JP2022075153A - 有機el素子、有機elパネル、および、有機el素子の製造方法 - Google Patents

有機el素子、有機elパネル、および、有機el素子の製造方法 Download PDF

Info

Publication number
JP2022075153A
JP2022075153A JP2020185748A JP2020185748A JP2022075153A JP 2022075153 A JP2022075153 A JP 2022075153A JP 2020185748 A JP2020185748 A JP 2020185748A JP 2020185748 A JP2020185748 A JP 2020185748A JP 2022075153 A JP2022075153 A JP 2022075153A
Authority
JP
Japan
Prior art keywords
layer
light emitting
organic
emitting layer
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020185748A
Other languages
English (en)
Inventor
利幸 秋山
Toshiyuki Akiyama
真一郎 石野
Shinichiro Ishino
康宏 関本
Yasuhiro Sekimoto
宗治 佐藤
Muneharu Sato
建 神谷
Ken Kamiya
智彦 尾田
Tomohiko Oda
峰樹 長谷川
Mineki Hasegawa
昌和 高田
Masakazu Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joled Inc
Original Assignee
Joled Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joled Inc filed Critical Joled Inc
Priority to JP2020185748A priority Critical patent/JP2022075153A/ja
Publication of JP2022075153A publication Critical patent/JP2022075153A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Figure 2022075153000001
【課題】機能層の劣化により発光層へのキャリア注入性が低下しても、駆動電圧が上昇しづらい有機EL素子および有機ELパネル、および、有機EL素子の製造方法を提供する。
【解決手段】陽極13と、発光層17を含む複数の機能層と、陰極20とがこの順に積層されてなる有機EL素子1であって、機能層のそれぞれについて、機能層の実効電子移動度と実効ホール移動度との加算値である実行キャリア移動度で機能層の膜厚を除した値を機能層の実効膜厚としたとき、発光層の実効膜厚は、全ての機能層の実効膜厚を合計した値の30%以下である。
【選択図】図1

