JP2022073278A - Finishing method for round hole of workpiece - Google Patents

Finishing method for round hole of workpiece Download PDF

Info

Publication number
JP2022073278A
JP2022073278A JP2020183163A JP2020183163A JP2022073278A JP 2022073278 A JP2022073278 A JP 2022073278A JP 2020183163 A JP2020183163 A JP 2020183163A JP 2020183163 A JP2020183163 A JP 2020183163A JP 2022073278 A JP2022073278 A JP 2022073278A
Authority
JP
Japan
Prior art keywords
round hole
grindstone
grinding
diameter round
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020183163A
Other languages
Japanese (ja)
Other versions
JP6877800B1 (en
Inventor
真人 辻
Masato Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Co Ltd
Original Assignee
Nissin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Co Ltd filed Critical Nissin Co Ltd
Priority to JP2020183163A priority Critical patent/JP6877800B1/en
Application granted granted Critical
Publication of JP6877800B1 publication Critical patent/JP6877800B1/en
Publication of JP2022073278A publication Critical patent/JP2022073278A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

To finish-grind a round hole of a workpiece and, using a horizontal type machining center, to realize finish-grinding of an inner surface of the round hole, which an inner-surface grinder cannot perform.SOLUTION: In a first step, a workpiece W having a round hole subjected to intermediate finishing is positioned on a horizontal turning table 10 of a horizontal type machining center including a grinding stone 12 at a tip of a quill 11 of a spindle 13 and having the horizontal turning table that numerically controls amounts of movements in X, Y directions of the spindle 13 and also numerically control s an amount of movement in a Z direction, such that an extension line of a center line of the round hole and an axial line of the spindle 13 are on a single axial line; and in a second step, the grinding stone is moved to an entrance inside the round hole, and a required grinding allowance is set after the grinding stone is brought into contact with an inner peripheral surface of the round hole while rotated round its own axis; in a third step, with the grinding allowance maintained, the grinding stone is planetary-rotated round the center line of the round hole, and the grinding stone is moved relatively to a depth end of the round hole, thereby finish-grinding the round hole such that a whole inner peripheral surface of the round hole is ground with the grinding allowance maintained.SELECTED DRAWING: Figure 6A

Description

本発明は、ワークの丸孔の仕上げ加工方法に関する。 The present invention relates to a method for finishing a round hole of a work.

従来、筒状体の製造には、旋盤が使用され、施削加工とドリル加工とを組み合わせてワークの外周円筒面と丸孔の内周面と両端面の被加工面に対し、粗仕上げ加工と中仕上げ加工と最後の仕上げ加工とが順次に適用されている。 Conventionally, a lathe has been used to manufacture a tubular body, and a rough finish process is performed on the outer peripheral cylindrical surface of the work, the inner peripheral surface of the round hole, and the workpiece surface on both end surfaces by combining machining and drilling. And the semi-finishing process and the final finishing process are applied in sequence.

大径丸孔と小径丸孔とが例えば100分の2以下の同軸度で連接されるワークを製造する場合には、小径丸孔側の端部を被加工側となるようにワークの外面部を旋盤のチャック機構でチャックし、ワークの大径丸孔側の端面を加工した後に、所要径の大径丸孔を形成するよう粗仕上げ加工と中仕上げ加工と仕上げ加工を行い、次いで、チャックを外して大径丸孔側の端部が被加工側となるようにワークの外面部を旋盤のチャック機構に再度チャックし、所要径の小径丸孔を形成するよう粗仕上げ加工と中仕上げ加工と仕上げ加工を行う。なお、ワークチャックを小径丸孔側から大径丸孔側に替える際に、大径丸孔の軸心と小径丸孔の軸心との同軸度が100分の2以下、好ましくは100分の1以下に抑える必要がある。 When manufacturing a work in which a large-diameter round hole and a small-diameter round hole are connected at a coaxiality of, for example, two-hundredths or less, the outer surface portion of the work so that the end on the small-diameter round hole side is on the machined side. Is chucked by the chuck mechanism of a lathe, and after machining the end face on the large diameter round hole side of the work, rough finishing, intermediate finishing and finishing are performed so as to form a large diameter round hole of the required diameter, and then the chuck is performed. The outer surface of the work is re-chucked to the chuck mechanism of the lathe so that the end on the large-diameter round hole side is on the machined side. And finish processing. When changing the work chuck from the small diameter round hole side to the large diameter round hole side, the coaxiality between the axis of the large diameter round hole and the axis of the small diameter round hole is 2/100 or less, preferably 100 minutes. It is necessary to keep it below 1.

ワークの丸孔の輪切り断面における外周面と内周面との肉厚が例えば1.0~1.5mmである場合には、外径チャックについて変形が生じないように固定する必要があることと、切削による内周面の仕上げ加工を行うと、ワークの切削部位に変形または共振が生じて仕上げ加工が適切に行えないので、砥石12による研削加工により丸孔に最後の仕上げ加工が行われている。円筒度1ミクロンや各部の振れ1ミクロンの加工が行われている例がある。 When the wall thickness of the outer peripheral surface and the inner peripheral surface in the round cross section of the round hole of the work is, for example, 1.0 to 1.5 mm, it is necessary to fix the outer diameter chuck so as not to be deformed. When the inner peripheral surface is finished by cutting, deformation or resonance occurs in the cut part of the work and the finishing cannot be performed properly. Therefore, the final finishing is performed on the round hole by grinding with the grindstone 12. There is. There is an example in which the cylindricity is 1 micron and the runout of each part is 1 micron.

ワークの丸孔の内周面を研削する内面研削盤による内面研削加工について詳述すると、クイルの先端にワークの丸孔よりも小さい円筒形の砥石を備えており、クイルの回転中心線に対しワークの丸孔の中心線が高精密な平行度、例えば100分の1~2以下の平行度となるように当該ワークをチャックすることが可能である。そして、ワークに回転を与えるとともに砥石を回転させ、砥石をワークの丸孔の内面に当接させ研削を開始し挿入していき、その際に、砥石のX座標軸方向の移動を1ミクロン単位で寸法管理を徹底して行ない、丸孔に対する仕上げ加工が行われている。 To elaborate on the internal grinding process using an internal grinding machine that grinds the inner peripheral surface of the round hole of the work, a cylindrical grindstone smaller than the round hole of the work is provided at the tip of the quill, with respect to the rotation center line of the quill. It is possible to chuck the work so that the center line of the round hole of the work has a high-precision parallelism, for example, a parallelism of 1/100 to 2 or less. Then, the work is rotated and the grindstone is rotated, the grindstone is brought into contact with the inner surface of the round hole of the work, grinding is started and inserted, and at that time, the movement of the grindstone in the X coordinate axis direction is performed in units of 1 micron. Thorough dimensional control is performed, and the round holes are finished.

特開2005-144620号公報Japanese Unexamined Patent Publication No. 2005-144620 特開2019-025612号公報Japanese Unexamined Patent Publication No. 2019-025612 特開2003-074540号公報Japanese Patent Application Laid-Open No. 2003-074540

大型のワークにあっては、ワークが回転できるように内面研削盤に固定できないという問題があり、新たな加工方法の創出が必要となっている。 For large workpieces, there is a problem that the workpiece cannot be fixed to the internal grinding machine so that it can rotate, and it is necessary to create a new processing method.

上記のように、旋盤を使いワークの大径丸孔と小径丸孔を加工するには、各丸孔を別々の工程で切削する必要があることから、大径丸孔の中心線と小径丸孔の中心線とが一軸線上にくるように中心線同士の芯合わせを高精密に行う必要がある。 As described above, in order to machine a large-diameter round hole and a small-diameter round hole of a work using a lathe, each round hole must be cut in a separate process. It is necessary to align the center lines with high precision so that the center lines of the holes are on one axis.

また、ワークの丸孔の輪切り断面における外周面と内周面との間の肉厚が例えば1.0~1.5mmである場合には、切削による内周面の仕上げ加工を行うと、ワークの被切削部位に切削圧力により歪が生じ、ときには共振が生じて仕上げ加工を適切に行うことができず、大径丸孔の中心線と小径丸孔の中心線との同軸度を0.02mm以下に抑えることができないという問題があった。 Further, when the wall thickness between the outer peripheral surface and the inner peripheral surface in the round cross section of the round hole of the work is, for example, 1.0 to 1.5 mm, if the inner peripheral surface is finished by cutting, the work can be finished. The part to be cut is distorted due to the cutting pressure, and sometimes resonance occurs and finishing cannot be performed properly. The coaxiality between the center line of the large-diameter round hole and the center line of the small-diameter round hole is 0.02 mm. There was a problem that it could not be suppressed to the following.

本発明は、上述した課題を解決するためになされたもので、旋盤により粗仕上げ、中仕上げが既に済んでいるワークの被加工部位である丸孔(真円)について仕上げ研削(最終加工)を行うこと、また内面研削盤では行うことができない丸孔内面の仕上げ研削を横形マシニングセンターで実現することができるワークの丸孔の仕上げ加工方法を提供することを第1義の目的としている。 The present invention has been made to solve the above-mentioned problems, and finish grinding (final processing) is performed on a round hole (round hole) which is a workpiece portion of a workpiece which has already been rough-finished and semi-finished by a lathe. The first object of the present invention is to provide a method for finishing a round hole of a work, which can realize a finish grinding of a round hole inner surface which cannot be performed by an inner surface grinding machine in a horizontal machining center.

本発明は、ワークの丸孔の輪切り断面における外周面と内周面との間の肉厚が例えば1.0~1.5mmである場合に、砥石研削加工により歪や共振が生じることなく仕上げ加工を適切に実現できるワークの丸孔の仕上げ加工方法を提供することを第2義の目的としている。 According to the present invention, when the wall thickness between the outer peripheral surface and the inner peripheral surface in the round cross section of the round hole of the work is, for example, 1.0 to 1.5 mm, the grindstone grinding process finishes the work without distortion or resonance. The second purpose is to provide a method for finishing a round hole of a work that can appropriately realize the processing.

本発明は、大径丸孔と小径丸孔とを連通状態に有するワークの、大径丸孔に対する仕上げ加工を横形マシニングセンターの砥石研削加工により先行して行い、小径丸孔に対する仕上げ加工をワークを、180度旋回して引き続き横形マシニングセンターにより行うか、またはワイヤー放電加工機を用いたワイヤー放電加工を行って、大径丸孔の中心線と小径丸孔の中心線とが一軸線上にくるように中心線同士の芯合わせを高精密に行うことができるワークの丸孔の仕上げ加工方法を提供することを第3義の目的としている。 In the present invention, a work having a large-diameter round hole and a small-diameter round hole in a communicating state is subjected to a finishing process for a large-diameter round hole in advance by a grindstone grinding process of a horizontal machining center, and a finishing process for a small-diameter round hole is performed. , Turn 180 degrees and continue with a horizontal machining center, or perform wire electric discharge machining using a wire electric discharge machine so that the center line of the large-diameter round hole and the center line of the small-diameter round hole are on one axis. The third purpose is to provide a method for finishing a round hole of a work capable of aligning center lines with high precision.

