front view of the whole ultrasonic flow meter. 使用状態を示した一部断面側面図である。It is a partial cross-sectional side view which showed the use state. 超音波流量計の全体の側面図である。It is a side view of the whole ultrasonic flow meter. 要部拡大説明図である。It is an enlarged explanatory view of a main part. 要部拡大説明図である。It is an enlarged explanatory view of a main part. 要部拡大一部断面正面図である。It is a front view of a partial cross section of an enlarged part of the main part. 要部拡大一部断面側面図である。It is a side view of a partial cross section of an enlarged part of the main part. 本発明のトランジット式超音波計測方法についての基本原理を説明するグラフ図である。It is a graph which explains the basic principle about the transit type ultrasonic measurement method of this invention. 一つの従来例を示す断面説明図である。It is sectional drawing which shows one conventional example. 他の従来例を示す図であって、(A)は一部断面正面図、(B)は一部断面側面図である。It is a figure which shows the other conventional example, (A) is a partial sectional front view, (B) is a partial sectional side view. 別の従来例を示す図であって、(A)は一部断面正面図、(B)は作用説明図である。It is a figure which shows another conventional example, (A) is a partial sectional front view, (B) is an operation explanatory view.

以下、図示の実施の形態に基づき本発明を詳説する。
本発明に係る超音波流量計は、(温度計によって)水温を予め測定し、該当水温における水中音速を(水中音速データに基づいて)求める。その後、超音波の伝播(伝搬)時間を計測し、さらに計測した流速に基づいて流量を算出(演算)するトランジットタイム計測式(伝播時間差式)を活用しつつ、以下、説明するように、その測定精度等を著しく向上させた流量計である。
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
The ultrasonic flow meter according to the present invention measures the water temperature in advance (by a thermometer) and obtains the underwater sound velocity at the corresponding water temperature (based on the underwater sound velocity data). After that, while utilizing the transit time measurement formula (propagation time difference formula) that measures the propagation (propagation) time of ultrasonic waves and calculates (calculates) the flow rate based on the measured flow velocity, as described below. It is a flow meter with significantly improved measurement accuracy.

図1~図8に於て、配管Pの周囲壁1に予め形成された(消火栓や空気弁等の)孔部11から、配管軸心Lp に直交する方向に差込まれる挿入細管5と、この挿入細管5の先端に設けられたヘッド部3とを、備えている。この挿入細管5の基端(上端)には、ハンドル部材20と制御ボックス21とを有し、このボックス21内に(図外の)制御部との接続用コネクタ等が内設されている。
そして、ヘッド部3には、上流側の第1超音波センサS1 と、下流側の第2超音波センサS2 から成るセンサユニットSy を、複数、備えている。
In FIGS. 1 to 8, an insertion thin tube 5 inserted in a direction orthogonal to the pipe axis Lp from a hole 11 (such as a fire hydrant or an air valve) previously formed in the peripheral wall 1 of the pipe P. A head portion 3 provided at the tip of the insertion thin tube 5 is provided. A handle member 20 and a control box 21 are provided at the base end (upper end) of the insertion thin tube 5, and a connector or the like for connecting to a control unit (not shown) is internally provided in the box 21.
The head portion 3 is provided with a plurality of sensor units Sy including a first ultrasonic sensor S1 on the upstream side and a second ultrasonic sensor S2 on the downstream side.

各センサユニットSy における第1超音波センサS1 と第2超音波センサS2 は、配管軸心Lp に平行な方向に沿って、上流側・下流側に、配設される。
しかも、複数のセンサユニットSy は、ヘッド軸心L3 廻りに、等分配角度βをもって、配設されている(図5,図7参照)。
The first ultrasonic sensor S 1 and the second ultrasonic sensor S 2 in each sensor unit Sy are arranged on the upstream side and the downstream side along the direction parallel to the pipe axis Lp.
Moreover, the plurality of sensor units Sy are arranged around the head axis L3 with an equidistributed angle β (see FIGS. 5 and 7).

