JP2022061053A - Impact absorption structure - Google Patents

Impact absorption structure Download PDF

Info

Publication number
JP2022061053A
JP2022061053A JP2020168810A JP2020168810A JP2022061053A JP 2022061053 A JP2022061053 A JP 2022061053A JP 2020168810 A JP2020168810 A JP 2020168810A JP 2020168810 A JP2020168810 A JP 2020168810A JP 2022061053 A JP2022061053 A JP 2022061053A
Authority
JP
Japan
Prior art keywords
tubular member
joint portion
shock absorbing
absorbing structure
absorption structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020168810A
Other languages
Japanese (ja)
Inventor
宏 金原
Hiroshi Kanehara
歩武 谷下田
Ayumu Yageta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020168810A priority Critical patent/JP2022061053A/en
Publication of JP2022061053A publication Critical patent/JP2022061053A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Dampers (AREA)

Abstract

To provide an impact absorption structure which can be easily manufactured.SOLUTION: An impact absorption structure 10 comprises a plurality of hollow cylindrical members 20 whose two bottom faces are opened, being a plurality of hollow cylindrical members 20 which are aligned in a direction parallel to the bottom faces, and a connection part 30 for connecting the adjacent two cylindrical members 20 out of the cylindrical members 20 at a part of the openings. In this embodiment, since the impact absorption structure can be formed of a material by any of pressing, casting and injection molding, the impact absorption structure 10 can be easily formed without being applied with welding. Also, when receiving a force, the cylindrical member 20 is crushed, and an impact can be alleviated.SELECTED DRAWING: Figure 1

Description

本開示は、衝撃吸収構造に関する。 The present disclosure relates to a shock absorbing structure.

特許文献1には、車両に搭載され、衝突により車両、乗員、歩行者の各が受ける被害を軽減する衝撃吸収体、衝撃被害軽減装置が開示されている。この衝撃被害軽減装置に用いられる衝撃吸収体は、梁で形成された立方体にトラス構造を組み合わせた構造を有する。 Patent Document 1 discloses an impact absorber and an impact damage mitigation device that are mounted on a vehicle and reduce damage to each of the vehicle, occupants, and pedestrians due to a collision. The impact absorber used in this impact damage mitigation device has a structure in which a cube formed of beams is combined with a truss structure.

特開2008-018852号公報Japanese Unexamined Patent Publication No. 2008-018852

しかしながら、梁で形成された立方体を形成するには、格子点で梁を接合する必要があるため、製造工程が複雑となり、製造コストが高くなるという問題があった。 However, in order to form a cube formed of beams, it is necessary to join the beams at lattice points, which causes a problem that the manufacturing process is complicated and the manufacturing cost is high.

本開示は、以下の形態として実現することが可能である。 The present disclosure can be realized in the following forms.