本発明の第1の態様に係るワークの丸孔の仕上げ加工方法は、
第1工程として、軸線が水平方向であるZ方向に向いておりZ方向に直角で水平なX方向および上下方向であるY方向に移動制御されかつ回転駆動される水平な主軸と、Z方向に移動制御および所要角度旋回制御ができる水平旋回台と、前記主軸の先端に接続されたクイルと、前記クイルの先端に被嵌固定された円筒形の砥石とを有し、前記主軸のX,Y方向の移動量と前記水平旋回台のZ方向の移動量および旋回角度を数値制御する横形マシニングセンターの前記水平旋回台に、別の機械で中仕上げ加工された丸孔を有するワークを、前記砥石の先側に前記丸孔の入口に移動させ、かつ前記丸孔の中心線の延長線と前記クイルの軸線とが一軸線上にくるかまたは平行となるように精密位置決めして固定し、
第2工程として、前記砥石を前記丸孔内の入口端または奥行端に移動させ、所要の研削代を保持したままで、前記砥石を、自転回転と前記丸孔の中心を曲率中心とする遊星回転をさせ前記丸孔の奥行端または入口端まで移動することにより、前記研削代を保持した研削を前記丸孔の全内周面に及ぶようにして前記丸孔の仕上げ研削を行う構成である。
The method for finishing a round hole of a work according to the first aspect of the present invention is as follows.
As the first step, the axis is oriented in the Z direction, which is the horizontal direction, and the horizontal main axis is moved and driven in the X direction, which is horizontal at right angles to the Z direction, and the Y direction, which is the vertical direction, and in the Z direction. It has a horizontal swivel table capable of movement control and required angle swivel control, a quill connected to the tip of the spindle, and a cylindrical grindstone fitted and fixed to the tip of the quill. On the horizontal swivel of the horizontal machining center that numerically controls the amount of movement in the direction, the amount of movement in the Z direction of the horizontal swivel, and the swivel angle, a work having a round hole that has been semi-finished by another machine is attached to the grindstone. Move it to the entrance of the round hole on the front side, and precisely position and fix it so that the extension line of the center line of the round hole and the axis of the quill are on one axis or parallel to each other.
As a second step, the grindstone is moved to the inlet end or the depth end in the round hole, and the grindstone is rotated and rotated around the center of the round hole while holding the required grinding allowance. By rotating and moving to the depth end or the inlet end of the round hole, the grinding with the grinding allowance is extended to the entire inner peripheral surface of the round hole to perform finish grinding of the round hole. ..

本発明の第2の態様に係るワークの丸孔の仕上げ加工方法は、前記第1の態様に係る構成に加え、前記第2工程として、前記砥石を前記丸孔内の入口端または奥行端に移動後、半径方向外方へ移動し丸孔内周面に当接した時点における、前記丸孔の中心線から前記砥石の中心線までの距離に、所要の研削代を加算した値を前記砥石を遊星回転させるための曲率半径とする構成である。 In the method for finishing the round hole of the work according to the second aspect of the present invention, in addition to the configuration according to the first aspect, as the second step, the grindstone is placed at the inlet end or the depth end in the round hole. After the movement, the grindstone is the value obtained by adding the required grinding allowance to the distance from the center line of the round hole to the center line of the grindstone at the time when the grindstone moves outward in the radial direction and comes into contact with the inner peripheral surface of the round hole. Is a configuration with a radius of curvature for rotating the planet.

本発明の第3の態様に係るワークの丸孔の仕上げ加工方法は、前記第1または2の態様に係る構成に加え、前記第2工程として、前記砥石を前記丸孔内の入口端または奥行端に移動後、自転回転と遊星回転とを行わせて研削開始するか、または自転回転させて前記所要の研削代だけ初期研削してから遊星回転を行わせて研削する構成である。 In the method for finishing the round hole of the work according to the third aspect of the present invention, in addition to the configuration according to the first or second aspect, as the second step, the grindstone is placed at the entrance end or the depth in the round hole. After moving to the end, grinding is started by performing rotation rotation and planetary rotation, or rotation rotation is performed to initially grind only the required grinding allowance, and then planetary rotation is performed to grind.

本発明の第4の態様に係るワークの丸孔の仕上げ加工方法は、前記第1ないし3のいずれか1つの態様に係る構成に加え、
前記ワークが、中仕上げ加工された前記丸孔である大径丸孔と、前記大径丸孔に所定同軸度で連接された中仕上げ加工された小径丸孔とを有するワークであって、
第3工程として、前記第2工程後、前記砥石を前記大径丸孔から抜け出た位置に後退させてから、前記水平旋回台を180度旋回させ、
第4工程として、前記砥石を前記小径丸孔内の入口端または奥行端に移動させ、所要の研削代を保持したままで、前記砥石を、自転回転と前記大径丸孔の中心を曲率中心とする遊星回転をさせ、前記小径丸孔の奥行端または入口端まで移動することにより、前記研削代を保持した研削を前記小径丸孔の全内周面に及ぶようにして前記小径丸孔の仕上げ研削を行う構成である。
The method for finishing the round hole of the work according to the fourth aspect of the present invention is in addition to the configuration according to any one of the first to third aspects.
The work is a work having a large-diameter round hole which is a medium-finished round hole and a small-diameter round hole which is connected to the large-diameter round hole at a predetermined coaxiality.
As a third step, after the second step, the grindstone is retracted to a position where it comes out of the large-diameter round hole, and then the horizontal swivel table is swiveled 180 degrees.
As a fourth step, the grindstone is moved to the inlet end or the depth end in the small-diameter round hole, and the grindstone is rotated around the center of the large-diameter round hole while maintaining the required grinding allowance. By rotating the planet to the depth end or the inlet end of the small-diameter round hole, the grinding holding the grinding allowance is extended to the entire inner peripheral surface of the small-diameter round hole. It is a configuration that performs finish grinding.

本発明の第5の態様に係るワークの丸孔の仕上げ加工方法は、前記第4の態様に係る構成に加え、
前記第5工程として、前記砥石を前記小径丸孔内の入口端または奥行端に移動後、半径方向外方へ移動し小径丸孔の内周面に当接した時点における、前記小径丸孔の中心線から前記砥石の中心線までの距離に、所要の研削代を加算した値を前記砥石を遊星回転させるための曲率半径とする構成である。
The method for finishing the round hole of the work according to the fifth aspect of the present invention is in addition to the configuration according to the fourth aspect.
As the fifth step, after moving the grindstone to the inlet end or the depth end in the small-diameter round hole, the grindstone is moved outward in the radial direction and comes into contact with the inner peripheral surface of the small-diameter round hole. The radius of curvature for rotating the grindstone on a planet is the value obtained by adding the required grinding allowance to the distance from the center line to the center line of the grindstone.

本発明の第6の態様に係るワークの丸孔の仕上げ加工方法は、前記第4または5の態様に係る構成に加え、前記第5工程として、前記砥石を前記小径丸孔内の入口端または奥行端に移動後、自転回転と遊星回転とを行わせて研削開始するか、または自転回転させて前記所要の研削代だけ初期研削してから遊星回転を行わせて研削する構成である。 In the method for finishing the round hole of the work according to the sixth aspect of the present invention, in addition to the configuration according to the fourth or fifth aspect, as the fifth step, the grindstone is placed at the inlet end in the small diameter round hole or. After moving to the depth end, grinding is started by performing rotation rotation and planetary rotation, or rotation rotation is performed to initially grind only the required grinding allowance, and then planetary rotation is performed to grind.

本発明の第7の態様に係るワークの丸孔の仕上げ加工方法は、前記第1ないし3のいずれか1つの態様に係る構成に加え、前記ワークが、中仕上げ加工された前記丸孔である大径丸孔と、前記大径丸孔に所定同軸度で連接された中仕上げ加工された小径丸孔とを有するワークであって、
第3工程として、前記大径丸孔に対し前記第2工程の仕上げ研削を行った後の前記ワークを前記水平旋回台から取り外し、前記大径丸孔側が上側に、前記小径丸孔側が下側にくるように前記ワークを鉛直に保ってワイヤー放電加工機のワーク支持台に固定し、
第4工程として、放電加工電極であるワイヤーを前記大径丸孔を通して前記小径丸孔の内面近傍に、かつ前記大径丸孔の中心線に対し所定の同軸度となるように挿通し、
第5工程として、前記ワイヤーを、放電加工電流を与えつつ前記算出した前記大径丸孔の中心線を回転中心として一周回転させることにより、前記小径丸孔の内面に対し一周する放電加工を行う構成である。
In the method for finishing the round hole of the work according to the seventh aspect of the present invention, in addition to the configuration according to any one of the first to the third aspects, the work is the round hole that has been semi-finished. A work having a large-diameter round hole and a medium-finished small-diameter round hole connected to the large-diameter round hole at a predetermined coaxiality.
As a third step, the work after the finish grinding of the second step is performed on the large-diameter round hole is removed from the horizontal swivel, the large-diameter round hole side is on the upper side, and the small-diameter round hole side is on the lower side. Keep the work vertically so that it comes to the work, and fix it to the work support of the wire electric discharge machine.
As a fourth step, a wire which is an electric discharge machining electrode is inserted through the large-diameter round hole in the vicinity of the inner surface of the small-diameter round hole and at a predetermined coaxiality with respect to the center line of the large-diameter round hole.
As a fifth step, electric discharge machining is performed by rotating the wire around the center line of the calculated large-diameter round hole while applying an electric discharge machining current to the inner surface of the small-diameter round hole. It is a composition.

本発明によれば、旋盤により粗仕上げ、中仕上げが既に済んでいるワークの被加工部位である丸孔(真円)について仕上げ研削(最終加工)を行うこと、また内面研削盤では行うことができない丸孔内面の仕上げ研削を横形マシニングセンターで実現することができるワークの丸孔の仕上げ加工方法を提供することができる。 According to the present invention, it is possible to perform finish grinding (final processing) on a round hole (round hole), which is a workpiece portion that has already been rough-finished and semi-finished by a lathe, and to perform finish grinding (final processing) by an internal grinding machine. It is possible to provide a method for finishing a round hole of a work, which can realize finish grinding of an inner surface of a round hole that cannot be performed in a horizontal machining center.