ところで、配管P内に挿入されたヘッド部3の軸心L3 は、配管Pの軸心Lp に、略一致させる。従って、複数のセンサユニットSy は、配管軸心Lp 廻りに、等分配角度βをもって、配設されていると、言うこともできる。 By the way, the axis L 3 of the head portion 3 inserted in the pipe P is substantially aligned with the axis Lp of the pipe P. Therefore, it can be said that the plurality of sensor units Sy are arranged around the pipe axis Lp with an equidistributed angle β.

ところで、図5~図8に示す図例に於ては、軸心L3 ,Lp の方向から見て、ヘッド部3は、正八角形の場合を示す。その正八角形の内で、一辺3Aは、挿入細管5の下端と、連結される構造であるため、センサユニットSy は配設できない。従って、本発明の説明に於て、センサユニットSy を、ヘッド軸心L3 廻りに等分配角度βをもって、配設するとは、全ての等分配角度に配設する場合に限らず、全ての等分配角度の内の一つに配設しない場合をも、包含するものと定義する。 By the way, in the illustrations shown in FIGS. 5 to 8, the head portion 3 shows the case of a regular octagon when viewed from the directions of the axial centers L 3 and Lp. Since the side 3A of the regular octagon has a structure connected to the lower end of the insertion tube 5, the sensor unit Sy cannot be arranged. Therefore, in the description of the present invention, disposing the sensor unit Sy around the head axis L 3 with an equidistributed angle β is not limited to the case where the sensor unit S is arranged at all equidistributed angles, but all the same. It is also defined as including the case where it is not arranged in one of the distribution angles.

そして、ヘッド軸心L3 を配管軸心Lp に略一致させるように、挿入細管5とヘッド部3を、配管P内へ差込んだ流量測定姿勢において、ヘッド部3の複数(図例では7個)のセンサユニットSy から、配管Pの周囲壁内面10に対して、第1超音波W1 と第2超音波W2 を、放射線状に発信し、周囲壁内面10から反射した各超音波W1 ,W2 を受信する。 Then, in a flow measurement posture in which the insertion capillary tube 5 and the head portion 3 are inserted into the pipe P so that the head axis L 3 substantially coincides with the pipe axis Lp, a plurality of head portions 3 (7 in the figure). The first ultrasonic wave W 1 and the second ultrasonic wave W 2 are radially transmitted from the sensor unit Sy of the sensor unit S to the inner surface 10 of the surrounding wall of the pipe P, and each ultrasonic wave reflected from the inner surface 10 of the surrounding wall. Receives W 1 and W 2 .

このようにして、ヘッド部3から周囲壁内面10までの(各周方向位置毎の)半径方向距離を測定すると共に、(前述した)等分配角度βを中心角度θとする略扇型───ショートケーキ型───の分割区域Zの各流路面積及び各流量を、算出可能となる。
但し、上記中心角度θは等分配角度βと相等しいが、β/2分だけ、ヘッド軸心L3 廻りに回転させて、分割区域Zを、設定する(図1と図5参照)。
In this way, the radial distance (for each circumferential position) from the head portion 3 to the inner surface 10 of the peripheral wall is measured, and the equidistant distribution angle β (described above) is set as the central angle θ. ─Short cake type ─── Each flow path area and each flow rate of the divided area Z can be calculated.
However, although the center angle θ is equal to the equidistributed angle β, the division zone Z is set by rotating the head axis L 3 by β / 2 (see FIGS. 1 and 5).

ところで、図5と図7において既に述べたように、ヘッド部3と挿入細管5とが連結されているヘッド部3の一辺3Aには、センサユニットSy が全く省略されている。
故に、図1に於て、中心角度θ0 をもって示した一区域Z0 では、半径方向距離及び流量を算出できない。
By the way, as already described in FIGS. 5 and 7, the sensor unit Sy is completely omitted from the side 3A of the head portion 3 to which the head portion 3 and the insertion tube 5 are connected.
Therefore, in FIG. 1, in one area Z 0 shown by the central angle θ 0 , the radial distance and the flow rate cannot be calculated.

