JP2022069994A - Magnetic particle, immunity inspection particle, and inspection reagent - Google Patents

Magnetic particle, immunity inspection particle, and inspection reagent Download PDF

Info

Publication number
JP2022069994A
JP2022069994A JP2020178983A JP2020178983A JP2022069994A JP 2022069994 A JP2022069994 A JP 2022069994A JP 2020178983 A JP2020178983 A JP 2020178983A JP 2020178983 A JP2020178983 A JP 2020178983A JP 2022069994 A JP2022069994 A JP 2022069994A
Authority
JP
Japan
Prior art keywords
particles
magnetic
core
magnetic particle
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020178983A
Other languages
Japanese (ja)
Inventor
大助 笹栗
Daisuke Sasakuri
法重 掛川
Norishige Kakegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020178983A priority Critical patent/JP2022069994A/en
Publication of JP2022069994A publication Critical patent/JP2022069994A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a magnetic particle that has a high detection speed and a great change in the quantity of emission light because of presence or absence of a substance to be measured in detection of the object to be measured.SOLUTION: In a magnetic particle having a core particle containing silica and a shell layer on the surface of the core particle, the shell layer has a magnetic substance particle, and a resin layer containing a functional group capable of coupling ligand in order closer to the core particle, the volume mean particle diameter of the magnetic particle is equal to or more than 0.6 μm and is equal to or less than 3.0 μm, and specific gravity of the magnetic particle is equal to or more than 1.8 g/cm3 and is equal to or less than 5.0 g/cm3.SELECTED DRAWING: Figure 1

Description

本発明は、磁性粒子、免疫検査用の粒子、検査試薬に関する。 The present invention relates to magnetic particles, particles for immunoassay, and test reagents.

試料に含まれる抗原や抗体などの測定対象物質を検出する検査システムにおいて、磁性粒子が使用されることがある。具体的には、試料から測定対象物質(例えば、抗原)を検出するために、抗原と特異的に結合する抗体を結合した磁性粒子、及び抗原と特異的に結合する抗体を固定したセンサーを用いる検査システムがある。試料に抗原が存在すると、抗原抗体反応により、抗体を固定したセンサーに、抗原を介して磁性粒子が結合する。このような検査システムとして、光導波路型の検査システムが挙げられる。光導波路型の検査システムでは、センサーに入射した光に対する出射光量の変化により抗原の有無を判定するものである。このような抗原の検出方法においては、検出までの時間をより短時間にすること、すなわち検出速度が速いことが求められる。 Magnetic particles may be used in inspection systems that detect substances to be measured such as antigens and antibodies contained in a sample. Specifically, in order to detect a substance to be measured (for example, an antigen) from a sample, a magnetic particle having an antibody specifically bound to the antigen and a sensor having an antibody specifically bound to the antigen fixed are used. There is an inspection system. When an antigen is present in the sample, the magnetic particles bind to the sensor on which the antibody is immobilized via the antigen by the antigen-antibody reaction. Examples of such an inspection system include an optical waveguide type inspection system. In the optical waveguide type inspection system, the presence or absence of an antigen is determined by the change in the amount of emitted light with respect to the light incident on the sensor. In such an antigen detection method, it is required that the time until detection is shorter, that is, the detection speed is high.

一方、試料に含まれる測定対象物質の検出に用いられる従来の磁性粒子として以下のものが知られている。特許文献1では、ポリマー粒子の表面に磁性体微粒子を吸着させた診断薬用粒子が開示されている(特許文献1)。 On the other hand, the following are known as conventional magnetic particles used for detecting a substance to be measured contained in a sample. Patent Document 1 discloses diagnostic medicinal particles in which magnetic fine particles are adsorbed on the surface of polymer particles (Patent Document 1).

特許文献2では、無機酸化物又はポリマーを含有するコア粒子の表面に、マグネタイト粒子を含有するシェル層を有する磁性体内包粒子が開示されている(特許文献2)。特許文献3では、酸化鉄などの超常磁性金属酸化物粒子を含有するシリカ粒子の表面上にシリカ層が形成された磁性シリカ粒子が開示されている。 Patent Document 2 discloses magnetic inclusion particles having a shell layer containing magnetite particles on the surface of core particles containing an inorganic oxide or a polymer (Patent Document 2). Patent Document 3 discloses magnetic silica particles in which a silica layer is formed on the surface of silica particles containing superparamagnetic metal oxide particles such as iron oxide.

特開2004-205481号公報Japanese Unexamined Patent Publication No. 2004-205481 特開2010-132513号公報Japanese Unexamined Patent Publication No. 2010-132513 特開2016-105066号公報Japanese Unexamined Patent Publication No. 2016-105066

本発明者らが検討したところ、上記従来の磁性粒子は、光導波路型の検査システムにおいて、検出速度が遅いという課題や測定対象物質の有無によるセンサーからの出射光量の変化が小さい、という課題があることを見出した。 As examined by the present inventors, the above-mentioned conventional magnetic particles have a problem that the detection speed is slow and a problem that the change in the amount of light emitted from the sensor is small depending on the presence or absence of the substance to be measured in the optical waveguide type inspection system. I found that there is.

したがって、本発明の目的は、測定対象物質を検出する際に、検出速度が速く、測定対象物質の有無によるセンサーからの出射光量の変化が大きい磁性粒子を提供することである。 Therefore, an object of the present invention is to provide magnetic particles having a high detection speed and a large change in the amount of light emitted from the sensor depending on the presence or absence of the substance to be measured when the substance to be measured is detected.

本発明に係る磁性粒子は、シリカを含むコア粒子と、前記コア粒子の表面のシェル層とを有する磁性粒子であって、前記シェル層は、前記コア粒子に近い方から順に、磁性体粒子を含む磁性体層と、リガンドを結合できる官能基を含む樹脂層と、を有し、前記磁性粒子の体積平均粒径が0.6μm以上3.0μm以下であり、前記磁性粒子の比重が1.8g/cm以上5.0g/cm以下である。 The magnetic particles according to the present invention are magnetic particles having core particles containing silica and a shell layer on the surface of the core particles, and the shell layer contains magnetic particles in order from the one closest to the core particles. It has a magnetic material layer containing the magnetic material layer and a resin layer containing a functional group capable of binding a ligand, and the volume average particle size of the magnetic particles is 0.6 μm or more and 3.0 μm or less, and the specific gravity of the magnetic particles is 1. 8 g / cm 3 or more and 5.0 g / cm 3 or less.

本発明によれば、測定対象物質を検出する際に、検出速度が速く、測定対象物質の有無による出射光量の変化が大きい磁性粒子を提供することができる。 According to the present invention, it is possible to provide magnetic particles having a high detection speed and a large change in the amount of emitted light depending on the presence or absence of the substance to be measured when the substance to be measured is detected.

本発明の実施形態に係る磁性粒子の構成を示す模式図である。It is a schematic diagram which shows the structure of the magnetic particle which concerns on embodiment of this invention. 本発明の実施例、及び比較例における磁性粒子とその分析結果を示す表である。It is a table which shows the magnetic particle and the analysis result in Example and comparative example of this invention.

以下、本発明の実施の形態について、詳細に述べる。以下で示す各種の物性値は、特に断りのない限り、25℃における値である。 Hereinafter, embodiments of the present invention will be described in detail. The various physical property values shown below are values at 25 ° C. unless otherwise specified.

また、本実施形態における磁性粒子が試料から検出する測定対象物質としては、後述するリガンドが挙げられるが、以下ではリガンドとして、抗原を例に挙げて説明する。 Further, examples of the substance to be measured to be detected by the magnetic particles in the present embodiment from the sample include a ligand described later, but below, an antigen will be described as an example as the ligand.

(本実施形態に係る磁性粒子の構成の概要)
本実施形態に係る磁性粒子100は、シリカを含むコア粒子101と、コア粒子101の表面のシェル層102とを有し、シェル層102は、コア粒子101に近い方から順に、磁性体粒子を含む磁性体層103と、樹脂層104と、を有する。樹脂層104はリガンドを結合できる官能基(不図示)を含む。そして、磁性粒子100の体積平均粒径が0.6μm以上3.0μm以下であり、磁性粒子100の比重が1.8g/cm以上5.0g/cm以下である。このような構成により、光導波路型の検査システムにおいて、抗原等の測定対象物質を検出する際に、検出速度が速い。また、測定対象物質の有無による出射光量の変化が大きいため、感度が高い。以下、その理由について説明する。
(Outline of composition of magnetic particles according to this embodiment)
The magnetic particles 100 according to the present embodiment include core particles 101 containing silica and a shell layer 102 on the surface of the core particles 101, and the shell layer 102 contains magnetic particles in order from the one closest to the core particles 101. It has a magnetic material layer 103 including a magnetic material layer 103 and a resin layer 104. The resin layer 104 contains a functional group (not shown) capable of binding a ligand. The volume average particle diameter of the magnetic particles 100 is 0.6 μm or more and 3.0 μm or less, and the specific gravity of the magnetic particles 100 is 1.8 g / cm 3 or more and 5.0 g / cm 3 or less. With such a configuration, in the optical waveguide type inspection system, when detecting a substance to be measured such as an antigen, the detection speed is high. In addition, the sensitivity is high because the amount of emitted light changes greatly depending on the presence or absence of the substance to be measured. The reason will be described below.

(光導波路型の検査システムにおいて、磁性粒子を用いて抗原を検出する方法)
光導波路型の検査システムでは、検体等の試料から抗原を検出する際に、抗原と特異的に結合する抗体を結合した磁性粒子と、抗原と特異的に結合する抗体を固定したセンサーを用いる。センサーを重力方向の下側に配置し、センサーの近傍に磁力を発生させる電磁石などを配置する。電磁石を作動させると、重力と磁力の作用で、センサー近傍に磁性粒子を引き寄せることができる。そして、抗原抗体反応を利用することで、センサー近傍に引き寄せられた磁性粒子は、抗原を介して、センサー面に設けられた抗体と結合する。さらに、重力方向の上側に電磁石を配置することで、センサー面に設けられた抗体と結合していない磁性粒子を重力と反対方向に引き上げることができる。これにより、センサーに結合する磁性粒子と結合していない磁性粒子とを分離することができる。
(Method of detecting antigen using magnetic particles in an optical waveguide type inspection system)
In the optical waveguide type inspection system, when an antigen is detected from a sample such as a sample, a magnetic particle having an antibody that specifically binds to the antigen and a sensor having an antibody that specifically binds to the antigen are fixed. The sensor is placed below the direction of gravity, and an electromagnet that generates magnetic force is placed near the sensor. When the electromagnet is activated, magnetic particles can be attracted to the vicinity of the sensor by the action of gravity and magnetic force. Then, by utilizing the antigen-antibody reaction, the magnetic particles attracted to the vicinity of the sensor bind to the antibody provided on the sensor surface via the antigen. Further, by arranging the electromagnet on the upper side in the direction of gravity, the magnetic particles not bound to the antibody provided on the sensor surface can be pulled up in the direction opposite to the direction of gravity. This makes it possible to separate the magnetic particles that are bound to the sensor from the magnetic particles that are not bound to the sensor.

光源からセンサーに光を入射させたときの、出射光量の変化を測定することで、抗原抗体反応を介してセンサー面に結合した磁性粒子の有無、濃度、量などを測定することができる。すなわち、センサー面に結合した磁性粒子が存在する(多い)場合は、存在しない(少ない)場合に比べて、出射光量が小さい。したがって、磁性粒子がセンサーに結合する前に検出される出射光量からの減衰量に基づいて、試料中の抗原などの測定対象物質の有無、濃度、量などを測定することができる。 By measuring the change in the amount of emitted light when light is incident on the sensor from the light source, it is possible to measure the presence / absence, concentration, amount, etc. of magnetic particles bound to the sensor surface via the antigen-antibody reaction. That is, when the magnetic particles bonded to the sensor surface are present (more), the amount of emitted light is smaller than when they are not present (less). Therefore, the presence / absence, concentration, amount, and the like of a substance to be measured such as an antigen in the sample can be measured based on the amount of attenuation from the amount of emitted light detected before the magnetic particles are bound to the sensor.

このような方法で測定対象物質を検出する際、磁性粒子への測定対象物質以外のタンパク質の非特異的な吸着を低減させることや、センサー面に抗原がない場合での吸着を低減させることで、検査エラーを減らすことが重要である。そのために、磁性粒子の表面に樹脂層が形成される。樹脂層は親水的な特性を持つものが好ましく、また、樹脂層には、抗体等のリガンドを結合できる官能基が含まれる。 When detecting a substance to be measured by such a method, by reducing non-specific adsorption of proteins other than the substance to be measured on magnetic particles, or by reducing adsorption when there is no antigen on the sensor surface. , It is important to reduce inspection errors. Therefore, a resin layer is formed on the surface of the magnetic particles. The resin layer preferably has hydrophilic properties, and the resin layer contains a functional group capable of binding a ligand such as an antibody.

(光導波路型の検査システムにおいて、磁性粒子に求められる性能)
従来の磁性粒子は、磁性粒子にかかる重力と磁力が十分ではないため、センサー近傍に磁性粒子を引き寄せるために時間を要してしまい、その結果として検出速度が遅くなっていた。
(Performance required for magnetic particles in an optical waveguide type inspection system)
In the conventional magnetic particles, since the gravity and the magnetic force applied to the magnetic particles are not sufficient, it takes time to attract the magnetic particles to the vicinity of the sensor, and as a result, the detection speed is slowed down.

上記特許文献1に記載の磁性粒子は、ポリマー粒子の表面に磁性体微粒子を吸着させた構成である。本発明者らが検討したところ、特許文献1に開示されている磁性粒子の比重は、1.2~1.3g/cm程度である。そのため磁性粒子を重力方向に移動させる推進力が弱く、センサー近傍に磁性粒子を引き寄せるために時間を要してしまい、検出速度が十分に得られない。 The magnetic particles described in Patent Document 1 have a structure in which magnetic fine particles are adsorbed on the surface of polymer particles. As a result of examination by the present inventors, the specific gravity of the magnetic particles disclosed in Patent Document 1 is about 1.2 to 1.3 g / cm 3 . Therefore, the propulsive force for moving the magnetic particles in the direction of gravity is weak, and it takes time to attract the magnetic particles to the vicinity of the sensor, so that the detection speed cannot be sufficiently obtained.

上記特許文献2に記載の磁性粒子は、無機酸化物又はポリマーを含有するコア粒子の表面に、マグネタイト粒子を含有するシェル層を有する構成である。しかし、特許文献2の磁性粒子の体積平均粒径は10~500nmであり、小さい。そのため、重力と反対方向に磁場を印加した際に、抗原抗体反応を介さずにセンサー面付近に存在する磁性粒子が移動せず残存してしまい、正確な測定が難しい。 The magnetic particles described in Patent Document 2 have a structure in which a shell layer containing magnetite particles is provided on the surface of core particles containing an inorganic oxide or a polymer. However, the volume average particle size of the magnetic particles of Patent Document 2 is 10 to 500 nm, which is small. Therefore, when a magnetic field is applied in the direction opposite to gravity, the magnetic particles existing near the sensor surface do not move and remain without going through the antigen-antibody reaction, which makes accurate measurement difficult.

特許文献3に記載の磁性粒子は、酸化鉄などの超常磁性金属酸化物粒子を含有するシリカ粒子の表面上にシリカ層が形成された構成である。したがって、磁性体である超常磁性金属酸化物粒子は、シリカ粒子中に分散して存在する。本発明者らが検討した結果、光導波路型の検査システムで特許文献3の磁性粒子を用いる場合に課題があることを見出した。すなわち、光導波路型の検査システムでは、センサー面に結合した磁性粒子により出射光量が変化するが、特にセンサー界面から100~150nm程度の距離にあるごく近い屈折率の高い磁性体の存在が出射光量の変化に大きく影響する。したがって、シリカ粒子中に磁性体が分散された構造では、センサー面近くの磁性体の密度が低くなる。その結果としてコア粒子の表面のシェル層に磁性体が存在する本実施形態の構造と比較して、磁性粒子1個あたりの光量変化が小さくなり、測定の感度が低くなる。また、磁性体を分散させる構成であるため、個々の磁性粒子が含有する磁性体の量がばらつきやすい。本発明者らは、光導波路型の検査システムにおいてセンサーからの出射光量の減衰量も粒子毎で大きくばらつき、検査制度が低下する、という課題があることも見出した。 The magnetic particles described in Patent Document 3 have a configuration in which a silica layer is formed on the surface of silica particles containing superparamagnetic metal oxide particles such as iron oxide. Therefore, the superparamagnetic metal oxide particles, which are magnetic materials, are dispersed in the silica particles. As a result of the study by the present inventors, it has been found that there is a problem when the magnetic particles of Patent Document 3 are used in the optical waveguide type inspection system. That is, in the optical waveguide type inspection system, the amount of emitted light changes depending on the magnetic particles bonded to the sensor surface, but the amount of emitted light is particularly due to the presence of a magnetic material having a very close high refractive index at a distance of about 100 to 150 nm from the sensor interface. It greatly affects the change of. Therefore, in the structure in which the magnetic material is dispersed in the silica particles, the density of the magnetic material near the sensor surface becomes low. As a result, the change in the amount of light per magnetic particle is small and the measurement sensitivity is low as compared with the structure of the present embodiment in which the magnetic material is present in the shell layer on the surface of the core particles. Further, since the structure is such that the magnetic material is dispersed, the amount of the magnetic material contained in each magnetic particle tends to vary. The present inventors have also found that in an optical waveguide type inspection system, the amount of attenuation of the amount of light emitted from the sensor also varies greatly from particle to particle, and there is a problem that the inspection system is lowered.