Description

本開示は、キャリア注入性材料を用いた有機EL素子における駆動電圧の上昇抑止と寿命の改善に関する。
近年、有機材料の電界発光現象を利用した有機EL素子を利用した表示装置が普及しつつある。
有機EL素子は、一対の電極の間に発光層が配された基本構造を有し、電極間に電圧を印加することにより、正孔と電子が再結合して発光層が発光する。より具体的には、陽極から正孔が発光層に注入され、陰極から電子が発光層に注入され、発光層内において正孔と電子が再結合する。一方で、多くの場合において、陰極材料のフェルミ準位と発光層に含まれる発光材料の最低空軌道(LUMO;Lowest Unoccupied Molecular Orbital)のエネルギー準位との差が大きい。したがって、陰極から発光層への電子の注入を容易とするため、仕事関数の低い金属材料を含む機能層を陰極と発光層との間に設ける構成が用いられている(例えば、特許文献1参照)。また、同様に、陽極から発光層への正孔の注入を容易とするため、正孔注入性を有する材料を含む機能層を陽極と発光層との間に設ける構成が用いられている。
特開2016-115748号公報
しかしながら、仕事関数の低い金属材料は反応性が高く、水分や酸素との接触によって劣化が促進されやすい。一方で、陰極から発光層への電子注入性が低下すると、有機EL素子を機能させるために高い駆動電圧が必要となる。同様に、陽極から発光層への正孔注入性が低下した場合にも、同様に有機EL素子を機能させるために高い駆動電圧が必要となる。したがって、発光層へのキャリア注入性が低下するほど有機EL素子に印加すべき電圧が上昇し、機能層の劣化がさらに加速して有機EL素子が短寿命化しやすい課題がある。
本開示は、上記課題を鑑みてなされたものであり、機能層の劣化により発光層へのキャリア注入性が低下しても、駆動電圧が上昇しづらい有機EL素子および有機ELパネル、および、有機EL素子の製造方法を提供することを目的とする。
本開示の一態様に係る有機EL素子は、陽極と、発光層を含む複数の機能層と、陰極とがこの順に積層されてなる有機EL素子であって、前記機能層のそれぞれについて、前記機能層の実効電子移動度と実効ホール移動度との加算値である実効キャリア移動度で前記機能層の膜厚を除した値を前記機能層の実効膜厚としたとき、前記発光層の実効膜厚は、全ての前記機能層の実効膜厚を合計した値の30%以下である。
本開示の一態様に係る有機EL素子によれば、発光層へのキャリア注入性が低下した場合に、駆動電圧に対する発光層への印加電圧(分圧)の割合が向上するため、発光層内の電界強度が上昇する。したがって、発光層へのキャリア注入性が低下した場合においても、発光層内のキャリア密度の低下を抑止するとともに、キャリア移動度の向上により発光効率が上昇するため、発光輝度が低下しづらく、駆動電圧の上昇の度合いを低減することができる。したがって、機能層の劣化により発光層へのキャリア注入性が低下しても、駆動電圧が上昇しづらく、輝度低下を抑止しつつ有機EL素子の長寿命化を図ることができる。
実施の形態に係る有機EL素子1の構成を模式的に示す断面図である。 実施例に係る、正孔輸送層、発光層、電子輸送層、電子注入層のバンドダイアグラムを示す簡略模式図である。 発光層への電子注入性および発光層の膜厚と駆動電圧との関係を示すグラフである。 (a)は、実施例に係る膜厚方向における電位の分布と電子注入性との関係を示すグラフであり、(b)は、実施例に係る電子注入性と各機能層に印加される電圧との関係を示すグラフである。 (a)は、比較例に係る膜厚方向における電位の分布と電子注入性との関係を示すグラフであり、(b)は、比較例に係る電子注入性と各機能層に印加される電圧との関係を示すグラフである。 (a)は、実施例に係る電子注入性ごとの膜厚方向における電子密度を示すグラフであり、(b)は、比較例に係る電子注入性ごとの膜厚方向における電子密度を示すグラフである。 (a)は、実施例に係る、電子注入性ごとの、発光層の正孔輸送層側の界面、発光層の電子注入輸送層側の界面のそれぞれにおける電子密度を示すグラフであり、(b)は、比較例に係る、電子注入性ごとの、発光層の正孔輸送層側の界面、発光層の電子注入輸送層側の界面のそれぞれにおける電子密度を示すグラフである。 (a)は、実施例に係る電子注入性ごとの発光層を流れる電流を示すグラフであり、(b)は、比較例に係る電子注入性ごとの発光層を流れる電流を示すグラフである。 有機EL素子を構成する全機能層の有効膜厚の合計Lef(ALL)に対する発光層の有効膜厚Lef(EML)の比と、電子注入性が低下したときの駆動電圧の上昇値との関係を示すグラフである。 実施の形態に係る有機EL素子の製造過程の一部を模式的に示す部分断面図であって、(a)は、基板上にTFT層が形成された状態、(b)は、基板上に層間絶縁層が形成された状態、(c)は、層間絶縁層上に画素電極材料が形成された状態、(d)は、画素電極が形成された状態、(e)は、層間絶縁層および画素電極上に隔壁材料層が形成された状態を示す。 実施の形態に係る有機EL素子の製造過程の一部を模式的に示す部分断面図であって、(a)は、隔壁が形成された状態、(b)は、画素電極上に正孔注入層が形成された状態、(c)は、正孔注入層上に正孔輸送層が形成された状態を示す。 実施の形態に係る有機EL素子の製造過程の一部を模式的に示す部分断面図であって、(a)は、正孔輸送層上に発光層が形成された状態、(b)は、発光層および隔壁層上に電子注入輸送層が形成された状態、(c)は、電子注入輸送層上に光学調整層が形成された状態を示す。 実施の形態に係る有機EL素子の製造過程の一部を模式的に示す部分断面図であって、(a)は、光学調整層上に対向電極が形成された状態、(b)は、対向電極上に封止層が形成された状態を示す。 実施の形態に係る有機EL素子の製造過程を示すフローチャートである。 実施の形態に係る有機EL素子を備えた有機EL表示装置の構成を示すブロック図である。
≪開示の態様≫
本開示の一態様に係る有機EL素子は、陽極と、発光層を含む複数の機能層と、陰極とがこの順に積層されてなる有機EL素子であって、前記機能層のそれぞれについて、前記機能層の実効電子移動度と実効ホール移動度との加算値である実効キャリア移動度で前記機能層の膜厚を除した値を前記機能層の実効膜厚としたとき、前記発光層の実効膜厚は、全ての前記機能層の実効膜厚を合計した値の30%以下である。
また、本開示の一態様に係る有機EL素子の製造方法は、基板を準備し、前記基板の上方に陽極を形成し、前記陽極の上方に、発光層を含む複数の機能層を形成し、前記機能層の上方に陰極を形成する有機EL素子の製造方法であって、前記機能層のそれぞれについて、前記機能層の実効電子移動度と実効ホール移動度との加算値である実行キャリア移動度で前記機能層の膜厚を除した値を前記機能層の実効膜厚としたとき、前記発光層の実効膜厚は、全ての前記機能層の実効膜厚を合計した値の30%以下となるように前記発光層の膜厚を設定する。
本開示の一態様に係る有機EL素子またはその製造方法によれば、発光層へのキャリア注入性が低下した場合に、駆動電圧に対する発光層への印加電圧(分圧)の割合が向上するため、発光層内の電界強度が上昇する。したがって、発光層へのキャリア注入性が低下した場合においても、発光層内のキャリア密度の低下を抑止するとともに、キャリア移動度の向上により発光効率が上昇するため、発光輝度が低下しづらく、駆動電圧の上昇の度合いを低減することができる。したがって、機能層の劣化により発光層へのキャリア注入性が低下しても、駆動電圧が上昇しづらく、輝度低下を抑止しつつ有機EL素子の長寿命化を図ることができる。
本開示の一態様に係る有機EL素子は、前記発光層と前記陰極との間に、金属材料を含む電子注入層を前記機能層として含む、としてもよい。
本構成により、電子注入層に含まれる金属材料が酸化等により劣化した場合であっても、駆動電圧の上昇の度合いを低減させることができる。
本開示の一態様に係る有機EL素子は、前記電子注入層に含まれる前記金属材料は、アルカリ金属、アルカリ土類金属、希土類金属から選択される、としてもよい。
本構成により、劣化前の電子注入層が高い電子流入性を有するため、有機EL素子の発光効率を向上させることができるとともに、電子注入層に含まれる金属材料が酸化等により劣化した場合であっても、駆動電圧の上昇の度合いを低減させることができる。
本開示の一態様に係る有機EL素子は、前記陽極は光反射性の電極であり、前記有機EL素子は、前記発光層と前記陽極との間に中間層を前記機能層として含み、前記中間層の膜厚は、40nm以下である、としてもよい。
本構成により、陽極から発光中心までの光路長を過大とせずに、陽極の発光層側の面を反射面の1つとする光共振器構造の設計を容易とすることができる。
本開示の一態様に係る有機EL素子は、前記陰極は光半透過性の電極であり、前記有機EL素子は、前記発光層と前記陰極との間に透明導電層を前記機能層として含む、としてもよい。
本構成により、陰極から発光中心までの光路長を適正に設計した上で、陰極の発光層側の面を反射面の1つとする光共振器構造の設計を容易とすることができる。
本開示の一態様に係る有機EL素子は、前記陽極の前記発光層側の面と前記陰極の前記発光層側の面との間に光共振器構造が構成され、前記透明導電層は、ITOまたはIZOを含む、としてもよい。
本構成により、有機EL素子全体のインピーダンスの増大を抑止しつつ光路長の大きい光共振器構造を設計できるため、光取り出し効率を高くすることができる。
本開示の一態様に係る有機ELパネルは、本開示の一態様に係る有機EL素子を基板上に複数備える、としてもよい。
≪実施の形態≫
以下、実施の形態に係る有機EL素子について説明する。なお、以下の説明は、本発明の一態様に係る構成および作用・効果を説明するための例示であって、本発明の本質的部分以外は以下の形態に限定されない。
[1.有機EL素子の構成]
図1は、本実施の形態に係る有機EL素子1の断面構造を模式的に示す図である。有機EL素子1は、陽極である画素電極13、正孔注入層15、正孔輸送層16、発光層17、電子注入輸送層18、光学調整層19、および、陰極である対向電極20を備える。
有機EL素子1において、画素電極13と対向電極20とは主面同士が向き合うように互いに対向して配されており、画素電極13と対向電極20との間に発光層17が形成されている。
発光層17の画素電極13側には、発光層17に接して正孔輸送層16が形成されている。正孔輸送層16と画素電極13との間には正孔注入層15が形成されている。
発光層17の対向電極20側には、発光層17に接して電子注入輸送層18が形成されている。電子注入輸送層18と対向電極20との間に光学調整層19が形成されている。
[1.1 有機EL素子の各構成要素]
<画素電極>
