JP2022061593A - Manufacturing method for active material powder, and active material powder - Google Patents

Manufacturing method for active material powder, and active material powder Download PDF

Info

Publication number
JP2022061593A
JP2022061593A JP2020169618A JP2020169618A JP2022061593A JP 2022061593 A JP2022061593 A JP 2022061593A JP 2020169618 A JP2020169618 A JP 2020169618A JP 2020169618 A JP2020169618 A JP 2020169618A JP 2022061593 A JP2022061593 A JP 2022061593A
Authority
JP
Japan
Prior art keywords
active material
material powder
positive electrode
amorphous
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020169618A
Other languages
Japanese (ja)
Other versions
JP7132304B2 (en
Inventor
将史 上田
Masashi Ueda
有基 石垣
Yuki Ishigaki
英一 高木
Hidekazu Takagi
雅則 北吉
Masanori Kitayoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Planet Energy and Solutions Inc
Original Assignee
Prime Planet Energy and Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Planet Energy and Solutions Inc filed Critical Prime Planet Energy and Solutions Inc
Priority to JP2020169618A priority Critical patent/JP7132304B2/en
Publication of JP2022061593A publication Critical patent/JP2022061593A/en
Application granted granted Critical
Publication of JP7132304B2 publication Critical patent/JP7132304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a manufacturing method of active material powders and the like capable of improving durability performance (capacity maintenance rate) of a battery while having an amorphous LPO film on particle surfaces of cathode active material particles.SOLUTION: A manufacturing method for active material powders 5 includes: a film formation step S1 which obtains cathode active material particles 1Z with films forming an amorphous LPO film 20 on a particle surface 10m of the cathode active material particles 10, and active material powders 5Z before washing including a surplus P containing substance 30 including P; and a washing step S2 which washes the active material powders 5Z before washing with selective solution 200 solving not the amorphous LPO film 20 but the P containing substance 30 and reducing the P containing substance 30 included in the active material powders 5.SELECTED DRAWING: Figure 2

Description

本発明は、リチウムイオンを吸蔵及び放出可能な正極活物質粒子の粒子表面に、リチウム(Li)、リン(P)及び酸素(O)を含む非晶質の非晶質LPO被膜を有する被膜付き正極活物質粒子が集合した活物質粉体、及び、その製造方法に関する。 INDUSTRIAL APPLICABILITY The present invention has a coating having an amorphous amorphous LPO coating containing lithium (Li), phosphorus (P) and oxygen (O) on the particle surface of positive electrode active material particles capable of storing and releasing lithium ions. The present invention relates to an active material powder in which positive positive active material particles are aggregated, and a method for producing the same.

リチウムイオン二次電池(以下、単に「電池」ともいう)の正極板に用いられる活物質粉体として、正極活物質粒子の粒子表面に、Li、P及びOを含む非晶質の非晶質LPO被膜を有する被膜付き正極活物質粒子が集合した活物質粉体が知られている。この活物質粉体は、例えば以下の手法により製造する。即ち、オルトリン酸(H3PO4)等のリン化合物を水に溶解させておき、この処理液と正極活物質粒子の粉体とを混合する。その後、この混合物を乾燥させて、非晶質LPO被膜が粒子表面に形成された被膜付き正極活物質粒子の活物質粉体を得る。なお、この手法に関連する従来技術として、特許文献1が挙げられる。 Amorphous amorphous material containing Li, P and O on the particle surface of the positive electrode active material particles as the active material powder used for the positive electrode plate of a lithium ion secondary battery (hereinafter, also simply referred to as “battery”). An active material powder in which positive positive material particles with a film having an LPO film are aggregated is known. This active material powder is produced, for example, by the following method. That is, a phosphorus compound such as orthophosphoric acid (H 3 PO 4 ) is dissolved in water, and this treatment liquid and the powder of the positive electrode active material particles are mixed. Then, the mixture is dried to obtain an active material powder of a positive electrode active material particle with a film having an amorphous LPO film formed on the particle surface. As a conventional technique related to this method, Patent Document 1 can be mentioned.

特開2019-153462号公報JP-A-2019-153462

しかしながら、上述の活物質粉体には、非晶質LPO被膜の形成に使われなかった、Pを含む余剰のP含有物質が含まれていることが判ってきた。更に、この余剰のP含有物質が多いと、この活物質粉体を用いた電池において、充放電サイクル試験後の電池容量の容量維持率が低くなることも判ってきた。その理由は、余剰のP含有物質がLiイオンと反応して、電池反応に利用可能なLiイオンの量が減少するためと考えられる。また、余剰のP含有物質が電解液に含まれる水分と反応してH3PO4などの酸に変化し、この酸により正極活物質粒子が損傷するためと考えられる。 However, it has been found that the above-mentioned active material powder contains a surplus P-containing substance containing P, which was not used for forming the amorphous LPO film. Further, it has been found that when the excess P-containing substance is large, the capacity retention rate of the battery capacity after the charge / discharge cycle test is low in the battery using this active material powder. The reason is considered to be that the excess P-containing substance reacts with Li ions, and the amount of Li ions available for the battery reaction decreases. It is also considered that the excess P-containing substance reacts with the water contained in the electrolytic solution to change into an acid such as H 3 PO 4 , and this acid damages the positive electrode active material particles.

本発明は、かかる現状に鑑みてなされたものであって、正極活物質粒子の粒子表面に非晶質LPO被膜を有しながらも、電池の耐久性能(容量維持率)を高くできる活物質粉体、及び、その製造方法を提供するものである。 The present invention has been made in view of the present situation, and is an active material powder capable of increasing the durability performance (capacity retention rate) of a battery while having an amorphous LPO film on the particle surface of the positive electrode active material particles. It provides a body and a method for producing the same.

上記課題を解決するための本発明の一態様は、リチウムイオンを吸蔵及び放出可能な正極活物質粒子と、上記正極活物質粒子の粒子表面に形成され、Li、P及びOを含む非晶質の非晶質LPO被膜と、を備える被膜付き正極活物質粒子が集合した活物質粉体の製造方法であって、上記正極活物質粒子の上記粒子表面に上記非晶質LPO被膜を形成した被膜付き正極活物質粒子、及び、Pを含む余剰のP含有物質を含む洗浄前の活物質粉体を得る被膜形成工程と、上記洗浄前の活物質粉体を、上記非晶質LPO被膜は溶解しないが上記P含有物質は溶解する選択的溶媒で洗浄して、上記活物質粉体に含まれる上記P含有物質を減らす洗浄工程と、を備える活物質粉体の製造方法である。 One aspect of the present invention for solving the above-mentioned problems is an amorphous substance formed on the particle surface of the positive electrode active material particles capable of storing and releasing lithium ions and containing Li, P and O. A method for producing an active material powder in which positive particle active material particles with a coating are aggregated, wherein the amorphous LPO coating is formed on the particle surface of the positive positive active material particles. The amorphous LPO film dissolves the active material powder before cleaning and the active material powder before cleaning, which contains the positive particle active material particles and the excess P-containing substance containing P. It is a method for producing active material powder, which comprises a cleaning step of reducing the P-containing substance contained in the active material powder by washing the P-containing substance with a selective solvent that dissolves the P-containing substance.

