JP2022058311A - Lead-free solder alloy and solder joint - Google Patents

Lead-free solder alloy and solder joint Download PDF

Info

Publication number
JP2022058311A
JP2022058311A JP2021162331A JP2021162331A JP2022058311A JP 2022058311 A JP2022058311 A JP 2022058311A JP 2021162331 A JP2021162331 A JP 2021162331A JP 2021162331 A JP2021162331 A JP 2021162331A JP 2022058311 A JP2022058311 A JP 2022058311A
Authority
JP
Japan
Prior art keywords
mass
solder
solder alloy
lead
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021162331A
Other languages
Japanese (ja)
Inventor
哲郎 西村
Tetsuro Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Superior Sha Co Ltd
Original Assignee
Nihon Superior Sha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Superior Sha Co Ltd filed Critical Nihon Superior Sha Co Ltd
Publication of JP2022058311A publication Critical patent/JP2022058311A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

To provide a lead-free solder alloy which keeps a melting point of an Sn-Bi solder alloy low, which has physical characteristics proper than ever, and which can form a joint improving ductility, distortion characteristics and the like and having reliability higher than ever.SOLUTION: A lead-free solder alloy contains 32-40 mass% of Bi, 0.1-1.0 mass% of Sb, 0.1-1.0 mass% of Cu and 0.001-0.1 pt.mass of Ni, and also contains 0.0005-0.1 mass% of one or more kinds of elements selected from the group consisting of Si, As and Pt. The remnant is composed of Sn and inevitable impurities.SELECTED DRAWING: None

Description

本発明は、鉛フリーはんだ合金及びはんだ接合部に関するものである。 The present invention relates to lead-free solder alloys and solder joints.

地球環境負荷軽減のため、電子部品の接合材料として鉛フリーはんだが普及している。鉛フリーはんだの代表的な組成として、Snを主成分としたSn-Ag-Cu系はんだ合金、Sn-Cu-Ni系はんだ合金が知られている。しかし、Sn-Ag-Cu系はんだ合金は融点が217℃、Sn-Cu-Ni系はんだ合金は融点が227℃であることが知られており、従来用いられていたSn-Pb共晶組成物の融点である183℃より高い。そのため、例えば、耐熱性の低い電子部品の接合を必要とするパーソナルコンピュータ等の基板には、BiやInを所定量含有させることで融点を低くしたSn-Bi系、Sn-In系の鉛フリーはんだ合金が適用されている。 Lead-free solder is widely used as a joining material for electronic components in order to reduce the burden on the global environment. As typical compositions of lead-free solders, Sn—Ag—Cu-based solder alloys and Sn—Cu—Ni-based solder alloys containing Sn as a main component are known. However, it is known that the Sn—Ag—Cu based solder alloy has a melting point of 217 ° C. and the Sn—Cu—Ni based solder alloy has a melting point of 227 ° C., and the Sn—Pb eutectic composition conventionally used has been used. It is higher than the melting point of 183 ° C. Therefore, for example, a Sn-Bi-based or Sn-In-based lead-free substrate having a predetermined amount of Bi or In contained in a substrate of a personal computer or the like that requires bonding of electronic components having low heat resistance has a low melting point. A solder alloy has been applied.

ところで、Biを用いてSn-Bi系はんだ合金にBiを多く配合させると、はんだ合金が脆くなり、機械的強度が低下する。また、電子部品や基板が熱による膨張・収縮を繰り返すことではんだ接合部に繰り返し応力が発生するため熱疲労によりクラックが発生し易く、長期信頼性が低い。Inは高価であるため、コストの面で不利である。 By the way, when a large amount of Bi is blended with a Sn—Bi-based solder alloy using Bi, the solder alloy becomes brittle and the mechanical strength decreases. In addition, since electronic components and substrates repeatedly expand and contract due to heat, stress is repeatedly generated at the solder joints, so cracks are likely to occur due to thermal fatigue, and long-term reliability is low. Since In is expensive, it is disadvantageous in terms of cost.

そこで、Sn-Bi系はんだ合金の特性を改善するために、検討が行われている(特許文献1~4)。 Therefore, studies have been conducted to improve the characteristics of Sn—Bi-based solder alloys (Patent Documents 1 to 4).

特許文献1には、Sn-57又は45質量%Bi-x質量%M(但し、Mは、銅、銀、ニッケル、ゲルマニウム、アンチモン、及びインジウムからなる群から選択される少なくとも1種の金属であり、xは4.0質量%以下である)で表されるはんだ合金、及び該はんだ合金に対し、任意の含量又は5ないし20質量%の熱硬化性接着剤を含有することを特徴とするはんだ接合材料が開示されている。そして、このような構成により、リフロー温度を十分に低くすることができ、Sn-Pbはんだ合金の代替えとして十分な特性を有する鉛フリーはんだ合金接合が得られるとされている。 Patent Document 1 describes Sn-57 or 45% by mass Bi-x% by mass M (where M is at least one metal selected from the group consisting of copper, silver, nickel, germanium, antimony, and indium. Yes, x is 4.0% by mass or less), and the solder alloy is characterized by containing an arbitrary content or a thermosetting adhesive having an arbitrary content or 5 to 20% by mass. Solder bonding materials are disclosed. With such a configuration, it is said that the reflow temperature can be sufficiently lowered and a lead-free solder alloy joint having sufficient characteristics can be obtained as an alternative to the Sn—Pb solder alloy.