本発明の実施の形態に係る異径筒状体の製造に用いるワークの斜視図である。It is a perspective view of the work used for manufacturing the different diameter cylindrical body which concerns on embodiment of this invention. 本発明の実施の形態に係る異径筒状体の製造に用いるワークの断面図である。It is sectional drawing of the work used for manufacturing the different diameter tubular body which concerns on embodiment of this invention. 本発明の実施の形態に係るワークの丸孔の仕上げ加工方法に適用する横形マシニングセンターの動作を説明するための要部斜視図である。It is a perspective view of the main part for demonstrating the operation of the horizontal machining center applied to the method of finishing the round hole of the work which concerns on embodiment of this invention. 図3の横形マシニングセンターでクイルの先端の砥石でワークの大径丸孔の内面の研削を行うときの砥石の回転動作を説明するための図である。It is a figure for demonstrating the rotational operation of the grindstone when grinding the inner surface of the large-diameter round hole of a work with the grindstone at the tip of a quill in the horizontal machining center of FIG. 図3の横形マシニングセンターで図4とは異なる位置にあるクイルの先端の砥石でワークの大径丸孔の内面の研削を行うときの砥石の回転動作を説明するための図である。It is a figure for demonstrating the rotational operation of the grindstone at the time of grinding the inner surface of the large-diameter round hole of a work with the grindstone at the tip of a quill at a position different from FIG. 4 in a horizontal machining center of FIG. 本発明の第1の実施の形態に係るワークの丸孔の仕上げ加工方法によりワークの大径丸孔の内面の仕上げ研削を行うところを示す工程図である。It is a process drawing which shows the place where the finish grinding of the inner surface of the large-diameter round hole of a work is performed by the finish processing method of the round hole of a work which concerns on 1st Embodiment of this invention. 本発明の第1の実施の形態に係るワークの丸孔の仕上げ加工方法によりワークの大径丸孔の内面の仕上げ研削を行うところを示す工程図である。It is a process drawing which shows the place where the finish grinding of the inner surface of the large-diameter round hole of a work is performed by the finish processing method of the round hole of a work which concerns on 1st Embodiment of this invention. 本発明の第1の実施の形態に係るワークの丸孔の仕上げ加工方法によりワークの大径丸孔の内面の仕上げ研削を行うところを示す工程図である。It is a process drawing which shows the place where the finish grinding of the inner surface of the large-diameter round hole of a work is performed by the finish processing method of the round hole of a work which concerns on 1st Embodiment of this invention. 本発明の第1の実施の形態に係るワークの丸孔の仕上げ加工方法によりワークの大径丸孔の内面の仕上げ研削を行うところを示す工程図である。It is a process drawing which shows the place where the finish grinding of the inner surface of the large-diameter round hole of a work is performed by the finish processing method of the round hole of a work which concerns on 1st Embodiment of this invention. 本発明の第1の実施の形態に係るワークの丸孔の仕上げ加工方法によりワークの大径丸孔の内面の仕上げ研削を行うところを示す工程図である。It is a process drawing which shows the place where the finish grinding of the inner surface of the large-diameter round hole of a work is performed by the finish processing method of the round hole of a work which concerns on 1st Embodiment of this invention. 本発明の第1の実施の形態に係るワークの丸孔の仕上げ加工方法によりワークの小径丸孔の内面の仕上げ研削を行うところを示す工程図である。It is a process drawing which shows the place where the finish grinding of the inner surface of the small diameter round hole of a work is performed by the finish processing method of the round hole of a work which concerns on 1st Embodiment of this invention. 本発明の第1の実施の形態に係るワークの丸孔の仕上げ加工方法によりワークの小径丸孔の内面の仕上げ研削を行うところを示す工程図である。It is a process drawing which shows the place where the finish grinding of the inner surface of the small diameter round hole of a work is performed by the finish processing method of the round hole of a work which concerns on 1st Embodiment of this invention. 本発明の第2の実施の形態に係るワークの丸孔の仕上げ加工方法によりワークの小径丸孔の内面のワイヤー放電加工を行うところを示す工程図である。It is a process drawing which shows the place where the wire electric discharge machining of the inner surface of the small diameter round hole of a work is performed by the finishing process of the round hole of a work which concerns on 2nd Embodiment of this invention.

以下、本発明の実施の形態に係るワークの丸孔の仕上げ加工方法について図面を参照しつつ説明する。 Hereinafter, a method for finishing a round hole of a work according to an embodiment of the present invention will be described with reference to the drawings.

[ワークWについて]
図1,図2に示すワークWは、第1および第2の実施の形態に共通する加工対象のワークである。後述する第1の実施の形態が解決手段の記載欄で述べた本発明の第2の態様に係り、後述する第2の実施の形態が本発明の第3の態様に係るものである。本発明の第1の態様は、第1および第2の実施の形態における大径丸孔に対する仕上げ加工方法が該当する。
[About Work W]
The work W shown in FIGS. 1 and 2 is a work to be machined, which is common to the first and second embodiments. The first embodiment described later relates to the second aspect of the present invention described in the description column of the solution, and the second embodiment described later relates to the third aspect of the present invention. The first aspect of the present invention corresponds to the finishing method for large-diameter round holes in the first and second embodiments.

ワークWは、大径筒軸部(フランジ部)1と、中径筒軸部2と、小径筒軸部3とが連通状態・貫通状態に有し、大径筒軸部1の端面より中径筒軸部2の内部に大径丸孔4と、小径丸孔5とを有する。 The work W has a large-diameter cylinder shaft portion (flange portion) 1, a medium-diameter cylinder shaft portion 2, and a small-diameter cylinder shaft portion 3 in a communicating / penetrating state, and is in the middle of the end surface of the large-diameter cylinder shaft portion 1. A large-diameter round hole 4 and a small-diameter round hole 5 are provided inside the diameter cylinder shaft portion 2.

ワークWは、旋盤により、大径筒軸部1の外筒面および両側端面、中径筒軸部2の外筒面、小径筒軸部3の外筒面、中径筒軸部2と小径筒軸部3との段差面、大径丸孔4の内面と、小径丸孔5の内面、および大径丸孔4と小径丸孔5との段差面について、粗仕上げ加工、中仕上げ加工が既に済んでいるものとする。 The work W has a small diameter such as the outer cylinder surface and both end faces of the large diameter cylinder shaft portion 1, the outer cylinder surface of the medium diameter cylinder shaft portion 2, the outer cylinder surface of the small diameter cylinder shaft portion 3, and the medium diameter cylinder shaft portion 2 by a lathe. Rough finishing and intermediate finishing are performed on the stepped surface with the cylinder shaft portion 3, the inner surface of the large diameter round hole 4, the inner surface of the small diameter round hole 5, and the stepped surface between the large diameter round hole 4 and the small diameter round hole 5. It is assumed that it has already been completed.

ワークWの大径丸孔4を取り巻く筒部の肉厚が例えば1.0-1.5mmと薄い場合には、切削加工で仕上げ加工すると変形や弾性歪を生じて精密な寸法に仕上げることができないので、旋盤からワークWを取り外し、切削加工ではない仕上げ加工方法を適用するものである。 If the wall thickness of the tubular portion surrounding the large-diameter round hole 4 of the work W is as thin as 1.0-1.5 mm, for example, if it is finished by cutting, deformation or elastic strain may occur and it may be finished to precise dimensions. Since it cannot be done, the work W is removed from the lathe and a finishing method other than cutting is applied.

切削加工ではない仕上げ加工方法を適用するとは、ワークWの大径丸孔4の仕上げ加工と、ワークWの小径丸孔5の仕上げ加工とを別々の工程で行うものである。ワークWの大径丸孔4の仕上げ加工については、横形マシニングセンターを用いる(第1の実施の形態と第2の実施の形態に共通)。ワークWの小径丸孔5の仕上げ加工については、横形マシニングセンターを用いる場合(後述する第1の実施の形態)と、ワイヤー放電加工機を用いる場合(後述する第2の実施の形態)とに分かれる。 To apply a finishing process other than cutting, the finishing process of the large-diameter round hole 4 of the work W and the finishing process of the small-diameter round hole 5 of the work W are performed in separate steps. A horizontal machining center is used for finishing the large-diameter round hole 4 of the work W (common to the first embodiment and the second embodiment). The finishing process of the small diameter round hole 5 of the work W is divided into a case where a horizontal machining center is used (first embodiment described later) and a case where a wire electric discharge machine is used (second embodiment described later). ..

水平に張り出したクイル11の先端に大径丸孔4よりも小さい円筒形の砥石12を備え、この砥石12を大径丸孔4内に挿入していき、所要の研削代を確保するようにして、この砥石12に自転回転と遊星回転と軸方向移動とを与えて高精度な内面研削を行うものである。 A cylindrical grindstone 12 smaller than the large-diameter round hole 4 is provided at the tip of the horizontally overhanging quill 11, and the grindstone 12 is inserted into the large-diameter round hole 4 to secure the required grinding allowance. The grindstone 12 is subjected to rotation, planetary rotation, and axial movement to perform high-precision internal grinding.

[横形マシニングセンターについて]
発明を特定する構成要素として限定するものではないが、加工方法を理解するための前提として、横形マシニングセンターの構成・機能の一例を簡単に説明する。
[About horizontal machining center]
Although not limited to the components that specify the invention, an example of the structure and function of the horizontal machining center will be briefly described as a premise for understanding the processing method.

図3に示すように、横形マシニングセンターは、通常の構成と同様に、軸線が水平方向であるZ方向に向いていてZ方向に直角で水平なX方向とY方向(上下方向)に移動制御ができかつモータ14により回転駆動される主軸13と、Z方向に移動制御および所要角度の旋回角度となるように制御ができる水平旋回台10とを備えている。水平旋回台10は、ワークWを固定し移動・旋回可能な定盤である。 As shown in FIG. 3, in the horizontal machining center, the movement control is performed in the X direction and the Y direction (vertical direction) which are horizontal at right angles to the Z direction with the axis oriented in the Z direction which is the horizontal direction, as in the normal configuration. It is provided with a spindle 13 that can be rotated and driven by a motor 14, and a horizontal swivel base 10 that can be controlled to move in the Z direction and to have a swivel angle of a required angle. The horizontal swivel table 10 is a surface plate on which the work W is fixed and can be moved / swiveled.

[主軸13について]
横形マシニングセンターは、主軸13が水平方向(X方向)と上下方向(Y方向)に移動し、水平旋回台10が旋回移動とX方向に対し直角でありかつ主軸13の中心線と一致しる水平方向(Z方向)に移動するようになっている。
[About spindle 13]
In the horizontal machining center, the spindle 13 moves in the horizontal direction (X direction) and the vertical direction (Y direction), and the horizontal swivel table 10 is horizontal with respect to the swivel movement and the X direction and coincides with the center line of the spindle 13. It is designed to move in the direction (Z direction).

