JP2022065389A - Fire detection device, disaster prevention facility, and fire detection method - Google Patents

Fire detection device, disaster prevention facility, and fire detection method Download PDF

Info

Publication number
JP2022065389A
JP2022065389A JP2020173941A JP2020173941A JP2022065389A JP 2022065389 A JP2022065389 A JP 2022065389A JP 2020173941 A JP2020173941 A JP 2020173941A JP 2020173941 A JP2020173941 A JP 2020173941A JP 2022065389 A JP2022065389 A JP 2022065389A
Authority
JP
Japan
Prior art keywords
fire
smoke
light
feature amount
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020173941A
Other languages
Japanese (ja)
Inventor
秀成 松熊
Hidenari Matsukuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2020173941A priority Critical patent/JP2022065389A/en
Publication of JP2022065389A publication Critical patent/JP2022065389A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a fire detection device, disaster prevention facility, and fire detection method that enable fire detection with high accuracy by accurately observing a time change in smoke density in the fire detection device.SOLUTION: An observation unit 16 is configured to receive scattering light generated by irradiating smoke flowing into a smoke detection space from a monitor area with detection light from a light emitting element 30 by a light reception element 32, and observe smoke density. A processing unit 18 is configured to continuously emit the light emitting element 30 to observe the smoke density when the smoke density observed by intermittent light emissions of the light emitting element 30 satisfies a prescribed threshold condition, for example, is equal to or greater than a prescribed threshold, and generate observation data including a plurality of observation values obtained in continuous time sequence every prescribed time. A detection unit 20 is configured to detect a prescribe amount of characteristic such as an integrated value, average value and the like for the plurality of observation values included in the observation data; and detect a fire when the amount of characteristic satisfies a prescribed fire determination condition.SELECTED DRAWING: Figure 2

Description

本発明は、火災による煙を観測して火災を検出する光電式の火災検出装置、防災設備及び火災検出方法に関する。 The present invention relates to a photoelectric fire detection device for observing smoke caused by a fire and detecting a fire, disaster prevention equipment, and a fire detection method.

従来、火災検出装置である光電式の煙感知器は、検煙空間に流入した煙に発光素子から光を照射したときに生ずる散乱光を受光素子で受光して煙濃度を観測し、観測した煙濃度が所定の火災判断条件を充足したときに火災と検出し、例えば受信機で火災警報動作を行わせている。 Conventionally, a photoelectric smoke detector, which is a fire detection device, receives scattered light generated when the smoke flowing into a smoke detection space is irradiated with light from a light emitting element by a light receiving element, and observes and observes the smoke concentration. A fire is detected when the smoke concentration satisfies a predetermined fire judgment condition, and a fire alarm operation is performed by a receiver, for example.

また、煙感知器は、消費電流を低減するために所定周期ごとに発光素子を発光駆動して煙濃度を観測する間欠発光としている。 Further, the smoke detector uses intermittent light emission to observe the smoke concentration by driving the light emitting element to emit light at predetermined intervals in order to reduce the current consumption.

実開平5-30990号公報Jikkenhei 5-30990 Gazette 特開昭63-167242号公報Japanese Unexamined Patent Publication No. 63-167242

しかしながら、このような従来の煙感知器にあっては、火災により発生した煙による煙濃度の時間的な変化を、間欠発光の周期に対応して離散的に観測しており、間欠発光の周期が長くなると煙濃度の時間変化を正確に観測することができず、火災判断の精度が低下する。 However, in such a conventional smoke detector, the temporal change of the smoke concentration due to the smoke generated by the fire is observed discretely corresponding to the intermittent emission cycle, and the intermittent emission cycle is observed. If it becomes long, the time change of smoke concentration cannot be observed accurately, and the accuracy of fire judgment decreases.

また、観測した煙濃度から高い精度で火災を検出するためには、時間的に連続して変化する複数の煙濃度を含む観測データから、火災に固有な煙の特徴量を算出して判断する必要があるが、間欠発光により離散的に観測される複数の煙濃度では、各煙濃度の時間間隔が離れすぎで、その間における煙濃度の時間的変化が失われており、火災固有の煙の特徴量を捉えることが困難な場合がある。 In addition, in order to detect a fire with high accuracy from the observed smoke concentration, the characteristic amount of smoke peculiar to the fire is calculated and judged from the observation data including a plurality of smoke concentrations that change continuously with time. Although it is necessary, in multiple smoke concentrations observed discretely by intermittent emission, the time interval of each smoke concentration is too far apart, and the temporal change of smoke concentration between them is lost, and the smoke peculiar to fire It may be difficult to capture the feature amount.

本発明は、煙濃度の時間変化を正確に観測することで精度の高い火災検出を可能とする煙検出装置、防災設備及び火災検出方法を提供することを目的とする。 An object of the present invention is to provide a smoke detection device, disaster prevention equipment, and a fire detection method that enable highly accurate fire detection by accurately observing changes in smoke concentration over time.

(火災検出装置1)
本発明は、火災検出装置であって、
所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測する観測部と、
検出光を連続発光して煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成する処理部と、
観測データに基づいて火災を検出する検出部と、
を設けたことを特徴とする。
(Fire detection device 1)
The present invention is a fire detection device.
An observation unit that observes the smoke concentration by irradiating the smoke that has flowed into the smoke detection space from a predetermined monitoring area with detected light and receiving scattered or attenuated light.
A processing unit that continuously emits detection light to observe the smoke concentration and generates observation data including multiple observation values obtained in chronological order for each predetermined time.
A detector that detects fires based on observation data,
Is characterized by the provision of.

(火災検出装置2)
本発明の別形態として、火災検出装置であって、
所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測する観測部と、
検出光を間欠発光して観測された煙濃度が所定の閾値条件を充足した場合に、検出光を連続発光して煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成する処理部と、
観測データに基づいて火災を検出する検出部と、
を設けたことを特徴とする。
(Fire detection device 2)
As another embodiment of the present invention, it is a fire detection device.
An observation unit that observes the smoke concentration by irradiating the smoke that has flowed into the smoke detection space from a predetermined monitoring area with detected light and receiving scattered or attenuated light.
When the smoke concentration observed by intermittently emitting the detected light satisfies a predetermined threshold condition, the detected light is continuously emitted to observe the smoke concentration, and the smoke concentration is continuously obtained in chronological order for each predetermined time. A processing unit that generates observation data including multiple observation values
A detector that detects fires based on observation data,
Is characterized by the provision of.

(検出部による火災検出)
検出部は、
観測データに含まれる複数の観測値を対象に所定の特徴量を検出し、当該特徴量が所定の火災判断条件を充足した場合に火災と検出する。
(Fire detection by the detector)
The detector is
A predetermined feature amount is detected for a plurality of observed values included in the observation data, and a fire is detected when the feature amount satisfies a predetermined fire judgment condition.

(特徴量に基づく火災判断1)
検出部は、所定時間ごとに検出される特徴量が所定の閾値以上又は閾値を超えた場合に火災と判断する。
(Fire judgment based on features 1)
The detection unit determines that a fire occurs when the feature amount detected at predetermined time intervals is equal to or greater than a predetermined threshold value or exceeds the threshold value.

(特徴量に基づく火災判断2)
検出部は、所定時間ごとに検出される特徴量が所定回数連続して所定の閾値以上又は閾値を超えた場合に火災と判断する。
(Fire judgment based on features 2)
The detection unit determines that a fire occurs when the feature amount detected at each predetermined time continuously exceeds or exceeds a predetermined threshold value a predetermined number of times.

(特徴量に基づく火災判断3)
検出部は、所定時間ごとに検出される特徴量について、現在の特徴量と前回の特徴量の比率が所定の閾値以上又は閾値を超えた場合に火災と判断する。
(Fire judgment based on features 3)
The detection unit determines that the feature amount detected every predetermined time is a fire when the ratio of the current feature amount to the previous feature amount exceeds or exceeds a predetermined threshold value.

(特徴量に基づく火災判断4)
検出部は、所定時間ごとに検出される特徴量について、現在の特徴量と前回の特徴量の比率が所定回数連続して所定の閾値以上又は閾値を超えた場合に火災と判断する。
(Fire judgment based on features 4)
The detection unit determines that the feature amount detected every predetermined time is a fire when the ratio of the current feature amount to the previous feature amount continuously exceeds or exceeds a predetermined threshold value a predetermined number of times.

(特徴量に基づく火災判断5)
検出部は、所定時間ごとに検出される特徴量について、現在の特徴量と前回の特徴量の差分が所定の閾値以上又は閾値を超えた場合に火災と判断する。
(Fire judgment based on features 5)
The detection unit determines that the feature amount detected every predetermined time is a fire when the difference between the current feature amount and the previous feature amount exceeds or exceeds a predetermined threshold value.

(特徴量に基づく火災判断6)
検出部は、所定時間ごとに検出される特徴量について、現在の特徴量と前回の特徴量の差分が所定回数連続して所定の閾値以上又は閾値を超えた場合に火災と判断する。
(Fire judgment based on features 6)
The detection unit determines that the feature amount detected every predetermined time is a fire when the difference between the current feature amount and the previous feature amount continuously exceeds or exceeds a predetermined threshold value a predetermined number of times.

(特徴量)
検出部は、観測データの特徴量として、観測データに含まれる複数の観測値の積分値、平均値又はピーク値を検出する。
(Feature value)
The detection unit detects the integrated value, the average value, or the peak value of a plurality of observed values included in the observed data as the feature amount of the observed data.

(防災設備1)
前述した火災検出装置を用いた防災設備に於いて、
受信機と、火災を検出して受信機に火災信号を送信する感知器とを備え、
感知器に、観測部、処理部及び検出部を設けたことを特徴とする。
(Disaster prevention equipment 1)
In the disaster prevention equipment using the fire detection device mentioned above,
Equipped with a receiver and a detector that detects a fire and sends a fire signal to the receiver.
The sensor is provided with an observation unit, a processing unit, and a detection unit.

(防災設備2)
前述した火災検出装置を用いた防災設備に於いて、
受信機と、火災を検出して受信機に火災信号を送信する感知器とを備え、
感知器に、観測部及び処理部を設け、
受信機に、検出部を設けたことを特徴とする。
(Disaster prevention equipment 2)
In the disaster prevention equipment using the fire detection device mentioned above,
Equipped with a receiver and a detector that detects a fire and sends a fire signal to the receiver.
The sensor is provided with an observation unit and a processing unit.
The receiver is provided with a detection unit.

(火災検出方法1)
本発明は、火災検出方法であって、
観測部により、所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測し、
処理部により、検出光を連続発光して煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成し、
検出部により、観測データに基づいて火災を検出する、
ことを特徴とする。
(Fire detection method 1)
The present invention is a fire detection method.
The observation unit observes the smoke concentration by receiving the scattered light or attenuated light generated by irradiating the smoke flowing into the smoke detection space from the predetermined monitoring area with the detection light.
The processing unit continuously emits the detected light to observe the smoke concentration, and generates observation data including multiple observation values obtained continuously in time series at predetermined time intervals.
The detector detects a fire based on the observation data.
It is characterized by that.