上述の活物質粉体の製造方法のうち、被膜形成工程で得られる洗浄前の活物質粉体には、Pを含む余剰のP含有物質が多く含まれている。しかし、その後の洗浄工程において、この洗浄前の活物質粉体を上述の選択的溶媒で洗浄して、活物質粉体に含まれるP含有物質を減らす。このため、製造される活物質粉体は、正極活物質粒子の粒子表面に非晶質LPO被膜を有しながらも、余剰のP含有物質が少ないため、余剰のP含有物質に起因して電池の耐久性能(容量維持率)が低下するのを抑制でき、電池の耐久性能(容量維持率)を高くできる。 Among the above-mentioned methods for producing active material powder, the active material powder before cleaning obtained in the film forming step contains a large amount of excess P-containing material containing P. However, in the subsequent cleaning step, the active material powder before cleaning is washed with the above-mentioned selective solvent to reduce the P-containing substance contained in the active material powder. Therefore, the produced active material powder has an amorphous LPO film on the particle surface of the positive electrode active material particles, but the excess P-containing substance is small, so that the battery is caused by the surplus P-containing material. It is possible to suppress the deterioration of the durability performance (capacity maintenance rate) of the battery, and it is possible to increase the durability performance (capacity maintenance rate) of the battery.

なお、「正極活物質粒子」としては、例えば、リチウム遷移金属酸化物の粒子が挙げられる。このリチウム遷移金属酸化物粒子としては、例えば、リチウムニッケル複合酸化物(例えばLiNiO2)、リチウムコバルト複合酸化物(例えばLiCoO2)、リチウムマンガン複合酸化物(例えばLiMn24)、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNi1/3Co1/3Mn1/32)のような三元系のリチウム遷移金属酸化物などの粒子が挙げられる。更に、リチウム遷移金属酸化物粒子として、リン酸マンガンリチウム(例えばLiMnPO4)、リン酸鉄リチウム(例えばLiFePO4)等の、リチウム及び遷移金属元素を含むリン酸塩などの粒子も挙げられる。
Li、P及びOを含む非晶質の「非晶質LPO被膜」としては、例えば、リン酸リチウム(Li3PO4)、リン酸水素二リチウム(Li2HPO4)、リン酸二水素リチウム(LiH2PO4)からなる非晶質の被膜が挙げられる。
Examples of the "positive electrode active material particles" include particles of lithium transition metal oxide. Examples of the lithium transition metal oxide particles include a lithium nickel composite oxide (for example, LiNiO 2 ), a lithium cobalt composite oxide (for example, LiCoO 2 ), a lithium manganese composite oxide (for example, LiMn 2 O 4 ), and a lithium nickel cobalt. Examples include particles such as ternary lithium transition metal oxides such as manganese composite oxides (eg LiNi 1/3 Co 1/3 Mn 1/3 O 2 ). Further, examples of the lithium transition metal oxide particles include particles such as lithium manganese phosphate (for example, LiMnPO 4 ), lithium iron phosphate (for example, LiFePO 4 ), and phosphates containing lithium and transition metal elements.
Examples of the amorphous "amorphous LPO film" containing Li, P and O include lithium phosphate (Li 3 PO 4 ), dilithium hydrogen phosphate (Li 2 HPO 4 ), and lithium dihydrogen phosphate. An amorphous film made of (LiH 2 PO 4 ) can be mentioned.

「被膜形成工程」において、上述の洗浄前の活物質粉体を得る手法としては、例えば、後述する実施形態1のように、P25、ピロリン酸(H427)、ポリリン酸(HO(HPO3nH)等のリン化合物を、イソプロピルアルコール(2-プロパノール,IPA)、N-メチルピロリドン(NMP)等の溶媒に溶解または分散させたPを含む処理液と、正極活物質粒子の粉体とを混合して、洗浄前の活物質粉体を得る手法が挙げられる。
或いは、後述する実施形態2のように、上述のリン化合物の粉体と正極活物質粒子の粉体とを乾式で混合して、固相反応により非晶質LPO被膜を形成し、洗浄前の活物質粉体を得る手法が挙げられる。
「選択的溶媒」としては、例えば、非晶質LPO被膜は溶解しないが、余剰のP含有物質は溶解するIPA等のアルコールや、NMPなどが挙げられる。
In the "film forming step", as a method for obtaining the above-mentioned active substance powder before cleaning, for example, as in the first embodiment described later, P 2 O 5 , pyrophosphoric acid (H 4 P 2 O 7 ), and polyphosphoric acid are used. A treatment solution containing P in which a phosphorus compound such as an acid (HO (HPO 3 ) n H) is dissolved or dispersed in a solvent such as isopropyl alcohol (2-propanol, IPA) or N-methylpyrrolidone (NMP), and a positive electrode. An example is a method of obtaining an active material powder before cleaning by mixing it with a powder of active material particles.
Alternatively, as in the second embodiment described later, the above-mentioned phosphorus compound powder and the positive electrode active material particle powder are mixed in a dry manner to form an amorphous LPO film by a solid phase reaction, and before washing. A method for obtaining active material powder can be mentioned.
Examples of the "selective solvent" include alcohols such as IPA and NMP, which do not dissolve the amorphous LPO film but dissolve the excess P-containing substance.

更に、上記の活物質粉体の製造方法であって、前記洗浄工程は、100mlのイソプロピルアルコール(IPA)に、40mgの上記洗浄工程終了後の前記活物質粉体を加えて攪拌混合し、これをろ過したろ液についてICP分析を行った場合のリン濃度が0.05ppm以下となるまで、上記活物質粉体に含まれる前記P含有物質を減らす活物質粉体の製造方法とすると良い。 Further, in the method for producing the active material powder, in the cleaning step, 40 mg of the active material powder after the completion of the cleaning step is added to 100 ml of isopropyl alcohol (IPA), and the mixture is stirred and mixed. It is preferable to use a method for producing an active material powder that reduces the P-containing substance contained in the active material powder until the phosphorus concentration in the filtered filtrate is 0.05 ppm or less when ICP analysis is performed.

上述の製造方法で得られる活物質粉体は、余剰のP含有物質が更に少なく、余剰のP含有物質に起因して電池の耐久性能(容量維持率)が低下するのを更に効果的に抑制できる。 The active material powder obtained by the above-mentioned production method has a smaller amount of surplus P-containing substance, and more effectively suppresses deterioration of battery durability (capacity retention rate) due to the surplus P-containing substance. can.

また、他の解決手段は、リチウムイオンを吸蔵及び放出可能な正極活物質粒子と、上記正極活物質粒子の粒子表面に形成され、Li、P及びOを含む非晶質の非晶質LPO被膜と、を備える被膜付き正極活物質粒子が集合した活物質粉体であって、100mlのイソプロピルアルコール(IPA)に40mgの上記活物質粉体を加えて攪拌混合し、これをろ過したろ液についてICP分析を行った場合のリン濃度が0.15ppm以下である活物質粉体である。 Another solution is an amorphous amorphous LPO film formed on the particle surface of the positive electrode active material particles capable of storing and releasing lithium ions and containing Li, P and O. A filtrate in which 40 mg of the above active material powder is added to 100 ml of isopropyl alcohol (IPA), mixed by stirring, and filtered. It is an active material powder having a phosphorus concentration of 0.15 ppm or less when ICP analysis is performed.