(本実施形態に係る磁性粒子の構成の詳細)
上記従来の磁性粒子の課題を踏まえ、本発明者らは、抗原抗体反応をさせる際には磁性粒子を重力方向に、抗原抗体反応をさせた後には、重力と反対方向に素早く移動させる磁性粒子の設計を検討した。その結果、本発明者らは磁性粒子の比重と、粒径(体積平均粒径)を適切な範囲にすることが重要であると考えた。
(Details of the composition of the magnetic particles according to this embodiment)
Based on the above-mentioned problems of the conventional magnetic particles, the present inventors quickly move the magnetic particles in the direction of gravity when the antigen-antibody reaction is carried out, and in the direction opposite to the gravity after the antigen-antibody reaction. I considered the design of. As a result, the present inventors considered that it is important to keep the specific gravity of the magnetic particles and the particle size (volume average particle size) in an appropriate range.

粒径は抗原の検出感度に影響するパラメータで、粒形が小さい粒子を用いると粒子の比表面積を大きくすることができるため、抗体を多く結合でき、結果的に抗原を検出する確率が上がる。しかし、粒径が小さすぎる場合、粒子の比表面積を大きくできるが、センサーから遠ざかる方向へ、すなわち重力と反対方向の移動が困難になり、結果として正確な抗原検出ができなくなることが分かった。 The particle size is a parameter that affects the detection sensitivity of the antigen, and if particles with a small grain shape are used, the specific surface area of the particles can be increased, so that a large amount of antibody can be bound, and as a result, the probability of detecting the antigen increases. However, it has been found that if the particle size is too small, the specific surface area of the particles can be increased, but it becomes difficult to move in the direction away from the sensor, that is, in the direction opposite to gravity, and as a result, accurate antigen detection cannot be performed.

また、同じ粒径であれば、比重が大きな粒子の方が重力方向の移動速度は速くできるため、検出速度を速くすることができる。一方、比重が大きすぎると、重力と反対方向に磁性粒子を引き上げる際に時間がかかり、検出速度が遅くなる。 Further, if the particle size is the same, the particles having a larger specific gravity can move faster in the direction of gravity, so that the detection speed can be increased. On the other hand, if the specific gravity is too large, it takes time to pull up the magnetic particles in the direction opposite to gravity, and the detection speed becomes slow.

そこで、本発明者らは、光導波路型の検査システムで用いられる磁性粒子以下の3つの要件を備えることが重要であることを見出した。 Therefore, the present inventors have found that it is important to have the following three requirements for magnetic particles used in an optical waveguide type inspection system.

1つ目の要件は、コア粒子とコア粒子の表面のシェル層とを有する磁性粒子であることである。2つ目の要件は、磁性粒子の体積平均粒径が0.6μm以上3.0μm以下であることである。3つ目の要件は磁性粒子の比重が1.8g/cm以上5.0g/cm以下であることである。 The first requirement is that the magnetic particles have a core particle and a shell layer on the surface of the core particle. The second requirement is that the volume average particle size of the magnetic particles is 0.6 μm or more and 3.0 μm or less. The third requirement is that the specific gravity of the magnetic particles is 1.8 g / cm 3 or more and 5.0 g / cm 3 or less.

2つ目、3つ目の要件を実現する設計として、コア粒子がシリカを有し、シェル層がコア粒子に近い方から順に、磁性体粒子を含む磁性体層と樹脂層とを有する構成が適していることを見出した。コア粒子としてシリカを用いることで従来のような樹脂のコア粒子に比べて比重を大きくでき、かつ大きすぎない構成にできる。シェル層として磁性体層と樹脂層とを含むことで、磁性粒子全体の粒径を適切な範囲にすることができる。また、樹脂層がリガンドを結合できる官能基を有することで、磁性粒子の表面にリガンドを結合できる。 As a design that realizes the second and third requirements, a configuration in which the core particles have silica and the shell layer has a magnetic material layer containing magnetic material particles and a resin layer in order from the one closest to the core particles. I found it suitable. By using silica as the core particles, the specific gravity can be increased as compared with the conventional resin core particles, and the configuration can be made not too large. By including the magnetic material layer and the resin layer as the shell layer, the particle size of the entire magnetic particles can be set in an appropriate range. Further, since the resin layer has a functional group capable of binding the ligand, the ligand can be bound to the surface of the magnetic particles.

よって、上記の構成により、光導波路型の検査システムにおいて、抗原等の測定対象物質を検出する際に、検出速度が速い。また、測定対象物質の有無による出射光量の変化が大きいため、測定の感度が高くなる。 Therefore, with the above configuration, the detection speed is high when detecting a substance to be measured such as an antigen in an optical waveguide type inspection system. In addition, since the amount of emitted light changes greatly depending on the presence or absence of the substance to be measured, the measurement sensitivity becomes high.

以下では、本実施形態に係る磁性粒子の各構成要素について詳細を説明する。 Hereinafter, each component of the magnetic particles according to the present embodiment will be described in detail.

<コア粒子、磁性体粒子、磁性粒子>
本実施形態において、磁性体層の領域、すなわちコア粒子とシェル層の境界は、透過型電子顕微鏡(TEM)で観察することができる。なぜなら、TEMは、比重の異なる成分を、コントラストを持って撮影することができるため、磁性粒子中の磁性体層の領域を同定することが可能だからである。
<Core particles, magnetic particles, magnetic particles>
In this embodiment, the region of the magnetic layer, that is, the boundary between the core particles and the shell layer can be observed with a transmission electron microscope (TEM). This is because the TEM can photograph components having different specific densities with contrast, so that it is possible to identify the region of the magnetic material layer in the magnetic particles.

本実施形態における磁性粒子の平均粒径は、乾燥粒子の場合はTEM画像で観察される20個の粒子の長径の平均値から求めることができ、溶媒中の平均粒子サイズは動的光散乱法(DLS)から求めることができる。コア粒子がシリカ等の無機粒子の場合は、乾燥粒子と溶媒中の粒子とで大きく変化しないため、以下の計算は、乾燥粒子を前提に見積もりを行った。したがって、本実施形態における磁性粒子の平均粒径は、体積平均粒径である。 In the case of dry particles, the average particle size of the magnetic particles in this embodiment can be obtained from the average value of the major axis of the 20 particles observed in the TEM image, and the average particle size in the solvent is a dynamic light scattering method. It can be obtained from (DLS). When the core particles are inorganic particles such as silica, there is no significant change between the dried particles and the particles in the solvent. Therefore, the following calculation was made on the premise of the dried particles. Therefore, the average particle size of the magnetic particles in this embodiment is the volume average particle size.

磁性粒子の比重は、磁性粒子の体積平均粒径、コア粒子の平均粒径、材料、磁性体層の組成、磁性体層の平均厚さから算出することができる。具体的には、磁性粒子の比重Dpは、磁性粒子の体積Vp、コア粒子の比重Dc、コア粒子の体積Vc、磁性体層の比重Dm、磁性体層の体積Vmから式(1)で示される。 The specific gravity of the magnetic particles can be calculated from the volume average particle size of the magnetic particles, the average particle size of the core particles, the material, the composition of the magnetic material layer, and the average thickness of the magnetic material layer. Specifically, the specific gravity Dp of the magnetic particles is represented by the formula (1) from the volume Vp of the magnetic particles, the specific gravity Dc of the core particles, the volume Vc of the core particles, the specific gravity Dm of the magnetic material layer, and the volume Vm of the magnetic material layer. Is done.

Figure 2022069994000002
磁性体層の体積Vmは、体積平均粒径Rp、コア粒子の体積平均粒径Rcから式(2)で示される。
Figure 2022069994000002
The volume Vm of the magnetic material layer is represented by the formula (2) from the volume average particle diameter Rp and the volume average particle diameter Rc of the core particles.

Figure 2022069994000003
シェル層は、磁性体粒子を含む磁性体層に樹脂層が積層したもので、両者の比率はX線光電子分光分析(XPS)や熱受領分析(TG)から求めることができる。
Figure 2022069994000003
The shell layer is formed by laminating a resin layer on a magnetic material layer containing magnetic material particles, and the ratio between the two can be obtained from X-ray photoelectron spectroscopy (XPS) or heat reception analysis (TG).

本実施形態に係る磁性粒子の体積平均粒径は0.6μm以上3.0μm以下である。体積平均粒径が0.6μmより小さくなると、光導波路型の検査システムのように磁場により磁性粒子を移動させるような場合において、重力と反対方向に移動させることが困難になり正しい測定が難しい。また、体積平均粒径が3.0μmを超えると、磁性粒子の単位質量あたりの表面積が小さくなるため、結合できる抗体の量が限られ、抗原抗体反応が可能な領域が小さくなり、抗原抗体反応の確率が低下してしまう。抗原の検出感度と検査時間を考えた場合、本実施形態に係る磁性粒子の体積平均粒径は、0.7μm以上であることが好ましく、2.7μm以下であることが好ましく、2.0μm以下であることがより好ましい。 The volume average particle size of the magnetic particles according to this embodiment is 0.6 μm or more and 3.0 μm or less. When the volume average particle size is smaller than 0.6 μm, it becomes difficult to move the magnetic particles in the direction opposite to the gravity in the case where the magnetic particles are moved by a magnetic field as in an optical waveguide type inspection system, and correct measurement is difficult. Further, when the volume average particle size exceeds 3.0 μm, the surface area per unit mass of the magnetic particles becomes small, so that the amount of antibody that can be bound is limited, the region where the antigen-antibody reaction is possible becomes small, and the antigen-antibody reaction becomes small. The probability of Considering the detection sensitivity of the antigen and the inspection time, the volume average particle size of the magnetic particles according to this embodiment is preferably 0.7 μm or more, preferably 2.7 μm or less, and 2.0 μm or less. Is more preferable.

また、本実施形態に係る磁性粒子の比重は、1.8g/cm以上5.0g/cm以下である。また、本実施形態に係る磁性粒子の比重は、3.5g/cm以下であることが好ましく、3.0g/cm以下であることが好ましく、2.5g/cm以下であることがさらに好ましく、2.1g/cm以下であることが特に好ましい。本実施形態における磁性粒子の比重は、上記式(1)より算出することができる。 The specific gravity of the magnetic particles according to this embodiment is 1.8 g / cm 3 or more and 5.0 g / cm 3 or less. Further, the specific gravity of the magnetic particles according to the present embodiment is preferably 3.5 g / cm 3 or less, preferably 3.0 g / cm 3 or less, and 2.5 g / cm 3 or less. It is more preferably 2.1 g / cm 3 or less, and particularly preferably 2.1 g / cm 3. The specific gravity of the magnetic particles in this embodiment can be calculated from the above formula (1).

(磁性体粒子)
磁性体とは、磁場の印加により磁化される材料のことである。磁性体粒子は、金属、及び金属酸化物からなる群より選択される少なくとも一種を含むことが好ましい。金属としては、鉄、マンガン、ニッケル、コバルト、クロムが挙げられる。金属酸化物としては酸化鉄、例えば、マグネタイト(Fe)、γ-酸化鉄(III)(γ-Fe)、フェライトからなる群より選択される少なくとも一種が挙げられる。
(Magnetic particles)
A magnetic material is a material that is magnetized by the application of a magnetic field. The magnetic particles preferably contain at least one selected from the group consisting of metals and metal oxides. Examples of the metal include iron, manganese, nickel, cobalt and chromium. Examples of the metal oxide include at least one selected from the group consisting of iron oxide, for example, magnetite (Fe 3 O 4 ), γ-iron oxide (III) (γ-Fe 2 O 3 ), and ferrite.

磁性体粒子の平均粒形は、0nmより大きく20nm以下であることが好ましい。特に、平均粒径が0nmより大きく20nm以下であり、マグネタイトを含む磁性体粒子は飽和磁化が大きく、かつ、超常磁性体であるため残留磁化が小さく好ましい。例えば、磁性体粒子の飽和磁化を、18emu/g以上とすることができる。 The average grain size of the magnetic particles is preferably larger than 0 nm and 20 nm or less. In particular, magnetic particles containing magnetite having an average particle size of more than 0 nm and 20 nm or less are preferable because they have a large saturation magnetization and are superparamagnetic materials and therefore have a small residual magnetization. For example, the saturation magnetization of the magnetic particles can be 18 emu / g or more.

ここで、磁化とは、磁性体に外部磁場をかける際に、その磁性体が分極して磁気モーメントを持つ現象のことであり、飽和磁化とは、磁場の強さとともに増大する磁化が飽和する値のことである。また、残留磁化とは、磁性体に外部磁場をかけた後に磁場ゼロにした場合に、磁性体に残留する磁化のことである。 Here, the magnetization is a phenomenon in which the magnetic material is polarized and has a magnetic moment when an external magnetic field is applied to the magnetic material, and the saturation magnetization is that the magnetization that increases with the strength of the magnetic field is saturated. It is a value. Further, the residual magnetization is the magnetization remaining in the magnetic material when the magnetic field is set to zero after applying an external magnetic field to the magnetic material.

(磁性粒子の移動速度の計算)
光導波路型の検査システムのように磁性粒子に磁場を印加し移動させて抗原を検出する場合、その検出速度を向上させるためには、磁性粒子の沈降速度、つまり重力方向への移動速度を速くすることが有効である。
(Calculation of moving speed of magnetic particles)
When a magnetic field is applied to a magnetic particle to move it to detect an antigen as in an optical waveguide type inspection system, in order to improve the detection speed, the settling speed of the magnetic particle, that is, the moving speed in the direction of gravity is increased. It is effective to do.

磁性粒子に作用する力は、重力方向に磁場を印加した場合、磁場をOFFにした場合、重力と反対方向に磁場を印加した場合の三つのケースがあり、それぞれ、運動方程式を示すと式(3)(4)(5)となる。 There are three cases of the force acting on the magnetic particles: when a magnetic field is applied in the direction of gravity, when the magnetic field is turned off, and when a magnetic field is applied in the direction opposite to gravity. 3) (4) (5).

(重力方向に磁場を印加した場合)

Figure 2022069994000004
(When a magnetic field is applied in the direction of gravity)
Figure 2022069994000004

(磁場をOFFにした場合)

Figure 2022069994000005
(When the magnetic field is turned off)
Figure 2022069994000005

(重力方向と反対に磁場を印加した場合)

Figure 2022069994000006
ここで、mは磁性粒子の重量(g)、fは磁性粒子に作用する浮力(N)、bは速度v(cm/s)で移動する磁性粒子に作用する抵抗力(N)、Fmは磁場を印加した際の磁力(N)である。浮力fと抵抗力bは、さらに式(6)(7)(8)のようにあらわされる。
f=3×π×η×Rp×v・・・(6)
b=Vp×Df×g・・・(7)
m=Vp×Dp・・・(8) (When a magnetic field is applied in the direction opposite to the direction of gravity)
Figure 2022069994000006
Here, m is the weight (g) of the magnetic particles, f is the buoyancy (N) acting on the magnetic particles, b is the resistance force (N) acting on the magnetic particles moving at a speed v (cm / s), and Fm is. It is a magnetic force (N) when a magnetic field is applied. The buoyancy f and the resistance force b are further expressed by the equations (6), (7) and (8).
f = 3 × π × η × Rp × v ... (6)
b = Vp × Df × g ... (7)
m = Vp × Dp ... (8)

ここで、vは磁性粒子の移動速度(cm/s)、gは重力加速度(980.7cm/s)、Dpは磁性粒子の比重(g/cm)、Vpは磁性粒子の体積(cm)、Dfは磁性粒子が分散している分散媒の密度(g/cm)を表す。また、Rpは平均粒径(cm)、ηは前記分散媒の粘度(Pa・s)を表す。ストークスの式より、磁性粒子の移動速度vは、磁性粒子の体積平均粒形の2乗に比例して大きくなる。平均粒径が同じであれば、比重が大きい粒子の方が移動速度は速い。また、磁力Fm(N)は、磁場と磁化の積に比例し、式(9)であらわされる。ここで、qは磁性粒子1個あたりの磁化(emu/個)、Hは印加磁場(Oe)である。
Fm=q×H×10・・・(9)
Here, v is the moving speed of the magnetic particles (cm / s), g is the gravitational acceleration (980.7 cm / s 2 ), Dp is the specific gravity of the magnetic particles (g / cm 3 ), and Vp is the volume of the magnetic particles (cm). 3 ), Df represents the density (g / cm 3 ) of the dispersion medium in which the magnetic particles are dispersed. Further, Rp represents the average particle size (cm), and η represents the viscosity (Pa · s) of the dispersion medium. From Stokes' equation, the moving speed v of the magnetic particles increases in proportion to the square of the volume average grain shape of the magnetic particles. If the average particle size is the same, the particles with a larger specific gravity have a faster moving speed. Further, the magnetic force Fm (N) is proportional to the product of the magnetic field and the magnetization, and is expressed by the equation (9). Here, q is the magnetization per magnetic particle (emu / piece), and H is the applied magnetic field (Oe).
Fm = q × H × 10 5 ... (9)

以上の関係式から分散媒中の粒子の移動速度を算出すると、重力方向に磁場を印加した場合、磁場をOFFにした場合、重力と反対方向に磁場を印加した場合の三つのケースのそれぞれの移動速度は式(10)(11)(12)であらわされる。 When the moving speed of the particles in the dispersion medium is calculated from the above relational expression, each of the three cases when the magnetic field is applied in the direction of gravity, when the magnetic field is turned off, and when the magnetic field is applied in the direction opposite to gravity. The moving speed is expressed by the equations (10), (11) and (12).

Figure 2022069994000007
Figure 2022069994000008
Figure 2022069994000009
これらの計算式に合成した磁性粒子の物性パラメータを代入すると、磁性粒子の移動速度を算出することができる。
Figure 2022069994000007
Figure 2022069994000008
Figure 2022069994000009
By substituting the physical property parameters of the synthesized magnetic particles into these formulas, the moving speed of the magnetic particles can be calculated.

