JP2022058407A - Mutant genes participating in improvement of ethanol productivity by ethanol fermentation and methods of ethanol production using same - Google Patents

Mutant genes participating in improvement of ethanol productivity by ethanol fermentation and methods of ethanol production using same Download PDF

Info

Publication number
JP2022058407A
JP2022058407A JP2021210249A JP2021210249A JP2022058407A JP 2022058407 A JP2022058407 A JP 2022058407A JP 2021210249 A JP2021210249 A JP 2021210249A JP 2021210249 A JP2021210249 A JP 2021210249A JP 2022058407 A JP2022058407 A JP 2022058407A
Authority
JP
Japan
Prior art keywords
amino acid
gene
mutant
seq
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021210249A
Other languages
Japanese (ja)
Other versions
JP7298674B2 (en
Inventor
純二 伊藤
Junji Ito
徹 大西
Toru Onishi
宣紀 多田
Nobuki Tada
理恵 平尾
Rie Hirao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017214102A external-priority patent/JP7078887B2/en
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021210249A priority Critical patent/JP7298674B2/en
Publication of JP2022058407A publication Critical patent/JP2022058407A/en
Application granted granted Critical
Publication of JP7298674B2 publication Critical patent/JP7298674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide mutant genes participating in improvement of ethanol productivity in ethanol fermentation by a yeast having xylose metabolizing ability and methods of ethanol production using the same.
SOLUTION: The invention provides a mutant gene encoding a mutant FPK1 protein having a consensus sequence in which an amino acid residue at specific position in a specific amino acid sequence is substituted by other amino acids, a mutant xylose-metabolizing yeast having the mutant gene, and a method for producing ethanol comprising a step of culturing the mutant xylose-metabolizing yeast in a xylose-containing culture medium to conduct ethanol fermentation.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、キシロース代謝能を有する酵母等によるエタノール発酵において、エタノール生産性の向上に関与する変異遺伝子及びこれを用いたエタノールの製造方法に関する。 The present invention relates to a mutant gene involved in improving ethanol productivity in ethanol fermentation using yeast having a xylose-metabolizing ability, and a method for producing ethanol using the same.

セルロース系バイオマスは、エタノール等の有用なアルコールや有機酸の原料として有効に利用されている。セルロース系バイオマスを利用したエタノール製造において、エタノール生産量を向上させるため、基質として5単糖のキシロースを利用できる酵母が開発されている。例えば、特許文献1は、Pichia stipitis由来のキシロースリダクターゼ(XR)遺伝子及びキシリトールデヒドロゲナーゼ(XDH)遺伝子を染色体に組み込んだ酵母を開示している。一方、キシロースイソメラーゼ(XI)遺伝子(シロアリの腸内原生生物由来)を導入したキシロース資化酵母に関する報告(特許文献2)がある。 Cellulose-based biomass is effectively used as a raw material for useful alcohols such as ethanol and organic acids. In the production of ethanol using cellulosic biomass, yeast that can use xylose, a 5-monosaccharide, as a substrate has been developed in order to improve the amount of ethanol produced. For example, Patent Document 1 discloses a yeast in which a xylose reductase (XR) gene and a xylitol dehydrogenase (XDH) gene derived from Pichia stipitis are integrated into a chromosome. On the other hand, there is a report on a xylose-utilized yeast into which a xylose isomerase (XI) gene (derived from a termite intestinal protist) has been introduced (Patent Document 2).

キシロース資化酵母、或いはグルコースからエタノールを発酵生産する通常の酵母において、エタノール生産性を向上する試みが報告されている。例えば、特許文献3には、高清酒酵母においてPDR3遺伝子に特定の変異が導入されることで、アルコール生産能が向上することが報告されている。また、特許文献4には、アルコールデヒドロゲナーゼ及びピルビン酸デカルボキシラーゼを導入すると共に、ブタンジオール又は2,3-ブタンジオール生産に関与する遺伝子を欠損させたKlebsiella oxytocaの組換え体が開示されている。特許文献4に開示された組換え体によれば、地中の糖含有基質を主としてエタノールに変換し、ブタンジオール又は2,3-ブタンジオールへの変換を低減することで、エタノールの生産を可能としている。 Attempts to improve ethanol productivity have been reported in xylose-utilized yeasts or ordinary yeasts that ferment and produce ethanol from glucose. For example, Patent Document 3 reports that the introduction of a specific mutation into the PDR3 gene in high-sake yeast improves alcohol production ability. Further, Patent Document 4 discloses a recombinant of Klebsiella oxytoca in which alcohol dehydrogenase and pyruvate decarboxylase are introduced and a gene involved in butanediol or 2,3-butanediol production is deleted. According to the recombinant disclosed in Patent Document 4, ethanol can be produced by mainly converting the sugar-containing substrate in the ground into ethanol and reducing the conversion to butanediol or 2,3-butanediol. It is supposed to be.

また、特許文献5には、キシロース代謝系発現カセットを導入した遺伝子組換え酵母を順化処理することによって、当該遺伝子組換え酵母のキシロース発酵能を向上させたことが開示されている。さらに、特許文献6には、ヤマトシロアリ(Reticulitermes speratus)の腸内原生生物又はムカシシロアリ(Mastotermes darwiniensis)の腸内原生生物に由来するキシロースイソメラーゼ遺伝子が開示されている。特許文献6に開示されたキシロースイソメラーゼ遺伝子は、酵母において有効に機能し、酵母のキシロース代謝能を向上させることができる。 Further, Patent Document 5 discloses that the xylose fermentation ability of the recombinant yeast was improved by acclimating the recombinant yeast into which the xylose metabolism system expression cassette was introduced. Further, Patent Document 6 discloses a xylose isomerase gene derived from an intestinal protist of Reticulitermes speratus or an intestinal protist of Mastotermes darwiniensis. The xylose isomerase gene disclosed in Patent Document 6 functions effectively in yeast and can improve the xylose metabolic capacity of yeast.

特開2009-195220号公報Japanese Unexamined Patent Publication No. 2009-195220 特開2011-147445号公報Japanese Unexamined Patent Publication No. 2011-147445 特開2002-238582号公報Japanese Patent Application Laid-Open No. 2002-238582 特表2009-500035号公報Special Table 2009-500035 Gazette 特開2009-195220号公報Japanese Unexamined Patent Publication No. 2009-195220 特開2009-195220号公報Japanese Unexamined Patent Publication No. 2009-195220

ところが、キシロース代謝能を有する酵母において、培地中のキシロースからのエタノール生産性が十分ではないといった問題があった。そこで、本発明は、上述した実情に鑑み、特に、キシロース代謝能を有する酵母おけるエタノール発酵能を向上させることを目的とする。 However, in yeast having xylose metabolism ability, there is a problem that ethanol productivity from xylose in the medium is not sufficient. Therefore, in view of the above-mentioned circumstances, it is an object of the present invention to improve the ethanol fermentation ability of yeast having xylose metabolism ability.

上記目的を達成するため、本発明者らが鋭意検討した結果、キシロース代謝能を有する酵母を長期連続培養した際に発酵性能向上した株を取得し、これを詳細に解析することで当該酵母における優れたエタノール発酵能に関与する複数の遺伝子変異を同定することに成功し、本発明を完成するに至った。 In order to achieve the above object, as a result of diligent studies by the present inventors, a strain having improved fermentation performance when yeast having a xylose-metabolizing ability was continuously cultured for a long period of time was obtained, and this was analyzed in detail in the yeast. We have succeeded in identifying a plurality of gene mutations involved in excellent ethanol fermentation ability, and have completed the present invention.

本発明は以下を包含する。 The present invention includes the following.

(1)配列番号1に示すアミノ酸配列において、N末端側から30番目のアミノ酸残基が他のアミノ酸に置換されたコンセンサス配列を有する変異CDC123タンパク質をコードする変異遺伝子。
(2)上記30番目のアミノ酸残基はロイシン、バリン及びイソロイシンのいずれかであり、上記他のアミノ酸はシステインであることを特徴とする(1)記載の変異遺伝子。 (3)上記変異CDC123タンパク質は以下の(a)又は(b)であることを特徴とする(1)記載の変異遺伝子。
(a)配列番号3のアミノ酸配列からなる
(b)配列番号3のアミノ酸配列に対して70%以上の同一性を有し、配列番号3のアミノ酸配列のN末端側から324番目に相当するアミノ酸がシステインであるアミノ酸配列
(4)配列番号4に示すアミノ酸配列において、N末端側から52番目のアミノ酸残基が他のアミノ酸に置換されたコンセンサス配列を有する変異SUI3タンパク質をコードする変異遺伝子。
(5)上記52番目のアミノ酸残基はセリン又はアスパラギンであり、上記他のアミノ酸はトレオニンであることを特徴とする(4)記載の変異遺伝子。
(6)上記変異SUI3タンパク質は以下の(a)又は(b)であることを特徴とする(4)記載の変異遺伝子。
(a)配列番号6のアミノ酸配列からなる
(b)配列番号6のアミノ酸配列に対して70%以上の同一性を有し、配列番号6のアミノ酸配列のN末端側から112番目に相当するアミノ酸がトレオニンであるアミノ酸配列
(7)配列番号7に示すアミノ酸配列において、N末端側から31番目のアミノ酸残基が他のアミノ酸に置換されたコンセンサス配列を有する変異FPK1タンパク質をコードする変異遺伝子。
(8)上記31番目のアミノ酸残基はグリシンであり、上記他のアミノ酸はグルタミン酸であることを特徴とする(7)記載の変異遺伝子。
(9)上記変異FPK1タンパク質は以下の(a)又は(b)であることを特徴とする(7)記載の変異遺伝子。
(a)配列番号9のアミノ酸配列からなる
(b)配列番号9のアミノ酸配列に対して70%以上の同一性を有し、配列番号9のアミノ酸配列のN末端側から704番目に相当するアミノ酸がグルタミン酸であるアミノ酸配列
(10)上記(1)~(9)のいずれかに記載の変異遺伝子を有する、キシロース代謝能を有する変異酵母。
(11)上記(10)記載の変異酵母を、キシロースを含有する培地にて培養してエタノール発酵を行う工程を有するエタノールの製造方法。
(12)上記培地はセルロースを含有しており、上記エタノール発酵では、少なくとも上記セルロースの糖化が同時に進行することを特徴とする(11)記載のエタノールの製造方法。
(1) A mutant gene encoding a mutant CDC123 protein having a consensus sequence in which the 30th amino acid residue from the N-terminal side is replaced with another amino acid in the amino acid sequence shown in SEQ ID NO: 1.
(2) The mutant gene according to (1), wherein the 30th amino acid residue is any of leucine, valine and isoleucine, and the other amino acid is cysteine. (3) The mutant gene according to (1), wherein the mutant CDC123 protein is the following (a) or (b).
(A) Amino acid consisting of the amino acid sequence of SEQ ID NO: 3 (b) Amino acid having 70% or more identity with the amino acid sequence of SEQ ID NO: 3 and corresponding to the 324th amino acid sequence from the N-terminal side of the amino acid sequence of SEQ ID NO: 3. Amino acid sequence in which is cysteine (4) In the amino acid sequence shown in SEQ ID NO: 4, a mutant gene encoding a mutant SUI3 protein having a consensus sequence in which the 52nd amino acid residue from the N-terminal side is replaced with another amino acid.
(5) The mutant gene according to (4), wherein the 52nd amino acid residue is serine or asparagine, and the other amino acid is threonine.
(6) The mutant gene according to (4), wherein the mutant SUI3 protein is the following (a) or (b).
(A) Amino acid consisting of the amino acid sequence of SEQ ID NO: 6 (b) Amino acid having 70% or more identity with the amino acid sequence of SEQ ID NO: 6 and corresponding to the 112th amino acid from the N-terminal side of the amino acid sequence of SEQ ID NO: 6. Amino acid sequence in which is threonine (7) In the amino acid sequence shown in SEQ ID NO: 7, a mutant gene encoding a mutant FPK1 protein having a consensus sequence in which the 31st amino acid residue from the N-terminal side is replaced with another amino acid.
(8) The mutant gene according to (7), wherein the 31st amino acid residue is glycine, and the other amino acid is glutamic acid.
(9) The mutant gene according to (7), wherein the mutant FPK1 protein is the following (a) or (b).
(A) Amino acid consisting of the amino acid sequence of SEQ ID NO: 9 (b) Amino acid having 70% or more identity with the amino acid sequence of SEQ ID NO: 9 and corresponding to the 704th amino acid sequence from the N-terminal side of the amino acid sequence of SEQ ID NO: 9. Amino acid sequence in which is glutamic acid (10) A mutant yeast having a xylose-metabolizing ability, which has the mutant gene according to any one of (1) to (9) above.
(11) A method for producing ethanol, which comprises a step of culturing the mutant yeast according to (10) above in a medium containing xylose to perform ethanol fermentation.
(12) The method for producing ethanol according to (11), wherein the medium contains cellulose, and at least the saccharification of the cellulose proceeds at the same time in the ethanol fermentation.

本発明に係る変異遺伝子は、キシロース代謝能を有する酵母に対して優れたエタノール発酵能を付与することができる。すなわち、本発明に係る変異酵母は、優れたエタノール発酵能を示すことができる。したがって、本発明に係る変異遺伝子、当該変異遺伝子を有する変異酵母及びこれを利用したエタノールの製造方法では、優れたエタノール生産性を達成することができる。 The mutant gene according to the present invention can impart excellent ethanol fermentation ability to yeast having xylose metabolism ability. That is, the mutant yeast according to the present invention can exhibit excellent ethanol fermentation ability. Therefore, excellent ethanol productivity can be achieved by the mutant gene according to the present invention, the mutant yeast having the mutant gene, and the method for producing ethanol using the same.

実施例で同定した6種類の変異遺伝子を個別に導入したキシロース代謝能を有する6種類の変異酵母についてエタノール発酵能を評価した結果を示す特性図である。It is a characteristic diagram which shows the result of having evaluated the ethanol fermentation ability about 6 kinds of mutant yeasts having xylose metabolism ability which 6 kinds of mutant genes identified in an Example were introduced individually.

以下、本発明を図面及び実施例を用いてより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to the drawings and examples.

本発明に係る変異遺伝子は、キシロース代謝能を有する組換え酵母を長期連続培養することで得られた、エタノール発酵能に優れた変異株で同定したものである。後述の実施例に示すように、具体的に3つの異なる変異遺伝子を同定している。なお、これら3つの変異遺伝子を便宜的にそれぞれ変異遺伝子1~3と称する場合がある。 The mutant gene according to the present invention was identified as a mutant strain having excellent ethanol fermentation ability obtained by long-term continuous culture of recombinant yeast having xylose metabolism ability. As shown in the examples below, three different mutant genes have been specifically identified. For convenience, these three mutant genes may be referred to as mutant genes 1 to 3, respectively.

<変異遺伝子1>
変異遺伝子1は、CDC(Cell Division Cycle)123タンパク質における特定のアミノ酸が他のアミノ酸に置換した変異CDC123タンパク質をコードする。CDC123は、eIF2翻訳開始因子複合体の会合因子(集合因子や構築因子、アセンブリ因子とも称される)であり、翻訳開始を調節する機能を有している。なお、CDC123をコードする遺伝子のsystematic nameはYLR215Cである。
<Mutant gene 1>
The mutant gene 1 encodes a mutant CDC123 protein in which a specific amino acid in the CDC (Cell Division Cycle) 123 protein is replaced with another amino acid. CDC123 is an association factor (also called aggregate factor, construct factor, or assembly factor) of the eIF2 translation initiation factor complex, and has a function of regulating translation initiation. The systematic name of the gene encoding CDC123 is YLR215C.

変異CDC123タンパク質は、D123ドメインのC末端側における特定のアミノ酸残基の置換変異を有している。当該置換変異が存在する領域は、異なる生物由来の多くのCDC123タンパク質で保存されている。当該置換変異を含むD123ドメイン内の保存領域を配列番号1に示す(コンセンサス配列)。変異CDC123タンパク質は、配列番号1におけるN末端側から数えて30番目のアミノ酸が他のアミノ酸に置換したものと定義することができる。 The mutant CDC123 protein has a substitution mutation of a specific amino acid residue on the C-terminal side of the D123 domain. The region where the substitution mutation is present is conserved by many CDC123 proteins from different organisms. The conserved region within the D123 domain containing the substitution mutation is shown in SEQ ID NO: 1 (consensus sequence). The mutant CDC123 protein can be defined as the amino acid at position 30 counting from the N-terminal side in SEQ ID NO: 1 replaced with another amino acid.