上述の活物質粉体は、正極活物質粒子の粒子表面に非晶質LPO被膜を有しながらも、上述のICP(Inductively Coupled Plasma)分析を行った場合のリン濃度が0.15ppm以下であり、従来の活物質粉体よりも、活物質粉体に含まれている余剰のP含有物質が少ない。このため、この余剰のP含有物質に起因して電池の耐久性能(容量維持率)が低下するのを抑制でき、電池の耐久性能(容量維持率)を高くできる。 The above-mentioned active material powder has an amorphous LPO film on the particle surface of the positive electrode active material particles, but the phosphorus concentration when the above-mentioned ICP (Inductively Coupled Plasma) analysis is performed is 0.15 ppm or less. , The excess P-containing substance contained in the active material powder is less than that of the conventional active material powder. Therefore, it is possible to suppress the deterioration of the durability performance (capacity retention rate) of the battery due to the surplus P-containing substance, and it is possible to increase the durability performance (capacity retention rate) of the battery.

更に、上記の活物質粉体であって、前記リン濃度が0.05ppm以下である活物質粉体とすると良い。 Further, it is preferable to use the above-mentioned active material powder having a phosphorus concentration of 0.05 ppm or less.

上述の活物質粉体では、余剰のP含有物質が更に少なく、余剰のP含有物質に起因して電池の耐久性能(容量維持率)が低下するのを更に効果的に抑制できる。 In the above-mentioned active material powder, the surplus P-containing substance is further reduced, and it is possible to more effectively suppress the deterioration of the durability performance (capacity retention rate) of the battery due to the surplus P-containing substance.

実施形態1,2に係る被膜付き正極活物質粒子の模式的な断面図である。It is a schematic cross-sectional view of the positive electrode active material particle with a film which concerns on Embodiments 1 and 2. 実施形態1,2に係る活物質粉体の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the active material powder which concerns on Embodiments 1 and 2. 被膜形成工程を模式的に示す説明図であり、(a)は被膜無しの正極活物質粒子を示す説明図であり、(b)はPを含む処理液によって正極活物質粒子の粒子表面に非晶質LPO被膜が形成される様子を示す説明図であり、(c)は被膜付き正極活物質粒子の粒子表面に余剰のP含有物質が付着した状態を示す説明図である。It is explanatory drawing which shows the film formation process schematically, (a) is explanatory drawing which shows the positive electrode active material particle without a film, (b) is not on the particle surface of the positive electrode active material particle by the treatment liquid containing P. It is explanatory drawing which shows the state which the crystalline LPO film is formed, and (c) is the explanatory view which shows the state which the surplus P-containing substance adhered to the particle surface of the positive electrode active material particle with a film. 洗浄工程において、選択的溶媒によって余剰のP含有物質が除去されていく様子を示す説明図である。It is explanatory drawing which shows how the excess P-containing substance is removed by a selective solvent in a washing process. 洗浄回数(洗浄工程を繰り返した回数)と、洗浄後の活物質粉体におけるリン濃度との関係を示すグラフである。It is a graph which shows the relationship between the number of times of washing (the number of times of repeating a washing process), and the phosphorus concentration in the active material powder after washing. リン濃度がそれぞれ異なる活物資粉体を用いた各電池について、充放電サイクル試験におけるサイクル数と電池容量の容量維持率との関係を示すグラフである。It is a graph which shows the relationship between the number of cycles in the charge / discharge cycle test, and the capacity retention rate of a battery capacity for each battery using the active material powder which has a different phosphorus concentration.

(実施形態1)
以下、本発明の第1の実施形態を、図面を参照しつつ説明する。図1に本実施形態1に係る被膜付き正極活物質粒子1の断面図を模式的に示す。この被膜付き正極活物質粒子1が集合した活物質粉体5は、リチウムイオン二次電池を構成する正極板の正極活物質層に用いられる。被膜付き正極活物質粒子1は、リチウムイオンを吸蔵及び放出可能な正極活物質粒子10と、この正極活物質粒子10の粒子表面10mに形成された非晶質LPO被膜20とを備える。
(Embodiment 1)
Hereinafter, the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a cross-sectional view of the positive electrode active material particles 1 with a coating according to the first embodiment. The active material powder 5 in which the positive electrode active material particles 1 with a film are aggregated is used for the positive electrode active material layer of the positive electrode plate constituting the lithium ion secondary battery. The positive electrode active material particles 1 with a film include positive electrode active material particles 10 capable of storing and releasing lithium ions, and an amorphous LPO film 20 formed on the particle surface 10 m of the positive electrode active material particles 10.

本実施形態1では、正極活物質粒子10は、リチウム遷移金属酸化物粒子、具体的には、リチウムニッケルコバルトマンガン複合酸化物(詳細にはLiNi0.2Co0.5Mn0.32)の粒子である。
非晶質LPO被膜20は、Li、P及びOを含む非晶質のLPO被膜、具体的には、主としてLi3PO4からなる非晶質の被膜であると考えられる。この非晶質LPO被膜20は、正極活物質粒子10の粒子表面10mの一部に、詳細には、粒子表面10mのうちエッジ面10maの一部に、海島状に形成されている。各非晶質LPO被膜20の厚みは、0.2nm程度である。また、正極活物質粒子10の粒子表面10mにおける非晶質LPO被膜20の被覆率は、本実施形態1では約30%である。
また、本実施形態1の活物質粉体5は、後に詳述するように、この活物質粉体5に含まれる余剰のP含有物質30が極めて少ないため、余剰のP含有物質30に起因して電池の耐久性能(容量維持率)が低下するのを抑制でき、電池の耐久性能(容量維持率)を高くできる。
In the first embodiment, the positive electrode active material particles 10 are lithium transition metal oxide particles, specifically, particles of lithium nickel cobalt manganese composite oxide (specifically, LiNi 0.2 Co 0.5 Mn 0.3 O 2 ).
The amorphous LPO film 20 is considered to be an amorphous LPO film containing Li, P and O, specifically, an amorphous film mainly composed of Li 3 PO 4 . The amorphous LPO coating 20 is formed in a sea-island shape on a part of the particle surface 10 m of the positive electrode active material particles 10, specifically, on a part of the edge surface 10 ma of the particle surface 10 m. The thickness of each amorphous LPO coating 20 is about 0.2 nm. Further, the coverage of the amorphous LPO coating 20 on the particle surface 10 m of the positive electrode active material particles 10 is about 30% in the first embodiment.
Further, as will be described in detail later, the active material powder 5 of the first embodiment is caused by the surplus P-containing substance 30 because the excess P-containing substance 30 contained in the active material powder 5 is extremely small. Therefore, it is possible to suppress the deterioration of the durability performance (capacity retention rate) of the battery, and it is possible to increase the durability performance (capacity retention rate) of the battery.