画素電極13は、層間絶縁層12上に形成されている。画素電極13は、画素ごとに設けられ、層間絶縁層12に設けられたコンタクトホールを通じてTFT層112と電気的に接続されている。
本実施の形態において、画素電極13は、陽極として機能する。
光反射性を具備する金属材料の具体例としては、Ag(銀)、Al(アルミニウム)、アルミニウム合金、Mo(モリブデン)、APC(銀、パラジウム、銅の合金)、ARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、MoW(モリブデンとタングステンの合金)、NiCr(ニッケルとクロムの合金)などが挙げられる。
画素電極13は、金属層単独で構成してもよいが、金属層の上に、ITO(酸化インジウム錫)やIZO(酸化インジウム亜鉛)のような金属酸化物からなる層を積層した積層構造としてもよい。
なお、対向電極20を光反射性電極とする場合には、画素電極13を光透過性電極としてもよい。この場合、画素電極13は、金属材料で形成された金属層および金属酸化物で形成された金属酸化物層の少なくとも一方を含んでいる。画素電極13の膜厚は1nm~50nm程度に薄く設定されて光透過性を有している。金属材料は光反射性の材料であるが、金属層の薄膜を50nm以下と薄くすることによって、光透過性を確保することができる。したがって、発光層17からの光の一部は画素電極13において反射されるが、残りの一部は画素電極13を透過する。
このとき、画素電極13に含まれる金属層を形成する金属材料としては、Ag、Agを主成分とする銀合金、Al、Alを主成分とするAl合金が挙げられる。Ag合金としては、マグネシウム-銀合金(MgAg)、インジウム-銀合金が挙げられる。Agは、基本的に低抵抗率を有し、Ag合金は、耐熱性、耐腐食性に優れ、長期にわたって良好な電気伝導性を維持できる点で好ましい。Al合金としては、マグネシウム-アルミニウム合金(MgAl)、リチウム-アルミニウム合金(LiAl)が挙げられる。その他の合金として、リチウム-マグネシウム合金、リチウム-インジウム合金が挙げられる。
画素電極13に含まれる金属層は、例えばAg層あるいはMgAg合金層の単層で構成してもよいし、Mg層とAg層の積層構造(Mg/Ag)、あるいは、MgAg合金層とAg層の積層構造(MgAg/Ag)にしてもよい。
画素電極13に含まれる金属酸化物層を形成する金属酸化物としては、ITO(酸化インジウム錫)、IZO(酸化インジウム亜鉛)が挙げられる。
また、画素電極13は、金属層単独、または、金属酸化物層単独で構成してもよいが、金属層の上に金属酸化物層を積層した積層構造、あるいは金属酸化物層の上に金属層を積層した積層構造としてもよい。
<正孔注入層>
正孔注入層15は、陽極である画素電極13から発光層17へのホール(正孔)の注入を促進させる機能を有する。正孔注入層15は、例えば、塗布膜であり、正孔注入材料と溶質とする溶液の塗布および乾燥より形成されている。正孔注入層15は、例えば、PEDOT:PSS(ポリチオフェンとポリスチレンスルホン酸との混合物)、ポリフルオレンやその誘導体、あるいは、ポリアリールアミンやその誘導体などの導電性ポリマー材料からなる。実施の一態様において、正孔注入層15の膜厚は10nmである。
または、正孔注入層15は蒸着膜で形成されていてもよい。正孔注入層15は、例えば、Ag、Mo、クロム(Cr)、バナジウム(V)、タングステン(W)、ニッケル(Ni)、イリジウム(Ir)などの酸化物からなる。
また、正孔注入層15は、蒸着膜の上に塗布膜を形成した積層構造としてもよい。
<正孔輸送層>
正孔輸送層16は、正孔注入層15から注入されたホールを発光層17へ輸送する機能を有する。正孔輸送層16は、例えば、塗布膜であり、具体的には、正孔輸送材料を溶質とする溶液の塗布および乾燥より形成されている。実施の形態の一態様において、正孔輸送層16の膜厚は13nmである。なお、光共振器構造を形成する上で、発光中心と画素電極13との光路長を過大にしないため、画素電極13と発光層17との間に存在する機能層の膜厚の合計、すなわち、正孔注入層15の膜厚と正孔輸送層16の膜厚との合計が40nm以下であることが好ましい。
または、正孔輸送層16は蒸着膜で形成されていてもよい。例えば、ポリフルオレンやその誘導体、あるいは、ポリアリールアミンやその誘導体などの高分子化合物などを用いることができる。
<発光層>
発光層17は、ホールと電子の再結合により光を出射する機能を有する。後述するように、発光層17のインピーダンスは正孔注入層15や正孔輸送層16、電子注入輸送層18、光学調整層19のインピーダンスに対して大きすぎないことが好ましく、発光層膜厚を薄く設計することが好ましい。実施の形態の一態様において、発光層17の膜厚は25nmである。
発光層17は、例えば、塗布膜であり、例えば、発光層を形成する材料と溶質とする溶液の塗布および乾燥より形成されている。または、発光層17は蒸着膜で形成されていてもよい。
発光層17を形成する材料としては、公知の蛍光物質である有機材料を利用することができる。例えば、オキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物及びアザキノロン化合物、ピラゾリン誘導体及びピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、シアニン化合物、アクリジン化合物等を用いることができる。なお、発光材料としては、蛍光物質に限らず、トリス(2-フェニルピリジン)イリジウムなどの燐光を発光する金属錯体等の公知の燐光物質であってもよい。
また、発光層17は、キャリア移動度が高いホスト材料に発光材料がドープされて構成されてもよい。ここで、キャリア移動度が高いとは、電子移動度が高い、および/または、ホール移動度が高いことを指す。ホスト材料としては、例えば、アミン化合物、縮合多環芳香族化合物、ヘテロ環化合物を用いることができる。アミン化合物としては、例えば、モノアミン誘導体、ジアミン誘導体、トリアミン誘導体、テトラアミン誘導体を用いることができる。縮合多環芳香族化合物としては、例えば、アントラセン誘導体、ナフタレン誘導体、ナフタセン誘導体、フェナントレン誘導体、クリセン誘導体、フルオランテン誘導体、トリフェニレン誘導体、ペンタセン誘導体、ペリレン誘導体を用いることができる。ヘテロ環化合物としては、例えば、カルバゾール誘導体、フラン誘導体、ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体、イミダゾール誘導体、ピラゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、ピロール誘導体、インドール誘導体、アザインドール誘導体、アザカルバゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フタロシアニン誘導体を用いることができる。なお、発光層を蛍光材料とホスト材料とから形成する場合において、実施の一態様では、蛍光材料の濃度は1wt%以上である。また、実施の一態様では、蛍光材料の濃度は10wt%以下である。また、実施の一態様では、蛍光材料の濃度は30wt%以下である。
<電子注入輸送層>
電子注入輸送層18は、発光層17上に形成されており、電子輸送性を有する有機材料に、電子注入性を向上させる金属材料がドープされてなる。ここで、ドープとは、金属材料の金属原子または金属イオンを有機材料中に略均等に分散させることを指し、具体的には、有機材料と微量の金属材料を含む単一の相を形成することを指す。なお、それ以外の相、特に、金属片や金属膜など、金属材料のみからなる相、または、金属材料を主成分とする相は、存在していないことが好ましい。また、有機材料と微量の金属材料を含む単一の相において、金属原子または金属イオンの濃度は均一であることが好ましく、金属原子または金属イオンは凝集していないことが好ましい。金属材料としては、アルカリ金属、アルカリ土類金属、希土類金属から選択されることが好ましい。また、電子注入輸送層18における金属材料のドープ量は3~60wt%が好ましい。なお、ドープ金属は、金属単体に限られず、フッ化物(例えば、NaF)やキノリニウム錯体(例えば、Alq3、Liq)など化合物としてドープされてもよい。ドープ金属としては、例えば、アルカリ金属に該当するリチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)、アルカリ土類金属に該当するカルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)、希土類金属に該当するイットリウム(Y)、サマリウム(Sm)、ユーロピウム(Eu)、イッテルビウム(Yb)等である。
電子輸送性を有する有機材料としては、例えば、オキサジアゾール誘導体(OXD)、トリアゾール誘導体(TAZ)、フェナンスロリン誘導体(BCP、Bphen)などのπ電子系低分子有機材料が挙げられる。
実施の形態の一態様において、電子注入輸送層18の膜厚は30nmである。
なお、電子注入輸送層18は必ずしも1層で形成される必要はなく、例えば、金属材料を含む電子注入層と、電子輸送性材料からなる電子輸送層とを含む多層構造であってもよい。または、例えば、金属材料またはその化合物を主成分とする層と、電子輸送層とを含む多層構造であってもよい。または、例えば、金属材料の化合物を主成分とする層と、金属材料に電子を注入し電子注入性を発揮させる層とを含む多層構造であってもよい。
<光学調整層>
光学調整層19は、光半透過性の導電性材料からなり、電子注入輸送層18上に形成されている。
対向電極20の光学調整層19との界面の光反射面は、画素電極13の正孔注入層15との界面の光反射面と対となって共振器構造を形成する。したがって、発光層17から出射された光が、光学調整層19から対向電極20へと入射する際にその一部が光学調整層19へと反射される必要がある。したがって、対向電極20と光学調整層19との間で、屈折率が異なっていることが好ましい。例えば、対向電極20が金属薄膜である場合は、光学調整層19は、ITO、IZOなどの、酸化物導電体であることが好ましい。また、例えば、対向電極20がITO、IZOなどの酸化物導電体である場合は、光学調整層19は、Ag、Alなどの金属薄膜であることが好ましい。実施の形態の一態様において、光学調整層19の材料はIZOであり、その膜厚は104nmである。
<対向電極>
対向電極20は、光半透過性の導電性材料からなり、光学調整層19上に形成されている。本実施の形態においては、対向電極20は、陰極として機能する。