ここで、配列番号1のアミノ酸配列からなる保存領域は、後述する表1の第2行目から第13行目に示したアミノ酸配列におけるN末端(左端)から34アミノ酸残基として定義している。ここで、配列番号1のアミノ酸配列における1番目のXaaで示したアミノ酸残基はグルタミン酸、アルギニン、グルタミン、リシン又はアスパラギン酸である。配列番号1のアミノ酸配列における5番目のXaaで示したアミノ酸残基はロイシン又はフェニルアラニンである。配列番号1のアミノ酸配列における7番目のXaaで示したアミノ酸残基はロイシン又はイソロイシンである。配列番号1のアミノ酸配列における8番目のXaaで示したアミノ酸残基はバリン、イソロイシン又はロイシンである。配列番号1のアミノ酸配列における9番目のXaaで示したアミノ酸残基はトレオニン、リシン、プロリン又はロイシンである。配列番号1のアミノ酸配列における10番目のXaaで示したアミノ酸残基はアルギニン、セリン又はグルタミン酸である。配列番号1のアミノ酸配列における11番目のXaaで示したアミノ酸残基はヒスチジン、アスパラギン又はトレオニンである。配列番号1のアミノ酸配列における13番目のXaaで示したアミノ酸残基はトレオニン、イソロイシン又はバリンである。配列番号1のアミノ酸配列における14番目のXaaで示したアミノ酸残基はグリシン、システイン又はアラニンである。配列番号1のアミノ酸配列における17番目のXaaで示したアミノ酸残基はアラニン又はバリンである。配列番号1のアミノ酸配列における18番目のXaaで示したアミノ酸残基はセリン、トレオニン、ヒスチジン又はシステインである。配列番号1のアミノ酸配列における23番目のXaaで示したアミノ酸残基はグルタミン酸又はグルタミンである。配列番号1のアミノ酸配列における25番目のXaaで示したアミノ酸残基はヒスチジン又はグルタミンである。配列番号1のアミノ酸配列における28番目のXaaで示したアミノ酸残基はグルタミン、リシン、アルギニン、イソロイシン又はトレオニンである。配列番号1のアミノ酸配列における30番目のXaaで示したアミノ酸残基はロイシン、バリン又はイソロイシンである。配列番号1のアミノ酸配列における31番目のXaaで示したアミノ酸残基はロイシン、バリン又はイソロイシンである。配列番号1のアミノ酸配列における32番目のXaaで示したアミノ酸残基はグルタミン酸又はアスパラギン酸である。配列番号1のアミノ酸配列における34番目のXaaで示したアミノ酸残基はセリン、アラニン又はトレオニンである。 Here, the conserved region consisting of the amino acid sequence of SEQ ID NO: 1 is defined as 34 amino acid residues from the N-terminal (left end) in the amino acid sequences shown in the second to thirteenth rows of Table 1 described later. .. Here, the amino acid residue represented by the first Xaa in the amino acid sequence of SEQ ID NO: 1 is glutamic acid, arginine, glutamine, lysine or aspartic acid. The amino acid residue represented by the fifth Xaa in the amino acid sequence of SEQ ID NO: 1 is leucine or phenylalanine. The amino acid residue represented by Xaa at position 7 in the amino acid sequence of SEQ ID NO: 1 is leucine or isoleucine. The amino acid residue shown by Xaa at position 8 in the amino acid sequence of SEQ ID NO: 1 is valine, isoleucine or leucine. The amino acid residue shown by Xaa at position 9 in the amino acid sequence of SEQ ID NO: 1 is threonine, lysine, proline or leucine. The amino acid residue represented by Xaa at position 10 in the amino acid sequence of SEQ ID NO: 1 is arginine, serine or glutamic acid. The amino acid residue shown by Xaa at position 11 in the amino acid sequence of SEQ ID NO: 1 is histidine, asparagine or threonine. The amino acid residue shown by Xaa at position 13 in the amino acid sequence of SEQ ID NO: 1 is threonine, isoleucine or valine. The amino acid residue shown by Xaa at position 14 in the amino acid sequence of SEQ ID NO: 1 is glycine, cysteine or alanine. The amino acid residue shown by Xaa at position 17 in the amino acid sequence of SEQ ID NO: 1 is alanine or valine. The amino acid residue shown by Xaa at position 18 in the amino acid sequence of SEQ ID NO: 1 is serine, threonine, histidine or cysteine. The amino acid residue shown by Xaa at position 23 in the amino acid sequence of SEQ ID NO: 1 is glutamic acid or glutamine. The amino acid residue shown by Xaa at position 25 in the amino acid sequence of SEQ ID NO: 1 is histidine or glutamine. The amino acid residue shown by Xaa at position 28 in the amino acid sequence of SEQ ID NO: 1 is glutamine, lysine, arginine, isoleucine or threonine. The amino acid residue shown by Xaa at position 30 in the amino acid sequence of SEQ ID NO: 1 is leucine, valine or isoleucine. The amino acid residue shown by Xaa at position 31 in the amino acid sequence of SEQ ID NO: 1 is leucine, valine or isoleucine. The amino acid residue shown by Xaa at position 32 in the amino acid sequence of SEQ ID NO: 1 is glutamic acid or aspartic acid. The amino acid residue shown by Xaa at position 34 in the amino acid sequence of SEQ ID NO: 1 is serine, alanine or threonine.

ここで、配列番号1におけるN末端側から数えて30番目のアミノ酸を置換した後の「他のアミノ酸」とは、野生型のCDC123タンパク質におけるアミノ酸とは異なるアミノ酸であることを意味する。野生型のCDC123タンパク質において、上記30番目のアミノ酸は、特に限定さないが、ロイシン、バリン及びイソロイシンのいずれかである場合が多い。例えば、ある野生型のCDC123タンパク質において上記30番目のアミノ酸がロイシンである場合、変異CDC123タンパク質は、当該30番目のロイシンがロイシン以外の他のアミノ酸に置換したアミノ酸配列を有する。この例において、ロイシン以外の他のアミノ酸としては、特に限定されないが、更にバリン及びイソロイシン以外のアミノ酸であることが好ましい。また、変異CDC123タンパク質において、置換変異後のアミノ酸がシステインであることがより好ましい。 Here, the "other amino acid" after substituting the 30th amino acid counting from the N-terminal side in SEQ ID NO: 1 means an amino acid different from the amino acid in the wild-type CDC123 protein. In the wild-type CDC123 protein, the 30th amino acid is not particularly limited, but is often any of leucine, valine and isoleucine. For example, when the 30th amino acid in a wild-type CDC123 protein is leucine, the mutant CDC123 protein has an amino acid sequence in which the 30th amino acid is replaced with an amino acid other than leucine. In this example, the amino acids other than leucine are not particularly limited, but amino acids other than valine and isoleucine are more preferable. Further, in the mutant CDC123 protein, it is more preferable that the amino acid after the substitution mutation is cysteine.

配列番号1におけるN末端側から数えて30番目のアミノ酸を他のアミノ酸に置換する方法としては、従来公知の遺伝子工学的手法を適宜使用することができる。要するに、変異導入対象のタンパク質をコードする野生型の遺伝子の塩基配列を特定し、部位特異的突然変異導入キット等を用いて上記置換後のタンパク質をコードするように変異を導入することができる。また、変異を導入した遺伝子は、定法に従って、例えば発現ベクターに組み込んだ状態で回収することができる。遺伝子に変異を導入するには、Kunkel法又はGapped duplex法等の公知手法又はこれに準ずる方法により行うことができ、例えば部位特異的突然変異誘発法を利用した変異導入用キット(例えばMutant-K(TAKARA Bio社製)やMutan-G(TAKARA Bio社製))などを用いて、あるいは、TAKARA Bio社のLA PCR in vitro Mutagenesisシリーズキットを用いて変異が導入される。 As a method for substituting the 30th amino acid counting from the N-terminal side in SEQ ID NO: 1 with another amino acid, a conventionally known genetic engineering method can be appropriately used. In short, the nucleotide sequence of the wild-type gene encoding the protein to be introduced into the mutation can be specified, and the mutation can be introduced so as to encode the protein after the substitution using a site-specific mutation introduction kit or the like. In addition, the gene into which the mutation has been introduced can be recovered according to a conventional method, for example, in a state of being incorporated into an expression vector. Introducing a mutation into a gene can be performed by a known method such as the Kunkel method or the Gapped duplex method or a method similar thereto. For example, a mutagenesis kit using a site-specific mutagenesis method (for example, Mutant-K). Mutations are introduced using (TAKARA Bio), Mutan-G (TAKARA Bio), etc., or using TAKARA Bio's LA PCR in vitro Mutagenesis series kit.

更に具体的に、サッカロマイセス・セレビシアエ由来のCDC123タンパク質においては当該30番目のアミノ酸がロイシンである。当該30番目のロイシンをシステインに置換変異したサッカロマイセス・セレビシアエ由来の変異CDC123タンパク質をコードする塩基配列及び変異CDC123タンパク質のアミノ酸配列をそれぞれ配列番号2及び3に示す。なお、配列番号3に示した変異CDC123タンパク質のアミノ酸配列において、配列番号1における30番目のアミノ酸はN末端から数えて324番目に相当する。すなわち、配列番号3のアミノ酸配列における324番目のシステインが、野生型においてはロイシンとなる。 More specifically, in the CDC123 protein derived from Saccharomyces cerevisiae, the 30th amino acid is leucine. The nucleotide sequence encoding the mutant CDC123 protein derived from Saccharomyces cerevisiae obtained by substituting the 30th leucine with cysteine and the amino acid sequence of the mutant CDC123 protein are shown in SEQ ID NOs: 2 and 3, respectively. In the amino acid sequence of the mutant CDC123 protein shown in SEQ ID NO: 3, the 30th amino acid in SEQ ID NO: 1 corresponds to the 324th amino acid counting from the N-terminal. That is, the 324th cysteine in the amino acid sequence of SEQ ID NO: 3 becomes leucine in the wild type.

ところで、変異CDC123タンパク質は、配列番号3のアミノ酸配列からなるタンパク質に限定されず、例えば、上記324番目のシステインが維持されているならば、配列番号3のアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質であってもよい。ここで、同一性は、上述のように70%以上であればよく、好ましくは80%以上であり、より好ましくは85%以上であり、さらに好ましくは90%以上であり、最も好ましくは95%以上である。同一性の値は、BLASTアルゴリズムを実装したBLASTNやBLASTXプログラムにより算出することができる(デフォルトの設定)。なお、同一性の値は、一対のアミノ酸配列をペアワイズ・アライメント分析した際に完全に一致するアミノ酸残基を算出し、比較した全アミノ酸残基中の上記アミノ酸残基数の割合として算出される。 By the way, the mutant CDC123 protein is not limited to the protein consisting of the amino acid sequence of SEQ ID NO: 3, for example, if the above-mentioned 324th cysteine is maintained, it is 70% or more identical to the amino acid sequence of SEQ ID NO: 3. It may be a protein consisting of an amino acid sequence having sex. Here, the identity may be 70% or more as described above, preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, and most preferably 95%. That is all. The identity value can be calculated by a BLASTN or BLASTX program that implements the BLAST algorithm (default setting). The identity value is calculated as the ratio of the number of amino acid residues to the total amino acid residues compared by calculating the amino acid residues that completely match when the pair of amino acid sequences are pairwise aligned. ..

また、変異CDC123タンパク質は、配列番号3のアミノ酸配列からなるタンパク質に限定されず、例えば、上記324番目のシステインが維持されているならば、配列番号3のアミノ酸配列において1又は複数個、好ましくは1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列からなるタンパク質であってもよい。ここで、複数個とは、例えば、2~40個とすることができ、2~30個とすることが好ましく、2~20個とすることが好ましく、2~10個とすることがより好ましく、2~5個とすることが最も好ましい。 Further, the mutant CDC123 protein is not limited to the protein consisting of the amino acid sequence of SEQ ID NO: 3, for example, if the above-mentioned 324th cysteine is maintained, one or more, preferably one or more, in the amino acid sequence of SEQ ID NO: 3. It may be a protein consisting of an amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added. Here, the plurality may be, for example, 2 to 40, preferably 2 to 30, preferably 2 to 20, and more preferably 2 to 10. Most preferably, the number is 2 to 5.

さらに、変異CDC123タンパク質は、配列番号2の塩基配列によりコードされるタンパク質に限定されず、例えば、上記324番目のシステインを維持したタンパク質をコードするならば、配列番号2の塩基配列からなるDNAの相補鎖の全部又は一部に対して、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドによりコードされるタンパク質であってもよい。ここで「ストリンジェントな条件」とはいわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件を意味し、例えばMolecular Cloning: A Laboratory Manual(Third Edition)を参照して適宜決定することができる。具体的には、サザンハイブリダイゼーションの際の温度や溶液に含まれる塩濃度、及びサザンハイブリダイゼーションの洗浄工程の際の温度や溶液に含まれる塩濃度によりストリンジェンシーを設定することができる。より詳細には、ストリンジェントな条件としては、例えば、ナトリウム濃度が25~500mM、好ましくは25~300mMであり、温度が42~68℃、好ましくは42~65℃である。より具体的には、5×SSC(83mM NaCl、83mMクエン酸ナトリウム)、温度42℃である。 Further, the mutant CDC123 protein is not limited to the protein encoded by the nucleotide sequence of SEQ ID NO: 2, and for example, if the protein encoding the protein maintaining the 324th cysteine is encoded, the DNA consisting of the nucleotide sequence of SEQ ID NO: 2 is used. It may be a protein encoded by a polynucleotide that hybridizes to all or part of the complementary strand under stringent conditions. Here, the "stringent condition" means a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed, and is appropriately determined by referring to, for example, Molecular Cloning: A Laboratory Manual (Third Edition). be able to. Specifically, the stringency can be set by the temperature at the time of Southern hybridization and the salt concentration contained in the solution, and the temperature at the time of the washing step of Southern hybridization and the salt concentration contained in the solution. More specifically, as stringent conditions, for example, the sodium concentration is 25 to 500 mM, preferably 25 to 300 mM, and the temperature is 42 to 68 ° C, preferably 42 to 65 ° C. More specifically, it has 5 × SSC (83 mM NaCl, 83 mM sodium citrate) and a temperature of 42 ° C.

なお、上述のように、配列番号3のアミノ酸配列とは異なるアミノ酸配列からなる変異CDC123タンパク質や、配列番号2の塩基配列とは異なる塩基配列によりコードされる変異CDC123タンパク質では、上述した置換変異後のシステイン残基の位置は324番目とは異なる位置になる場合がある。 As described above, in the mutant CDC123 protein having an amino acid sequence different from the amino acid sequence of SEQ ID NO: 3 and the mutant CDC123 protein encoded by the base sequence different from the base sequence of SEQ ID NO: 2, after the above-mentioned substitution mutation. The position of the cysteine residue in the above may be different from the position of the 324th position.

ところで、変異CDC123タンパク質は、サッカロマイセス・セレビシアエ由来のものに限定されず、配列番号1のアミノ酸配列からなる保存領域を有するCDC123タンパク質であって、配列番号1におけるN末端側から数えて30番目のアミノ酸が他のアミノ酸に置換したタンパク質であれば、その由来等に限定されない。例えば、サッカロマイセス・セレビシアエ由来のCDC123タンパク質のアミノ酸配列や、当該CDC123タンパク質をコードする塩基配列に基づいて、アミノ酸配列や塩基配列を格納したデータベースより種々の生物由来の野生型CDC123タンパク質を同定することができる。このように同定した野生型CDC123タンパク質のうち、配列番号1のアミノ酸配列からなる保存領域を有するものについて、上記30番目のアミノ酸を置換変異することで変異型CDC123タンパク質及び当該変異型CDC123タンパク質をコードする変異遺伝子1を取得することができる。 By the way, the mutant CDC123 protein is not limited to that derived from Saccharomyces cerevisiae, but is a CDC123 protein having a conserved region consisting of the amino acid sequence of SEQ ID NO: 1, and is the 30th amino acid counting from the N-terminal side in SEQ ID NO: 1. If is a protein substituted with another amino acid, the origin thereof is not limited. For example, based on the amino acid sequence of the CDC123 protein derived from Saccharomyces cerevisiae and the base sequence encoding the CDC123 protein, it is possible to identify wild-type CDC123 proteins derived from various organisms from a database containing the amino acid sequence and the base sequence. can. Among the wild-type CDC123 proteins identified in this way, the mutant CDC123 protein and the mutant CDC123 protein are encoded by substituting and mutating the 30th amino acid of the wild-type CDC123 protein having a conserved region consisting of the amino acid sequence of SEQ ID NO: 1. Mutant gene 1 can be obtained.

一例として、サッカロマイセス・セレビシアエ由来のCDC123タンパク質のアミノ酸配列に基づいてデータベースを検索することによって、表1に示すように、配列番号1のアミノ酸配列からなる保存領域を有する野生型CDC123タンパク質(表1の第2行目から第13行目)を同定することができる。なお、表1には、当該保存領域を含むアミノ酸配列を掲載した。 As an example, by searching the database based on the amino acid sequence of the CDC123 protein from Saccharomyces cerevisiae, as shown in Table 1, the wild-type CDC123 protein having a conserved region consisting of the amino acid sequence of SEQ ID NO: 1 (Table 1). The second to thirteenth lines) can be identified. In Table 1, the amino acid sequence including the conserved region is listed.

Figure 2022058407000002
Figure 2022058407000002

すなわち、変異CDC123タンパク質は、例えば、配列番号11~22のうちいずれか1つのアミノ酸配列において、配列番号1におけるN末端側から数えて30番目のアミノ酸に相当するアミノ酸が他のアミノ酸に、好ましくはシステインに置換したアミノ酸配列を有するものであってもよい。 That is, in the mutant CDC123 protein, for example, in the amino acid sequence of any one of SEQ ID NOs: 11 to 22, the amino acid corresponding to the 30th amino acid counting from the N-terminal side in SEQ ID NO: 1 is preferably the other amino acid. It may have an amino acid sequence substituted with cysteine.

<変異遺伝子2>
変異遺伝子2は、翻訳開始因子eIF2のβサブユニットにおける特定のアミノ酸が他のアミノ酸に置換した変異SUI3タンパク質をコードする。SUI3タンパク質は、翻訳開始因子eIF2のβサブユニットとして、eIF2が開始コドンを見つけることに関与している。なお、SUI3タンパク質をコードする遺伝子のsystematic nameはYPL237Wである。
<Mutant gene 2>
Mutant gene 2 encodes a mutant SUI3 protein in which a specific amino acid in the β subunit of translation initiation factor eIF2 is replaced with another amino acid. The SUI3 protein is involved in eIF2 finding the start codon as the β subunit of the translation initiation factor eIF2. The systematic name of the gene encoding the SUI3 protein is YPL237W.

変異SUI3タンパク質は、転写開始因子としての機能ドメインにおけるN末端の近傍における特定のアミノ酸残基の置換変異を有している。当該置換変異が存在する領域は、異なる生物由来の多くのSUI3タンパク質で保存されている。当該置換変異を含む保存領域を配列番号4に示す(コンセンサス配列)。変異SUI3タンパク質は、配列番号4におけるN末端側から数えて43番目のアミノ酸が他のアミノ酸に置換したものと定義することができる。 The mutant SUI3 protein has a substitution mutation of a specific amino acid residue near the N-terminus in the functional domain as a transcription initiation factor. The region where the substitution mutation is present is conserved by many SUI3 proteins from different organisms. The conservative region containing the substitution mutation is shown in SEQ ID NO: 4 (consensus sequence). The mutant SUI3 protein can be defined as the 43rd amino acid counting from the N-terminal side in SEQ ID NO: 4 replaced with another amino acid.