次いで、上記活物質粉体5の製造方法について説明する(図2~図4参照)。まず「被膜形成工程S1」において、正極活物質粒子10の粒子表面10mに非晶質LPO被膜20を形成する。
具体的には、メディアン径D50が5μm程度の正極活物質粒子10(本実施形態1では、LiNi0.2Co0.5Mn0.32粒子)の粉体15を用意する(図3(a)参照)。正極活物質粒子10の粒子表面10mには、詳細には、粒子表面10mのうちエッジ面10maには、余剰のLiを起源とするLiOHやLi2Oからなる余剰Li層10iが海島状に存在している。
また別途、100重量部のIPAに対し、0.033重量部のP25を溶解させて、Pを含む処理液100(図3(b)参照)を得ておく。
Next, a method for producing the active material powder 5 will be described (see FIGS. 2 to 4). First, in the “film forming step S1”, the amorphous LPO film 20 is formed on the particle surface 10 m of the positive electrode active material particles 10.
Specifically, a powder 15 of positive electrode active material particles 10 having a median diameter D 50 of about 5 μm (LiNi 0.2 Co 0.5 Mn 0.3 O 2 particles in the first embodiment) is prepared (see FIG. 3A). .. On the particle surface 10m of the positive electrode active material particles 10, specifically, on the edge surface 10ma of the particle surface 10m, a surplus Li layer 10i made of LiOH or Li 2O originating from the surplus Li exists in a sea island shape. are doing.
Separately, 0.033 parts by weight of P 2 O 5 is dissolved in 100 parts by weight of IPA to obtain a treatment liquid 100 containing P (see FIG. 3 (b)).

そして、100重量部の処理液100に対し、100重量部の正極活物質粒子10の粉体15を加える。この混合物をプラネタリーミキサで3分間にわたり混合し、正極活物質粒子10の粒子表面の10mに存在する余剰Li層10iと、処理液100中のリン酸イオンとを反応させて、余剰Li層10iに代えてLi、P及びOを含む非晶質の非晶質LPO被膜20を形成する(図3(b)参照)。この非晶質LPO被膜20は、前述のように、主としてLi3PO4からなると考えられる。 Then, 100 parts by weight of the powder 15 of the positive electrode active material particles 10 is added to 100 parts by weight of the treatment liquid 100. This mixture is mixed with a planetary mixer for 3 minutes, and the surplus Li layer 10i existing at 10 m on the particle surface of the positive electrode active material particles 10 is reacted with the phosphate ion in the treatment liquid 100 to react the surplus Li layer 10i. Instead, an amorphous amorphous LPO film 20 containing Li, P and O is formed (see FIG. 3 (b)). As described above, the amorphous LPO coating 20 is considered to be mainly composed of Li 3 PO 4 .

その後、この被膜付き正極活物質粒子1Zの活物質粉体5Zをろ過して回収する(図3(c)参照)。この活物質粉体5Zには、非晶質LPO被膜20の形成に使われなかった、Pを含む余剰のP含有物質30が多く含まれている。具体的には、P含有物質30は、P25であり、このP含有物質30は、被膜付き正極活物質粒子1Zの粒子表面1mに付着していたり、被膜付き正極活物質粒子1Zとは独立した粒子として、活物質粉体5Z内に混在している。 Then, the active material powder 5Z of the positive electrode active material particles 1Z with a coating film is filtered and recovered (see FIG. 3C). The active material powder 5Z contains a large amount of the surplus P-containing substance 30 containing P, which was not used for forming the amorphous LPO film 20. Specifically, the P-containing substance 30 is P 2 O 5 , and the P-containing substance 30 is attached to the particle surface 1 m of the coated positive electrode active material particles 1Z, or is attached to the coated positive electrode active material particles 1Z. Are mixed in the active material powder 5Z as independent particles.

そこで、「洗浄工程S2」において、上述の洗浄前の活物質粉体5Zを、非晶質LPO被膜20は溶解しないがP含有物質30は溶解する選択的溶媒200(本実施形態1ではIPA)で洗浄して、活物質粉体5に含まれるP含有物質30を減らす(図4参照)。
本実施形態1では、予め予備実験を行って洗浄条件を定めた。即ち、100mlのIPAに、40mgの洗浄工程S2終了後の活物質粉体5を加えて攪拌混合し、これをろ過したろ液についてICP分析を行った場合のリン濃度が0.05ppm以下となるように、洗浄条件を定めた。具体的には、500mlのIPAに10gの被膜付き正極活物質粒子1Zの活物質粉体5Zを加えて、1分間にわたり攪拌混合し、その後、これをろ過して、活物質粉体5を回収する。この洗浄工程S2を全部で3回繰り返すと、上述のリン濃度が0.05ppmとなったため、これを本実施形態1の洗浄条件とした。
Therefore, in the "cleaning step S2", the selective solvent 200 (IPA in the first embodiment) in which the above-mentioned active substance powder 5Z before cleaning is not dissolved in the amorphous LPO film 20 but is dissolved in the P-containing substance 30. To reduce the P-containing substance 30 contained in the active material powder 5 (see FIG. 4).
In the first embodiment, a preliminary experiment was performed in advance to determine the cleaning conditions. That is, when 40 mg of the active material powder 5 after the completion of the washing step S2 is added to 100 ml of IPA, the mixture is stirred and mixed, and the filtrate obtained by filtering the filtrate is subjected to ICP analysis, the phosphorus concentration is 0.05 ppm or less. Therefore, the cleaning conditions were set. Specifically, 10 g of the active material powder 5Z of the positive electrode active material particles 1Z with a coating film is added to 500 ml of IPA, and the mixture is stirred and mixed for 1 minute, and then filtered to recover the active material powder 5. do. When this cleaning step S2 was repeated three times in total, the above-mentioned phosphorus concentration became 0.05 ppm, and this was set as the cleaning condition of the first embodiment.

図2のフローチャートに基づいて説明すると、被膜形成工程S1を終えたら、1回目の洗浄工程S2を行う。その後、ステップS3において、洗浄工程S2を3回行ったか否かを判断する。ここで、NO、即ち洗浄工程S2を3回行っていない場合には、再び洗浄工程S2を行う。一方、YES、即ち洗浄工程S2を3回行った場合には、終了する。かくして、洗浄済みの被膜付き正極活物質粒子1が集合した活物質粉体5を得る。 Explaining based on the flowchart of FIG. 2, after the film forming step S1 is completed, the first cleaning step S2 is performed. After that, in step S3, it is determined whether or not the cleaning step S2 has been performed three times. Here, NO, that is, if the cleaning step S2 has not been performed three times, the cleaning step S2 is performed again. On the other hand, if YES, that is, if the cleaning step S2 is performed three times, the process ends. Thus, the active material powder 5 in which the washed positive electrode active material particles 1 with a coating are aggregated is obtained.