(火災検出方法2)
本発明は、火災検出方法であって、
観測部により、所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測し、
処理部により、検出光を間欠発光して観測された煙濃度が所定の閾値条件を充足した場合に、検出光を連続発光して煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成し、
検出部により、観測データに基づいて火災を検出する、
ことを特徴とする。
(Fire detection method 2)
The present invention is a fire detection method.
The observation unit observes the smoke concentration by receiving the scattered light or attenuated light generated by irradiating the smoke flowing into the smoke detection space from the predetermined monitoring area with the detection light.
When the smoke concentration observed by intermittently emitting the detected light by the processing unit satisfies a predetermined threshold condition, the detected light is continuously emitted to observe the smoke concentration, and the smoke concentration is continuously observed every predetermined time. Generate observation data including multiple observation values obtained in time series
The detector detects a fire based on the observation data.
It is characterized by that.

(検出部による火災検出方法)
火災検出方法に於いて、
検出部は、
観測データに含まれる複数の観測値を対象に所定の特徴量を検出し、当該特徴量が所定の火災判断条件を充足したときに火災と検出する。
(Fire detection method by the detector)
In the fire detection method
The detector is
A predetermined feature amount is detected for a plurality of observed values included in the observation data, and a fire is detected when the feature amount satisfies a predetermined fire judgment condition.

(火災検出装置1の基本的な効果)
本発明の火災検出装置によれば、検出光を連続発光して煙濃度を観測することで、時系列に連続する複数の煙濃度を含む観測データを生成し、煙濃度の時間的な変化を正確に示す観測データに基づいて、高い精度で火災を検出すること可能とする。
(Basic effect of fire detection device 1)
According to the fire detection device of the present invention, by continuously emitting the detected light and observing the smoke concentration, observation data including a plurality of continuous smoke concentrations in a time series is generated, and the change over time of the smoke concentration is generated. It is possible to detect fires with high accuracy based on the observation data shown accurately.

(火災検出装置2の基本的な効果)
本発明の火災検出装置によれば、検出光の間欠発光して観測された煙濃度が所定の閾値条件を充足した場合、例えば、火災予兆といえるような所定の閾値以上の煙濃度に増加した場合に、検出光を連続発光して煙濃度を観測することで、時系列に連続する複数の煙濃度を含む観測データを生成し、煙濃度の時間的な変化を正確に示す観測データに基づいて、高い精度で火災を検出すること可能とする。
(Basic effect of fire detection device 2)
According to the fire detection device of the present invention, when the smoke concentration observed by intermittent light emission of the detected light satisfies a predetermined threshold condition, for example, the smoke concentration increases to a smoke concentration equal to or higher than a predetermined threshold that can be said to be a fire sign. In some cases, by continuously emitting the detected light and observing the smoke concentration, observation data including multiple smoke concentrations that are continuous in time series is generated, and based on the observation data that accurately shows the temporal change of the smoke concentration. Therefore, it is possible to detect a fire with high accuracy.

また、煙濃度が閾値を下回っている通常監視状態では検出光を間欠発光しており、検出光を連続光する煙濃度が所定の閾値条件を充足した状態の発生頻度は極めて少なく例外的なものであることから、運用期間を全体的にみると、検出光の発光に必要な消費電流を、検出光の間欠発光のみの場合と略同等に低減できる。 In addition, in the normal monitoring state where the smoke concentration is below the threshold value, the detection light is emitted intermittently, and the frequency of occurrence of the state where the smoke concentration that continuously illuminates the detection light satisfies the predetermined threshold value is extremely low and exceptional. Therefore, when the operation period is viewed as a whole, the current consumption required for light emission of the detected light can be reduced to substantially the same as in the case of only intermittent light emission of the detected light.

(検出部による火災検出の効果)
また、検出部は、観測データに含まれる時系列に連続する複数の煙濃度を対象に所定の特徴量を検出し、当該特徴量が所定の火災判断条件を充足した場合に火災と検出することで、より精度の高い火災検出を可能とする。
(Effect of fire detection by the detector)
In addition, the detection unit detects a predetermined feature amount for a plurality of continuous smoke concentrations included in the observation data in a time series, and detects a fire when the feature amount satisfies the predetermined fire judgment condition. This enables more accurate fire detection.

(特徴量に基づく火災判断の効果)
検出部は、観測データに基づき所定時間ごとに検出される特徴量、現在の特徴量と前回の特徴量の比率、或いは、現在の特徴量と前回の特徴量の差分が、それぞれ、所定の火災判断条件を充足した場合、例えば、所定の閾値以上又は閾値を超えた場合、もしくは、所定回数連続して所定の閾値以上又は閾値を超えた場合に、火災と判断することで、火災に固有な煙濃度の時間的変化の特徴量を捉えた判断により、より精度の高い火災検出を可能とする。
(Effect of fire judgment based on features)
In the detection unit, the feature amount detected at predetermined time intervals based on the observation data, the ratio of the current feature amount to the previous feature amount, or the difference between the current feature amount and the previous feature amount is a predetermined fire. When the judgment conditions are satisfied, for example, when the predetermined threshold or more or the threshold is exceeded, or when the predetermined threshold or more or the threshold is exceeded for a predetermined number of times in a row, the fire is determined to be unique to the fire. It enables more accurate fire detection by making a judgment that captures the feature amount of the change of smoke concentration over time.

(特徴量の効果)
また、検出部は、観測データに含まれる時系列に連続する複数の煙濃度から積分値、平均値又はピーク値を検出して一つの特徴量を求めることで、簡単な処理により精度の高い火災検出を可能とする。
(Effect of features)
In addition, the detection unit detects the integrated value, average value, or peak value from multiple smoke concentrations that are continuous in the time series included in the observation data, and obtains one feature amount, so that a fire with high accuracy can be performed by simple processing. Enables detection.

(防災設備1の効果)
本発明は、前述した火災検出装置を用いた防災設備であって、感知器に、観測部、処理部及び検出部の全てを設けることで、感知器側の変更のみで対処でき、既設の設備であっても、ベースに装着している感知器を外し、観測部、処理部及び検出部の全てを設けた感知器に交換することで、簡単に対処できる。
(Effect of disaster prevention equipment 1)
The present invention is a disaster prevention facility using the above-mentioned fire detection device, and by providing the detector with all of the observation unit, the processing unit, and the detection unit, it can be dealt with only by changing the sensor side, and the existing equipment can be dealt with. Even so, it can be easily dealt with by removing the sensor mounted on the base and replacing it with a sensor provided with all of the observation unit, the processing unit, and the detection unit.

(防災設備2の効果)
本発明は、前述した火災検出装置を用いた防災設備であって、感知器に観測部と処理部を設け、受信機に検出部を設けることで、感知器側の変更を少なくし、設備全体としてのコストを低減可能とする。
(Effect of disaster prevention equipment 2)
The present invention is a disaster prevention equipment using the above-mentioned fire detection device. By providing an observation unit and a processing unit in the detector and a detection unit in the receiver, changes on the sensor side are reduced and the entire equipment is provided. It is possible to reduce the cost as a result.

(火災検出方法1及び2の効果)
本発明は、火災検出方法であっては、前述した火災検出装置1及び2と同様の効果が得られる。
(Effects of fire detection methods 1 and 2)
In the present invention, the same effect as the above-mentioned fire detection devices 1 and 2 can be obtained in the fire detection method.

本発明の火災検出装置、防災設備及び火災検出方法の基本的な概念を示した説明図である。It is explanatory drawing which showed the basic concept of the fire detection apparatus, disaster prevention equipment, and a fire detection method of this invention. 図1に対応するP型の防災設備を対象とした本発明の具体的な実施形態を示した防災設備の説明図である。It is explanatory drawing of the disaster prevention equipment which showed the specific embodiment of this invention for the P type disaster prevention equipment corresponding to FIG. 1. 図2の感知器の実施形態による制御動作を示したフローチャートである。It is a flowchart which showed the control operation by the embodiment of the sensor of FIG. 受信機側で火災を判断する本発明の火災検出装置、防災設備及び火災検出方法の他の基本的な概念を示した説明図である。It is explanatory drawing which showed the other basic concept of the fire detection device, the disaster prevention equipment, and the fire detection method of this invention which judges a fire on the receiver side. 図4に対応するR型の防災設備を対象とした本発明の具体的な実施形態を示した防災設備の説明図である。It is explanatory drawing of the disaster prevention equipment which showed the specific embodiment of this invention for the R type disaster prevention equipment corresponding to FIG. 図5のR型の防災設備の実施形態による制御動作をタイムチャート形式で示したフローチャートである。It is a flowchart which showed the control operation by the embodiment of the R type disaster prevention equipment of FIG. 5 in the time chart format.

以下に、本発明に係る火災検出装置、防災設備及び火災検出方法の実施形態を図面に基づいて詳細に説明する。なお、この実施形態により、この発明が限定されるものではない。 Hereinafter, embodiments of the fire detection device, disaster prevention equipment, and fire detection method according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.

[実施形態の基本的な概念]
図1は防災設備1に対応した本発明による実施形態の基本的な概念を示した説明図であり、図1を参照して実施形態の基本的な概念について説明する。本実施形態は、概略的に、火災検出装置、防災設備、及び火災検出方法に関するものである。尚、防災設備2に対応した実施形態については別途説明する。
[Basic concept of embodiment]
FIG. 1 is an explanatory diagram showing the basic concept of the embodiment according to the present invention corresponding to the disaster prevention equipment 1, and the basic concept of the embodiment will be described with reference to FIG. The present embodiment generally relates to a fire detection device, disaster prevention equipment, and a fire detection method. The embodiment corresponding to the disaster prevention equipment 2 will be described separately.

「火災検出装置」とは、監視領域の火災を検出する手段であり、例えば、煙感知器、火災感知器、火災警報器等を含む概念である。 The "fire detection device" is a means for detecting a fire in a monitoring area, and is a concept including, for example, a smoke detector, a fire detector, a fire alarm, and the like.

ここで、「監視領域」とは、火災検出装置により監視の対象となる領域であり、一定の広がりをもった屋外或いは屋内の空間であり、例えば、建物の部屋、廊下、階段等の空間を含む概念である。 Here, the "monitoring area" is an area to be monitored by a fire detection device, and is an outdoor or indoor space having a certain extent, for example, a space such as a building room, a corridor, or a staircase. It is a concept that includes.

火災検出装置は、一例として受信機10と感知器12で構成される防災設備の感知器12であり、観測部16、処理部18及び検出部20を備える。 As an example, the fire detection device is a detector 12 of disaster prevention equipment composed of a receiver 10 and a detector 12, and includes an observation unit 16, a processing unit 18, and a detection unit 20.

「観測部16」とは、所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測するものである。ここで「検煙空間」とは、外部からの煙は流入するが光の入射は遮られた煙を検出するための空間であり、発光素子と受光素子が設置され、流入した煙に発光素子からの検出光を照射したときに生ずる散乱光又は減衰光を受光素子で受光して煙濃度を観測するものであり、散乱式検煙部又は減光式検煙部を含む概念である。 The "observation unit 16" observes the smoke concentration by receiving scattered light or attenuated light generated by irradiating the smoke flowing into the smoke detection space from a predetermined monitoring area with detection light. Here, the "smoke detection space" is a space for detecting smoke in which smoke from the outside flows in but the incident of light is blocked, and a light emitting element and a light receiving element are installed, and a light emitting element is installed in the inflowing smoke. The smoke concentration is observed by receiving the scattered light or the attenuated light generated when the detection light from the light is irradiated by the light receiving element, and the concept includes a scattering type smoke detecting unit or a dimming type smoke detecting unit.