ここで、配列番号4のアミノ酸配列からなる保存領域は、後述する表2の第2行目から第13行目に示したアミノ酸配列におけるN末端(左端)から48アミノ酸残基として定義している。ここで、配列番号4のアミノ酸配列における2番目のXaaで示したアミノ酸残基はアスパラギン酸又はグルタミン酸である。配列番号4のアミノ酸配列における3番目のXaaで示したアミノ酸残基はイソロイシン、バリン、ロイシン又はアラニンである。配列番号4のアミノ酸配列における4番目のXaaで示したアミノ酸残基はアラニン、トレオニン又はセリンである。配列番号4のアミノ酸配列における5番目のXaaで示したアミノ酸残基はグルタミン酸又はアスパラギン酸である。配列番号4のアミノ酸配列における6番目のXaaで示したアミノ酸残基はアラニン又はバリンである。配列番号4のアミノ酸配列における7番目のXaaで示したアミノ酸残基はロイシン又はフェニルアラニンである。配列番号4のアミノ酸配列における9番目のXaaで示したアミノ酸残基はグルタミン酸又はロイシンである。配列番号4のアミノ酸配列における11番目のXaaで示したアミノ酸残基はセリン、トレオニン又はリシンである。配列番号4のアミノ酸配列における19番目のXaaで示したアミノ酸残基はトレオニン、セリン又はアラニンである。配列番号4のアミノ酸配列における20番目のXaaで示したアミノ酸残基はリシン、アラニン又はプロリンである。配列番号4のアミノ酸配列における21番目のXaaで示したアミノ酸残基はアスパラギン酸、ヒスチジン、グルタミン酸又はバリンである。配列番号4のアミノ酸配列における22番目のXaaで示したアミノ酸残基はセリン、バリン、トレオニン又はアラニンである。配列番号4のアミノ酸配列における23番目のXaaで示したアミノ酸残基はセリン、アラニン、トレオニン、アスパラギン酸、グルタミン酸又はアスパラギンである。配列番号4のアミノ酸配列における24番目のXaaで示したアミノ酸残基はバリン又はロイシンである。配列番号4のアミノ酸配列における26番目のXaaで示したアミノ酸残基はアラニン、アスパラギン酸又はグルタミン酸である。配列番号4のアミノ酸配列における29番目のXaaで示したアミノ酸残基はリシン又はグルタミン酸である。配列番号4のアミノ酸配列における30番目のXaaで示したアミノ酸残基はグルタミン又はグルタミン酸である。配列番号4のアミノ酸配列における33番目のXaaで示したアミノ酸残基はリシン、アルギニン又はセリンである。配列番号4のアミノ酸配列における36番目のXaaで示したアミノ酸残基はロイシン又はバリンである。配列番号4のアミノ酸配列における37番目のXaaで示したアミノ酸残基はアスパラギン酸、アスパラギン又はリシンである。配列番号4のアミノ酸配列における38番目のXaaで示したアミノ酸残基はアスパラギン、セリン又はバリンである。配列番号4のアミノ酸配列における39番目のXaaで示したアミノ酸残基はバリン、イソロイシン、アスパラギン酸又はアラニンである。配列番号4のアミノ酸配列における40番目のXaaで示したアミノ酸残基はアスパラギン酸、グルタミン酸、トレオニン、セリン、グリシン又はバリンである。配列番号4のアミノ酸配列における41番目のXaaで示したアミノ酸残基はアラニン、グリシン、セリン、グルタミン酸、トレオニン、アラニン、アスパラギン酸又はバリンである。配列番号4のアミノ酸配列における42番目のXaaで示したアミノ酸残基はグルタミン酸、アスパラギン又はアスパラギン酸である。配列番号4のアミノ酸配列における43番目のXaaで示したアミノ酸残基はセリン又はアスパラギンである。配列番号4のアミノ酸配列における44番目のXaaで示したアミノ酸残基はリシン、セリン、グルタミン酸又はアスパラギンである。配列番号4のアミノ酸配列における45番目のXaaで示したアミノ酸残基はグルタミン酸、リシン又はアスパラギン酸である。配列番号4のアミノ酸配列における46番目のXaaで示したアミノ酸残基はグリシン、アラニン、トレオニン、アスパラギン酸、セリン又はグルタミン酸である。配列番号4のアミノ酸配列における47番目のXaaで示したアミノ酸残基はトレオニン又はセリンである。配列番号4のアミノ酸配列における48番目のXaaで示したアミノ酸残基はプロリン又はトレオニンである。 Here, the conserved region consisting of the amino acid sequence of SEQ ID NO: 4 is defined as 48 amino acid residues from the N-terminal (left end) in the amino acid sequences shown in the second to thirteenth rows of Table 2 described later. .. Here, the amino acid residue shown by the second Xaa in the amino acid sequence of SEQ ID NO: 4 is aspartic acid or glutamic acid. The amino acid residue represented by the third Xaa in the amino acid sequence of SEQ ID NO: 4 is isoleucine, valine, leucine or alanine. The amino acid residue represented by the fourth Xaa in the amino acid sequence of SEQ ID NO: 4 is alanine, threonine or serine. The amino acid residue represented by the fifth Xaa in the amino acid sequence of SEQ ID NO: 4 is glutamic acid or aspartic acid. The amino acid residue represented by the sixth Xaa in the amino acid sequence of SEQ ID NO: 4 is alanine or valine. The amino acid residue shown by Xaa at position 7 in the amino acid sequence of SEQ ID NO: 4 is leucine or phenylalanine. The amino acid residue shown by Xaa at position 9 in the amino acid sequence of SEQ ID NO: 4 is glutamic acid or leucine. The amino acid residue shown by Xaa at position 11 in the amino acid sequence of SEQ ID NO: 4 is serine, threonine or lysine. The amino acid residue shown by Xaa at position 19 in the amino acid sequence of SEQ ID NO: 4 is threonine, serine or alanine. The amino acid residue shown by Xaa at position 20 in the amino acid sequence of SEQ ID NO: 4 is lysine, alanine or proline. The amino acid residue shown by Xaa at position 21 in the amino acid sequence of SEQ ID NO: 4 is aspartic acid, histidine, glutamic acid or valine. The amino acid residue shown by Xaa at position 22 in the amino acid sequence of SEQ ID NO: 4 is serine, valine, threonine or alanine. The amino acid residue shown by Xaa at position 23 in the amino acid sequence of SEQ ID NO: 4 is serine, alanine, threonine, aspartic acid, glutamic acid or asparagine. The amino acid residue shown by Xaa at position 24 in the amino acid sequence of SEQ ID NO: 4 is valine or leucine. The amino acid residue shown by Xaa at position 26 in the amino acid sequence of SEQ ID NO: 4 is alanine, aspartic acid or glutamic acid. The amino acid residue shown by Xaa at position 29 in the amino acid sequence of SEQ ID NO: 4 is lysine or glutamic acid. The amino acid residue shown by Xaa at position 30 in the amino acid sequence of SEQ ID NO: 4 is glutamine or glutamic acid. The amino acid residue shown by Xaa at position 33 in the amino acid sequence of SEQ ID NO: 4 is lysine, arginine or serine. The amino acid residue shown by Xaa at position 36 in the amino acid sequence of SEQ ID NO: 4 is leucine or valine. The amino acid residue shown by Xaa at position 37 in the amino acid sequence of SEQ ID NO: 4 is aspartic acid, asparagine or lysine. The amino acid residue shown by Xaa at position 38 in the amino acid sequence of SEQ ID NO: 4 is asparagine, serine or valine. The amino acid residue shown by Xaa at position 39 in the amino acid sequence of SEQ ID NO: 4 is valine, isoleucine, aspartic acid or alanine. The amino acid residue shown by Xaa at position 40 in the amino acid sequence of SEQ ID NO: 4 is aspartic acid, glutamic acid, threonine, serine, glycine or valine. The amino acid residue shown by Xaa at position 41 in the amino acid sequence of SEQ ID NO: 4 is alanine, glycine, serine, glutamic acid, threonine, alanine, aspartic acid or valine. The amino acid residue shown by Xaa at position 42 in the amino acid sequence of SEQ ID NO: 4 is glutamic acid, asparagine or aspartic acid. The amino acid residue shown by Xaa at position 43 in the amino acid sequence of SEQ ID NO: 4 is serine or asparagine. The amino acid residue shown by Xaa at position 44 in the amino acid sequence of SEQ ID NO: 4 is lysine, serine, glutamic acid or asparagine. The amino acid residue shown by Xaa at position 45 in the amino acid sequence of SEQ ID NO: 4 is glutamic acid, lysine or aspartic acid. The amino acid residue shown by Xaa at position 46 in the amino acid sequence of SEQ ID NO: 4 is glycine, alanine, threonine, aspartic acid, serine or glutamic acid. The amino acid residue shown by Xaa at position 47 in the amino acid sequence of SEQ ID NO: 4 is threonine or serine. The amino acid residue shown by Xaa at position 48 in the amino acid sequence of SEQ ID NO: 4 is proline or threonine.

ここで、配列番号4におけるN末端側から数えて43番目のアミノ酸が置換した「他のアミノ酸」とは、野生型のSUI3タンパク質におけるアミノ酸とは異なるアミノ酸であることを意味する。野生型のSUI3タンパク質において、上記43番目のアミノ酸は、特に限定さないが、セリン又はアスパラギンである場合が多い。例えば、ある野生型のSUI3タンパク質において上記43番目のアミノ酸がセリンである場合、変異SUI3タンパク質は、当該43番目のセリンがセリン以外の他のアミノ酸に置換したアミノ酸配列を有する。この例において、セリン以外の他のアミノ酸としては、特に限定されないが、更にアスパラギン以外のアミノ酸であることが好ましい。また、変異SUI3タンパク質において、置換変異後のアミノ酸がトレオニンであることがより好ましい。 Here, the "other amino acid" substituted with the 43rd amino acid counted from the N-terminal side in SEQ ID NO: 4 means an amino acid different from the amino acid in the wild-type SUI3 protein. In the wild-type SUI3 protein, the 43rd amino acid is not particularly limited, but is often serine or asparagine. For example, when the 43rd amino acid in a wild-type SUI3 protein is serine, the mutant SUI3 protein has an amino acid sequence in which the 43rd serine is replaced with an amino acid other than serine. In this example, the amino acid other than serine is not particularly limited, but an amino acid other than asparagine is more preferable. Further, in the mutant SUI3 protein, it is more preferable that the amino acid after the substitution mutation is threonine.

配列番号4におけるN末端側から数えて43番目のアミノ酸を他のアミノ酸に置換する方法としては、従来公知の遺伝子工学的手法を適宜使用することができる。要するに、変異導入対象のタンパク質をコードする野生型の遺伝子の塩基配列を特定し、部位特異的突然変異導入キット等を用いて上記置換後のタンパク質をコードするように変異を導入することができる。また、変異を導入した遺伝子は、定法に従って、例えば発現ベクターに組み込んだ状態で回収することができる。遺伝子に変異を導入するには、Kunkel法又はGapped duplex法等の公知手法又はこれに準ずる方法により行うことができ、例えば部位特異的突然変異誘発法を利用した変異導入用キット(例えばMutant-K(TAKARA Bio社製)やMutan-G(TAKARA Bio社製))などを用いて、あるいは、TAKARA Bio社のLA PCR in vitro Mutagenesisシリーズキットを用いて変異が導入される。 As a method for substituting the 43rd amino acid counting from the N-terminal side in SEQ ID NO: 4 with another amino acid, a conventionally known genetic engineering method can be appropriately used. In short, the nucleotide sequence of the wild-type gene encoding the protein to be introduced into the mutation can be specified, and the mutation can be introduced so as to encode the protein after the substitution using a site-specific mutation introduction kit or the like. In addition, the gene into which the mutation has been introduced can be recovered according to a conventional method, for example, in a state of being incorporated into an expression vector. Introducing a mutation into a gene can be performed by a known method such as the Kunkel method or the Gapped duplex method or a method similar thereto. For example, a mutagenesis kit using a site-specific mutagenesis method (for example, Mutant-K). Mutations are introduced using (TAKARA Bio), Mutan-G (TAKARA Bio), etc., or using TAKARA Bio's LA PCR in vitro Mutagenesis series kit.

更に具体的に、サッカロマイセス・セレビシアエ由来のSUI3タンパク質においては当該43番目のアミノ酸がセリンである。当該43番目のセリンをトレオニンに置換変異したサッカロマイセス・セレビシアエ由来の変異SUI3タンパク質をコードする塩基配列及び変異SUI3タンパク質のアミノ酸配列をそれぞれ配列番号5及び6に示す。なお、配列番号6に示した変異SUI3タンパク質のアミノ酸配列において、配列番号4における43番目のアミノ酸はN末端から数えて112番目に相当する。すなわち、配列番号6のアミノ酸配列における112番目のトレオニンが、野生型においてはセリンとなる。 More specifically, in the SUI3 protein derived from Saccharomyces cerevisiae, the 43rd amino acid is serine. The nucleotide sequence encoding the mutant SUI3 protein derived from Saccharomyces cerevisiae obtained by substituting the 43rd serine with threonine and the amino acid sequence of the mutant SUI3 protein are shown in SEQ ID NOs: 5 and 6, respectively. In the amino acid sequence of the mutant SUI3 protein shown in SEQ ID NO: 6, the 43rd amino acid in SEQ ID NO: 4 corresponds to the 112th amino acid counting from the N-terminal. That is, the 112th threonine in the amino acid sequence of SEQ ID NO: 6 becomes serine in the wild type.

ところで、変異SUI3タンパク質は、配列番号6のアミノ酸配列からなるタンパク質に限定されず、例えば、上記112番目のトレオニンが維持されているならば、配列番号6のアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質であってもよい。ここで、同一性は、上述のように70%以上であればよく、好ましくは80%以上であり、より好ましくは85%以上であり、さらに好ましくは90%以上であり、最も好ましくは95%以上である。同一性の値は、BLASTアルゴリズムを実装したBLASTNやBLASTXプログラムにより算出することができる(デフォルトの設定)。なお、同一性の値は、一対のアミノ酸配列をペアワイズ・アライメント分析した際に完全に一致するアミノ酸残基を算出し、比較した全アミノ酸残基中の上記アミノ酸残基数の割合として算出される。 By the way, the mutant SUI3 protein is not limited to the protein consisting of the amino acid sequence of SEQ ID NO: 6, and for example, if the above-mentioned 112th threonine is maintained, it is 70% or more identical to the amino acid sequence of SEQ ID NO: 6. It may be a protein consisting of an amino acid sequence having sex. Here, the identity may be 70% or more as described above, preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, and most preferably 95%. That is all. The identity value can be calculated by a BLASTN or BLASTX program that implements the BLAST algorithm (default setting). The identity value is calculated as the ratio of the number of amino acid residues to the total amino acid residues compared by calculating the amino acid residues that completely match when the pair of amino acid sequences are pairwise aligned. ..

また、変異SUI3タンパク質は、配列番号6のアミノ酸配列からなるタンパク質に限定されず、例えば、上記112番目のトレオニンが維持されているならば、配列番号6のアミノ酸配列において1又は複数個、好ましくは1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列からなるタンパク質であってもよい。ここで、複数個とは、例えば、2~30個とすることができ、2~20個とすることが好ましく、2~10個とすることがより好ましく、2~5個とすることが最も好ましい。 Further, the mutant SUI3 protein is not limited to the protein consisting of the amino acid sequence of SEQ ID NO: 6, and for example, if the above-mentioned 112th threonine is maintained, one or more, preferably one or more, in the amino acid sequence of SEQ ID NO: 6. It may be a protein consisting of an amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added. Here, the plurality may be, for example, 2 to 30, preferably 2 to 20, more preferably 2 to 10, and most preferably 2 to 5. preferable.

さらに、変異SUI3タンパク質は、配列番号5の塩基配列によりコードされるタンパク質に限定されず、例えば、上記112番目のトレオニンを維持したタンパク質をコードするならば、配列番号5の塩基配列からなるDNAの相補鎖の全部又は一部に対して、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドによりコードされるタンパク質であってもよい。ここで「ストリンジェントな条件」とはいわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件を意味し、例えばMolecular Cloning: A Laboratory Manual(Third Edition)を参照して適宜決定することができる。具体的には、サザンハイブリダイゼーションの際の温度や溶液に含まれる塩濃度、及びサザンハイブリダイゼーションの洗浄工程の際の温度や溶液に含まれる塩濃度によりストリンジェンシーを設定することができる。より詳細には、ストリンジェントな条件としては、例えば、ナトリウム濃度が25~500mM、好ましくは25~300mMであり、温度が42~68℃、好ましくは42~65℃である。より具体的には、5×SSC(83mM NaCl、83mMクエン酸ナトリウム)、温度42℃である。 Further, the mutant SUI3 protein is not limited to the protein encoded by the nucleotide sequence of SEQ ID NO: 5, for example, if the protein encoding the 112th threonine is encoded, the DNA consisting of the nucleotide sequence of SEQ ID NO: 5 is encoded. It may be a protein encoded by a polynucleotide that hybridizes to all or part of the complementary strand under stringent conditions. Here, the "stringent condition" means a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed, and is appropriately determined by referring to, for example, Molecular Cloning: A Laboratory Manual (Third Edition). be able to. Specifically, the stringency can be set by the temperature at the time of Southern hybridization and the salt concentration contained in the solution, and the temperature at the time of the washing step of Southern hybridization and the salt concentration contained in the solution. More specifically, as stringent conditions, for example, the sodium concentration is 25 to 500 mM, preferably 25 to 300 mM, and the temperature is 42 to 68 ° C, preferably 42 to 65 ° C. More specifically, it has 5 × SSC (83 mM NaCl, 83 mM sodium citrate) and a temperature of 42 ° C.

なお、上述のように、配列番号6のアミノ酸配列とは異なるアミノ酸配列からなる変異SUI3タンパク質や、配列番号5の塩基配列とは異なる塩基配列によりコードされる変異SUI3タンパク質では、上述した置換変異後のトレオニン残基の位置は112番目とは異なる位置になる場合がある。 As described above, in the mutant SUI3 protein having an amino acid sequence different from the amino acid sequence of SEQ ID NO: 6 and the mutant SUI3 protein encoded by the base sequence different from the base sequence of SEQ ID NO: 5, after the above-mentioned substitution mutation. The position of the treonine residue in the above may be different from the 112th position.