(1)本開示の一形態によれば、衝撃吸収構造が提供される。この衝撃吸収構造は、2つの底面が開口である複数の中空の筒状部材であって、前記底面と平行な方向に並べられた複数の中空の筒状部材と、前記筒状部材のうち隣接する2つの前記筒状部材を前記開口の一部において結合する結合部と、を備える。この形態によれば、材料によりプレス、鋳造、射出成形のいずれかにより形成できるので、溶接をすることなく衝撃吸収構造を容易に形成できる。また、力を受けると、筒状部材が潰れることで、衝撃を緩和できる。
(2)上記形態において、複数の前記筒状部材は、直線状に並べられ、互いに隣接する第1の筒状部材と第2の筒状部材とを結合する結合部は、前記第2の筒状部材の一方の開口の側に設けられ、互いに隣接する前記第2の筒状部材と第3の筒状部材とを結合する結合部は、前記第2の筒状部材の前記一方の開口と反対側の開口の側に設けられている構造を有してもよい。この形態によれば、溶接をすることなくプレスにより容易に形成できる
(3)本開示の一形態によれば、衝撃吸収構造の製造方法が提供される。この製造方法は、金属製の中空のパイプに対し、前記パイプの長さ方向に交差する方向に、第1の結合部を残して、平面形状の第1の切り込みを複数形成し、前記パイプの前記複数の第1の切り込みとは交互するように、前記第1の結合部とは反対側に第2の結合部を残して、平面形状の第2の切り込みを形成し、前記パイプが前記第1、第2の切り込みによって形成された複数の中空の筒状部材を、前記第1の結合部および前記第2の結合部を内側にして交互に折り曲げて、前記複数の中空の筒状部材を、前記パイプの長さ方向に交差する方向に並べる。この形態によれば、溶接をすることなく衝撃吸収構造を製造できる。
(1) According to one embodiment of the present disclosure, a shock absorbing structure is provided. This shock absorbing structure is a plurality of hollow cylindrical members having two bottom openings, and is adjacent to a plurality of hollow cylindrical members arranged in a direction parallel to the bottom surface and the tubular members. It is provided with a joint portion for connecting the two cylindrical members to be joined in a part of the opening. According to this form, since it can be formed by any of pressing, casting, and injection molding depending on the material, a shock absorbing structure can be easily formed without welding. Further, when a force is applied, the cylindrical member is crushed, so that the impact can be mitigated.
(2) In the above embodiment, the plurality of the tubular members are arranged in a straight line, and the connecting portion for connecting the first tubular member and the second tubular member adjacent to each other is the second cylinder. The joint portion provided on the side of one opening of the shaped member and connecting the second tubular member and the third tubular member adjacent to each other is the one opening of the second tubular member. It may have a structure provided on the side of the opening on the opposite side. According to this embodiment, it can be easily formed by pressing without welding. (3) According to one embodiment of the present disclosure, a method for manufacturing a shock absorbing structure is provided. In this manufacturing method, a plurality of planar first notches are formed in a hollow metal pipe in a direction intersecting the length direction of the pipe, leaving a first joint portion, and the pipe is formed. A planar second notch is formed, leaving a second joint on the opposite side of the first joint so as to alternate with the plurality of first cuts, and the pipe forms the first notch. The plurality of hollow tubular members formed by the first and second notches are alternately bent with the first joint portion and the second joint portion inside to form the plurality of hollow tubular members. , Arrange in the direction intersecting the length direction of the pipe. According to this form, a shock absorbing structure can be manufactured without welding.

本実施形態の衝撃吸収構造を示す斜視図である。It is a perspective view which shows the shock absorption structure of this embodiment. 本実施形態の衝撃吸収構造を+z方向から見た図である。It is a figure which looked at the shock absorption structure of this embodiment from the + z direction. 本実施形態の衝撃吸収構造を-y方向から見た図である。It is a figure which looked at the shock absorption structure of this embodiment from the −y direction. 結合部近傍の拡大図である。It is an enlarged view of the vicinity of a joint part. 本実施形態の衝撃吸収構造の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the shock absorption structure of this embodiment. 本実施形態の衝撃吸収構造の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the shock absorption structure of this embodiment. 衝撃吸収構造の変位(歪)と引張荷重(応力)との関係を示す応力歪線図である。It is a stress-strain diagram which shows the relationship between the displacement (strain) of a shock absorption structure and a tensile load (stress). 衝撃吸収構造の変位(歪)と圧縮加重(応力)との関係を示す応力歪線図である。It is a stress-strain diagram which shows the relationship between the displacement (strain) of a shock absorption structure, and the compression load (stress). 圧縮方向の衝撃を受けた場合の衝撃吸収構造の変形を示す説明図である。It is explanatory drawing which shows the deformation of the shock absorption structure when it receives the shock in the compression direction. 他の実施形態を示す説明図である。It is explanatory drawing which shows the other embodiment.

・本実施形態:
図1は、本実施形態の衝撃吸収構造10を示す斜視図である。図2は、本実施形態の衝撃吸収構造10を+z方向から見た図である。本実施形態の衝撃吸収構造10を-y方向から見た図である。衝撃吸収構造10は、鉄または鉄の合金で形成された複数の中空の筒状部材20を有する。本実施形態では、筒状部材20は、直方体形状を有する角筒であり、-x方向に側面21、+x方向に側面22、ーy方向に側面23、+y方向に側面24を有する。筒状部材20の底面となるーz方向と+z方向は、それぞれ開口25、26となっている。複数の筒状部材20は、x方向、すなわち、側面21、22と垂直な方向に直線状に並べられている。本実施形態では、x方向が筒状部材20の並ぶ方向、z方向が開口方向、y方向が、x方向とy方向の両方向と交わる方向である。
-The present embodiment:
FIG. 1 is a perspective view showing the shock absorbing structure 10 of the present embodiment. FIG. 2 is a view of the shock absorbing structure 10 of the present embodiment as viewed from the + z direction. It is a figure which looked at the shock absorption structure 10 of this embodiment from the −y direction. The shock absorbing structure 10 has a plurality of hollow tubular members 20 made of iron or an alloy of iron. In the present embodiment, the tubular member 20 is a rectangular parallelepiped shape and has a side surface 21 in the −x direction, a side surface 22 in the + x direction, a side surface 23 in the −y direction, and a side surface 24 in the + y direction. The openings 25 and 26 are in the −z direction and the + z direction, which are the bottom surfaces of the tubular member 20, respectively. The plurality of tubular members 20 are linearly arranged in the x direction, that is, in the direction perpendicular to the side surfaces 21 and 22. In the present embodiment, the x direction is the direction in which the tubular members 20 are lined up, the z direction is the opening direction, and the y direction is the direction intersecting both the x direction and the y direction.