対向電極20の光学調整層19との界面の光反射面は、画素電極13の正孔注入層15との界面の光反射面と対となって共振器構造を形成する。したがって、発光層17から出射された光が、光学調整層19から対向電極20へと入射する際にその一部が光学調整層19へと反射される必要がある。したがって、対向電極20と光学調整層19との間で、屈折率が異なっていることが好ましい。実施の形態の一態様において、対向電極20は、金属薄膜である。光半透過性を確保するため、金属層の膜厚は1nm~50nm程度である。
対向電極20の材料としては、例えば、Ag、Agを主成分とする銀合金、Al、Alを主成分とするAl合金が挙げられる。Ag合金としては、マグネシウム-銀合金(MgAg)、インジウム-銀合金が挙げられる。Agは、基本的に低抵抗率を有し、Ag合金は、耐熱性、耐腐食性に優れ、長期にわたって良好な電気伝導性を維持できる点で好ましい。Al合金としては、マグネシウム-アルミニウム合金(MgAl)、リチウム-アルミニウム合金(LiAl)が挙げられる。その他の合金として、リチウム-マグネシウム合金、リチウム-インジウム合金が挙げられる。本実施の形態では、対向電極20はAgの薄膜である。
また、対向電極20は、金属層単独、または、金属酸化物層単独で構成してもよいが、金属層の上に金属酸化物層を積層した積層構造、あるいは金属酸化物層の上に金属層を積層した積層構造としてもよい。
なお、画素電極13を光透過性電極とする場合には、対向電極20を光反射性電極としてもよい。このとき、対向電極20は、光反射性の金属材料からなる金属層を含む。光反射性を具備する金属材料の具体例としては、銀、アルミニウム、アルミニウム合金、モリブデン、APC、ARA、MoCr、MoW、NiCrなどが挙げられる。
<その他>
有機EL素子1は基板11上に形成される。基板11は、絶縁材料である基材111からなる。あるいは、絶縁材料である基材111上に配線層112を形成してもよい。基材111は、例えば、ガラス基板、石英基板、シリコン基板、プラスチック基板等を採用することができる。プラスチック材料としては、熱可塑性樹脂、熱硬化性樹脂いずれの樹脂を用いてもよい。例えば、ポリエチレン、ポリプロピレン、ポリアミド、ポリイミド(PI)、ポリカーボネート、アクリル系樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリアセタール、その他フッ素系樹脂、スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマー、エポキシ樹脂、不飽和ポリエステル、シリコーン樹脂、ポリウレタン等、またはこれらを主とする共重合体、ブレンド体、ポリマーアロイ等が挙げられ、これらのうち1種、または2種以上を積層した積層体を用いることができる。配線層112を構成する材料としては、硫化モリブデン、銅、亜鉛、アルミニウム、ステンレス、マグネシウム、鉄、ニッケル、金、銀などの金属材料、窒化ガリウム、ガリウム砒素などの無機半導体材料、アントラセン、ルブレン、ポリパラフェニレンビニレンなどの有機半導体材料等が挙げられ、これらを複合的に用いて形成したTFT(Thin Film Transistor)層としてもよい。
また、図示していないが、基板11上には層間絶縁層12が形成されている。層間絶縁層12は、樹脂材料からなり、TFT層112の上面の段差を平坦化するためのものである。樹脂材料としては、例えば、ポジ型の感光性材料が挙げられる。また、このような感光性材料として、アクリル系樹脂、ポリイミド系樹脂、シロキサン系樹脂、フェノール系樹脂が挙げられる。また、層間絶縁層12には、画素ごとにコンタクトホールが形成されている。
有機EL表示パネル100がボトムエミッション型である場合には、基材111、層間絶縁層12は光透過性の材料で形成されることが必要となる。さらに、TFT層112が存在する場合には、TFT層112において画素電極13の下方に存在する領域の少なくとも一部分は、光透過性を有する必要がある。
また、有機EL素子1上には、封止層21が形成されている。封止層21は、正孔注入層15、正孔輸送層16、発光層17、電子注入輸送層18などの有機層が水分に晒されたり、空気に晒されたりすることを抑制する機能を有し、例えば、窒化シリコン(SiN)、酸窒化シリコン(SiON)などの透光性材料を用い形成される。また、窒化シリコン(SiN)、酸窒化シリコン(SiON)などの材料を用い形成された層の上に、アクリル樹脂、シリコーン樹脂などの樹脂材料からなる封止樹脂層を設けてもよい。
有機EL表示パネル100がトップエミッション型である場合には、封止層21は光透過性の材料で形成されることが必要となる。なお図1には示されないが、封止層21の上に、封止樹脂を介してカラーフィルタや上部基板を貼り合せてもよい。上部基板を貼り合せることによって、正孔注入層15、正孔輸送層16、発光層17、電子注入輸送層18を水分および空気などから保護できる。
[2.電子注入性と駆動電圧との関係]
本開示の一態様に係る有機EL素子1は、陰極から発光層への電子注入性が低下しても駆動電圧の上昇が抑止できる点に特徴を有する。以下、陰極から発光層への電子注入性と、有機EL素子1の駆動電圧との関係を、本開示の一態様に係る有機EL素子1(以下、「実施例」と記載する)と比較例との対比説明で示す。なお、[2.2]以降に示す実施例および比較例の電気的特性は、SILVACO製デバイスシミュレーションTCADにおいて、[2.1]に示すエネルギーバンド構造を有するデバイスモデルを用いて計算したものである。
[2.1 エネルギーバンド構造]
実施例に係る有機EL素子1および比較例に係る有機EL素子は、エネルギーバンド構造を同一とする。図2は、実施例に係る有機EL素子1および比較例に係る有機EL素子のエネルギーバンド構造を示すバンドダイアグラムである。なお、説明の簡略化のために、以下、層を形成する有機材料のエネルギー準位を「層のエネルギー準位」と略記する。なお、複数の種類の材料からなる層については、電子および/またはホールの輸送を担っている代表的な有機材料のエネルギー準位を「層のエネルギー準位」として表記する。
図2では、正孔輸送層16、発光層17、電子注入輸送層18、および、光学調整層19のLUMOのエネルギー準位(以下、「LUMO準位」と表記する)とHOMOのエネルギー準位(以下、「HOMO準位」と表記する)とを示し、他の層は記載を省略している。なお、図2では電子の真空準位を図示していないが、LUMO準位、HOMO準位のそれぞれは、バンドダイアグラムの下側であるほど、電子の真空準位からの差が大きく、エネルギーレベルが低い。
実施例および比較例において、光学調整層19のLUMO準位191、電子注入輸送層18のLUMO準位181、発光層17のLUMO準位171、正孔輸送層16のLUMO準位161は、それぞれ、-2.5eV、-2.4eV、-2.4eV、-2.1eVである。したがって、光学調整層19から電子注入輸送層18へ電子を注入するためのエネルギー障壁Eg(etl)、電子注入輸送層18から発光層17へ電子を注入するためのエネルギー障壁Eg(eml)は、いずれも0.1eV以下である。また、発光層17から正孔輸送層16へ電子を注入するためのエネルギー障壁は約0.3eVである。
また、実施例および比較例において、正孔輸送層16のHOMO準位162、発光層17のHOMO準位172、電子注入輸送層18のHOMO準位182、光学調整層19のHOMO準位192は、それぞれ、-5.3eV、-5.5eV、-5.3eV、-5.3eVである。したがって、正孔輸送層16から発光層17へホールを注入するためのエネルギー障壁Hg(eml)は約0.2eVである。また、発光層17から電子注入輸送層18へホールを注入するためのエネルギー障壁Hg(etl)、電子注入輸送層18から光学調整層19ホールを注入するためのエネルギー障壁は、それぞれ、-0.2eV、0.0eVである。
[2.2 電子注入性と発光素子全体の駆動電圧]
図3は、発光層17の膜厚ごとに、対向電極20(陰極)から発光層17への電子注入性と有機EL素子1の駆動電圧との関係を示したグラフである。図3に示すように、発光層17の膜厚が大きいほど、駆動電圧が上昇する。その理由は、発光層17の膜厚が増すほど発光層17の電気抵抗が大きくなり、同じ電流を流すために必要な電圧が上昇するためと考えられる。また、図3に示すように、対向電極20から発光層17への電子注入性が高いほど駆動電圧が低く、電子注入性が低いほど駆動電圧が高くなる。その理由は、有機EL素子1への印加電圧が同等であれば、対向電極20から発光層17への電子注入性が低くなれば発光層17内の電子密度が低下し、励起子の生成効率が低下して発光効率が低下するため、電子注入性が低いほど同程度の発光量を得るために必要な電圧が高くなるためと考えられる。
[2.3 発光層膜厚と電圧分布]
図4(a)は、実施例として発光層17の膜厚が25nmである有機EL素子1において、対向電極20から発光層17への電子注入性の程度ごとに、膜厚方向における各位置の電位(電気ポテンシャル)を示したグラフである。図4(b)は、電子注入性の程度と、有機EL素子1の駆動時に各機能層に印加される電圧(分圧)との関係を示したグラフである。また、図5(a)は、比較例として発光層の膜厚が81nmである有機EL素子において、対向電極20から発光層17への電子注入性の程度ごとに、膜厚方向における各位置の電位(電気ポテンシャル)を示したグラフである。図5(b)は、電子注入性の程度と、比較例に係る有機EL素子の駆動時に各機能層に印加される電圧(分圧)との関係を示したグラフである。なお、図4(a)および図5(a)において、電子注入性の程度は、Aが最も高く、B、C、D、E、Fの順に低くなり、Fが最も低い。また、図4(a)および図5(a)において、電子注入性の程度が同じ文字で示されている場合、電子注入輸送層18の特性が同一であることを示す。すなわち、図4(a)における電子注入性の程度Aに係る有機EL素子と、図5(a)における電子注入性の程度Aに係る有機EL素子は、発光層17の膜厚のみが異なり、それ以外の構成に差はない。
図4(a)および図5(a)に示すように、電子注入輸送層18が劣化し電子輸送性が低下、より具体的には電子移動度が低下すると、電子注入輸送層18のインピーダンスが上昇し、電子注入輸送層18での電圧降下が大きくなり、図4(b)および図5(b)に示すように、電子注入輸送層18に印加される電圧が上昇する。この電子注入輸送層18のインピーダンス上昇により、印加電圧に対して流れる電流が減少する。