そこで、以下のような演算方法によって、前記一区域Z0 の流量を求めれば良い。
即ち、θ0 =θとすれば、図1では、8区域Z(Z0 )に分割されているが、断面略扇型(ショートケーキ型)の中心角度θで示した7区域の流量は算出できたから、その平均流量をもって、中心角度θ0 で示した一区域Z0 の流量であると予測すれば、8区域全体の流量を求め得る。
又は、図1に於て、中心角度θの一区域Z0 に隣設した2区域Z,Zの流量の平均値をもって、一区域Z0 の流量と予測すれば、8区域全体の流量を求めることができる。
Therefore, the flow rate of the one area Z 0 may be obtained by the following calculation method.
That is, if θ 0 = θ, in FIG. 1, it is divided into 8 areas Z (Z 0 ), but the flow rate of 7 areas shown by the center angle θ of a substantially fan-shaped cross section (short cake type) is calculated. Therefore, if it is predicted that the average flow rate is the flow rate of one area Z 0 shown by the central angle θ 0 , the flow rate of the entire eight areas can be obtained.
Alternatively, in FIG. 1, if the average value of the flow rates of the two areas Z and Z adjacent to the one area Z 0 of the central angle θ is predicted to be the flow rate of the one area Z 0 , the flow rate of the entire eight areas is obtained. be able to.

本発明は、図1,図5等に示したように、8等分に限らず、6等分や12等分等の場合もある。従って、N等分された場合では、測定できない前述の一区域Z0 の流量は、(N-1)区域の合計流量に、(N/N-1)を掛けて算出すれば良い。あるいは、一区域Z0 に隣設した2区域Z,Zの流量の平均値をもって、一区域Z0 の流量を想定する方法も、活用できる。 As shown in FIGS. 1 and 5, the present invention is not limited to 8 equal parts, but may be 6 equal parts, 12 equal parts, and the like. Therefore, the flow rate of the above-mentioned one area Z 0 that cannot be measured when divided into N equal parts may be calculated by multiplying the total flow rate of the (N-1) area by (N / N-1). Alternatively, a method of assuming the flow rate of one area Z 0 by using the average value of the flow rates of the two areas Z 0 adjacent to the one area Z 0 can also be utilized.

図6と図7と図8に示す実施形態に於て、8枚の帯板片7をもって横断面正八角形に組立てられている。
上辺の帯板片7Aを除いて7枚の帯板片7には、2個ずつの貫孔9,9を設け、この貫孔9,9は、図8に示すように、第1・第2超音波W1 ,W2 がラジアル外方向にゆくに従って、相互に接近するように、僅かに傾斜させて、第1・第2超音波W1 ,W2 が嵌着される。
In the embodiments shown in FIGS. 6, 7, and 8, eight strip pieces 7 are assembled into a regular octagon in cross section.
Except for the strip piece 7A on the upper side, the seven strip pieces 7 are provided with two through holes 9 and 9, and the through holes 9 and 9 are the first and first through holes 9 and 9, as shown in FIG. 2 As the ultrasonic waves W 1 and W 2 move outward in the radial direction, the first and second ultrasonic waves W 1 and W 2 are fitted so as to be slightly inclined so as to approach each other.

また、図6と図8に示すように、低い8角錐状のカバー部材12,13が付設される。各カバー部材12,13の底面には、浅い(8角形の)凹所14が形成され、上記帯板片7,7Aが横断面8角形状に組合わせた状態で、凹所14に嵌着され、ボルト杆体15及びボルト16等にて、組立てられている。上述のような低角錐形状のカバー部材12,13を付設するヘッド部3は、流れを乱すことが少なく、従って、精度良く、流速及び流量を算出可能となる。 Further, as shown in FIGS. 6 and 8, low octagonal pyramid-shaped cover members 12 and 13 are attached. A shallow (octagonal) recess 14 is formed on the bottom surface of each of the cover members 12 and 13, and the strip pieces 7 and 7A are fitted into the recess 14 in a state of being combined into an octagonal cross section. It is assembled with bolt rods 15 and bolts 16 and the like. The head portion 3 to which the low-angle pyramid-shaped cover members 12 and 13 are attached as described above does not disturb the flow, and therefore, the flow velocity and the flow rate can be calculated with high accuracy.