図1において、複数の筒状部材20を区別する場合には、符号の後に括弧数字を加えて区別する。例えば、図1には、第1の筒状部材20(1)から第4に筒状部材20(4)の4つの筒状部材20が図示されている。第1の筒状部材20(1)と第2の筒状部材20(2)は隣接しており、第2の筒状部材20(2)と第3の筒状部材20(3)は隣接し、第3の筒状部材20(3)と第4の筒状部材20(4)は隣接している。4つの筒状部材20(1)~20(4)は、x方向に沿って、ほぼ直線状に配置されている。第1の筒状部材20(1)と第2の筒状部材20(2)とを結合する結合部30は、鉄または鉄の合金で形成されている。結合部30は、第1の筒状部材20(1)開口25の側と第2の筒状部材20(2)の開口25の側とを結合するように設けられ、第2の筒状部材20(2)と第3の筒状部材20(3)とを結合する結合部30は、第2の筒状部材20(2)の開口26の側と第3の筒状部材20(3)の開口26の側とを結合するように設けられている。また、第3の筒状部材20(3)と第4の筒状部材20(4)とを結合する結合部30は、第3の筒状部材20(3)開口25の側と第4の筒状部材20(4)の開口25の側とを結合するように設けられている。すなわち、結合部30は、x方向に沿って、ーz側の開口25の側、+z側の開口26の側、ーz側の開口25の側のように、z方向に関し、交互に開口の側に設けられている。なお、結合部30のy方向の幅は、側面21、22のy方向の長さよりも短くなっている。 In FIG. 1, when distinguishing a plurality of tubular members 20, a parenthesis number is added after the reference numeral to distinguish them. For example, FIG. 1 illustrates four tubular members 20 from the first cylindrical member 20 (1) to the fourth tubular member 20 (4). The first tubular member 20 (1) and the second tubular member 20 (2) are adjacent to each other, and the second tubular member 20 (2) and the third tubular member 20 (3) are adjacent to each other. However, the third tubular member 20 (3) and the fourth tubular member 20 (4) are adjacent to each other. The four tubular members 20 (1) to 20 (4) are arranged substantially linearly along the x direction. The joint portion 30 that connects the first tubular member 20 (1) and the second tubular member 20 (2) is formed of iron or an iron alloy. The connecting portion 30 is provided so as to connect the side of the opening 25 of the first tubular member 20 (1) and the side of the opening 25 of the second tubular member 20 (2), and the second tubular member The connecting portion 30 that connects the 20 (2) and the third tubular member 20 (3) is the side of the opening 26 of the second tubular member 20 (2) and the third tubular member 20 (3). It is provided so as to be connected to the side of the opening 26 of. Further, the connecting portion 30 for connecting the third tubular member 20 (3) and the fourth tubular member 20 (4) is on the side of the third tubular member 20 (3) opening 25 and the fourth. It is provided so as to be connected to the side of the opening 25 of the tubular member 20 (4). That is, the connecting portions 30 alternately open in the z direction, such as the side of the opening 25 on the −z side, the side of the opening 26 on the + z side, and the side of the opening 25 on the −z side along the x direction. It is provided on the side. The width of the joint portion 30 in the y direction is shorter than the length of the side surfaces 21 and 22 in the y direction.