一方で、図4(b)と図5(b)とを比較すると、図5(b)に示す比較例より図4(b)に示す実施例に係る有機EL素子1の方が、電子注入輸送層18に印加される電圧の上昇度合いと、発光層17に印加される電圧の上昇度合いとがともに大きい。その理由としては、発光層17のインピーダンスが異なることが考えられる。図5(b)に示すように、比較例では、電子注入輸送層18から発光層17への電子注入性が高い場合においても、発光層17に印加される電圧が電子注入輸送層18に印加される電圧に対して大きい。すなわち、発光層17のインピーダンスが電子注入輸送層18のインピーダンスと比較して大きいため、電子注入輸送層18の劣化により電子注入輸送層18の電子移動度が低下することで電子注入輸送層18のインピーダンスが上昇しても、発光層17に印加される電圧はほとんど変化しない。したがって、電子注入輸送層18が劣化した場合に、発光層17への印加電圧が変化せず、電子注入性の低下に起因して電流が減少する。その結果として、有機EL素子への印加電圧が同一であれば、電流減少により発光輝度が低下するため、その補償のために駆動電圧を上昇させる必要がある。これに対し、図4(b)に示すように、実施例では、発光層17のインピーダンスが電子注入輸送層18のインピーダンスと同程度であるため、電子注入輸送層18から発光層17への電子注入性の高低に関わらず、発光層17に印加される電圧と電子注入輸送層18に印加される電圧は同程度である。すなわち、電子注入輸送層18から発光層17への電子注入性が低下した場合に、電子注入輸送層18への印加電圧と、発光層17への印加電圧がともに上昇する。したがって、発光層17の電子密度低下の度合いを低減させるとともに、発光層17の発光効率が向上することで、発光輝度の低下を印加電圧の上昇によって補償することができる。その結果として、有機EL素子への印加電圧が同一であり、電子注入輸送層18から発光層17への電子注入性の低下が発生した場合でも、発光輝度の低下の程度を低減することができるため、駆動電圧の上昇の度合いを低減させることができる。
[2.4 電子密度と電流の変化]
以下、電子注入性の低下と電流の変化との関係をより詳細に説明する。
図6は、電子注入輸送層18から発光層17への電子注入性の程度ごとに、膜厚方向における各位置の電子密度を示したグラフであり、図6(a)は実施例に対応し、図6(b)は比較例に対応する。なお、電子注入性の程度は、図4(a)および図5(a)と同様に、Aが最も高く、B、C、D、E、Fの順に低くなり、Fが最も低い。
比較例においては、電子注入輸送層18から発光層17への電子注入性が低下しても、発光層17に印加される電圧(分圧)はほとんど変化しない。したがって、図6(b)に示すように、電子注入性の低下に起因して、発光層17内の電子密度が低下する。一方、実施例においては、電子注入輸送層18から発光層17への電子注入性が低下したときに、発光層17に印加される電圧(分圧)が上昇する。したがって、実施例においても電子注入性の低下に起因して発光層17内の電子密度が低下するが、比較例より発光層17の膜厚が小さく電圧上昇が大きいため電界強度が大きくなり、発光層17内の電子の移動度が上昇するため、発光層17内の電子密度の低下の程度が小さくなる。
図7は、発光層17の正孔輸送層16側の界面、発光層17の電子注入輸送層18側の界面のそれぞれにおける電子密度と対向電極20から発光層17への電子注入性との関係を示すグラフであり、図7(a)は実施例に対応し、図7(b)は比較例に対応する。図7(a)および(b)に示すように、電子注入輸送層18から発光層17への電子注入性が低下すると、比較例、実施例共に、発光層17の正孔輸送層16側の界面における電子密度は低下するものの、大きく変化しない。その理由としては、発光層17の正孔輸送層16側の界面における電子密度は、発光層17から正孔輸送層16への電子注入障壁の影響が大きいことが考えられる。一方、発光層17の電子注入輸送層18側の界面における電子密度は、実施例においても比較例においても低下する。その理由は、発光層17の電子注入輸送層18側の界面における電子密度は、電子注入輸送層18から発光層17への電子注入性の程度の影響を直接受けることが考えられる。しかしながら、実施例では、比較例と比べて、発光層17の正孔輸送層16側の界面における電子密度が大きい。その理由としては、上述したように、実施例では、電子注入輸送層18と発光層17の電圧勾配が大きく電界強度が大きいことにより、電子注入輸送層18内および発光層17内の電子移動度が上昇し、発光層17に注入される電子の数が比較例より増加するためと考えられる。
図8は、発光層17を流れる電流と電子注入輸送層18から発光層17への電子注入性との関係を示すグラフであり、図8(a)は実施例に対応し、図8(b)は比較例に対応する。図8(a)および(b)に示すように、電子注入輸送層18から発光層17への電子注入性が低下すると、発光層17を流れる電流は減少する。しかしながら、実施例では、比較例と比べて、対向電極20から発光層17への電子注入性が低下しても発光層17を流れる電流の低下が小さい。その理由としては、上述したように、比較例と比べて実施例では、電子注入輸送層18の電圧勾配が大きく電界強度が大きいことにより電子の移動度が高くなり、発光層17に注入される電子の数が多くなる。また、発光層17内の電子の移動度が高くなると、発光層17における電子とホールの再結合係数(再結合確率)も上昇するため、発光層17内の発光効率も上昇する。したがって、実施例では、比較例よりも、対向電極20から発光層17への電子注入性が低下しても電流の減少度合いが低減されるとともに、発光層17の発光効率の向上によって、有機EL素子1の発光効率の低下の程度を低減させることができる。
[2.5 発光層の膜厚と他の機能層の膜厚との関係]
上述したように、陰極から発光層への電子注入性が低下した際に、有機EL素子の駆動電圧に対する発光層への印加電圧(分圧)の割合を向上させることで、駆動電圧の上昇の程度を低減できる。以下、当該構成を決定するための条件について、詳細に検討した。
有機EL素子の駆動電圧に対する発光層への印加電圧(分圧)の割合は、有機EL素子の総インピーダンスと、発光層のインピーダンスとの関係により規定できる。ここで、機能層のインピーダンスを決定する要素としては、機能層の膜厚、機能層内のキャリア移動度、機能層内の電界強度、機能層内のキャリア密度が考えられる。ここで、機能層内の電界強度は機能層の分圧と機能層の膜厚とにより規定され、機能層内のキャリア密度は機能層内のキャリア移動度および電界強度に依存するから、機能層の膜厚と、機能層内のキャリア移動度とを基準に考える。一般に、機能層の膜厚が大きくなるほど電気抵抗が上昇、すなわち、インピーダンスが上昇する。その一方、機能層内のキャリア移動度が高いほど、キャリアがスムーズに移動して電流値が大きくなる、すなわち、インピーダンスが低減する。したがって、機能層の膜厚Lを当該機能層のキャリア移動度μで除した実効膜厚Lefを、当該機能層のインピーダンスを示す指標として規定する。すなわち、電子移動度をμe、ホール移動度をμh、膜厚をLとした機能層の実効膜厚Lefを、以下のように定義する。
Lef=L/(μe+μh)
そして、発光層の実効膜厚Lef(EML)が全機能層の実効膜厚の合計Lef(ALL)に占める割合と、駆動電圧の上昇値との関係を調査した。図9は、発光層の実効膜厚Lef(EML)が全機能層の実効膜厚の合計Lef(ALL)に占める割合と、陰極から発光層への電子注入性が低下した際の駆動電圧の上昇値ΔVとの関係を示すグラフである。ここで、全機能層の実効膜厚の合計Lef(ALL)とは、正孔注入層15、正孔輸送層16、発光層17、電子注入輸送層18、光学調整層19のそれぞれの実効膜厚Lefの合計値である。
図9に示すように、発光層の実効膜厚Lef(EML)が全機能層の実効膜厚の合計Lef(ALL)に占める割合が増加するほど駆動電圧が上昇し、割合が減少するほど駆動電圧が低下する。その理由は、以下に示すとおりである。発光層の実効膜厚Lef(EML)が全機能層の実効膜厚の合計Lef(ALL)に占める割合が増加するほど有機EL素子の駆動電圧に対する発光層への印加電圧(分圧)の割合が高くなるので、陰極から発光層への電子注入性が低下しても有機EL素子の駆動電圧に対する発光層への印加電圧(分圧)が上昇しない。したがって、陰極から発光層への電子注入性が低下することにより発光層内の電子密度が低下し、発光効率が低下するため、駆動電圧を上昇させる必要が生じる。一方、発光層の実効膜厚Lef(EML)が全機能層の実効膜厚の合計Lef(ALL)に占める割合が低下するほど有機EL素子の駆動電圧に対する発光層への印加電圧(分圧)の割合が低くなるため、陰極から発光層への電子注入性が低下したときに有機EL素子の駆動電圧に対する発光層への印加電圧(分圧)が上昇しやすい。したがって、陰極から発光層への電子注入性が低下しても発光層への印加電圧(分圧)の上昇により発光層内の電子密度が補償されるため、発光効率の低下度合いが低く駆動電圧の上昇度合いが低い。つまり、発光層の実効膜厚Lef(EML)が全機能層の実効膜厚の合計Lef(ALL)に占める割合は低いほどよく、例えば、当割合を30%(0.3)以下とすることで、駆動電圧の上昇を2V以下に抑制することができる。一般に、有機EL素子を備えた有機ELパネルにおいて、有機EL素子の駆動電圧の上昇における電圧マージンは2V程度であるため、上記構成により、有機ELパネルを長時間駆動しても輝度の低下を抑止することができる。なお、電圧マージンは、駆動回路の出力電圧を、有機EL素子の駆動電圧、有機EL素子以外の回路(例えば、TFT)の駆動電圧、配線による電圧降下等のそれぞれの電圧に割り振る場合に、駆動電圧の上昇に備えた余剰分として設計した電圧である。例えば、劣化前の有機EL素子の駆動電圧が11V、TFTの駆動電圧が10V、配線による電圧降下が0.5Vであるのに対し、駆動回路の出力電圧が20~30V程度の場合、有機EL素子の駆動電圧の上昇における電圧マージンは1~2V程度が上限となる。
[3.まとめ]
以上説明したように、本開示の一態様に係る有機EL素子は、機能層の膜厚Lを当該機能層のキャリア移動度μで除した当該機能層の実効膜厚Lefとしたとき、発光層の実効膜厚Lef(EML)は、全ての機能層の実効膜厚の合計Lef(ALL)の30%以下である。ここで、機能層のキャリア移動度μは、当該機能層の電子移動度μeと当該機能層のホール移動度μhとの合計である。また、全ての機能層とは、陰極と陽極との間に存在する全ての層を指し、発光層も含む。本構成によれば、陰極から発光層への電子注入性が低下した場合に発光層に印加される電圧(分圧)の駆動電圧に占める割合が上昇するため、発光層における電界強度が強化されて電流の減少度合いが低減される。さらに、発光層における電界強度が強化された際にキャリアの移動度が上昇し、再結合係数が上昇するため発光層17の発光効率が向上し、有機EL素子1の発光効率の低下の程度を低減させることができる。したがって、本開示の一態様に係る有機EL素子は、陰極から発光層への電子注入性が低下しても駆動電圧の上昇の度合いが低減し、有機EL素子の劣化の加速を抑止することができる。
[4.有機EL素子の製造方法]