特許文献2には、Bi20~57重量%、Sb0.2~5重量%、Ga0.01~1重量%、残部Snからなることを特徴とする無鉛はんだ合金が開示されている。そして、このような構成により、Sn-Pbはんだ合金(共晶組成物)と同等以下の低温ではんだ付けが可能であるため熱に弱い電子部品の接合でも作業性を向上でき、かつ、はんだ合金としての物理的特性も良好な状態を確保できるとされている。 Patent Document 2 discloses a lead-free solder alloy comprising Bi 20 to 57% by weight, Sb 0.2 to 5% by weight, Ga 0.01 to 1% by weight, and the balance Sn. With such a configuration, it is possible to solder at a low temperature equal to or lower than that of a Sn—Pb solder alloy (eutectic composition), so that workability can be improved even when joining heat-sensitive electronic components, and the solder alloy can be used. It is said that good physical characteristics can be ensured.

特許文献3には、質量%で、Bi:31~59%、Sb:0.15~0.75%、さらにCu:0.3~1.0%およびP:0.002~0.055%からなる群から選択される1種または2種を含有し、残部Snからなる合金組成を有する鉛フリーはんだ合金が開示されている。そして、このような構成により、はんだ接合時の基板の熱歪みを抑制するのに十分な低融点を有し、延性に優れ引張強度が高く、かつ無電解Niめっきにより処理された電極へのはんだ付け中に接合界面におけるPリッチ層の生成を抑制して、はんだ接合部のせん断強度を向上させることができる、また、当該はんだ合金によるはんだ継手は、従来よりも薄い基板を使用したとした場合でも優れた接続信頼性を確保することができるとされている。 Patent Document 3 describes Bi: 31 to 59%, Sb: 0.15 to 0.75%, Cu: 0.3 to 1.0%, and P: 0.002 to 0.055% in terms of mass%. Disclosed is a lead-free solder alloy containing one or two selected from the group consisting of, and having an alloy composition consisting of the balance Sn. With such a configuration, it has a low melting point sufficient to suppress thermal strain of the substrate at the time of soldering, has excellent ductility, has high tensile strength, and is soldered to an electrode treated by electrolytic Ni plating. It is possible to suppress the formation of a P-rich layer at the bonding interface during soldering and improve the shear strength of the solder joint, and when the solder joint made of the solder alloy uses a thinner substrate than before. However, it is said that excellent connection reliability can be ensured.

特許文献4には、Biが20~60質量%添加され、Cu、Ni及びPから1つ以上の元素が選択され、選択された前記Cuは、0~3質量%、選択された前記Niは、0.005~0.5質量%、選択された前記Pは、0.005~0.05質量%で添加され、残部がSn及び不可避不純物からなる、無鉛はんだが開示されている。そして、このような構成により、Ag、In及びSbを用いなくても、有鉛はんだよりも低融点で、耐疲労特性に優れる無鉛はんだを提供することができるとされている。 In Patent Document 4, 20 to 60% by mass of Bi is added, one or more elements are selected from Cu, Ni and P, the selected Cu is 0 to 3% by mass, and the selected Ni is 0 to 3% by mass. , 0.005 to 0.5% by weight, the selected P is added in an amount of 0.005 to 0.05% by weight, and the balance is Sn and unavoidable impurities, and the lead-free solder is disclosed. With such a configuration, it is said that it is possible to provide lead-free solder having a melting point lower than that of leaded solder and having excellent fatigue resistance without using Ag, In and Sb.

特許文献5は、本発明者が前述の従来技術のSn-Bi系はんだ合金の課題を改善した技術を記載したものである。 Patent Document 5 describes a technique in which the present inventor has improved the above-mentioned problems of the Sn—Bi-based solder alloy of the prior art.

特開2007-90407号公報Japanese Unexamined Patent Publication No. 2007-90407 特開平7-40079号公報Japanese Unexamined Patent Publication No. 7-40079 特許第5679094号公報Japanese Patent No. 5679094 特開2014-140865号公報Japanese Unexamined Patent Publication No. 2014-1408865 PCT/JP2020/16201PCT / JP2020 / 16201

前述のような特許文献1~4の先行技術により、Sn-Bi系はんだ合金の融点の低さを維持しつつ、物理的特性はある程度改善されるものの、改善の余地があるのが現状である。また、特許文献5の技術により、前述の従来技術のSn-Bi系はんだ合金の課題を改善することが可能であり、良好な特性を有しているが、接合対象によっては、更なる優れた接合特性を必要とする場合も生じ、延性や歪み特性等が向上した接合が可能な鉛フリーはんだ合金が求められている。そこで、本発明の目的は、Sn-Bi系はんだ合金の融点の低さを維持し、且つ、従来よりも良好な物理的特性を有し、更には延性や歪み特性等が向上した従来よりも信頼性の高い接合部を形成可能な鉛フリーはんだ合金を提供することである。 Although the physical properties are improved to some extent while maintaining the low melting point of the Sn—Bi-based solder alloy by the prior arts of Patent Documents 1 to 4 as described above, there is room for improvement at present. .. Further, the technique of Patent Document 5 can improve the problem of the Sn—Bi-based solder alloy of the above-mentioned conventional technique and has good characteristics, but is further excellent depending on the joining target. There are cases where joining characteristics are required, and there is a demand for lead-free solder alloys that can be joined with improved ductility and strain characteristics. Therefore, an object of the present invention is to maintain a low melting point of the Sn—Bi-based solder alloy, to have better physical properties than the conventional one, and to improve ductility, strain characteristics, and the like as compared with the conventional one. It is to provide a lead-free solder alloy capable of forming a highly reliable joint.