図4は、結合部30近傍の拡大図である。結合部30は、半円筒形状を有している。側面の板厚をt、側面21と側面22の間隔をL、結合部30の内半径をrとすると、以下の式(1)(2)を満たことが好ましい。
0.5t≦r≦2t …(1)
t≦L≦4t …(2)
内半径rを0.5t以上とすると、結合部30を曲げるときに、結合部30がワレ難い。また、内半径rを2t以下とすると、結合部30を曲げて塑性加工する際に十分な応力を加えることができ、結合部30のスプリングバックが生じにくい。また、内半径rが2t以下であれば結合部30の加工精度も良い。なお、結合部30を半円筒に曲げる場合、上記式(1)と式(2)は、同値関係にある。
FIG. 4 is an enlarged view of the vicinity of the joint portion 30. The connecting portion 30 has a semi-cylindrical shape. Assuming that the plate thickness of the side surface is t, the distance between the side surface 21 and the side surface 22 is L, and the inner radius of the joint portion 30 is r, it is preferable to satisfy the following equations (1) and (2).
0.5t ≤ r ≤ 2t ... (1)
t ≦ L ≦ 4t… (2)
When the inner radius r is 0.5 t or more, the joint portion 30 is less likely to crack when the joint portion 30 is bent. Further, when the inner radius r is 2t or less, sufficient stress can be applied when the joint portion 30 is bent and plastically worked, and springback of the joint portion 30 is unlikely to occur. Further, if the inner radius r is 2t or less, the processing accuracy of the joint portion 30 is good. When the joint portion 30 is bent into a semi-cylinder, the above equations (1) and (2) have an equivalence relation.

図5は、本実施形態の衝撃吸収構造10の製造工程を示す説明図である。先ず、鉄または鉄の合金などの金属製の角パイプ15を準備する。角パイプ15は、X方向に伸びている。角パイプ15は、-Y方向に側面16、+Y方向に側面17、ーZ方向に側面18、+Z方向に側面19を備える。なお、後述するが、図5のX方向は、図1のx方向とは、異なる方向であり、Z方向は図1のz方向と異なる方向である。 FIG. 5 is an explanatory diagram showing a manufacturing process of the shock absorbing structure 10 of the present embodiment. First, a metal square pipe 15 such as iron or an alloy of iron is prepared. The square pipe 15 extends in the X direction. The square pipe 15 includes a side surface 16 in the −Y direction, a side surface 17 in the + Y direction, a side surface 18 in the −Z direction, and a side surface 19 in the + Z direction. As will be described later, the X direction in FIG. 5 is different from the x direction in FIG. 1, and the Z direction is different from the z direction in FIG. 1.

角パイプ15の長さ方向に交差する方向に、第1の結合部30を残して、+Z方向から平面形状の第1の切り込み40、42、44・・を複数形成し、角パイプ15の複数の第1の切り込み40、42、44・・・とは交互するように、第1の結合部30とは反対側に第2の結合部30を残して、ーZ方向から平面形状の第2の切り込み41、42、43・・を形成する。より具体的には、角パイプ15の側面18に結合部30を残すように+Z方向から切り込み40を入れる。切り込み40の幅は、π(r+t)である。rは、上述の式(1)を満たす値である。このとき、結合部30の両根元に、逃し30nを形成することが好ましい。逃し30nを形成することで、後述するプレスによる曲げ加工時の亀裂の発生を防止できる。また、逃し30nは、結合部30を曲げたとき、側面21、22から結合部30が外に飛び出し難くできる。また、結合部30を曲げたときの曲率が大きくても、切り込み40の幅を狭くできる。次いで、切り込み40より+X方向において、同様に、側面19に結合部30を残すように-Z方向から、切り込み40と同じ幅の切り込み41を入れる。次いで、切り込み41より+X方向において、側面18に結合部30を残すように+Z方向から、切り込み40と同じ幅の切り込み42を入れる。このように、前の切り込み位置から+X方向において、結合部30が、側面18と側面19に交互に形成されるように、順次切り込みを入れる。これにより、結合部30により結合された複数の筒状部材20が形成される。このとき、側面16から側面23が形成され、側面19から側面24が形成され、側面18から側面21と側面22が形成され、側面19から側面21と側面22が形成される。また、図1の開口25、26は、切り込み40~45の両側に形成される。本実施形態では、切り込み40、41,42・・・の順に交互に切り込みを入れたが、切り込み40、42、44・・・を入れ、その後、切り込み41、43、45・・・を入れるようにしてもよい。 A plurality of planar first cuts 40, 42, 44 ... Are formed from the + Z direction, leaving the first joint portion 30 in the direction intersecting the length direction of the square pipe 15, and the plurality of square pipes 15. A second joint portion 30 having a planar shape from the −Z direction is left on the side opposite to the first joint portion 30 so as to alternate with the first cuts 40, 42, 44, .... Notches 41, 42, 43 ... Are formed. More specifically, a notch 40 is made from the + Z direction so as to leave the joint portion 30 on the side surface 18 of the square pipe 15. The width of the notch 40 is π (r + t). r is a value satisfying the above-mentioned equation (1). At this time, it is preferable to form relief 30n at both roots of the connecting portion 30. By forming the relief 30n, it is possible to prevent the occurrence of cracks during bending by the press, which will be described later. Further, the missed portion 30n can prevent the joint portion 30 from jumping out from the side surfaces 21 and 22 when the joint portion 30 is bent. Further, even if the curvature when the joint portion 30 is bent is large, the width of the notch 40 can be narrowed. Next, in the + X direction from the notch 40, similarly, a notch 41 having the same width as the notch 40 is made from the −Z direction so as to leave the joint portion 30 on the side surface 19. Next, in the + X direction from the notch 41, a notch 42 having the same width as the notch 40 is made from the + Z direction so as to leave the joint portion 30 on the side surface 18. In this way, in the + X direction from the previous cut position, cuts are sequentially made so that the joint portion 30 is alternately formed on the side surface 18 and the side surface 19. As a result, a plurality of tubular members 20 connected by the connecting portion 30 are formed. At this time, the side surface 23 is formed from the side surface 16, the side surface 24 is formed from the side surface 19, the side surface 21 and the side surface 22 are formed from the side surface 18, and the side surface 21 and the side surface 22 are formed from the side surface 19. Further, the openings 25 and 26 in FIG. 1 are formed on both sides of the cuts 40 to 45. In the present embodiment, the cuts are made alternately in the order of the cuts 40, 41, 42 ..., But the cuts 40, 42, 44 ... Are made, and then the cuts 41, 43, 45 ... Are made. You may do it.