また、「処理部18」とは、検出光を間欠発光することにより観測された煙濃度が所定の閾値条件を充足した場合、一例として、煙濃度が閾値以上又は閾値を超えた場合に、検出光を連続発光して煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成するものである。ここで、「間欠発光」とは、発光素子を所定周期ごとに所定時間のあいだ発光駆動することで検出光を間欠的に発光することを意味する。また、「連続発光」とは、発光素子を駆動し続けることで検出光を連続的に発光することを意味する。また、「所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データ」とは、検出光を連続発光したときに、所定時間のあいだに連続して観測されるアナログ観測値(アナログ煙濃度)を所定周波数でサンプリングしてA/D変換した複数のデジタル観測値(デジタル煙濃度)を含む時系列データを含む概念である。また、処理部18は間欠発光から連続発光に切り替えを行わず、常に検出光を連続発光としても良い。 Further, the "processing unit 18" detects when the smoke concentration observed by intermittently emitting the detected light satisfies a predetermined threshold value condition, for example, when the smoke concentration is equal to or higher than the threshold value or exceeds the threshold value. It emits light continuously to observe the smoke concentration, and generates observation data including a plurality of observation values continuously obtained in time series at predetermined time intervals. Here, "intermittent light emission" means that the detection light is intermittently emitted by driving the light emitting element to emit light for a predetermined time at predetermined periods. Further, "continuous light emission" means that the detected light is continuously emitted by continuously driving the light emitting element. In addition, "observation data including a plurality of observation values continuously obtained in time series for each predetermined time" is continuously observed during a predetermined time when the detected light is continuously emitted. It is a concept including time series data including a plurality of digital observation values (digital smoke concentration) obtained by sampling analog observation values (analog smoke concentration) at a predetermined frequency and performing A / D conversion. Further, the processing unit 18 may not switch from intermittent light emission to continuous light emission, and may always use the detected light as continuous light emission.

また、「検出部20」とは、処理部18で生成された観測データに基づいて火災を検出する処理を行うものであり、例えば、観測データに含まれる複数の観測値を対象に所定の特徴量を検出し、当該特徴量が所定の火災判断条件を充足した場合に火災と検出するものである。 Further, the "detection unit 20" is for performing a process of detecting a fire based on the observation data generated by the processing unit 18, for example, a predetermined feature for a plurality of observation values included in the observation data. The amount is detected, and when the feature amount satisfies a predetermined fire judgment condition, it is detected as a fire.

ここで「特徴量」とは、観測データに含まれる複数の観測値から算出される例えば積分値、平均値又はピーク値等を含む概念である。また「特徴量が所定の火災判断条件を充足する」とは、例えば、観測データに基づき所定時間ごとに検出される特徴量、現在の特徴量と前回の特徴量の比率、或いは、現在の特徴量と前回の特徴量の差分が、それぞれ、所定の閾値以上又は閾値を超えた場合、もしくは、所定回数連続して所定の閾値以上又は閾値を超えた場合に火災と判断することを含む概念である。 Here, the "feature amount" is a concept including, for example, an integrated value, an average value, a peak value, etc. calculated from a plurality of observed values included in the observed data. Further, "the feature amount satisfies the predetermined fire judgment condition" means, for example, the feature amount detected at predetermined time intervals based on the observation data, the ratio of the current feature amount to the previous feature amount, or the current feature. The concept includes determining that a fire occurs when the difference between the amount and the previous feature amount exceeds a predetermined threshold value or exceeds the threshold value, or when the difference exceeds a predetermined threshold value or exceeds the threshold value consecutively a predetermined number of times. be.

以下の説明では、「監視領域」が「建物の部屋」であり、「観測部」が「散乱光式煙検出部を備えた観測部」であり、「煙の観測値」が「煙濃度」であり、「観測データの特徴量」が「複数の煙濃度の積分値」である場合について説明する。 In the following explanation, the "monitoring area" is the "room of the building", the "observation unit" is the "observation unit equipped with the scattered light type smoke detection unit", and the "smoke observation value" is the "smoke concentration". The case where the "feature amount of the observation data" is the "integrated value of a plurality of smoke concentrations" will be described.

[実施形態の具体的内容]
火災検出装置、防災設備及び火災検出方法の実施形態の具体的内容について、より詳細に説明する。その内容については以下のように分けて説明する。
a. P型の防災設備
b. 受信機
c. 感知器
c1. 観測部
c2. 処理部
c3. 検出部
c4. 感知器の制御動作
d. 他の実施形態の基本的な概念
e. R型の防災設備
e1. 感知器
e2. 受信機
e3. 伝送制御
e4. R型防災設備の制御動作
f. 本発明の変形例
[Specific contents of the embodiment]
The specific contents of the fire detection device, the disaster prevention equipment, and the embodiment of the fire detection method will be described in more detail. The contents will be explained separately as follows.
a. P-type disaster prevention equipment b. Receiver c. Sensor c1. Observation unit c2. Processing unit c3. Detection unit c4. Sensor control operation d. Basic concepts of other embodiments e. R-type disaster prevention equipment e1. Sensor e2. Receiver e3. Transmission control e4. Control operation of R-type disaster prevention equipment f. Modifications of the present invention

[a.P型の防災設備]
図2は図1に対応するP型(Proprietary-type)の防災設備を対象とした本発明の具体的な実施形態を示した説明図である。ここで、「P型の防災設備」とは、受信機10が感知器12を接続した信号線ごと(信号線単位に)に火災を監視する設備である。
[A. P-type disaster prevention equipment]
FIG. 2 is an explanatory diagram showing a specific embodiment of the present invention for a P-type (proprietary-type) disaster prevention facility corresponding to FIG. 1. Here, the "P-type disaster prevention equipment" is equipment for monitoring a fire for each signal line (in signal line units) to which the receiver 10 is connected to the sensor 12.

図2に示すように、本実施形態のP型の防災設備は、受信機10と複数の感知器12を備える。なお、図2では1台の感知器12を代表して示している。受信機10は管理人室や防災センター等に設置され、受信機10から建物の部屋等の監視領域に引き出された信号線14に、複数の感知器12を接続している。受信機10から引き出された信号線14はプラス信号線14aとマイナス信号線(コモン信号線)14bを備え、受信機10から感知器12へ電源を供給すると共に感知器12から受信機10へ火災発報信号を送信する。 As shown in FIG. 2, the P-type disaster prevention equipment of the present embodiment includes a receiver 10 and a plurality of detectors 12. Note that FIG. 2 shows one sensor 12 as a representative. The receiver 10 is installed in a manager's room, a disaster prevention center, or the like, and a plurality of detectors 12 are connected to a signal line 14 drawn from the receiver 10 to a monitoring area such as a room in a building. The signal line 14 drawn from the receiver 10 includes a positive signal line 14a and a negative signal line (common signal line) 14b, and supplies power from the receiver 10 to the sensor 12 and fires from the sensor 12 to the receiver 10. Send an alarm signal.

[b.受信機]
受信機10は、受信機制御部40、回線受信部42、表示部44、操作部46、警報部48及び移報部50を備える。回線受信部42は監視領域、例えば建物の階別に分けて引き出された信号線14毎に設けられ、感知器12からの火災発報信号を受信して受信機制御部40に出力する。
[B. Receiving machine]
The receiver 10 includes a receiver control unit 40, a line reception unit 42, a display unit 44, an operation unit 46, an alarm unit 48, and a transfer unit 50. The line receiving unit 42 is provided for each monitoring area, for example, a signal line 14 drawn out by dividing it into floors of a building, and receives a fire alarm signal from the detector 12 and outputs it to the receiver control unit 40.

受信機制御部40は、CPU、メモリ及び各種の入出力ポートを備えたコンピュータ回路で構成され、回線受信部42の何れかによる火災発報信号(火災信号)の受信を検出すると火災警報動作を行う。受信機制御部40の火災警報動作は、表示部44の火災代表灯を作動すると共に火災発生地区を示す地区表示灯を作動し、また、警報部48により警報音声メッセージを含む主音響警報を出力すると共に火災が発生した監視領域に設置している地区音響装置の作動による地区音響警報を行い、また、移報部50に指示して防排煙機器の連動制御等を行う。 The receiver control unit 40 is composed of a computer circuit provided with a CPU, a memory, and various input / output ports, and when it detects reception of a fire alarm signal (fire signal) by any of the line receiver units 42, it performs a fire alarm operation. conduct. The fire alarm operation of the receiver control unit 40 operates the fire representative light of the display unit 44 and the district indicator light indicating the area where the fire occurred, and the alarm unit 48 outputs a main acoustic alarm including an alarm voice message. At the same time, a district acoustic alarm is issued by operating the district acoustic device installed in the monitoring area where the fire has occurred, and the transfer unit 50 is instructed to perform interlocking control of the smoke prevention device.

[c.感知器]
火災検出装置として機能する感知器12の構成を、より詳細に説明する。感知器12は、火災検出装置の構成要素となる観測部16、感知器制御部24、発報回路部26、電源部28を備える。観測部16には、検煙部25、発光駆動部34、受光増幅部36が設けられる。また、感知器制御部24は、CPU、メモリ及び各種の入出力ポートを備えたコンピュータ回路で構成され、プログラムの実行により実現される機能として、火災検出装置の構成要素となる処理部18と検出部20の機能が設けられる。
[C. sensor]
The configuration of the detector 12 that functions as a fire detection device will be described in more detail. The detector 12 includes an observation unit 16, a sensor control unit 24, a warning circuit unit 26, and a power supply unit 28, which are components of the fire detection device. The observation unit 16 is provided with a smoke detection unit 25, a light emission driving unit 34, and a light receiving amplification unit 36. Further, the sensor control unit 24 is composed of a computer circuit including a CPU, a memory, and various input / output ports, and has a processing unit 18 which is a component of the fire detection device and detection as a function realized by executing a program. The function of the unit 20 is provided.

(c1.観測部)
観測部16に設けられた検煙部25は散乱光式検煙部を構成するものであり、外部からの煙が流入する遮光された感知器内の検煙空間に、発光素子30と受光素子32がそれぞれの光軸が所定の鋭角となる散乱角で交差するように配置され、光軸の交点を含む領域を検煙領域とし、検煙領域に流入した煙に発光素子30から検出光を照射したときに散乱する光、所謂前方散乱光を受光素子32で受光するように構成している。なお、散乱角は任意であり、また、散乱角を、直角を超える所定の鈍角とすることで後方散乱光を受光することも可能である。
(C1. Observation Department)
The smoke detection unit 25 provided in the observation unit 16 constitutes a scattered light type smoke detection unit, and a light emitting element 30 and a light receiving element are provided in the smoke detection space inside the light-shielded sensor into which smoke from the outside flows. 32 are arranged so that their respective optical axes intersect at a scattering angle at a predetermined sharp angle, the region including the intersection of the optical axes is set as a smoke detection region, and the detected light is emitted from the light emitting element 30 to the smoke flowing into the smoke detection region. The light receiving element 32 is configured to receive light scattered when irradiated, so-called forward scattered light. The scattering angle is arbitrary, and it is also possible to receive backscattered light by setting the scattering angle to a predetermined obtuse angle exceeding a right angle.