本発明者は、前述の課題を解決するために鋭意検討を行った結果、Sn-Biはんだ合金に特定の成分を特定量含有させることで、前述の課題が解決可能であることを見出した。 As a result of diligent studies to solve the above-mentioned problems, the present inventor has found that the above-mentioned problems can be solved by containing a specific amount of a specific component in the Sn—Bi solder alloy.

本発明の第一は、Biを32質量%以上40質量%以下、Sbを0.1質量%以上1.0質量%以下、Cuを0.1質量%以上1.0質量%以下、Niを0.001質量部以上0.1質量部以下含有し、更に、Si、As及びPtの群から選ばれる1種以上の元素を0.0005~0.1質量%を含有し、残部がSn及び不可避不純物からなる、鉛フリーはんだ合金に関する。 In the first aspect of the present invention, Bi is 32% by mass or more and 40% by mass or less, Sb is 0.1% by mass or more and 1.0% by mass or less, Cu is 0.1% by mass or more and 1.0% by mass or less, and Ni is used. It contains 0.001 part by mass or more and 0.1 part by mass or less, and further contains 0.0005 to 0.1% by mass of one or more elements selected from the group of Si, As and Pt, and the balance is Sn and Concerning lead-free solder alloys consisting of unavoidable impurities.

本発明の第二は、前述の鉛フリーはんだ合金を用いて形成されたはんだ接合部に関する。 The second aspect of the present invention relates to a solder joint formed by using the above-mentioned lead-free solder alloy.

ここで、不可避不純物とは、はんだの原料中に存在したり、製造工程において不可避的に混入したりするものをいう。 Here, the unavoidable impurities refer to those that are present in the raw material of the solder or are inevitably mixed in the manufacturing process.

本発明によれば、Sn-Bi系はんだ合金の融点の低さを維持し、且つ、従来よりも良好な物理的特性を有し、更には、延性や歪み特性等が向上し、従来よりも信頼性の高い接合部を形成可能な鉛フリーはんだ合金を提供することができる。 According to the present invention, the Sn—Bi-based solder alloy maintains a low melting point, has better physical properties than the conventional one, and further improves ductility, strain characteristics, etc., and is more than the conventional one. It is possible to provide a lead-free solder alloy capable of forming a highly reliable joint.

実施例及び比較例において用いた引張強度試験測定サンプルの形状を示した図である。It is a figure which showed the shape of the tensile strength test measurement sample used in an Example and a comparative example. 本発明の実施例と比較例の引張強度測定値を比較したグラフである。It is a graph which compared the tensile strength measurement value of the Example of this invention and the comparative example. 本発明の実施例の伸び率を、比較例を100とした場合の変化率を示したグラフである。It is a graph which showed the rate of change when the growth rate of the Example of this invention is 100 in the comparative example. 実施例1~16及び比較例1、3、4のはんだ合金を用いたインパクトシェア試験を行った時の、エージング前後のシェア強度および吸収エネルギーの変化率を示した図である。It is a figure which showed the change rate of the share strength and absorption energy before and after aging when the impact share test using the solder alloy of Examples 1 to 16 and the solder alloys of Comparative Examples 1, 3 and 4 was performed. 実施例1~16及び比較例1、3、4のはんだ合金を用いたインパクトシェア試験を行った時の、エージング前後のシェア強度及び吸収エネルギーの変化率の比較例1に対する相対変化率を示した図である。The relative change rate of the change rate of the share strength and the absorption energy before and after aging when the impact share test using the solder alloys of Examples 1 to 16 and Comparative Examples 1, 3 and 4 is shown is shown. It is a figure.

以下、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described.

本発明の実施形態に係る鉛フリーはんだ合金(以下、単に「はんだ合金」と称する場合がある。)は、Biを32質量%以上40質量%以下、Sbを0.1質量%以上1.0質量%以下、Cuを0.1質量%以上1.0質量%以下、Niを0.001質量部以上0.1質量部以下含有し、更に、Si、As及びPtの群から選ばれる1種以上の元素をそれぞれ0.0005~0.1質量%含有し、残部がSn及び不可避不純物からなる。 In the lead-free solder alloy according to the embodiment of the present invention (hereinafter, may be simply referred to as "solder alloy"), Bi is 32% by mass or more and 40% by mass or less, and Sb is 0.1% by mass or more and 1.0. 1 type selected from the group of Si, As and Pt, containing 0.1% by mass or more and 1.0% by mass or less of Cu, 0.001 part by mass or more and 0.1 part by mass or less of Ni. Each of the above elements is contained in an amount of 0.0005 to 0.1% by mass, and the balance is composed of Sn and unavoidable impurities.