図6は、本実施形態の衝撃吸収構造10の製造工程を示す説明図である。第2の筒状部材20(2)を基準、すなわち、回転させない筒状部材20として説明する。プレスにより、第1の筒状部材20(1)を、第1の筒状部材20(1)の側面22が第2の筒状部材20(2)の側面21と対向するように、結合部30を半円筒形に変形させながらY方向周りに回転させる。また、プレスにより、第3の筒状部材20(3)と第4の筒状部材20(4)を、第3の筒状部材20(3)の側面21が第2の筒状部材20(2)の側面22と対向するように、結合部30を半円筒形に変形させながらY方向周りに回転させる。次いで、プレスにより、第4の筒状部材20(4)を、第4の筒状部材20(4)の側面21が第2の筒状部材20(2)の側面22と対向するように、結合部30を半円筒形に変形させながらY方向周りに回転させる。これにより、複数の筒状部材20は、x方向に直線状に並ぶ。なお、どの筒状部材20を基準とするかにもよるが、第2の筒状部材20(2)を基準とした場合、図5、図6の-Z方向、+Z方向は、図1の+x方向、-x方向にそれぞれ対応し、図5、図6の-Y方向、+Y方向は、図1の+y方向、-y方向にそれぞれ対応し、図5、図6の+X方向、-X方向は、図1の+z方向、-z方向にそれぞれ対応する。上記説明では、第2の筒状部材20(2)を基準、すなわち、回転させない筒状部材20として説明したが、他の筒状部材20を基準としてもよい。 FIG. 6 is an explanatory diagram showing a manufacturing process of the shock absorbing structure 10 of the present embodiment. The second tubular member 20 (2) will be described as a reference, that is, as a non-rotating tubular member 20. By pressing, the first tubular member 20 (1) is joined so that the side surface 22 of the first tubular member 20 (1) faces the side surface 21 of the second tubular member 20 (2). Rotate 30 around the Y direction while deforming it into a semi-cylindrical shape. Further, the third tubular member 20 (3) and the fourth tubular member 20 (4) are pressed, and the side surface 21 of the third tubular member 20 (3) is the second tubular member 20 ( The joint portion 30 is rotated in the Y direction while being deformed into a semi-cylindrical shape so as to face the side surface 22 of 2). Next, the fourth tubular member 20 (4) is pressed so that the side surface 21 of the fourth tubular member 20 (4) faces the side surface 22 of the second tubular member 20 (2). The joint portion 30 is rotated in the Y direction while being deformed into a semi-cylindrical shape. As a result, the plurality of tubular members 20 are aligned linearly in the x direction. Although it depends on which tubular member 20 is used as a reference, when the second tubular member 20 (2) is used as a reference, the −Z direction and the + Z direction in FIGS. 5 and 6 are shown in FIG. The + x direction and the −x direction correspond to each other, and the −Y direction and the + Y direction in FIGS. 5 and 6 correspond to the + y direction and the −y direction in FIG. 1, respectively, and the + X direction and the −X in FIGS. 5 and 6 respectively. The directions correspond to the + z direction and the −z direction in FIG. 1, respectively. In the above description, the second tubular member 20 (2) is used as a reference, that is, the tubular member 20 that does not rotate is used as a reference, but another tubular member 20 may be used as a reference.