ところで、変異SUI3タンパク質は、サッカロマイセス・セレビシアエ由来のものに限定されず、配列番号4のアミノ酸配列からなる保存領域を有するSUI3タンパク質であって、配列番号4におけるN末端側から数えて43番目のアミノ酸が他のアミノ酸に置換したタンパク質であれば、その由来等に限定されない。例えば、サッカロマイセス・セレビシアエ由来のSUI3タンパク質のアミノ酸配列や、当該SUI3タンパク質をコードする塩基配列に基づいて、アミノ酸配列や塩基配列を格納したデータベースより種々の生物由来の野生型SUI3タンパク質を同定することができる。このように同定した野生型SUI3タンパク質のうち、配列番号4のアミノ酸配列からなる保存領域を有するものについて、上記43番目のアミノ酸を置換変異することで変異型SUI3タンパク質及び当該変異型SUI3タンパク質をコードする変異遺伝子2を取得することができる。 By the way, the mutant SUI3 protein is not limited to that derived from Saccharomyces cerevisiae, but is a SUI3 protein having a conserved region consisting of the amino acid sequence of SEQ ID NO: 4, and is the 43rd amino acid counting from the N-terminal side in SEQ ID NO: 4. If is a protein substituted with another amino acid, the origin thereof is not limited. For example, based on the amino acid sequence of the SUI3 protein derived from Saccharomyces cerevisiae and the base sequence encoding the SUI3 protein, it is possible to identify wild-type SUI3 proteins derived from various organisms from a database containing the amino acid sequence and the base sequence. can. Among the wild-type SUI3 proteins identified in this way, the mutant SUI3 protein and the mutant SUI3 protein are encoded by substituting and mutating the 43rd amino acid above for a protein having a conserved region consisting of the amino acid sequence of SEQ ID NO: 4. Mutant gene 2 can be obtained.

一例として、サッカロマイセス・セレビシアエ由来のSUI3タンパク質のアミノ酸配列に基づいてデータベースを検索することによって、表2に示すように、配列番号4のアミノ酸配列からなる保存領域を有する野生型SUI3タンパク質を同定することができる(表2の第2行目から第13行目)を同定することができる。なお、表2には、当該保存領域を含むアミノ酸配列を掲載した。 As an example, by searching the database based on the amino acid sequence of the SUI3 protein from Saccharomyces cerevisiae, the wild-type SUI3 protein having a conserved region consisting of the amino acid sequence of SEQ ID NO: 4 is identified, as shown in Table 2. (2nd to 13th rows in Table 2) can be identified. In Table 2, the amino acid sequence including the conserved region is listed.

Figure 2022058407000003
Figure 2022058407000003

すなわち、変異SUI3タンパク質は、例えば、配列番号24~35のうちいずれか1つのアミノ酸配列において、配列番号4におけるN末端側から数えて43番目のアミノ酸に相当するアミノ酸が他のアミノ酸に、好ましくはトレオニンに置換したアミノ酸配列を有するものであってもよい。 That is, in the mutant SUI3 protein, for example, in the amino acid sequence of any one of SEQ ID NOs: 24 to 35, the amino acid corresponding to the 43rd amino acid counting from the N-terminal side in SEQ ID NO: 4 is preferably the other amino acid. It may have an amino acid sequence substituted with treonine.

<変異遺伝子3>
変異遺伝子3は、セリン/トレオニン・プロテインキナーゼにおける特定のアミノ酸が他のアミノ酸に置換した変異FPK1タンパク質をコードする。FPK1タンパク質は、アミノリン脂質トランスロカーゼファミリーメンバーをリン酸化し、リン脂質の転位置及び膜の非対称性を調節する機能を有する。また、FPK1タンパク質は、上流の阻害性キナーゼYpk1pをリン酸化し及び阻害する機能を有する。なお、FPK1タンパク質をコードする遺伝子のsystematic nameはYNR047Wである。
<Mutant gene 3>
Mutant gene 3 encodes a mutant FPK1 protein in which a particular amino acid in serine / threonine protein kinase is replaced with another amino acid. The FPK1 protein has the function of phosphorylating members of the aminophospholipid translocase family and regulating the transposition of phospholipids and membrane asymmetry. In addition, the FPK1 protein has a function of phosphorylating and inhibiting the upstream inhibitory kinase Ypk1p. The systematic name of the gene encoding the FPK1 protein is YNR047W.

変異FPK1タンパク質は、セリン/トレオニン・プロテインキナーゼの触媒ドメイン内におけるATP結合部位及び活性部位近傍における特定のアミノ酸残基の置換変異を有している。当該置換変異が存在する領域は、異なる生物由来の多くのFPK1タンパク質で保存されている。当該置換変異を含む触媒ドメイン内の保存領域を配列番号7に示す(コンセンサス配列)。変異FPK1タンパク質は、配列番号7におけるN末端側から数えて31番目のアミノ酸が他のアミノ酸に置換したものと定義することができる。 The mutant FPK1 protein has substitution mutations of specific amino acid residues in the catalytic domain of serine / threonine protein kinase near the ATP binding site and active site. The region where the substitution mutation is present is conserved by many FPK1 proteins from different organisms. The conserved region within the catalytic domain containing the substitution mutation is shown in SEQ ID NO: 7 (consensus sequence). The mutant FPK1 protein can be defined as the amino acid 31st from the N-terminal side in SEQ ID NO: 7 replaced with another amino acid.

ここで、配列番号7のアミノ酸配列からなる保存領域は、後述する表3の第2行目から第13行目に示したアミノ酸配列におけるN末端(左端)から80アミノ酸残基として定義している。ここで、配列番号7のアミノ酸配列における41番目のXaaで示したアミノ酸残基はプロリン又はイソロイシンである。配列番号7のアミノ酸配列における46番目のXaaで示したアミノ酸残基はグリシン又はアラニンである。配列番号7のアミノ酸配列における47番目のXaaで示したアミノ酸残基はアスパラギン酸、グルタミン酸又はセリンである。配列番号7のアミノ酸配列における48番目のXaaで示したアミノ酸残基はアスパラギン、グルタミン酸又はセリンである。配列番号7のアミノ酸配列における49番目のXaaで示したアミノ酸残基はトレオニン又はセリンである。配列番号7のアミノ酸配列における51番目のXaaで示したアミノ酸残基はグルタミン酸、グルタミン、アルギニン又はロイシンである。配列番号7のアミノ酸配列における54番目のXaaで示したアミノ酸残基はトレオニン、セリン又はシステインである。配列番号7のアミノ酸配列における56番目のXaaで示したアミノ酸残基はイソロイシン又はバリンである。配列番号7のアミノ酸配列における59番目のXaaで示したアミノ酸残基はアスパラギン、リシン又はセリンである。配列番号7のアミノ酸配列における60番目のXaaで示したアミノ酸残基はグルタミン酸又はアスパラギン酸である。配列番号7のアミノ酸配列における62番目のXaaで示したアミノ酸残基はセリン、トレオニン、イソロイシン又はアスパラギンである。配列番号7のアミノ酸配列における68番目のXaaで示したアミノ酸残基はグルタミン酸又はアスパラギン酸である。配列番号7のアミノ酸配列における69番目のXaaで示したアミノ酸残基はイソロイシン又はバリンである。配列番号7のアミノ酸配列における70番目のXaaで示したアミノ酸残基はセリン又はグリシンである。配列番号7のアミノ酸配列における72番目のXaaで示したアミノ酸残基はトレオニン、アスパラギン、アラニン又はセリンである。配列番号7のアミノ酸配列における78番目のXaaで示したアミノ酸残基はリシン又はアルギニンである。配列番号7のアミノ酸配列における79番目のXaaで示したアミノ酸残基はリシン又はアルギニンである。 Here, the conserved region consisting of the amino acid sequence of SEQ ID NO: 7 is defined as 80 amino acid residues from the N-terminal (left end) in the amino acid sequences shown in the second to thirteenth rows of Table 3 described later. .. Here, the amino acid residue shown by the 41st Xaa in the amino acid sequence of SEQ ID NO: 7 is proline or isoleucine. The amino acid residue shown by Xaa at position 46 in the amino acid sequence of SEQ ID NO: 7 is glycine or alanine. The amino acid residue shown by Xaa at position 47 in the amino acid sequence of SEQ ID NO: 7 is aspartic acid, glutamic acid or serine. The amino acid residue shown by Xaa at position 48 in the amino acid sequence of SEQ ID NO: 7 is asparagine, glutamic acid or serine. The amino acid residue shown by Xaa at position 49 in the amino acid sequence of SEQ ID NO: 7 is threonine or serine. The amino acid residue shown by Xaa at position 51 in the amino acid sequence of SEQ ID NO: 7 is glutamic acid, glutamine, arginine or leucine. The amino acid residue shown by Xaa at position 54 in the amino acid sequence of SEQ ID NO: 7 is threonine, serine or cysteine. The amino acid residue shown by Xaa at position 56 in the amino acid sequence of SEQ ID NO: 7 is isoleucine or valine. The amino acid residue shown by Xaa at position 59 in the amino acid sequence of SEQ ID NO: 7 is asparagine, lysine or serine. The amino acid residue shown by Xaa at position 60 in the amino acid sequence of SEQ ID NO: 7 is glutamic acid or aspartic acid. The amino acid residue shown by Xaa at position 62 in the amino acid sequence of SEQ ID NO: 7 is serine, threonine, isoleucine or asparagine. The amino acid residue shown by Xaa at position 68 in the amino acid sequence of SEQ ID NO: 7 is glutamic acid or aspartic acid. The amino acid residue shown by Xaa at position 69 in the amino acid sequence of SEQ ID NO: 7 is isoleucine or valine. The amino acid residue shown by Xaa at position 70 in the amino acid sequence of SEQ ID NO: 7 is serine or glycine. The amino acid residue shown by Xaa at position 72 in the amino acid sequence of SEQ ID NO: 7 is threonine, asparagine, alanine or serine. The amino acid residue shown by Xaa at position 78 in the amino acid sequence of SEQ ID NO: 7 is lysine or arginine. The amino acid residue shown by Xaa at position 79 in the amino acid sequence of SEQ ID NO: 7 is lysine or arginine.

ここで、配列番号7におけるN末端側から数えて31番目のアミノ酸が置換した「他のアミノ酸」とは、野生型のFPK1タンパク質におけるアミノ酸とは異なるアミノ酸であることを意味する。野生型のFPK1タンパク質において、上記31番目のアミノ酸は、特に限定さないが、グリシンである場合が多い。例えば、ある野生型のFPK1タンパク質において上記31番目のアミノ酸がグリシンである場合、変異FPK1タンパク質は、当該31番目のグリシンがグリシン以外の他のアミノ酸に置換したアミノ酸配列を有する。この例において、グリシン以外の他のアミノ酸としては、特に限定されないが、グルタミン酸であることがより好ましい。 Here, the "other amino acid" substituted with the 31st amino acid counted from the N-terminal side in SEQ ID NO: 7 means an amino acid different from the amino acid in the wild-type FPK1 protein. In the wild-type FPK1 protein, the above-mentioned 31st amino acid is not particularly limited, but is often glycine. For example, when the 31st amino acid in a wild-type FPK1 protein is glycine, the mutant FPK1 protein has an amino acid sequence in which the 31st glycine is replaced with an amino acid other than glycine. In this example, the amino acid other than glycine is not particularly limited, but glutamic acid is more preferable.

配列番号7におけるN末端側から数えて31番目のアミノ酸を他のアミノ酸に置換する方法としては、従来公知の遺伝子工学的手法を適宜使用することができる。要するに、変異導入対象のタンパク質をコードする野生型の遺伝子の塩基配列を特定し、部位特異的突然変異導入キット等を用いて上記置換後のタンパク質をコードするように変異を導入することができる。また、変異を導入した遺伝子は、定法に従って、例えば発現ベクターに組み込んだ状態で回収することができる。遺伝子に変異を導入するには、Kunkel法又はGapped duplex法等の公知手法又はこれに準ずる方法により行うことができ、例えば部位特異的突然変異誘発法を利用した変異導入用キット(例えばMutant-K(TAKARA Bio社製)やMutan-G(TAKARA Bio社製))などを用いて、あるいは、TAKARA Bio社のLA PCR in vitro Mutagenesisシリーズキットを用いて変異が導入される。 As a method for substituting the 31st amino acid counting from the N-terminal side in SEQ ID NO: 7 with another amino acid, a conventionally known genetic engineering method can be appropriately used. In short, the nucleotide sequence of the wild-type gene encoding the protein to be introduced into the mutation can be specified, and the mutation can be introduced so as to encode the protein after the substitution using a site-specific mutation introduction kit or the like. In addition, the gene into which the mutation has been introduced can be recovered according to a conventional method, for example, in a state of being incorporated into an expression vector. Introducing a mutation into a gene can be performed by a known method such as the Kunkel method or the Gapped duplex method or a method similar thereto. For example, a mutagenesis kit using a site-specific mutagenesis method (for example, Mutant-K). Mutations are introduced using (TAKARA Bio), Mutan-G (TAKARA Bio), etc., or using TAKARA Bio's LA PCR in vitro Mutagenesis series kit.

更に具体的に、サッカロマイセス・セレビシアエ由来のFPK1タンパク質においては当該31番目のアミノ酸がグリシンである。当該31番目のグリシンをグルタミン酸に置換変異したサッカロマイセス・セレビシアエ由来の変異FPK1タンパク質をコードする塩基配列及び変異FPK1タンパク質のアミノ酸配列をそれぞれ配列番号8及び9に示す。なお、配列番号9に示した変異FPK1タンパク質のアミノ酸配列において、配列番号7における31番目のアミノ酸はN末端から数えて704番目に相当する。すなわち、配列番号9のアミノ酸配列における704番目のグルタミン酸が、野生型においてはグリシンとなる。 More specifically, in the FPK1 protein derived from Saccharomyces cerevisiae, the 31st amino acid is glycine. The nucleotide sequence encoding the mutant FPK1 protein derived from Saccharomyces cerevisiae obtained by substituting the 31st glycine with glutamic acid and the amino acid sequence of the mutant FPK1 protein are shown in SEQ ID NOs: 8 and 9, respectively. In the amino acid sequence of the mutant FPK1 protein shown in SEQ ID NO: 9, the 31st amino acid in SEQ ID NO: 7 corresponds to the 704th amino acid counting from the N-terminal. That is, the 704th glutamic acid in the amino acid sequence of SEQ ID NO: 9 becomes glycine in the wild type.

ところで、変異FPK1タンパク質は、配列番号9のアミノ酸配列からなるタンパク質に限定されず、例えば、上記704番目のグルタミン酸が維持されているならば、配列番号9のアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなるタンパク質であってもよい。ここで、同一性は、上述のように70%以上であればよく、好ましくは80%以上であり、より好ましくは85%以上であり、さらに好ましくは90%以上であり、最も好ましくは95%以上である。同一性の値は、BLASTアルゴリズムを実装したBLASTNやBLASTXプログラムにより算出することができる(デフォルトの設定)。なお、同一性の値は、一対のアミノ酸配列をペアワイズ・アライメント分析した際に完全に一致するアミノ酸残基を算出し、比較した全アミノ酸残基中の上記アミノ酸残基数の割合として算出される。 By the way, the mutant FPK1 protein is not limited to the protein consisting of the amino acid sequence of SEQ ID NO: 9, and for example, if the above-mentioned 704th glutamic acid is maintained, it is 70% or more identical to the amino acid sequence of SEQ ID NO: 9. It may be a protein consisting of an amino acid sequence having sex. Here, the identity may be 70% or more as described above, preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, and most preferably 95%. That is all. The identity value can be calculated by a BLASTN or BLASTX program that implements the BLAST algorithm (default setting). The identity value is calculated as the ratio of the number of amino acid residues to the total amino acid residues compared by calculating the amino acid residues that completely match when the pair of amino acid sequences are pairwise aligned. ..

また、変異FPK1タンパク質は、配列番号9のアミノ酸配列からなるタンパク質に限定されず、例えば、上記704番目のグルタミン酸が維持されているならば、配列番号9のアミノ酸配列において1又は複数個、好ましくは1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列からなるタンパク質であってもよい。ここで、複数個とは、例えば、2~90個とすることができ、2~80個とすることが好ましく、2~70個とすることが好ましく、2~60個とすることが好ましく、2~50個とすることが好ましく、2~40個とすることが好ましく、2~30個とすることが好ましく、2~20個とすることが好ましく、2~10個とすることがより好ましく、2~5個とすることが最も好ましい。 Further, the mutant FPK1 protein is not limited to the protein consisting of the amino acid sequence of SEQ ID NO: 9, for example, if the above-mentioned 704th glutamic acid is maintained, one or more, preferably one or more, in the amino acid sequence of SEQ ID NO: 9. It may be a protein consisting of an amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added. Here, the plurality may be, for example, 2 to 90, preferably 2 to 80, preferably 2 to 70, and preferably 2 to 60. The number is preferably 2 to 50, preferably 2 to 40, preferably 2 to 30, preferably 2 to 20, and more preferably 2 to 10. Most preferably, the number is 2 to 5.

さらに、変異FPK1タンパク質は、配列番号8の塩基配列によりコードされるタンパク質に限定されず、例えば、上記704番目のグルタミン酸を維持したタンパク質をコードするならば、配列番号8の塩基配列からなるDNAの相補鎖の全部又は一部に対して、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドによりコードされるタンパク質であってもよい。ここで「ストリンジェントな条件」とはいわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件を意味し、例えばMolecular Cloning: A Laboratory Manual(Third Edition)を参照して適宜決定することができる。具体的には、サザンハイブリダイゼーションの際の温度や溶液に含まれる塩濃度、及びサザンハイブリダイゼーションの洗浄工程の際の温度や溶液に含まれる塩濃度によりストリンジェンシーを設定することができる。より詳細には、ストリンジェントな条件としては、例えば、ナトリウム濃度が25~500mM、好ましくは25~300mMであり、温度が42~68℃、好ましくは42~65℃である。より具体的には、5×SSC(83mM NaCl、83mMクエン酸ナトリウム)、温度42℃である。 Further, the mutant FPK1 protein is not limited to the protein encoded by the nucleotide sequence of SEQ ID NO: 8, and for example, if the protein encoding the protein maintaining the 704th glutamic acid is encoded, the DNA consisting of the nucleotide sequence of SEQ ID NO: 8 is used. It may be a protein encoded by a polynucleotide that hybridizes to all or part of the complementary strand under stringent conditions. Here, the "stringent condition" means a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed, and is appropriately determined by referring to, for example, Molecular Cloning: A Laboratory Manual (Third Edition). be able to. Specifically, the stringency can be set by the temperature at the time of Southern hybridization and the salt concentration contained in the solution, and the temperature at the time of the washing step of Southern hybridization and the salt concentration contained in the solution. More specifically, as stringent conditions, for example, the sodium concentration is 25 to 500 mM, preferably 25 to 300 mM, and the temperature is 42 to 68 ° C, preferably 42 to 65 ° C. More specifically, it has 5 × SSC (83 mM NaCl, 83 mM sodium citrate) and a temperature of 42 ° C.