このように、Snを母相とし、Bi、Sb、Cu、Niを特定範囲で含有させることで、Biによる融点低下効果を良好に保持するとともに、Biによる物理的特性の低下を大幅に抑制することができる。特に、長期使用時の劣化を抑制し、良好な耐熱疲労特性を有することが可能になる。そのため、信頼性の高いはんだ接合部を形成することが可能になる。また、Sb、Cu、Niは、Biよりも体積抵抗率が低い元素であることから、BiをSnとの共晶組成物に近い組成で含有させた場合に比べてその含量が低いことと相俟って、はんだ合金の体積抵抗率を従来よりも低下させことが可能である。 In this way, by using Sn as the parent phase and containing Bi, Sb, Cu, and Ni in a specific range, the melting point lowering effect of Bi is well maintained and the deterioration of physical properties due to Bi is significantly suppressed. be able to. In particular, it is possible to suppress deterioration during long-term use and have good heat and fatigue characteristics. Therefore, it is possible to form a highly reliable solder joint. Further, since Sb, Cu, and Ni are elements having a lower volume resistivity than Bi, their contents are lower than those in the case where Bi is contained in a composition close to the eutectic composition with Sn. In addition, it is possible to lower the volume resistivity of the solder alloy than before.

また、前述のSnを母相とし、Bi、Sb、Cu、Niを特定範囲で含有させ、更に、Si、As及びPtの群から選ばれる1種以上の元素を特定範囲で添加することで、例えば基板上の金属配線とはんだ合金との界面等における186℃で起こるCu6Sn5η―η’変態を抑制し、更に、延性や歪み特性等が向上させることが可能である。その結果、はんだ合金内部のクラックの発生、はんだ合金と金属配線間の界面剥離を防止して、外的な刺激により発生する応力に対しても信頼性の高い接合部を形成可能である。 Further, by using the above-mentioned Sn as a parent phase, Bi, Sb, Cu, and Ni are contained in a specific range, and one or more elements selected from the group of Si, As, and Pt are added in a specific range. For example, it is possible to suppress the Cu6Sn5η-η'transformation that occurs at 186 ° C. at the interface between the metal wiring on the substrate and the solder alloy, and further improve the ductility and strain characteristics. As a result, it is possible to prevent the generation of cracks inside the solder alloy and the interfacial peeling between the solder alloy and the metal wiring, and to form a joint portion having high reliability against stress generated by an external stimulus.

また、このような特定の成分組成を有することで、エレクトロマイグレーションの発生を抑制することができる。その作用機序は明らかではないが、通電、高温環境により生じ得るはんだ合金中の金属原子の移動を抑制可能なため、はんだ接合部中のIMC粗大化やボイド形成を抑制して、信頼性の高いはんだ接合部を形成可能であると考えられる。 Further, by having such a specific component composition, it is possible to suppress the occurrence of electromigration. Although the mechanism of action is not clear, it is possible to suppress the movement of metal atoms in the solder alloy that may occur due to energization and high temperature environment, so it is possible to suppress IMC coarsening and void formation in the solder joint, and it is reliable. It is considered possible to form a high solder joint.

Biの含量は、32質量%以上40質量%以下である。32質量%より低いと、融点低下効果が十分ではない傾向にある。また、40質量%より多いとはんだ合金が脆くなり、所望の物理的特性が得られない傾向にある。Biの含量はこのような範囲であればよいが、36質量%以上38質量%以下が好ましい。 The content of Bi is 32% by mass or more and 40% by mass or less. If it is lower than 32% by mass, the melting point lowering effect tends to be insufficient. On the other hand, if it is more than 40% by mass, the solder alloy becomes brittle and the desired physical properties tend not to be obtained. The Bi content may be in such a range, but is preferably 36% by mass or more and 38% by mass or less.

Sbの含量は、0.1質量%以上1.0質量%以下である。好ましくは、0.1質量%以上0.6質量%以下である。SbはSn-Biはんだ合金に延性を付与したり、β-Snからα-Snへの相変態を抑制することで体積変化を抑制したりする作用があることは知られている。しかし、他の金属成分との関係で、Sbをこのような範囲で含有させることで初めて、前述のような各種の作用効果が発揮されるのである。
The content of Sb is 0.1% by mass or more and 1.0% by mass or less. It is preferably 0.1% by mass or more and 0.6% by mass or less. It is known that Sb has an action of imparting ductility to a Sn—Bi solder alloy and suppressing a volume change by suppressing a phase transformation from β—Sn to α—Sn. However, in relation to other metal components, various actions and effects as described above can be exhibited only when Sb is contained in such a range.

Cuの含量は、0.1質量%以上1.0質量%以下である。好ましくは、0.3質量%以上0.7質量%以下である。CuはSn-Biはんだ合金に延性を付与する作用があることは知られている。しかし、他の金属成分との関係で、Cuをこのような範囲で含有させることで初めて、前述のような各種の作用効果が発揮されるのである。 The content of Cu is 0.1% by mass or more and 1.0% by mass or less. It is preferably 0.3% by mass or more and 0.7% by mass or less. Cu is known to have the effect of imparting ductility to Sn—Bi solder alloys. However, in relation to other metal components, various actions and effects as described above can be exhibited only when Cu is contained in such a range.