図9は、横軸に時間を、縦軸に超音波の発信・受信の強さを示すグラフ図である。
(a1)は、第1超音波センサS1 から発信された第1超音波W1 が、t1 時間後に、第2超音波センサS2 にて第1超音波受信波W1Rとして受信されたことを示す。他方、(a2)は、第2超音波センサS2 から発信された第2超音波W2 が、t2 時間後に、第1超音波センサS1 にて第2超音波受信波W2Rとして受信されたことを示す。
Δt=t2 -t1 であって、配管P内の流れFの影響による。
FIG. 9 is a graph showing time on the horizontal axis and intensity of ultrasonic wave transmission / reception on the vertical axis.
In (a1), the first ultrasonic wave W 1 transmitted from the first ultrasonic sensor S 1 was received as the first ultrasonic wave W 1 R by the second ultrasonic sensor S 2 one hour later. Show that. On the other hand, in (a2), the second ultrasonic wave W 2 transmitted from the second ultrasonic sensor S 2 is received as the second ultrasonic wave W 2 R by the first ultrasonic sensor S 1 after t 2 hours. Indicates that it was done.
Δt = t 2 -t 1 due to the influence of the flow F in the pipe P.

このΔtを求めることで、(図1に示した)各分割区域Zの流速を算出できる。しかも、各分割区域Zの半径方向距離───半径───は、(t1 +t2 )/2に基づいて算出できる。
従って、各分割区域Zについて算出された、半径方向距離と、中心角度θに基づいて、扇型の断面形状を有する各区域Zの流量を演算できる。
By obtaining this Δt, the flow velocity of each divided area Z (shown in FIG. 1) can be calculated. Moreover, the radial distance of each divided area Z ─── radius ─── can be calculated based on (t 1 + t 2 ) / 2.
Therefore, the flow rate of each area Z having a fan-shaped cross-sectional shape can be calculated based on the radial distance calculated for each divided area Z and the center angle θ.

具体例として、図1では、7つの分割区域Zの各々の流量を合計し、さらに、前述した方法によって、残りの区域Z0 の流速・流量も、略正確に、演算可能であるため、7つの分割区域Zの合計流量と、残りの一つの区域Z0 の算出流量とを、合計すれば、(360°にわたっての)配管Pの全体の流量を、高精度に求めることができる。 As a specific example, in FIG. 1, the flow rates of each of the seven divided areas Z are totaled, and the flow velocity / flow rate of the remaining area Z 0 can be calculated substantially accurately by the method described above. By summing the total flow rate of one divided area Z and the calculated flow rate of the remaining one area Z 0 , the total flow rate of the pipe P (over 360 °) can be obtained with high accuracy.

従来例として示した図10,図11,図12のいずれに於ても、配管55の全体の流路を横切る、僅かな(狭い)部位の流速を計測すると共に、この流速に基づいて、流路全面積の流量を演算する方法では、誤差が大きく、演算された流量の精度は低いものであったといえる。
さらに、配管55の内面は、錆・スケール等の付着等によって、経年変化(断面積の減少)を起こしている場合には、一層、演算される流量の精度は低いものであった。
In any of FIGS. 10, 11, and 12 shown as conventional examples, the flow velocity of a small (narrow) portion crossing the entire flow path of the pipe 55 is measured, and the flow velocity is based on this flow velocity. It can be said that the method of calculating the flow rate of the entire road area had a large error and the calculated flow rate was low in accuracy.
Further, when the inner surface of the pipe 55 is aged (decreased in cross-sectional area) due to rust, scale, or the like, the calculated flow rate is less accurate.