(実施形態2)
次いで、第2の実施形態について説明する。実施形態1では、被膜形成工程S1において、正極活物質粒子10の粉体15とPを含む処理液100とを混合して、洗浄前の被膜付き正極活物質粒子1Zの活物質粉体5Zを得た。これに対し、本実施形態2では、被膜形成工程S11において、正極活物質粒子10の粉体15と、リン化合物の粉体とを乾式で混合して、洗浄前の被膜付き正極活物質粒子1Zの活物質粉体5Zを得る点が異なる。
(Embodiment 2)
Next, the second embodiment will be described. In the first embodiment, in the film forming step S1, the powder 15 of the positive electrode active material particles 10 and the treatment liquid 100 containing P are mixed to obtain the active material powder 5Z of the positive electrode active material particles 1Z with a film before cleaning. Obtained. On the other hand, in the second embodiment, in the film forming step S11, the powder 15 of the positive electrode active material particles 10 and the powder of the phosphorus compound are mixed in a dry manner, and the positive electrode active material particles 1Z with a film before cleaning are mixed. The difference is that the active material powder 5Z is obtained.

本実施形態2では、リン化合物の粉体として、P25粒子が集合した粉体(不図示)を用意する。そして、ハイブリダイゼーションシステム(株式会社奈良機械製作所,型番:NHS-0)に、正極活物質粒子10の粉体15及びリン化合物の粉体を、99.9:0.1の重量割合で投入し、10,000rpmで3分間にわたり、これらを乾式で混合する。これにより、正極活物質粒子10の粒子表面の10mに存在する余剰Li層10iと、リン化合物の粒子とが固相反応を生じ、余剰Li層10iに代わって非晶質LPO被膜20が形成される。本実施形態2でも、この洗浄前の活物質粉体5Zには、非晶質LPO被膜20の形成に使われなかった、Pを含む余剰のP含有物質30(P25の粒子)が多く含まれている。
その後は、実施形態1と同様に洗浄工程S2を行い、余剰のP含有物質30を減らして、洗浄済みの被膜付き正極活物質粒子1の活物質粉体5を得る。
In the second embodiment, as the powder of the phosphorus compound, a powder (not shown) in which P 2 O 5 particles are aggregated is prepared. Then, the powder 15 of the positive electrode active material particles 10 and the powder of the phosphorus compound are charged into the hybridization system (Nara Machinery Co., Ltd., model number: NHS-0) at a weight ratio of 99.9: 0.1. These are mixed dry at 10,000 rpm for 3 minutes. As a result, the surplus Li layer 10i existing on the particle surface 10 m of the positive electrode active material particles 10 and the particles of the phosphorus compound cause a solid phase reaction, and an amorphous LPO film 20 is formed in place of the surplus Li layer 10i. To. Also in the second embodiment, the active material powder 5Z before cleaning contains a surplus P-containing substance 30 (particles of P 2 O 5 ) containing P, which was not used for forming the amorphous LPO film 20. Many are included.
After that, the cleaning step S2 is performed in the same manner as in the first embodiment to reduce the excess P-containing substance 30 to obtain the active material powder 5 of the cleaned positive electrode active material particles 1 with a coating film.

(試験結果1)
次いで、本発明の効果を検証するために行った試験結果について説明する(図5及び図6参照)。まず実験例1として、実施形態2の被膜形成工程S11のみを行った(洗浄工程S2は行わなかった)洗浄前の活物質粉体5Zを用意した。
また、実験例2として、実施形態2の被膜形成工程S11を行った後、洗浄工程S2を1回のみ行って、活物質粉体5を得た。
また、実験例3として、実施形態2の被膜形成工程S11を行った後、洗浄工程S2を2回行って、活物質粉体5を得た。
また、実験例4として、実施形態2の被膜形成工程S11を行った後、実施形態2と同様に洗浄工程S2を3回行って、実施形態2と同様の活物質粉体5を得た。
(Test result 1)
Next, the test results conducted to verify the effect of the present invention will be described (see FIGS. 5 and 6). First, as Experimental Example 1, an active material powder 5Z before cleaning was prepared in which only the film forming step S11 of the second embodiment was performed (the cleaning step S2 was not performed).
Further, as Experimental Example 2, after the film forming step S11 of the second embodiment was performed, the cleaning step S2 was performed only once to obtain the active material powder 5.
Further, as Experimental Example 3, after the film forming step S11 of the second embodiment was performed, the cleaning step S2 was performed twice to obtain the active material powder 5.
Further, as Experimental Example 4, after performing the film forming step S11 of the second embodiment, the cleaning step S2 was performed three times in the same manner as in the second embodiment to obtain the same active material powder 5 as in the second embodiment.

次に、これら実験例1~4の活物質粉体5,5Zについて、それぞれ活物質粉体5,5Zに含まれている余剰のP含有物質30(P25)の量を調査した。具体的には、ビーカに100mlのIPAを入れ、これに40mgの活物質粉体5,5Zを加えて、マグネチックスターラを用いて1分間にわたり攪拌混合する。その後、この混合液をろ過し、ろ液についてICP分析を行って、ろ液におけるリン濃度をそれぞれ測定した。その結果を図5に示す。 Next, with respect to the active material powders 5 and 5Z of Experimental Examples 1 to 4, the amount of the surplus P-containing substance 30 (P 2 O 5 ) contained in the active material powders 5 and 5Z was investigated. Specifically, 100 ml of IPA is placed in a beaker, 40 mg of active material powder 5,5Z is added thereto, and the mixture is stirred and mixed for 1 minute using a magnetic stirrer. Then, this mixed solution was filtered, and ICP analysis was performed on the filtrate to measure the phosphorus concentration in the filtrate. The results are shown in FIG.

図5から明らかなように、実験例1のリン濃度(0.20ppm)よりも、実験例2のリン濃度(0.10ppm)が低く、更に実験例3のリン濃度(0.05ppm)が低く、更に実験例4のリン濃度(0.03ppm)が低い。つまり、実験例1の洗浄前の活物質粉体5Zよりも実験例2の洗浄済みの活物質粉体5の方が余剰のP含有物質30が少なく、更に、実験例3の洗浄済みの活物質粉体5の方が余剰のP含有物質30が少なく、更に、実験例4の洗浄済みの活物質粉体5の方が余剰のP含有物質30が少ない。このことから、被膜形成工程S1後、前述の洗浄工程S2を行うことにより、更には洗浄工程S2を繰り返し行うほど、活物質粉体5に含まれる余剰のP含有物質30が少なくなることが判る。 As is clear from FIG. 5, the phosphorus concentration (0.10 ppm) of Experimental Example 2 is lower than the phosphorus concentration (0.20 ppm) of Experimental Example 1, and the phosphorus concentration (0.05 ppm) of Experimental Example 3 is lower. Furthermore, the phosphorus concentration (0.03 ppm) of Experimental Example 4 is low. That is, the washed active material powder 5 of Experimental Example 2 has less excess P-containing substance 30 than the active material powder 5Z before washing of Experimental Example 1, and further, the washed active material of Experimental Example 3 is used. The substance powder 5 has less excess P-containing substance 30, and the washed active material powder 5 of Experimental Example 4 has less excess P-containing substance 30. From this, it can be seen that by performing the above-mentioned cleaning step S2 after the film forming step S1 and further repeating the cleaning step S2, the excess P-containing substance 30 contained in the active material powder 5 is reduced. ..

