JP2022074335A - Electrode for aqueous solution-based secondary battery and aqueous-based secondary battery - Google Patents

Electrode for aqueous solution-based secondary battery and aqueous-based secondary battery Download PDF

Info

Publication number
JP2022074335A
JP2022074335A JP2020184288A JP2020184288A JP2022074335A JP 2022074335 A JP2022074335 A JP 2022074335A JP 2020184288 A JP2020184288 A JP 2020184288A JP 2020184288 A JP2020184288 A JP 2020184288A JP 2022074335 A JP2022074335 A JP 2022074335A
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
aqueous solution
based secondary
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020184288A
Other languages
Japanese (ja)
Inventor
創 荒井
Hajime Arai
篤憲 池澤
Atsunori Ikezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2020184288A priority Critical patent/JP2022074335A/en
Publication of JP2022074335A publication Critical patent/JP2022074335A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

To provide an electrode for an aqueous solution-based secondary battery and an aqueous-based secondary battery with good proton insertion and desorption characteristics.SOLUTION: An electrode for an aqueous solution-based secondary battery according to an embodiment the present invention that can insert and desorb protons includes a current collector and a mixture layer formed on the current collector, and the mixture layer contains at least a metal sulfide. The aqueous solution-based secondary battery according to an embodiment of the present invention includes a positive electrode and a negative electrode made of the above-mentioned electrode for an aqueous solution-based secondary battery, and an aqueous solution-based electrolyte.SELECTED DRAWING: Figure 1

Description

本発明は、水溶液系二次電池用電極、及び水溶液系二次電池に関する。 The present invention relates to an electrode for an aqueous solution-based secondary battery and an aqueous solution-based secondary battery.

現在最も幅広く使われている二次電池(蓄電池)であるリチウムイオン二次電池は、結晶構造を保ったままリチウムイオンが出入りする、挿入脱離型の電極材料を正極・負極に有し、高い可逆性と充放電効率を有する優れた二次電池である(特許文献1参照)。 Lithium-ion secondary batteries, which are the most widely used secondary batteries (storage batteries) at present, have insert-removable electrode materials for the positive and negative electrodes that allow lithium ions to enter and exit while maintaining the crystal structure, and are expensive. It is an excellent secondary battery having reversibility and charge / discharge efficiency (see Patent Document 1).

一方で、リチウムイオン二次電池は、酸化力の極めて強い正極と還元力の極めて強い負極からなり、かつ有機溶媒を主体とする電解質が可燃性であるため安全性の課題がある。このため、安全性を確保するために保護回路等を設ける必要がありコストが増加する。したがって、再生可能エネルギーを貯蔵するような大規模用途には、正極の酸化力・負極の還元力に基づく起電力ないしエネルギー密度よりも、安全性を重視した二次電池が望ましい。すなわち、リチウムイオン二次電池に代わる、安全で安価な水溶液系の二次電池が求められる。 On the other hand, a lithium ion secondary battery has a safety problem because it is composed of a positive electrode having an extremely strong oxidizing power and a negative electrode having an extremely strong reducing power, and an electrolyte mainly composed of an organic solvent is flammable. Therefore, it is necessary to provide a protection circuit or the like in order to ensure safety, which increases the cost. Therefore, for large-scale applications such as storing renewable energy, a secondary battery that emphasizes safety rather than electromotive force or energy density based on the oxidizing power of the positive electrode and the reducing power of the negative electrode is desirable. That is, a safe and inexpensive aqueous solution-based secondary battery that replaces the lithium-ion secondary battery is required.

特許3278072号公報Japanese Patent No. 3278072

従来の水溶液系二次電池用電極には亜鉛等の卑金属やLaNiに代表される水素吸蔵合金が提案されているが、リチウムイオン二次電池の概念を適用した挿入脱離型材料の材料探索はまだ端緒段階である。 Although base metals such as zinc and hydrogen storage alloys typified by LaNi 5 have been proposed for electrodes for conventional aqueous solution-based secondary batteries, material search for insertable / desorbable materials applying the concept of lithium-ion secondary batteries has been proposed. Is still in its infancy.

本発明の目的は、良好なプロトン挿入脱離特性を備える水溶液系二次電池用電極、及び水溶液系二次電池を提供することである。 An object of the present invention is to provide an electrode for an aqueous solution-based secondary battery having good proton insertion / desorption characteristics, and an aqueous solution-based secondary battery.

本発明の一態様にかかる水溶液系二次電池用電極は、プロトンを挿入・脱離可能な水溶液系二次電池用電極であって、集電体と、前記集電体の上に形成された合剤層と、を備え、前記合剤層が少なくとも金属硫化物を含むことを特徴としている。 The electrode for an aqueous solution-based secondary battery according to one aspect of the present invention is an electrode for an aqueous solution-based secondary battery capable of inserting and removing protons, and is formed on a current collector and the current collector. A mixture layer is provided, and the mixture layer is characterized by containing at least a metal sulfide.

上述の水溶液系二次電池用電極において、前記金属硫化物が、TaS、CoS、TiS、VS、NbS、MoS、WS、及びFeSからなる群から選択される少なくとも一種であってもよい。 In the above-mentioned electrode for an aqueous solution-based secondary battery, the metal sulfide is at least one selected from the group consisting of TaS 2 , CoS 2 , TiS 2 , VS 2 , NbS 2 , MoS 2 , WS 2 , and FeS 2 . It may be.