図7は、衝撃吸収構造10の変位(歪)と引張荷重(応力)との関係を示す応力歪線図である。本実施形態の衝撃吸収構造10の応力歪線J0は、参考例の角パイプの応力歪線B0と比較すると、降伏する時の変位の大きさがほぼ同等であることがわかる。 FIG. 7 is a stress-strain diagram showing the relationship between the displacement (strain) of the shock absorbing structure 10 and the tensile load (stress). It can be seen that the stress strain line J0 of the shock absorbing structure 10 of the present embodiment has almost the same displacement at the time of yielding as compared with the stress strain line B0 of the square pipe of the reference example.

図8は、衝撃吸収構造10の変位(歪)と圧縮加重(応力)との関係を示す応力歪線図である。変位量が少ないときにおける本実施形態の衝撃吸収構造10の応力歪線J1の接線k1は、参考例の角パイプの応力歪線J1と比較すると、傾きが緩やかになっている。すなわち、角パイプは、変形に対する強度が強すぎるが、本実施形態の衝撃吸収構造10は、変位することで、応力を緩和できる程度に適度な強度を有している。 FIG. 8 is a stress-strain diagram showing the relationship between the displacement (strain) of the shock absorbing structure 10 and the compression load (stress). The tangent line k1 of the stress strain line J1 of the shock absorption structure 10 of the present embodiment when the displacement amount is small has a gentle slope as compared with the stress strain line J1 of the square pipe of the reference example. That is, the square pipe is too strong against deformation, but the shock absorbing structure 10 of the present embodiment has an appropriate strength to the extent that stress can be relieved by being displaced.

図9は、圧縮方向の衝撃を受けた場合の衝撃吸収構造10の変形を示す説明図である。図9は、+z方向から見ている。衝撃吸収構造10は、圧縮方向の衝撃を受けると、側面21、22、23、24で形成される長方形が変形することで、圧縮方向の衝撃を吸収する。このとき、筒状部材20(2)、20(3)のように、側面23、24がいずれも外側に変形する場合や、筒状部材20(4)のように、一方の側面23が外側、他方の側面24が内側に変形する場合がある。なお、図9に示した例は一例であり、図9に示していないが、両方の側面23、24がいずれも内側に変形する場合もある。また、側面21、22についても、結合部30の位置を屈曲部として、折れ曲がる場合がある。 FIG. 9 is an explanatory diagram showing deformation of the shock absorbing structure 10 when a shock in the compression direction is received. FIG. 9 is viewed from the + z direction. When the shock absorbing structure 10 receives a shock in the compression direction, the rectangle formed by the side surfaces 21, 22, 23, and 24 is deformed to absorb the shock in the compression direction. At this time, when the side surfaces 23 and 24 are both deformed to the outside as in the tubular member 20 (2) and 20 (3), or when the side surface 23 is outward as in the tubular member 20 (4). , The other side surface 24 may be deformed inward. The example shown in FIG. 9 is an example, and although not shown in FIG. 9, both side surfaces 23 and 24 may be deformed inward. Further, the side surfaces 21 and 22 may also be bent with the position of the joint portion 30 as the bent portion.

以上、第1実施形態によれば、衝撃吸収構造10は、溶接することなく製造できる構造であるため、容易に形成できる。 As described above, according to the first embodiment, since the shock absorbing structure 10 is a structure that can be manufactured without welding, it can be easily formed.

また、第1実施形態によれば、第1の筒状部材20(1)と第2の筒状部材20(2)とを結合する結合部30は、第2の筒状部材20(2)の一方の開口25の側に設けられ、第2の筒状部材20(2)と第3の筒状部材20(3)とを結合する結合部30は、第2の筒状部材20(2)の一方の開口25と反対側の開口26の側に設けられている構造を有するので、中空の角パイプ15の長さ方向に沿って、結合部30を残すようにパイプと垂直に切り込み40を交互に入れ、結合部30を中心に角パイプ15を曲げることで、衝撃吸収構造10を容易に形成できる。また、力を受けると、4つの側面21、22、23、24で形成された長方形の中空が潰れることで、衝撃を緩和できる。 Further, according to the first embodiment, the connecting portion 30 for connecting the first tubular member 20 (1) and the second tubular member 20 (2) is the second tubular member 20 (2). The connecting portion 30 provided on the side of one opening 25 and connecting the second tubular member 20 (2) and the third tubular member 20 (3) is the second tubular member 20 (2). ) Is provided on the side of the opening 26 on the opposite side of the opening 25, so that the cut 40 is perpendicular to the pipe so as to leave the joint portion 30 along the length direction of the hollow square pipe 15. The shock absorbing structure 10 can be easily formed by alternately inserting the pipes and bending the square pipe 15 around the joint portion 30. Further, when a force is applied, the rectangular hollow formed by the four side surfaces 21, 22, 23, and 24 is crushed, so that the impact can be alleviated.