(試験結果2)
次に、実験例1~4の活物質粉体5,5Zを用いて、それぞれラミネートセル型のリチウムイオン電池(不図示)を作製した。即ち、活物質粉体5,5Zを用いて、それぞれ正極板を作製する。具体的には、活物質粉体5,5Zと、導電粒子(アセチレンブラック粒子)と、結着剤(ポリフッ化ビニリデン)と、分散媒(NMP)とを混合して、正極活物質ペーストを作製する。そして、この正極活物質ペーストをアルミニウム箔からなる正極集電箔上に塗布し、乾燥させて、正極集電箔上に正極活物質層を形成する。その後、これをプレスして正極活物質層の密度を高めて、正極板を形成した。
(Test result 2)
Next, using the active material powders 5 and 5Z of Experimental Examples 1 to 4, laminated cell type lithium ion batteries (not shown) were produced. That is, positive electrode plates are produced using the active material powders 5, 5Z, respectively. Specifically, the active material powder 5,5Z, conductive particles (acetylene black particles), a binder (polyvinylidene fluoride), and a dispersion medium (NMP) are mixed to prepare a positive electrode active material paste. do. Then, this positive electrode active material paste is applied onto a positive electrode current collecting foil made of aluminum foil and dried to form a positive electrode active material layer on the positive electrode current collecting foil. Then, this was pressed to increase the density of the positive electrode active material layer to form a positive electrode plate.

また別途、負極板を作製する。具体的には、負極活物質粒子(黒鉛粒子)と、結着剤(スチレンブタジエンゴム)と、増粘剤(カルボキシメチルセルロース)と、分散媒(水)とを混合して、負極活物質ペーストを作製する。そして、この負極活物質ペーストを銅箔からなる負極集電箔上に塗布し、乾燥させて、負極集電箔上に負極活物質層を形成する。その後、これをプレスして負極活物質層の密度を高めて、負極板を形成した。
次に、実験例1~4の各正極板と、負極板とをセパレータを介して対向させて、電解液と共にラミネートフィルムからなる外装体内に収容し、電池をそれぞれ作製した。
In addition, a negative electrode plate is separately manufactured. Specifically, the negative electrode active material particles (graphite particles), the binder (styrene butadiene rubber), the thickener (carboxymethyl cellulose), and the dispersion medium (water) are mixed to form a negative electrode active material paste. To make. Then, this negative electrode active material paste is applied onto a negative electrode current collecting foil made of copper foil and dried to form a negative electrode active material layer on the negative electrode current collecting foil. Then, this was pressed to increase the density of the negative electrode active material layer to form a negative electrode plate.
Next, each of the positive electrode plates of Experimental Examples 1 to 4 and the negative electrode plate were opposed to each other via a separator and housed together with the electrolytic solution in an exterior body made of a laminated film to prepare batteries.

次に、実験例1~4の各電池について、それぞれ充放電サイクル試験を行って、電池容量の容量維持率を算出した。具体的には、まず25℃の環境温度下で、各電池を1Cの定電流でSOC100%(電池電圧4.10V)まで充電し、更にこの電池電圧を維持して電流値が0.01CとなるまでCVCC充電した。その後、各電池を1Cの定電流でSOC0%(電池電圧3.00V)まで放電させた。そのときの放電電気量に基づいて初期(充放電サイクル試験前)の電池容量C0を求めた。 Next, each of the batteries of Experimental Examples 1 to 4 was subjected to a charge / discharge cycle test, and the capacity retention rate of the battery capacity was calculated. Specifically, first, under an environmental temperature of 25 ° C., each battery is charged to SOC 100% (battery voltage 4.10V) with a constant current of 1C, and the battery voltage is maintained to a current value of 0.01C. CVCC was charged until it became. Then, each battery was discharged to SOC 0% (battery voltage 3.00 V) with a constant current of 1 C. The initial battery capacity C0 (before the charge / discharge cycle test) was determined based on the amount of electricity discharged at that time.

その後、各電池を2Cの定電流でSOC0%(電池電圧3.00V)からSOC100%(電池電圧4.10V)まで充電した後、2Cの定電流でSOC100%(電池電圧4.10V)からSOC0%(電池電圧3.00V)まで放電する充放電を1サイクルとして、この充放電を繰り返し行う。そして、初期の電池容量C0の測定と同様にして、50サイクル後の電池容量C50と、100サイクル後の電池容量C100をそれぞれ測定した。更に、初期の電池容量C0に対する電池容量C50,C100の割合を計算して、容量維持率(%)をそれぞれ求めた。その結果を図6に示す。 After that, each battery is charged from SOC 0% (battery voltage 3.00V) to SOC 100% (battery voltage 4.10V) with a constant current of 2C, and then from SOC 100% (battery voltage 4.10V) to SOC 0 with a constant current of 2C. This charging / discharging is repeated with the charging / discharging to discharge to% (battery voltage 3.00 V) as one cycle. Then, in the same manner as the initial measurement of the battery capacity C0, the battery capacity C50 after 50 cycles and the battery capacity C100 after 100 cycles were measured, respectively. Further, the ratio of the battery capacities C50 and C100 to the initial battery capacity C0 was calculated, and the capacity retention rate (%) was obtained respectively. The results are shown in FIG.

図6から明らかなように、リン濃度が0.15ppmよりも高い洗浄前の活物質粉体5Zを用いた実験例1の電池に比べて、リン濃度が0.15ppm以下の洗浄済みの活物質粉体5を用いた実験例2~4の各電池では、容量維持率が高い。また、実験例2~4の各電池同士で比較すると、リン濃度が0.10ppmの活物質粉体5を用いた実験例2の電池に比べて、リン濃度が0.05ppm以下の活物質粉体5を用いた実験例3,4の各電池では、容量維持率が高い。一方、実験例3と実験例4の電池では、容量維持率の差が殆ど生じていない。 As is clear from FIG. 6, the washed active material having a phosphorus concentration of 0.15 ppm or less as compared with the battery of Experimental Example 1 using the active material powder 5Z before washing having a phosphorus concentration higher than 0.15 ppm. In each of the batteries of Experimental Examples 2 to 4 using the powder 5, the capacity retention rate is high. Further, when comparing the batteries of Experimental Examples 2 to 4, the active material powder having a phosphorus concentration of 0.05 ppm or less is compared with the battery of Experimental Example 2 using the active material powder 5 having a phosphorus concentration of 0.10 ppm. The capacity retention rate is high in each of the batteries of Experimental Examples 3 and 4 using the body 5. On the other hand, there is almost no difference in the capacity retention rate between the batteries of Experimental Example 3 and Experimental Example 4.