上述の水溶液系二次電池用電極において、前記集電体がカーボン板であってもよい。 In the above-mentioned electrode for an aqueous solution-based secondary battery, the current collector may be a carbon plate.

本発明の一態様にかかる水溶液系二次電池は、上述の水溶液系二次電池用電極からなる正極および負極と、水溶液系の電解質と、を備える。 The aqueous solution-based secondary battery according to one aspect of the present invention includes a positive electrode and a negative electrode made of the above-mentioned electrodes for an aqueous solution-based secondary battery, and an aqueous solution-based electrolyte.

本発明の他の態様にかかる水溶液系二次電池は、上述の水溶液系二次電池用電極からなる負極と、水酸化ニッケルを含む正極と、水溶液系の電解質と、を備える。 The aqueous solution-based secondary battery according to another aspect of the present invention includes a negative electrode made of the above-mentioned aqueous solution-based secondary battery electrode, a positive electrode containing nickel hydroxide, and an aqueous solution-based electrolyte.

上述の水溶液系二次電池において、前記電解質が、硫酸水溶液、硝酸水溶液、水酸化カリウム水溶液、及び硝酸カリウム水溶液からなる群から選択される少なくとも一種であってもよい。 In the above-mentioned aqueous solution-based secondary battery, the electrolyte may be at least one selected from the group consisting of a sulfuric acid aqueous solution, a nitric acid aqueous solution, a potassium hydroxide aqueous solution, and a potassium nitrate aqueous solution.

本発明により、良好なプロトン挿入脱離特性を備える水溶液系二次電池用電極、及び水溶液系二次電池を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an electrode for an aqueous solution-based secondary battery having good proton insertion / desorption characteristics and an aqueous solution-based secondary battery.

実施の形態にかかる水溶液系二次電池用電極の構成例を示す断面図である。It is sectional drawing which shows the structural example of the electrode for an aqueous solution system secondary battery which concerns on embodiment. 実施の形態にかかる水溶液系二次電池の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the aqueous solution type secondary battery which concerns on embodiment. 実施例1にかかる電極(TaS)のサイクリックボルタモグラムの測定結果である。It is the measurement result of the cyclic voltammogram of the electrode (TaS 2 ) which concerns on Example 1. FIG. 実施例2にかかる電極(CoS)のサイクリックボルタモグラムの測定結果である。It is the measurement result of the cyclic voltammogram of the electrode (CoS 2 ) which concerns on Example 2. FIG.

以下、図面を参照して本発明の実施の形態について説明する。
図1は、実施の形態にかかる水溶液系二次電池用電極の構成例を示す断面図である。図1に示すように、本実施の形態にかかる水溶液系二次電池用電極1(以下、単に電極1とも記載する)は、集電体11と、集電体11の上に形成された合剤層12と、を備える。本実施の形態にかかる電極1は、プロトンを挿入・脱離可能な水溶液系二次電池用の電極である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a configuration example of an electrode for an aqueous solution-based secondary battery according to an embodiment. As shown in FIG. 1, the electrode 1 for an aqueous solution-based secondary battery according to the present embodiment (hereinafter, also simply referred to as an electrode 1) is a combination of a current collector 11 and a current collector 11 formed on the current collector 11. The agent layer 12 is provided. The electrode 1 according to the present embodiment is an electrode for an aqueous solution-based secondary battery capable of inserting and removing protons.

集電体11は、合剤層12を保持するとともに、合剤層12に電荷を供給・回収する機能を備える。集電体11は、導電性の高い金属箔や金属板を用いて構成することができる。具体的には、集電体11として、アルミニウム、アルミニウムを主成分とする合金、ニッケル、チタン、銅など用いることができる。また、本実施の形態では、集電体11としてカーボン板を用いてもよい。集電体11にカーボン板を用いた場合は、副反応である水素発生による集電体の水素脆性劣化を抑制できる。 The current collector 11 has a function of holding the mixture layer 12 and supplying and recovering electric charges to the mixture layer 12. The current collector 11 can be configured by using a metal foil or a metal plate having high conductivity. Specifically, as the current collector 11, aluminum, an alloy containing aluminum as a main component, nickel, titanium, copper and the like can be used. Further, in the present embodiment, a carbon plate may be used as the current collector 11. When a carbon plate is used for the current collector 11, it is possible to suppress the deterioration of hydrogen embrittlement of the current collector due to the generation of hydrogen as a side reaction.