磁性粒子の移動速度を式(10)(11)(12)を用いて算出した。ここで、磁性体層の厚さは100nmとし、磁性体粒子(比重が5.2g/cm)が樹脂(比重1.1g/cm)の中に32%含有している構造を想定した。但し、磁性体層と樹脂層が積層された構成でも同様の算出結果が得られる。印加磁場は、下磁場も上磁場も200Oeとし、コア粒子を、シリカ粒子(比重2.0g/cm)にした場合と、ポリスチレン粒子(比重1.0g/cm)にした場合とで比較した。算出結果を表1に示す。 The moving speed of the magnetic particles was calculated using the equations (10), (11) and (12). Here, the thickness of the magnetic material layer is 100 nm, and it is assumed that the magnetic material particles (specific gravity: 5.2 g / cm 3 ) are contained in the resin (specific gravity 1.1 g / cm 3 ) at 32%. .. However, the same calculation result can be obtained even in a configuration in which a magnetic material layer and a resin layer are laminated. The applied magnetic field is 200 Oe for both the lower magnetic field and the upper magnetic field, and comparison is made between the case where the core particles are silica particles (specific gravity 2.0 g / cm 3 ) and the case where the core particles are polystyrene particles (specific gravity 1.0 g / cm 3 ). bottom. The calculation results are shown in Table 1.

Figure 2022069994000010
この結果から、磁性粒子の比重が大きいシリカ粒子は、比重の小さいポリスチレン粒子と比較して、重力方向への移動速度を速くすることができる。ただし、体積平均粒径が0.5μm以下のサイズになると、上磁場印加時に計算値がマイナスとなり、センサー面から粒子が移動できない結果となった。このことから、体積平均粒径は0.6μm以上であることが好ましいことがわかった。
Figure 2022069994000010
From this result, the silica particles having a large specific gravity of the magnetic particles can move faster in the direction of gravity than the polystyrene particles having a small specific gravity. However, when the volume average particle size is 0.5 μm or less, the calculated value becomes negative when the upper magnetic field is applied, and the result is that the particles cannot move from the sensor surface. From this, it was found that the volume average particle size is preferably 0.6 μm or more.

(磁性体層)
本実施形態において磁性体層の形成方法について説明する。
(Magnetic material layer)
The method of forming the magnetic material layer will be described in this embodiment.

コア粒子の表面に磁性体粒子を被覆して磁性体層を形成するためには、先ずコア粒子と磁性体粒子とを混合し、コア粒子の表面に磁性体粒子を物理的に吸着させる方法がある。本実施形態で述べる物理的に吸着させる方法とは、化学反応を伴わない吸着法、結合法を指すものである。また、その他に溶液中でコア粒子に磁性体粒子を樹脂と同時に付着させる化学的被覆法もある。 In order to coat the surface of the core particles with the magnetic particles to form a magnetic layer, a method of first mixing the core particles and the magnetic particles and physically adsorbing the magnetic particles on the surface of the core particles is used. be. The method of physically adsorbing described in this embodiment refers to an adsorption method and a bonding method that do not involve a chemical reaction. In addition, there is also a chemical coating method in which magnetic particles are attached to core particles at the same time as resin in a solution.

物理的に付着させる方法でコア粒子の表面に磁性体粒子を固定するためには、物理的に強い力を外部から加えることにより複合化を実現させる方法も有効である。例えば乳鉢、自動乳鉢、ボールミル、ブレード加圧式粉体圧縮法、メカノフュージョン法のようなメカノケミカル効果を利用するもの、あるいはジェットミル、ハイブリダイザーなど高速気流中衝撃法を利用するものが挙げられる。効率よくかつ強固に複合化を実施するには物理的吸着力が強いことが望ましい。その方法としては攪拌翼付き容器中で攪拌翼の周速度が好ましくは15m/秒以上、より好ましくは30m/秒以上、さらに好ましくは40~150m/秒で実施することが挙げられる。また、コア粒子の表面は隙間が少なくなるように磁性体層で被覆されていることが好ましい。 In order to fix the magnetic particles on the surface of the core particles by the method of physically adhering them, it is also effective to realize the composite by applying a physically strong force from the outside. For example, those using a mechanochemical effect such as a mortar, an automatic mortar, a ball mill, a blade pressure type powder compression method, and a mechanofusion method, or a jet mill, a hybridizer, etc., which utilize a high-speed airflow impact method can be mentioned. It is desirable that the physical adsorption force is strong in order to carry out the compounding efficiently and firmly. As the method, the peripheral speed of the stirring blade is preferably 15 m / sec or more, more preferably 30 m / sec or more, and further preferably 40 to 150 m / sec in a container with a stirring blade. Further, it is preferable that the surface of the core particles is coated with a magnetic material layer so that the gaps are reduced.

(樹脂層)
上記磁性体層の上に設けられる樹脂層について説明する。以下、「(メタ)アクリレート」と記載した場合は、「アクリレート、又はメタクリレート」を表すものとする。
(Resin layer)
The resin layer provided on the magnetic material layer will be described. Hereinafter, when the term "(meth) acrylate" is used, it means "acrylate or methacrylate".

磁性体粒子の表層には、樹脂層が形成される。樹脂層は、抗体等のリガンドを結合することができる官能基を有する。抗体を結合できる官能基は、アミノ基、カルボキシ基、水酸基、メルカプト基、チオール基、グリシジル基、マレイミド基、スクシンイミジル基、及びグリシジルオキシ基で構成される群から選ばれる少なくとも一種を含むことが好ましい。 A resin layer is formed on the surface layer of the magnetic particles. The resin layer has a functional group capable of binding a ligand such as an antibody. The functional group to which the antibody can be bound preferably contains at least one selected from the group composed of an amino group, a carboxy group, a hydroxyl group, a mercapto group, a thiol group, a glycidyl group, a maleimide group, a succinimidyl group, and a glycidyloxy group. ..

樹脂層を形成する際は、(メタ)アクリル酸などのカルボキシ基を有するモノマー;(メタ)アクリルアミドなどのアミノ基を有するモノマー;グリシジル(メタ)アクリレートなどのエポキシ基を有するモノマー;N-スクシンイミジルアクリレートなどのスクシンイミジル基を有するモノマー;を用いることが好ましい。言い換えると、樹脂層は、ポリ(メタ)アクリル酸ポリマー、ポリ(メタ)アクリルアミドポリマー、ポリグリシジル(メタ)アクリレート、ポリN-スクシンイミジルアクリレートを含むことが好ましい。 When forming the resin layer, a monomer having a carboxy group such as (meth) acrylic acid; a monomer having an amino group such as (meth) acrylamide; a monomer having an epoxy group such as glycidyl (meth) acrylate; It is preferable to use a monomer having a succinimidyl group such as imidazole acrylate. In other words, the resin layer preferably contains a poly (meth) acrylic acid polymer, a poly (meth) acrylamide polymer, a polyglycidyl (meth) acrylate, and a poly N-succinimidyl acrylate.

また、上記モノマー以外に、グリセロール(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレートなどの親水性基を有する(メタ)アクリレート類;スチレン、p-クロロスチレン、α-メチルスチレンなどのスチレン類;なども用いることができる。磁性粒子への非特異的な吸着を抑制するために、親水性基を有する(メタ)アクリレート類を用いることが好ましい。 In addition to the above monomers, (meth) acrylates having hydrophilic groups such as glycerol (meth) acrylate, 2-hydroxyethyl (meth) acrylate, methoxyethyl (meth) acrylate, and polyethylene glycol mono (meth) acrylate; styrene. , P-chlorostyrene, α-methylstyrene and other styrenes; and the like can also be used. In order to suppress non-specific adsorption to magnetic particles, it is preferable to use (meth) acrylates having a hydrophilic group.

また、抗体を結合できる官能基は、樹脂の重合の後に付加することも可能である。例えば、(メタ)アクリル酸などのカルボキシル基を有するモノマーを重合して得られる樹脂に、メルカプトジオールを付加することでチオール基を導入できる。また、重合して得られる樹脂に、N-(2-ヒドロキシエチル)マレイミドを付加することでマレイミド基を導入することができる。 In addition, the functional group to which the antibody can be bound can be added after the polymerization of the resin. For example, a thiol group can be introduced by adding a mercaptodiol to a resin obtained by polymerizing a monomer having a carboxyl group such as (meth) acrylic acid. Further, a maleimide group can be introduced by adding N- (2-hydroxyethyl) maleimide to the resin obtained by polymerization.

<免疫検査用の粒子>
本発明の免疫検査用の粒子は、上述の構成の磁性粒子と、上記リガンドを結合できる官能基に結合したリガンドとを有する。
<Particles for immunoassay>
The particles for immunoassay of the present invention include magnetic particles having the above-mentioned constitution and a ligand bound to a functional group capable of binding the ligand.

<リガンド>
上記の説明では、リガンドの例として抗体、測定対象物質として抗原を例に説明したが、これら以外のリガンドを用いることができる。
<Ligand>
In the above description, an antibody has been described as an example of the ligand, and an antigen has been described as an example of the substance to be measured, but ligands other than these can be used.

ここで、リガンドとは、特定の標的物質が有する受容体に特異的に結合する化合物のことである。リガンドとして例えば、抗体、抗原、天然由来核酸、人工核酸、アプタマー、ペプチドアプタマー、オリゴペプチド、酵素又は補酵素などが挙げられる。リガンドが測定対象物質と結合する部位は決まっており、選択的または特異的に高い親和性を有する。リガンドと測定対象物質として例えば、抗原と抗体、酵素タンパク質とその基質、ホルモンや神経伝達物質などのシグナル物質とその受容体、核酸などが例示される。リガンドと測定対象物質は逆にしてもよい。すなわち抗体をリガンド、抗原を測定対象物質としてもよいし、抗原をリガンド、抗体を測定対象物質としてもよい。なお、本実施形態のリガンドはこれらに限定されない。 Here, the ligand is a compound that specifically binds to a receptor possessed by a specific target substance. Examples of the ligand include an antibody, an antigen, a naturally occurring nucleic acid, an artificial nucleic acid, an aptamer, a peptide aptamer, an oligopeptide, an enzyme or a coenzyme and the like. The site where the ligand binds to the substance to be measured is fixed, and has a high affinity selectively or specifically. Examples of the ligand and the substance to be measured include an antigen and an antibody, an enzyme protein and its substrate, a signal substance such as a hormone and a neurotransmitter and its receptor, and a nucleic acid. The ligand and the substance to be measured may be reversed. That is, an antibody may be used as a ligand and an antigen as a substance to be measured, or an antigen may be used as a ligand and an antibody may be used as a substance to be measured. The ligand of the present embodiment is not limited to these.

また、複数種の抗体が結合した免疫検査用の粒子を用いることで、複数種の測定対象物質を検出することが容易になる。また、測定対象物質が抗体に認識される認識部位が複数ある場合、複数の認識部位に応じた複数種の抗体を免疫検査用の粒子に結合させておくとよい。 In addition, by using particles for immunoassay to which a plurality of types of antibodies are bound, it becomes easy to detect a plurality of types of substances to be measured. In addition, when there are a plurality of recognition sites in which the substance to be measured is recognized by the antibody, it is advisable to bind a plurality of types of antibodies corresponding to the plurality of recognition sites to the particles for immunological examination.

<検査試薬>
本実施形態における検査試薬は、上記の免疫検査用の粒子と、免疫検査用の粒子を分散させる分散剤とを有する。検査試薬における免疫検査用の粒子の含有量は、分散剤の全質量を100質量%として、0.001質量%以上20質量%以下であることが好ましく、0.01質量%以上10質量%以下であることがさらに好ましい。検査試薬には、分散剤やブロッキング剤などを含んでいてもよい。分散剤やブロッキング剤などは、2種以上を組み合わせてもよい。分散剤としては、リン酸緩衝液、グリシン緩衝液、グッド緩衝液、トリス緩衝液、アンモニア緩衝液などの緩衝液が挙げられる。
<Test reagent>
The test reagent in the present embodiment has the above-mentioned particles for an immunological test and a dispersant for dispersing the particles for an immunological test. The content of particles for immunoassay in the test reagent is preferably 0.001% by mass or more and 20% by mass or less, and 0.01% by mass or more and 10% by mass or less, assuming that the total mass of the dispersant is 100% by mass. Is more preferable. The test reagent may contain a dispersant, a blocking agent, or the like. Two or more kinds of dispersants, blocking agents and the like may be combined. Examples of the dispersant include buffers such as phosphate buffer, glycine buffer, Good's buffer, Tris buffer, and ammonia buffer.

<検出方法>
本実施形態において、試料に含まれる測定対象物質の検出方法は以下の工程を少なくとも有する。以下ではリガンドを抗体とした例を説明する。
<Detection method>
In the present embodiment, the method for detecting the substance to be measured contained in the sample has at least the following steps. An example of using a ligand as an antibody will be described below.

(第1工程)
第1工程では、重力方向の下側に第1の抗体が固定されたセンサー容器内に、測定対象物質を含む試料と、免疫検査用の粒子と免疫検査用の粒子を分散させる分散剤を有する検査試薬とを添加する。その際に、センサー底面には光導波路が形成されていて、光導波路から出射された光量を検出している。
(First step)
In the first step, a sample containing the substance to be measured and a dispersant for dispersing the immunological test particles and the immunological test particles are provided in a sensor container in which the first antibody is immobilized on the lower side in the direction of gravity. Add the test reagent. At that time, an optical waveguide is formed on the bottom surface of the sensor to detect the amount of light emitted from the optical waveguide.

(第2工程)
第2工程では、免疫検査用の粒子が測定対象物質を介して第1の抗体に結合するように、重力方向と同じ方向に磁場を印加する。この時、磁性粒子はセンサー面に粒子が複数個連なったように針状に堆積する。
(Second step)
In the second step, a magnetic field is applied in the same direction as the direction of gravity so that the particles for immunological examination bind to the first antibody via the substance to be measured. At this time, the magnetic particles are deposited in a needle shape as if a plurality of particles are connected on the sensor surface.

(第3工程)
第3工程では、磁場をOFFにして針状に連なった免疫検査用の粒子をセンサー面に沈降させる。この工程で、免疫検査用の粒子はセンサー面を覆うように配置される。試料に測定対象物が存在すれば、この工程で免疫検査用の粒子側の第2の抗体はセンサー面に設けられた第1の抗体と抗原を介して結合する。光導波路から出射される光の光量は、この段階で最も低くなる。
(Third step)
In the third step, the magnetic field is turned off and needle-shaped particles for immunological examination are settled on the sensor surface. In this step, the immunological test particles are arranged so as to cover the sensor surface. If an object to be measured is present in the sample, the second antibody on the particle side for immunoassay is bound to the first antibody provided on the sensor surface via an antigen in this step. The amount of light emitted from the optical waveguide is the lowest at this stage.

(第4工程)
第4工程では、測定対象物質を介して第1の抗体と結合していない免疫検査用の粒子が、センサー面から遠ざかるように磁場を印加する。この工程で、センサー面から離れる免疫検査用の粒子が存在すれば、導波路からの出射光量はその粒子の数に従って増加する。また、第一の工程の光量を初期値とすると、この光量と比較して検出される光量が低い場合は、抗原を介して結合している免疫検査用の粒子が存在することがわかり、その結果、試料内に測定対象物質が存在することがわかる。
(4th step)
In the fourth step, a magnetic field is applied so that the immunological test particles that are not bound to the first antibody via the substance to be measured move away from the sensor surface. In this step, if particles for immunoassay are present away from the sensor surface, the amount of light emitted from the waveguide increases with the number of particles. In addition, assuming that the amount of light in the first step is the initial value, if the amount of light detected is lower than this amount of light, it is found that particles for immunoassay that are bound via the antigen are present. As a result, it can be seen that the substance to be measured exists in the sample.

本実施形態に係る検出方法において、第1の抗体、第2の抗体は測定対象物質に結合可能であればよい。第1の抗体、第2の抗体とは同じであってもよいし、異なっていてもよい。また、第2の抗体は、異なる測定対象物質に結合するとうに複数の抗体が付与されていても良い。 In the detection method according to the present embodiment, the first antibody and the second antibody may be bound to the substance to be measured. It may be the same as or different from the first antibody and the second antibody. Further, the second antibody may be imparted with a plurality of antibodies so as to bind to different substances to be measured.

以下、実施例、及び比較例を挙げて本発明をさらに詳細に説明するが、本発明は、その要旨を超えない限り、下記の実施例によって何ら限定されるものではない。なお、成分量に関して「部」、及び「%」と記載しているものは特に断らない限り質量基準である。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded. In addition, regarding the amount of components, those described as "part" and "%" are based on mass unless otherwise specified.

<実施例1>
(磁性粒子の作製)
(コア粒子の表面への磁性体層の形成)
コア粒子として、株式会社日本触媒製のシリカ粒子(平均粒子サイズ:0.5μm、比重:2.0g/cm)(以下シリカコア粒子)を6g秤量した。磁性体粒子は、株式会社フェローテック製の疎水化処理された磁性体粒子(EMG1400)を10g秤量した。これらの粒子を乳鉢で十分粉砕、混合した混合粒子を作製した。次に、この混合粒子をハイブリダイゼーションシステムNHS-0型(奈良機械製作所(株)製)を使用して、羽の回転数16200rpm(回転速度100m/秒で5分間処理した。この処理により、シリカコア粒子の表層に磁性体粒子が被覆された(磁性体層が形成された)コアシェル構造の粒子を13g得た。
<Example 1>
(Making magnetic particles)
(Formation of magnetic layer on the surface of core particles)
As core particles, 6 g of silica particles manufactured by Nippon Catalyst Co., Ltd. (average particle size: 0.5 μm, specific gravity: 2.0 g / cm 3 ) (hereinafter referred to as silica core particles) were weighed. As the magnetic particles, 10 g of hydrophobized magnetic particles (EMG1400) manufactured by Ferotec Co., Ltd. was weighed. These particles were sufficiently crushed in a mortar and mixed to prepare mixed particles. Next, the mixed particles were treated using a hybridization system NHS-0 type (manufactured by Nara Kikai Seisakusho Co., Ltd.) at a rotation speed of 16200 rpm (rotation speed 100 m / sec) for 5 minutes. 13 g of particles having a core-shell structure in which the surface layer of the particles was coated with the magnetic material particles (the magnetic material layer was formed) was obtained.