発光素子30は例えば発光ダイオードであるが任意の発光素子としても良く、また、受光素子32は例えばフォトダイオードであるが任意の受光素子としても良い。発光素子30は発光駆動部34により発光駆動され、検出光を検煙領域に照射する。受光素子32は検出光による煙の散乱光を受光し、散乱光の受光量に応じて例えば1~10μAの受光電流を出力する。受光増幅部36は受光素子32からの受光電流を入力して増幅し、例えば1~5mVの受光電圧を出力し、この受光電圧が煙濃度に対応している。 The light emitting element 30 may be, for example, a light emitting diode, but may be any light emitting element, and the light receiving element 32 may be, for example, a photodiode, but may be any light receiving element. The light emitting element 30 is driven to emit light by the light emitting driving unit 34, and irradiates the smoke detection region with the detected light. The light receiving element 32 receives the scattered light of the smoke generated by the detected light, and outputs a light receiving current of, for example, 1 to 10 μA depending on the amount of the scattered light received. The light receiving amplification unit 36 inputs and amplifies the light receiving current from the light receiving element 32, outputs a light receiving voltage of, for example, 1 to 5 mV, and this light receiving voltage corresponds to the smoke concentration.

(c2.処理部)
処理部18は、観測部16の検出光を所定周期で間欠発光して観測された所定の閾値条件を充足した場合、例えば煙濃度が所定の閾値以上又は閾値を超えた場合に、検出光を連続発光して煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成するものであり、具体的には、次の手順となる。
(C2. Processing unit)
The processing unit 18 emits the detection light of the observation unit 16 intermittently at a predetermined cycle to satisfy the observed predetermined threshold condition, for example, when the smoke concentration is equal to or higher than the predetermined threshold value or exceeds the threshold value. It emits light continuously to observe the smoke concentration, and generates observation data including multiple observation values obtained in chronological order for each predetermined time. Specifically, the following procedure is used. Become.

第1に、処理部18は、煙濃度が所定の閾値となる火災予兆レベル(予備的な火災の判断レベル)、例えば3(%/m)未満の場合、検出光を間欠発光して煙濃度を観測している。この場合の間欠発光の周期は、感知器12の消費電流を低減するために例えば1分周期とする。即ち、処理部18は、1分周期ごとに、発光駆動部34からマイクロ秒オーダーの周期となる数パルス程度のパルス駆動信号を発光素子30へ出力してパルス的に発光駆動する検出光の間欠発光を行い、この間欠発光に伴い受光増幅部36から出力された煙濃度検出信号(アナログ信号)をパルス発光に同期したA/D変換により読み込み、平均した煙濃度を観測値として取得する。 First, when the smoke concentration is less than a fire sign level (preliminary fire judgment level), for example, 3 (% / m), which is a predetermined threshold value, the processing unit 18 intermittently emits detection light to emit smoke concentration. Is observing. In this case, the intermittent light emission cycle is set to, for example, a 1-minute cycle in order to reduce the current consumption of the sensor 12. That is, the processing unit 18 outputs a pulse drive signal of about several pulses having a period on the order of microseconds from the light emission drive unit 34 to the light emitting element 30 every minute cycle, and intermittently drives the light to emit light in a pulsed manner. Light is emitted, and the smoke concentration detection signal (analog signal) output from the light receiving amplification unit 36 due to this intermittent light emission is read by A / D conversion synchronized with pulse light emission, and the average smoke concentration is acquired as an observed value.

第2に、処理部18は、検出光の間欠発光で観測された煙濃度が所定の閾値となる火災予兆レベル、例えば3(%/m)以上となった場合、発光駆動部34に一定レベルの駆動信号を連続して入力し、発光素子30を常時オン状態に駆動して検出光を連続的に出力し、受光増幅部36から出力されている煙濃度検出信号(アナログ信号)を、所定のサンプリング周波数でサンプリングしてA/D変換し、所定時間のあいだごとに、例えば2秒間のあいだごとに、時系列に連続する複数の観測値、即ち複数の煙濃度を含む観測データを生成し、メモリに記憶保持する。 Secondly, when the smoke concentration observed by the intermittent emission of the detected light becomes a fire sign level, for example, 3 (% / m) or more, which is a predetermined threshold value, the processing unit 18 causes the light emission driving unit 34 to have a constant level. The drive signal of is continuously input, the light emitting element 30 is constantly driven to be on, the detection light is continuously output, and the smoke concentration detection signal (analog signal) output from the light receiving amplification unit 36 is predetermined. Sampling at the sampling frequency of, A / D conversion is performed, and observation data including multiple observation values continuous in time series, that is, multiple smoke concentrations is generated every predetermined time, for example, every 2 seconds. , Stored in memory.

A/D変換のサンプリング周波数を例えば16Hzとすると、2秒間では32点の煙濃度を含む観測データが生成される。ここで、観測データを生成する所定時間およびサンプリング周波数は任意であり、観測データを生成する所定時間は、火災に固有な煙の時間的変化を捉えるに十分な時間とし、また、サンプリング周波数は、火災による煙濃度の時間変化が失われることのない時間間隔(サンプリング周期)となるようにする。 Assuming that the sampling frequency of the A / D conversion is, for example, 16 Hz, observation data including 32 points of smoke concentration is generated in 2 seconds. Here, the predetermined time for generating the observation data and the sampling frequency are arbitrary, the predetermined time for generating the observation data is sufficient time to capture the temporal change of the smoke peculiar to the fire, and the sampling frequency is set to. Make sure that the time interval (sampling cycle) is such that the time change of smoke concentration due to a fire is not lost.

なお、検出光の連続発光は、観測データのA/D変換に用いられるサンプリング周波数の連続パルス信号を発光駆動部34に入力して発光素子30を連続的にパルス駆動してもよい。 For continuous emission of the detected light, a continuous pulse signal having a sampling frequency used for A / D conversion of observation data may be input to the emission driving unit 34 to continuously pulse drive the light emitting element 30.

(c3.検出部)
感知器制御部24に設けられた検出部20は、処理部18で生成された観測データに基づいて火災を検出するものであり、その機能や構成は任意であるが、例えば、観測データに含まれる時系列に連続する複数の煙濃度を対象に、所定の特徴量、例えば複数の煙濃度の積分値を検出し、この積分値が所定の火災判断条件を充足したときに火災と検出するものである。ここで、複数の煙濃度の積分値とは、複数の煙濃度を積算した値を意味する。検出部20により火災と検出するための火災判断条件は任意であるが、その例を次に列挙する。
(C3. Detection unit)
The detection unit 20 provided in the sensor control unit 24 detects a fire based on the observation data generated by the processing unit 18, and its function and configuration are arbitrary, but are included in the observation data, for example. A fire is detected when a predetermined feature amount, for example, an integrated value of a plurality of smoke concentrations is detected for a plurality of consecutive smoke concentrations in a time series, and the integrated value satisfies a predetermined fire judgment condition. Is. Here, the integrated value of a plurality of smoke concentrations means a value obtained by integrating a plurality of smoke concentrations. The fire judgment conditions for detecting a fire by the detection unit 20 are arbitrary, and examples thereof are listed below.

(第1火災判断条件)
検出部20は、所定時間ごとに検出される煙濃度の積分値が所定の閾値以上又は閾値を超えた場合に火災と判断する。
(1st fire judgment condition)
The detection unit 20 determines that a fire is caused when the integrated value of the smoke concentration detected at predetermined time intervals is equal to or higher than a predetermined threshold value or exceeds the threshold value.

(第2火災判断条件)
検出部20は、所定時間ごとに検出される煙濃度の積分値が所定回数連続して所定の閾値以上又は閾値を超えた場合に火災と判断する。これは第1火災判断条件に蓄積条件を加えたものである。
(Second fire judgment condition)
The detection unit 20 determines that a fire occurs when the integrated value of the smoke concentration detected at predetermined time intervals is continuously equal to or higher than a predetermined threshold value or exceeds the threshold value. This is the first fire judgment condition plus the accumulation condition.

(第3火災判断条件)
検出部20は、所定時間ごとに検出される煙濃度の積分値について、現在の煙濃度の積分値と前回の煙濃度の積分値の比率が所定の閾値以上又は閾値を超えた場合に火災と判断する。
(Third fire judgment condition)
The detection unit 20 causes a fire when the ratio of the integrated value of the current smoke concentration to the integrated value of the previous smoke concentration exceeds or exceeds a predetermined threshold with respect to the integrated value of the smoke concentration detected at predetermined time intervals. to decide.

(第4火災判断条件)
検出部20は、所定時間ごとに検出される煙濃度の積分値について、現在の煙濃度の積分値と前回の煙濃度の積分値の比率が所定回数連続して所定の閾値以上又は閾値を超えた場合に火災と判断する。これは第3火災判断条件に蓄積条件を加えたものである。
(4th fire judgment condition)
Regarding the integrated value of the smoke concentration detected at predetermined time intervals, the detection unit 20 continuously indicates that the ratio of the integrated value of the current smoke concentration and the integrated value of the previous smoke concentration exceeds or exceeds a predetermined threshold value for a predetermined number of times. If so, it is judged to be a fire. This is the third fire judgment condition plus the accumulation condition.

(第5火災判断条件)
検出部20は、所定時間ごとに検出される煙濃度の積分値について、現在の煙濃度の積分値と前回の煙濃度の積分値の差分が所定の閾値以上又は閾値を超えた場合に火災と判断する。
(Fifth fire judgment condition)
The detection unit 20 causes a fire when the difference between the integrated value of the current smoke concentration and the integrated value of the previous smoke concentration exceeds or exceeds a predetermined threshold with respect to the integrated value of the smoke concentration detected at predetermined time intervals. to decide.

(第6火災判断条件)
検出部20は、所定時間ごとに検出される煙濃度の積分値について、現在の煙濃度の積分値と前回の煙濃度の積分値の差分が所定回数連続して所定の閾値以上又は閾値を超えた場合に火災と判断する。これは第5火災判断条件に蓄積条件を加えたものである。
(6th fire judgment condition)
Regarding the integrated value of the smoke concentration detected at predetermined time intervals, the detection unit 20 continuously sets the difference between the integrated value of the current smoke concentration and the integrated value of the previous smoke concentration a predetermined number of times or more or exceeds the predetermined threshold value. If so, it is judged to be a fire. This is the fifth fire judgment condition plus the accumulation condition.

このような第1乃至第6火災判断条件について、検出部20は、観測データの特徴量として検出した煙濃度の積分値が、いずれかの火災判断条件又は複数の火災判条件の組み合わせを充足したときに火災と判断する。 Regarding such first to sixth fire judgment conditions, the detection unit 20 satisfied the integrated value of the smoke concentration detected as the feature amount of the observation data with any one of the fire judgment conditions or a combination of a plurality of fire judgment conditions. Sometimes it is judged to be a fire.