合剤層12は、集電体11の上に形成されており、少なくとも活物質として金属硫化物を含んでいる。本実施の形態において金属硫化物は、TaS、CoS、TiS、VS、NbS、MoS、WS、及びFeSからなる群から選択される少なくとも一種である。本実施の形態では特に、活物質としてTaS、CoSを用いることが好ましい。なお、合剤層12に使用する活物質は上述の金属硫化物に限定されることはなく、これら以外の金属硫化物を用いてもよい。また、合剤層12に用いる活物質は、電極1の極性に応じて適宜選択することができる。また、合剤層12に用いる活物質は、ボールミル等を用いて粉砕し、表面積の高い微粉末とすることにより、反応性を高めることができる。 The mixture layer 12 is formed on the current collector 11 and contains at least a metal sulfide as an active material. In this embodiment, the metal sulfide is at least one selected from the group consisting of TaS 2 , CoS 2 , TiS 2 , VS 2 , NbS 2 , MoS 2 , WS 2 , and FeS 2 . In this embodiment, it is particularly preferable to use TaS 2 and CoS 2 as the active material. The active material used for the mixture layer 12 is not limited to the above-mentioned metal sulfides, and metal sulfides other than these may be used. Further, the active material used for the mixture layer 12 can be appropriately selected according to the polarity of the electrode 1. Further, the active material used for the mixture layer 12 can be pulverized using a ball mill or the like to form a fine powder having a high surface area, whereby the reactivity can be enhanced.

合剤層12はバインダを含んでいてもよい。バインダには、カルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)、ポリフッ化ビニリデン(PVDF)などを用いてもよい。バインダの金属硫化物に対する割合は、例えば、1質量%以上20質量%以下、好ましくは5質量%以上15質量%以下、更に好ましくは8質量%以上12質量%以下とすることができる。 The mixture layer 12 may contain a binder. As the binder, carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), or the like may be used. The ratio of the binder to the metal sulfide can be, for example, 1% by mass or more and 20% by mass or less, preferably 5% by mass or more and 15% by mass or less, and more preferably 8% by mass or more and 12% by mass or less.

また、合剤層12は導電材を含んでいてもよい。導電材は合剤層12中に電子伝導パスを形成する材料であり、例えば、アセチレンブラックなどのカーボンブラック、黒鉛等を用いることができる。なお、導電材を添加した場合は、副反応によって水素が発生する場合もある。この場合は、導電材を添加することなく、合剤層12を構成することが好ましい。 Further, the mixture layer 12 may contain a conductive material. The conductive material is a material that forms an electron conduction path in the mixture layer 12, and for example, carbon black such as acetylene black, graphite, or the like can be used. When a conductive material is added, hydrogen may be generated by a side reaction. In this case, it is preferable to form the mixture layer 12 without adding a conductive material.

次に、本実施の形態にかかる電極の製造方法について説明する。本実施の形態にかかる電極を製造する際は、まずスラリーを形成する。具体的には、活物質である金属硫化物、バインダ、及び溶媒(必要に応じて導電材を添加してもよい)を混合して混練する。溶媒には、例えば、2-プロパノール、水、N-メチル-2-ピロリドン(NMP)等を用いることができる。その後、混練後のスラリーを集電体11の上に塗布して乾燥させる。その後、集電体11に形成した合剤層12をプレスすることで、本実施の形態にかかる電極1を製造することができる。 Next, a method for manufacturing the electrode according to the present embodiment will be described. When manufacturing the electrode according to this embodiment, first, a slurry is formed. Specifically, the active material, metal sulfide, binder, and solvent (a conductive material may be added if necessary) are mixed and kneaded. As the solvent, for example, 2-propanol, water, N-methyl-2-pyrrolidone (NMP) and the like can be used. Then, the kneaded slurry is applied onto the current collector 11 and dried. After that, the electrode 1 according to the present embodiment can be manufactured by pressing the mixture layer 12 formed on the current collector 11.

次に、本実施の形態にかかる水溶液系二次電池について説明する。図2は、本実施の形態にかかる水溶液系二次電池の構成例を示す模式図である。図2に示すように、本実施の形態にかかる水溶液系二次電池20は、正極21、負極22、及び電解質23を備える。正極21、負極22、及び電解質23は、電池筐体24に収容されている。正極21には正極引出電極26が取り付けられている。正極引出電極26は電池筐体24の外部に露出するように配置されている。負極22には負極引出電極27が取り付けられている。負極引出電極27は電池筐体24の外部に露出するように配置されている。正極引出電極26および負極引出電極27は、リード線を介して負荷28に接続されている。 Next, the aqueous solution-based secondary battery according to the present embodiment will be described. FIG. 2 is a schematic diagram showing a configuration example of the aqueous solution-based secondary battery according to the present embodiment. As shown in FIG. 2, the aqueous solution-based secondary battery 20 according to the present embodiment includes a positive electrode 21, a negative electrode 22, and an electrolyte 23. The positive electrode 21, the negative electrode 22, and the electrolyte 23 are housed in the battery housing 24. A positive electrode extraction electrode 26 is attached to the positive electrode 21. The positive electrode extraction electrode 26 is arranged so as to be exposed to the outside of the battery housing 24. A negative electrode drawer electrode 27 is attached to the negative electrode 22. The negative electrode extraction electrode 27 is arranged so as to be exposed to the outside of the battery housing 24. The positive electrode lead electrode 26 and the negative electrode lead electrode 27 are connected to the load 28 via a lead wire.