Niの含量は、0.001質量%以上0.1質量%以下である。好ましくは、0.005質量%以上0.07質量%以下、より好ましくは、0.01質量%以上0.05質量%以下である。Niは、CuとSnとの金属間化合物の発生を抑制し融点の上昇や流動性の低下を抑制する作用、合金の強度や接合性を向上させる作用があることは知られている。しかし、他の金属成分との関係で、Niをこのような範囲で含有させることで初めて186℃で起こるCu6Sn5η―η’変態を抑制する作用効果が発揮されるのである。 The content of Ni is 0.001% by mass or more and 0.1% by mass or less. It is preferably 0.005% by mass or more and 0.07% by mass or less, and more preferably 0.01% by mass or more and 0.05% by mass or less. It is known that Ni has an action of suppressing the generation of an intermetallic compound between Cu and Sn, an action of suppressing an increase in melting point and a decrease in fluidity, and an action of improving the strength and bondability of an alloy. However, in relation to other metal components, the effect of suppressing the Cu6Sn5η-η'transformation that occurs at 186 ° C. is exhibited for the first time when Ni is contained in such a range.

更に、Sn、Bi、Sb、Cu及びNi以外にSi、As及びPtの群から選ばれる1種以上の元素をそれぞれ特定範囲で含有することにより、延性や歪み特性が向上し合金強化に繋がる。加えて、濡れ広がりの向上、金属間化合物の成長抑制や、耐衝撃特性向上も期待できる。 Further, by containing one or more elements selected from the group of Si, As and Pt in a specific range in addition to Sn, Bi, Sb, Cu and Ni, ductility and strain characteristics are improved, which leads to alloy strengthening. In addition, improvement in wetting spread, suppression of growth of intermetallic compounds, and improvement in impact resistance can be expected.

Siは、はんだ接合部の延性や歪み特性の向上が期待できる。Siの含量は、0.0005~0.1質量%であり、0.001~0.05質量%が好ましく、0.003~0.02質量%がより好ましい。 Si can be expected to improve the ductility and strain characteristics of the solder joint. The Si content is 0.0005 to 0.1% by mass, preferably 0.001 to 0.05% by mass, and more preferably 0.003 to 0.02% by mass.

Asは、はんだ接合時に濡れ広がりを改善し、はんだ接合部の強度を向上させる。Asの含量は、0.0005~0.1質量%であり、0.001~0.05質量%が好ましく、0.003~0.02質量%がより好ましい。 As increases the wet spread during solder joining and improves the strength of the solder joint. The content of As is 0.0005 to 0.1% by mass, preferably 0.001 to 0.05% by mass, and more preferably 0.003 to 0.02% by mass.

Ptは、はんだ接合部の金属間化合物の成長を抑制し、耐衝撃性を向上させることが期待できる。Ptの含有量は、0.0005~0.1質量%であり、0.001~0.05質量%が好ましく、0.003~0.02質量%がより好ましい。 Pt can be expected to suppress the growth of intermetallic compounds in the solder joint and improve the impact resistance. The content of Pt is 0.0005 to 0.1% by mass, preferably 0.001 to 0.05% by mass, and more preferably 0.003 to 0.02% by mass.

実施形態に係るはんだ合金には、不可避不純物が含まれ得る。しかし、不可避不純物が含まれても、前述の効果を奏することができる。 The solder alloy according to the embodiment may contain unavoidable impurities. However, even if unavoidable impurities are contained, the above-mentioned effects can be obtained.

はんだ合金の形態は、特に限定はなく、用途に応じて適宜選択することができる。例えば、ディップはんだ付け方法によりはんだ接合を行う場合は、棒状の形状とすることができる。リフローはんだ付けによりはんだ接合を行う場合は、ペースト状の不定形のものでもよいし、ボール状、プリフォーム状の形状を有するものでもよい。はんだ鏝を用いてはんだ接合を行う場合は、やに入りはんだとしたものを線状に成形されたものが挙げられる。 The form of the solder alloy is not particularly limited and can be appropriately selected depending on the intended use. For example, when soldering is performed by a dip soldering method, a rod-shaped shape can be obtained. When soldering is performed by reflow soldering, a paste-like amorphous shape may be used, or a ball-shaped or preform-shaped shape may be used. When soldering is performed using a soldering iron, there is a case where a soldering material is formed into a linear shape.

本発明の実施形態に係るはんだ接合部は、前述のはんだ合金を用いて形成されたものである。より具体的には、はんだ接合部は、例えば、電子部品の電極端子と基板上の金属配線等の電極端子とが前述のはんだ合金により接合されている。即ち、はんだ接合部は、前述のはんだ合金と、該はんだ合金を介して接合された電子部品と基板とで構成されている。はんだ接合部は、前述のはんだ合金を用いて形成されているため、本発明のはんだ合金の特性を有し、当該はんだ接合部の長期使用時の劣化が抑制され、良好な耐熱疲労特性を有しており、高い信頼性を有する。 The solder joint portion according to the embodiment of the present invention is formed by using the above-mentioned solder alloy. More specifically, in the solder joint portion, for example, an electrode terminal of an electronic component and an electrode terminal such as a metal wiring on a substrate are joined by the above-mentioned solder alloy. That is, the solder joint portion is composed of the above-mentioned solder alloy, electronic components bonded via the solder alloy, and a substrate. Since the solder joint is formed by using the above-mentioned solder alloy, it has the characteristics of the solder alloy of the present invention, the deterioration of the solder joint during long-term use is suppressed, and it has good heat and fatigue characteristics. And has high reliability.

本発明について、実施例を基に以下に詳細を説明する。 The present invention will be described in detail below based on examples.