余剰のP含有物質30(P25)は、Liイオンと反応して、電池反応に利用可能なLiイオンの量が減少する。また、余剰のP含有物質30(P25)は、電解液に含まれる水分と反応してH3PO4などの酸に変化し、この酸により正極活物質粒子10が損傷する。このため、活物質粉体5,5Zに含まれる余剰のP含有物質30が少なくほど、容量維持率が高くなると考えられる。但し、リン濃度が0.05ppm以下では、余剰のP含有物質30が十分に少なくなっているため、これ以上、余剰のP含有物質30を減らしても、容量維持率の向上には寄与しなくなると考えられる。 The surplus P-containing substance 30 (P 2 O 5 ) reacts with Li ions, and the amount of Li ions available for the battery reaction decreases. Further, the surplus P-containing substance 30 (P 2 O 5 ) reacts with the water contained in the electrolytic solution to change into an acid such as H 3 PO 4 , and this acid damages the positive electrode active material particles 10. Therefore, it is considered that the smaller the excess P-containing substance 30 contained in the active material powders 5, 5Z, the higher the capacity retention rate. However, when the phosphorus concentration is 0.05 ppm or less, the surplus P-containing substance 30 is sufficiently reduced, so that even if the surplus P-containing substance 30 is further reduced, it does not contribute to the improvement of the capacity retention rate. it is conceivable that.

以上で説明したように、実施形態1,2の活物質粉体5の製造方法のうち、被膜形成工程S1,S11で得られる洗浄前の活物質粉体5Zには、余剰のP含有物質30が多く含まれている。しかし、その後の洗浄工程S2において、この活物質粉体5Zを選択的溶媒200で洗浄して、活物質粉体5に含まれるP含有物質30を減らしている。このため、製造される活物質粉体5は、正極活物質粒子10の粒子表面10mに非晶質LPO被膜20を有しながらも、余剰のP含有物質30が少ないため、余剰のP含有物質30に起因して電池の耐久性能(容量維持率)が低下するのを抑制でき、電池の耐久性能(容量維持率)を高くできる。
更に、実施形態1,2では、前述のICP分析を行った場合のリン濃度が0.05ppm以下となるまで、活物質粉体5に含まれるP含有物質30を減らしている。これにより、余剰のP含有物質30に起因して電池の耐久性能(容量維持率)が低下するのを更に効果的に抑制できる。
As described above, among the methods for producing the active material powder 5 of the first and second embodiments, the active material powder 5Z before cleaning obtained in the film forming steps S1 and S11 contains a surplus P-containing substance 30. Is included a lot. However, in the subsequent cleaning step S2, the active material powder 5Z is washed with the selective solvent 200 to reduce the P-containing substance 30 contained in the active material powder 5. Therefore, the produced active material powder 5 has an amorphous LPO coating 20 on the particle surface 10 m of the positive electrode active material particles 10, but the excess P-containing substance 30 is small, so that the surplus P-containing material 30 is present. It is possible to suppress the deterioration of the durability performance (capacity retention rate) of the battery due to 30 and to increase the durability performance (capacity retention rate) of the battery.
Further, in the first and second embodiments, the P-containing substance 30 contained in the active material powder 5 is reduced until the phosphorus concentration in the above-mentioned ICP analysis is 0.05 ppm or less. As a result, it is possible to more effectively suppress the deterioration of the durability performance (capacity retention rate) of the battery due to the surplus P-containing substance 30.

また、実施形態1,2の活物質粉体5は、正極活物質粒子10の粒子表面10mに非晶質LPO被膜20を有しながらも、前述のICP分析を行った場合のリン濃度が0.15ppm以下、更には0.05ppm以下であり、活物質粉体5に含まれている余剰のP含有物質30が少ない。このため、この余剰のP含有物質に起因して電池の耐久性能(容量維持率)が低下するのを特に効果的に抑制でき、電池の耐久性能(容量維持率)を高くできる。 Further, the active material powders 5 of the first and second embodiments have an amorphous LPO coating 20 on the particle surface 10 m of the positive electrode active material particles 10, but the phosphorus concentration when the above-mentioned ICP analysis is performed is 0. It is .15 ppm or less, further 0.05 ppm or less, and the excess P-containing substance 30 contained in the active material powder 5 is small. Therefore, it is possible to particularly effectively suppress the deterioration of the durability performance (capacity retention rate) of the battery due to the surplus P-containing substance, and it is possible to increase the durability performance (capacity retention rate) of the battery.

以上において、本発明を実施形態1,2に即して説明したが、本発明は実施形態1,2に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態1の被膜形成工程S1では、正極活物質粒子10の粉体15とPを含む処理液100とを混合した後、この混合液をろ過して、被膜付き正極活物質粒子1Zの活物質粉体5Zを得ているが、これに限られない。正極活物質粒子10の粉体15とPを含む処理液100とを混合した後、この混合液を例えば80℃で加熱乾燥させて、被膜付き正極活物質粒子1Zの活物質粉体5Zを得てもよい。
Although the present invention has been described above with reference to the first and second embodiments, the present invention is not limited to the first and second embodiments, and can be appropriately modified and applied without departing from the gist thereof. Needless to say.
For example, in the film forming step S1 of the first embodiment, the powder 15 of the positive electrode active material particles 10 and the treatment liquid 100 containing P are mixed, and then the mixed liquid is filtered to obtain the positive electrode active material particles 1Z with a film. The active material powder 5Z is obtained, but the present invention is not limited to this. After mixing the powder 15 of the positive electrode active material particles 10 and the treatment liquid 100 containing P, this mixed liquid is heated and dried at, for example, 80 ° C. to obtain the active material powder 5Z of the positive electrode active material particles 1Z with a film. You may.

1 (洗浄済みの)被膜付き正極活物質粒子
1Z (洗浄前の)被膜付き正極活物質粒子
5 (洗浄済みの)活物質粉体
5Z (洗浄前の)活物質粉体
10 正極活物質粒子
10m (正極活物質粒子の)粒子表面
20 非晶質LPO被膜
30 P含有物質
200 選択的溶媒
S1,S11 被膜形成工程
S2 洗浄工程
1 (cleaned) coated positive material particles 1Z (before cleaning) coated positive active material particles 5 (cleaned) active material powder 5Z (before cleaning) active material powder 10 positive positive material particles 10m Particle surface (of positive electrode active material particles) 20 Amorphous LPO film 30 P-containing substance 200 Selective solvent S1, S11 Film formation step S2 Cleaning step

Claims (4)