なお、上述のように、配列番号9のアミノ酸配列とは異なるアミノ酸配列からなる変異SUI3タンパク質や、配列番号8の塩基配列とは異なる塩基配列によりコードされる変異SUI3タンパク質では、上述した置換変異後のトレオニン残基の位置は704番目とは異なる位置になる場合がある。 As described above, in the mutant SUI3 protein having an amino acid sequence different from the amino acid sequence of SEQ ID NO: 9 and the mutant SUI3 protein encoded by the base sequence different from the base sequence of SEQ ID NO: 8, after the above-mentioned substitution mutation. The position of the treonine residue in the above may be different from the position of the 704th.

ところで、変異FPK1タンパク質は、サッカロマイセス・セレビシアエ由来のものに限定されず、配列番号7のアミノ酸配列からなる保存領域を有するFPK1タンパク質であって、配列番号7におけるN末端側から数えて31番目のアミノ酸が他のアミノ酸に置換したタンパク質であれば、その由来等に限定されない。例えば、サッカロマイセス・セレビシアエ由来のFPK1タンパク質のアミノ酸配列や、当該FPK1タンパク質をコードする塩基配列に基づいて、アミノ酸配列や塩基配列を格納したデータベースより種々の生物由来の野生型FPK1タンパク質を同定することができる。このように同定した野生型FPK1タンパク質のうち、配列番号7のアミノ酸配列からなる保存領域を有するものについて、上記31番目のアミノ酸を置換変異することで変異型FPK1タンパク質及び当該変異型FPK1タンパク質をコードする変異遺伝子3を取得することができる。 By the way, the mutant FPK1 protein is not limited to that derived from Saccharomyces cerevisiae, but is an FPK1 protein having a conserved region consisting of the amino acid sequence of SEQ ID NO: 7, and is the 31st amino acid counting from the N-terminal side in SEQ ID NO: 7. If is a protein substituted with another amino acid, the origin thereof is not limited. For example, it is possible to identify wild-type FPK1 proteins derived from various organisms from a database containing amino acid sequences and base sequences based on the amino acid sequence of the FPK1 protein derived from Saccharomyces cerevisiae and the base sequence encoding the FPK1 protein. can. Among the wild-type FPK1 proteins identified in this way, the mutant FPK1 protein and the mutant FPK1 protein are encoded by substituting and mutating the above-mentioned 31st amino acid for a protein having a conserved region consisting of the amino acid sequence of SEQ ID NO: 7. Mutant gene 3 can be obtained.

一例として、サッカロマイセス・セレビシアエ由来のFPK1タンパク質のアミノ酸配列に基づいてデータベースを検索することによって、表3に示すように、配列番号7のアミノ酸配列からなる保存領域を有する野生型FPK1タンパク質を同定することができる(表3の第2行目から第13行目)を同定することができる。なお、表3には、当該保存領域を含むアミノ酸配列を掲載した。 As an example, by searching the database based on the amino acid sequence of the FPK1 protein from Saccharomyces cerevisiae, the wild-type FPK1 protein having a conserved region consisting of the amino acid sequence of SEQ ID NO: 7 is identified, as shown in Table 3. (2nd to 13th rows in Table 3) can be identified. In Table 3, the amino acid sequence including the conserved region is listed.

Figure 2022058407000004
Figure 2022058407000004

すなわち、変異FPK1タンパク質は、例えば、配列番号37~48のうちいずれか1つのアミノ酸配列において、配列番号7におけるN末端側から数えて31番目のアミノ酸に相当するアミノ酸が他のアミノ酸に、好ましくはトレオニンに置換したアミノ酸配列を有するものであってもよい。 That is, in the mutant FPK1 protein, for example, in the amino acid sequence of any one of SEQ ID NOs: 37 to 48, the amino acid corresponding to the 31st amino acid counting from the N-terminal side in SEQ ID NO: 7 is preferably the other amino acid. It may have an amino acid sequence substituted with treonine.

<変異酵母>
本発明に係る変異酵母は、上述した変異遺伝子を有しており、キシロース代謝能を有している。上述した変異遺伝子を有する変異酵母は、例えば、ゲノム中に内在する野生型遺伝子を上記変異が導入されるように改変する方法によって作製できる。すなわち、本発明に係る変異遺伝子を有する変異酵母は、上述したような部位特異的突然変異誘発法によって作出することができる。
<Mutant yeast>
The mutant yeast according to the present invention has the above-mentioned mutant gene and has xylose metabolism ability. The mutant yeast having the above-mentioned mutant gene can be produced, for example, by a method of modifying a wild-type gene endogenous in the genome so that the above-mentioned mutation is introduced. That is, the mutant yeast having the mutant gene according to the present invention can be produced by the site-specific mutagenesis method as described above.

また、予め準備した変異遺伝子とゲノム中の野生型遺伝子の間の相同組換えによって変異酵母を作出することもできる。或いは、本発明に係る変異遺伝子を有する変異酵母は、ゲノム内の野生型遺伝子を欠損させるとともに当該変異型遺伝子を発現可能なように導入することで作出しても良い。さらに、本発明に係る変異遺伝子を有する変異酵母は、ゲノム内の野生型遺伝子を欠損させず、当該変異型遺伝子が過剰発現するように導入することで作出しても良い。さらにまた、変異原処理によって上述した変異遺伝子を有する変異酵母を作出することもできる。 In addition, a mutant yeast can be produced by homologous recombination between a mutant gene prepared in advance and a wild-type gene in the genome. Alternatively, the mutant yeast having the mutant gene according to the present invention may be produced by deleting the wild-type gene in the genome and introducing the mutant gene so that it can be expressed. Further, the mutant yeast having the mutant gene according to the present invention may be produced by introducing the mutant gene so as not to delete the wild-type gene in the genome and to overexpress the mutant gene. Furthermore, it is also possible to produce a mutant yeast having the above-mentioned mutant gene by the mutagen treatment.

変異原処理の方法としては、EMS(エチルメタンスルホン酸)、5-ブロモウラシル、2-アミノプリン、ヒドロキシルアミン、N-メチル-N’-ニトロ-Nニトロソグアニジン、その他の発ガン性化合物に代表されるような化学的変異剤を使用する方法でも良いし、X線、アルファ線、ベータ線、ガンマ線、イオンビームに代表されるような放射線処理や紫外線処理による方法でも良い。 Mutagen treatment methods include EMS (ethylmethanesulfonic acid), 5-bromouracil, 2-aminopurine, hydroxylamine, N-methyl-N'-nitro-Nnitrosoguanidine, and other carcinogenic compounds. It may be a method using a chemical mutagen as described above, or a method by radiation treatment or ultraviolet treatment such as X-ray, alpha-ray, beta-ray, gamma-ray, or ion beam.

ここで、キシロース代謝能を有するとは、本来的にはキシロース代謝能(資化能と同義)を有しない酵母に対してキシロース代謝関連酵素遺伝子を導入することでキシロース資化能を獲得すること、或いは、本来的にキシロース代謝関連酵素遺伝子を備えておりキシロース代謝能を有していることの両方を意味する。 Here, having xylose metabolism ability means acquiring xylose assimilation ability by introducing a xylose metabolism-related enzyme gene into yeast that does not originally have xylose metabolism ability (synonymous with assimilation ability). Or, it means both that it originally has a xylose metabolism-related enzyme gene and has xylose metabolism ability.

例えば、キシロース代謝能を有する酵母としては、本来的にはキシロース代謝能を有しない酵母に対して、キシロースイソメラーゼ遺伝子が導入されることによりキシロース資化能が付与された酵母、その他のキシロース代謝関連遺伝子が導入されることによりキシロース代謝能が付与された酵母を挙げることができる。 For example, as yeast having xylose metabolic ability, yeast having xylose assimilation ability by introducing a xylose isomerase gene into yeast that does not originally have xylose metabolic ability, and other yeasts related to xylose metabolism. Examples thereof include yeasts to which xylose metabolic ability is imparted by introducing a gene.

ところで、本発明に係る変異酵母は、キシロースに対する代謝能(キシロース代謝能)、すなわち培地中に含まれるキシロースを資化してエタノールを生産することができる。なお、培地中に含まれるキシロースとは、キシロースを構成糖とするキシランやヘミセルロース等を糖化するプロセスによって得られたものでも良いし、培地に含まれるキシランやヘミセルロース等が糖化酵素により糖化されることで培地に供給されるものであってもよい。後者の場合は、所謂、同時糖化発酵の系を意味する。 By the way, the mutant yeast according to the present invention can produce ethanol by assimilating xylose-metabolizing ability (xylose-metabolizing ability), that is, xylose contained in a medium. The xylose contained in the medium may be obtained by a process of saccharifying xylose or hemicellulose having xylose as a constituent sugar, or the xylose or hemicellulose contained in the medium may be saccharified by a saccharifying enzyme. It may be supplied to the medium in. In the latter case, it means a so-called simultaneous saccharification fermentation system.

キシロースイソメラーゼ遺伝子(XI遺伝子)としては、特に限定されず、如何なる生物種由来の遺伝子を使用しても良い。例えば、特開2011-147445号公報に開示されたシロアリの腸内原生生物由来の複数のキシロースイソメラーゼ遺伝子を、特に制限されることなく使用することができる。また、キシロースイソメラーゼ遺伝子としては、嫌気性のカビであるピロマイセス(Piromyces)sp. E2種由来(特表2005-514951号公報)、嫌気性のカビであるシラマイセス・アベレンシス(Cyllamyces aberensis)由来、バクテリアであるバクテロイデス・セタイオタミクロン(Bacteroides thetaiotaomicron)由来、バクテリアであるクロストリディウム・ファイトファーメンタス由来、ストレプトマイセス・ムリナスクラスター由来の遺伝子を利用することもできる。 The xylose isomerase gene (XI gene) is not particularly limited, and a gene derived from any species may be used. For example, a plurality of xylose isomerase genes derived from termite protists in the intestine disclosed in JP-A-2011-147445 can be used without particular limitation. The xylose isomerase genes are derived from the anaerobic mold Piromyces sp. E2 (Japanese Patent Publication No. 2005-514951), the anaerobic mold Cylamyces aberensis, and bacteria. Genes from a certain Bacteroides thetaiotaomicron, from the bacterium Clostridium phytofermentus, and from the Streptomyces mulinas cluster can also be used.

具体的に、キシロースイソメラーゼ遺伝子としては、ヤマトシロアリ(Reticulitermes speratus)腸内原生生物由来のキシロースイソメラーゼ遺伝子を使用することが好ましい。このヤマトシロアリ(Reticulitermes speratus)腸内原生生物由来のキシロースイソメラーゼ遺伝子のコーディング領域の塩基配列及び当該遺伝子がコードするタンパク質のアミノ酸配列をそれぞれ配列番号49及び50に示す。 Specifically, as the xylose isomerase gene, it is preferable to use the xylose isomerase gene derived from the Reticulitermes speratus intestinal progenitor. The nucleotide sequence of the coding region of the xylose isomerase gene derived from the Reticulitermes speratus intestinal organism and the amino acid sequence of the protein encoded by the gene are shown in SEQ ID NOs: 49 and 50, respectively.

ただし、キシロースイソメラーゼ遺伝子としては、配列番号49及び50にて特定されるものに限定されず、塩基配列やアミノ酸配列は異なるがパラログの関係又は狭義のホモログの関係にある遺伝子であっても良い。 However, the xylose isomerase gene is not limited to the gene specified by SEQ ID NOs: 49 and 50, and may be a gene having a paralog relationship or a homolog relationship in a narrow sense, although the base sequence and amino acid sequence are different.

また、キシロースイソメラーゼ遺伝子は、これら配列番号49及び50にて特定されるものに限定されず、例えば、配列番号50のアミノ酸配列に対して70%以上、好ましくは80%以上、より好ましくは90%以上、最も好ましくは95%以上の配列類似性又は同一性を有するアミノ酸配列を有し、キシロースイソメラーゼ活性を有するタンパク質をコードするものでも良い。配列類似性及び同一性の値は、BLASTアルゴリズムを実装したBLASTNやBLASTXプログラムにより算出することができる(デフォルトの設定)。なお、配列類似性の値は、一対のアミノ酸配列をペアワイズ・アライメント分析した際に完全に一致するアミノ酸残基と、物理化学的に機能が類似するアミノ酸残基との合計を算出し、比較した全アミノ酸残基中の上記合計数の割合として算出される。なお、同一性の値は、一対のアミノ酸配列をペアワイズ・アライメント分析した際に完全に一致するアミノ酸残基を算出し、比較した全アミノ酸残基中の上記アミノ酸残基数の割合として算出される。 Further, the xylose isomerase gene is not limited to those specified by these SEQ ID NOs: 49 and 50, and for example, 70% or more, preferably 80% or more, more preferably 90% with respect to the amino acid sequence of SEQ ID NO: 50. As described above, most preferably, a protein having an amino acid sequence having 95% or more sequence similarity or identity and having xylose isomerase activity may be encoded. Sequence similarity and identity values can be calculated by BLASTN or BLASTX programs that implement the BLAST algorithm (default setting). The sequence similarity values were calculated by calculating and comparing the sums of amino acid residues that completely matched when a pair of amino acid sequences were pairwise aligned and analyzed, and amino acid residues having similar physicochemical functions. It is calculated as the ratio of the total number of all amino acid residues. The identity value is calculated as the ratio of the number of amino acid residues to the total amino acid residues compared by calculating the amino acid residues that completely match when the pair of amino acid sequences are pairwise aligned. ..

さらに、キシロースイソメラーゼ遺伝子は、これら配列番号49及び50にて特定されるものに限定されず、例えば、配列番号50のアミノ酸配列に対して、1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列を有し、キシロースイソメラーゼ活性を有するタンパク質をコードするものでも良い。ここで、数個とは、例えば、2~30個、好ましくは2~20個、より好ましくは2~10個、最も好ましくは2~5個である。 Further, the xylose isomerase gene is not limited to those specified by these SEQ ID NOs: 49 and 50, and for example, one or several amino acids are substituted, deleted, inserted or inserted into the amino acid sequence of SEQ ID NO: 50. It may encode a protein having an added amino acid sequence and having xylose isomerase activity. Here, the number is, for example, 2 to 30, preferably 2 to 20, more preferably 2 to 10, and most preferably 2 to 5.

さらにまた、キシロースイソメラーゼ遺伝子は、これら配列番号49及び50にて特定されるものに限定されず、例えば、配列番号49の塩基配列からなるDNAの相補鎖の全部又は一部に対して、ストリンジェントな条件下でハイブリダイズし、かつキシロースイソメラーゼ活性を有するタンパク質をコードするものでもよい。ここでいう「ストリンジェントな条件」とはいわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件を意味し、例えばMolecular Cloning: A Laboratory Manual(Third Edition)を参照して適宜決定することができる。具体的には、サザンハイブリダイゼーションの際の温度や溶液に含まれる塩濃度、及びサザンハイブリダイゼーションの洗浄工程の際の温度や溶液に含まれる塩濃度によりストリンジェンシーを設定することができる。より詳細には、ストリンジェントな条件としては、例えば、ナトリウム濃度が25~500mM、好ましくは25~300mMであり、温度が42~68℃、好ましくは42~65℃である。より具体的には、5×SSC(83mM NaCl、83mMクエン酸ナトリウム)、温度42℃である。 Furthermore, the xylose isomerase gene is not limited to those specified by these SEQ ID NOs: 49 and 50, and is, for example, a stringent for all or a part of the complementary strand of the DNA consisting of the base sequence of SEQ ID NO: 49. It may encode a protein that hybridizes under various conditions and has xylose isomerase activity. The "stringent condition" here means a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed, and is appropriately determined by referring to, for example, Molecular Cloning: A Laboratory Manual (Third Edition). can do. Specifically, the stringency can be set by the temperature at the time of Southern hybridization and the salt concentration contained in the solution, and the temperature at the time of the washing step of Southern hybridization and the salt concentration contained in the solution. More specifically, as stringent conditions, for example, the sodium concentration is 25 to 500 mM, preferably 25 to 300 mM, and the temperature is 42 to 68 ° C, preferably 42 to 65 ° C. More specifically, it has 5 × SSC (83 mM NaCl, 83 mM sodium citrate) and a temperature of 42 ° C.

上述したように、配列番号49と異なる塩基配列からなる遺伝子、又は配列番号50とは異なるアミノ酸配列をコードする遺伝子が、キシロースイソメラーゼ遺伝子として機能するか否かは、当該遺伝子を適当なプロモーターとターミーネータ等の間に組み込んだ発現ベクターを作製し、この発現ベクターを用いて例えば大腸菌等の宿主を形質転換し、発現するタンパク質のキシロースイソメラーゼ活性を測定すればよい。キシロースイソメラーゼ活性とは、キシロースをキシルロースに異性化する活性を意味する。よって、キシロースイソメラーゼ活性は、基質としてキシロースを含む溶液を準備し、検査対象のタンパク質を適当な温度で作用させ、キシロースの減少量及び/又はキシルロースの生成量を測定することで評価できる。 As described above, whether or not a gene having a base sequence different from SEQ ID NO: 49 or a gene encoding an amino acid sequence different from SEQ ID NO: 50 functions as a xylose isomerase gene depends on whether or not the gene functions as an appropriate promoter and termy. An expression vector incorporated between a nator or the like may be prepared, a host such as Escherichia coli may be transformed with this expression vector, and the xylose isomerase activity of the expressed protein may be measured. The xylose isomerase activity means the activity of isomerizing xylose to xylulose. Therefore, the xylose isomerase activity can be evaluated by preparing a solution containing xylose as a substrate, allowing the protein to be tested to act at an appropriate temperature, and measuring the amount of decrease in xylose and / or the amount of xylose produced.