なお、上述の図示の実施形態では、流路の全体の断面を、8つの区域Z,Z0 に区分けした場合を示したが、これを3区域~12区域に区分けするも自由である。3区域未満では、流量計測精度が従来とほとんど変わらないこととなり、逆に、12区域を越せば、ヘッド部3の製作が急に困難となると共に流量計測精度はほとんど改善しない結果となってしまう。 In the illustrated embodiment described above, the case where the entire cross section of the flow path is divided into eight areas Z and Z 0 is shown, but it is also possible to divide this into three areas to 12 areas. If it is less than 3 areas, the flow rate measurement accuracy will be almost the same as before, and conversely, if it exceeds 12 areas, the production of the head portion 3 will suddenly become difficult and the flow rate measurement accuracy will hardly improve. ..

本発明は、以上詳述したように、配管Pの周囲壁1に設けられている孔部11から配管軸心Lp に直交する方向に差込まれる挿入細管5と、該挿入細管5の先端に設けられたヘッド部3とを、備えた超音波流量計に於て;上記ヘッド部3は、上流側の第1超音波センサS1 と下流側の第2超音波センサS2 から成るセンサユニットSy を複数具備し;上記複数のセンサユニットSy は、ヘッド軸心L3 廻りに等分配角度βをもって、配設され;上記ヘッド軸心L3 を上記配管軸心Lp に略一致させるように上記挿入細管5とヘッド部3を配管P内へ差込んだ流量測定姿勢において、上記ヘッド部3の複数の上記センサユニットSy から配管Pの周囲壁内面10に対して、超音波W1 ,W2 を放射線状に発信し、上記周囲壁内面10から反射した各超音波W1 ,W2 を受信し、上記ヘッド部3から上記周囲壁内面10までの各周方向位置毎の半径方向距離を測定すると共に;上記等分配角度βを中心角度θとする略扇型の分割区域Zの各流路面積及び各流量を算出し;各流量を合算して、配管全体の流量を求めるように構成したので、配管全体の流量を(従来よりも)著しく高い精度をもって、求めることができる。
さらに、配管内面への錆・スケール等の付着によって、流路横断面形状及び面積が変化(減少)している場合であても、あるいは、ドキュメント紛失に伴って配管に内径寸法(断面積)が全く不明である場合であっても、各周方向位置毎の半径を測定する本発明では、高い精度をもって、配管全体の流量を、算出できる。
As described in detail above, the present invention has an insertion thin tube 5 inserted in a direction orthogonal to the pipe axis Lp from a hole 11 provided in the peripheral wall 1 of the pipe P, and the tip of the insertion thin tube 5. In an ultrasonic flow meter equipped with a provided head portion 3, the head portion 3 is a sensor unit composed of a first ultrasonic sensor S 1 on the upstream side and a second ultrasonic sensor S 2 on the downstream side. A plurality of Sy are provided; the plurality of sensor units Sy are arranged around the head axis L 3 with an equal distribution angle β; the head axis L 3 is substantially aligned with the pipe axis Lp. In the flow measurement posture in which the insertion thin tube 5 and the head portion 3 are inserted into the pipe P, ultrasonic waves W 1 and W 2 are applied to the inner surface 10 of the peripheral wall of the pipe P from the plurality of sensor units S of the head portion 3. Is transmitted in a radial pattern, the ultrasonic waves W 1 and W 2 reflected from the inner surface 10 of the peripheral wall are received, and the radial distance for each circumferential position from the head portion 3 to the inner surface 10 of the peripheral wall is measured. At the same time, the area of each flow path and each flow rate of the substantially fan-shaped divided area Z having the equal distribution angle β as the central angle θ are calculated; the flow rates are added up to obtain the flow rate of the entire pipe. Therefore, the flow rate of the entire pipe can be obtained with extremely high accuracy (compared to the conventional method).
Furthermore, even if the cross-sectional shape and area of the flow path are changed (decreased) due to rust, scale, etc. adhering to the inner surface of the pipe, or due to the loss of the document, the inner diameter dimension (cross-sectional area) of the pipe is increased. Even if it is completely unknown, in the present invention of measuring the radius of each circumferential position, the flow rate of the entire pipe can be calculated with high accuracy.