さらに、主軸13の、X方向の移動距離の中心のX座標軸と、Y方向の移動距離の中心のY座標軸とが直交するポイントを移動量ゼロとして機械的な原点位置として検出できるとともに、水平旋回台10のZ方向の移動量を表すZ座標軸の移動距離の中心ポイントを移動量ゼロとして機械的な原点位置として検出でき、かつX,Y,Z方向のそれぞれの移動量を例えば1μm単位でNC制御できるようになっていて、原点位置よりX,Y,Zの各一方向にプラス移動量、他方向にマイナス移動量として計測できる構成であるのがよい。 Further, the point on the spindle 13 where the X coordinate axis at the center of the movement distance in the X direction and the Y coordinate axis at the center of the movement distance in the Y direction are orthogonal to each other can be detected as a mechanical origin position with zero movement amount, and horizontal turning. The center point of the movement distance of the Z coordinate axis representing the movement amount of the table 10 in the Z direction can be detected as a mechanical origin position with the movement amount zero, and each movement amount in the X, Y, and Z directions is NC, for example, in 1 μm units. It should be possible to control and measure the amount of positive movement in each of the X, Y, and Z directions from the origin position and the amount of negative movement in the other direction.

[クイル11と砥石12について]
本願に係る横形マシニングセンターは、通常の構成に加え、前記主軸13の先端に接続されたクイル11と、前記クイル11の先端に被嵌固定された円筒形の砥石12とを有し、前記主軸13のX,Y方向の移動量と前記水平旋回台のZ方向の移動量および旋回角度を数値制御できるように構成されている。クイル11は、回転中心線11aが主軸13の軸線の延長線に一致するように主軸13の先端に着脱自在に設けられている。なお、主軸13による水平支持が俯仰角度を100分の1度単位で変更されるようになっているのがよい。クイル11の張出端に備える砥石12は、ワークWの小径丸孔5よりも径が小さい円筒形である。
[About Quill 11 and Whetstone 12]
In addition to the usual configuration, the horizontal machining center according to the present application has a quill 11 connected to the tip of the spindle 13 and a cylindrical grindstone 12 fitted and fixed to the tip of the quill 11, and the spindle 13 has a cylindrical grindstone 12. The amount of movement in the X and Y directions, the amount of movement of the horizontal turning center in the Z direction, and the turning angle can be numerically controlled. The quill 11 is detachably provided at the tip of the spindle 13 so that the rotation center line 11a coincides with the extension of the axis of the spindle 13. It is preferable that the horizontal support by the spindle 13 changes the elevation angle in units of 1/100 degree. The grindstone 12 provided at the overhanging end of the quill 11 has a cylindrical shape having a smaller diameter than the small diameter round hole 5 of the work W.

[砥石12の遊星回転について]
本発明の加工方法を実現するために、通常の構成にはない特別な機能を保有するべく、横形マシニングセンターには砥石12の遊星回転を与えるためのプログラムが用意される。図4は、砥石12の遊星回転の回転中心が、X座標軸およびY座標軸の原点位置に対し一致している場合の自転回転する砥石12の遊星回転の軌跡を示し、図5は、砥石12の遊星回転の回転中心が、X座標軸およびY座標軸の原点位置に対し不一致である場合の自転回転する砥石12が半径Rで遊星回転するときの円軌跡を示している。横形マシニングセンターは、砥石12を自転回転させるだけでなく、遊星回転させることにより、砥石12がワークWの大径丸孔4の内面4aを研削できる。
[About the rotation of the planet of the grindstone 12]
In order to realize the processing method of the present invention, a program for giving planetary rotation of the grindstone 12 is prepared in the horizontal machining center in order to possess a special function not found in a normal configuration. FIG. 4 shows the trajectory of the planetary rotation of the rotating grindstone 12 when the rotation center of the planetary rotation of the grindstone 12 coincides with the origin positions of the X-axis axis and the Y-axis axis, and FIG. 5 shows the trajectory of the planetary rotation of the grindstone 12. It shows a circular locus when the rotating grindstone 12 rotates with a radius R when the rotation center of the planetary rotation does not match the origin positions of the X-axis axis and the Y-axis axis. In the horizontal machining center, not only the grindstone 12 rotates on its axis, but also the grindstone 12 rotates on a planet so that the grindstone 12 can grind the inner surface 4a of the large-diameter round hole 4 of the work W.

砥石12に遊星回転を与えるには、砥石12の遊星回転の回転中心のX座標位置とY座標位置と、砥石12の研削開始位置のX座標位置とY座標位置を求め、それによって、遊星回転の曲率半径を求め、主軸13が砥石12に対し遊星回転する円移動軌跡を与えるための一連の各対となるX座標変動値群とY座標変動値群を演算して決定し、これらをデータとして記憶する。そして、データを連続的にリードして主軸13のX―Y平面上の円運動により、砥石12に対応するX方向の移動およびY方向の移動をさせて、砥石12に遊星回転を与えることができる。 In order to give planetary rotation to the grindstone 12, the X-coordinate position and Y-coordinate position of the rotation center of the planetary rotation of the grindstone 12 and the X-coordinate position and Y-coordinate position of the grinding start position of the grindstone 12 are obtained, thereby rotating the planet. The radius of curvature of the Remember as. Then, the data can be continuously read and the circular motion of the spindle 13 on the XY plane causes the grindstone 12 to move in the X direction and the Y direction corresponding to the grindstone 12, thereby giving the grindstone 12 a planetary rotation. can.

砥石12の遊星回転の回転中心のX座標位置とY座標位置と、砥石12の研削開始位置のX座標位置とY座標位置を求めるには、中径筒軸部2の中心線6の延長線をクイル11の中心線に一致させることが前提となる。 To obtain the X-coordinate position and Y-coordinate position of the rotation center of the planetary rotation of the grindstone 12, and the X-coordinate position and Y-coordinate position of the grinding start position of the grindstone 12, it is an extension of the center line 6 of the medium-diameter cylinder shaft portion 2. Is premised on matching the center line of the quill 11.

中径筒軸部2の中心線6の延長線を主軸13(クイル11)の中心線に一致させることは、ワークWを水平旋回台10に固定するだけで実現できるものではない。前提として、中径筒軸部2の中心線6を精密に検出することが必要であり、それに基づいて、精密に検出した中径筒軸部2の中心線6の延長線を主軸13の中心線に一致させることができる。 Matching the extension line of the center line 6 of the medium-diameter cylinder shaft portion 2 to the center line of the main shaft 13 (quill 11) cannot be realized only by fixing the work W to the horizontal swivel base 10. As a premise, it is necessary to accurately detect the center line 6 of the medium-diameter cylinder shaft portion 2, and based on this, the extension line of the center line 6 of the medium-diameter cylinder shaft portion 2 that has been accurately detected is the center of the spindle 13. Can be matched to a line.

中径筒軸部2の中心線6の延長線を主軸13の中心線に一致させるには、横形マシニングセンターに備える三次元計測プローブを丸孔の円周を3等分または4等分する入口側内面と奥行側内面との各2個所を位置計測して得られる丸孔の内面の3つまたは4つの母線から丸孔の中心線を算出し、ワークWの研削前姿勢を微調整することにより、丸孔の中心線の延長線を主軸13の軸線が一軸線上にくるように微調整する。 In order to make the extension line of the center line 6 of the medium diameter cylinder shaft 2 coincide with the center line of the spindle 13, the 3D measuring probe provided in the horizontal machining center is divided into three or four equal parts around the circumference of the round hole. By calculating the center line of the round hole from the three or four generatrix of the inner surface of the round hole obtained by measuring the positions of the inner surface and the inner surface on the depth side, and finely adjusting the posture of the work W before grinding. , The extension of the center line of the round hole is finely adjusted so that the axis of the spindle 13 is on one axis.

また、中径筒軸部2の中心線6のX―Y方向の位置の割り出しの別の方法として、主軸13に専用ゲージを取り付け、主軸13を水平旋回台10の方向に移動し、専用ゲージをワークWの大径丸孔4内に侵入させてから大径丸孔4の内周面に当接または近接させ、かつそのときの隙間が孔入口端と孔奥行端が同一となるように、主軸13のX方向とY方向の微調整移動を行い、移動量をデータ取得し、このようなデータ取得を大径丸孔4の内周面の3等分または4等分個所に対して行う。 Further, as another method of determining the position of the center line 6 of the medium-diameter cylinder shaft portion 2 in the XY directions, a dedicated gauge is attached to the spindle 13, the spindle 13 is moved in the direction of the horizontal swivel base 10, and the dedicated gauge is used. Is brought into the large-diameter round hole 4 of the work W and then abutted or brought close to the inner peripheral surface of the large-diameter round hole 4, so that the gap at that time is the same at the hole entrance end and the hole depth end. , Fine-tune the movement of the spindle 13 in the X and Y directions, acquire data on the amount of movement, and acquire such data for the three or four equal parts of the inner peripheral surface of the large-diameter round hole 4. conduct.

主軸13は、モータ14により例えば2000-3000r.p.mで自転回転することができる。主軸13の遊星回転の回転速度は、砥石12がワークWの大径丸孔4の内周長さの1周だけ円弧移動して研削するのに、例えば1-2秒を要するように設定される。 The spindle 13 is, for example, 2000-3000r. p. It can rotate on its axis at m. The rotation speed of the planetary rotation of the spindle 13 is set so that it takes, for example, 1-2 seconds for the grindstone 12 to move in an arc by one circumference of the inner peripheral length of the large-diameter round hole 4 of the work W to grind. To.

なお、横形マシニングセンターは、主軸13をX―Y平面上に円運動させてクイル11に遊星回転を与える構成に限定されるものではなく、例えば、主軸13に遊星回転の回転半径を可変可能でありかつ軸方向移動可能な遊星回転部材を有する装置を設け、遊星回転部材に回転駆動される主軸13を支持する構成としてもよい。 The horizontal machining center is not limited to a configuration in which the spindle 13 is circularly moved on the XY plane to give the quill 11 the planetary rotation. For example, the rotation radius of the planetary rotation can be changed on the spindle 13. In addition, a device having a planetary rotating member that can move in the axial direction may be provided to support the spindle 13 that is rotationally driven by the planetary rotating member.

[水平旋回台10について]
水平旋回台10は、Z方向に移動自在な水平な上面部を有し移動方向の中央位置がZ方向の原点位置であり、上面部の上面中央を通る鉛直線が水平旋回の回転中心である。上面部の上面中央を通るZ方向の延長線がXおよびY方向の原点位置に垂直に交差するように配置されている。また、水平旋回台10は、水平旋回角度を1000分の1度単位で精密位置決めできる。
[About the horizontal swivel table 10]
The horizontal swivel table 10 has a horizontal upper surface portion that can move in the Z direction, the center position in the moving direction is the origin position in the Z direction, and the vertical straight line passing through the center of the upper surface portion of the upper surface portion is the rotation center of the horizontal swivel. .. The extension line in the Z direction passing through the center of the upper surface of the upper surface portion is arranged so as to intersect the origin positions in the X and Y directions perpendicularly. Further, the horizontal swivel table 10 can precisely position the horizontal swivel angle in units of 1/1000 degree.