本実施の形態にかかる水溶液系二次電池20は、正極21と負極22との間をプロトン(H)が移動するととともに、正極21および負極22においてプロトンが挿入・脱離することで充放電される二次電池である。具体的には、図2に示すように、放電の際は、負極22からプロトンが脱離し、この脱離したプロトンが負極22から正極21に電解質23中を移動して正極21にプロトンが挿入される。このとき電子は負極22から、負極引出電極27、リード線、負荷28、及び正極引出電極26を通過して正極21へと移動する。一方、充電の際は、正極21からプロトンが脱離し、この脱離したプロトンが正極21から負極22に電解質23中を移動して負極22にプロトンが挿入される。 The aqueous secondary battery 20 according to the present embodiment is charged and discharged by the movement of protons (H + ) between the positive electrode 21 and the negative electrode 22 and the insertion and desorption of protons in the positive electrode 21 and the negative electrode 22. It is a secondary battery that is discharged. Specifically, as shown in FIG. 2, during discharge, protons are desorbed from the negative electrode 22, and the desorbed protons move from the negative electrode 22 to the positive electrode 21 in the electrolyte 23, and the protons are inserted into the positive electrode 21. Will be done. At this time, the electrons move from the negative electrode 22 to the positive electrode 21 through the negative electrode lead electrode 27, the lead wire, the load 28, and the positive electrode lead electrode 26. On the other hand, during charging, protons are desorbed from the positive electrode 21, and the desorbed protons move from the positive electrode 21 to the negative electrode 22 in the electrolyte 23, and the protons are inserted into the negative electrode 22.

本実施の形態にかかる水溶液系二次電池20では、電解質23としてイオン導電率の高い電解質を使用することが好ましい。例えば、電解質23に用いる水溶液として、硫酸水溶液、硝酸水溶液、水酸化カリウム水溶液、及び硝酸カリウム水溶液からなる群から選択される少なくとも一種を用いることができる。 In the aqueous solution-based secondary battery 20 according to the present embodiment, it is preferable to use an electrolyte having high ionic conductivity as the electrolyte 23. For example, as the aqueous solution used for the electrolyte 23, at least one selected from the group consisting of a sulfuric acid aqueous solution, a nitric acid aqueous solution, a potassium hydroxide aqueous solution, and a potassium nitrate aqueous solution can be used.

本実施の形態にかかる水溶液系二次電池20では、上述した本実施の形態にかかる電極を用いて正極21および負極22を構成してもよい。この場合は、それぞれ異なる活物質を用いて電極1を形成し、参照極に対する電位が高い方の電極1を正極21とし、参照極に対する電位が低い方の電極を負極22とする。なお、参照極に対する電位は、使用する活物質に応じて異なる。本実施の形態では、正極21と負極22との電位差が大きくなるような組合せの活物質を選択することが好ましい。 In the aqueous solution-based secondary battery 20 according to the present embodiment, the positive electrode 21 and the negative electrode 22 may be configured by using the electrodes according to the above-described present embodiment. In this case, the electrode 1 is formed by using different active materials, the electrode 1 having a higher potential with respect to the reference electrode is used as the positive electrode 21, and the electrode having the lower potential with respect to the reference electrode is used as the negative electrode 22. The potential for the reference electrode differs depending on the active material used. In the present embodiment, it is preferable to select a combination of active materials such that the potential difference between the positive electrode 21 and the negative electrode 22 becomes large.

また、本実施の形態にかかる水溶液系二次電池20では、上述した本実施の形態にかかる電極1を用いて負極22を構成し、水酸化ニッケルを活物質として含む電極を用いて正極21を構成してもよい。例えば、正極21に水酸化ニッケルを用いて電池を形成した後、この電池を充電してプロトンを負極22に挿入して二次電池として機能させる方法は、安定性の高い放電状態で電池生産できる点でメリットが大きい。このためには負極22の金属硫化物の中心金属の形式価数は最初に高価数側の3価もしくは4価であることが望ましい。本実施の形態ではこのような理由から、金属硫化物を用いた電極を負極として用いることが好ましい。金属硫化物(MS)を用いた場合は、中心金属Mの価数を4価とすることができる。 Further, in the aqueous solution-based secondary battery 20 according to the present embodiment, the negative electrode 22 is configured by using the electrode 1 according to the above-described present embodiment, and the positive electrode 21 is formed by using the electrode containing nickel hydroxide as an active material. It may be configured. For example, a method of forming a battery using nickel hydroxide on the positive electrode 21 and then charging the battery and inserting protons into the negative electrode 22 to function as a secondary battery can produce a battery in a highly stable discharged state. There is a big merit in that. For this purpose, it is desirable that the formal valence of the central metal of the metal sulfide of the negative electrode 22 is trivalent or tetravalent on the expensive side first. For this reason, in the present embodiment, it is preferable to use an electrode using a metal sulfide as a negative electrode. When the metal sulfide (MS 2 ) is used, the valence of the central metal M can be tetravalent.

以上で説明した本実施の形態にかかる発明では、金属硫化物を用いて電極を構成している。金属硫化物は、充放電時にプロトンを挿入・脱離可能な材料であり、良好なプロトン挿入脱離特性を有する。したがって本実施の形態にかかる発明により、良好なプロトン挿入脱離特性を有する水溶液系二次電池用電極、及び水溶液系二次電池を提供することができる。 In the invention according to the present embodiment described above, the electrode is configured by using the metal sulfide. Metal sulfide is a material capable of inserting and desorbing protons during charging and discharging, and has good proton insertion and desorption characteristics. Therefore, according to the invention according to the present embodiment, it is possible to provide an electrode for an aqueous solution-based secondary battery and an aqueous solution-based secondary battery having good proton insertion / desorption characteristics.