第1実施形態によれば、結合部30のy方向の幅は、側面21、22のy方向の長さよりも短いので、筒状部材20が変形する場合に、側面21、22が変形できるので、衝撃をより緩和しやすくできる。なお、結合部30は、側面21、22のy方向の中心にある必要は無く、y方向の中心から+y方向あるいは-y方向にずれた位置にあってもよい。 According to the first embodiment, the width of the joint portion 30 in the y direction is shorter than the length of the side surfaces 21 and 22 in the y direction. Therefore, when the tubular member 20 is deformed, the side surfaces 21 and 22 can be deformed. , The impact can be more easily mitigated. The coupling portion 30 does not have to be at the center of the side surfaces 21 and 22 in the y direction, and may be located at a position deviated from the center of the y direction in the + y direction or the −y direction.

第1実施形態において、開口25、26に蓋をスポット溶接して、開口25、26を閉じてもよい。筒状部材20の内部に他の部材が入らないようにできる。なお、溶接がスポット溶接であれば、蓋を溶接した構造が剛構造になり難いので、衝撃を緩和しやすい。 In the first embodiment, the lids may be spot welded to the openings 25 and 26 to close the openings 25 and 26. It is possible to prevent other members from entering the inside of the tubular member 20. If the welding is spot welding, the structure in which the lid is welded is unlikely to become a rigid structure, so that it is easy to alleviate the impact.

第1実施形態において、側面23、24に開口があってもよい。軽量化できる。また、側面23、24の一方に、z方向と平行な切れ目があってもよい。切れ目のない側面で衝撃を吸収するので、より衝撃を緩和できる。 In the first embodiment, the side surfaces 23 and 24 may have openings. It can be made lighter. Further, one of the side surfaces 23 and 24 may have a cut parallel to the z direction. Since the impact is absorbed by the continuous side surface, the impact can be further mitigated.

・他の実施形態:
図10は、他の実施形態の衝撃吸収構造50を示す説明図である。この衝撃吸収構造50は、円筒形を有する複数の筒状部材51がその底面である円形の開口において、結合部52により交互に接続され、直線状に並ぶ構成を有する。このように、筒状部材の形状は、角筒以外の形状、例えば、円筒形であってもよい。また、四角形以上多角形の角筒であってもよい。衝撃を受けたとき、角筒の側辺(側稜)を中心に側辺を挟む2つの側面の為す角が変わることで、衝撃を吸収しやすくできる。また、筒状部の形状が互いに同じでない異形の筒であってもよい。このように、筒状部材の形状は、角筒、円筒、多角形の角筒、異形の筒のいずれであってもよい。
-Other embodiments:
FIG. 10 is an explanatory diagram showing a shock absorbing structure 50 of another embodiment. The shock absorbing structure 50 has a structure in which a plurality of cylindrical members 51 having a cylindrical shape are alternately connected by a coupling portion 52 at a circular opening which is a bottom surface thereof and are arranged in a straight line. As described above, the shape of the tubular member may be a shape other than the square cylinder, for example, a cylindrical shape. Further, it may be a square cylinder having a quadrangle or more and a polygon. When an impact is received, the impact can be easily absorbed by changing the angle formed by the two sides sandwiching the side side around the side side (side ridge) of the square tube. Further, it may be a cylinder having a different shape in which the shapes of the tubular portions are not the same as each other. As described above, the shape of the tubular member may be any of a square cylinder, a cylinder, a polygonal square cylinder, and a deformed cylinder.