(樹脂層の形成)
次に、得られたコアシェル構造の粒子0.5gを秤量し20mLのメタノールに分散させた。この分散液に、シランカップリング剤として、3-メタクリルオキシプロピルトリメトキシシラン(LS-3380、信越化学工業製)を38μL追加して3時間撹拌した。次に、ネオジム磁石でコアシェル構造の粒子を捕集しながらメタノールを除去し、純水で十分洗浄した後60mLの純水を追加して水分散液を得た。
(Formation of resin layer)
Next, 0.5 g of the obtained core-shell structure particles were weighed and dispersed in 20 mL of methanol. 38 μL of 3-methacryloxypropyltrimethoxysilane (LS-3380, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to this dispersion as a silane coupling agent, and the mixture was stirred for 3 hours. Next, methanol was removed while collecting particles having a core-shell structure with a neodymium magnet, and the mixture was sufficiently washed with pure water, and then 60 mL of pure water was added to obtain an aqueous dispersion.

次に、この分散液を4つ口のフラスコ(200mL)に入れ、窒素バブリングしながら2時間撹拌した。続いて、この分散液にキシダ化学製スチレンモノマーを0.5mL添加して30分撹拌した。この段階で、窒素バブリングから窒素フローに切り替えた。 Next, this dispersion was placed in a four-necked flask (200 mL) and stirred for 2 hours while bubbling nitrogen. Subsequently, 0.5 mL of a styrene monomer manufactured by Kishida Chemical was added to this dispersion, and the mixture was stirred for 30 minutes. At this stage, we switched from nitrogen bubbling to nitrogen flow.

次に、0.05gの過硫酸カリウム(シグマアルドリッチ製)を予め窒素バブリングで脱気した純水20mLに溶解して、フラスコに添加した。次に、オイルバスを用いて、60℃に昇温して5時間保持した。 Next, 0.05 g of potassium persulfate (manufactured by Sigma-Aldrich) was dissolved in 20 mL of pure water previously degassed by nitrogen bubbling and added to the flask. Next, using an oil bath, the temperature was raised to 60 ° C. and held for 5 hours.

続いて、グリシジルメタクリレート(キシダ化学製)を1mL添加して、さらに5時間保持して重合を終了した。重合終了後、純水で十分に洗浄して、樹脂(ポリグリシジルメタクリレート)で被覆された粒子が完成した。 Subsequently, 1 mL of glycidyl methacrylate (manufactured by Kishida Chemical) was added and held for another 5 hours to complete the polymerization. After the completion of the polymerization, the particles were thoroughly washed with pure water to complete the particles coated with the resin (polyglycidyl methacrylate).

(作製した磁性粒子の分析)
作製した磁性粒子をTEMで観察した。20個の粒子の長径の長さを測定して平均値を算出した結果、体積平均粒径が0.7μmであることが確認できた。また、シリカコア粒子の表層には、平均粒径が10nmの磁性体粒子を含む層が50nmの厚さに積層されていて、その上に樹脂層50nmが形成されていた(磁性体粒子を含む層と樹脂層を合わせて磁性体層とする)。磁性体粒子(マグネタイト)の比重を5.2g/cm、シリカコア粒子の比重を2.0g/cm、樹脂の比重を1.0g/cmとして、TGにより加熱時の重量減少を測定して磁性体粒子の密度を見積もると約32%の割合であった。また、磁性粒子の比重は、TEMとTGから算出した粒子の比重は2.05g/cmであった。また、純水に0.01%の濃度で分散した磁性粒子の平均粒径をDLSで測定したところ、0.77μmであった。
(Analysis of the produced magnetic particles)
The produced magnetic particles were observed by TEM. As a result of measuring the length of the major axis of 20 particles and calculating the average value, it was confirmed that the volume average particle size was 0.7 μm. Further, on the surface layer of the silica core particles, a layer containing magnetic particles having an average particle size of 10 nm was laminated to a thickness of 50 nm, and a resin layer of 50 nm was formed on the layer (layer containing magnetic particles). And the resin layer are combined to form a magnetic material layer). The weight loss during heating was measured by TG, with the specific gravity of the magnetic particles (magnetite) being 5.2 g / cm 3 , the specific gravity of the silica core particles being 2.0 g / cm 3 , and the specific density of the resin being 1.0 g / cm 3 . The density of the magnetic particles was estimated to be about 32%. The specific gravity of the magnetic particles was 2.05 g / cm 3 calculated from TEM and TG. The average particle size of the magnetic particles dispersed in pure water at a concentration of 0.01% was measured by DLS and found to be 0.77 μm.

(カルボキシ基形成)
得られた磁性粒子60mgの水分散液16000mgと、トリエチルアミン(東京化成工業製)145mgでpH10に調整した溶液にメルカプトこはく酸50mgを溶解させ、60℃で15時間攪拌処理した。生成した磁性粒子を純水に分散し処理を完了した。すなわち、樹脂層にカルボキシ基を有する磁性粒子を作製した。
(Carboxy group formation)
50 mg of mercaptopodium acid was dissolved in a solution adjusted to pH 10 with 16000 mg of an aqueous dispersion of 60 mg of the obtained magnetic particles and 145 mg of triethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.), and the mixture was stirred at 60 ° C. for 15 hours. The generated magnetic particles were dispersed in pure water to complete the treatment. That is, magnetic particles having a carboxy group in the resin layer were produced.

(免疫検査用の粒子の作製)
純水で十分に洗浄した上記磁性粒子10mgを、MES緩衝液に分散させ、水溶性カルボジイミド(WSC)、及びN-ヒドロキシスクシンイミド(su-NHS)を加えて25℃で30分間撹拌した。その後、ネオジム磁石で捕集しながら溶液を除去しながらMES緩衝液で洗浄し、MES緩衝液で再分散させて、抗体の終濃度が2mg/mLとなるように抗CRP抗体を加えた。その後、25℃で60分間撹拌し、ネオジム磁石で捕集しながら磁性粒子を回収し、磁性粒子をHEPES緩衝液で洗浄し、抗CRP抗体が結合した免疫検査用の粒子の分散液を得た。
(Preparation of particles for immunoassay)
10 mg of the magnetic particles sufficiently washed with pure water were dispersed in MES buffer, water-soluble carbodiimide (WSC) and N-hydroxysuccinimide (su-NHS) were added, and the mixture was stirred at 25 ° C. for 30 minutes. Then, the solution was washed with MES buffer while collecting with a neodymium magnet, redispersed with MES buffer, and anti-CRP antibody was added so that the final concentration of the antibody was 2 mg / mL. Then, the mixture was stirred at 25 ° C. for 60 minutes, the magnetic particles were collected while being collected by a neodymium magnet, and the magnetic particles were washed with HEPES buffer to obtain a dispersion of particles for immunoassay to which an anti-CRP antibody was bound. ..

磁性粒子に抗CRP抗体が結合していることは、抗CRP抗体を加えたMES緩衝液中の抗体の濃度の減少量を、タンパク質を比色定量することが可能なBCA(ビシンコニン酸)アッセイで確認した。 The binding of the anti-CRP antibody to the magnetic particles is a BCA (bicinchoninic acid) assay that can quantify the amount of decrease in the antibody concentration in the MES buffer containing the anti-CRP antibody by colorimetric determination of the protein. confirmed.

(免疫検査用の粒子の検出感度の確認)
上記の免疫検査用の粒子の分散液を用いて、検出感度の確認を行った。あらかじめ、抗CRP抗体を結合させた光導波路型センサーを電磁石上にセットした。また、この時、光導波路には、635nmの波長の光を入射させ、出射光を光量センサーで検出しながら感度テストを行った。
(Confirmation of detection sensitivity of particles for immunological test)
The detection sensitivity was confirmed using the above-mentioned dispersion of particles for immunological examination. In advance, an optical waveguide type sensor to which an anti-CRP antibody was bound was set on an electromagnet. At this time, light having a wavelength of 635 nm was incident on the optical waveguide, and a sensitivity test was performed while detecting the emitted light with a light amount sensor.

免疫検査用の粒子は含有量が0.01%となるようにHEPES緩衝液に分散させた。この分散液をセンサー内に200μL滴下した。電磁石で1分間重力方向に磁場を印加した後、磁場をOFFして5分間静置した。次に、電磁石で30秒間粒子がセンサーから遠ざかる方向に磁場を印加した後出射光量を測定した。出射光量は、免疫検査用粒分散液滴下直後の光量と同等の光量で、抗原がない場合は光量の低下が無いことを確認した。 Particles for immunoassay were dispersed in HEPES buffer so that the content was 0.01%. 200 μL of this dispersion was dropped into the sensor. After applying a magnetic field in the direction of gravity for 1 minute with an electromagnet, the magnetic field was turned off and allowed to stand for 5 minutes. Next, the amount of emitted light was measured after applying a magnetic field with an electromagnet in a direction in which the particles moved away from the sensor for 30 seconds. It was confirmed that the amount of emitted light was the same as the amount of light immediately after the particles dispersed droplets for immunological examination, and there was no decrease in the amount of light when there was no antigen.

次に、免疫検査用の粒子の含有量が0.01%となるようにHEPES緩衝液に分散させた液200μLにCRP抗原を30μL添加し十分混合した後、免疫検査用の粒子の分散液をセンサー内に200μL滴下した。電磁石で1分間、重力方向に磁場を印加した後、磁場をOFFにして5分間静置した。次に、電磁石で30秒間、粒子がセンサーから遠ざかる方向に磁場を印加した後出射光量を測定した。出射光量は、免疫検査用の粒子の分散液を滴下した直後の光量に対して34%低下しており、抗原を検出できていることを確認した。 Next, 30 μL of CRP antigen was added to 200 μL of the solution dispersed in HEPES buffer so that the content of the particles for the immunological test was 0.01%, and the mixture was sufficiently mixed. 200 μL was dropped into the sensor. After applying a magnetic field in the direction of gravity for 1 minute with an electromagnet, the magnetic field was turned off and allowed to stand for 5 minutes. Next, the amount of light emitted after applying a magnetic field in the direction in which the particles move away from the sensor was measured with an electromagnet for 30 seconds. The amount of emitted light was 34% lower than the amount of light immediately after dropping the dispersion of particles for immunoassay, confirming that the antigen could be detected.

<実施例2>
(磁性粒子の作製)
(コア粒子の表面への磁性体層の形成)
コア粒子として、株式会社日本触媒製のシリカ粒子(平均粒子サイズ:1.0μm、比重:2.0g/cm)を12g秤量した。磁性体粒子は、株式会社フェローテック製の疎水化処理された磁性体粒子(EMG1400)を10g秤量した。これらの粒子を乳鉢で十分粉砕、混合した混合粒子を作製した。次に、この混合粒子をハイブリダイゼーションシステムNHS-0型(奈良機械製作所(株)製)を使用して、羽の回転数16200rpm(回転速度100m/秒で5分間処理した。この処理により、シリカコア粒子の表層に磁性体粒子が被覆された(磁性体層が形成された)コアシェル構造の粒子を20g得た。
<Example 2>
(Making magnetic particles)
(Formation of magnetic layer on the surface of core particles)
As core particles, 12 g of silica particles manufactured by Nippon Shokubai Co., Ltd. (average particle size: 1.0 μm, specific gravity: 2.0 g / cm 3 ) were weighed. As the magnetic particles, 10 g of hydrophobized magnetic particles (EMG1400) manufactured by Ferotec Co., Ltd. was weighed. These particles were sufficiently crushed in a mortar and mixed to prepare mixed particles. Next, the mixed particles were treated using a hybridization system NHS-0 type (manufactured by Nara Kikai Seisakusho Co., Ltd.) at a rotation speed of 16200 rpm (rotation speed 100 m / sec) for 5 minutes. 20 g of particles having a core-shell structure in which the surface layer of the particles was coated with the magnetic material particles (the magnetic material layer was formed) was obtained.

(樹脂層の形成)
次に、得られたコアシェル構造の粒子1gを秤量し20mLのメタノールに分散させた。この分散液に、シランカップリング剤として、3-メタクリルオキシプロピルトリメトキシシラン(LS-3380、信越化学工業製)を38μL追加して3時間撹拌した。次に、ネオジム磁石でコアシェル構造の粒子を捕集しながらメタノールを除去し、純水で十分洗浄した後60mLの純水を追加して水分散液を得た。
(Formation of resin layer)
Next, 1 g of the obtained core-shell structure particles were weighed and dispersed in 20 mL of methanol. 38 μL of 3-methacryloxypropyltrimethoxysilane (LS-3380, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to this dispersion as a silane coupling agent, and the mixture was stirred for 3 hours. Next, methanol was removed while collecting particles having a core-shell structure with a neodymium magnet, and the mixture was sufficiently washed with pure water, and then 60 mL of pure water was added to obtain an aqueous dispersion.

次に、この分散液を4つ口のフラスコ(200mL)に入れ、窒素バブリングしながら2時間撹拌した。続いて、この分散液にキシダ化学製スチレンモノマーを0.5mL添加して30分撹拌した。この段階で、窒素バブリングから窒素フローに切り替えた。 Next, this dispersion was placed in a four-necked flask (200 mL) and stirred for 2 hours while bubbling nitrogen. Subsequently, 0.5 mL of a styrene monomer manufactured by Kishida Chemical was added to this dispersion, and the mixture was stirred for 30 minutes. At this stage, we switched from nitrogen bubbling to nitrogen flow.

次に、0.05gの過硫酸カリウム(シグマアルドリッチ製)を予め窒素バブリングで脱気した純水20mLに溶解して、フラスコに添加した。次に、オイルバスを用いて、60℃に昇温して5時間保持した。続いて、グリシジルメタクリレート(キシダ化学製)を1mL添加して、さらに5時間保持して重合を終了した。重合終了後、純水で十分に洗浄して樹脂(ポリグリシジルメタクリレート)で被覆されたコアシェル粒子を完成した。 Next, 0.05 g of potassium persulfate (manufactured by Sigma-Aldrich) was dissolved in 20 mL of pure water previously degassed by nitrogen bubbling and added to the flask. Next, using an oil bath, the temperature was raised to 60 ° C. and held for 5 hours. Subsequently, 1 mL of glycidyl methacrylate (manufactured by Kishida Chemical) was added and held for another 5 hours to complete the polymerization. After the completion of the polymerization, the core-shell particles were sufficiently washed with pure water to complete the core-shell particles coated with the resin (polyglycidyl methacrylate).

(作製した磁性粒子の分析)
作製した磁性粒子をTEMで観察した。20個の粒子の長径の長さを測定して平均値を算出した結果、体積平均粒径が1.2μmであることが確認できた。また、シリカコア粒子の表層には、平均粒径が10nmの磁性体粒子を含む層が50nmの厚さに積層されていて、その上に樹脂層50nmが形成されていた(磁性体粒子を含む層と樹脂層を合わせて磁性体層とする)。磁性体粒子(マグネタイト)の比重を5.2g/cm、シリカコア粒子の比重を2.0g/cm、樹脂の比重を1.0g/cmとして、TGにより加熱時の重量減少を測定して磁性体層の磁性体粒子の密度を見積もると約32%の割合であった。また、磁性粒子の比重は、TEMとTGから算出した粒子の比重は1.94g/cmであった。また、純水に0.01%の濃度で分散した粒子の平均粒径をDLSで測定したところ、1.28μmであった。
(Analysis of the produced magnetic particles)
The produced magnetic particles were observed by TEM. As a result of measuring the length of the major axis of 20 particles and calculating the average value, it was confirmed that the volume average particle size was 1.2 μm. Further, on the surface layer of the silica core particles, a layer containing magnetic particles having an average particle size of 10 nm was laminated to a thickness of 50 nm, and a resin layer of 50 nm was formed on the layer (layer containing magnetic particles). And the resin layer are combined to form a magnetic material layer). The weight loss during heating was measured by TG, with the specific gravity of the magnetic particles (magnetite) being 5.2 g / cm 3 , the specific gravity of the silica core particles being 2.0 g / cm 3 , and the specific density of the resin being 1.0 g / cm 3 . The density of the magnetic particles in the magnetic layer was estimated to be about 32%. The specific gravity of the magnetic particles was 1.94 g / cm 3 calculated from TEM and TG. The average particle size of the particles dispersed in pure water at a concentration of 0.01% was measured by DLS and found to be 1.28 μm.

(感度評価)
実施例1と同様の手順で、粒子表面にカルボキシル基を形成し、感度特性を評価した。免疫検査用粒子の含有量が0.01%となるようにHEPES緩衝液に分散させた液200μLにCRP抗原を30μL添加し十分混合した後、免疫検査用の粒子の分散液をセンサー内に200μL滴下した。電磁石で1分間重力方向に磁場を印加した後、磁場をOFFにして4分間静置した。次に、電磁石で30秒間粒子がセンサーから遠ざかる方向に磁場を印加した後出射光量を測定した。出射光量は、免疫検査用の粒子の分散液を滴下した直後の光量に対して30%低下しており、抗原を検出できていることを確認した。
(Sensitivity evaluation)
A carboxyl group was formed on the particle surface in the same procedure as in Example 1, and the sensitivity characteristics were evaluated. Add 30 μL of CRP antigen to 200 μL of the solution dispersed in HEPES buffer so that the content of the immunological test particles is 0.01%, mix well, and then add 200 μL of the dispersion of the immunological test particles in the sensor. Dropped. After applying a magnetic field in the direction of gravity for 1 minute with an electromagnet, the magnetic field was turned off and allowed to stand for 4 minutes. Next, the amount of emitted light was measured after applying a magnetic field with an electromagnet in a direction in which the particles moved away from the sensor for 30 seconds. The amount of emitted light was 30% lower than the amount of light immediately after dropping the dispersion of particles for immunological examination, confirming that the antigen could be detected.