特に、本実施の形態にかかる電極を用いた水溶液系二次電池は、電解質が不燃性であるため安全性を確保することができ、また、長寿命・高効率であるとともに安価であるので、再生可能エネルギーを貯蔵するような大規模な二次電池に好適に用いることができる。 In particular, the aqueous solution-based secondary battery using the electrodes according to the present embodiment can ensure safety because the electrolyte is nonflammable, has a long life, is highly efficient, and is inexpensive. It can be suitably used for a large-scale secondary battery that stores renewable energy.

なお、上述の本実施の形態にかかる電極では、活物質として金属硫化物を用いた場合について説明した。しかしながら本実施の形態にかかる電極では、活物質として、オキシハイドライドMOOH、オキシフルオライドMOF、三フッ化物MF、三酸化物MO、ホウ酸塩MBO、リン酸塩MPO(Mは遷移系列金属)を用いてもよい。ここでMはプロトンの挿入脱離に伴い、2価/3価/4価の酸化還元反応を行う。 In the electrode according to the above-described embodiment, a case where a metal sulfide is used as an active material has been described. However, in the electrode according to the present embodiment, as active materials, oxyhydride MOOH, oxyfluoride MOF, trifluoride MF 3 , trioxide MO 3 , borate MBO 3 , and phosphate MPO 4 (M is a transition). Series metal) may be used. Here, M undergoes a divalent / trivalent / tetravalent redox reaction with the insertion and desorption of protons.

次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.

<実施例1>
実施例1としてTaSを含む電極を作製した。
まず、活物質としてTaS(高純度化学研究所社製)を、バインダとしてスチレンブタジエンゴム(SBR:JSR社製)をそれぞれ準備した。そして、TaSとSBRを混合し、さらに2-プロパノールを加えてスラリーを作製した。このときのTaSとSBRの割合は、TaSを90質量%、SBRを10質量%とした。その後、作製したスラリーを集電体であるカーボン板に塗布し、60℃で5時間以上、加熱・乾燥して合剤層を形成した。その後、集電体上に形成した合剤層を10MPaの圧力でプレスすることで、実施例1にかかる電極を作製した。
<Example 1>
As Example 1, an electrode containing TaS 2 was produced.
First, TaS 2 (manufactured by High Purity Chemical Research Institute) was prepared as an active material, and styrene-butadiene rubber (SBR: manufactured by JSR) was prepared as a binder. Then, TaS 2 and SBR were mixed, and 2-propanol was further added to prepare a slurry. At this time, the ratio of TaS 2 and SBR was 90% by mass for TaS 2 and 10% by mass for SBR. Then, the prepared slurry was applied to a carbon plate as a current collector, and heated and dried at 60 ° C. for 5 hours or more to form a mixture layer. Then, the mixture layer formed on the current collector was pressed at a pressure of 10 MPa to prepare an electrode according to Example 1.

<実施例1にかかるサンプルの評価>
以下の方法を用いて実施例1にかかるサンプルを評価した。
実施例1にかかる電極(TaS)を作用極とする三極式セル(試験セル)を構築して、サイクリックボルタモグラムを測定した。試験セルには、ガラス製容器を用いた。電解質(電解液)には重量濃度50%の硫酸水溶液(ナカライテスク社製)を用いた。参照極には、塩化カリウム飽和溶液に浸漬した銀塩化銀電極を用いた。以下の電位はすべて、この参照極に対する電位である。対極には白金線を用いた。電位走査速度は10mV/sとした。
<Evaluation of sample according to Example 1>
The sample according to Example 1 was evaluated using the following method.
A tripolar cell (test cell) using the electrode (TaS 2 ) according to Example 1 as a working electrode was constructed, and a cyclic voltamogram was measured. A glass container was used as the test cell. A sulfuric acid aqueous solution (manufactured by Nacalai Tesque) having a weight concentration of 50% was used as the electrolyte (electrolyte solution). As the reference electrode, a silver-silver chloride electrode immersed in a saturated potassium chloride solution was used. All of the following potentials are potentials for this reference pole. A platinum wire was used as the counter electrode. The potential scanning speed was 10 mV / s.

図3は、実施例1にかかる電極(TaS)のサイクリックボルタモグラムの測定結果である。図3に示すように、開放電位は約0.2Vであり、マイナス方向に電位を走査すると、-0.2V付近より還元電流が流れ出し、-0.4V付近で還元電流が最大となった。また、電極の表面から水素と見られる気泡が発生した。-0.6Vまで掃引した後、プラス方向に電位を走査すると、-0.4V付近から酸化電流が流れ出し、-0.2V付近で酸化電流が最大となり、0V付近で酸化電流がほぼゼロとなった。これらのことから、実施例1にかかる電極(TaS)は、-0.3V付近に酸化還元電位を有する可逆電極として機能することが分かった。 FIG. 3 is a measurement result of the cyclic voltammogram of the electrode (TaS 2 ) according to the first embodiment. As shown in FIG. 3, the open potential was about 0.2 V, and when the potential was scanned in the negative direction, the reduction current flowed out from around −0.2 V, and the reduction current became maximum near −0.4 V. In addition, bubbles that appeared to be hydrogen were generated from the surface of the electrode. When the potential is scanned in the positive direction after sweeping to -0.6V, the oxidation current flows out from around -0.4V, the oxidation current becomes maximum near -0.2V, and the oxidation current becomes almost zero near 0V. rice field. From these facts, it was found that the electrode (TaS 2 ) according to Example 1 functions as a reversible electrode having an oxidation-reduction potential in the vicinity of −0.3 V.