[第1の実施の形態]
[第1工程:ワークの固定]
図6(A)に示すように、まず、横形マシニングセンターの水平旋回台10にワークチャック装置15を設置する。図1,図2に示すワークWを、チャックによりワークWに歪が生じることがないように、中径筒軸部2の肉厚部をワークチャック装置15に仮チャッ固定する。必要な場合、中径筒軸部2の外面に複数の円弧状当金を当ててからワークチャック装置15でワークWをチャックする。
[First Embodiment]
[First step: Fixing the work]
As shown in FIG. 6A, first, the work chuck device 15 is installed on the horizontal swivel table 10 of the horizontal machining center. The work W shown in FIGS. 1 and 2 is temporarily chuck-fixed to the work chuck device 15 with a thick portion of the medium-diameter cylinder shaft portion 2 so that the work W is not distorted by the chuck. If necessary, a plurality of arcuate wattages are applied to the outer surface of the medium-diameter cylinder shaft portion 2, and then the work W is chucked by the work chuck device 15.

そして、大径筒軸部1の中心線6の延長線とクイル11の中心線11aとを一軸線上に一致させるために、主軸13を位置合わせのためにX,Y軸方向の必要量の移動を行い、また、水平旋回台10について微小旋回角度の変角を行い、本チャック固定する。 Then, in order to align the extension line of the center line 6 of the large-diameter cylinder shaft portion 1 with the center line 11a of the quill 11 on one axis, the main shaft 13 is moved in the X and Y axis directions for alignment. Also, the horizontal swivel table 10 is changed in a minute turning angle, and the chuck is fixed.

本チャック固定が済んだら、ワークWの大径丸孔4の中心線6のX軸座標値とY軸座標値を検出し、横形マシニングセンターにデータ入力し、さらに、X軸座標値とY軸座標値を後述する砥石12を遊星回転させるときの回転中心のX―Y座標位置として登録する。 After fixing this chuck, the X-axis coordinate value and Y-axis coordinate value of the center line 6 of the large-diameter round hole 4 of the work W are detected, data is input to the horizontal machining center, and further, the X-axis coordinate value and the Y-axis coordinate value are input. The value is registered as the XY coordinate position of the center of rotation when the grindstone 12 described later is rotated on a planet.

[第2工程:研削代の設定と仕上げ研削]
次いで、第2工程として、図6(A)に示すように、砥石12を大径丸孔4内の入口端(または奥行端)に移動させ、所要の研削代(例えば数μm)を保持したままで、図6(D)に示すように、砥石12を、自転回転と大径丸孔4の中心を曲率中心とする遊星回転をさせ前記丸孔の奥行端または入口端まで移動することにより、前記研削代を保持した研削を大径丸孔4の全内周面に及ぶようにして大径丸孔4の仕上げ研削を行う。
[Second step: Grinding allowance setting and finish grinding]
Next, as a second step, as shown in FIG. 6A, the grindstone 12 was moved to the inlet end (or depth end) in the large-diameter round hole 4 to hold a required grinding allowance (for example, several μm). Until then, as shown in FIG. 6D, the grindstone 12 is rotated by rotation and planetary rotation with the center of the large-diameter round hole 4 as the center of curvature, and is moved to the depth end or the entrance end of the round hole. The grindstone holding the grinding allowance is applied to the entire inner peripheral surface of the large-diameter round hole 4 to perform finish grinding of the large-diameter round hole 4.

この場合、砥石12を大径丸孔4内の入口に移動後、半径方向外方へ移動し大径丸孔4の内周面に当接した時点における、大径丸孔4の中心線から砥石12の中心線までの距離に、所要の研削代を加算した値を砥石12を遊星回転させるための曲率半径とする。そして、砥石12を大径丸孔4内の入口に移動後、自転回転と遊星回転とを行わせて研削開始するか、または自転回転させて所要の研削代だけ初期研削してから遊星回転を行わせて研削する。 In this case, after moving the grindstone 12 to the entrance inside the large-diameter round hole 4, the grindstone 12 moves outward in the radial direction and comes into contact with the inner peripheral surface of the large-diameter round hole 4 from the center line of the large-diameter round hole 4. The value obtained by adding the required grinding allowance to the distance to the center line of the grindstone 12 is defined as the radius of curvature for rotating the grindstone 12 on a planetary basis. Then, after the grindstone 12 is moved to the entrance in the large-diameter round hole 4, grinding is started by performing rotation rotation and planetary rotation, or rotation rotation is performed to initially grind only the required grinding allowance and then planetary rotation is performed. Let it grind.

上記の自転回転させて所要の研削代だけ初期研削してから遊星回転を行わせて研削することについて、一層詳しく説明すると、図6(A)に示すように、水平旋回台10をZ軸方向にストロークz1だけ移動することにより、砥石12を大径丸孔4の孔内の入口側端部に位置させる。このとき、砥石12の中心は大径丸孔4の孔中心と一致している。そして、図6(B)に示すように、主軸13をY軸方向(X軸方向でもよい)に移動させることによりクイル11を上方に移動し、砥石12を大径丸孔4の内面に密着させる。このときのY軸方向の移動量y1をデータ取得し、この移動量y1を研削前の内径に対応する値としてデータ登録する。次いで、モータ14により砥石12を自転回転しつつ、図6(C)に示すように、主軸13をY軸方向にさらに所要の研削代だけ(例えば数μm)だけ所要時間(例えば十数秒)要して移動させることにより、砥石12で所要の研削代だけ研削を行い、研削代を設定する。研削代を設定したら、移動量y1+所要の研削代をデータ登録し、さらに、この移動量y1+所要の研削代を砥石12を大径丸孔4に対し遊星回転させるときの回転半径R1として、砥石12に遊星回転を与えるためのデータを作成する。 To explain in more detail the above-mentioned rotation rotation to perform initial grinding of only the required grinding allowance and then planetary rotation to grind, as shown in FIG. 6A, the horizontal swivel table 10 is rotated in the Z-axis direction. By moving the grindstone 12 by the stroke z1, the grindstone 12 is positioned at the end on the inlet side in the hole of the large-diameter round hole 4. At this time, the center of the grindstone 12 coincides with the hole center of the large-diameter round hole 4. Then, as shown in FIG. 6B, by moving the main shaft 13 in the Y-axis direction (may be in the X-axis direction), the quill 11 is moved upward, and the grindstone 12 is brought into close contact with the inner surface of the large-diameter round hole 4. Let me. The data of the movement amount y1 in the Y-axis direction at this time is acquired, and the data of this movement amount y1 is registered as a value corresponding to the inner diameter before grinding. Next, while rotating the grindstone 12 by the motor 14, as shown in FIG. 6C, the main shaft 13 requires a required time (for example, a dozen seconds) for the required grinding allowance (for example, several μm) in the Y-axis direction. By moving the grindstone 12, only the required grinding allowance is ground by the grindstone 12, and the grinding allowance is set. After setting the grinding allowance, the moving amount y1 + the required grinding allowance are registered as data, and the moving amount y1 + the required grinding allowance is used as the turning radius R1 when the grindstone 12 is planetarily rotated with respect to the large-diameter round hole 4. Create data to give planetary rotation to 12.

また、上記の砥石12を、自転回転と大径丸孔4の中心を曲率中心とする遊星回転をさせることについて、一層詳しく説明すると、図6(D)に示すように、設定した研削代を維持したままで、データを連続的にリードして主軸13にX―Y平面上の回転半径R1の円運動を与え、砥石12を自転回転させつつ大径丸孔4の中心線6を回転中心として所定低速で回転半径R1を保持して遊星回転させるとともに、砥石12を大径丸孔4の奥行端まで所定低速でストロークz2だけ移動することにより、図6(E)に示すように、設定した研削代の研削が大径丸孔4の全内面に及ぶように仕上げ研削(精密仕上げ加工)を行う。この場合、第1工程で大径筒軸部1の中心線6の延長線と主軸13の中心線(クイル11の中心線11a)とを高精度の同軸度が得られるよう一軸線上に一致させたことにより、大径丸孔4の中仕上げされた内面に対し全周全長に渡り均一な研削代だけ仕上げ研削が行われる。 Further, to explain in more detail the rotation of the above-mentioned grindstone 12 and the rotation of the planet with the center of the large-diameter round hole 4 as the center of curvature, the set grinding allowance is set as shown in FIG. 6 (D). While maintaining the data, the data is continuously read to give a circular motion of the turning radius R1 on the XY plane to the spindle 13, and the center line 6 of the large-diameter round hole 4 is rotated while rotating the grindstone 12. As shown in FIG. 6E, the grindstone 12 is moved to the depth end of the large-diameter round hole 4 by the stroke z2 at a predetermined low speed while maintaining the rotation radius R1 at a predetermined low speed and rotating the planet. Finish grinding (precision finishing) is performed so that the grinding allowance is covered over the entire inner surface of the large-diameter round hole 4. In this case, in the first step, the extension line of the center line 6 of the large-diameter cylinder shaft portion 1 and the center line of the main shaft 13 (center line 11a of the quill 11) are aligned on one axis so that high-precision coaxiality can be obtained. As a result, finish grinding is performed on the internally finished inner surface of the large-diameter round hole 4 by a uniform grinding allowance over the entire circumference.

なお、上記説明では、、大径丸孔4の入口端から奥行端まで仕上げ研削(往方向研削)を行った後、砥石を大径丸孔4の内面から離れさせて奥行端から入口端まで戻すものとしているが、奥行端まで仕上げ研削したら砥石を大径丸孔4の内面から離れさせないでそのまま自転回転と遊星回転を続行させてかつ研削代を増やして復方向研削を行うようにしてもよい。研削時間短縮のため研削代を増やして復方向研削を行う方法もある。また、第2工程としての大径丸孔4の仕上げ研削(往方向研削のみ、または往復研削)を1回行った後の大径丸孔4の直径を計測して、当該直径の寸法が最終仕上げ寸法に到達していない場合、当該第2工程を繰り返し行う。 In the above description, after performing finish grinding (forward grinding) from the inlet end to the depth end of the large-diameter round hole 4, the grindstone is separated from the inner surface of the large-diameter round hole 4 from the depth end to the inlet end. Although it is supposed to be returned, after finishing grinding to the depth end, even if the grindstone is not separated from the inner surface of the large diameter round hole 4 and the rotation rotation and planetary rotation are continued as it is, and the grinding allowance is increased to perform reverse grinding. good. There is also a method of performing reverse grinding by increasing the grinding allowance in order to shorten the grinding time. Further, the diameter of the large-diameter round hole 4 after the finish grinding (forward grinding only or reciprocating grinding) of the large-diameter round hole 4 as the second step is performed once is measured, and the dimension of the diameter is final. If the finished size has not been reached, the second step is repeated.