<実施例3>
(磁性粒子の作製)
(コア粒子の表面への磁性体層の形成)
コア粒子として、株式会社日本触媒製のシリカ粒子(平均粒子サイズ:1.3μm、比重:2.0g/cm)を15g秤量した。磁性体粒子は、株式会社フェローテック製の疎水化処理された磁性体粒子(EMG1400)を10g秤量した。これらの粒子を乳鉢で十分粉砕、混合した混合粒子を作製した。次に、この混合粒子をハイブリダイゼーションシステムNHS-0型(奈良機械製作所(株)製)を使用して、羽の回転数16200rpm(回転速度100m/秒で5分間処理した。この処理により、シリカコア粒子の表層に磁性体粒子が被覆された(磁性体層が形成された)コアシェル構造の粒子を22g得た。
<Example 3>
(Making magnetic particles)
(Formation of magnetic layer on the surface of core particles)
As core particles, 15 g of silica particles manufactured by Nippon Shokubai Co., Ltd. (average particle size: 1.3 μm, specific gravity: 2.0 g / cm 3 ) were weighed. As the magnetic particles, 10 g of hydrophobized magnetic particles (EMG1400) manufactured by Ferotec Co., Ltd. was weighed. These particles were sufficiently crushed in a mortar and mixed to prepare mixed particles. Next, the mixed particles were treated using a hybridization system NHS-0 type (manufactured by Nara Kikai Seisakusho Co., Ltd.) at a rotation speed of 16200 rpm (rotation speed 100 m / sec) for 5 minutes. 22 g of particles having a core-shell structure in which the surface layer of the particles was coated with the magnetic material particles (the magnetic material layer was formed) was obtained.

(樹脂層の形成)
次に、得られたコアシェル構造の粒子1.3gを秤量し20mLのメタノールに分散させた。この分散液に、シランカップリング剤として、3-メタクリルオキシプロピルトリメトキシシラン(LS-3380、信越化学工業製)を38μL追加して3時間撹拌した。次に、ネオジム磁石でコアシェル構造の粒子を捕集しながらメタノールを除去し、純水で十分洗浄した後60mLの純水を追加して水分散液を得た。
(Formation of resin layer)
Next, 1.3 g of the obtained core-shell structure particles were weighed and dispersed in 20 mL of methanol. 38 μL of 3-methacryloxypropyltrimethoxysilane (LS-3380, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to this dispersion as a silane coupling agent, and the mixture was stirred for 3 hours. Next, methanol was removed while collecting particles having a core-shell structure with a neodymium magnet, and the mixture was sufficiently washed with pure water, and then 60 mL of pure water was added to obtain an aqueous dispersion.

次に、この分散液を4つ口のフラスコ(200mL)に入れ、窒素バブリングしながら2時間撹拌した。続いて、この分散液にキシダ化学製スチレンモノマーを0.5mL添加して30分撹拌した。この段階で、窒素バブリングから窒素フローに切り替えた。 Next, this dispersion was placed in a four-necked flask (200 mL) and stirred for 2 hours while bubbling nitrogen. Subsequently, 0.5 mL of a styrene monomer manufactured by Kishida Chemical was added to this dispersion, and the mixture was stirred for 30 minutes. At this stage, we switched from nitrogen bubbling to nitrogen flow.

次に、0.05gの過硫酸カリウム(シグマアルドリッチ製)を予め窒素バブリングで脱気した純水20mLに溶解して、フラスコに添加した。次に、オイルバスを用いて、60℃に昇温して5時間保持した。続いて、グリシジルメタクリレート(キシダ化学製)を1mL添加して、さらに5時間保持して重合を終了した。重合終了後、純水で十分に洗浄して、樹脂(ポリグリシジルメタクリレート)で被覆された粒子が完成した。 Next, 0.05 g of potassium persulfate (manufactured by Sigma-Aldrich) was dissolved in 20 mL of pure water previously degassed by nitrogen bubbling and added to the flask. Next, using an oil bath, the temperature was raised to 60 ° C. and held for 5 hours. Subsequently, 1 mL of glycidyl methacrylate (manufactured by Kishida Chemical) was added and held for another 5 hours to complete the polymerization. After the completion of the polymerization, the particles were thoroughly washed with pure water to complete the particles coated with the resin (polyglycidyl methacrylate).

(作製した磁性粒子の分析)
作製した粒子をTEMで観察した。20個の粒子の長径の長さを測定して平均値を算出した結果、体積平均粒径が1.5μmであることが確認できた。また、シリカコア粒子の表層には、平均粒径が10nmの磁性体粒子を含む層が50nmの厚さに積層されていて、その上に樹脂層50nmが形成されていた(磁性体粒子を含む層と樹脂層を合わせて磁性体層とする)。磁性体粒子(マグネタイト)の比重を5.2g/cm、シリカコア粒子の比重を2.0g/cm、樹脂の比重を1.0g/cmとして、TGにより加熱時の重量減少を測定して磁性体層の磁性体粒子の密度を見積もると約33%の割合であった。また、磁性粒子の比重は、TEMとTGから算出した粒子の比重は1.89g/cmであった。また、純水に0.01%の濃度で分散した粒子の平均粒径をDLSで測定したところ1.57μmであった。
(Analysis of the produced magnetic particles)
The prepared particles were observed by TEM. As a result of measuring the length of the major axis of 20 particles and calculating the average value, it was confirmed that the volume average particle size was 1.5 μm. Further, on the surface layer of the silica core particles, a layer containing magnetic particles having an average particle size of 10 nm was laminated to a thickness of 50 nm, and a resin layer of 50 nm was formed on the layer (layer containing magnetic particles). And the resin layer are combined to form a magnetic material layer). The weight loss during heating was measured by TG, with the specific gravity of the magnetic particles (magnetite) being 5.2 g / cm 3 , the specific gravity of the silica core particles being 2.0 g / cm 3 , and the specific density of the resin being 1.0 g / cm 3 . The density of the magnetic particles in the magnetic layer was estimated to be about 33%. The specific gravity of the magnetic particles was 1.89 g / cm 3 calculated from TEM and TG. The average particle size of the particles dispersed in pure water at a concentration of 0.01% was measured by DLS and found to be 1.57 μm.

(免疫検査用の粒子の検出感度の確認)
実施例1と同様の手順で、粒子表面にカルボキシル基を形成し、感度特性を評価した。免疫検査用粒子の含有量が0.01%となるようにHEPES緩衝液に分散させた液200μLにCRP抗原を30μL添加し十分混合した後、免疫検査用の粒子の分散液をセンサー内に200μL滴下した。電磁石で1分間、重力方向に磁場を印加した後、磁場をOFFして3分30秒間静置した。次に、電磁石で30秒間、粒子がセンサーから遠ざかる方向に磁場を印加した後出射光量を測定した。出射光量は、免疫検査用の粒子の分散液を滴下した直後の光量に対して25%低下しており、抗原を検出できていることを確認した。
(Confirmation of detection sensitivity of particles for immunological test)
A carboxyl group was formed on the particle surface in the same procedure as in Example 1, and the sensitivity characteristics were evaluated. Add 30 μL of CRP antigen to 200 μL of the solution dispersed in HEPES buffer so that the content of the immunological test particles is 0.01%, mix well, and then add 200 μL of the dispersion of the immunological test particles in the sensor. Dropped. After applying a magnetic field in the direction of gravity for 1 minute with an electromagnet, the magnetic field was turned off and allowed to stand for 3 minutes and 30 seconds. Next, the amount of light emitted after applying a magnetic field in the direction in which the particles move away from the sensor was measured with an electromagnet for 30 seconds. The amount of emitted light was 25% lower than the amount of light immediately after dropping the dispersion of particles for immunoassay, confirming that the antigen could be detected.

<実施例4>
(コア粒子の表面への磁性体層の形成)
コア粒子として、株式会社日本触媒製のシリカ粒子(平均粒子サイズ:2.5μm、比重:2g/cm)を30g秤量した。磁性体微粒子は、株式会社フェローテック製の疎水化処理された磁性体微粒子(EMG1400)を10g秤量した。これらの粒子を乳鉢で十分粉砕、混合した混合粒子を作製した。次に、この混合粒子をハイブリダイゼーションシステムNHS-0型(奈良機械製作所(株)製)を使用して、羽の回転数16200rpm(回転速度100m/秒で5分間処理した。この処理により、シリカコア粒子の表層に磁性体粒子が被覆された(磁性体層が形成された)コアシェル構造の粒子を38g得た。
<Example 4>
(Formation of magnetic layer on the surface of core particles)
As core particles, 30 g of silica particles manufactured by Nippon Shokubai Co., Ltd. (average particle size: 2.5 μm, specific gravity: 2 g / cm 3 ) were weighed. As the magnetic fine particles, 10 g of the hydrophobized magnetic fine particles (EMG1400) manufactured by Ferotec Co., Ltd. was weighed. These particles were sufficiently crushed in a mortar and mixed to prepare mixed particles. Next, the mixed particles were treated using a hybridization system NHS-0 type (manufactured by Nara Kikai Seisakusho Co., Ltd.) at a rotation speed of 16200 rpm (rotation speed 100 m / sec) for 5 minutes. 38 g of particles having a core-shell structure in which the surface layer of the particles was coated with the magnetic material particles (the magnetic material layer was formed) was obtained.

(樹脂層の形成)
次に、得られたコアシェル構造の粒子2.5gを秤量し20mLのメタノールに分散させた。この分散液に、シランカップリング剤として、3-メタクリルオキシプロピルトリメトキシシラン(LS-3380、信越化学工業製)を38μL追加して3時間撹拌した。次に、ネオジム磁石でコアシェル構造の粒子を捕集しながらメタノールを除去し、純水で十分洗浄した後60mLの純水を追加して水分散液を得た。
(Formation of resin layer)
Next, 2.5 g of the obtained core-shell structure particles were weighed and dispersed in 20 mL of methanol. 38 μL of 3-methacryloxypropyltrimethoxysilane (LS-3380, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to this dispersion as a silane coupling agent, and the mixture was stirred for 3 hours. Next, methanol was removed while collecting particles having a core-shell structure with a neodymium magnet, and the mixture was sufficiently washed with pure water, and then 60 mL of pure water was added to obtain an aqueous dispersion.

次に、この分散液を4つ口のフラスコ(200mL)に入れ、窒素バブリングしながら2時間撹拌した。続いて、この分散液にキシダ化学製スチレンモノマーを0.5mL添加して30分撹拌した。この段階で、窒素バブリングから窒素フローに切り替えた。 Next, this dispersion was placed in a four-necked flask (200 mL) and stirred for 2 hours while bubbling nitrogen. Subsequently, 0.5 mL of a styrene monomer manufactured by Kishida Chemical was added to this dispersion, and the mixture was stirred for 30 minutes. At this stage, we switched from nitrogen bubbling to nitrogen flow.

次に、0.05gの過硫酸カリウム(シグマアルドリッチ製)を予め窒素バブリングで脱気した純水20mLに溶解して、フラスコに添加した。次に、オイルバスを用いて、60℃に昇温して5時間保持した。続いて、グリシジルメタクリレート(キシダ化学製)を1mL添加して、さらに5時間保持して重合を終了した。重合終了後、純水で十分に洗浄して、樹脂(ポリグリシジルメタクリレート)で被覆された粒子が完成した。 Next, 0.05 g of potassium persulfate (manufactured by Sigma-Aldrich) was dissolved in 20 mL of pure water previously degassed by nitrogen bubbling and added to the flask. Next, using an oil bath, the temperature was raised to 60 ° C. and held for 5 hours. Subsequently, 1 mL of glycidyl methacrylate (manufactured by Kishida Chemical) was added and held for another 5 hours to complete the polymerization. After the completion of the polymerization, the particles were thoroughly washed with pure water to complete the particles coated with the resin (polyglycidyl methacrylate).

(作製した磁性粒子の分析)
作製した磁性粒子をTEMで観察した。20個の粒子の長径の長さを測定して平均値を算出した結果、体積平均粒径が2.7μmであることが確認できた。また、シリカコア粒子の表層には、平均粒径が10nmの磁性体粒子を含む層が50nmの厚さに積層されていて、その上に樹脂層50nmが形成されていた(磁性体粒子を含む層と樹脂層を合わせて磁性体層とする)。磁性体粒子(マグネタイト)の比重を5.2g/cm、シリカコア粒子の比重を2.0g/cm、樹脂の比重を1.0g/cmとして、TGにより加熱時の重量減少を測定して磁性体層の磁性体粒子の密度を見積もると約32%の割合であった。また、磁性粒子の比重は、TEMとTGから算出した粒子の比重は1.84g/cmであった。また、純水に0.01%の濃度で分散した粒子の平均粒径をDLSで測定したところ2.82μmであった。
(Analysis of the produced magnetic particles)
The produced magnetic particles were observed by TEM. As a result of measuring the length of the major axis of 20 particles and calculating the average value, it was confirmed that the volume average particle size was 2.7 μm. Further, on the surface layer of the silica core particles, a layer containing magnetic particles having an average particle size of 10 nm was laminated to a thickness of 50 nm, and a resin layer of 50 nm was formed on the layer (layer containing magnetic particles). And the resin layer are combined to form a magnetic material layer). The weight loss during heating was measured by TG, with the specific gravity of the magnetic particles (magnetite) being 5.2 g / cm 3 , the specific gravity of the silica core particles being 2.0 g / cm 3 , and the specific density of the resin being 1.0 g / cm 3 . The density of the magnetic particles in the magnetic layer was estimated to be about 32%. The specific gravity of the magnetic particles was 1.84 g / cm 3 calculated from TEM and TG. The average particle size of the particles dispersed in pure water at a concentration of 0.01% was 2.82 μm as measured by DLS.

(免疫検査用の粒子の検出感度の確認)
実施例1と同様の手順で、粒子表面にカルボキシ基を形成し、感度特性を評価した。免疫検査用の粒子の含有量が0.01%となるようにHEPES緩衝液に分散させた液200μLにCRP抗原を30μL添加し十分混合した後、免疫検査用の粒子の分散液をセンサー内に200μL滴下した。電磁石で1分間、重力方向に磁場を印加した後、磁場をOFFして3分10秒間静置した。次に、電磁石で30秒間、磁性粒子がセンサーから遠ざかる方向に磁場を印加した後出射光量を測定した。出射光量は、免疫検査用の粒子の分散液を滴下した直後の光量に対して20%低下しており、抗原を検出できていることを確認した。
(Confirmation of detection sensitivity of particles for immunological test)
A carboxy group was formed on the particle surface in the same procedure as in Example 1, and the sensitivity characteristics were evaluated. Add 30 μL of CRP antigen to 200 μL of the solution dispersed in HEPES buffer so that the content of the particles for the immunological test is 0.01%, mix well, and then put the dispersion of the particles for the immunological test in the sensor. 200 μL was added dropwise. After applying a magnetic field in the direction of gravity for 1 minute with an electromagnet, the magnetic field was turned off and allowed to stand for 3 minutes and 10 seconds. Next, the amount of light emitted after applying a magnetic field in the direction in which the magnetic particles move away from the sensor was measured with an electromagnet for 30 seconds. The amount of emitted light was 20% lower than the amount of light immediately after dropping the dispersion of particles for immunological examination, confirming that the antigen could be detected.

<比較例1>
(磁性粒子の作製)
(コア粒子の表面への磁性体層の形成)
コア粒子として、綜研化学株式会社製のポリスチレン粒子(平均粒径:0.5μm、比重:1.1g/cm)を3g秤量した。磁性体粒子は、株式会社フェローテック製の疎水化処理された磁性体粒子(EMG1400)を10g秤量した。これらの粒子を乳鉢で十分粉砕、混合した混合粒子を作製した。次に、この混合粒子をハイブリダイゼーションシステムNHS-0型(奈良機械製作所(株)製)を使用して、羽の回転数16200rpm(回転速度100m/秒で5分間処理した。この処理により、ポリスチレン粒子の表層に磁性体粒子が被覆された(磁性体層が形成された)コアシェル構造の粒子を10g得た。
<Comparative Example 1>
(Making magnetic particles)
(Formation of magnetic layer on the surface of core particles)
As core particles, 3 g of polystyrene particles manufactured by Soken Chemical Co., Ltd. (average particle size: 0.5 μm, specific gravity: 1.1 g / cm 3 ) were weighed. As the magnetic particles, 10 g of hydrophobized magnetic particles (EMG1400) manufactured by Ferotec Co., Ltd. was weighed. These particles were sufficiently crushed in a mortar and mixed to prepare mixed particles. Next, the mixed particles were treated using a hybridization system NHS-0 type (manufactured by Nara Kikai Seisakusho Co., Ltd.) at a rotation speed of 16200 rpm (rotation speed 100 m / sec) for 5 minutes. 10 g of particles having a core-shell structure in which the surface layer of the particles was coated with the magnetic material particles (the magnetic material layer was formed) was obtained.

(樹脂層の形成)
次に、得られたコアシェル構造の粒子0.7gを秤量し20mLのメタノールに分散させた。この分散液に、シランカップリング剤として、3-メタクリルオキシプロピルトリメトキシシラン(LS-3380、信越化学工業製)を38μL追加して3時間撹拌した。次に、ネオジム磁石でコアシェル構造の粒子を捕集しながらメタノールを除去し、純水で十分洗浄した後60mLの純水を追加して水分散液を得た。
(Formation of resin layer)
Next, 0.7 g of the obtained core-shell structure particles were weighed and dispersed in 20 mL of methanol. 38 μL of 3-methacryloxypropyltrimethoxysilane (LS-3380, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to this dispersion as a silane coupling agent, and the mixture was stirred for 3 hours. Next, methanol was removed while collecting particles having a core-shell structure with a neodymium magnet, and the mixture was sufficiently washed with pure water, and then 60 mL of pure water was added to obtain an aqueous dispersion.