また、検出部20は、観測データの特徴量として、煙濃度の積分値以外に、例えば、煙濃度の平均値やピーク値を特徴量として検出し、前述した第1乃至第6火災判断条件と同様にして火災と判断しても良い。 Further, the detection unit 20 detects, for example, an average value or a peak value of the smoke concentration as a feature amount in addition to the integrated value of the smoke concentration as the feature amount of the observation data, and uses the above-mentioned first to sixth fire judgment conditions. Similarly, it may be judged as a fire.

ここで、第1乃至第6火災判断条件における特徴量の閾値は、感知器12として1種感度、2種感度、又は3種感度が法的に定められていることから、各感度における作動試験及び不作動試験を充足するように、所定の閾値を決めればよい。 Here, since the threshold value of the feature amount under the first to sixth fire judgment conditions is legally defined as the type 1 sensitivity, the type 2 sensitivity, or the type 3 sensitivity as the sensor 12, the operation test at each sensitivity is performed. And a predetermined threshold value may be set so as to satisfy the non-operation test.

例えば、「2種感度の感知器」とは、法令で定められた公称作動濃度Kを10(%/m)の感知器のことであり、作動試験として、(公称作動濃度K)×1.5=10(%/m)×1.5=15(%/m)の濃度の煙を含む風速20cm~40cm/secの気流に投入したとき、30秒以内に作動し、且つ、不作動試験として、(公称作動濃度)×0.5=10(%/m)×0.5=5(%/m)の濃度の煙を含む風速20cm~40cm/secの気流に投入したとき、例えば非蓄積型の場合、5分以内に作動しない感知器を意味する。従って、作動試験及び不作動試験を満足するように、第1乃至第6火災判断条件における特徴量の閾値を設定することで、本実施形態の火災検出装置を備えた感知器12を、2種感度の検定品として実現することができる。 For example, the "sensor of type 2 sensitivity" is a sensor having a nominal operating concentration K of 10 (% / m) specified by law, and as an operation test, (nominal operating concentration K) x 1. When it is put into an air flow with a wind speed of 20 cm to 40 cm / sec containing smoke having a concentration of 5 = 10 (% / m) × 1.5 = 15 (% / m), it operates within 30 seconds and is not operated. When it is put into an air flow having a wind speed of 20 cm to 40 cm / sec containing smoke having a concentration of (nominal operating concentration) × 0.5 = 10 (% / m) × 0.5 = 5 (% / m), for example, it is not. In the case of the storage type, it means a sensor that does not operate within 5 minutes. Therefore, by setting the threshold value of the feature amount in the first to sixth fire judgment conditions so as to satisfy the operation test and the non-operation test, two types of detectors 12 provided with the fire detection device of the present embodiment can be obtained. It can be realized as a sensitivity test product.

このような公称作動濃度K=10(%/m)とする2種感度の感知器以外に、公称作動濃度K=5(%/m)の「1種感度の感知器」、或いは、公称作動感度K=15(%/m)の「3種感度の感知器」の場合も同様となる。 In addition to the two-kind sensitivity detector with the nominal working concentration K = 10 (% / m), the "one-kind sensitivity detector" with the nominal working concentration K = 5 (% / m), or the nominal working The same applies to the case of a "three-kind sensitivity sensor" having a sensitivity of K = 15 (% / m).

(c4.感知器の制御動作)
図3は図2の感知器の実施形態による制御動作を示したフローチャートであり、感知器制御部24に設けた処理部18と検出部20による制御動作となる。
(C4. Sensor control operation)
FIG. 3 is a flowchart showing a control operation according to the embodiment of the sensor of FIG. 2, and is a control operation by the processing unit 18 and the detection unit 20 provided in the sensor control unit 24.

図3に示すように、処理部18は、ステップS1で所定周期、例えば1分周期ごとに検出光を間欠発光し、ステップS2で散乱光の受光に基づき煙濃度を観測している。即ち、発光駆動部34で発光素子30を間欠的に発光駆動した検出光による煙等による散乱光を受光素子32で受光し、受光増幅部36で増幅された煙濃度検出信号を間欠発光に同期したA/D変換により読み込んで煙濃度を観測している。 As shown in FIG. 3, the processing unit 18 intermittently emits the detected light in a predetermined cycle, for example, every 1 minute cycle in step S1, and observes the smoke concentration based on the light reception of the scattered light in step S2. That is, the light receiving element 32 receives scattered light due to smoke or the like generated by the detection light intermittently driven by the light emitting drive unit 34, and the smoke concentration detection signal amplified by the light receiving amplification unit 36 is synchronized with the intermittent light emission. The smoke concentration is observed by reading by the A / D conversion.

続いて、処理部18は、ステップS3で観測した間欠発光による煙濃度を所定の閾値となる火災予兆レベルと比較しており、火災予兆レベルを超えるとステップS4に進み、検出光の連続発光に切り替え、ステップS5で所定時間ごとの観測データを生成する。即ち、発光駆動部34で発光素子30を連続的に発光駆動した検出光による煙等による散乱光を受光素子32で受光し、受光増幅部36で増幅された煙濃度検出信号を、所定のサンプリング周波数、例えば16Hzのサンプリング周波数でサンプリングしてA/D変換し、所定時間のあいだごと、例えば2秒間のあいだごとに時系列に連続するに例えば32点の煙濃度を読み込んで観測データを生成し、メモリに記憶保持する。 Subsequently, the processing unit 18 compares the smoke concentration due to the intermittent light emission observed in step S3 with the fire sign level which is a predetermined threshold value, and when the fire sign level is exceeded, the process proceeds to step S4 to continuously emit the detected light. Switching is performed, and observation data is generated at predetermined time intervals in step S5. That is, the light receiving element 32 receives the scattered light due to the detection light obtained by continuously emitting and driving the light emitting element 30 by the light emitting driving unit 34, and the smoke concentration detection signal amplified by the light receiving amplification unit 36 is sampled at a predetermined level. Sampling at a frequency, for example, a sampling frequency of 16 Hz, A / D conversion is performed, and observation data is generated by reading, for example, 32 points of smoke concentration continuously in time series for a predetermined time, for example, every 2 seconds. , Stored in memory.

続いて、検出部20はステップS6に進み、ステップS5で生成された観測データに含まれる32点の煙濃度を対象に所定の特徴量、例えば32点の煙濃度の積分値(積算値)を検出する。続いて、検出部20はステップS7に進み、ステップS6で検出した特徴量、例えば32点の煙濃度の積分値が所定の火災判断条件を充足するか否か判別し、火災条件の充足を判別するとステップS8に進み、発報回路部26を作動して受信機10に火災発報信号を送信する。 Subsequently, the detection unit 20 proceeds to step S6, and sets a predetermined feature amount, for example, an integrated value (integrated value) of smoke concentrations at 32 points, for the smoke concentrations at 32 points included in the observation data generated in step S5. To detect. Subsequently, the detection unit 20 proceeds to step S7, determines whether or not the feature amount detected in step S6, for example, the integrated value of the smoke concentration at 32 points satisfies the predetermined fire determination condition, and determines whether the fire condition is satisfied. Then, the process proceeds to step S8, the alarm circuit unit 26 is operated, and the fire alarm signal is transmitted to the receiver 10.

続いて、感知器制御部24はステップS9で受信機10での復旧操作に伴う信号線14に対する電源供給の遮断等から復旧を判別し、ステップS1の最初の感知器制御に戻る。 Subsequently, the sensor control unit 24 determines recovery from the interruption of power supply to the signal line 14 accompanying the recovery operation in the receiver 10 in step S9, and returns to the first sensor control in step S1.

一方、検出部20は、ステップS7で特徴量が火災判断条件を充足しない場合はステップS10に進み、例えば、そのときの観測データ中の煙濃度のピーク値を抽出し、ピーク値が火災予兆レベルを超えていればステップS4からの処理を繰り返すが、火災予兆レベル以下の場合は、火災の可能性がなくなったことからステップS1に戻り、検出光の間欠発光により煙濃度を観測する通常監視状態に戻る。なお、ステップS10では、観測データの平均値を求めて火災予兆レベルと比較しても良い。 On the other hand, if the feature amount does not satisfy the fire judgment condition in step S7, the detection unit 20 proceeds to step S10, for example, extracts the peak value of the smoke concentration in the observation data at that time, and the peak value is the fire sign level. If it exceeds, the process from step S4 is repeated, but if it is below the fire sign level, the possibility of fire has disappeared, so the process returns to step S1 and the smoke concentration is observed by intermittent emission of the detected light. Return to. In step S10, the average value of the observation data may be obtained and compared with the fire sign level.

[d.他の実施形態の基本的な概念]
図4は防災設備2に対応した火災検出装置、防災設備及び火災検出方法の実施形態の他の基本的な概念を示した説明図であり、受信機10と感知器12を備えた防災設備の一例としての火災報知設備において、感知器12に火災検出装置の構成要素となる観測部16と処理部18を設け、受信機10に火災検出装置の構成要素となる検出部20を設けたことを特徴とする。
[D. Basic concepts of other embodiments]
FIG. 4 is an explanatory diagram showing another basic concept of the fire detection device, the disaster prevention equipment, and the embodiment of the fire detection method corresponding to the disaster prevention equipment 2, and is an explanatory diagram of the disaster prevention equipment provided with the receiver 10 and the detector 12. In the fire alarm equipment as an example, the detector 12 is provided with the observation unit 16 and the processing unit 18 which are the components of the fire detection device, and the receiver 10 is provided with the detection unit 20 which is the component of the fire detection device. It is a feature.

感知器12に設けた観測部16と処理部18、及び、受信機10に設けた検出部20は、図1の感知器12に設けた観測部16、処理部18及び検出部20と基本的に同じであるが、感知器12の処理部18で生成した観測部16の連続発光で観測した所定時間のあいだごとの複数の観測値を含む観測データを信号線14により受信機10に送信し、受信機10の検出部20で、観測データに含まれる複数の煙濃度の特徴量を検出し、検出した特徴量が所定の火災判断条件を充足したときに火災と検出して火災警報を出力する点で相違する。 The observation unit 16 and the processing unit 18 provided in the sensor 12, and the detection unit 20 provided in the receiver 10 are basically the observation unit 16, the processing unit 18, and the detection unit 20 provided in the sensor 12 of FIG. However, the observation data including a plurality of observation values observed by the continuous emission of the observation unit 16 generated by the processing unit 18 of the sensor 12 for each predetermined time is transmitted to the receiver 10 by the signal line 14. , The detection unit 20 of the receiver 10 detects a feature amount of a plurality of smoke concentrations contained in the observation data, detects it as a fire when the detected feature amount satisfies a predetermined fire judgment condition, and outputs a fire alarm. It differs in that it does.

次に図4に対応する実施形態の具体的内容について、より詳細に説明する。 Next, the specific contents of the embodiment corresponding to FIG. 4 will be described in more detail.

[e.R型の防災設備]
図5は図4に対応する実施形態の具体的内容を示したR型(Record-type)の防災設備の説明図である。ここで、「R型の防災設備」とは、受信機10と感知器12の間で伝送を行うことにより、感知器12毎に(感知器単位に)火災を監視する設備である。
[E. R-type disaster prevention equipment]
FIG. 5 is an explanatory diagram of an R-type (Record-type) disaster prevention facility showing the specific contents of the embodiment corresponding to FIG. 4. Here, the "R-type disaster prevention equipment" is equipment for monitoring a fire (in units of detectors) for each detector 12 by transmitting between the receiver 10 and the detector 12.