有機EL素子の製造方法について、図面を用いて説明する。図10(a)~図13(b)は、有機EL素子を備える有機EL表示パネルの製造における各工程での状態を示す模式断面図である。図14は、有機EL素子を備える有機EL表示パネルの製造方法を示すフローチャートである。
なお、有機EL表示パネルにおいて、画素電極(下部電極)は有機EL素子の陽極として、対向電極(上部電極、共通電極)は有機EL素子の陰極として、それぞれ機能する。
(1)基板11の形成
まず、図10(a)に示すように、基材111上にTFT層112を成膜して基板11を形成する(ステップS10)。TFT層112は、公知のTFTの製造方法により成膜することができる。
次に、図10(b)に示すように、基板11上に層間絶縁層12を形成する(ステップS20)。層間絶縁層12は、例えば、プラズマCVD法、スパッタリング法などを用いて積層形成することができる。
次に、層間絶縁層12における、TFT層のソース電極上の個所にドライエッチング法を行い、コンタクトホールを形成する。コンタクトホールは、その底部にソース電極の表面が露出するように形成される。
次に、コンタクトホールの内壁に沿って接続電極層を形成する。接続電極層の上部は、その一部が層間絶縁層12上に配される。接続電極層の形成は、例えば、スパッタリング法を用いることができ、金属膜を成膜した後、フォトリソグラフィ法およびウェットエッチング法を用いパターニングすることがなされる。
(2)画素電極13の形成
次に、図10(c)に示すように、層間絶縁層12上に画素電極材料層130を形成する(ステップS31)。画素電極材料層130は、例えば、真空蒸着法、スパッタリング法などを用いて形成することができる
次に、図10(d)に示すように、画素電極材料層130をエッチングによりパターニングして、サブピクセルごとに区画された複数の画素電極13を形成する(ステップS32)。この画素電極13は、各有機EL素子の陽極として機能する。
なお、画素電極13の形成方法は上述の方法に限られず、例えば、画素電極材料層130上に正孔注入材料層150を形成し、画素電極材料層130と正孔注入材料層150とをエッチングによりパターニングすることで、画素電極13と正孔注入層15とをまとめて形成してもよい。
(3)隔壁14の形成
次に、図10(e)に示すように、画素電極13および層間絶縁層12上に、隔壁14の材料である隔壁用樹脂を塗布し、隔壁材料層140を形成する。隔壁材料層140は、隔壁層用樹脂であるフェノール樹脂を溶媒(例えば、乳酸エチルとGBLの混合溶媒)に溶解させた溶液を画素電極13上および層間絶縁層12上にスピンコート法などを用いて一様に塗布することにより形成される(ステップS41)。そして、隔壁材料層140にパターン露光と現像を行うことで隔壁14を形成し(図11(a)、ステップS42)、隔壁14を焼成する。これにより、発光層17の形成領域となる開口部14aが規定される。隔壁14の焼成は、例えば、150℃以上210℃以下の温度で60分間行う。
また、隔壁14の形成工程においては、さらに、隔壁14の表面を所定のアルカリ性溶液や水、有機溶媒等によって表面処理するか、プラズマ処理を施すこととしてもよい。これは、開口部14aに塗布するインク(溶液)に対する隔壁14の接触角を調節する目的で、もしくは、表面に撥水性を付与する目的で行われる。
(4)正孔注入層15の形成
次に、図11(b)に示すように、隔壁14が規定する開口部14aに対し、正孔注入層15の構成材料を含むインクを、インクジェットヘッド401のノズルから吐出して開口部14a内の画素電極13上に塗布し、焼成(乾燥)を行って、正孔注入層15を形成する(ステップS50)。
(5)正孔輸送層16の形成
次に、図11(c)に示すように、隔壁14が規定する開口部14aに対し、正孔輸送層16の構成材料を含むインクを、インクジェットヘッド402のノズルから吐出して開口部14a内の正孔注入層15上に塗布し、焼成(乾燥)を行って、正孔輸送層16を形成する(ステップS60)。
(6)発光層17の形成
次に、図12(a)に示すように、発光層17の構成材料を含むインクを、インクジェットヘッド403のノズルから吐出して開口部14a内の正孔輸送層16上に塗布し、焼成(乾燥)を行って発光層17を形成する(ステップS70)。
(7)電子注入輸送層18の形成
次に、図12(b)に示すように、発光層17および隔壁14上に、電子注入輸送層18を形成する(ステップS80)。電子注入輸送層18は、例えば、電子輸送性を有する有機化合物と電子注入性を有する金属材料とを共蒸着法により各サブピクセルに共通して成膜することにより形成される。
(8)光学調整層19の形成
次に、図12(c)に示すように、電子注入輸送層18上に、光学調整層19を形成する(ステップS90)。光学調整層19は、例えば、ITO、IZOなどの酸化物導電体をスパッタリング法により各サブピクセルに共通して成膜することにより形成される。
(9)対向電極20の形成
次に、図13(a)に示すように、光学調整層19上に、対向電極20を形成する(ステップS100)。対向電極20は、銀、アルミニウム等を、スパッタリング法、真空蒸着法により成膜することにより形成される。なお、対向電極20は、各有機EL素子の陰極として機能する。
(10)封止層21の形成
最後に、図13(b)に示すように、対向電極20上に、封止層21を形成する(ステップS110)。封止層21は、SiON、SiN等を、スパッタリング法、CVD法などにより成膜することにより形成することができる。なお、SiON、SiNなどの無機膜上に封止樹脂層をさらに塗布、焼成等により形成してもよい。
なお、封止層21の上にカラーフィルタや上部基板を載置し、接合してもよい。
[5.有機EL表示装置の全体構成]
図15は、有機EL表示パネル100を備えた有機EL表示装置1000の構成を示す模式ブロック図である。図15に示すように、有機EL表示装置1000は、有機EL表示パネル100と、これに接続された駆動制御部200とを含む構成である。駆動制御部200は、4つの駆動回路210~240と、制御回路250とから構成されている。
なお、実際の有機EL表示装置1000では、有機EL表示パネル100に対する駆動制御部200の配置については、これに限られない。
[6.その他の変形例]
(1)上記実施の形態においては、電子注入性を有する金属材料の劣化によって陰極から発光層への電子注入性が低下する場合について説明したが、電子注入性を有する有機材料の劣化によって陰極から発光層への電子注入性が低下する場合についても、同様の設計により駆動電圧の上昇度合いを低減させることができる。その理由としては、上述したように、発光層の実効膜厚を全機能層の実効膜厚の合計に対して所定の比以下とすることにより、電子注入性を有する機能層のインピーダンスに対して発光層のインピーダンスを過大としないことができるためである。その構成により、陰極から発光層への電子注入性が低下した場合に、発光層と電子注入層について駆動電圧に対する印加電圧(分圧)比を上昇させることができるため、発光層への電子注入性低下の影響を、発光層および電子注入層内の電界強度上昇による電子移動度上昇によって減殺できる。電子輸送性を有する有機材料の劣化によって陰極から発光層への電子注入性が低下する場合についても同様である。
同様に、ホール注入性を有する金属材料や有機材料の劣化によって陽極から発光層へのホール注入性が低下する場合についても、同様の設計により駆動電圧の上昇度合いを低減させることができる。その理由としては、上述したように、発光層の実効膜厚を全機能層の実効膜厚の合計に対して所定の比以下とすることにより、ホール注入性を有する機能層のインピーダンスに対して発光層のインピーダンスを過大としないことができるためである。その構成により、陽極から発光層へのホール注入性が低下した場合に、発光層と正孔注入層について駆動電圧に対する印加電圧(分圧)比を上昇させることができるため、発光層へのホール注入性低下の影響を、発光層および正孔注入層内の電界強度上昇によるホール移動度上昇によって減殺できる。ホール輸送性を有する有機材料の劣化によって陽極から発光層へのホール注入性が低下する場合についても同様である。
(2)上記実施の形態においては、正孔注入層15や正孔輸送層16を必須構成であるとしたが、これに限られない。例えば、正孔輸送層16を有しない有機EL素子であってもよい。また、例えば、正孔注入層15と正孔輸送層16とに替えて、単一層の正孔注入輸送層を有していてもよい。
また、上記実施の形態において、単一の電子注入輸送層18を設けるとしたが、電子注入層と電子輸送層を個別に設けてもよい。
(3)上記実施の形態においては、光学調整層19を必須構成であるとしたが、これに限られない。上記実施の形態では、発光層17の膜厚が小さいため、他の機能層の膜厚の設計により、0次干渉を用いて光路長を最小とした光共振器構造を形成してもよい。また、光学調整層を設ける場合、光学調整層は1層である必要も実施の形態で示した位置である必要もなく、例えば、光学調整層を発光層と電子注入輸送層の間に設けてもよい。
(4)上記実施の形態においては、有機EL表示パネルはトップエミッション構成であるとしたが、画素電極を光透過型電極、対向電極を光反射型電極とすることでボトムエミッション構成としてもよい。
また、上記実施の形態においては、陽極が画素電極、陰極が対向電極であるとしたが、陰極が画素電極、陽極が対向電極であるとしてもよい。
(5)上記実施の形態においては、有機EL素子を備えるパネルが有機EL表示パネルであるとしたが、これに限られない。例えば、有機EL素子を発光素子として備えるパネルであれば、照明装置の一部としての発光パネル、液晶パネルのバックライトパネル、発光パネル機能と表示パネル機能とを選択して使用できる多機能パネルなど、表示以外の用途に用いられるものであってもよい。
以上、本開示に係る有機EL素子および有機ELパネルについて、実施の形態および変形例に基づいて説明したが、本発明は、上記の実施の形態および変形例に限定されるものではない。上記実施の形態および変形例に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で実施の形態および変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
本発明は、長寿命の有機EL素子およびそれを備える有機ELパネルを製造するのに有用である。
1 有機EL素子
11 基板
12 層間絶縁層
13 画素電極(陽極)
14 隔壁
15 正孔注入層
16 正孔輸送層
17 発光層
18 電子注入輸送層
19 光学調整層
20 対向電極(陰極)
21 封止層
100 有機EL表示パネル
200 駆動制御部
210~240 駆動回路
250 制御回路
1000 有機EL表示装置