次に、同じセルを用いて、-0.4Vまで電位を走査したのち、-0.4Vにて連続的に1時間還元を行い、その後、電極を取り出した。還元前後の電極(TaS)のエックス線回折パターンを測定したところ、還元前の電極ではTaSが観察された。また、還元後の電極では、H0.77TaSに相当するピークが観察された(C. Ritter et al., Solid State Ionics. 20, 283 (1986).参照)。このとき、(006)のピークにおいては、面間隔が0.60nmから0.62nmに増えていた。この結果から、実施例1にかかる電極(TaS)では、構造を保ったままプロトンの挿入が起こっていることが示唆された。このことから、実施例1にかかる電極(TaS)は、還元時にプロトンが挿入され、酸化時にはその逆反応でプロトンが脱離される電極として機能していることが示された。 Next, using the same cell, the potential was scanned to −0.4 V, and then reduction was continuously performed at −0.4 V for 1 hour, and then the electrode was taken out. When the X-ray diffraction pattern of the electrode (TaS 2 ) before and after the reduction was measured, TaS 2 was observed in the electrode before the reduction. In addition, a peak corresponding to H 0.77 TaS 2 was observed on the electrode after reduction (see C. Ritter et al., Solid State Ionics. 20, 283 (1986).). At this time, at the peak of (006), the surface spacing increased from 0.60 nm to 0.62 nm. From this result, it was suggested that in the electrode (TaS 2 ) according to Example 1, proton insertion occurred while maintaining the structure. From this, it was shown that the electrode (TaS 2 ) according to Example 1 functions as an electrode in which protons are inserted during reduction and protons are desorbed by the reverse reaction during oxidation.

<実施例2>
実施例2としてCoSを含む電極を作製した。
まず、活物質としてCoS(アルファ・エイサー社製)を、バインダとしてスチレンブタジエンゴム(SBR:JSR社製)をそれぞれ準備した。そして、CoSとSBRを混合し、さらに2-プロパノールを加えてスラリーを作製した。このときのCoSとSBRの割合は、CoSを90質量%、SBRを10質量%とした。その後、作製したスラリーを集電体であるカーボン板に塗布し、60℃で5時間以上、加熱・乾燥して合剤層を形成した。その後、集電体上に形成した合剤層を10MPaの圧力でプレスすることで、実施例2にかかる電極を作製した。
<Example 2>
As Example 2, an electrode containing CoS 2 was produced.
First, CoS 2 (manufactured by Alfa Aesar) was prepared as an active material, and styrene-butadiene rubber (SBR: manufactured by JSR) was prepared as a binder. Then, CoS 2 and SBR were mixed, and 2-propanol was further added to prepare a slurry. At this time, the ratio of CoS 2 and SBR was 90% by mass for CoS 2 and 10% by mass for SBR. Then, the prepared slurry was applied to a carbon plate as a current collector, and heated and dried at 60 ° C. for 5 hours or more to form a mixture layer. Then, the mixture layer formed on the current collector was pressed at a pressure of 10 MPa to prepare an electrode according to Example 2.

<実施例2にかかるサンプルの評価>
以下の方法を用いて実施例2にかかるサンプルを評価した。
実施例2にかかる電極(CoS)を作用極とする三極式セル(試験セル)を構築して、サイクリックボルタモグラムを測定した。試験セルには、ガラス製容器を用いた。電解質(電解液)には重量濃度50%の硫酸水溶液(ナカライテスク社製)を用いた。参照極には、塩化カリウム飽和溶液に浸漬した銀塩化銀電極を用いた。以下の電位はすべて、この参照極に対する電位である。対極には白金線を用いた。電位走査速度は10mV/sとした。
<Evaluation of sample according to Example 2>
The sample according to Example 2 was evaluated using the following method.
A tripolar cell (test cell) using the electrode (CoS 2 ) according to Example 2 as a working electrode was constructed, and a cyclic voltammogram was measured. A glass container was used as the test cell. A sulfuric acid aqueous solution (manufactured by Nacalai Tesque) having a weight concentration of 50% was used as the electrolyte (electrolyte solution). As the reference electrode, a silver-silver chloride electrode immersed in a saturated potassium chloride solution was used. All of the following potentials are potentials for this reference pole. A platinum wire was used as the counter electrode. The potential scanning speed was 10 mV / s.