次に、この分散液を4つ口のフラスコ(200mL)に入れ、窒素バブリングしながら2時間撹拌した。続いて、この分散液にキシダ化学製スチレンモノマーを0.5mL添加して30分撹拌した。この段階で、窒素バブリングから窒素フローに切り替えた。 Next, this dispersion was placed in a four-necked flask (200 mL) and stirred for 2 hours while bubbling nitrogen. Subsequently, 0.5 mL of a styrene monomer manufactured by Kishida Chemical was added to this dispersion, and the mixture was stirred for 30 minutes. At this stage, we switched from nitrogen bubbling to nitrogen flow.

次に、0.05gの過硫酸カリウム(シグマアルドリッチ製)を予め窒素バブリングで脱気した純水20mLに溶解して、フラスコに添加した。次に、オイルバスを用いて、60℃に昇温して5時間保持した。続いて、グリシジルメタクリレート(キシダ化学製)を1mL添加して、さらに5時間保持して重合を終了した。重合終了後、純水で十分に洗浄して樹脂(ポリグリシジルメタクリレート)で被覆されたコアシェル粒子を完成した。 Next, 0.05 g of potassium persulfate (manufactured by Sigma-Aldrich) was dissolved in 20 mL of pure water previously degassed by nitrogen bubbling and added to the flask. Next, using an oil bath, the temperature was raised to 60 ° C. and held for 5 hours. Subsequently, 1 mL of glycidyl methacrylate (manufactured by Kishida Chemical) was added and held for another 5 hours to complete the polymerization. After the completion of the polymerization, the core-shell particles were sufficiently washed with pure water to complete the core-shell particles coated with the resin (polyglycidyl methacrylate).

(作製した磁性粒子の分析)
作製した磁性粒子をTEMで観察した。20個の粒子の長径の長さを測定して平均値を算出した結果、体積平均粒径が0.7μmであることが確認できた。また、ポリスチレンコア粒子の表層には、平均粒径が10nmの磁性体粒子を含む層が50nmの厚さに積層されていて、その上に樹脂層50nmが形成されていた(磁性体粒子を含む層と樹脂層を合わせて磁性層とする)。磁性体粒子(マグネタイト)の比重を5.2g/cm、ポリスチレンコア粒子の比重を1.1g/cm、樹脂の比重を1.0g/cmとして、TGにより加熱時の重量減少を測定して磁性体層の磁性体粒子の密度を見積もると約33%の割合であった。また、磁性粒子の比重は、TEMとTGから算出した磁性粒子の比重は1.69g/cmであった。また、純水に0.01%の濃度で分散した粒子の平均粒径をDLSで測定したところ0.72μmであった。
(Analysis of the produced magnetic particles)
The produced magnetic particles were observed by TEM. As a result of measuring the length of the major axis of 20 particles and calculating the average value, it was confirmed that the volume average particle size was 0.7 μm. Further, on the surface layer of the polystyrene core particles, a layer containing magnetic particles having an average particle size of 10 nm was laminated to a thickness of 50 nm, and a resin layer of 50 nm was formed on the layer (including magnetic particles). The layer and the resin layer are combined to form a magnetic layer). The weight loss during heating is measured by TG, assuming that the specific gravity of the magnetic particles (magnetite) is 5.2 g / cm 3 , the specific density of the polystyrene core particles is 1.1 g / cm 3 , and the specific density of the resin is 1.0 g / cm 3 . The density of the magnetic particles in the magnetic layer was estimated to be about 33%. The specific gravity of the magnetic particles was 1.69 g / cm 3 calculated from TEM and TG. The average particle size of the particles dispersed in pure water at a concentration of 0.01% was 0.72 μm as measured by DLS.

(免疫検査用の粒子の検出感度の確認)
実施例1と同様の手順で、粒子表面にカルボキシ基を形成し、感度特性を評価した。免疫検査用粒子の含有量が0.005%となるようにHEPES緩衝液に分散させた液200μLにCRP抗原を30μL添加し十分混合した後、免疫検査用の粒子の分散液をセンサー内に200μL滴下した。電磁石で4分30秒間、重力方向に磁場を印加した後、磁場をOFFして7分20間、静置した。次に、電磁石で30秒間、磁性粒子がセンサーから遠ざかる方向に磁場を印加した後出射光量を測定した。出射光量は、免疫検査用の粒子の分散液を滴下した直後の出射光量に対して約34%低下しており、抗原を検出できていることを確認した。ただし、シリカコア粒子の同じサイズと比較すると下磁場印加時と磁場OFF時にシリカコアと比較して時間を要し、検出時間を長く設定する必要があった。
(Confirmation of detection sensitivity of particles for immunological test)
A carboxy group was formed on the particle surface in the same procedure as in Example 1, and the sensitivity characteristics were evaluated. Add 30 μL of CRP antigen to 200 μL of the solution dispersed in HEPES buffer so that the content of the immunological test particles is 0.005%, mix well, and then add 200 μL of the dispersion of the immunological test particles in the sensor. Dropped. After applying a magnetic field in the direction of gravity for 4 minutes and 30 seconds with an electromagnet, the magnetic field was turned off and allowed to stand for 7 minutes and 20 seconds. Next, the amount of light emitted after applying a magnetic field in the direction in which the magnetic particles move away from the sensor was measured with an electromagnet for 30 seconds. The amount of emitted light was reduced by about 34% with respect to the amount of emitted light immediately after the dispersion of particles for immunological examination was dropped, confirming that the antigen could be detected. However, compared with the same size of the silica core particles, it takes more time than the silica core when the lower magnetic field is applied and when the magnetic field is turned off, and it is necessary to set the detection time longer.

<比較例2>
(磁性粒子の作製)
(コア粒子の表面への磁性体層の形成)
コア粒子として、株式会社モリテックス製のポリスチレン粒子(平均粒径:1.0μm、比重:1.1g/cm)を7g秤量した。磁性体粒子は、株式会社フェローテック製の疎水化処理された磁性体粒子(EMG1400)を10g秤量した。これらの粒子を乳鉢で十分粉砕、混合した混合粒子を作製した。次に、この混合粒子をハイブリダイゼーションシステムNHS-0型(奈良機械製作所(株)製)を使用して、羽の回転数16200rpm(回転速度100m/秒で5分間処理した。この処理により、ポリスチレン粒子の表層に磁性体粒子が被覆された(磁性体層が形成された)コアシェル構造の粒子を15g得た。
<Comparative Example 2>
(Making magnetic particles)
(Formation of magnetic layer on the surface of core particles)
As core particles, 7 g of polystyrene particles manufactured by Moritex Co., Ltd. (average particle size: 1.0 μm, specific gravity: 1.1 g / cm 3 ) were weighed. As the magnetic particles, 10 g of hydrophobized magnetic particles (EMG1400) manufactured by Ferotec Co., Ltd. was weighed. These particles were sufficiently crushed in a mortar and mixed to prepare mixed particles. Next, the mixed particles were treated using a hybridization system NHS-0 type (manufactured by Nara Kikai Seisakusho Co., Ltd.) at a rotation speed of 16200 rpm (rotation speed 100 m / sec) for 5 minutes. 15 g of particles having a core-shell structure in which the surface layer of the particles was coated with the magnetic material particles (the magnetic material layer was formed) was obtained.

(樹脂層の形成)
次に、得られたコアシェル構造の粒子0.8gを秤量し20mLのメタノールに分散させた。この分散液に、シランカップリング剤として、3-メタクリルオキシプロピルトリメトキシシラン(LS-3380、信越化学工業製)を38μL追加して3時間撹拌した。次に、ネオジム磁石でコアシェル構造の粒子を捕集しながらメタノールを除去し、純水で十分洗浄した後60mLの純水を追加して水分散液を得た。
(Formation of resin layer)
Next, 0.8 g of the obtained core-shell structure particles were weighed and dispersed in 20 mL of methanol. 38 μL of 3-methacryloxypropyltrimethoxysilane (LS-3380, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to this dispersion as a silane coupling agent, and the mixture was stirred for 3 hours. Next, methanol was removed while collecting particles having a core-shell structure with a neodymium magnet, and the mixture was sufficiently washed with pure water, and then 60 mL of pure water was added to obtain an aqueous dispersion.

次に、この分散液を4つ口のフラスコ(200mL)に入れ、窒素バブリングしながら2時間撹拌した。続いて、この分散液にキシダ化学製スチレンモノマーを0.5mL添加して30分撹拌した。この段階で、窒素バブリングから窒素フローに切り替えた。 Next, this dispersion was placed in a four-necked flask (200 mL) and stirred for 2 hours while bubbling nitrogen. Subsequently, 0.5 mL of a styrene monomer manufactured by Kishida Chemical was added to this dispersion, and the mixture was stirred for 30 minutes. At this stage, we switched from nitrogen bubbling to nitrogen flow.

次に、0.05gの過硫酸カリウム(シグマアルドリッチ製)を予め窒素バブリングで脱気した純水20mLに溶解して、フラスコに添加した。次に、オイルバスを用いて、60℃に昇温して5時間保持した。続いて、グリシジルメタクリレート(キシダ化学製)を1mL添加して、さらに5時間保持して重合を終了した。重合終了後、純水で十分に洗浄して樹脂(ポリグリシジルメタクリレート)で被覆されたコアシェル粒子を完成した。 Next, 0.05 g of potassium persulfate (manufactured by Sigma-Aldrich) was dissolved in 20 mL of pure water previously degassed by nitrogen bubbling and added to the flask. Next, using an oil bath, the temperature was raised to 60 ° C. and held for 5 hours. Subsequently, 1 mL of glycidyl methacrylate (manufactured by Kishida Chemical) was added and held for another 5 hours to complete the polymerization. After the completion of the polymerization, the core-shell particles were sufficiently washed with pure water to complete the core-shell particles coated with the resin (polyglycidyl methacrylate).

(作製した磁性粒子の分析)
作製した磁性粒子をTEMで観察した。20個の粒子の長径の長さを測定して平均値を算出した結果、体積平均粒径が1.2μmであることが確認できた。また、ポリスチレンコア粒子の表層には、平均粒径が10nmの磁性体粒子を含む層が50nmの厚さに積層されていて、その上に樹脂層50nmが形成されていた(磁性体粒子を含む層と樹脂層を合わせて磁性層とする)。磁性体粒子(マグネタイト)の比重を5.2g/cm、ポリスチレンコア粒子の比重を1.1g/cm、樹脂の比重を1.0g/cmとして、TGにより加熱時の重量減少を測定して磁性体層の磁性体粒子の密度を見積もると約32%の割合であった。また、磁性粒子の比重は、TEMとTGから算出した磁性粒子の比重は1.51g/cmであった。また、純水に0.01%の濃度で分散した粒子の平均粒径をDLSで測定したところ1.27μmであった。
(Analysis of the produced magnetic particles)
The produced magnetic particles were observed by TEM. As a result of measuring the length of the major axis of 20 particles and calculating the average value, it was confirmed that the volume average particle size was 1.2 μm. Further, on the surface layer of the polystyrene core particles, a layer containing magnetic particles having an average particle size of 10 nm was laminated to a thickness of 50 nm, and a resin layer of 50 nm was formed on the layer (including magnetic particles). The layer and the resin layer are combined to form a magnetic layer). The weight loss during heating is measured by TG, assuming that the specific gravity of the magnetic particles (magnetite) is 5.2 g / cm 3 , the specific density of the polystyrene core particles is 1.1 g / cm 3 , and the specific density of the resin is 1.0 g / cm 3 . The density of the magnetic particles in the magnetic layer was estimated to be about 32%. The specific gravity of the magnetic particles was 1.51 g / cm 3 calculated from TEM and TG. The average particle size of the particles dispersed in pure water at a concentration of 0.01% was 1.27 μm as measured by DLS.

(免疫検査用の粒子の検出感度の確認)
実施例1と同様の手順で、粒子表面にカルボキシ基を形成し、感度特性を評価した。免疫検査用粒子の含有量が0.005%となるようにHEPES緩衝液に分散させた液200μLにCRP抗原を30μL添加し十分混合した後、免疫検査用の粒子の分散液をセンサー内に200μL滴下した。電磁石で2分30秒間重力方向に磁場を印加した後、磁場をOFFして7分40秒間静置した。次に、電磁石で30秒間粒子がセンサーから遠ざかる方向に磁場を印加した後出射光量を測定した。出射光量は、免疫検査用の粒子の分散液を滴下した直後の出射光量に対して約30%低下しており、抗原を検出できていることを確認した。ただし、シリカコア粒子の同じサイズと比較すると下磁場印加時と磁場OFF時にシリカコアと比較して時間を要し、検出時間を長く設定する必要があった。
(Confirmation of detection sensitivity of particles for immunological test)
A carboxy group was formed on the particle surface in the same procedure as in Example 1, and the sensitivity characteristics were evaluated. Add 30 μL of CRP antigen to 200 μL of the solution dispersed in HEPES buffer so that the content of the immunological test particles is 0.005%, mix well, and then add 200 μL of the dispersion of the immunological test particles in the sensor. Dropped. After applying a magnetic field in the direction of gravity for 2 minutes and 30 seconds with an electromagnet, the magnetic field was turned off and allowed to stand for 7 minutes and 40 seconds. Next, the amount of emitted light was measured after applying a magnetic field with an electromagnet in a direction in which the particles moved away from the sensor for 30 seconds. The amount of emitted light was reduced by about 30% with respect to the amount of emitted light immediately after the dispersion of particles for immunological examination was dropped, confirming that the antigen could be detected. However, compared with the same size of the silica core particles, it takes more time than the silica core when the lower magnetic field is applied and when the magnetic field is turned off, and it is necessary to set the detection time longer.

<比較例3>
(磁性粒子の作製)
(コア粒子の表面への磁性体層の形成)
コア粒子として、綜研化学株式会社製のポリスチレン粒子(平均粒径:1.3μm、比重:1.1g/cm)を7g秤量した。磁性体粒子は、株式会社フェローテック製の疎水化処理された磁性体粒子(EMG1400)を10g秤量した。これらの粒子を乳鉢で十分粉砕、混合した混合粒子を作製した。次に、この混合粒子をハイブリダイゼーションシステムNHS-0型(奈良機械製作所(株)製)を使用して、羽の回転数16200rpm(回転速度100m/秒で5分間処理した。この処理により、ポリスチレン粒子の表層に磁性体粒子が被覆された(磁性体層が形成された)コアシェル構造の粒子を15g得た。
<Comparative Example 3>
(Making magnetic particles)
(Formation of magnetic layer on the surface of core particles)
As core particles, 7 g of polystyrene particles manufactured by Soken Chemical Co., Ltd. (average particle size: 1.3 μm, specific gravity: 1.1 g / cm 3 ) were weighed. As the magnetic particles, 10 g of hydrophobized magnetic particles (EMG1400) manufactured by Ferotec Co., Ltd. was weighed. These particles were sufficiently crushed in a mortar and mixed to prepare mixed particles. Next, the mixed particles were treated using a hybridization system NHS-0 type (manufactured by Nara Kikai Seisakusho Co., Ltd.) at a rotation speed of 16200 rpm (rotation speed 100 m / sec) for 5 minutes. 15 g of particles having a core-shell structure in which the surface layer of the particles was coated with the magnetic material particles (the magnetic material layer was formed) was obtained.

(樹脂層の形成)
次に、得られたコアシェル構造の粒子2gを秤量し20mLのメタノールに分散させた。この分散液に、シランカップリング剤として、3-メタクリルオキシプロピルトリメトキシシラン(LS-3380、信越化学工業製)を38μL追加して3時間撹拌した。次に、ネオジム磁石でコアシェル構造の粒子を捕集しながらメタノールを除去し、純水で十分洗浄した後60mLの純水を追加して水分散液を得た。
(Formation of resin layer)
Next, 2 g of the obtained core-shell structure particles were weighed and dispersed in 20 mL of methanol. 38 μL of 3-methacryloxypropyltrimethoxysilane (LS-3380, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to this dispersion as a silane coupling agent, and the mixture was stirred for 3 hours. Next, methanol was removed while collecting particles having a core-shell structure with a neodymium magnet, and the mixture was sufficiently washed with pure water, and then 60 mL of pure water was added to obtain an aqueous dispersion.

次に、この分散液を4つ口のフラスコ(200mL)に入れ、窒素バブリングしながら2時間撹拌した。続いて、この分散液にキシダ化学製スチレンモノマーを0.5mL添加して30分撹拌した。この段階で、窒素バブリングから窒素フローに切り替えた。 Next, this dispersion was placed in a four-necked flask (200 mL) and stirred for 2 hours while bubbling nitrogen. Subsequently, 0.5 mL of a styrene monomer manufactured by Kishida Chemical was added to this dispersion, and the mixture was stirred for 30 minutes. At this stage, we switched from nitrogen bubbling to nitrogen flow.

次に、0.05gの過硫酸カリウム(シグマアルドリッチ製)を予め窒素バブリングで脱気した純水20mLに溶解して、フラスコに添加した。次に、オイルバスを用いて、60℃に昇温して5時間保持した。続いて、グリシジルメタクリレート(キシダ化学製)を1mL添加して、さらに5時間保持して重合を終了した。重合終了後、純水で十分に洗浄して樹脂(ポリグリシジルメタクリレート)で被覆されたコアシェル粒子を完成した。 Next, 0.05 g of potassium persulfate (manufactured by Sigma-Aldrich) was dissolved in 20 mL of pure water previously degassed by nitrogen bubbling and added to the flask. Next, using an oil bath, the temperature was raised to 60 ° C. and held for 5 hours. Subsequently, 1 mL of glycidyl methacrylate (manufactured by Kishida Chemical) was added and held for another 5 hours to complete the polymerization. After the completion of the polymerization, the core-shell particles were sufficiently washed with pure water to complete the core-shell particles coated with the resin (polyglycidyl methacrylate).