第3工程として、第2工程後、砥石12を大径丸孔4から抜け出た位置に後退させてから、水平旋回台を180度旋回させる。 As a third step, after the second step, the grindstone 12 is retracted to a position where it comes out of the large-diameter round hole 4, and then the horizontal swivel table is swiveled 180 degrees.

第4工程として、砥石を小径丸孔5内の入口に移動させ、所要の研削代を保持したままで、砥石12を、自転回転と大径丸孔4の中心を曲率中心とする遊星回転をさせ、小径丸孔5の奥行端まで移動することにより、研削代を保持した研削を小径丸孔5の全内周面に及ぶようにして小径丸孔5の仕上げ研削を行う。 As the fourth step, the grindstone is moved to the entrance in the small-diameter round hole 5, and the grindstone 12 is rotated and rotated around the center of the large-diameter round hole 4 as the center of curvature while maintaining the required grinding allowance. Then, by moving to the depth end of the small-diameter round hole 5, the grinding with the grinding allowance is extended to the entire inner peripheral surface of the small-diameter round hole 5 to perform finish grinding of the small-diameter round hole 5.

第4工程においては、砥石12を小径丸孔5内の入口に移動後、半径方向外方へ移動し小径丸孔の内周面に当接した時点における、小径丸孔5の中心線7から砥石12の中心線までの距離に、所要の研削代を加算した値を砥石12を遊星回転させるための曲率半径とする。 In the fourth step, after moving the grindstone 12 to the entrance inside the small-diameter round hole 5, the grindstone 12 moves outward in the radial direction and comes into contact with the inner peripheral surface of the small-diameter round hole from the center line 7 of the small-diameter round hole 5. The value obtained by adding the required grinding allowance to the distance to the center line of the grindstone 12 is defined as the radius of curvature for rotating the grindstone 12 on a planetary basis.

また、第4工程においては、砥石12を小径丸孔5内の入口に移動後、自転回転と遊星回転とを行わせて研削開始するか、または自転回転させて所要の研削代だけ初期研削してから遊星回転を行わせて研削する。 Further, in the fourth step, after the grindstone 12 is moved to the entrance in the small diameter round hole 5, grinding is started by performing rotation rotation and planetary rotation, or rotation rotation is performed to initially grind only the required grinding allowance. After that, the planet is rotated to grind.

さらに、第3工程と第4工程について詳しく説明する。 Further, the third step and the fourth step will be described in detail.

上記の自転回転させて所要の研削代だけ初期研削してから遊星回転を行わせて研削する第3工程について、一層詳しく説明すると、大径丸孔4に対し第2工程の仕上げ研削を行った後、砥石12を大径丸孔4から抜け出た位置に後退させてから、図7(A)に示すように、水平旋回台10を180度旋回させる。この場合、第1工程において、大径丸孔4の中心線6の延長線を主軸13の中心線に一致させてからワークWを水平旋回台10に本固定することから、水平旋回台10を180度旋回させると、小径丸孔5の中心線7の延長線をクイル11の中心線に一致させることができる。このため、小径丸孔5の内面を内面研削するために、砥石12に遊星回転を与えるための三次元計測プローブにより小径丸孔5の中心線の検出は不要である。なお、必要に応じて小径筒軸部3の張出端を水平旋回台10より伸びる支え部材(不図示)で支持する。 To explain in more detail the third step of grinding by rotating the rotation and initial grinding only the required grinding allowance and then rotating the planet, the large-diameter round hole 4 was subjected to the finish grinding of the second step. After that, the grindstone 12 is retracted to a position where it comes out of the large-diameter round hole 4, and then the horizontal swivel table 10 is swiveled 180 degrees as shown in FIG. 7A. In this case, in the first step, the work W is fixed to the horizontal swivel table 10 after the extension line of the center line 6 of the large-diameter round hole 4 is aligned with the center line of the main shaft 13, so that the horizontal swivel table 10 is used. By turning 180 degrees, the extension line of the center line 7 of the small diameter round hole 5 can be aligned with the center line of the quill 11. Therefore, in order to grind the inner surface of the small-diameter round hole 5, it is not necessary to detect the center line of the small-diameter round hole 5 by a three-dimensional measuring probe for giving planetary rotation to the grindstone 12. If necessary, the overhanging end of the small diameter cylinder shaft portion 3 is supported by a support member (not shown) extending from the horizontal swivel base 10.

そして、大径丸孔4に対する仕上げ研削と同様の手順で、砥石12(または必要に応じて交換する小径で円筒の砥石)を小径丸孔5内の入口端(または奥行端)に移動させ、砥石12を自転回転させつつ小径丸孔5の内周面に当接してから仕上げ研削代を設定する。 Then, the grindstone 12 (or a small-diameter cylindrical grindstone to be replaced if necessary) is moved to the inlet end (or depth end) in the small-diameter round hole 5 by the same procedure as the finish grinding for the large-diameter round hole 4. The finish grinding allowance is set after the grindstone 12 rotates on its axis and comes into contact with the inner peripheral surface of the small diameter round hole 5.

第4工程については、図7(B)に示すように、自転回転する砥石12を小径丸孔5の中心線7を遊星回転の回転中心として回転半径R2を保持して所定低速で遊星回転させるとともに、砥石12を小径丸孔の奥行端まで移動することにより、初期研削を小径丸孔5の内面に及ぶように内面研削を行う。もって、内面研削された小径丸孔5は、先に内面研削された大径丸孔4と高精度の同軸度が得られる。なお、第4工程においても、第2工程と同様に、砥石12を小径丸孔5内の奥行端(または入口端)に移動後、自転回転と遊星回転とを行わせて研削開始するか、または自転回転させて所要の研削代だけ初期研削してから遊星回転を行わせて研削する構成である。 In the fourth step, as shown in FIG. 7B, the rotating grindstone 12 is rotated at a predetermined low speed while maintaining the turning radius R2 with the center line 7 of the small diameter round hole 5 as the rotation center of the planetary rotation. At the same time, by moving the grindstone 12 to the depth end of the small-diameter round hole, the initial grinding is performed on the inner surface so as to extend to the inner surface of the small-diameter round hole 5. Therefore, the small-diameter round hole 5 ground on the inner surface can obtain a high-precision coaxiality with the large-diameter round hole 4 previously ground on the inner surface. In the fourth step as well, as in the second step, after moving the grindstone 12 to the depth end (or inlet end) in the small diameter round hole 5, rotation rotation and planetary rotation are performed to start grinding. Alternatively, it is configured to rotate by rotation to perform initial grinding only for the required grinding allowance, and then to perform planetary rotation for grinding.

[第2の実施の形態]
[第1,第2工程]
第2の実施の形態に係るワークは、第1の実施の形態と同様に、図1,図2に示すワークWである。そして、砥石12によるワークWの大径丸孔4の内面に対する仕上げ研削は第1の実施の形態の場合と全く同一に行われる。したがって、第1の実施の形態に係るワークWに対する第1,第2工程は、第2の実施の形態に係るワークWに対しても同一に行われるので、説明を省略する。
[Second Embodiment]
[1st and 2nd steps]
The work according to the second embodiment is the work W shown in FIGS. 1 and 2 as in the first embodiment. Then, the finish grinding of the inner surface of the large-diameter round hole 4 of the work W by the grindstone 12 is performed exactly in the same manner as in the case of the first embodiment. Therefore, since the first and second steps for the work W according to the first embodiment are performed in the same manner for the work W according to the second embodiment, the description thereof will be omitted.

[第3工程]
大径丸孔4に対し第2工程の仕上げ研削を行った後のワークを水平旋回台10から取り外し、図8(A)に示すように、大径丸孔4側が上側に、小径丸孔5側が下側にくるようにワークWを鉛直に保ってワイヤー放電加工機の水プール内のワーク支持台16に固定する。このワーク固定において、大径丸孔4の中心線がどの平面座標に位置するか、および大径丸孔4の中心線が鉛直線からどれだけの微小寸法の傾きを有しているかについて、図8(B)に示すように、ワイヤー放電加工機に付帯している三次元計測プローブ17を大径丸孔4の円周を3等分または4等分する各一か所に対応して入口側内面と奥行側内面との2個所を位置計測により得られる大径丸孔4の内面の3つまたは4つの母線から大径丸孔4の中心線6の位置座標と傾きを算出し、ワイヤー放電加工機にデータ登録する。
[Third step]
After the finish grinding of the second step is performed on the large-diameter round hole 4, the workpiece is removed from the horizontal swivel table 10, and as shown in FIG. 8A, the large-diameter round hole 4 side is on the upper side and the small-diameter round hole 5 is on the upper side. Keep the work W vertically so that the side is on the lower side, and fix it to the work support 16 in the water pool of the wire electric discharge machine. In this work fixing, the figure shows which plane coordinates the center line of the large-diameter round hole 4 is located and how small the inclination of the center line of the large-diameter round hole 4 is from the vertical line. As shown in 8 (B), the entrance of the three-dimensional measurement probe 17 attached to the wire discharge processing machine corresponds to each one that divides the circumference of the large-diameter round hole 4 into three or four equal parts. The position coordinates and inclination of the center line 6 of the large-diameter round hole 4 are calculated from the three or four bus lines of the inner surface of the large-diameter round hole 4 obtained by measuring the positions of the inner surface on the side and the inner surface on the depth side, and the wire. Register the data in the discharge processing machine.

[第4工程]
図8(C)に示すように、ワイヤー放電加工機に登録されたデータをリードしそのデータに基づいて、ワイヤー放電加工機より垂下する放電加工電極であるワイヤー18を大径丸孔4を通して小径丸孔5の内面近傍に、かつ大径丸孔4の中心線6に対し一致する(所定の同軸度となる)ように挿通する。この場合、通常のワイヤー放電加工機では、ワイヤー18が鉛直に垂下しているが、本実施の形態では、ワイヤー18の上端保持部または下端保持部を水平方向に微小寸法移動することにより、ワイヤー18の鉛直線に対する微小な傾きを調整可能な機能を有する。そして、ワイヤー放電加工機に登録したデータに基づいて、ワイヤー18を鉛直線に対し所要の傾きを保持した垂下状態を小径丸孔5の中心線7に一致する状態とし、さらに、ワイヤー18を小径丸孔5の中心線7に一致する状態に保持するか、または小径丸孔5の中心線7の周りに所要変位する状態を保持して円運動する機能を有する。
[Fourth step]
As shown in FIG. 8C, the data registered in the wire electric discharge machine is read, and based on the data, the wire 18 which is the electric discharge machining electrode hanging from the wire electric discharge machine is passed through the large diameter round hole 4 and has a small diameter. It is inserted in the vicinity of the inner surface of the round hole 5 so as to coincide with the center line 6 of the large-diameter round hole 4 (having a predetermined coaxiality). In this case, in a normal wire discharge processing machine, the wire 18 hangs vertically, but in the present embodiment, the upper end holding portion or the lower end holding portion of the wire 18 is moved by a minute dimension in the horizontal direction. It has a function of adjusting a minute inclination with respect to the vertical line of 18. Then, based on the data registered in the wire electric discharge machine, the hanging state in which the wire 18 holds the required inclination with respect to the vertical line is set to match the center line 7 of the small diameter round hole 5, and further, the wire 18 has a small diameter. It has a function of holding a state corresponding to the center line 7 of the round hole 5 or holding a state of required displacement around the center line 7 of the small diameter round hole 5 to make a circular motion.