特に、キシロースイソメラーゼ遺伝子としては、配列番号50に示すアミノ酸配列における特定のアミノ酸残基に対して特定の変異を導入したアミノ酸配列からなり、キシロースイソメラーゼ活性が向上した変異型キシロースイソメラーゼをコードする遺伝子を使用することが好ましい。具体的に、変異型キシロースイソメラーゼをコードする遺伝子としては、配列番号50に示すアミノ酸配列における337番目のアスパラギンがシステインに置換されたアミノ酸配列をコードする遺伝子を挙げることができる。配列番号50に示すアミノ酸配列における337番目のアスパラギンがシステインに置換されたアミノ酸配列からなるキシロースイソメラーゼは、野生型のキシロースイソメラーゼと比較して優れたキシロースイソメラーゼ活性を有する。なお、変異型キシロースイソメラーゼは、上記337番目のアスパラギンをシステインに置換したものに限定されず、上記337番目のアスパラギンをシステイン以外のアミノ酸に置換したものでも良いし、上記337番目のアスパラギンに加えて更に異なるアミノ酸残基を他のアミノ酸に置換したものでも良いし、上記337番目のアスパラギン以外の他のアミノ酸残基を置換したものでも良い。 In particular, the xylose isomerase gene comprises an amino acid sequence in which a specific mutation is introduced into a specific amino acid residue in the amino acid sequence shown in SEQ ID NO: 50, and a gene encoding a mutant xylose isomerase having improved xylose isomerase activity is used. It is preferable to use it. Specifically, examples of the gene encoding the mutant xylose isomerase include a gene encoding an amino acid sequence in which asparagine at position 337 in the amino acid sequence shown in SEQ ID NO: 50 is replaced with cysteine. The xylose isomerase consisting of the amino acid sequence in which the asparagine at position 337 in the amino acid sequence shown in SEQ ID NO: 50 is replaced with cysteine has excellent xylose isomerase activity as compared with the wild-type xylose isomerase. The mutant xylose isomerase is not limited to the above-mentioned 337th asparagine replaced with cysteine, and the above-mentioned 337th asparagine may be replaced with an amino acid other than cysteine, or may be added to the above-mentioned 337th asparagine. Further, a different amino acid residue may be replaced with another amino acid, or a amino acid residue other than the above-mentioned 337th asparagine may be replaced.

一方、キシロースイソメラーゼ遺伝子以外のキシロース代謝関連遺伝子とは、キシロースをキシリトールに変換するキシロースリダクターゼをコードするキシロースリダクターゼ遺伝子、キシリトールをキシルロースに変換するキシリトールデヒドロゲナーゼをコードするキシリトールデヒドロゲナーゼ遺伝子及びキシルロースをリン酸化してキシルロース5-リン酸を生成するキシルロキナーゼをコードするキシルロキナーゼ遺伝子を含む意味である。なお、キシルロキナーゼにより生成されたキシルロース5-リン酸は、ペントースリン酸経路に入り代謝されることとなる。 On the other hand, xylose metabolism-related genes other than the xylose isomerase gene include the xylose reductase gene encoding xylose reductase that converts xylose into xylulose, the xylitol dehydrogenase gene encoding xylitol dehydrogenase that converts xylulose into xylulose, and xylulose by phosphorylating. It is meant to include the xylulose kinase gene encoding xylulose kinase that produces xylulose 5-phosphate. Xylulose 5-phosphate produced by xylulokinase enters the pentose phosphate pathway and is metabolized.

キシロース代謝関連遺伝子としては、特に限定されないが、Pichia stipitis由来のキシロースリダクターゼ遺伝子及びキシリトールデヒドロゲナーゼ遺伝子、Saccharomyces cerevisiae由来のキシルロキナーゼ遺伝子を挙げることができる(Eliasson A. et al., Appl. Environ. Microbiol, 66:3381-3386及びToivari MN et al., Metab. Eng. 3:236-249参照)。その他にも、キシロースリダクターゼ遺伝子としては、Candida tropicalisやCandida prapsilosis由来のキシロースリダクターゼ遺伝子を利用することができる。キシリトールデヒドロゲナーゼ遺伝子としては、Candida tropicalisやCandida prapsilosis由来のキシリトールデヒドロゲナーゼ遺伝子を利用することができる。キシルロキナーゼ遺伝子としては、Pichia stipitis由来のキシルロキナーゼ遺伝子を利用することもできる。 Examples of the xylose metabolism-related gene include, but are not limited to, a xylose reductase gene derived from Pichia stipitis, a xylitol dehydrogenase gene, and a xyllokinase gene derived from Saccharomyces cerevisiae (Eliasson A. et al., Appl. Environ. Microbiol). , 66: 3381-3386 and Toivari MN et al., Metab. Eng. 3: 236-249). In addition, as the xylose reductase gene, a xylose reductase gene derived from Candida tropicalis or Candida prapsilosis can be used. As the xylitol dehydrogenase gene, a xylitol dehydrogenase gene derived from Candida tropicalis or Candida prapsilosis can be used. As the xylulokinase gene, a xylulokinase gene derived from Pichia stipitis can also be used.

また、キシロース代謝能を本来的に有する酵母としては、特に限定されないが、Pichia stipitis、Candida tropicalis及びCandida prapsilosis等を挙げることができる。 The yeast that inherently has xylose metabolism is not particularly limited, and examples thereof include Pichia stipitis, Candida tropicalis, and Candida prapsilosis.

一方、本発明に係る変異酵母は、更に他の遺伝子が導入された酵母であってもよい。他の遺伝子としては特に限定されないが、例えば、グルコース等の糖代謝に関与する遺伝子を導入したものであっても良い。一例として変異酵母は、β-グルコシダーゼ遺伝子を導入することでβ-グルコシダーゼ活性を有する酵母とすることができる。 On the other hand, the mutant yeast according to the present invention may be a yeast into which another gene has been introduced. The other gene is not particularly limited, but may be, for example, a gene into which a gene involved in glucose metabolism such as glucose is introduced. As an example, the mutant yeast can be made into a yeast having β-glucosidase activity by introducing a β-glucosidase gene.

ここでβ-グルコシダーゼ活性とは、糖のβ-グリコシド結合を加水分解する反応を触媒する活性を意味する。すなわち、β-グルコシダーゼは、セロビオース等のセロオリゴ糖をグルコースに分解することができる。β-グルコシダーゼ遺伝子は、細胞表層提示型遺伝子として導入することもできる。ここで、細胞表層提示型遺伝子とは、当該遺伝子がコードするタンパク質が細胞の表層にディスプレイされるように発現するように改変された遺伝子である。例えば、細胞表層提示型βグルコシダーゼ遺伝子とは、βグルコシダーゼ遺伝子と細胞表層局在タンパク質遺伝子とを融合した遺伝子である。細胞表層局在タンパク質とは、酵母の細胞表層に固定され、細胞表層に存在するタンパク質をいう。例えば、凝集性タンパク質であるα-またはa-アグルチニン、FLOタンパク質などが挙げられる。一般に細胞表層局在タンパク質は、N末端側に分泌シグナル配列及びC末端側にGPIアンカー付着認識シグナルを有している。分泌シグナルを有する点では分泌性タンパク質と共通しているが、細胞表層局在タンパク質はGPIアンカーを介して細胞膜に固定されて輸送される点が分泌性タンパク質と異なる。細胞表層局在タンパク質は、細胞膜通過の際、GPIアンカー付着認識シグナル配列が選択的に切断され、新たに突出したC末端部分でGPIアンカーと結合して細胞膜に固定される。その後ホスファチジルイノシトール依存性ホスホリパーゼC(PI-PLC)によりGPIアンカーの根元部分が切断される。ついで、細胞膜から切り離されたタンパク質は細胞壁に組み込まれて細胞表層に固定され、細胞表層に局在する(例えば、特開2006-174767号公報参照)。 Here, the β-glucosidase activity means an activity that catalyzes a reaction of hydrolyzing a β-glycosidic bond of a sugar. That is, β-glucosidase can decompose cellooligosaccharides such as cellobiose into glucose. The β-glucosidase gene can also be introduced as a cell surface presentation type gene. Here, the cell surface presentation type gene is a gene modified so that the protein encoded by the gene is expressed so as to be displayed on the cell surface. For example, the cell surface presentation type β-glucosidase gene is a gene in which a β-glucosidase gene and a cell surface localized protein gene are fused. The cell surface localized protein is a protein that is fixed on the cell surface of yeast and exists on the cell surface. For example, α- or a-agglutinin which is a cohesive protein, FLO protein and the like can be mentioned. Generally, the cell surface localized protein has a secretory signal sequence on the N-terminal side and a GPI anchor attachment recognition signal on the C-terminal side. It is similar to secretory proteins in that it has a secretory signal, but differs from secretory proteins in that cell surface localized proteins are fixed and transported to the cell membrane via GPI anchors. Upon passage through the cell membrane, the cell surface localized protein selectively cleaves the GPI anchor attachment recognition signal sequence and binds to the GPI anchor at the newly protruding C-terminal portion to be fixed to the cell membrane. The root of the GPI anchor is then cleaved by phosphatidylinositol-dependent phospholipase C (PI-PLC). Then, the protein separated from the cell membrane is incorporated into the cell wall, fixed on the cell surface layer, and localized on the cell surface layer (see, for example, Japanese Patent Application Laid-Open No. 2006-174767).

βグルコシダーゼ遺伝子としては、特に限定されないが、例えば、Aspergillus aculeatus由来のβグルコシダーゼ遺伝子(Murai et al., Appl. Environ. Microbiol. 64:4857-4861)を挙げることができる。その他にも、βグルコシダーゼ遺伝子としては、Aspergillus oryzae由来のβグルコシダーゼ遺伝子、Clostridium cellulovorans由来のβグルコシダーゼ遺伝子及びSaccharomycopsis fibuligera由来のβグルコシダーゼ遺伝子等を利用することができる。 The β-glucosidase gene is not particularly limited, and examples thereof include a β-glucosidase gene derived from Aspergillus aculeatus (Murai et al., Appl. Environ. Microbiol. 64: 4857-4861). In addition, as the β-glucosidase gene, a β-glucosidase gene derived from Aspergillus oryzae, a β-glucosidase gene derived from Clostridium cellulovorans, a β-glucosidase gene derived from Saccharomycopsis fibuligera, and the like can be used.

また、本発明に係る変異酵母は、βグルコシダーゼ遺伝子に加えて、或いはβグルコシダーゼ遺伝子以外に、セルラーゼを構成する他の酵素をコードする遺伝子を導入したものでもよい。βグルコシダーゼ以外にセルラーゼを構成する酵素としては、結晶セルロースの末端からセロビオースを遊離するエキソ型のセロビオハイドロラーゼ(CBH1及びCBH2)、結晶セルロースを分解できないが非結晶セルロース(アモルファスセルロース)鎖をランダムに切断するエンド型のエンドグルカナーゼ(EG)を挙げることができる。 Further, the mutant yeast according to the present invention may be one in which a gene encoding another enzyme constituting cellulase is introduced in addition to the β-glucosidase gene or in addition to the β-glucosidase gene. In addition to β-glucosidase, the enzymes that make up cellulase include exo-type cellobiose hydrolase (CBH1 and CBH2) that liberates cellobiose from the ends of crystalline cellulose, and random non-crystalline cellulose (amorphous cellulose) chains that cannot decompose crystalline cellulose. Endo-type endoglucanase (EG) that cleaves can be mentioned.

さらに、変異酵母に導入する他の遺伝子としては、培地中のキシロースの利用を促進できるような遺伝子を挙げることができる。具体的には、キシルロースを基質としてキシルロース-5-リン酸を生成する活性を有するキシルロキナーゼをコードする遺伝子を挙げることができる。キシルロキナーゼ遺伝子を導入することによって、ペントースリン酸経路の代謝流束を向上させることができる。 Furthermore, as another gene to be introduced into the mutant yeast, a gene that can promote the utilization of xylose in the medium can be mentioned. Specifically, a gene encoding xylulokinase having an activity of producing xylulose-5-phosphate using xylulose as a substrate can be mentioned. By introducing the xylulokinase gene, the metabolic flux of the pentose phosphate pathway can be improved.

さらにまた、本発明係る変異酵母は、ペントースリン酸経路における非酸化過程の経路を構成する酵素群から選ばれる酵素をコードする遺伝子が導入することができる。ペントースリン酸経路における非酸化過程の経路を構成する酵素としては、リボース-5-リン酸イソメラーゼ、リブロース-5-リン酸-3-エピメラーゼ、トランスケトラーゼ及びトランスアルドラーゼを挙げることができる。これら酵素をコードする遺伝子を1種以上導入することが好ましい。また、これら遺伝子のうち2種以上組み合わせて導入することがより好ましく、3種以上組み合わせて導入することが更に好ましく、全種類の遺伝子を導入することが最も好ましい。 Furthermore, the mutant yeast according to the present invention can be introduced with a gene encoding an enzyme selected from a group of enzymes constituting the pathway of the non-oxidizing process in the pentose phosphate pathway. Enzymes that constitute the non-oxidizing pathway in the pentose phosphate pathway include ribose-5-phosphate isomerase, ribose-5-phosphate-3-epimerase, transketolase and transaldolase. It is preferable to introduce one or more genes encoding these enzymes. Further, it is more preferable to introduce a combination of two or more of these genes, further preferably to introduce a combination of three or more kinds, and most preferably to introduce all kinds of genes.

より具体的にキシルロキナーゼ(XK)遺伝子としては、特に由来生物を限定せずに用いることができる。なおXK遺伝子は、キシルロースを資化する細菌や酵母など多くの微生物が保持している。XK遺伝子に関する情報は、NCBIのHP等の検索により適宜入手できる。好ましくは、酵母、乳酸菌、大腸菌、植物などに由来するXK遺伝子が挙げられる。XK遺伝子としては、例えば、S. cerevisiae S288C 株由来のXK遺伝子であるXKS1(GenBank:Z72979)(CDSのコード領域の塩基配列及びアミノ酸配列)が挙げられる。 More specifically, the xylulokinase (XK) gene can be used without limiting the origin organism. The XK gene is carried by many microorganisms such as bacteria and yeast that assimilate xylulose. Information on the XK gene can be appropriately obtained by searching the NCBI website or the like. Preferred examples include XK genes derived from yeast, lactic acid bacteria, Escherichia coli, plants and the like. Examples of the XK gene include XKS1 (GenBank: Z72979) (base sequence and amino acid sequence of the coding region of CDS), which is an XK gene derived from the S. cerevisiae S288C strain.

また、より具体的にトランスアルドラーゼ(TAL)遺伝子、トランスケトラーゼ(TKL)遺伝子、リブロース-5-リン酸エピメラーゼ(RPE)遺伝子、リボース-5-リン酸ケトイソメラーゼ(RKI)遺伝子は、特に由来生物を限定せずに用いることができる。これら遺伝子はペントースリン酸経路を備える多くの生物であれば保持している。例えば、S.cerevisiaeなど汎用酵母もこれらの遺伝子を保持している。これらの遺伝子に関する情報は、NCBI等のHPにアクセスすることにより適宜入手できる。好ましくは、真核細胞又は酵母等、宿主真核細胞と同一の属、さらに好ましくは宿主真核細胞と同一種に由来の各遺伝子が挙げられる。TAL遺伝子としてはTAL1遺伝子、TKL遺伝子としてはTKL1遺伝子及びTKL2遺伝子、RPE遺伝子としてはRPE1遺伝子、RKI遺伝子としてはRKI1遺伝子を好ましく用いることができる。例えば、これら遺伝子としては、S. cerevisiae S288 株由来のTAL1遺伝子であるTAL1遺伝子(GenBank:U19102)、S. cerevisiae S288 株由来のTKL1遺伝子(GenBank:X73224)、S. cerevisiae S288 株由来のRPE1遺伝子(GenBank:X83571)、S. cerevisiae S288 株由来のRKI1遺伝子(GenBank:Z75003)が挙げられる。 More specifically, the transaldolase (TAL) gene, transketolase (TKL) gene, ribulose-5-phosphate epimerase (RPE) gene, and ribose-5-phosphate ketoisomerase (RKI) gene are particularly derived organisms. Can be used without limitation. These genes are retained by many organisms with a pentose phosphate pathway. For example, general-purpose yeasts such as S. cerevisiae also carry these genes. Information on these genes can be appropriately obtained by accessing HP such as NCBI. Preferably, each gene is derived from the same genus as the host eukaryotic cell, such as eukaryotic cell or yeast, and more preferably the same species as the host eukaryotic cell. As the TAL gene, the TAL1 gene, as the TKL gene, the TKL1 gene and the TKL2 gene, as the RPE gene, the RPE1 gene, and as the RKI gene, the RKI1 gene can be preferably used. For example, these genes include the TAL1 gene (GenBank: U19102), which is a TAL1 gene derived from the S. cerevisiae S288 strain, the TKL1 gene (GenBank: X73224) derived from the S. cerevisiae S288 strain, and the RPE1 gene derived from the S. cerevisiae S288 strain. (GenBank: X83571), RKI1 gene (GenBank: Z75003) derived from S. cerevisiae S288 strain can be mentioned.

また、上記変異遺伝子やキシロース代謝関連遺伝子を酵母に導入する際、全ての遺伝子を同時に導入しても良いし、異なる発現ベクターを利用して逐次導入しても良い。 Further, when introducing the above-mentioned mutant gene or xylose metabolism-related gene into yeast, all the genes may be introduced at the same time, or they may be sequentially introduced using different expression vectors.

宿主として用いることができる酵母としては、特に限定するものではないがCandida Shehatae、Pichia stipitis、Pachysolen tannophilus、Saccharomyces cerevisiae及びSchizosaccharomyces pombeなどの酵母が挙げられ、特にSaccharomyces cerevisiaeが好ましい。また、酵母としては、実験面での利便性のために使われる実験株でも良いし、実用面での有用性のために使われている工業株(実用株)でも良い。工業株としては、例えば、ワイン、清酒や焼酎作りに用いられる酵母株を挙げることができる。 Yeasts that can be used as a host include, but are not limited to, yeasts such as Candida Shehatae, Pichia stipitis, Pachysolen tannophilus, Saccharomyces cerevisiae and Schizosaccharomyces pombe, and Saccharomyces cerevisiae is particularly preferable. Further, the yeast may be an experimental strain used for experimental convenience or an industrial strain (practical strain) used for practical usefulness. Examples of industrial strains include yeast strains used for making wine, sake and shochu.