(作製した磁性粒子の分析)
作製した磁性粒子をTEMで観察した。20個の粒子の長径の長さを測定して平均値を算出した結果、体積平均粒径が1.5μmであることが確認できた。また、ポリスチレンコア粒子の表層には、平均粒径が10nmの磁性体粒子を含む層が50nmの厚さに積層されていて、その上に樹脂層50nmが形成されていた(磁性体粒子を含む層と樹脂層を合わせて磁性体層とする)。磁性体粒子(マグネタイト)の比重を5.2g/cm、ポリスチレンコア粒子の比重を1.1g/cm、樹脂の比重を1.0g/cmとして、TGにより加熱時の重量減少を測定して磁性層の磁性体微粒子の密度を見積もると約33%の割合であった。また、磁性粒子の比重は、TEMとTGから算出した粒子の比重は1.45g/cm3であった。また、純水に0.01%の濃度で分散した粒子の平均粒子サイズをDLSで測定したところ、平均粒子サイズは1.62μmであった。
(Analysis of the produced magnetic particles)
The produced magnetic particles were observed by TEM. As a result of measuring the length of the major axis of 20 particles and calculating the average value, it was confirmed that the volume average particle size was 1.5 μm. Further, on the surface layer of the polystyrene core particles, a layer containing magnetic particles having an average particle size of 10 nm was laminated to a thickness of 50 nm, and a resin layer of 50 nm was formed on the layer (including magnetic particles). The layer and the resin layer are combined to form a magnetic material layer). The weight loss during heating is measured by TG, assuming that the specific gravity of the magnetic particles (magnetite) is 5.2 g / cm 3 , the specific density of the polystyrene core particles is 1.1 g / cm 3 , and the specific density of the resin is 1.0 g / cm 3 . The density of the magnetic fine particles in the magnetic layer was estimated to be about 33%. The specific gravity of the magnetic particles was 1.45 g / cm3, which was calculated from TEM and TG. Moreover, when the average particle size of the particles dispersed in pure water at a concentration of 0.01% was measured by DLS, the average particle size was 1.62 μm.

(免疫検査用の粒子の検出感度の確認)
実施例1と同様の手順で、粒子表面にカルボキシ基を形成し、感度特性を評価した。免疫検査用粒子の含有量が0.005%となるようにHEPES緩衝液に分散させた液200μLにCRP抗原を30μL添加し十分混合した後、免疫検査用の粒子の分散液をセンサー内に200μL滴下した。電磁石で2分間、重力方向に磁場を印加した後、磁場をOFFして7分間静置した。次に、電磁石で30秒間、粒子がセンサーから遠ざかる方向に磁場を印加した後出射光量を測定した。出射光量は、免疫検査用の粒子の分散液を滴下した直後の光量に対して約23%低下しており、抗原を検出できていることを確認した。ただし、シリカコア粒子の同じサイズと比較すると下磁場印加時と磁場OFF時にシリカコアと比較して時間を要し、検出時間を長く設定する必要があった。
(Confirmation of detection sensitivity of particles for immunological test)
A carboxy group was formed on the particle surface in the same procedure as in Example 1, and the sensitivity characteristics were evaluated. Add 30 μL of CRP antigen to 200 μL of the solution dispersed in HEPES buffer so that the content of the immunological test particles is 0.005%, mix well, and then add 200 μL of the dispersion of the immunological test particles in the sensor. Dropped. After applying a magnetic field in the direction of gravity for 2 minutes with an electromagnet, the magnetic field was turned off and allowed to stand for 7 minutes. Next, the amount of light emitted after applying a magnetic field in the direction in which the particles move away from the sensor was measured with an electromagnet for 30 seconds. The amount of emitted light was about 23% lower than the amount of light immediately after dropping the dispersion of particles for immunological examination, confirming that the antigen could be detected. However, compared with the same size of the silica core particles, it takes more time than the silica core when the lower magnetic field is applied and when the magnetic field is turned off, and it is necessary to set the detection time longer.

<比較例4>
(磁性粒子の作製)
(コア粒子の表面への磁性体層の形成)
コア粒子として、株式会社モリテックス製のポリスチレン粒子(平均粒径:2.5μm、比重:1.1g/cm)を13g秤量した。磁性体粒子は、株式会社フェローテック製の疎水化処理された磁性体粒子(EMG1400)を10g秤量した。これらの粒子を乳鉢で十分粉砕、混合した混合粒子を作製した。次に、この混合粒子をハイブリダイゼーションシステムNHS-0型(奈良機械製作所(株)製)を使用して、羽の回転数16200rpm(回転速度100m/秒で5分間処理した。この処理により、ポリスチレン粒子の表層に磁性体粒子が被覆された(磁性体層が形成された)コアシェル構造の粒子を20g得た。
<Comparative Example 4>
(Making magnetic particles)
(Formation of magnetic layer on the surface of core particles)
As core particles, 13 g of polystyrene particles manufactured by Moritex Co., Ltd. (average particle size: 2.5 μm, specific gravity: 1.1 g / cm 3 ) were weighed. As the magnetic particles, 10 g of hydrophobized magnetic particles (EMG1400) manufactured by Ferotec Co., Ltd. was weighed. These particles were sufficiently crushed in a mortar and mixed to prepare mixed particles. Next, the mixed particles were treated using a hybridization system NHS-0 type (manufactured by Nara Kikai Seisakusho Co., Ltd.) at a rotation speed of 16200 rpm (rotation speed 100 m / sec) for 5 minutes. 20 g of particles having a core-shell structure in which the surface layer of the particles was coated with the magnetic material particles (the magnetic material layer was formed) was obtained.

(樹脂層の形成)
次に、得られたコアシェル構造の粒子3.8gを秤量し20mLのメタノールに分散させた。この分散液に、シランカップリング剤として、3-メタクリルオキシプロピルトリメトキシシラン(LS-3380、信越化学工業製)を38μL追加して3時間撹拌した。次に、ネオジム磁石でコアシェル構造の粒子を捕集しながらメタノールを除去し、純水で十分洗浄した後60mLの純水を追加して水分散液を得た。
(Formation of resin layer)
Next, 3.8 g of the obtained core-shell structure particles were weighed and dispersed in 20 mL of methanol. 38 μL of 3-methacryloxypropyltrimethoxysilane (LS-3380, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to this dispersion as a silane coupling agent, and the mixture was stirred for 3 hours. Next, methanol was removed while collecting particles having a core-shell structure with a neodymium magnet, and the mixture was sufficiently washed with pure water, and then 60 mL of pure water was added to obtain an aqueous dispersion.

次に、この分散液を4つ口のフラスコ(200mL)に入れ、窒素バブリングしながら2時間撹拌した。続いて、この分散液にキシダ化学製スチレンモノマーを0.5mL添加して30分撹拌した。この段階で、窒素バブリングから窒素フローに切り替えた。 Next, this dispersion was placed in a four-necked flask (200 mL) and stirred for 2 hours while bubbling nitrogen. Subsequently, 0.5 mL of a styrene monomer manufactured by Kishida Chemical was added to this dispersion, and the mixture was stirred for 30 minutes. At this stage, we switched from nitrogen bubbling to nitrogen flow.

次に、0.05gの過硫酸カリウム(シグマアルドリッチ製)を予め窒素バブリングで脱気した純水20mLに溶解して、フラスコに添加した。次に、オイルバスを用いて、60℃に昇温して5時間保持した。続いて、グリシジルメタクリレート(キシダ化学製)を1mL添加して、さらに5時間保持して重合を終了した。重合終了後、純水で十分に洗浄して樹脂(ポリグリシジルメタクリレート)で被覆されたコアシェル粒子を完成した。 Next, 0.05 g of potassium persulfate (manufactured by Sigma-Aldrich) was dissolved in 20 mL of pure water previously degassed by nitrogen bubbling and added to the flask. Next, using an oil bath, the temperature was raised to 60 ° C. and held for 5 hours. Subsequently, 1 mL of glycidyl methacrylate (manufactured by Kishida Chemical) was added and held for another 5 hours to complete the polymerization. After the completion of the polymerization, the core-shell particles were sufficiently washed with pure water to complete the core-shell particles coated with the resin (polyglycidyl methacrylate).

(作製した磁性粒子の分析)
作製した磁性粒子をTEMで観察した。20個の粒子の長径の長さを測定して平均値を算出した結果、体積平均粒径が2.7μmであることが確認できた。また、ポリスチレンコア粒子の表層には、平均粒径が10nmの磁性体粒子を含む層が50nmの厚さに積層されていて、その上に樹脂層50nmが形成されていた(磁性体粒子を含む層と樹脂層を合わせて磁性体層とする)。磁性体粒子(マグネタイト)の比重を5.2g/cm、ポリスチレンコア粒子の比重を1.1g/cm、樹脂の比重を1.0g/cmとして、TGにより加熱時の重量減少を測定して磁性体層の磁性体粒子の密度を見積もると約31%の割合であった。また、磁性粒子の比重は、TEMとTGから算出した粒子の比重は1.31g/cmであった。また、純水に0.01%の濃度で分散した粒子の平均粒径をDLSで測定したところ2.85μmであった。
(Analysis of the produced magnetic particles)
The produced magnetic particles were observed by TEM. As a result of measuring the length of the major axis of 20 particles and calculating the average value, it was confirmed that the volume average particle size was 2.7 μm. Further, on the surface layer of the polystyrene core particles, a layer containing magnetic particles having an average particle size of 10 nm was laminated to a thickness of 50 nm, and a resin layer of 50 nm was formed on the layer (including magnetic particles). The layer and the resin layer are combined to form a magnetic material layer). The weight loss during heating is measured by TG, assuming that the specific gravity of the magnetic particles (magnetite) is 5.2 g / cm 3 , the specific density of the polystyrene core particles is 1.1 g / cm 3 , and the specific density of the resin is 1.0 g / cm 3 . The density of the magnetic particles in the magnetic layer was estimated to be about 31%. The specific gravity of the magnetic particles was 1.31 g / cm 3 calculated from TEM and TG. The average particle size of the particles dispersed in pure water at a concentration of 0.01% was 2.85 μm as measured by DLS.

(免疫検査用の粒子の検出感度の確認)
実施例1と同様の手順で、粒子表面にカルボキシ基を形成し、感度特性を評価した。免疫検査用粒子の含有量が0.005%となるようにHEPES緩衝液に分散させた液200μLにCRP抗原を30μL添加し十分混合した後、免疫検査用の粒子の分散液をセンサー内に200μL滴下した。電磁石で1.5分間、重力方向に磁場を印加した後、磁場をOFFして5分30秒間、静置した。次に、電磁石で30秒間、磁性粒子がセンサーから遠ざかる方向に磁場を印加した後出射光量を測定した。出射光量は、免疫検査用の粒子の分散液を滴下した直後の出射光量に対して約19%低下しており、抗原を検出できていることを確認した。ただし、シリカコア粒子の同じサイズと比較すると下磁場印加時と磁場OFF時にシリカコアと比較して時間を要し、検出時間を長く設定する必要があった。
(Confirmation of detection sensitivity of particles for immunological test)
A carboxy group was formed on the particle surface in the same procedure as in Example 1, and the sensitivity characteristics were evaluated. Add 30 μL of CRP antigen to 200 μL of the solution dispersed in HEPES buffer so that the content of the immunological test particles is 0.005%, mix well, and then add 200 μL of the dispersion of the immunological test particles in the sensor. Dropped. After applying a magnetic field in the direction of gravity for 1.5 minutes with an electromagnet, the magnetic field was turned off and allowed to stand for 5 minutes and 30 seconds. Next, the amount of light emitted after applying a magnetic field in the direction in which the magnetic particles move away from the sensor was measured with an electromagnet for 30 seconds. The amount of emitted light was reduced by about 19% with respect to the amount of emitted light immediately after the dispersion of particles for immunological examination was dropped, confirming that the antigen could be detected. However, compared with the same size of the silica core particles, it takes more time than the silica core when the lower magnetic field is applied and when the magnetic field is turned off, and it is necessary to set the detection time longer.

<比較例5>
(磁性粒子の作製)
(コア粒子の表面への磁性体層の形成)
コア粒子として、シリカ粒子(平均粒径:0.3μm、比重:2g/cm)を3g秤量した。磁性体粒子は、株式会社フェローテック製の疎水化処理された磁性体粒子(EMG1400)を10g秤量した。これらの粒子を乳鉢で十分粉砕、混合した混合粒子を作製した。次に、この混合粒子をハイブリダイゼーションシステムNHS-0型(奈良機械製作所(株)製)を使用して、羽の回転数16200rpm(回転速度100m/秒で5分間処理した。この処理により、シリカコア粒子の表層に磁性体粒子が被覆された(磁性体層が形成された)コアシェル構造の粒子を13g得た。
<Comparative Example 5>
(Making magnetic particles)
(Formation of magnetic layer on the surface of core particles)
As core particles, 3 g of silica particles (average particle size: 0.3 μm, specific gravity: 2 g / cm 3 ) were weighed. As the magnetic particles, 10 g of hydrophobized magnetic particles (EMG1400) manufactured by Ferotec Co., Ltd. was weighed. These particles were sufficiently crushed in a mortar and mixed to prepare mixed particles. Next, the mixed particles were treated using a hybridization system NHS-0 type (manufactured by Nara Kikai Seisakusho Co., Ltd.) at a rotation speed of 16200 rpm (rotation speed 100 m / sec) for 5 minutes. 13 g of particles having a core-shell structure in which the surface layer of the particles was coated with the magnetic material particles (the magnetic material layer was formed) was obtained.

(樹脂層の形成)
次に、得られたコアシェル構造の粒子0.3gを秤量し20mLのメタノールに分散させた。この分散液に、シランカップリング剤として、3-メタクリルオキシプロピルトリメトキシシラン(LS-3380、信越化学工業製)を38μL追加して3時間撹拌した。次に、ネオジム磁石でコアシェル構造の粒子を捕集しながらメタノールを除去し、純水で十分洗浄した後60mLの純水を追加して水分散液を得た。
(Formation of resin layer)
Next, 0.3 g of the obtained core-shell structure particles were weighed and dispersed in 20 mL of methanol. 38 μL of 3-methacryloxypropyltrimethoxysilane (LS-3380, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to this dispersion as a silane coupling agent, and the mixture was stirred for 3 hours. Next, methanol was removed while collecting particles having a core-shell structure with a neodymium magnet, and the mixture was sufficiently washed with pure water, and then 60 mL of pure water was added to obtain an aqueous dispersion.

次に、この分散液を4つ口のフラスコ(200mL)に入れ、窒素バブリングしながら2時間撹拌した。続いて、この分散液にキシダ化学製スチレンモノマーを0.5mL添加して30分撹拌した。この段階で、窒素バブリングから窒素フローに切り替えた。 Next, this dispersion was placed in a four-necked flask (200 mL) and stirred for 2 hours while bubbling nitrogen. Subsequently, 0.5 mL of a styrene monomer manufactured by Kishida Chemical was added to this dispersion, and the mixture was stirred for 30 minutes. At this stage, we switched from nitrogen bubbling to nitrogen flow.

次に、0.05gの過硫酸カリウム(シグマアルドリッチ製)を予め窒素バブリングで脱気した純水20mLに溶解して、フラスコに添加した。次に、オイルバスを用いて、60℃に昇温して5時間保持した。続いて、グリシジルメタクリレート(キシダ化学製)を1mL添加して、さらに5時間保持して重合を終了した。重合終了後、純水で十分に洗浄して樹脂(ポリグリシジルメタクリレート)で被覆されたコアシェル粒子を完成した。 Next, 0.05 g of potassium persulfate (manufactured by Sigma-Aldrich) was dissolved in 20 mL of pure water previously degassed by nitrogen bubbling and added to the flask. Next, using an oil bath, the temperature was raised to 60 ° C. and held for 5 hours. Subsequently, 1 mL of glycidyl methacrylate (manufactured by Kishida Chemical) was added and held for another 5 hours to complete the polymerization. After the completion of the polymerization, the core-shell particles were sufficiently washed with pure water to complete the core-shell particles coated with the resin (polyglycidyl methacrylate).

(作製した磁性粒子の分析)
作製した磁性粒子をTEMで観察した。20個の粒子の長径の長さを測定して平均値を算出した結果、体積平均粒径が0.5μmであることが確認できた。また、シリカコア粒子の表層には、平均粒径が10nmの磁性体粒子を含む層が50nmの厚さに積層されていて、その上に樹脂層50nmが形成されていた(磁性体粒子を含む層と樹脂層を合わせて磁性体層とする)。磁性体粒子(マグネタイト)の比重を5.2g/cm、シリカコア粒子の比重を2.0g/cm、樹脂の比重を1.0g/cmとして、TGにより加熱時の重量減少を測定して磁性層の磁性体粒子の密度を見積もると約33%の割合であった。また、磁性粒子の比重は、TEMとTGから算出した粒子の比重は2.19g/cmであった。また、純水に0.01%の濃度で分散した粒子の平均粒径をDLSで測定したところ0.52μmであった。
(Analysis of the produced magnetic particles)
The produced magnetic particles were observed by TEM. As a result of measuring the length of the major axis of 20 particles and calculating the average value, it was confirmed that the volume average particle size was 0.5 μm. Further, on the surface layer of the silica core particles, a layer containing magnetic particles having an average particle size of 10 nm was laminated to a thickness of 50 nm, and a resin layer of 50 nm was formed on the layer (layer containing magnetic particles). And the resin layer are combined to form a magnetic material layer). The weight loss during heating was measured by TG, with the specific gravity of the magnetic particles (magnetite) being 5.2 g / cm 3 , the specific gravity of the silica core particles being 2.0 g / cm 3 , and the specific density of the resin being 1.0 g / cm 3 . The density of the magnetic particles in the magnetic layer was estimated to be about 33%. The specific gravity of the magnetic particles was 2.19 g / cm 3 , which was calculated from TEM and TG. The average particle size of the particles dispersed in pure water at a concentration of 0.01% was measured by DLS and found to be 0.52 μm.