図5に示すように、本実施形態のR型の防災設備は、受信機10と感知器12を備え、受信機10から建物の部屋等の監視領域に引き出された伝送線114に、複数の感知器12を接続している。受信機10から引き出された伝送線114はプラス伝送線114aとマイナス伝送線(コモン伝送線)114bを備え、受信機10から感知器12へ電源を供給すると共に受信機10と感知器12の間で所定の伝送方式により信号を送受信する。なお、専用の電源供給線を設けても良い。 As shown in FIG. 5, the R-type disaster prevention equipment of the present embodiment includes a receiver 10 and a detector 12, and has a plurality of transmission lines 114 drawn from the receiver 10 to a monitoring area such as a room in a building. The sensor 12 is connected. The transmission line 114 drawn from the receiver 10 includes a plus transmission line 114a and a minus transmission line (common transmission line) 114b, and supplies power from the receiver 10 to the sensor 12 and between the receiver 10 and the sensor 12. Signals are transmitted and received by a predetermined transmission method. A dedicated power supply line may be provided.

(e1.感知器)
感知器12は、図2の実施形態と同様に、火災検出装置の構成要素となる観測部16、感知器制御部24、電源部28を備えるが、受信機10との間で所定の伝送方式により信号を送受信することから伝送部60を設けた点で相違する。また、感知器12の感知器制御部24には、本発明の火災検出装置の構成要素となる処理部18の機能が設けられるが、検出部20の機能は設けられておらず、これは受信機10側に設けられている。
(E1. Sensor)
Similar to the embodiment of FIG. 2, the sensor 12 includes an observation unit 16, a sensor control unit 24, and a power supply unit 28, which are components of the fire detection device, but has a predetermined transmission method with the receiver 10. The difference is that the transmission unit 60 is provided because the signal is transmitted and received. Further, the sensor control unit 24 of the sensor 12 is provided with the function of the processing unit 18 which is a component of the fire detection device of the present invention, but is not provided with the function of the detection unit 20, which receives. It is provided on the machine 10 side.

(e2.受信機)
受信機10は、図2の実施形態と同様に、受信機制御部40、表示部44、操作部46、警報部48及び移報部50を備えるが、感知器12との間で所定の伝送方式により信号を送受信することから伝送部62が設けられた点で相違し、また、受信機制御部40に、プログラムの実行により実現される機能として、本発明の火災検出装置の構成要素となる検出部20の機能を設けた点で相違する。受信機10に設けた検出部20は、図2の実施形態で感知器12に設けた場合と基本的に同様となる。
(E2. Receiver)
The receiver 10 includes a receiver control unit 40, a display unit 44, an operation unit 46, an alarm unit 48, and a signal transfer unit 50, as in the embodiment of FIG. 2, but a predetermined transmission with the sensor 12. The difference is that the transmission unit 62 is provided because signals are transmitted and received according to the method, and the receiver control unit 40 is a component of the fire detection device of the present invention as a function realized by executing a program. The difference is that the function of the detection unit 20 is provided. The detection unit 20 provided in the receiver 10 is basically the same as the case where the detector 12 is provided in the embodiment of FIG.

(e3.伝送制御)
R型の防災設備では、感知器12に固有のアドレスが設定され、受信機10は所定周期、例えば1分周期で一括A/D変換コマンド信号を送信する。全ての感知器12は、受信機12からの一括A/D変換コマンド信号を受信すると、処理部18が観測部16での間欠発光により煙濃度を観測する処理を行い、間欠発光により観測した煙濃度をA/D変換して記憶保持する。受信機10は、一括A/Dコマンド信号に続いて感知器アドレスを順次指定した呼出信号を送信し、各感知器12で観測した煙濃度を含む応答信号を返送させるポーリングを行う。
(E3. Transmission control)
In the R-type disaster prevention equipment, an address unique to the sensor 12 is set, and the receiver 10 transmits a batch A / D conversion command signal in a predetermined cycle, for example, a 1-minute cycle. When all the detectors 12 receive the batch A / D conversion command signal from the receiver 12, the processing unit 18 performs a process of observing the smoke concentration by the intermittent light emission in the observation unit 16, and the smoke observed by the intermittent light emission. The concentration is A / D converted and stored in memory. The receiver 10 transmits a call signal in which the sensor address is sequentially specified following the batch A / D command signal, and polls to return a response signal including the smoke concentration observed by each sensor 12.

感知器12の処理部18は間欠発光により観測している煙濃度が、所定の閾値となる火災予兆レベル、例えば3(%/m)に達したときに火災予兆と判断し、火災割込信号を受信機10に送信する。また、感知器12は、火災予兆と判断すると、観測部16を連続発光による煙濃度の観測に切替え、これに伴い処理部18は、所定時間のあいだごと、例えば2秒間のあいだごとに、所定のサンプリング周波数によるA/D変換で、時系列に連続する複数の観測値を含む観測データを生成して記憶保持する処理を行う。 The processing unit 18 of the detector 12 determines that the smoke concentration observed by intermittent light emission reaches a fire sign level, for example, 3 (% / m), which is a predetermined threshold value, and determines that the smoke concentration is a fire sign, and a fire interrupt signal. Is transmitted to the receiver 10. Further, when the detector 12 determines that it is a sign of fire, the observation unit 16 is switched to the observation of the smoke concentration by continuous light emission, and the processing unit 18 is predetermined for each predetermined time, for example, every 2 seconds. By A / D conversion based on the sampling frequency of, the process of generating and storing observation data including a plurality of observation values continuous in time series is performed.

感知器12からの火災割込信号を受信した受信機10は、グループアドレスを指定したグループ検索コマンド信号を送信し、これに対し火災割込信号を応答した感知器12の属するグループアドレスを特定するグループ検索を行い、続いて、検索したグループアドレス内の感知器アドレスを順次指定したグループ内検索コマンド信号を送信し、これに対し火災割込信号を応答した感知器12、即ち火災予兆と判断した感知器12のアドレスを特定する。 Upon receiving the fire interruption signal from the detector 12, the receiver 10 transmits a group search command signal specifying a group address, and identifies the group address to which the detector 12 that responded to the fire interruption signal belongs. A group search was performed, and then a group search command signal in which the sensor addresses in the searched group addresses were sequentially specified was transmitted, and the detector 12 that responded to the fire interruption signal, that is, a fire sign was determined. Identify the address of the detector 12.

続いて、受信機10は、1分周期のA/D変換コマンド信号の送信を基準に、例えば2秒周期で、火災予兆と判断した感知器12のアドレスを指定した呼出信号を送信し、火災予兆と判断した感知器12から観測データを取得し、受信機制御部40に設けた検出部20により観測データから特徴量を検出し、検出した特徴量が所定の火災判断条件を充足したときに火災と検出し、火災警報を出力する処理を行う。 Subsequently, the receiver 10 transmits a call signal specifying the address of the detector 12 determined to be a fire sign, for example, in a cycle of 2 seconds, based on the transmission of the A / D conversion command signal having a 1-minute cycle. When the observation data is acquired from the detector 12 determined to be a sign, the feature amount is detected from the observation data by the detection unit 20 provided in the receiver control unit 40, and the detected feature amount satisfies a predetermined fire judgment condition. Detects a fire and outputs a fire alarm.

(e4.R型の防災設備の制御動作)
図6は図5のR型の防災設備の実施形態による制御動作をタイムチャート形式で示したフローチャートである。
(Control operation of e4.R type disaster prevention equipment)
FIG. 6 is a flowchart showing the control operation according to the embodiment of the R-shaped disaster prevention equipment of FIG. 5 in a time chart format.

図6に示すように、受信機10は、ステップS11で火災監視伝送処理として、所定周期例えば1分周期で一括A/D変換コマンド信号を送信し、続いて感知器アドレスを指定した呼出信号を送信し、感知器12から観測された煙濃度を含む応答信号を受信している。一方、感知器12はステップS12で火災監視応答処理として、受信機10からの一括A/D変換コマンド信号を受信すると、処理部18が観測部16の間欠発光によりそのときの煙濃度を観測して記憶保持し、続いて受信する自己アドレスを指定した呼出信号を受信し、煙濃度を含む応答信号を送信している。 As shown in FIG. 6, the receiver 10 transmits a batch A / D conversion command signal in a predetermined cycle, for example, a 1-minute cycle, as a fire monitoring transmission process in step S11, and subsequently transmits a call signal with a sensor address specified. It transmits and receives a response signal containing the smoke concentration observed from the sensor 12. On the other hand, when the detector 12 receives the batch A / D conversion command signal from the receiver 10 as the fire monitoring response process in step S12, the processing unit 18 observes the smoke concentration at that time by the intermittent light emission of the observation unit 16. It stores and retains it, then receives a call signal that specifies the self-address to be received, and transmits a response signal including smoke concentration.

続いて、ステップ13で感知器12は間欠発光により観測している煙濃度が所定の閾値となる火災予兆レベル、例えば3(%/m)以上となったことを判別するとステップS14に進み、火災予兆送信処理として火災割込信号を受信機10に送信する。受信機10はステップS15で火災予兆受信処理として、感知器12からの火災割込信号の受信に基づき、火災割込信号を送信した感知器アドレスを検索して特定する。 Subsequently, when the detector 12 determines in step 13 that the smoke concentration observed by intermittent light emission reaches a fire sign level, for example, 3 (% / m) or higher, which is a predetermined threshold value, the process proceeds to step S14 and a fire occurs. A fire interrupt signal is transmitted to the receiver 10 as a sign transmission process. In step S15, the receiver 10 searches and identifies the detector address that transmitted the fire interrupt signal based on the reception of the fire interrupt signal from the detector 12 as the fire sign reception process.

続いて、感知器12は、ステップS16で処理部18により観測部16を連続発光に切替えで煙濃度を観測し、ステップS17で所定時間のあいだごと、例えば2秒間のあいだごとに、所定のサンプリング周波数によるA/D変換で、時系列に連続する複数の煙濃度を含む観測データを生成して記憶保持する。 Subsequently, the sensor 12 observes the smoke concentration by switching the observation unit 16 to continuous light emission by the processing unit 18 in step S16, and in step S17, a predetermined sampling is performed every predetermined time, for example, every 2 seconds. By A / D conversion by frequency, observation data including a plurality of continuous smoke concentrations in time series is generated and stored.

続いて、受信機10は、ステップS19で観測データ受信処理として、火災割込信号を送信した感知器12のアドレスを指定した呼出信号を、一括A/Dコマンド信号の送信周期より短い例えば2秒周期で繰り返し送信し、感知器12にステップS18で記憶保持している観測データを送信する観測データ送信処理を行わせ、火災予兆と判断した感知器12から集中的に観測データを受信する。 Subsequently, the receiver 10 uses the observation data reception process in step S19 to send a call signal specifying the address of the detector 12 that has transmitted the fire interruption signal, for example, 2 seconds, which is shorter than the transmission cycle of the batch A / D command signal. The sensor 12 is repeatedly transmitted periodically, and the sensor 12 is subjected to an observation data transmission process for transmitting the observation data stored and held in step S18, and the observation data is intensively received from the sensor 12 determined to be a fire sign.