〔試験例1〕
表1に示す組成のはんだ合金を調製し、引張強度試験に用いた。
本発明のはんだ合金の評価として、引張強度並びにはんだ合金の伸び率を測定し、その優位性を確認した。
引張強度ははんだ接合部の強度を表し、数値が高いほど機械的特性に優れていることを意味し、伸び率ははんだ接合部の延性を表し、数値が高いほど応力歪に対する緩和能に優れていることを意味する。実際の動作時における電子部品の発熱・冷却や使用環境温度の変化によって、電子部品の接合部には、部品と基板との間の線膨張係数差に起因する応力歪が繰り返し負荷される。この繰り返しの負荷に伴って接合部が損傷を受ける、いわゆる熱疲労現象が発生する。部品と基板とを接合しているはんだは、その延性によって応力歪の緩衝機能を担っている。このため、はんだの延性(伸び率)が改善されることによって、接合部に生じる応力歪が緩和され、耐熱疲労特性に優れた接合部を維持することが可能となることを意味する。
従って、引張強度値と伸び率の両方を併せ持ったはんだ合金が信頼性の高いはんだ接合部を形成すると考えられる。
[Test Example 1]
A solder alloy having the composition shown in Table 1 was prepared and used for the tensile strength test.
As an evaluation of the solder alloy of the present invention, the tensile strength and the elongation rate of the solder alloy were measured, and their superiority was confirmed.
The tensile strength indicates the strength of the solder joint, and the higher the value, the better the mechanical properties. The elongation rate indicates the ductility of the solder joint. The higher the value, the better the relaxation ability against stress strain. Means that you are. Due to heat generation / cooling of electronic components and changes in operating environment temperature during actual operation, stress strain due to the difference in linear expansion coefficient between the component and the substrate is repeatedly applied to the joint of the electronic component. The so-called thermal fatigue phenomenon occurs in which the joint is damaged due to this repeated load. The solder that joins the component and the substrate has a function of cushioning stress strain due to its ductility. Therefore, by improving the ductility (elongation rate) of the solder, the stress strain generated in the joint portion is alleviated, and it is possible to maintain the joint portion having excellent heat resistance and fatigue characteristics.
Therefore, it is considered that a solder alloy having both a tensile strength value and an elongation rate forms a highly reliable solder joint.

Figure 2022058311000001
Figure 2022058311000001

(試験方法)
1.引張強度試験
(1)表1のはんだ合金を溶解させた後、図1に示す形状なるように鋳型に鋳込み、測定用サンプルを作製する。
(2)株式会社島津製作所製試験機AG-ISを用い、下記の条件で各サンプルが切断するまで引っ張り、サンプルの引張強度と伸び率を測定した。
・室温(20℃~25℃)
・引張速度:10mm/分
(Test method)
1. 1. Tensile strength test (1) After melting the solder alloy shown in Table 1, it is cast into a mold so as to have the shape shown in FIG. 1 to prepare a sample for measurement.
(2) Using a testing machine AG-IS manufactured by Shimadzu Corporation, each sample was pulled until it was cut under the following conditions, and the tensile strength and elongation of the sample were measured.
・ Room temperature (20 ° C to 25 ° C)
・ Tensile speed: 10 mm / min

2.測定結果の評価
(1)引張強度
・上記の方法にて測定した結果に関し、測定前のサンプル断面積(mm)と測定後の最大負荷応力(N)より、次式を得て算出した。
引張強度(MPa)=最大負荷応力(N)/測定前のサンプル断面積(mm
(2)伸び率
・測定前の評点部長さ(1-A11)であるL0に対する測定後の評点部長さL(破断部箇所を突き合わせたときの長さ)の変化率で、次式により算出した。
伸び率(%)={(L-L0)/L0}×100
・比較例1を100とした場合の各サンプルの伸び率を示した結果を「伸び率の変化率」として百分率で表した。
2. 2. Evaluation of measurement results (1) Tensile strength-The results measured by the above method were calculated by obtaining the following equation from the sample cross-sectional area (mm 2 ) before measurement and the maximum load stress (N) after measurement.
Tensile strength (MPa) = maximum load stress (N) / sample cross-sectional area before measurement (mm 2 )
(2) Elongation rate-The rate of change of the score section length L (length when the fractured portion is abutted) after measurement with respect to L0, which is the score section length (1-A11) before measurement, calculated by the following formula. ..
Elongation rate (%) = {(L-L0) / L0} x 100
-The result showing the elongation rate of each sample when Comparative Example 1 was set to 100 was expressed as a percentage as "change rate of elongation rate".

3.評価基準
(1)引張強度:鉛フリーはんだで実績のあるSAC305(Agが3.0質量%、Cuが0.5質量%、残部がSn)の1.5倍以上の数値である80MPaを合格最低数値とした。
(2)伸び率:伸び率の変化率が100%を超えるものを合格とした。
3. 3. Evaluation Criteria (1) Tensile strength: Passed 80 MPa, which is more than 1.5 times the value of SAC305 (Ag is 3.0% by mass, Cu is 0.5% by mass, and the balance is Sn), which has been proven in lead-free solder. The lowest value was set.
(2) Growth rate: Those with a change rate of growth rate exceeding 100% were accepted.