1 周囲壁
3 ヘッド部
5 挿入細管
10 周囲壁内面
11 孔部
3 ヘッド軸心
Lp 配管軸心
P 配管
1 第1超音波センサ
2 第2超音波センサ
Sy センサユニット
1 超音波
2 超音波
Z 分割区域
β 等分配角度
θ 中心角度
1 Peripheral wall 3 Head part 5 Insertion capillary
10 Inner surface of the surrounding wall
11 Hole L 3 Head axis Lp Piping axis P Piping S 1 First ultrasonic sensor S 2 Second ultrasonic sensor Sy sensor unit W 1 Ultrasonic W 2 Ultrasonic Z Division area β Equal distribution angle θ Center angle

Claims (1)

配管(P)の周囲壁(1)に設けられている孔部(11)から配管軸心(Lp )に直交する方向に差込まれる挿入細管(5)と、該挿入細管(5)の先端に設けられたヘッド部(3)とを、備えた超音波流量計に於て、
上記ヘッド部(3)は、上流側の第1超音波センサ(S1 )と下流側の第2超音波センサ(S2 )から成るセンサユニット(Sy )を複数具備し、
上記複数のセンサユニット(Sy )は、ヘッド軸心(L3 )廻りに等分配角度(β)をもって、配設され、
上記ヘッド軸心(L3 )を上記配管軸心(Lp )に略一致させるように上記挿入細管(5)とヘッド部(3)を配管(P)内へ差込んだ流量測定姿勢において、上記ヘッド部(3)の複数の上記センサユニット(Sy )から配管(P)の周囲壁内面(10)に対して、超音波(W1 )(W2 )を放射線状に発信し、上記周囲壁内面(10)から反射した各超音波(W1 )(W2 )を受信し、上記ヘッド部(3)から上記周囲壁内面(10)までの各周方向位置毎の半径方向距離を測定すると共に、
上記等分配角度(β)を中心角度(θ)とする略扇型の分割区域(Z)の各流路面積及び各流量を算出し、
各流量を合算して、配管全体の流量を求めるように構成したことを、特徴とする超音波流量計。
An insertion thin tube (5) inserted from a hole (11) provided in the peripheral wall (1) of the pipe (P) in a direction orthogonal to the pipe axis (Lp), and the tip of the insertion thin tube (5). In an ultrasonic flow meter equipped with a head portion (3) provided in
The head portion (3) includes a plurality of sensor units (Sy) including a first ultrasonic sensor (S 1 ) on the upstream side and a second ultrasonic sensor (S 2 ) on the downstream side.
The plurality of sensor units (Sy) are arranged around the head axis (L 3 ) with an equidistributed angle (β).
In the flow rate measurement posture in which the insertion thin tube (5) and the head portion (3) are inserted into the pipe (P) so that the head axis (L 3 ) substantially coincides with the pipe axis (Lp). Ultrasonic waves (W 1 ) and (W 2 ) are radially transmitted from a plurality of the sensor units (Sy) of the head portion (3) to the inner surface (10) of the peripheral wall of the pipe (P), and the peripheral wall thereof. Each ultrasonic wave (W 1 ) (W 2 ) reflected from the inner surface (10) is received, and the radial distance for each circumferential position from the head portion (3) to the inner surface of the peripheral wall (10) is measured. With
Each flow path area and each flow rate of the substantially fan-shaped divided area (Z) having the equipartition angle (β) as the center angle (θ) were calculated.
An ultrasonic flow meter characterized by being configured to add up the flow rates and obtain the flow rate of the entire pipe.
JP2020186556A 2020-11-09 2020-11-09 Ultrasonic Flow Meter Active JP7475047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020186556A JP7475047B2 (en) 2020-11-09 2020-11-09 Ultrasonic Flow Meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020186556A JP7475047B2 (en) 2020-11-09 2020-11-09 Ultrasonic Flow Meter