続いて、受信機10はステップS20に進んで観測データの受信を判別するとステップS21に進み、観測データに含まれる複数の煙濃度から特徴量を検出し、ステップS22で特徴量が所定の火災判断条件を充足した場合に火災と検出し、ステップS23で主音響警報および地区音響警報の鳴動、火災と判断した感知器アドレスに基づく火災発生場所の表示、防排煙機器の連動制御等を含む火災警報処理を行う。 Subsequently, the receiver 10 proceeds to step S20 to determine reception of observation data, proceeds to step S21, detects a feature amount from a plurality of smoke concentrations contained in the observation data, and determines a fire with a predetermined feature amount in step S22. A fire that is detected as a fire when the conditions are met, sounds the main acoustic alarm and the district acoustic alarm in step S23, displays the location of the fire based on the detector address determined to be a fire, and controls the interlocking of smoke prevention equipment. Perform alarm processing.

続いて、受信機10はステップS24で火災の鎮火に伴う復旧操作による復旧を判別するとステップS25で感知器12に復旧信号を送信し、ステップS11の火災監視伝送処理に戻る。また、感知器12はステップS27で復旧信号の受信を判別するとステップS12の火災監視応答処理に戻る。 Subsequently, when the receiver 10 determines the restoration by the restoration operation accompanying the extinguishing of the fire in step S24, the receiver 10 transmits a restoration signal to the detector 12 in step S25, and returns to the fire monitoring transmission process of step S11. Further, when the detector 12 determines the reception of the recovery signal in step S27, the detector 12 returns to the fire monitoring response process in step S12.

一方、感知器12は、ステップS18で観測データ送信処理を行った後にステップS26に進み、観測部16の連続発光により観測している煙濃度が所定の閾値となる火災予兆レベル以上であれば、ステップS27を経由したステップS17からの処理を繰りし返しているが、煙濃度が火災予兆レベル未満となった場合には、ステップS12に戻り、受信機10からの一括A/D変換コマンド信号の受信により間欠発光して煙濃度を観測する通常監視状態の動作に戻る。なお、ステップS26にあっては、例えば、ステップS17で生成された観測データに含まれる複数の煙濃度の中からピーク値を抽出するか、又は、平均値を求めて、火災予兆レベル未満か否か判別する。 On the other hand, if the detector 12 proceeds to step S26 after performing the observation data transmission process in step S18 and the smoke concentration observed by the continuous emission of the observation unit 16 is equal to or higher than the fire sign level that becomes a predetermined threshold value, the detector 12 proceeds to step S26. The process from step S17 via step S27 is repeated, but when the smoke concentration becomes less than the fire sign level, the process returns to step S12 and the batch A / D conversion command signal from the receiver 10 is transmitted. Upon reception, it emits light intermittently and returns to the normal monitoring state operation in which the smoke concentration is observed. In step S26, for example, the peak value is extracted from a plurality of smoke concentrations included in the observation data generated in step S17, or the average value is obtained and whether or not it is less than the fire sign level. To determine.

なお、上述したR型の防災設備では、受信機10に検出部20を設け、感知器12から受信した観測データに含まれる複数の煙濃度から特徴量を検出し、特徴量が所定の火災判断条件を充足したときに火災と検出しているが、検出部20における観測データから特徴量を検出する機能を感知器12側に設け、感知器12側で観測データから特徴量を検出して受信機10へ送信し、受信機10側で受信した特徴量が火災判断条件を充足したときに火災と検出しても良い。これにより感知器12から受信器10へ送信するデータ量を低減できる。 In the above-mentioned R-type disaster prevention equipment, the receiver 10 is provided with a detection unit 20, and the feature amount is detected from a plurality of smoke concentrations included in the observation data received from the detector 12, and the feature amount is determined to be a predetermined fire. Although it is detected as a fire when the conditions are satisfied, a function to detect the feature amount from the observation data in the detection unit 20 is provided on the sensor 12 side, and the sensor 12 side detects and receives the feature amount from the observation data. It may be detected as a fire when the feature amount transmitted to the machine 10 and received on the receiver 10 side satisfies the fire judgment condition. As a result, the amount of data transmitted from the sensor 12 to the receiver 10 can be reduced.

[f.本発明の変形例]
本発明の変形例となる実施形態について、より詳細に説明する。
[F. Modifications of the present invention]
An embodiment as a modification of the present invention will be described in more detail.

(間欠発光と連続発光の切替え)
上記の実施形態は、煙濃度が所定の閾値となる火災予兆レベル以上又は超えたときに、間欠発光から連続発光に切り替えているが、間欠発光と連続発光の間の切替条件や切替タイミングは任意であり、例えば、受信機からの切替コマンド信号により、必要に応じて間欠発光から連続発光に切替え、また、連続発光から間欠発光に切替えるようにしても良い。
(Switching between intermittent light emission and continuous light emission)
In the above embodiment, when the smoke concentration exceeds or exceeds the fire sign level which is a predetermined threshold value, the intermittent light emission is switched to the continuous light emission, but the switching condition and the switching timing between the intermittent light emission and the continuous light emission are arbitrary. For example, the switching command signal from the receiver may be used to switch from intermittent light emission to continuous light emission, or from continuous light emission to intermittent light emission, if necessary.

(常に連続発光とする火災検出装置)
上記の実施形態は、煙濃度が所定の閾値となる火災予兆レベル以上又は超えたときに、間欠発光から連続発光に切り替えているが、間欠発光と連続発光の間での切替えを行わず、常に検出光を連続発光して煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成し、当該観測データに基づいて火災を検出する火災検出装置としても良い。
(Fire detection device that always emits light continuously)
In the above embodiment, when the smoke concentration is equal to or higher than or exceeds the fire sign level which is a predetermined threshold, the intermittent light emission is switched to the continuous light emission, but the switch between the intermittent light emission and the continuous light emission is not performed and the continuous light emission is always performed. The detection light is continuously emitted to observe the smoke concentration, and observation data including multiple observation values obtained in chronological order is generated for each predetermined time, and a fire is detected based on the observation data. It may be used as a fire detection device.

(減光式の煙感知器)
上記の実施形態は、散乱光式の煙感知器を例にとっているが、これに限定されない。例えば、減光式の煙感知器としてもよい。減光式の煙感知器は、発光部からの光を検煙空間に円環状に配置した複数のミラーで反射して受光部までの光路長を煙による減光が十分に得られる程度に長くした公知の減光式検煙構造を備える。また、散乱光式の検煙構造と減光式の検煙構造を一体に備える公知の複合検煙構造とした煙感知器としてもよい。
(Dimming smoke detector)
The above embodiment exemplifies, but is not limited to, a scattered light type smoke detector. For example, it may be a dimming smoke detector. The dimming type smoke detector reflects the light from the light emitting part by multiple mirrors arranged in a ring shape in the smoke detection space, and the optical path length to the light receiving part is long enough to obtain sufficient dimming by smoke. It is provided with a known dimming type smoke detection structure. Further, a smoke detector having a known composite smoke detection structure including a scattered light type smoke detection structure and a dimming type smoke detection structure may be used.

(2波長式の煙感知器)
また、上記の実施形態の散乱光式煙感知器としては、異なる波長の光の散乱特性の相違による散乱光を受光して煙の種類を識別する2波長式の煙感知器としてもよい。2波長式の煙感知器は、例えば、白色発光ダイオードを用いた発光素子又は発光波長の異なる第1及び第2発光素子から、検煙空間に向けて、第1波長と第2波長の光を発し、発光素子から発せられる光を直接受光しない異なる交差角の位置に、第1波長の光に感度をもつ第1受光素子と第2波長の光に感度を持つ第2受光素子を設け、第1受光素子で受光された第1波長の光による小さい錯乱角による煙散乱光の受光出力と、第2受光素子で受光された大きい散乱角による煙散乱光の受光出力とを比較することにより、煙の種類を識別し、煙の種類に応じた判断基準により火災判断を行う。
(Two-wavelength smoke detector)
Further, the scattered light type smoke detector of the above embodiment may be a two-wavelength type smoke detector that receives scattered light due to a difference in scattering characteristics of light having different wavelengths and identifies the type of smoke. The two-wavelength type smoke detector emits light of the first wavelength and the second wavelength toward the smoke detection space from, for example, a light emitting element using a white light emitting diode or the first and second light emitting elements having different light emitting wavelengths. A first light receiving element having sensitivity to light of the first wavelength and a second light receiving element having sensitivity to light of the second wavelength are provided at positions of different crossing angles that emit light and do not directly receive light emitted from the light emitting element. 1 By comparing the light receiving output of smoke scattered light due to the small confusion angle received by the light of the first wavelength received by the light receiving element and the light receiving output of the smoke scattered light due to the large scattering angle received by the second light receiving element. Identify the type of smoke and make a fire judgment based on the judgment criteria according to the type of smoke.

この場合にも、通常監視状態では、間欠発光による煙濃度の観測で消費電流を低減し、一方、間欠発光により観測している煙濃度が所定閾値以上となったときに連続発光による煙濃度の観測に切替え、所定時間のあいだごとに時系列に連続する複数の煙濃度を含む観測データを生成し、観測データに含まれる複数の煙濃度から特徴量を検出し、特徴量が火災判断条件を充足したときに火災と検出する。 In this case as well, in the normal monitoring state, the current consumption is reduced by observing the smoke concentration by intermittent light emission, while the smoke concentration by continuous light emission becomes higher than the predetermined threshold when the smoke concentration observed by intermittent light emission exceeds a predetermined threshold. Switch to observation, generate observation data including multiple smoke concentrations that are continuous in time series for each predetermined time, detect the feature amount from the multiple smoke concentrations included in the observation data, and the feature amount determines the fire judgment condition. Detects as a fire when satisfied.

(火災警報器)
上記の実施形態は、受信機と感知器を備えた防災設備を対象とした火災検出装置の構成を例にとっているが、煙濃度を観測して火災を判断する手段と火災を警報する手段を備えた例えば住宅用の火災警報器を火災検出装置として構成しても良い。火災警報器の場合には、図1及び図2に示した防災設備の感知器12と同様に、火災警報器に本発明の火災検出装置を構成する観測部16、処理部18及び検出部20の機能を設ける。
(Fire alarm)
The above embodiment takes as an example the configuration of a fire detection device for disaster prevention equipment equipped with a receiver and a detector, but includes means for observing smoke concentration to judge a fire and means for warning a fire. For example, a fire alarm for a house may be configured as a fire detection device. In the case of a fire alarm, the observation unit 16, the processing unit 18, and the detection unit 20 constituting the fire detection device of the present invention are the same as the detector 12 of the disaster prevention equipment shown in FIGS. 1 and 2. The function of is provided.

(その他)
また、本発明は、その目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態に示した数値による限定は受けない。
(others)
In addition, the present invention includes appropriate modifications that do not impair its purpose and advantages, and is not further limited by the numerical values shown in the above embodiments.