Figure 2022058311000002
Figure 2022058311000002

また、引張強度の結果の比較を図2に、伸び率の変化率を図3に夫々表した。
表2、図2及び図3より、本発明のはんだ合金である実施例は何れも合格基準を上回っており、信頼性の高いはんだ接合部を得ることが証明された。
Further, the comparison of the results of the tensile strength is shown in FIG. 2, and the rate of change in the elongation rate is shown in FIG. 3, respectively.
From Table 2, FIG. 2 and FIG. 3, it was proved that the examples of the solder alloy of the present invention all exceeded the acceptance criteria and obtained a highly reliable solder joint.

〔試験例2〕
表3、4に示す組成となるように、定法に従い各金属を混合し、はんだ合金を作製した。得られたはんだ合金を用い、以下に説明する方法に従ってインパクトシェア試験を行った。尚、各はんだ合金は、各原料となる金属を表3、4に示す組成になるように混合するため、原料等に起因する不可避不純物を含む。また、表3、4中、試験例1と実質的に同じ組成のはんだ合金には、同じ実施例番号及び比較例番号を付した。
[Test Example 2]
Each metal was mixed according to a conventional method so as to have the composition shown in Tables 3 and 4, and a solder alloy was prepared. Using the obtained solder alloy, an impact share test was performed according to the method described below. Since each solder alloy mixes the metals used as raw materials so as to have the compositions shown in Tables 3 and 4, it contains unavoidable impurities caused by the raw materials and the like. Further, in Tables 3 and 4, solder alloys having substantially the same composition as Test Example 1 are given the same Example No. and Comparative Example No.

Figure 2022058311000003
Figure 2022058311000003

Figure 2022058311000004
Figure 2022058311000004

(試験方法)
<インパクトシェア試験>
1)実施例1~16、比較例1、3、4で得られたはんだ合金からなる直径0.5mmの球状はんだボールを準備した。
2)銅箔基板を準備し、実装箇所に「フラックスRM-5」(株式会社日本スペリア社製)を0.01g塗布した後、はんだボールを搭載した。
3)昇温温度1.5℃/秒、最高温度200℃又は250℃で50秒間の条件でリフロー加熱し、接合させた後、冷却し、IPAにて洗浄して、フラックスを除去したものを測定用サンプルとした。
4)上記の手順で作製した測定用サンプルの一部を150℃に保持した電気炉内に100時間放置し、エージング処理を行った。
5)エージング処理を行わなかった測定用サンプル(イニシャル)、エージング処理した測定用サンプル(エージング)をインパクトシェア試験機(DAGE社製 4000HS)にセットした。
6)測定は、シェア速度100mm/秒で実施し、シェア強度(N)、吸収エネルギー(mJ)を測定した。シェア強度のうち、最大値をシェア強度として評価した。また、エージング前後のシェア強度及び吸収エネルギーの各測定値の変化率(エージング後/エージング前×100)及び当該変化率の比較例1の値を100として算出した相対変化率((各実施例及び各比較例の変化率)/(比較例1の変化率)×100)を算出し、エージングによる影響を評価した。結果を表5~7に示す。また、表6に示した「変化率」について棒グラフとしてまとめたものを図4に示した。また、表7に示した「相対変化率」について棒グラフとしてまとめたものを図5に示した。
(Test method)
<Impact share test>
1) Spherical solder balls having a diameter of 0.5 mm made of the solder alloys obtained in Examples 1 to 16 and Comparative Examples 1, 3 and 4 were prepared.
2) A copper foil substrate was prepared, 0.01 g of "Flux RM-5" (manufactured by Nippon Superior Co., Ltd.) was applied to the mounting location, and then a solder ball was mounted.
3) Reflow heating at a temperature rise temperature of 1.5 ° C./sec and a maximum temperature of 200 ° C. or 250 ° C. for 50 seconds, bonding, cooling, and washing with IPA to remove flux. It was used as a measurement sample.
4) A part of the measurement sample prepared by the above procedure was left in an electric furnace kept at 150 ° C. for 100 hours for aging treatment.
5) The measurement sample (initials) that had not been aged and the measurement sample (aging) that had been aged were set in an impact share tester (4000HS manufactured by DAGE).
6) The measurement was carried out at a share speed of 100 mm / sec, and the share intensity (N) and the absorption energy (mJ) were measured. Of the share strengths, the maximum value was evaluated as the share strength. Further, the rate of change of each measured value of share intensity and absorbed energy before and after aging (after aging / before aging × 100) and the relative change rate calculated with the value of Comparative Example 1 of the change rate as 100 ((each example and). The rate of change of each comparative example) / (rate of change of comparative example 1) × 100) was calculated, and the effect of aging was evaluated. The results are shown in Tables 5-7. Further, FIG. 4 shows a bar graph summarizing the “rate of change” shown in Table 6. Further, FIG. 5 shows a bar graph summarizing the “relative change rate” shown in Table 7.