図4は、実施例2にかかる電極(CoS)のサイクリックボルタモグラムの測定結果である。図4に示すように、開放電位は約+0.5Vであり、マイナス方向に電位を走査すると、0.0V付近より還元電流が流れ出し、-0.2V付近において平坦を保った後、-0.4V付近から水素と見られる気泡が発生した。その後、プラス方向に電位を走査すると、-0.2V付近から酸化電流が流れ出し、+0.2V付近で最大となり、+0.4V付近でほぼ酸化電流がゼロとなった。実施例2にかかる電極(CoS)においても、実施例1にかかる電極(TaS)と類似した挙動を示したことから、実施例2にかかる電極(CoS)は、0.0V付近に酸化還元電位を有するプロトン挿入脱離型の可逆電極として機能することが示された。 FIG. 4 is a measurement result of the cyclic voltammogram of the electrode (CoS 2 ) according to the second embodiment. As shown in FIG. 4, the open potential is about + 0.5V, and when the potential is scanned in the negative direction, a reduction current flows out from around 0.0V, and after keeping flat at around -0.2V, -0. Bubbles appearing to be hydrogen were generated from around 4V. After that, when the potential was scanned in the positive direction, the oxidation current flowed out from around −0.2 V, became maximum at around + 0.2 V, and became almost zero at around + 0.4 V. Since the electrode (CoS 2 ) according to Example 2 also showed similar behavior to the electrode (TaS 2 ) according to Example 1, the electrode (CoS 2 ) according to Example 2 was around 0.0V. It was shown to function as a proton insertion / desorption type reversible electrode with a redox potential.

<二次電池>
次に、水溶液系二次電池(フルセル)を作製した。フルセルには、実施例1にかかる電極(TaS)、実施例2にかかる電極(CoS)、白金線、及び銀塩化銀電極の4つの電極を用いた。具体的には、実施例1にかかる電極(TaS)を作用極、白金線を対極、銀塩化銀電極を参照極とする三極式セルを構築し、-0.4Vまで電位を走査した。その後、-0.4Vにて連続的に1時間、還元を行うことで、実施例1にかかる電極(TaS)にプロトンを挿入した。
<Secondary battery>
Next, an aqueous solution-based secondary battery (full cell) was produced. For the full cell, four electrodes, an electrode according to Example 1 (TaS 2 ), an electrode according to Example 2 (CoS 2 ), a platinum wire, and a silver-silver chloride electrode, were used. Specifically, a triode cell was constructed with the electrode (TaS 2 ) according to Example 1 as the working electrode, the platinum wire as the counter electrode, and the silver chloride electrode as the reference electrode, and the potential was scanned up to −0.4 V. .. Then, by continuously reducing at −0.4 V for 1 hour, a proton was inserted into the electrode (TaS 2 ) according to Example 1.

続いて、実施例1にかかる電極(TaS)を負極、実施例2にかかる電極(CoS)を正極とする二次電池を構成して、放電試験を行った。電流を1mAとしたところ、約0.2Vの起電力が得られ、1時間に渡って平坦な放電が可能であった。また1mAの電流でこの二次電池を1時間にわたって充電し、その後、放電したところ、再び約0.2Vの起電力が得られ、1時間に渡って放電が可能であった。この放電-充電の操作を10回にわたって繰り返したところ、毎回同様に約0.2Vの起電力が得られ、1時間の放電が可能であった。 Subsequently, a secondary battery having the electrode (TaS 2 ) according to Example 1 as a negative electrode and the electrode (CoS 2 ) according to Example 2 as a positive electrode was configured and a discharge test was performed. When the current was 1 mA, an electromotive force of about 0.2 V was obtained, and flat discharge was possible over 1 hour. Further, when the secondary battery was charged with a current of 1 mA for 1 hour and then discharged, an electromotive force of about 0.2 V was obtained again, and the secondary battery could be discharged for 1 hour. When this discharge-charge operation was repeated 10 times, an electromotive force of about 0.2 V was obtained each time, and discharge for 1 hour was possible.

したがって、実施例1にかかる電極(TaS)を負極、実施例2にかかる電極(CoS)を正極とする二次電池が、プロトン挿入脱離型電極を組み合わせたプロトン移動型二次電池として作動することが確認された。 Therefore, the secondary battery having the electrode (TaS 2 ) according to Example 1 as the negative electrode and the electrode (CoS 2 ) according to Example 2 as the positive electrode is a proton transfer type secondary battery in which a proton insertion / removal type electrode is combined. It was confirmed that it works.

以上、本発明を上記実施の形態に即して説明したが、本発明は上記実施の形態の構成にのみ限定されるものではなく、本願特許請求の範囲の請求項の発明の範囲内で当業者であればなし得る各種変形、修正、組み合わせを含むことは勿論である。 Although the present invention has been described above in accordance with the above-described embodiment, the present invention is not limited to the configuration of the above-described embodiment, and is within the scope of the claimed invention within the scope of the claims of the present application. Of course, it includes various modifications, corrections, and combinations that can be made by a person skilled in the art.