10:受信機
12:感知器
14:信号線
16:観測部
18:処理部
20:検出部
24:感知器制御部
25:検煙部
26:発報回路部
28:電源部
30:発光素子
32:受光素子
34:発光駆動部
36:受光増幅部
40:受信機制御部
42:回線受信部
44:表示部
46:操作部
48:警報部
50:移報部
60,62:伝送部
114:伝送線
10: Receiver 12: Sensor 14: Signal line 16: Observation unit 18: Processing unit 20: Detection unit 24: Sensor control unit 25: Smoke detection unit 26: Alarm circuit unit 28: Power supply unit 30: Light emitting element 32 : Light receiving element 34: Light emitting drive unit 36: Light receiving amplification unit 40: Receiver control unit 42: Line receiving unit 44: Display unit 46: Operation unit 48: Alarm unit 50: Transfer unit 60, 62: Transmission unit 114: Transmission line

Claims (15)

所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測する観測部と、
前記検出光を連続発光して前記煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成する処理部と、
前記観測データに基づいて火災を検出する検出部と、
を設けたことを特徴とする火災検出装置。
An observation unit that observes the smoke concentration by irradiating the smoke that has flowed into the smoke detection space from a predetermined monitoring area with detected light and receiving scattered or attenuated light.
A processing unit that continuously emits the detected light to observe the smoke concentration and generates observation data including a plurality of observation values continuously obtained in a time series at predetermined time intervals.
A detection unit that detects a fire based on the observation data,
A fire detection device characterized by the provision of.
所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測する観測部と、
前記検出光を所定周期で間欠発光して観測された前記煙濃度が所定の閾値条件を充足した場合に、前記検出光を連続発光して前記煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成する処理部と、
前記観測データに基づいて火災を検出する検出部と、
を設けたことを特徴とする火災検出装置。
An observation unit that observes the smoke concentration by irradiating the smoke that has flowed into the smoke detection space from a predetermined monitoring area with detected light and receiving scattered or attenuated light.
When the smoke concentration observed by intermittently emitting the detected light at a predetermined cycle satisfies a predetermined threshold condition, the detected light is continuously emitted to observe the smoke concentration, and the smoke concentration is observed every predetermined time. A processing unit that generates observation data including multiple observation values obtained in chronological order,
A detection unit that detects a fire based on the observation data,
A fire detection device characterized by the provision of.
請求項1又は2記載の火災検出装置に於いて、
前記検出部は、
前記観測データに含まれる複数の前記観測値を対象に所定の特徴量を検出し、当該特徴量が所定の火災判断条件を充足した場合に火災と検出する、
ことを特徴とする火災検出装置。
In the fire detection device according to claim 1 or 2.
The detector is
A predetermined feature amount is detected for a plurality of the observed values included in the observation data, and a fire is detected when the feature amount satisfies a predetermined fire judgment condition.
A fire detection device characterized by that.
請求項3記載の火災検出装置に於いて、
前記検出部は、前記所定時間ごとに検出される前記特徴量が所定の閾値以上又は前記閾値を超えた場合に火災と判断する、
ことを特徴とする火災検出装置。
In the fire detection device according to claim 3,
The detection unit determines that a fire is caused when the feature amount detected every predetermined time exceeds a predetermined threshold value or exceeds the threshold value.
A fire detection device characterized by that.
請求項3記載の火災検出装置に於いて、
前記検出部は、前記所定時間ごとに検出される前記特徴量が所定回数連続して所定の閾値以上又は前記閾値を超えた場合に火災と判断する、
ことを特徴とする火災検出装置。
In the fire detection device according to claim 3,
The detection unit determines that a fire occurs when the feature amount detected at each predetermined time continuously exceeds a predetermined threshold value or exceeds the threshold value a predetermined number of times.
A fire detection device characterized by that.
請求項3記載の火災検出装置に於いて、
前記検出部は、前記所定時間ごとに検出される前記特徴量について、現在の特徴量と前回の特徴量の比率が所定の閾値以上又は前記閾値を超えた場合に火災と判断する、
ことを特徴とする火災検出装置。
In the fire detection device according to claim 3,
The detection unit determines that the feature amount detected every predetermined time is a fire when the ratio of the current feature amount to the previous feature amount exceeds a predetermined threshold value or exceeds the threshold value.
A fire detection device characterized by that.
請求項3記載の火災検出装置に於いて、
前記検出部は、前記所定時間ごとに検出される前記特徴量について、現在の特徴量と前回の特徴量の比率が所定回数連続して所定の閾値以上又は前記閾値を超えた場合に火災と判断する、
ことを特徴とする火災検出装置。
In the fire detection device according to claim 3,
The detection unit determines that the feature amount detected every predetermined time is a fire when the ratio of the current feature amount to the previous feature amount continuously exceeds a predetermined threshold value or exceeds the threshold value a predetermined number of times. do,
A fire detection device characterized by that.
請求項3記載の火災検出装置に於いて、
前記検出部は、前記所定時間ごとに検出される前記特徴量について、現在の特徴量と前回の特徴量の差分が所定の閾値以上又は前記閾値を超えた場合に火災と判断する、
ことを特徴とする火災検出装置。
In the fire detection device according to claim 3,
The detection unit determines that the feature amount detected every predetermined time is a fire when the difference between the current feature amount and the previous feature amount exceeds a predetermined threshold value or exceeds the threshold value.
A fire detection device characterized by that.
請求項3記載の火災検出装置に於いて、
前記検出部は、前記所定時間ごとに検出される前記特徴量について、現在の特徴量と前回の特徴量の差分が所定回数連続して所定の閾値以上又は前記閾値を超えた場合に火災と判断する、
ことを特徴とする火災検出装置。
In the fire detection device according to claim 3,
The detection unit determines that the feature amount detected every predetermined time is a fire when the difference between the current feature amount and the previous feature amount continuously exceeds a predetermined threshold value or exceeds the threshold value a predetermined number of times. do,
A fire detection device characterized by that.
請求項1乃至9の何れかに記載の火災検出装置に於いて、
前記検出部は、前記観測データの特徴量として、前記観測データに含まれる複数の観測値の積分値、平均値又はピーク値を検出することを特徴とする火災検出装置。
In the fire detection device according to any one of claims 1 to 9.
The detection unit is a fire detection device that detects an integrated value, an average value, or a peak value of a plurality of observed values included in the observed data as a feature amount of the observed data.
請求項1乃至10の何れかに記載の火災検出装置を用いた防災設備に於いて、
受信機と、火災を検出して前記受信機に火災信号を送信する感知器とを備え、
前記感知器に、前記観測部、前記処理部及び前記検出部を設けたことを特徴とする防災設備。
In the disaster prevention equipment using the fire detection device according to any one of claims 1 to 10.
It is equipped with a receiver and a detector that detects a fire and sends a fire signal to the receiver.
A disaster prevention facility characterized in that the detector is provided with the observation unit, the processing unit, and the detection unit.
請求項1乃至10の何れかに記載の火災検出装置を用いた防災設備に於いて、
受信機と、火災を検出して前記受信機に火災信号を送信する感知器とを備え、
前記感知器に、前記観測部及び前記処理部を設け、
前記受信機に、前記検出部を設けたことを特徴とする防災設備。
In the disaster prevention equipment using the fire detection device according to any one of claims 1 to 10.
It is equipped with a receiver and a detector that detects a fire and sends a fire signal to the receiver.
The detector is provided with the observation unit and the processing unit.
A disaster prevention facility characterized in that the receiver is provided with the detection unit.
観測部により、所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測し、
処理部により、前記検出光を連続発光して前記煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成し、
検出部により、前記観測データに基づいて火災を検出する、
ことを特徴とする火災検出方法。
The observation unit observes the smoke concentration by receiving the scattered light or attenuated light generated by irradiating the smoke flowing into the smoke detection space from the predetermined monitoring area with the detection light.
The processing unit continuously emits the detected light to observe the smoke concentration, and generates observation data including a plurality of observation values continuously obtained in time series at predetermined time intervals.
The detection unit detects a fire based on the observation data.
A fire detection method characterized by that.
観測部により、所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測し、
処理部により、前記検出光を所定周期で間欠発光して観測された前記煙濃度が所定の閾値条件を充足した場合に、前記検出光を連続発光して前記煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成し、
検出部により、前記観測データに基づいて火災を検出する、
ことを特徴とする火災検出方法。
The observation unit observes the smoke concentration by receiving the scattered light or attenuated light generated by irradiating the smoke flowing into the smoke detection space from the predetermined monitoring area with the detection light.
When the smoke concentration observed by intermittently emitting the detected light at a predetermined cycle by the processing unit satisfies a predetermined threshold condition, the detected light is continuously emitted to observe the smoke concentration for a predetermined time. For each interval, generate observation data including multiple observation values obtained in continuous time series.
The detection unit detects a fire based on the observation data.
A fire detection method characterized by that.
請求項13又は14記載の火災検出方法に於いて、
前記検出部は、
前記観測データに含まれる複数の前記観測値を対象に所定の特徴量を検出し、当該特徴量が所定の火災判断条件を充足した場合に火災と検出する、
ことを特徴とする火災検出方法。
In the fire detection method according to claim 13 or 14.
The detector is
A predetermined feature amount is detected for a plurality of the observed values included in the observation data, and a fire is detected when the feature amount satisfies a predetermined fire judgment condition.
A fire detection method characterized by that.
JP2020173941A 2020-10-15 2020-10-15 Fire detection device, disaster prevention facility, and fire detection method Pending JP2022065389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020173941A JP2022065389A (en) 2020-10-15 2020-10-15 Fire detection device, disaster prevention facility, and fire detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020173941A JP2022065389A (en) 2020-10-15 2020-10-15 Fire detection device, disaster prevention facility, and fire detection method

Publications (1)

Publication Number Publication Date
JP2022065389A true JP2022065389A (en) 2022-04-27

Family

ID=81386328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020173941A Pending JP2022065389A (en) 2020-10-15 2020-10-15 Fire detection device, disaster prevention facility, and fire detection method

Country Status (1)

Country Link
JP (1) JP2022065389A (en)

Similar Documents

Publication Publication Date Title
US7280039B2 (en) Fire sensor and fire sensor status information acquisition system
JP7085670B2 (en) Disaster prevention system
KR20190057877A (en) A monitoring system for fire outbreak
US6353395B1 (en) Interconnectable detector with local alarm indicator
JP2022065389A (en) Fire detection device, disaster prevention facility, and fire detection method
JP2023126834A (en) Fire warning facility and receiver
JP5468989B2 (en) Fire alarm system
JPH02121098A (en) Fire alarm
JP2004038647A (en) Fire detector and fire alarm facility
KR20200003452A (en) Smart Fire Evacuation Leader
JP2003058961A (en) Fire sensor
JP4650926B2 (en) Fire alarm system
JP3939900B2 (en) Smoke detector and supervisory control system
JP2002357668A (en) Abnormality detecting method for human body detector
JP2003109138A (en) Fire alarm facility
JP3945756B2 (en) Fire detector
JP7332754B2 (en) Fire alarm equipment
JP2021128715A (en) Fire detection means, anti-disaster facility, and fire detection method
JP4884037B2 (en) Monitoring and control system, sensor, program and recording medium
JP2022065388A (en) Fire detection device, disaster prevention facility and fire detection method
EP2363844A1 (en) Improvements relating to smoke alarm devices
JP6159233B2 (en) Transmission conversion repeater
JP5037647B2 (en) Fire alarm system
JP2007299103A (en) Fire alarm system and fire sensor
JP2023006039A (en) Fire detection system, disaster prevention facility, and fire detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230914