Figure 2022058311000005
Figure 2022058311000005

Figure 2022058311000006
Figure 2022058311000006

Figure 2022058311000007
Figure 2022058311000007

表6、7、図4、5に示すように、所定の組成のはんだ合金を用いることで、エージング処理後も同処理前よりも良好なシェア強度を有し、良好なエネルギーの吸収特性を示すことが分かる。特に、表7、図5に示すように、比較例1である特許文献5に記載されているはんだ合金を基準として対比すると、各実施例のはんだ合金は、比較例1と同等以上の良好な特性を有するのに対して、比較例3、4である従来の共晶系のSn-Biはんだ合金では、Si、As、Ptを所定範囲で含有する効果が得られていない。このように、Snを母相とし、特定範囲の含有量のBi、Sb、Cu、Niとともに、更に、特定範囲の含有量の、Si、As及びPtの群から選ばれる1種以上の元素を存在させることで、従来のはんだ合金よりも良好な物理的特性を示すことが分かる。また、特許文献5に記載のはんだ合金と同等以上の良好な物理的特性を示すことが分かる。 As shown in Tables 6, 7, and 4, and 5, by using a solder alloy having a predetermined composition, even after the aging treatment, the share strength is better than that before the treatment, and the energy absorption characteristics are good. You can see that. In particular, as shown in Table 7 and FIG. 5, when compared with the solder alloy described in Patent Document 5 which is Comparative Example 1 as a reference, the solder alloy of each example is as good as or better than that of Comparative Example 1. On the other hand, the conventional eutectic Sn—Bi solder alloys of Comparative Examples 3 and 4 do not have the effect of containing Si, As, and Pt in a predetermined range. In this way, Sn is used as the parent phase, and Bi, Sb, Cu, and Ni having a specific range of content, as well as one or more elements selected from the group of Si, As, and Pt having a specific range of content are used. It can be seen that the presence of the solder alloy exhibits better physical properties than the conventional solder alloy. Further, it can be seen that it exhibits good physical properties equal to or higher than those of the solder alloy described in Patent Document 5.

以上のように、試験例1の結果より、所定の組成のはんだ合金は、良好な引張強度と伸び率の両方を併せ持ち、信頼性の高いはんだ接合部を形成することが可能であると考えられるが、試験例2の結果により、この点がさらに裏付けられたと考えられる。 As described above, from the results of Test Example 1, it is considered that the solder alloy having a predetermined composition has both good tensile strength and elongation, and can form a highly reliable solder joint. However, it is considered that this point was further supported by the results of Test Example 2.

本発明に係る鉛フリーはんだ合金は、低温での接合を可能とするため電子部品に熱負荷をかけることなく、はんだ接合を可能とし、当該はんだ合金で接合されたはんだ接合部は、従来の低温はんだ合金を用いたはんだ接合部に比べ高い信頼性を有する為、低温での接合を必要とする電子部品の接合に広く応用が期待できる。 Since the lead-free solder alloy according to the present invention enables bonding at a low temperature, solder bonding is possible without applying a heat load to electronic parts, and the solder joint portion bonded with the solder alloy is a conventional low temperature. Since it has higher reliability than solder joints using solder alloys, it can be expected to be widely applied to the joining of electronic parts that require joining at low temperatures.

1 引張強度試験測定用サンプル
1-A 評点部
1-A11 評点部長さ
1-A12 評点部幅
1-B 装置固定部
1 Sample for tensile strength test measurement 1-A Scoring part 1-A11 Scoring part length 1-A12 Scoring part width 1-B Device fixing part

Claims (2)

Biを32質量%以上40質量%以下、Sbを0.1質量%以上1.0質量%以下、Cuを0.1質量%以上1.0質量%以下、Niを0.001質量部以上0.1質量部以下含有し、更に、Si、As及びPtの群から選ばれる1種以上の元素を0.0005~0.1質量%を含有し、残部がSn及び不可避不純物からなる、鉛フリーはんだ合金。 Bi is 32% by mass or more and 40% by mass or less, Sb is 0.1% by mass or more and 1.0% by mass or less, Cu is 0.1% by mass or more and 1.0% by mass or less, and Ni is 0.001 part by mass or more and 0. .Contains 1 part by mass or less, and further contains 0.0005 to 0.1% by mass of one or more elements selected from the group of Si, As and Pt, and the balance is Sn and unavoidable impurities, which is lead-free. Solder alloy. 請求項1記載の鉛フリーはんだ合金を用いて形成されたはんだ接合部。
A solder joint formed by using the lead-free solder alloy according to claim 1.
JP2021162331A 2020-09-30 2021-09-30 Lead-free solder alloy and solder joint Pending JP2022058311A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020164354 2020-09-30
JP2020164354 2020-09-30

Publications (1)

Publication Number Publication Date
JP2022058311A true JP2022058311A (en) 2022-04-11

Family

ID=81111158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021162331A Pending JP2022058311A (en) 2020-09-30 2021-09-30 Lead-free solder alloy and solder joint

Country Status (1)

Country Link
JP (1) JP2022058311A (en)

Similar Documents

Publication Publication Date Title
JP6804126B1 (en) Lead-free solder alloys and solder joints
JPWO2018174162A1 (en) Solder joint
WO2018051973A1 (en) Solder alloy, solder ball and solder joint
US20230340642A1 (en) High reliability lead-free solder alloy for electronic applications in extreme environments
US11577343B2 (en) Low-silver alternative to standard SAC alloys for high reliability applications
JP2022058311A (en) Lead-free solder alloy and solder joint
WO2016185674A1 (en) Solder alloy and package structure using same
JP4359983B2 (en) Electronic component mounting structure and manufacturing method thereof
JP7273049B2 (en) Cost-effective lead-free solder alloy for electronic applications
JP6504401B2 (en) Solder alloy and mounting structure using the same
KR102667729B1 (en) Cost-effective lead-free solder alloys for electronic applications
KR102669670B1 (en) Highly reliable lead-free solder alloy for electronic applications in harsh environments
JPH1177369A (en) Solder for electronic parts and joining method using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240408