上記実施形態では、筒状部材の材料を鉄または鉄の合金としたが、アルミニウムやアルミニウム合金であってもよい。この場合、鋳造により衝撃吸収構造を形成できる。なお、鋳造の場合、結合部の位置は、各筒状部材の同一方向、例えば、+z方向の側面にあってもよい。また、結合部の形状は側面と平行な形状であってもよい。筒状部材の材料は、樹脂であってもよい。この場合、衝撃吸収構造は、射出成形により製造できる。衝撃吸収構造を鋳造や射出成形により形成する場合には、結合部の形状や位置について自由度を増すことができる。 In the above embodiment, the material of the tubular member is iron or an alloy of iron, but aluminum or an aluminum alloy may be used. In this case, a shock absorbing structure can be formed by casting. In the case of casting, the position of the joint portion may be on the side surface of each tubular member in the same direction, for example, in the + z direction. Further, the shape of the joint portion may be a shape parallel to the side surface. The material of the tubular member may be resin. In this case, the shock absorbing structure can be manufactured by injection molding. When the shock absorbing structure is formed by casting or injection molding, the degree of freedom in the shape and position of the joint can be increased.

本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present disclosure is not limited to the above-described embodiment, and can be realized by various configurations within a range not deviating from the gist thereof. For example, the technical features of the embodiments corresponding to the technical features in each of the embodiments described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or a part of the above-mentioned effects. Or, in order to achieve all of them, it is possible to replace or combine them as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

10…衝撃吸収構造、15…角パイプ、16~19…側面、20…筒状部材、20(1)…第1の筒状部材、20(2)…第2の筒状部材、20(3)…第3の筒状部材、20(4)…第4の筒状部材、21~24…側面、25、26…開口、30…結合部、40~45…切り込み、50…衝撃吸収構造、51…筒状部材、52…結合部 10 ... Shock absorption structure, 15 ... Square pipe, 16-19 ... Side surface, 20 ... Cylindrical member, 20 (1) ... First tubular member, 20 (2) ... Second tubular member, 20 (3) ) ... 3rd tubular member, 20 (4) ... 4th tubular member, 21-24 ... side surface, 25, 26 ... opening, 30 ... joint, 40-45 ... notch, 50 ... shock absorbing structure, 51 ... Cylindrical member, 52 ... Joint

Claims (1)

衝撃吸収構造であって、
2つの底面が開口である複数の中空の筒状部材であって、前記底面と平行な方向に並べられた複数の中空の筒状部材と、
前記筒状部材のうち隣接する2つの前記筒状部材を前記開口の一部において結合する結合部と、
を備える、衝撃吸収構造。
It has a shock absorbing structure
A plurality of hollow cylindrical members having two bottom openings, and a plurality of hollow tubular members arranged in a direction parallel to the bottom surface.
A joint portion that joins two adjacent tubular members in a part of the opening,
With a shock absorbing structure.
JP2020168810A 2020-10-06 2020-10-06 Impact absorption structure Pending JP2022061053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020168810A JP2022061053A (en) 2020-10-06 2020-10-06 Impact absorption structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020168810A JP2022061053A (en) 2020-10-06 2020-10-06 Impact absorption structure

Publications (1)

Publication Number Publication Date
JP2022061053A true JP2022061053A (en) 2022-04-18

Family

ID=81206525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020168810A Pending JP2022061053A (en) 2020-10-06 2020-10-06 Impact absorption structure

Country Status (1)

Country Link
JP (1) JP2022061053A (en)

Similar Documents

Publication Publication Date Title
US3689972A (en) Method of fabricating a heat exchanger
US4467583A (en) Reinforcement basket for reinforced-concrete column
US8376427B2 (en) Energy absorber for a bumper assembly of a vehicle and method for the manufacture thereof
US10828683B2 (en) Apparatus that manufactures closed-structure part
US20080250732A1 (en) Shock-absorbing tie brace
KR101372614B1 (en) Structure
JPH08216684A (en) Door guard beam for automobile
US5004045A (en) Vehicle radiator with clamping fixture to reduce deformation during brazing and method of making
US20070120383A1 (en) Bumper system
US9951836B2 (en) Shock absorber system for a vehicle
JP2022061053A (en) Impact absorption structure
CN1328537C (en) Jointing structural body
KR20200065416A (en) Battery case
KR20220101188A (en) side member structure of the body
KR101177614B1 (en) Square can
JP2009285668A (en) Hollow columnar steel member
US4141577A (en) Saddle clamp and method of manufacture
JP5141379B2 (en) Steel hollow columnar member
JP2011177725A (en) Forming method of frame structure
JP7039184B2 (en) Telescopic section with variable length fitting end
JP2007160334A (en) Bending method and bending device for shape steel
JP7340435B2 (en) Steel pipe column joint structure
JP4054856B1 (en) Pier or bridge structure
KR102360387B1 (en) Manufacturing method of Steel Tube for CFT
JPS623848A (en) Studded and flash-welded anchor chain having excellent resistance to fatigue