また、宿主となる酵母としては、ホモタリック性を有する酵母を使用することが好ましい。特開2009-34036号公報に開示される手法によれば、ホモタリック性を有する酵母を利用することで、簡便にゲノムへの多コピー遺伝子導入が可能となる。ホモタリック性を有する酵母とは、ホモタリックな酵母と同義である。ホモタリック性を有する酵母としては、特に限定されず、如何なる酵母をも使用することができる。ホモタリック性を有する酵母としては、Saccharomyces cerevisiae OC-2株(NBRC2260)を挙げることができるが、これに限定されるものではない。その他にもホモタリック性を有する酵母としては、アルコール酵母(台研396号、NBRC0216)(出典:「アルコール酵母の諸特性」酒研会報、No37、p18-22(1998.8))、ブラジルと沖縄で分離したエタノール生産酵母(出典:「ブラジルと沖縄で分離したSaccharomyces cerevisiae野生株の遺伝学的性質」日本農芸化学会誌、Vol.65、No.4、p759-762(1991.4))及び180(出典「アルコール発酵力の強い酵母のスクリーニング」日本醸造協会誌、Vol.82、No.6、p439-443(1987.6))を挙げることができる。また、ヘテロタリックな表現型を示す酵母においても、HO遺伝子を発現可能に導入することによってホモタリック性を有する酵母として使用することができる。すなわち、本発明において、ホモタリック性を有する酵母とは、HO遺伝子を発現可能に導入された酵母も含む意味である。 Further, as the host yeast, it is preferable to use yeast having homotalic property. According to the method disclosed in JP-A-2009-34036, it is possible to easily introduce a multi-copy gene into the genome by using yeast having homotalic properties. Homotalic yeast is synonymous with homotalic yeast. The yeast having homotalic property is not particularly limited, and any yeast can be used. Examples of yeast having homotalic properties include, but are not limited to, Saccharomyces cerevisiae OC-2 strain (NBRC2260). Other yeasts with homotalic properties include alcoholic yeast (Taiken No. 396, NBRC0216) (Source: "Characteristics of alcoholic yeast" Sake Lab Bulletin, No37, p18-22 (1998.8)), isolated in Brazil and Okinawa. Ethanol-producing yeast (Source: "Genetic properties of wild strains of Saccharomyces cerevisiae isolated in Brazil and Okinawa," Journal of the Japanese Society of Agricultural Chemistry, Vol.65, No.4, p759-762 (1991.4)) and 180 (Source "Alcohol" "Screening of yeast with strong fertility", Journal of Japan Brewing Association, Vol.82, No.6, p439-443 (1987.6)) can be mentioned. Further, even in a yeast showing a heterozygous phenotype, it can be used as a yeast having homotalic property by introducing the HO gene into an expressible manner. That is, in the present invention, the yeast having homotalic property means to include the yeast into which the HO gene has been introduced so as to be expressible.

また、導入する遺伝子のプロモーターとしては、特に限定されないが、例えばグリセルアルデヒド3リン酸デヒドロゲナーゼ遺伝子(TDH3)のプロモーター、3-ホスホグリセレートキナーゼ遺伝子(PGK1)のプロモーター、高浸透圧応答7遺伝子(HOR7)のプロモーターなどが利用可能である。なかでもピルビン酸脱炭酸酵素遺伝子(PDC1)のプロモーターが下流の目的遺伝子を高発現させる能力が高いために好ましい。 The promoter of the gene to be introduced is not particularly limited, but is, for example, a promoter of the glyceraldehyde triphosphate dehydrogenase gene (TDH3), a promoter of the 3-phosphoglycerate kinase gene (PGK1), and a hyperosmotic response 7 gene (7 genes with high osmotic pressure). HOR7) promoters and the like are available. Of these, the promoter of the pyruvate decarboxylase gene (PDC1) is preferable because it has a high ability to highly express the downstream target gene.

すなわち、上述した変異遺伝子は、発現を制御するプロモーターやその他の発現制御領域とともに酵母のゲノムに導入してもよい。または、上述した変異遺伝子は、宿主となる酵母のゲノムに本来的に存在する遺伝子のプロモーターやその他の発現制御領域により発現制御されるように導入してもよい。 That is, the above-mentioned mutant gene may be introduced into the yeast genome together with a promoter that controls expression and other expression control regions. Alternatively, the above-mentioned mutant gene may be introduced so as to be expressed and controlled by a promoter of a gene originally present in the genome of the host yeast or another expression control region.

また、上述した変異遺伝子等を導入する方法としては、酵母の形質転換方法として知られている従来公知のいかなる手法をも適用することができる。具体的には、例えば、例えば、エレクトロポレーション法“Meth. Enzym., 194, p182 (1990)”、スフェロプラスト法“Proc. Natl. Acad. Sci. USA, 75 p1929(1978)”、酢酸リチウム法“J.Bacteriology, 153, p163(1983)”、Proc. Natl. Acad. Sci. USA, 75 p1929 (1978)、Methods in yeast genetics, 2000 Edition : A Cold Spring Harbor Laboratory Course Manualなどに記載の方法で実施可能であるが、これに限定されない。 Further, as a method for introducing the above-mentioned mutant gene or the like, any conventionally known method known as a method for transforming yeast can be applied. Specifically, for example, the electroporation method “Meth. Enzym., 194, p182 (1990)”, the spheroplast method “Proc. Natl. Acad. Sci. USA, 75 p1929 (1978)”, acetic acid. Lithium method “J.Bacteriology, 153, p163 (1983)”, Proc. Natl. Acad. Sci. USA, 75 p1929 (1978), Methods in yeast genetics, 2000 Edition: A Cold Spring Harbor Laboratory Course Manual, etc. It can be carried out by a method, but is not limited to this.

<エタノール製造>
以上で説明した変異酵母を使用してエタノールを製造する際には、少なくともキシロースを含有する培地にてエタノール発酵培養を行う。すなわち、エタノール発酵を行う培地とは、炭素源として少なくとも代謝可能なキシロースを含有することとなる。なお、培地には、予めグルコース等の他の炭素源が含まれていても良い。
<Ethanol production>
When ethanol is produced using the mutant yeast described above, ethanol fermentation culture is performed in a medium containing at least xylose. That is, the medium for ethanol fermentation contains at least xylose that can be metabolized as a carbon source. The medium may contain other carbon sources such as glucose in advance.

また、エタノール発酵に利用する培地に含まれるキシロースは、バイオマス由来とすることができる。言い換えると、エタノール発酵に利用する培地は、セルロース系バイオマスと、セルロース系バイオマスに含まれるヘミセルロースを糖化してキシロースやアラビノース等の五炭糖を生成するヘミセルラーゼとを含む組成であってもよい。ここで、セルロース系バイオマスとしては、従来公知の前処理を施したものであっても良い。前処理としては、特に限定されないが、例えば、リグニンを微生物によって分解する処理や、セルロース系バイオマスの粉砕処理等を挙げることができる。また、前処理としては、例えば、粉砕したセルロース系バイオマスを希硫酸溶液やアルカリ溶液、イオン液体に浸漬する処理、水熱処理、微粉砕処理といった処理を適用しても良い。これら前処理により、バイオマスの糖化率を向上させることができる。 Further, the xylose contained in the medium used for ethanol fermentation can be derived from biomass. In other words, the medium used for ethanol fermentation may have a composition containing a cellulosic biomass and a hemicellulase that saccharifies hemicellulose contained in the cellulosic biomass to produce a pentacarbonate sugar such as xylose or arabinose. Here, the cellulosic biomass may be one that has been subjected to a conventionally known pretreatment. The pretreatment is not particularly limited, and examples thereof include a treatment of decomposing lignin by a microorganism, a treatment of pulverizing cellulosic biomass, and the like. Further, as the pretreatment, for example, a treatment of immersing the crushed cellulosic biomass in a dilute sulfuric acid solution, an alkaline solution, or an ionic liquid, a hydrothermal treatment, or a fine pulverization treatment may be applied. By these pretreatments, the saccharification rate of biomass can be improved.

なお、以上で説明した変異酵母を使用してエタノールを製造する際には、上記培地が更にセルロース及びセルラーゼを含む組成であってもよい。この場合、上記培地には、セルラーゼがセルロースに作用することで生成するグルコースを含有することとなる。エタノール発酵に利用する培地がセルロースを含有する場合、当該セルロースは、バイオマス由来とすることができる。言い換えると、エタノール発酵に利用する培地は、セルロース系バイオマスに含まれるセルラーゼを糖化できるセルラーゼを含む組成であってもよい。 When ethanol is produced using the mutant yeast described above, the medium may have a composition further containing cellulose and cellulase. In this case, the medium contains glucose produced by the action of cellulase on cellulose. When the medium used for ethanol fermentation contains cellulose, the cellulose can be derived from biomass. In other words, the medium used for ethanol fermentation may have a composition containing cellulase capable of saccharifying cellulase contained in cellulosic biomass.

また、エタノール発酵に利用する培地は、セルロース系バイオマスを糖化処理した後の糖化液を添加してもよい。この場合、糖化液には、残存するセルロースやセルラーゼとセルロース系バイオマスに含まれるヘミセルロースに由来するキシロース等が含まれる。 Further, as the medium used for ethanol fermentation, a saccharified solution after saccharifying the cellulosic biomass may be added. In this case, the saccharified solution contains residual cellulose, cellulase, xylose derived from hemicellulose contained in the cellulosic biomass, and the like.

以上のように、本発明に係るエタノールの製造方法は、少なくともキシロースを糖源とするエタノール発酵の工程を含むこととなる。本発明に係る変異酵母を利用したエタノールの製造方法では、エタノール発酵の後、培地からエタノールを回収する。エタノールの回収方法は、特に限定されず、従来公知のいかなる方法も適用することができる。例えば、上述したエタノール発酵が終了した後、固液分離操作によってエタノールを含む液層と、組換え酵母や固形成分を含有する固層とを分離する。その後、液層に含まれるエタノールを蒸留法によって分離・精製することで、純度の高いエタノールを回収することができる。なお、エタノールの精製度は、エタノールの使用目的にあわせて適宜調整することができる。 As described above, the method for producing ethanol according to the present invention includes at least a step of ethanol fermentation using xylose as a sugar source. In the method for producing ethanol using the mutant yeast according to the present invention, ethanol is recovered from the medium after ethanol fermentation. The method for recovering ethanol is not particularly limited, and any conventionally known method can be applied. For example, after the above-mentioned ethanol fermentation is completed, the liquid layer containing ethanol and the solid layer containing recombinant yeast or solid components are separated by a solid-liquid separation operation. Then, by separating and purifying the ethanol contained in the liquid layer by a distillation method, high-purity ethanol can be recovered. The degree of purification of ethanol can be appropriately adjusted according to the purpose of use of ethanol.

また、本発明に係るエタノールの製造方法は、培地に含まれるセルロースをセルラーゼにより糖化する工程と、キシロースと糖化により生成されたグルコースとを糖源とするエタノール発酵の工程とが同時に進行する、いわゆる同時糖化発酵処理としても良い。ここで、同時糖化発酵処理とは、セルロース系バイオマスを糖化する工程とエタノール発酵工程とを区別せずに同時に実施する処理を意味する。 Further, in the method for producing ethanol according to the present invention, a step of saccharifying cellulose contained in a medium by cellulase and a step of ethanol fermentation using xylose and glucose produced by saccharification as a sugar source proceed simultaneously, so-called. It may be used as a simultaneous saccharification fermentation process. Here, the simultaneous saccharification fermentation treatment means a treatment carried out at the same time without distinguishing between the step of saccharifying the cellulosic biomass and the step of ethanol fermentation.

なお、糖化方法としては、特に限定されないが、セルラーゼやヘミセルラーゼ等のセルラーゼ製剤を利用する酵素法等を挙げることができる。セルラーゼ製剤は、セルロース鎖及びヘミセルロース鎖の分解に関与する複数の酵素を含んでおり、エンドグルカナーゼ活性、エンドキシラナーゼ活性、セロビオヒドロラーゼ活性、グルコシダーゼ活性及びキシロシダーゼ活性等の複数の活性を示す。セルラーゼ製剤としては、特に限定されないが、例えば、Trichoderma reeseiや、Acremonium cellulolyticusなどが生産するセルラーゼを挙げることができる。セルラーゼ製剤としては、市販されているものを使用しても良い。 The saccharification method is not particularly limited, and examples thereof include an enzyme method using a cellulase preparation such as cellulase or hemicellulase. The cellulase preparation contains a plurality of enzymes involved in the decomposition of the cellulose chain and the hemicellulose chain, and exhibits a plurality of activities such as endoglucanase activity, endoxylanase activity, cellobiohydrolase activity, glucosidase activity and xylosidase activity. The cellulase preparation is not particularly limited, and examples thereof include cellulase produced by Trichoderma reesei, Acremonium cellulolyticus, and the like. As the cellulase preparation, a commercially available one may be used.

同時糖化発酵処理では、セルロース系バイオマス(前処理後であってもよい)を含む培地にセルラーゼ製剤と上述した組換え微生物とを加え、所定の温度範囲で当該組換え酵母を培養する。培養温度としては特に限定されないが、エタノール発酵の効率を考慮して25~45℃とすることができ、30~40℃とすることが好ましい。また、培養液のpHを4~6とすることが好ましい。また、培養に際して、攪拌や振とうしてもよい。さらに、先に酵素の至適温度(40~70℃)で糖化を行い、その後、温度を所定の温度(30~40℃)に下げて酵母を添加するといった変則的な同時糖化発酵でもよい。 In the simultaneous saccharification fermentation treatment, the cellulase preparation and the above-mentioned recombinant microorganism are added to a medium containing cellulosic biomass (which may be after pretreatment), and the recombinant yeast is cultured in a predetermined temperature range. The culture temperature is not particularly limited, but can be 25 to 45 ° C., preferably 30 to 40 ° C. in consideration of the efficiency of ethanol fermentation. Further, it is preferable that the pH of the culture solution is 4 to 6. In addition, it may be stirred or shaken at the time of culturing. Further, it may be an irregular simultaneous saccharification fermentation in which saccharification is first performed at the optimum temperature of the enzyme (40 to 70 ° C.), then the temperature is lowered to a predetermined temperature (30 to 40 ° C.) and yeast is added.

本発明に係るエタノールの製造方法は、上述した変異遺伝子を有する変異酵母を使用しているため、変異遺伝子を有しないキシロース代謝酵母を使用した場合と比較して高濃度のエタノールを製造することができる。すなわち、上述した変異遺伝子を有する変異酵母はキシロースからのエタノール発酵能が大幅に向上しているため、当該変異酵母を使用することでエタノール生産性を向上することができる。 Since the method for producing ethanol according to the present invention uses a mutant yeast having the above-mentioned mutant gene, it is possible to produce a high concentration of ethanol as compared with the case of using a xylose-metabolizing yeast having no mutant gene. can. That is, since the mutant yeast having the above-mentioned mutant gene has significantly improved ethanol fermentation ability from xylose, ethanol productivity can be improved by using the mutant yeast.

以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the technical scope of the present invention is not limited to the following examples.

[キシロース資化酵母の作製方法]
特開2014-193152号公報に記載された方法に従って、キシロース代謝能を有する酵母Uz736株を作製した。詳細は以下の通りである。
[Method for producing xylose-utilized yeast]
A yeast Uz736 strain capable of metabolizing xylose was prepared according to the method described in JP-A-2014-193152. The details are as follows.

先ず、ホモタリックなワイン酵母Saccharomyces cerevisiae OC2株のウラシル要求性株(OC2-U)をUV変異により取得した。OC2-U株のリボゾーマルRNA遺伝子座、HIS3遺伝子座、LEU2遺伝子座、TRP1遺伝子座、GRE3遺伝子座を各々破壊しながら、シロアリ腸内共生原生生物由来のキシロースイソメラーゼ(XI)遺伝子、酵母由来TAL1遺伝子、酵母由来TKL1遺伝子、酵母由来PRE1遺伝子、酵母由来RKI1遺伝子、酵母由来XKS1遺伝子をマーカー遺伝子(ハイグロマイシン耐性遺伝子、HIS3遺伝子、LEU2遺伝子、URA3遺伝子、TRP1遺伝子)を用いて導入することで、OC700株を作製した。OC700株のADH2遺伝子座にADH2遺伝子を破壊しながら、E. coli由来のアセトアルデヒド脱水素酵素(mhpF)遺伝子及び酵母由来のADH1遺伝子を導入し、Uz736株を作製した。 First, the uracil-requiring strain (OC2-U) of the homotalic wine yeast Saccharomyces cerevisiae OC2 strain was obtained by UV mutation. Xylose isomerase (XI) gene derived from white ant intestinal symbiotic progenitor, TAL1 gene derived from yeast while destroying the ribosomal RNA locus, HIS3 locus, LEU2 locus, TRP1 locus, and GRE3 locus of OC2-U strain, respectively. , Yeast-derived TKL1 gene, yeast-derived PRE1 gene, yeast-derived RKI1 gene, yeast-derived XKS1 gene by introducing using marker genes (hyglomycin resistance gene, HIS3 gene, LEU2 gene, URA3 gene, TRP1 gene), OC700 A strain was prepared. While disrupting the ADH2 gene at the ADH2 locus of the OC700 strain, the acetaldehyde dehydrogenase (mhpF) gene derived from E. coli and the ADH1 gene derived from yeast were introduced to prepare the Uz736 strain.

[キシロース資化酵母の育種方法]
次に、Uz736株を長期培養することでエタノール発酵能が向上した酵母を育種した。先ず、バイオマスを糖化した液体培地中でUz736株を30日~60日間長期培養した。培養した酵母をYPD寒天培地(10g/L乾燥酵母エキス、20g/Lバクトペプトン、20g/Lグルコース、20g/L寒天)に撒くことで、シングルコロニーを獲得した。これら、シングルコロニーのエタノール発酵能を評価することで、エタノール発酵能の向上した育種酵母を獲得した。
[Breeding method of xylose assimilated yeast]
Next, yeast with improved ethanol fermentability was bred by long-term culture of the Uz736 strain. First, the Uz736 strain was cultured for a long period of 30 to 60 days in a liquid medium obtained by saccharifying biomass. Single colonies were obtained by sprinkling the cultured yeast on YPD agar medium (10 g / L dry yeast extract, 20 g / L bactopeptone, 20 g / L glucose, 20 g / L agar). By evaluating the ethanol fermentation ability of these single colonies, a breeding yeast having an improved ethanol fermentation ability was obtained.

具体的には、シングルコロニーをYPD液体培地(イーストエキストラクト 10g/L、ペプトン 20g/L、グルコース 20g/L)に播種し、30℃で24時間、振盪培養 (80rpm、振幅35mm、30℃)、もしくは静置培養を行った。その後、成分が異なる各種エタノール生産用の培地に各シングルコロニーの植菌量を合わせて播種し、31度の恒温槽内で振盪培養 (80rpm、振幅35mm、30℃)、もしくは静置培養にて発酵試験を行った。なお、容器は嫌気的に保たれるようにした。 Specifically, single colonies were sown in YPD liquid medium (yeast extract 10 g / L, peptone 20 g / L, glucose 20 g / L) and cultured at 30 ° C for 24 hours with shaking (80 rpm, amplitude 35 mm, 30 ° C). Or, static culture was performed. After that, the inoculation amount of each single colony was combined and sown in a medium for producing various ethanols having different components, and the cells were shake-cultured (80 rpm, amplitude 35 mm, 30 ° C) in a constant temperature bath at 31 ° C, or statically cultured. A fermentation test was conducted. The container was kept anaerobic.