(免疫検査用の粒子の検出感度の確認)
実施例1と同様の手順で、粒子表面にカルボキシル基を形成し、感度特性を評価した。免疫検査用の粒子は含有量が0.01%となるようにHEPES緩衝液に分散させた。この分散液をセンサー内に200μL滴下した。電磁石で2分間、重力方向に磁場を印加した後、磁場をOFFして7分間静置した。次に、電磁石で30秒間、磁性粒子がセンサーから遠ざかる方向に磁場を印加した後出射光量を測定したが。出射光量は、免疫検査用の粒シオン分散液を滴下した直後の出射光量から80%低下しており、抗原がないにもかかわらず光量の低下が生じ正確な検出ができなかった。
(Confirmation of detection sensitivity of particles for immunological test)
A carboxyl group was formed on the particle surface in the same procedure as in Example 1, and the sensitivity characteristics were evaluated. Particles for immunoassay were dispersed in HEPES buffer so that the content was 0.01%. 200 μL of this dispersion was dropped into the sensor. After applying a magnetic field in the direction of gravity for 2 minutes with an electromagnet, the magnetic field was turned off and allowed to stand for 7 minutes. Next, the amount of light emitted after applying a magnetic field in the direction in which the magnetic particles move away from the sensor was measured with an electromagnet for 30 seconds. The amount of emitted light was 80% lower than the amount of emitted light immediately after dropping the grain Zion dispersion for immunological examination, and the amount of light was reduced even though there was no antigen, and accurate detection could not be performed.

<比較例6>
(磁性粒子の作製)
(コア粒子の表面への磁性体層の形成)
コア粒子として、シリカ粒子(平均粒径:4.8μm、比重:2g/cm)を50g秤量した。磁性体粒子は、株式会社フェローテック製の疎水化処理された磁性体粒子(EMG1400)を10g秤量した。これらの粒子を乳鉢で十分粉砕、混合した混合粒子を作製した。次に、この混合粒子をハイブリダイゼーションシステムNHS-0型(奈良機械製作所(株)製)を使用して、羽の回転数16200rpm(回転速度100m/秒で5分間処理した。この処理により、シリカコア粒子の表層に磁性体粒子が被覆された(磁性体層が形成された)コアシェル構造の粒子を53g得た。
<Comparative Example 6>
(Making magnetic particles)
(Formation of magnetic layer on the surface of core particles)
As core particles, 50 g of silica particles (average particle size: 4.8 μm, specific gravity: 2 g / cm 3 ) were weighed. As the magnetic particles, 10 g of hydrophobized magnetic particles (EMG1400) manufactured by Ferotec Co., Ltd. was weighed. These particles were sufficiently crushed in a mortar and mixed to prepare mixed particles. Next, the mixed particles were treated using a hybridization system NHS-0 type (manufactured by Nara Kikai Seisakusho Co., Ltd.) at a rotation speed of 16200 rpm (rotation speed 100 m / sec) for 5 minutes. 53 g of particles having a core-shell structure in which the surface layer of the particles was coated with the magnetic material particles (the magnetic material layer was formed) was obtained.

(樹脂層の形成)
次に、得られたコアシェルコクゾウの粒子5gを秤量し20mLのメタノールに分散させた。この分散液に、シランカップリング剤として、3-メタクリルオキシプロピルトリメトキシシラン(LS-3380、信越化学工業製)を38μL追加して3時間撹拌した。次に、ネオジム磁石で磁性粒子を捕集しながらメタノールを除去し、純水で十分洗浄した後60mLの純水を追加して水分散液を得た。
(Formation of resin layer)
Next, 5 g of the obtained core shell maize weevil particles were weighed and dispersed in 20 mL of methanol. 38 μL of 3-methacryloxypropyltrimethoxysilane (LS-3380, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to this dispersion as a silane coupling agent, and the mixture was stirred for 3 hours. Next, methanol was removed while collecting magnetic particles with a neodymium magnet, and after sufficient washing with pure water, 60 mL of pure water was added to obtain an aqueous dispersion.

次に、この分散液を4つ口のフラスコ(200mL)に入れ、窒素バブリングしながら2時間撹拌した。続いて、この分散液にキシダ化学製スチレンモノマーを0.5mL添加して30分撹拌した。この段階で、窒素バブリングから窒素フローに切り替えた。 Next, this dispersion was placed in a four-necked flask (200 mL) and stirred for 2 hours while bubbling nitrogen. Subsequently, 0.5 mL of a styrene monomer manufactured by Kishida Chemical was added to this dispersion, and the mixture was stirred for 30 minutes. At this stage, we switched from nitrogen bubbling to nitrogen flow.

次に、0.05gの過硫酸カリウム(シグマアルドリッチ製)を予め窒素バブリングで脱気した純水20mLに溶解して、フラスコに添加した。次に、オイルバスを用いて、60℃に昇温して5時間保持した。続いて、グリシジルメタクリレート(キシダ化学製)を1mL添加して、さらに5時間保持して重合を終了した。重合終了後、純水で十分に洗浄して樹脂(ポリグリシジルメタクリレート)で被覆したコアシェル粒子を完成した。 Next, 0.05 g of potassium persulfate (manufactured by Sigma-Aldrich) was dissolved in 20 mL of pure water previously degassed by nitrogen bubbling and added to the flask. Next, using an oil bath, the temperature was raised to 60 ° C. and held for 5 hours. Subsequently, 1 mL of glycidyl methacrylate (manufactured by Kishida Chemical) was added and held for another 5 hours to complete the polymerization. After the completion of the polymerization, the core-shell particles were sufficiently washed with pure water and coated with a resin (polyglycidyl methacrylate) to complete the core-shell particles.

(作製した磁性粒子の分析)
作製した磁性粒子をTEMで観察した。20個の粒子の長径の長さを測定して平均値を算出した結果、体積平均粒径5.0μmの粒子サイズであることが確認できた。また、シリカコア粒子の表層には、平均粒径が10nmの磁性体粒子を含む層が50nmの厚さに積層されていて、その上に樹脂層50nmが形成されていた(磁性体粒子を含む層と樹脂層を合わせて磁性体層とする)。磁性体粒子(マグネタイト)の比重を5.2g/cm、シリカコア粒子の比重を2.0g/cm、樹脂の比重を1.0g/cmとして、TGにより加熱時の重量減少を測定して磁性層の磁性体微粒子の密度を見積もると約32%の割合であった。また、粒子の比重は、TEMとTGから算出した粒子の比重は1.72g/cmであった。また、純水に0.01%の濃度で分散した粒子の平均粒径をDLSで測定したところ1.79μmであった。
(Analysis of the produced magnetic particles)
The produced magnetic particles were observed by TEM. As a result of measuring the length of the major axis of 20 particles and calculating the average value, it was confirmed that the particle size had a volume average particle diameter of 5.0 μm. Further, on the surface layer of the silica core particles, a layer containing magnetic particles having an average particle size of 10 nm was laminated to a thickness of 50 nm, and a resin layer of 50 nm was formed on the layer (layer containing magnetic particles). And the resin layer are combined to form a magnetic material layer). The weight loss during heating was measured by TG, with the specific gravity of the magnetic particles (magnetite) being 5.2 g / cm 3 , the specific gravity of the silica core particles being 2.0 g / cm 3 , and the specific density of the resin being 1.0 g / cm 3 . The density of the magnetic fine particles in the magnetic layer was estimated to be about 32%. The specific gravity of the particles was 1.72 g / cm 3 calculated from TEM and TG. The average particle size of the particles dispersed in pure water at a concentration of 0.01% was 1.79 μm as measured by DLS.

(免疫検査用の粒子の検出感度の確認)
実施例1と同様の手順で、粒子表面にカルボキシ基を形成し、感度特性を評価した。免疫検査用粒子の含有量が0.01%となるようにHEPES緩衝液に分散させた液200μLにCRP抗原を30μL添加し十分混合した後、免疫検査用の粒子の分散液をセンサー内に200μL滴下した。電磁石で40秒間重力方向に磁場を印加した後、磁場をOFFして2分50秒間静置した。次に、電磁石で30秒間粒子がセンサーから遠ざかる方向に磁場を印加した後出射光量を測定した。出射光量は、免疫検査用の粒子の分散液を滴下した直後の出射光量に対して約7%低下していたが、変化量が小さく正確な検出が困難であった。
(Confirmation of detection sensitivity of particles for immunological test)
A carboxy group was formed on the particle surface in the same procedure as in Example 1, and the sensitivity characteristics were evaluated. Add 30 μL of CRP antigen to 200 μL of the solution dispersed in HEPES buffer so that the content of the immunological test particles is 0.01%, mix well, and then add 200 μL of the dispersion of the immunological test particles in the sensor. Dropped. After applying a magnetic field in the direction of gravity for 40 seconds with an electromagnet, the magnetic field was turned off and allowed to stand for 2 minutes and 50 seconds. Next, the amount of emitted light was measured after applying a magnetic field with an electromagnet in a direction in which the particles moved away from the sensor for 30 seconds. The amount of emitted light was about 7% lower than the amount of emitted light immediately after dropping the dispersion of particles for immunoassay, but the amount of change was small and accurate detection was difficult.

100 磁性粒子
101 コア粒子
102 シェル層
103 磁性体層
104 樹脂層

100 Magnetic particles 101 Core particles 102 Shell layer 103 Magnetic material layer 104 Resin layer

Claims (14)

シリカを含むコア粒子と、前記コア粒子の表面のシェル層とを有する磁性粒子であって、
前記シェル層は、前記コア粒子に近い方から順に、磁性体粒子を含む磁性体層と、
リガンドを結合できる官能基を含む樹脂層と、を有し、
前記磁性粒子の体積平均粒径が0.6μm以上3.0μm以下であり、前記磁性粒子の比重が1.8g/cm以上5.0g/cm以下である磁性粒子。
A magnetic particle having a core particle containing silica and a shell layer on the surface of the core particle.
The shell layer includes a magnetic material layer containing magnetic material particles in order from the one closest to the core particles.
With a resin layer containing a functional group capable of binding a ligand,
Magnetic particles having a volume average particle size of 0.6 μm or more and 3.0 μm or less, and a specific gravity of 1.8 g / cm 3 or more and 5.0 g / cm 3 or less.
前記官能基が、アミノ基、カルボキシ基、水酸基、メルカプト基、チオール基、グリシジル基、マレイミド基、スクシンイミジル基、及びグリシジルオキシ基で構成される群から選ばれる少なくとも一種を含む請求項1に記載の磁性粒子。 The first aspect of claim 1, wherein the functional group comprises at least one selected from the group composed of an amino group, a carboxy group, a hydroxyl group, a mercapto group, a thiol group, a glycidyl group, a maleimide group, a succinimidyl group, and a glycidyloxy group. Magnetic particles. 前記樹脂層は、ポリ(メタ)アクリル酸ポリマー、ポリ(メタ)アクリルアミドポリマー、ポリグリシジル(メタ)アクリレート、ポリN-スクシンイミジルアクリレートで構成される群から選ばれる少なくとも一種を含む請求項1又は2に記載の磁性粒子。 The resin layer comprises at least one selected from the group composed of a poly (meth) acrylic acid polymer, a poly (meth) acrylamide polymer, a polyglycidyl (meth) acrylate, and a poly N-succinimidyl acrylate. Or the magnetic particles according to 2. 前記磁性粒子の比重が2.5g/cm以下である請求項1乃至3のいずれか1項に記載の磁性粒子。 The magnetic particle according to any one of claims 1 to 3, wherein the magnetic particle has a specific gravity of 2.5 g / cm 3 or less. 前記磁性粒子の比重が2.1g/cm以下である請求項1乃至4のいずれか1項に記載の磁性粒子。 The magnetic particle according to any one of claims 1 to 4, wherein the magnetic particle has a specific gravity of 2.1 g / cm 3 or less. 前記磁性粒子の体積平均粒径が0.7μm以上である請求項1乃至5のいずれか1項に記載の磁性粒子。 The magnetic particle according to any one of claims 1 to 5, wherein the magnetic particle has a volume average particle size of 0.7 μm or more. 前記磁性粒子の体積平均粒径が2.7μm以下である請求項1乃至6のいずれか1項に記載の磁性粒子。 The magnetic particle according to any one of claims 1 to 6, wherein the magnetic particle has a volume average particle size of 2.7 μm or less. 前記磁性体粒子が、鉄、ニッケル、及び酸化鉄からなる群より選択される少なくとも一種を含む請求項1乃至7のいずれか1項に記載の磁性粒子。 The magnetic particle according to any one of claims 1 to 7, wherein the magnetic particle contains at least one selected from the group consisting of iron, nickel, and iron oxide. 前記磁性体粒子がマグネタイト(Fe)、γ-酸化鉄(III)(γ-Fe)、フェライトで構成される群から選択される少なくとも一種を含む、請求項1乃至7のいずれか1項に記載の磁性粒子。 Claims 1 to 7, wherein the magnetic particles include at least one selected from the group composed of magnetite (Fe 3 O 4 ), γ-iron oxide (III) (γ-Fe 2 O 3 ), and ferrite. The magnetic particle according to any one item. 前記磁性体粒子の粒径が0nmより大きく、20nm以下である、請求項1乃至9のいずれか1項に記載の磁性粒子。 The magnetic particle according to any one of claims 1 to 9, wherein the magnetic particle has a particle size of more than 0 nm and 20 nm or less. 前記コア粒子の比重が1.8g/cm以上である請求項1乃至10のいずれか1項に記載の磁性粒子。 The magnetic particle according to any one of claims 1 to 10, wherein the core particles have a specific gravity of 1.8 g / cm 3 or more. 前記磁性体粒子の飽和磁化が、18emu/g以上である請求項1乃至11のいずれか1項に記載の磁性粒子。 The magnetic particle according to any one of claims 1 to 11, wherein the saturation magnetization of the magnetic particle is 18 emu / g or more. 請求項1乃至12のいずれか1項に記載の磁性粒子と、前記官能基に結合したリガンドとを有する免疫検査用の粒子。 A particle for an immunoassay having the magnetic particle according to any one of claims 1 to 12 and a ligand bound to the functional group. 請求項13に記載の免疫検査用の粒子と、前記免疫検査用の粒子を分散させる分散剤とを有する免疫検査用の試薬。 A reagent for an immunological test having the particles for an immunological test according to claim 13 and a dispersant for dispersing the particles for the immunological test.
JP2020178983A 2020-10-26 2020-10-26 Magnetic particle, immunity inspection particle, and inspection reagent Pending JP2022069994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020178983A JP2022069994A (en) 2020-10-26 2020-10-26 Magnetic particle, immunity inspection particle, and inspection reagent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020178983A JP2022069994A (en) 2020-10-26 2020-10-26 Magnetic particle, immunity inspection particle, and inspection reagent

Publications (1)

Publication Number Publication Date
JP2022069994A true JP2022069994A (en) 2022-05-12

Family

ID=81534193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020178983A Pending JP2022069994A (en) 2020-10-26 2020-10-26 Magnetic particle, immunity inspection particle, and inspection reagent

Country Status (1)

Country Link
JP (1) JP2022069994A (en)

Similar Documents

Publication Publication Date Title
JP5279357B2 (en) Composite particle, method for producing the same, dispersion, magnetic biosensing device, and magnetic biosensing method
US20120061608A1 (en) Functional particle with rough-surfaced polymer coating
US11231414B2 (en) Magnetic composite particles, method for manufacturing the same, and immunoassay particles
WO2015050149A1 (en) Fluorescence-labeled particle
WO2015180110A1 (en) Method for preparing magnetic microsphere for separation of biological protein and use thereof
WO2015050150A1 (en) Method for detecting target substance
JP4935973B2 (en) Organic polymer particles and method for producing the same
WO2004042397A1 (en) High sensitivity magnetic marker used for immune response measurement
WO2019208711A1 (en) Particle and production method therefor
JP6900207B2 (en) A method for producing a probe-binding carrier and a method for detecting or separating a target substance.
JP4984025B2 (en) Organic polymer particle, method for producing the same, and probe binding particle
CN114555650A (en) Granules and method for producing granules
JP2022069994A (en) Magnetic particle, immunity inspection particle, and inspection reagent
JP2006226689A (en) Magnetic particle for immunological examination
JP2006226690A (en) Magnetic particle for immunological examination
JP2005069926A (en) Magnetic particle for immunological inspection
JP2013167528A (en) Functional particle subjected to fluorine-containing polymer coating
WO2022209952A1 (en) Particles and method for producing same
JP6289705B1 (en) Method for producing probe binding carrier, probe binding carrier and method for detecting or separating target substance
JP4803366B2 (en) ORGANIC POLYMER PARTICLE AND METHOD FOR PRODUCING THE SAME, ORGANIC POLYMER PARTICLE FOR PROBE CONNECTION AND MANUFACTURING METHOD THEREOF
JP2020183946A (en) Particle, affinity particle, inspection reagent, and detection method
JP4985916B2 (en) Method for producing carboxyl group-containing particles
WO2022259989A1 (en) Polarized light-emitting particles for specimen inspection
WO2022259946A1 (en) Method for detecting and measuring target substance on basis of measurement of polarization anisotropy, and particles used therefor
JP2021060403A (en) Magnetic particle for immunoassay and manufacturing method therefor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20201105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231023

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20231213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240516