リチウムイオンを吸蔵及び放出可能な正極活物質粒子と、
上記正極活物質粒子の粒子表面に形成され、Li、P及びOを含む非晶質の非晶質LPO被膜と、を備える
被膜付き正極活物質粒子が集合した活物質粉体の製造方法であって、
上記正極活物質粒子の上記粒子表面に上記非晶質LPO被膜を形成した被膜付き正極活物質粒子、及び、Pを含む余剰のP含有物質を含む洗浄前の活物質粉体を得る被膜形成工程と、
上記洗浄前の活物質粉体を、上記非晶質LPO被膜は溶解しないが上記P含有物質は溶解する選択的溶媒で洗浄して、上記活物質粉体に含まれる上記P含有物質を減らす洗浄工程と、を備える
活物質粉体の製造方法。
Positive electrode active material particles that can occlude and release lithium ions,
It is a method for producing an active material powder in which positive electrode active material particles having a coating formed on the particle surface of the positive electrode active material particles and having an amorphous amorphous LPO coating containing Li, P and O are aggregated. hand,
A film forming step of obtaining a positive electrode active material particle with a film having an amorphous LPO film formed on the particle surface of the positive electrode active material particles and an active material powder before cleaning containing a surplus P-containing substance containing P. When,
The active material powder before cleaning is washed with a selective solvent that does not dissolve the amorphous LPO film but dissolves the P-containing substance to reduce the P-containing substance contained in the active material powder. A method for producing an active material powder, which comprises a process.
請求項1に記載の活物質粉体の製造方法であって、
前記洗浄工程は、
100mlのイソプロピルアルコール(IPA)に、40mgの上記洗浄工程終了後の前記活物質粉体を加えて攪拌混合し、これをろ過したろ液についてICP分析を行った場合のリン濃度が0.05ppm以下となるまで、上記活物質粉体に含まれる前記P含有物質を減らす
活物質粉体の製造方法。
The method for producing an active material powder according to claim 1.
The cleaning step is
To 100 ml of isopropyl alcohol (IPA), 40 mg of the active substance powder after the completion of the washing step was added, stirred and mixed, and the filtered filtrate was subjected to ICP analysis to have a phosphorus concentration of 0.05 ppm or less. A method for producing an active material powder that reduces the P-containing substance contained in the active material powder until the above.
リチウムイオンを吸蔵及び放出可能な正極活物質粒子と、
上記正極活物質粒子の粒子表面に形成され、Li、P及びOを含む非晶質の非晶質LPO被膜と、を備える
被膜付き正極活物質粒子が集合した活物質粉体であって、
100mlのイソプロピルアルコール(IPA)に40mgの上記活物質粉体を加えて攪拌混合し、これをろ過したろ液についてICP分析を行った場合のリン濃度が0.15ppm以下である
活物質粉体。
Positive electrode active material particles that can occlude and release lithium ions,
It is an active material powder in which positive electrode active material particles having a coating formed on the particle surface of the positive electrode active material particles and having an amorphous amorphous LPO coating containing Li, P and O are aggregated.
An active material powder having a phosphorus concentration of 0.15 ppm or less when 40 mg of the above active material powder is added to 100 ml of isopropyl alcohol (IPA), mixed by stirring, and ICP analysis is performed on the filtered filtrate.
請求項3に記載の活物質粉体であって、
前記リン濃度が0.05ppm以下である
活物質粉体。
The active material powder according to claim 3.
The active material powder having a phosphorus concentration of 0.05 ppm or less.
JP2020169618A 2020-10-07 2020-10-07 Manufacturing method of active material powder and active material powder Active JP7132304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020169618A JP7132304B2 (en) 2020-10-07 2020-10-07 Manufacturing method of active material powder and active material powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020169618A JP7132304B2 (en) 2020-10-07 2020-10-07 Manufacturing method of active material powder and active material powder

Publications (2)

Publication Number Publication Date
JP2022061593A true JP2022061593A (en) 2022-04-19
JP7132304B2 JP7132304B2 (en) 2022-09-06

Family

ID=81210738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020169618A Active JP7132304B2 (en) 2020-10-07 2020-10-07 Manufacturing method of active material powder and active material powder

Country Status (1)

Country Link
JP (1) JP7132304B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173770A (en) * 2001-12-04 2003-06-20 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and manufacturing method of nonaqueous electrolyte battery
JP2014130773A (en) * 2012-12-28 2014-07-10 Toyota Motor Corp Positive electrode active material particle and utilization thereof
JP2015072772A (en) * 2013-10-02 2015-04-16 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery, and method for manufacturing positive electrode active material for lithium ion secondary batteries
WO2017094416A1 (en) * 2015-12-02 2017-06-08 日本電気株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, lithium secondary battery, method for producing positive electrode active material for lithium secondary batteries, and method for manufacturing lithium secondary battery
JP2019153462A (en) * 2018-03-02 2019-09-12 トヨタ自動車株式会社 Method for producing positive electrode active material particle, method for producing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery
JP2020092093A (en) * 2015-07-02 2020-06-11 ユミコア Cobalt-based lithium metal oxide cathode material
JP2020113377A (en) * 2019-01-09 2020-07-27 トヨタ自動車株式会社 Manufacturing method of cathode active material composite material for lithium ion secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173770A (en) * 2001-12-04 2003-06-20 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and manufacturing method of nonaqueous electrolyte battery
JP2014130773A (en) * 2012-12-28 2014-07-10 Toyota Motor Corp Positive electrode active material particle and utilization thereof
JP2015072772A (en) * 2013-10-02 2015-04-16 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery, and method for manufacturing positive electrode active material for lithium ion secondary batteries
JP2020092093A (en) * 2015-07-02 2020-06-11 ユミコア Cobalt-based lithium metal oxide cathode material
WO2017094416A1 (en) * 2015-12-02 2017-06-08 日本電気株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, lithium secondary battery, method for producing positive electrode active material for lithium secondary batteries, and method for manufacturing lithium secondary battery
JP2019153462A (en) * 2018-03-02 2019-09-12 トヨタ自動車株式会社 Method for producing positive electrode active material particle, method for producing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery
JP2020113377A (en) * 2019-01-09 2020-07-27 トヨタ自動車株式会社 Manufacturing method of cathode active material composite material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP7132304B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
US10868295B2 (en) Positive electrode active material complex for lithium-ion secondary battery, secondary battery using same, and method for producing positive electrode active material complex for lithium-ion secondary battery
JP5491460B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP5491459B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
CA2859121C (en) Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
CN109509873A (en) The cathode graphite material and its manufacturing method of lithium ion secondary battery
JP5491461B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
CA2859113C (en) Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
JP5373858B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP5449265B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP5491462B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP2018147555A (en) Positive electrode active material composite for lithium ion secondary battery, and method for manufacturing the same
JP2019503551A (en) Method for producing positive electrode active material and positive electrode active material produced thereby
CN112310360A (en) Negative electrode active material and battery
JP5373857B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
KR101895670B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
JP4174691B2 (en) Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
JP7132304B2 (en) Manufacturing method of active material powder and active material powder
CN114864894B (en) High-pressure-resistant coating modified lithium-rich manganese-based positive electrode material and preparation method and application thereof
CN111527631A (en) Manganese phosphate coated lithium nickel oxide materials
Chikaoka et al. Degradation of Li3V2 (PO4) 3-based full-cells containing Li4Ti5O12 or Li3. 2V0. 8Si0. 2O4 anodes modeled by charge-discharge cycling simulations
JP7209449B2 (en) Manufacturing method of active material powder with LPO
JP7286687B2 (en) Method for measuring amount of Li on particle surface of active material powder and method for producing coating-containing active material powder
JP7137602B2 (en) Method for producing coated positive electrode active material particles
JP7341975B2 (en) Method for manufacturing high coverage positive electrode active material particles and method for manufacturing positive electrode active material particles with LPO layer as intermediates
JP7284774B2 (en) Manufacturing method of active material powder with LPO and active material powder with LPO

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220825

R150 Certificate of patent or registration of utility model

Ref document number: 7132304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150