[第6工程]
ワイヤーを、放電加工電流を与えつつ算出した大径丸孔4の中心線6を回転中心として所要時間要して自転回転させることにより、小径丸孔の内面に対し放電加工を行う。よって、内面研削された小径丸孔5は、先に内面研削された大径丸孔4と高精度の同軸度が得られる。なお、ワイヤー18を小径丸孔5の内面の全長に平行に近接対向することが保持されれば、ワイヤー18の中心線を大径丸孔4と小径丸孔5の中心線6,7から変位した位置でワイヤー18を遊星回転させるようになっていてもよい。
[Step 6]
Electric discharge machining is performed on the inner surface of the small diameter round hole by rotating the wire around the center line 6 of the large diameter round hole 4 calculated while applying an electric discharge machining current for a required time. Therefore, the small-diameter round hole 5 ground on the inner surface can obtain a high-precision coaxiality with the large-diameter round hole 4 previously ground on the inner surface. If the wire 18 is maintained so as to face each other in parallel with the entire length of the inner surface of the small diameter round hole 5, the center line of the wire 18 is displaced from the center lines 6 and 7 of the large diameter round hole 4 and the small diameter round hole 5. The wire 18 may be rotated by a planet at the position where the wire 18 is struck.

本発明によれば、旋盤により粗仕上げ、中仕上げが既に済んでいるワークの被加工部位である丸孔(真円)について仕上げ研削(最終加工)を行うこと、また内面研削盤では行うことができない丸孔内面の仕上げ研削を横形マシニングセンターで実現することができ、また、ワークの丸孔の輪切り断面における外周面と内周面との間の肉厚が例えば1.0~1.5mmである場合に、砥石研削加工により歪や共振が生じることなく仕上げ加工を適切に実現でき、さらに、大径丸孔と小径丸孔とを連通状態に有するワークの、大径丸孔に対する仕上げ加工を横形マシニングセンターの砥石研削加工により先行して行い、小径丸孔に対する仕上げ加工をワークに対して、180度旋回して引き続き横形マシニングセンターにより行うか、またはワイヤー放電加工機を用いたワイヤー放電加工を行って、大径丸孔の中心線と小径丸孔の中心線とが一軸線上にくるように中心線同士の芯合わせを高精密に行うことができるワークの丸孔の仕上げ加工方法を提供することができる。 According to the present invention, it is possible to perform finish grinding (final machining) on a round hole (round hole), which is a workpiece portion that has already been rough-finished and semi-finished by a lathe, and to perform finish grinding (final machining) by an internal grinding machine. Finish grinding of the inner surface of the round hole, which cannot be done, can be realized by the horizontal machining center, and the wall thickness between the outer peripheral surface and the inner peripheral surface in the circular section of the round hole of the workpiece is, for example, 1.0 to 1.5 mm. In some cases, the grindstone grinding process can appropriately realize the finish machining without causing distortion or resonance, and further, the finish machining for the large-diameter round hole of the work having the large-diameter round hole and the small-diameter round hole in a communicating state is horizontal. Performed in advance by grinding the grindstone of the machining center, and finish machining the small diameter round hole by turning 180 degrees to the work and continuing with the horizontal machining center, or wire electric discharge machining using a wire electric discharge machine. It is possible to provide a method for finishing a round hole of a workpiece that can perform high-precision alignment between the center lines so that the center line of the large-diameter round hole and the center line of the small-diameter round hole are on one axis. ..

W…ワーク、
1…大径筒軸部、
2…中径筒軸部、
3…小径筒軸部、
4…大径丸孔、
4a…内面、
5…小径丸孔、
6…中心線、
7…中心線、
10…水平旋回台、
11…クイル、
11a…中心線、
12…砥石、
13…主軸、
14…モータ、
15…ワークチャック装置、
16…ワーク支持台、
17…三次元計測プローブ、
18…ワイヤー、
R1…大径丸孔に対する遊星回転の回転半径、
R2…小径丸孔に対する遊星回転の回転半径、
y1…移動量、
z1…ストローク、
z2…ストローク。
W ... work,
1 ... Large diameter cylinder shaft,
2 ... Medium diameter cylinder shaft,
3 ... Small diameter cylinder shaft
4 ... Large diameter round hole,
4a ... Inside,
5 ... Small diameter round hole,
6 ... Center line,
7 ... Center line,
10 ... Horizontal swivel,
11 ... Quill,
11a ... Center line,
12 ... Whetstone,
13 ... spindle,
14 ... Motor,
15 ... Work chuck device,
16 ... Work support,
17 ... 3D measurement probe,
18 ... wire,
R1 ... Radius of gyration of planetary rotation with respect to a large-diameter round hole,
R2 ... Radius of gyration of planetary rotation with respect to a small diameter round hole,
y1 ... Movement amount,
z1 ... Stroke,
z2 ... Stroke.

ワークWは、大径筒軸部(フランジ部)1と、中径筒軸部2と、小径筒軸部3と連通状態・貫通状態に有し、大径筒軸部1の端面より中径筒軸部2の内部に大径丸孔4と、小径丸孔5とを有する。 The work W has a large-diameter cylinder shaft portion (flange portion) 1, a medium-diameter cylinder shaft portion 2, and a small-diameter cylinder shaft portion 3 in a communicating / penetrating state, and is in the middle of the end surface of the large-diameter cylinder shaft portion 1. A large-diameter round hole 4 and a small-diameter round hole 5 are provided inside the diameter cylinder shaft portion 2.

[主軸13について]
横形マシニングセンターは、主軸13が水平方向(X方向)と上下方向(Y方向)に移動し、水平旋回台10が旋回移動とX方向に対し直角でありかつ主軸13の中心線と一致る水平方向(Z方向)に移動するようになっている。
[About spindle 13]
In the horizontal machining center, the spindle 13 moves in the horizontal direction (X direction) and the vertical direction (Y direction), and the horizontal swivel table 10 is horizontal with respect to the swivel movement and the X direction and coincides with the center line of the spindle 13. It is designed to move in the direction (Z direction).

なお、横形マシニングセンターは、主軸13をX-Y平面上に円運動させてクイル11に遊星回転を与える構成に限定されるものではなく、例えば、主軸13に遊星回転の回転半径を変動可能でありかつ軸方向移動可能な遊星回転部材を有する装置を設け、遊星回転部材に回転駆動される主軸13を支持する構成としてもよい。 The horizontal machining center is not limited to a configuration in which the spindle 13 is circularly moved on the XY plane to give the quill 11 the planetary rotation, and for example, the rotation radius of the planetary rotation can be changed on the spindle 13. In addition, a device having a planetary rotating member that can move in the axial direction may be provided to support the spindle 13 that is rotationally driven by the planetary rotating member.

[第1の実施の形態]
[第1工程:ワークの固定]
図6(A)に示すように、まず、横形マシニングセンターの水平旋回台10にワークチャック装置15を設置する。図1,図2に示すワークWを、チャックによりワークWに歪が生じることがないように、中径筒軸部2の肉厚部をワークチャック装置15に仮チャッ固定する。必要な場合、中径筒軸部2の外面に複数の円弧状当金を当ててからワークチャック装置15でワークWをチャックする。
[First Embodiment]
[First step: Fixing the work]
As shown in FIG. 6A, first, the work chuck device 15 is installed on the horizontal swivel table 10 of the horizontal machining center. The work W shown in FIGS. 1 and 2 is temporarily chuck -fixed to the work chuck device 15 with a thick portion of the medium-diameter cylinder shaft portion 2 so that the work W is not distorted by the chuck. If necessary, a plurality of arcuate wattages are applied to the outer surface of the medium-diameter cylinder shaft portion 2, and then the work W is chucked by the work chuck device 15.

Claims (7)