発酵液中のエタノールについて下記条件でバイオセンサー (BF-5;王子製作機器)、もしくは、HPLC (LC-10A;島津製作所) 等で測定した。 Ethanol in the fermented liquor was measured by a biosensor (BF-5; Oji Seisakusho) or HPLC (LC-10A; Shimadzu) under the following conditions.

[バイオセンサー]
・温度:37℃
・流速:0.8 mL/分
[HPLC]
・カラム:AminexHPX-87H
・移動相:0.01N H2SO4
・流量:0.6ml/min
・温度:30℃
・検出器:示差屈折率検出器(RID-10A)
[Biosensor]
・ Temperature: 37 ℃
・ Flow velocity: 0.8 mL / min
[HPLC]
-Column: Aminex HPX-87H
-Mobile phase: 0.01NH 2 SO 4
・ Flow rate: 0.6 ml / min
・ Temperature: 30 ℃
・ Detector: Differential refractometer detector (RID-10A)

次に、発酵能の向上した酵母を胞子形成培地にて25度、5日間培養した後に回収した。そして、50mMリン酸バッファー(pH7.5)に125Uのザイモリアーゼとなるに調整した1mL反応液で回収した酵母を2時間処理することで細胞壁の溶解を行った。その後、Tween80を1%になるように添加し、激しく攪拌する事で各胞子を分離し、その分離した胞子を寒天培地に播種する事でシングルコロニー化した。シングルコロニー化した酵母を繰り返して長期培養~シングルコロニー化を経ることで、エタノール発酵能の向上したUz1015、Uz1229、Uz1230、Uz1235の4種類の育種株を獲得した。 Next, yeast with improved fermentability was cultured in a sporulation medium at 25 degrees for 5 days and then recovered. Then, the cell wall was lysed by treating the yeast recovered with a 1 mL reaction solution adjusted to 125 U zymolyase in 50 mM phosphate buffer (pH 7.5) for 2 hours. Then, Tween80 was added to 1%, and each spore was separated by vigorous stirring, and the separated spores were seeded on an agar medium to form a single colony. By repeating single-colonyized yeast and undergoing long-term culture to single-colonyization, four types of breeding strains, Uz1015, Uz1229, Uz1230, and Uz1235, with improved ethanol fermentation ability were obtained.

[変異解析方法]
本実施例で使用したOC700及びUz736、本実施例で作出したUz1015、Uz1229、Uz1230及びUz1235を各々タカラバイオ社の次世代シークエンス(Hiseq)解析を行った。得られたシークエンスデータは、SoftGenetics社の解析ソフトNextGENeで変異箇所を解析した。なお、リファレンスはSaccharomyces cerevisiae S288Cの遺伝子配列データを使用し、解析パラメーターはデフォルトで設定した。得られた変異データを比較し、エタノール発酵性能が特に優れているUz1230及びUz1235で共通で有していて、かつ、その他4株では有していない6遺伝子の変異を同定した。
[Mutation analysis method]
The OC700 and Uz736 used in this example, and the Uz1015, Uz1229, Uz1230 and Uz1235 produced in this example were analyzed by Takara Bio Inc.'s next-generation sequence (Hiseq), respectively. The obtained sequence data was analyzed for mutations using the analysis software NextGENe of SoftGenetics. The reference used was the gene sequence data of Saccharomyces cerevisiae S288C, and the analysis parameters were set by default. The mutation data obtained were compared to identify mutations in 6 genes that were common to Uz1230 and Uz1235, which have particularly excellent ethanol fermentation performance, but not to the other 4 strains.

すなわち、CDC123遺伝子における324番目のロイシンのシステインへの置換変異(L324C)、FPK1遺伝子におけるG704E、SUI3遺伝子におけるS112T、YPR1遺伝子におけるV195*、EPO1遺伝子におけるG599D及びYPL150w遺伝子におけるG328Eを同定した。 That is, the substitution mutation of leucine at position 324 to cysteine (L324C) in the CDC123 gene, G704E in the FPK1 gene, S112T in the SUI3 gene, V195 * in the YPR1 gene, G599D in the EPO1 gene and G328E in the YPL150w gene were identified.

[変異導入酵母作製方法]
上述したUz736株と同様にして、実験室酵母Saccharomyces cerevisiae BY4742株のリボゾーマルRNA遺伝子座、GRE3遺伝子座を各々破壊しながら、シロアリ腸内共生原生生物由来のキシロースイソメラーゼ(XI)遺伝子、酵母由来XKS1遺伝子をマーカー遺伝子(ハイグロマイシン耐性遺伝子、URA3d遺伝子)を用いて導入することで、キシロース代謝能を有するUz2443株を作製した。Uz2443株のCDC123遺伝子、FPK1遺伝子、SUI3遺伝子、YPR1遺伝子、EPO1遺伝子、YPL150w遺伝子に変異を導入するために必要なプラスミドを6種類作製した。
[Method for producing yeast with introduced mutation]
Similar to the Uz736 strain described above, the xylose isomerase (XI) gene derived from the symbiotic progenitor of the white ant intestine and the XKS1 gene derived from yeast are destroyed while destroying the ribosomal RNA locus and the GRE3 locus of the laboratory yeast Saccharomyces cerevisiae BY4742 strain, respectively. Was introduced using a marker gene (hygromycin resistance gene, URA3d gene) to prepare a Uz2443 strain having xylose metabolic capacity. Six types of plasmids required for introducing mutations into the CDC123 gene, FPK1 gene, SUI3 gene, YPR1 gene, EPO1 gene, and YPL150w gene of the Uz2443 strain were prepared.

すなわち、Uz1230株のゲノムを鋳型に各々の変異遺伝子のORFの上流500bp、下流500bpを含むようにPCRで個別に増幅した。 That is, using the genome of the Uz1230 strain as a template, each mutant gene was individually amplified by PCR so as to contain 500 bp upstream and 500 bp downstream of the ORF.

具体的には、表4に示したプライマーを用いて、Uz2443株のゲノムを鋳型に増幅することで、変異が導入されたCDC123遺伝子、FPK1遺伝子、SUI3遺伝子、YPR1遺伝子、EPO1遺伝子、YPL150w遺伝子を増幅した。各増幅した断片をハイグロマイシン耐性遺伝子を有するベクターにクローニングし6種類のベクターを作製した。 Specifically, by amplifying the genome of the Uz2443 strain as a template using the primers shown in Table 4, the CDC123 gene, FPK1 gene, SUI3 gene, YPR1 gene, EPO1 gene, and YPL150w gene into which the mutation was introduced can be obtained. Amplified. Each amplified fragment was cloned into a vector having a hygromycin resistance gene to prepare 6 types of vectors.

Figure 2022058407000005
Figure 2022058407000005

Uz2443株内在性のCDC123遺伝子、FPK1遺伝子、SUI3遺伝子、YPR1遺伝子、EPO1遺伝子、YPL150w遺伝子を各々ノックアウトし、変異CDC123遺伝子、FPK1遺伝子、SUI3遺伝子、YPR1遺伝子、EPO1遺伝子、YPL150w遺伝子を各々導入するために、表5に示したプライマーを用いて、作製した各ベクターを鋳型にPCRした。6種類のベクターを線状化した。Uz2443株にそれら線状化ベクターを各々形質転換し、ハイグロマイシンを含む選択培地にて増殖してきた酵母をスクリーニングした、Uz2443株に各変異を導入された酵母を6種類獲得した。 To knock out the endogenous CDC123 gene, FPK1 gene, SUI3 gene, YPR1 gene, EPO1 gene, and YPL150w gene of the Uz2443 strain, and to introduce the mutant CDC123 gene, FPK1 gene, SUI3 gene, YPR1 gene, EPO1 gene, and YPL150w gene, respectively. Using the primers shown in Table 5, each vector prepared was used as a template for PCR. Six types of vectors were linearized. Each of these linearization vectors was transformed into the Uz2443 strain, and yeasts that had grown in a selective medium containing hygromycin were screened. Six types of yeasts in which each mutation was introduced into the Uz2443 strain were obtained.

Figure 2022058407000006
Figure 2022058407000006

[変異遺伝子の評価]
6種類の変異遺伝子を個別に導入したキシロース代謝能を有する6種類の変異酵母及び変異を導入していないキシロース代謝能を有する酵母を寒天培地より白金耳で1ループ取り、三角フラスコにて8mlのYPD(10g/L乾燥酵母エキス、20g/Lバクトペプトン、20g/Lグルコース)培地で32℃、150rpmで24時間振とう培養した。その後、それら酵母を初期PCV=0.12にそろえて8mlの培地(グルコース80g/L、キシロース100g/L、バニリン0.3g/L、シリンガアルデヒド0.2g/L、酢酸10g/L、フルフラール0.8g/L、乾燥酵母エキス10g/L)で35℃、80rpmで90時間振とう培養した。
[Evaluation of mutant genes]
Take 1 loop of 6 types of mutant yeast having xylose-metabolizing ability into which 6 kinds of mutant genes were individually introduced and yeast having xylose-metabolizing ability without introducing mutation from an agar medium with a platinum loop, and put 8 ml in a triangular flask. The cells were cultured on YPD (10 g / L dry yeast extract, 20 g / L bactopeptone, 20 g / L glucose) medium at 32 ° C. and 150 rpm for 24 hours with shaking. After that, the yeasts were arranged in the initial PCV = 0.12 and 8 ml of medium (glucose 80 g / L, xylose 100 g / L, vanillin 0.3 g / L, syringaldehyde 0.2 g / L, acetic acid 10 g / L, furfural 0.8 g / L). , Dried yeast extract (10 g / L), shake culture at 35 ° C. and 80 rpm for 90 hours.

培養終了後、エタノール濃度をHPLC(カラム:AminexHPX-87H、移動相:0.01N H2SO4、流量:0.6ml/min、温度:30℃、検出器:示差屈折率検出器RID-10A)にて分析した。結果を図1に示した。図1に示したように、6種類の変異遺伝子のうちCDC123遺伝子におけるL324C、FPK1遺伝子におけるG704E、SUI3遺伝子におけるS112Tは、エタノール発酵能を向上させる変異遺伝子であることが明らかとなった。これに対して、本実施例で同定した他の遺伝子変異は、エタノール発酵能を向上させるものではないか、エタノール発酵能を向上させたとしても僅かであった。このように、CDC123遺伝子におけるL324C、FPK1遺伝子におけるG704E、SUI3遺伝子におけるS112Tは、エタノール発酵能の向上にとって極めて優れた遺伝子変異であることが明らかとなった。 After the culture is completed, the ethanol concentration is adjusted by HPLC (column: AminexHPX-87H, mobile phase: 0.01NH 2 SO 4 , flow rate: 0.6 ml / min, temperature: 30 ° C, detector: differential refractive index detector RID-10A). analyzed. The results are shown in FIG. As shown in FIG. 1, it was clarified that among the 6 types of mutant genes, L324C in the CDC123 gene, G704E in the FPK1 gene, and S112T in the SUI3 gene are mutant genes that improve the ethanol fermentation ability. On the other hand, the other gene mutations identified in this example did not improve the ethanol fermenting ability, or even if they improved the ethanol fermenting ability, they were slight. Thus, it was clarified that L324C in the CDC123 gene, G704E in the FPK1 gene, and S112T in the SUI3 gene are extremely excellent gene mutations for improving the ethanol fermentation ability.

Claims (6)

配列番号7に示すアミノ酸配列において、N末端側から31番目のアミノ酸残基が他のアミノ酸に置換されたコンセンサス配列を有する変異FPK1タンパク質をコードする変異遺伝子。 A mutant gene encoding a mutant FPK1 protein having a consensus sequence in which the 31st amino acid residue from the N-terminal side is replaced with another amino acid in the amino acid sequence shown in SEQ ID NO: 7. 上記31番目のアミノ酸残基はグリシンであり、上記他のアミノ酸はグルタミン酸であることを特徴とする請求項2記載の変異遺伝子。 The mutant gene according to claim 2, wherein the 31st amino acid residue is glycine, and the other amino acid is glutamic acid. 上記変異FPK1タンパク質は以下の(a)又は(b)であることを特徴とする請求項1記載の変異遺伝子。
(a)配列番号9のアミノ酸配列からなる
(b)配列番号9のアミノ酸配列に対して70%以上の同一性を有し、配列番号9のアミノ酸配列のN末端側から704番目に相当するアミノ酸がグルタミン酸であるアミノ酸配列
The mutant gene according to claim 1, wherein the mutant FPK1 protein is the following (a) or (b).
(A) Amino acid consisting of the amino acid sequence of SEQ ID NO: 9 (b) Amino acid having 70% or more identity with the amino acid sequence of SEQ ID NO: 9 and corresponding to the 704th amino acid from the N-terminal side of the amino acid sequence of SEQ ID NO: 9. Amino acid sequence is glutamic acid
請求項1~3のいずれか一項記載の変異遺伝子を有する、キシロース代謝能を有する変異酵母。 A mutant yeast having a xylose-metabolizing ability, which has the mutant gene according to any one of claims 1 to 3. 請求項4記載の変異酵母を、キシロースを含有する培地にて培養してエタノール発酵を行う工程を有するエタノールの製造方法。 A method for producing ethanol, which comprises a step of culturing the mutant yeast according to claim 4 in a medium containing xylose and performing ethanol fermentation. 上記培地はセルロースを含有しており、上記エタノール発酵では、少なくとも上記セルロースの糖化が同時に進行することを特徴とする請求項5記載のエタノールの製造方法。 The method for producing ethanol according to claim 5, wherein the medium contains cellulose, and at least the saccharification of the cellulose proceeds at the same time in the ethanol fermentation.
JP2021210249A 2017-11-06 2021-12-24 Mutant gene involved in improving ethanol productivity by ethanol fermentation and ethanol production method using the same Active JP7298674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021210249A JP7298674B2 (en) 2017-11-06 2021-12-24 Mutant gene involved in improving ethanol productivity by ethanol fermentation and ethanol production method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017214102A JP7078887B2 (en) 2017-11-06 2017-11-06 Mutant genes involved in improving ethanol productivity by ethanol fermentation and methods for producing ethanol using them
JP2021210249A JP7298674B2 (en) 2017-11-06 2021-12-24 Mutant gene involved in improving ethanol productivity by ethanol fermentation and ethanol production method using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017214102A Division JP7078887B2 (en) 2017-11-06 2017-11-06 Mutant genes involved in improving ethanol productivity by ethanol fermentation and methods for producing ethanol using them

Publications (2)

Publication Number Publication Date
JP2022058407A true JP2022058407A (en) 2022-04-12
JP7298674B2 JP7298674B2 (en) 2023-06-27

Family

ID=86900647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021210249A Active JP7298674B2 (en) 2017-11-06 2021-12-24 Mutant gene involved in improving ethanol productivity by ethanol fermentation and ethanol production method using the same

Country Status (1)

Country Link
JP (1) JP7298674B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238582A (en) * 2001-02-21 2002-08-27 National Research Inst Of Brewing Method for breeding high alcohol-producing yeast by using mutant form of pdr3 gene
JP2009500035A (en) * 2005-07-01 2009-01-08 ザ ユニバーシティー オブ フロリダ リサーチ ファンデーション インク Recombinant host cells and media for ethanol production
JP2009195220A (en) * 2008-01-24 2009-09-03 National Institute Of Advanced Industrial & Technology Hexose-pentose cofermenting yeast having excellent xylose fermentability, and method for highly efficiently producing ethanol using the same
JP2011147445A (en) * 2009-12-22 2011-08-04 Toyota Central R&D Labs Inc Xylose isomerase and use thereof
JP2014193152A (en) * 2013-02-27 2014-10-09 Toyota Motor Corp Production method for ethanol using recombined yeast

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238582A (en) * 2001-02-21 2002-08-27 National Research Inst Of Brewing Method for breeding high alcohol-producing yeast by using mutant form of pdr3 gene
JP2009500035A (en) * 2005-07-01 2009-01-08 ザ ユニバーシティー オブ フロリダ リサーチ ファンデーション インク Recombinant host cells and media for ethanol production
JP2009195220A (en) * 2008-01-24 2009-09-03 National Institute Of Advanced Industrial & Technology Hexose-pentose cofermenting yeast having excellent xylose fermentability, and method for highly efficiently producing ethanol using the same
JP2011147445A (en) * 2009-12-22 2011-08-04 Toyota Central R&D Labs Inc Xylose isomerase and use thereof
JP2014193152A (en) * 2013-02-27 2014-10-09 Toyota Motor Corp Production method for ethanol using recombined yeast

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOLECULAR BIOLOGY OF THE CELL, vol. 19, JPN6022054327, 2008, pages 1783 - 1797, ISSN: 0004961105 *

Also Published As

Publication number Publication date
JP7298674B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
JP6087854B2 (en) Method for producing ethanol using recombinant yeast
JP5321320B2 (en) Yeast with improved fermentation ability and use thereof
JP5608999B2 (en) Method for producing useful substances using xylose
JP5590140B2 (en) Method for producing ethanol using recombinant yeast
US11702678B2 (en) Mutant gene associated with improvement in ethanol productivity via ethanol fermentation and method for producing ethanol using the same
JP7298673B2 (en) Mutant gene involved in improving ethanol productivity by ethanol fermentation and ethanol production method using the same
JP7298674B2 (en) Mutant gene involved in improving ethanol productivity by ethanol fermentation and ethanol production method using the same
WO2020138020A1 (en) Recombinant yeast and method for producing ethanol using same
JP6879111B2 (en) Recombinant yeast and method for producing ethanol using it
US20190106719A1 (en) Recombinant yeast and method for producing ethanol using the same
WO2020032233A1 (en) Recombinant yeast, and method for producing ethanol using same
JP6447583B2 (en) Recombinant yeast and method for producing ethanol using the same
JP7078900B2 (en) Transformed yeast and method for producing ethanol using it
JP2012120491A (en) Method for fermentation culture in medium containing xylose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R151 Written notification of patent or utility model registration

Ref document number: 7298674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151