Publications (2)

Publication Number Publication Date
JP2022076233A true JP2022076233A (en) 2022-05-19
JP7475047B2 JP7475047B2 (en) 2024-04-26

Family

ID=81606550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020186556A Active JP7475047B2 (en) 2020-11-09 2020-11-09 Ultrasonic Flow Meter

Country Status (1)

Country Link
JP (1) JP7475047B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460047A (en) 1992-11-13 1995-10-24 Panametrics, Inc. Flow measurement system including ultrasonic transducers
GB2332274B (en) 1997-12-12 2001-11-21 Mecon Ltd Monitoring pipes
JP2005292102A (en) 2004-03-31 2005-10-20 Hironari Kikura Ultrasonic measuring instrument and method for cross-sectional flow velocity/flow rate
US7044000B2 (en) 2004-09-22 2006-05-16 Murray F Feller Ultrasonic flow sensor using quasi-helical beam
JP2009115632A (en) 2007-11-07 2009-05-28 Mitsubishi Fbr Systems Inc Ultrasonic flowmeter sensor head, ultrasonic flowmeter sensor head device equipped with the same, and its positioning method
CN104075757A (en) 2009-08-18 2014-10-01 鲁比康研究有限公司 Flow meter assembly, gate assemblies and methods of flow measurement
EP2587227A1 (en) 2011-10-31 2013-05-01 Welltec A/S Downhole tool for determining flow velocity
WO2015200457A1 (en) 2014-06-24 2015-12-30 Qi2 Elements, Llc Beam forming and steering of helical guided waves in pipe-like and plate-like structures
JP6716855B1 (en) 2019-01-25 2020-07-01 田村 善胤 Method of measuring water behavior using ultrasonic waves
JP7485324B2 (en) 2019-04-05 2024-05-16 株式会社アイシーティー Ultrasonic Flow Meter

Also Published As

Publication number Publication date
JP7475047B2 (en) 2024-04-26

Similar Documents

Publication Publication Date Title
US7448282B2 (en) Device for determining and/or monitoring volume and/or mass flow of a medium
US7373808B2 (en) Method and ultrasonic meter system for determining pipe roughness
US9366556B2 (en) Method for ultrasonic metering using an orifice meter fitting
US7506532B2 (en) Method for calibrating ultrasound clamp-on flowmeters
CN103196504B (en) Method and device for measuring multi-channel ultrasonic flow
US20140020478A1 (en) Ultrasonic wedge and method for determining the speed of sound in same
EP3268701A1 (en) Hybrid sensing ultrasonic flowmeter
US7870793B1 (en) Transit time flow sensor with enhanced accuracy
KR20020021558A (en) Ultrasonic wave flow measuring method
US20150204704A1 (en) Ultrasonic, Flow Measuring Device
US10520342B2 (en) Ultrasonic flowmeter
RU2612727C2 (en) Ultrasonic signal coupler
US20170343397A1 (en) Ultrasonic method and device for measuring fluid flow
JP2004271496A (en) Ultrasonic flow measuring method
RU2637381C2 (en) Ultrasonic waveguide
US7845240B1 (en) Device and method for determining a flow characteristic of a fluid in a conduit
JP2022076233A (en) Ultrasonic flowmeter
CN102095889A (en) Three-channel ultrasonic time difference method for measuring flow velocity
CN203132615U (en) Multichannel ultrasonic flow measurement device
US20030101804A1 (en) Ultrasonic meter to detect pipeline corrosion and buildup
US20180340808A1 (en) Torque Based Flowmeter Device and Method
Kang et al. A novel mathematical model for transit-time ultrasonic flow measurement
CN205861137U (en) Reducing two is popped one's head in time difference ultrasonic flow rate measurement apparatus
EP3798582B1 (en) Ultrasonic flowmeter and fluid pipeline
RU2277700C2 (en) Cut in section of ultrasound flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230620

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240409

R150 Certificate of patent or registration of utility model

Ref document number: 7475047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150