Claims (8)

  1. 陽極と、発光層を含む複数の機能層と、陰極とがこの順に積層されてなる有機EL素子であって、
    前記機能層のそれぞれについて、前記機能層の実効電子移動度と実効ホール移動度との加算値である実行キャリア移動度で前記機能層の膜厚を除した値を前記機能層の実効膜厚としたとき、前記発光層の実効膜厚は、全ての前記機能層の実効膜厚を合計した値の30%以下である
    有機EL素子。
  2. 前記発光層と前記陰極との間に、金属材料を含む電子注入層を前記機能層として含む
    請求項1に記載の有機EL素子。
  3. 前記電子注入層に含まれる前記金属材料は、アルカリ金属、アルカリ土類金属、希土類金属から選択される
    請求項2に記載の有機EL素子。
  4. 前記陽極は光反射性の電極であり、
    前記有機EL素子は、前記発光層と前記陽極との間に中間層を前記機能層として含み、
    前記中間層の膜厚は、40nm以下である
    請求項1から3のいずれか1項に記載の有機EL素子。
  5. 前記陰極は光半透過性の電極であり、
    前記有機EL素子は、前記発光層と前記陰極との間に透明導電層を前記機能層として含む
    請求項1から4のいずれか1項に記載の有機EL素子。
  6. 前記陽極の前記発光層側の面と前記陰極の前記発光層側の面との間に光共振器構造が構成され、
    前記透明導電層は、ITOまたはIZOを含む
    請求項5に記載の有機EL素子。
  7. 基板上に、請求項1から6のいずれか1項に記載の有機EL素子が複数形成された有機ELパネル。
  8. 基板を準備し、
    前記基板の上方に陽極を形成し、
    前記陽極の上方に、発光層を含む複数の機能層を形成し、
    前記機能層の上方に陰極を形成する有機EL素子の製造方法であって、
    前記機能層のそれぞれについて、前記機能層の実効電子移動度と実効ホール移動度との加算値である実行キャリア移動度で前記機能層の膜厚を除した値を前記機能層の実効膜厚としたとき、前記発光層の実効膜厚は、全ての前記機能層の実効膜厚を合計した値の30%以下となるように前記発光層の膜厚を設定する
    有機EL素子の製造方法。
JP2020185748A 2020-11-06 2020-11-06 有機el素子、有機elパネル、および、有機el素子の製造方法 Pending JP2022075153A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020185748A JP2022075153A (ja) 2020-11-06 2020-11-06 有機el素子、有機elパネル、および、有機el素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020185748A JP2022075153A (ja) 2020-11-06 2020-11-06 有機el素子、有機elパネル、および、有機el素子の製造方法