第1工程として、軸線が水平方向であるZ方向に向いておりZ方向に直角で水平なX方向Xおよび上下方向であるY方向に移動制御されかつ回転駆動される水平な主軸と、Z方向に移動制御および所要角度旋回制御ができる水平旋回台と、前記主軸の先端に接続されたクイルと、前記クイルの先端に被嵌固定された円筒形の砥石とを有し、前記主軸のX,Y方向の移動量と前記水平旋回台のZ方向の移動量および旋回角度を数値制御する横形マシニングセンターの前記水平旋回台に、別の機械で中仕上げ加工された丸孔を有するワークを、前記砥石の先側に前記丸孔の入口に移動させ、かつ前記丸孔の中心線の延長線と前記クイルの軸線とが一軸線上にくるかまたは平行となるように精密位置決めして固定し、
第2工程として、前記砥石を前記丸孔内の入口端または奥行端に移動させ、所要の研削代を保持したままで、前記砥石を、自転回転と大径丸孔4の中心を曲率中心とする遊星回転をさせ前記丸孔の奥行端または入口端まで移動することにより、前記研削代を保持した研削を前記丸孔の全内周面に及ぶようにして前記丸孔の仕上げ研削を行う
ことを特徴とするワークの丸孔の仕上げ加工方法。
As the first step, a horizontal main axis whose axis is oriented in the Z direction, which is the horizontal direction, is movement-controlled and rotationally driven in the X direction X, which is perpendicular to the Z direction, and the Y direction, which is the vertical direction, and the Z direction. It has a horizontal swivel table capable of movement control and required angle swivel control, a quill connected to the tip of the spindle, and a cylindrical grindstone fitted and fixed to the tip of the quill. The grindstone is a workpiece having a round hole that has been semi-finished by another machine on the horizontal swivel of the horizontal machining center that numerically controls the amount of movement in the Y direction, the amount of movement in the Z direction of the horizontal swivel, and the swivel angle. Move to the entrance of the round hole on the tip side of the hole, and precisely position and fix it so that the extension of the center line of the round hole and the axis of the quill are on one axis or parallel to each other.
As a second step, the grindstone is moved to the inlet end or the depth end in the round hole, and the grindstone is rotated and rotated with the center of the large-diameter round hole 4 as the center of curvature while holding the required grinding allowance. By rotating the planet and moving it to the depth end or the inlet end of the round hole, the grinding with the grinding allowance is applied to the entire inner peripheral surface of the round hole to perform finish grinding of the round hole. A method for finishing round holes in a workpiece, which is characterized by the above.
前記第2工程として、前記砥石を前記丸孔内の入口端または奥行端に移動後、半径方向外方へ移動し丸孔内周面に当接した時点における、前記丸孔の中心線から前記砥石の中心線までの距離に、所要の研削代を加算した値を前記砥石を遊星回転させるための曲率半径とする
ことを特徴とする請求項1に記載のワークの丸孔の仕上げ加工方法。
As the second step, after moving the grindstone to the inlet end or the depth end in the round hole, the grindstone is moved outward in the radial direction and abuts on the inner peripheral surface of the round hole, from the center line of the round hole. The method for finishing a round hole in a work according to claim 1, wherein a value obtained by adding a required grinding allowance to the distance to the center line of the grindstone is used as the radius of curvature for rotating the grindstone on a planet.
前記第2工程として、前記砥石を前記丸孔内の入口端または奥行端に移動後、自転回転と遊星回転とを行わせて研削開始するか、または自転回転させて前記所要の研削代だけ初期研削してから遊星回転を行わせて研削する
ことを特徴とする請求項1または2に記載のワークの丸孔の仕上げ加工方法。
As the second step, after the grindstone is moved to the inlet end or the depth end in the round hole, grinding is started by performing rotation rotation and planetary rotation, or rotation rotation is performed and only the required grinding allowance is initially set. The method for finishing a round hole of a work according to claim 1 or 2, wherein the grinding is performed by rotating the planet after grinding.
前記ワークが、中仕上げ加工された前記丸孔である大径丸孔と、前記大径丸孔に所定同軸度で連接された中仕上げ加工された小径丸孔とを有するワークであって、
第3工程として、前記第2工程後、前記砥石を前記大径丸孔から抜け出た位置に後退させてから、前記水平旋回台を180度旋回させ、
第4工程として、前記砥石を前記小径丸孔内の入口端または奥行端に移動させ、所要の研削代を保持したままで、前記砥石を、自転回転と前記大径丸孔の中心を曲率中心とする遊星回転をさせ、前記小径丸孔の奥行端または入口端まで移動することにより、前記研削代を保持した研削を前記小径丸孔の全内周面に及ぶようにして前記小径丸孔の仕上げ研削を行う
ことを特徴とする請求項1ないし3のいずれか1項に記載のワークの丸孔の仕上げ加工方法。
The work is a work having a large-diameter round hole which is a medium-finished round hole and a small-diameter round hole which is connected to the large-diameter round hole at a predetermined coaxiality.
As a third step, after the second step, the grindstone is retracted to a position where it comes out of the large-diameter round hole, and then the horizontal swivel table is swiveled 180 degrees.
As a fourth step, the grindstone is moved to the inlet end or the depth end in the small-diameter round hole, and the grindstone is rotated around the center of the large-diameter round hole while maintaining the required grinding allowance. By rotating the planet to the depth end or the inlet end of the small-diameter round hole, the grinding holding the grinding allowance is extended to the entire inner peripheral surface of the small-diameter round hole. The method for finishing a round hole of a work according to any one of claims 1 to 3, wherein finish grinding is performed.
前記第5工程として、前記砥石を前記小径丸孔内の入口端または奥行端に移動後、半径方向外方へ移動し小径丸孔の内周面に当接した時点における、前記小径丸孔の中心線から前記砥石の中心線までの距離に、所要の研削代を加算した値を前記砥石を遊星回転させるための曲率半径とする
ことを特徴とする請求項4に記載のワークの丸孔の仕上げ加工方法。
As the fifth step, after moving the grindstone to the inlet end or the depth end in the small-diameter round hole, the grindstone is moved outward in the radial direction and comes into contact with the inner peripheral surface of the small-diameter round hole. The round hole of the work according to claim 4, wherein the value obtained by adding the required grinding allowance to the distance from the center line to the center line of the grindstone is the radius of curvature for rotating the grindstone on a planet. Finishing method.
前記第5工程として、前記砥石を前記小径丸孔内の入口端または奥行端に移動後、自転回転と遊星回転とを行わせて研削開始するか、または自転回転させて前記所要の研削代だけ初期研削してから遊星回転を行わせて研削する
ことを特徴とする請求項4または5に記載のワークの丸孔の仕上げ加工方法。
As the fifth step, after the grindstone is moved to the inlet end or the depth end in the small-diameter round hole, grinding is started by performing rotation rotation and planetary rotation, or rotation rotation is performed to obtain only the required grinding allowance. The method for finishing a round hole of a work according to claim 4 or 5, wherein the ground is ground by performing planetary rotation after initial grinding.
前記ワークが、中仕上げ加工された前記丸孔である大径丸孔と、前記大径丸孔に所定同軸度で連接された中仕上げ加工された小径丸孔とを有するワークであって、
第3工程として、前記大径丸孔に対し前記第2工程の仕上げ研削を行った後の前記ワークを前記水平旋回台から取り外し、前記大径丸孔側が上側に、前記小径丸孔側が下側にくるように前記ワークを鉛直に保ってワイヤー放電加工機のワーク支持台に固定し、
第4工程として、放電加工電極であるワイヤーを前記大径丸孔を通して前記小径丸孔の内面近傍に、かつ前記大径丸孔の中心線に対し所定の同軸度となるように挿通し、
第5工程として、前記ワイヤーを、放電加工電流を与えつつ前記算出した前記大径丸孔の中心線を回転中心として一周回転させることにより、前記小径丸孔の内面に対し一周する放電加工を行う
ことを特徴とする請求項1ないし3のいずれか1項に記載のワークの丸孔の仕上げ加工方法。
The work is a work having a large-diameter round hole which is a medium-finished round hole and a small-diameter round hole which is connected to the large-diameter round hole at a predetermined coaxiality.
As a third step, the work after the finish grinding of the second step is performed on the large-diameter round hole is removed from the horizontal swivel, the large-diameter round hole side is on the upper side, and the small-diameter round hole side is on the lower side. Keep the work vertically so that it comes to the work, and fix it to the work support of the wire electric discharge machine.
As a fourth step, a wire which is an electric discharge machining electrode is inserted through the large-diameter round hole in the vicinity of the inner surface of the small-diameter round hole and at a predetermined coaxiality with respect to the center line of the large-diameter round hole.
As a fifth step, electric discharge machining is performed by rotating the wire around the center line of the calculated large-diameter round hole while applying an electric discharge machining current to the inner surface of the small-diameter round hole. The method for finishing a round hole of a work according to any one of claims 1 to 3, wherein the method is characterized by that.
JP2020183163A 2020-10-30 2020-10-30 Finishing method for round holes in the work Active JP6877800B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020183163A JP6877800B1 (en) 2020-10-30 2020-10-30 Finishing method for round holes in the work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020183163A JP6877800B1 (en) 2020-10-30 2020-10-30 Finishing method for round holes in the work

Publications (2)

Publication Number Publication Date
JP6877800B1 JP6877800B1 (en) 2021-05-26
JP2022073278A true JP2022073278A (en) 2022-05-17

Family

ID=75961537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020183163A Active JP6877800B1 (en) 2020-10-30 2020-10-30 Finishing method for round holes in the work

Country Status (1)

Country Link
JP (1) JP6877800B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941996A (en) * 1972-03-03 1974-04-19
JPS6480755A (en) * 1987-09-24 1989-03-27 Honda Motor Co Ltd Cylinder block for internal combustion engine
JP2006187843A (en) * 2005-01-07 2006-07-20 Sugino Mach Ltd Burnishing tool and burnishing method using the same
JP2009299565A (en) * 2008-06-12 2009-12-24 Toyota Motor Corp Manufacturing method for cylinder block
JP2010149239A (en) * 2008-12-25 2010-07-08 Seibu Electric & Mach Co Ltd Eccentric hole drilling method by machine tool
JP2011110622A (en) * 2009-11-24 2011-06-09 Toyo Seiki Kogyo Co Ltd Production line and machine tool
JP2014138962A (en) * 2013-01-21 2014-07-31 Nexsys Corp Grinding device and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001029628A (en) * 1999-07-15 2001-02-06 Sankyo Kk Game system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941996A (en) * 1972-03-03 1974-04-19
JPS6480755A (en) * 1987-09-24 1989-03-27 Honda Motor Co Ltd Cylinder block for internal combustion engine
JP2006187843A (en) * 2005-01-07 2006-07-20 Sugino Mach Ltd Burnishing tool and burnishing method using the same
JP2009299565A (en) * 2008-06-12 2009-12-24 Toyota Motor Corp Manufacturing method for cylinder block
JP2010149239A (en) * 2008-12-25 2010-07-08 Seibu Electric & Mach Co Ltd Eccentric hole drilling method by machine tool
JP2011110622A (en) * 2009-11-24 2011-06-09 Toyo Seiki Kogyo Co Ltd Production line and machine tool
JP2014138962A (en) * 2013-01-21 2014-07-31 Nexsys Corp Grinding device and method

Also Published As

Publication number Publication date
JP6877800B1 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
US6711829B2 (en) Method for measuring work portion and machining method
US8360819B2 (en) Method for grinding a machine part, and grinding machine for carrying out said method
JP5155847B2 (en) Eccentric hole machining method by machine tool
CN107253102A (en) A kind of precision grinding machining method of special-shaped thin wall labyrinth workpiece
US9316476B2 (en) Profile measuring instrument, adjusting method for profile measuring instrument, and profile measuring method
CN113523968B (en) Laser and ultrasonic auxiliary grinding manufacturing equipment and method for quartz hemispherical harmonic oscillator
JP6955296B2 (en) Cutting equipment and contact position identification program
JP2001105289A (en) Method and device for controlling constant size working of machine tool
JP2011206862A (en) Method of positioning rotary tool in multishaft processing machine
JP6877800B1 (en) Finishing method for round holes in the work
JP2006320970A (en) Machining device
JP5402546B2 (en) Cylindrical workpiece grinding method
JP3819141B2 (en) Polishing equipment
JP4029602B2 (en) High-precision profile grinding method
JP5440159B2 (en) Workpiece grinding method and grinding machine
CN111571132B (en) Thin-wall bearing outer ring turning method and outer ring end surface groove symmetry measuring method of thin-wall bearing
JP2021091091A (en) Cutting device
JP2003094288A (en) Machining method and machining device
JPH1071514A (en) Cylinder head machining method
JP2009095973A (en) Grinding wheel molding device and method
JPH11267969A (en) Centering method and jig of spherical grinding wheel in grinding machine
JPS63237866A (en) Highly precision grinding machine
JPS61241055A (en) Precision grinding device
JP3994393B2 (en) Grinding method by computer numerical control grinder
JPH0780760A (en) Grinding method in inner surface grinder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201030

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201030

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210421

R150 Certificate of patent or registration of utility model

Ref document number: 6877800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250