1 水溶液系二次電池用電極
11 集電体
12 合剤層
20 水溶液系二次電池
21 正極
22 負極
23 電解質
24 電池筐体
26 正極引出電極
27 負極引出電極
28 負荷
1 Electrode for water-based secondary battery 11 Collector 12 Mixture layer 20 Water-based secondary battery 21 Positive electrode 22 Negative electrode 23 Electrode 24 Battery housing 26 Positive electrode withdrawal electrode 27 Negative withdrawal electrode 28 Load

Claims (6)

プロトンを挿入・脱離可能な水溶液系二次電池用電極であって、
集電体と、
前記集電体の上に形成された合剤層と、を備え、
前記合剤層が少なくとも金属硫化物を含むことを特徴とする、
水溶液系二次電池用電極。
An electrode for an aqueous solution-based secondary battery that can insert and desorb protons.
With the current collector,
With a mixture layer formed on the current collector,
The mixture layer is characterized by containing at least a metal sulfide.
Electrode for aqueous secondary battery.
前記金属硫化物が、TaS、CoS、TiS、VS、NbS、MoS、WS、及びFeSからなる群から選択される少なくとも一種である、請求項1に記載の水溶液系二次電池用電極。 The aqueous solution system according to claim 1, wherein the metal sulfide is at least one selected from the group consisting of TaS 2 , CoS 2 , TiS 2 , VS 2 , NbS 2 , MoS 2 , WS 2 , and FeS 2 . Electrode for secondary battery. 前記集電体がカーボン板である、請求項1または2に記載の水溶液系二次電池用電極。 The electrode for an aqueous solution-based secondary battery according to claim 1 or 2, wherein the current collector is a carbon plate. 請求項1~3のいずれか一項に記載の水溶液系二次電池用電極からなる正極および負極と、
水溶液系の電解質と、を備える、
水溶液系二次電池。
A positive electrode and a negative electrode made of the electrode for an aqueous solution-based secondary battery according to any one of claims 1 to 3.
With an aqueous solution-based electrolyte,
Aqueous solution type secondary battery.
請求項1~3のいずれか一項に記載の水溶液系二次電池用電極からなる負極と、
水酸化ニッケルを含む正極と、
水溶液系の電解質と、を備える、
水溶液系二次電池。
A negative electrode comprising the electrode for an aqueous solution-based secondary battery according to any one of claims 1 to 3.
A positive electrode containing nickel hydroxide and
With an aqueous solution-based electrolyte,
Aqueous solution type secondary battery.
前記電解質が、硫酸水溶液、硝酸水溶液、水酸化カリウム水溶液、及び硝酸カリウム水溶液からなる群から選択される少なくとも一種である、請求項4または5に記載の水溶液系二次電池。 The aqueous solution-based secondary battery according to claim 4 or 5, wherein the electrolyte is at least one selected from the group consisting of an aqueous sulfuric acid solution, an aqueous nitric acid solution, an aqueous potassium hydroxide solution, and an aqueous potassium hydroxide solution.
JP2020184288A 2020-11-04 2020-11-04 Electrode for aqueous solution-based secondary battery and aqueous-based secondary battery Pending JP2022074335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020184288A JP2022074335A (en) 2020-11-04 2020-11-04 Electrode for aqueous solution-based secondary battery and aqueous-based secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020184288A JP2022074335A (en) 2020-11-04 2020-11-04 Electrode for aqueous solution-based secondary battery and aqueous-based secondary battery

Publications (1)

Publication Number Publication Date
JP2022074335A true JP2022074335A (en) 2022-05-18

Family

ID=81605478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020184288A Pending JP2022074335A (en) 2020-11-04 2020-11-04 Electrode for aqueous solution-based secondary battery and aqueous-based secondary battery

Country Status (1)

Country Link
JP (1) JP2022074335A (en)

Similar Documents

Publication Publication Date Title
CN102005615B (en) Rechargeable nickel ion battery
KR20140039022A (en) Battery
CN100583511C (en) Preparation method for anode material manganese magnesium silicate of rechargeable magnesium cell
JPWO2009008280A1 (en) Water-based lithium secondary battery
JPS6122577A (en) Electrochemical generator with composite electrodes
JP4839573B2 (en) Electrochemical device and electrode
CN104882637B (en) Electrolyte and electrochemical energy storage device
KR20130013310A (en) A preparation method of mno2/carbon composite, mno2/carbon composite prepared by the same, and lithium/air secondary cell comprising the composite
JP2022044635A (en) Metal plating based electrical energy storage cell
AU2019373093A1 (en) Hydrogen-based battery
JP5256649B2 (en) Water-based lithium secondary battery
JP4983382B2 (en) Water-based lithium secondary battery
WO2020121799A1 (en) Thermal battery
JP2010086924A (en) Magnesium air secondary battery
KR101953228B1 (en) Secondary Battery
JP2017523563A (en) Rechargeable battery containing lead ion
JP2022074335A (en) Electrode for aqueous solution-based secondary battery and aqueous-based secondary battery
Balakrishnan et al. The Great History of Lithium-Ion Batteries and an Overview on Energy Storage Devices
JP7243617B2 (en) Aqueous battery
JP5050346B2 (en) Water-based lithium secondary battery
US9443664B2 (en) Supercapacitor with metal cyanometallate anode and carbonaceous cathode
JP6845782B2 (en) Predoping agent for lithium ion capacitor, positive electrode and lithium ion capacitor for lithium ion capacitor using the predoping agent for lithium ion capacitor, manufacturing method of lithium ion capacitor and predoping method of lithium ion capacitor
CN111653724A (en) Surface-modified lithium nickel manganese oxide positive electrode material and preparation method thereof
JP6875818B2 (en) Electrolyte and electrochemical device using it
JP4998392B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231012