Publications (1)

Publication Number Publication Date
JP2022075153A true JP2022075153A (ja) 2022-05-18

Family

ID=81606383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020185748A Pending JP2022075153A (ja) 2020-11-06 2020-11-06 有機el素子、有機elパネル、および、有機el素子の製造方法

Country Status (1)

Country Link
JP (1) JP2022075153A (ja)

Similar Documents

Publication Publication Date Title
JP6387566B2 (ja) 有機el素子
US10305068B2 (en) Organic EL display element, organic EL display panel, and method of manufacturing organic EL display element
US11700734B2 (en) Organic el element, and organic el display panel including light- emitting layer and functional layer with specific hole and electron mobilities relationship
JP6060361B2 (ja) 有機発光素子
US10381589B2 (en) Organic EL element and organic EL display panel
US10665806B2 (en) Organic EL element and organic EL display panel
JP7031898B2 (ja) 発光素子、自発光パネル、および、発光素子の製造方法
JP2022075153A (ja) 有機el素子、有機elパネル、および、有機el素子の製造方法
US10581019B2 (en) Organic EL element having reduced electric power consumption by optimizing film thicknesses thereof and method of manufacturing same
CN111952465B (zh) 有机el元件及其制造方法、有机el显示面板
US20180269433A1 (en) Organic electroluminescence element and method of manufacturing the same
US20220158112A1 (en) Organic el element, organic el panel, and organic el element manufacturing method
JP7493931B2 (ja) 有機el素子、有機el表示パネル、および、有機el素子の製造方法
JP2022080879A (ja) 有機el素子、有機elパネル、および、有機el素子の製造方法
JP2022030017A (ja) 有機el素子、有機el表示パネル、および、有機el素子の製造方法
US11462707B2 (en) Display panel utilizing self-luminous elements and method of manufacturing same
US20220199930A1 (en) Organic el element, organic el display panel, and organic el element manufacturing method
JP7424830B2 (ja) 有機el素子、有機el表示パネルおよび有機el素子の製造方法
US20210098745A1 (en) Self-luminous element, self-luminous panel, and self-luminous panel manufacturing method
JP2022098473A (ja) 有機el素子、有機el表示パネル、および、有機el素子の製造方法
JP2022102056A (ja) 自発光パネル、および、自発光パネルの製造方法
JP2021048054A (ja) 自発光素子を用いた表示パネル、および、その製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20231031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231106