JP2022053841A - Lithium-ion battery characteristic measurement method and system - Google Patents

Lithium-ion battery characteristic measurement method and system Download PDF

Info

Publication number
JP2022053841A
JP2022053841A JP2020160693A JP2020160693A JP2022053841A JP 2022053841 A JP2022053841 A JP 2022053841A JP 2020160693 A JP2020160693 A JP 2020160693A JP 2020160693 A JP2020160693 A JP 2020160693A JP 2022053841 A JP2022053841 A JP 2022053841A
Authority
JP
Japan
Prior art keywords
voltage
lithium
ion batteries
current
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020160693A
Other languages
Japanese (ja)
Other versions
JP7217538B2 (en
Inventor
貴應 服部
Takamasa Hattori
窓 長谷川
So Hasegawa
康之 鈴木
Yasuyuki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NST Co Ltd
Original Assignee
NST Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NST Co Ltd filed Critical NST Co Ltd
Priority to JP2020160693A priority Critical patent/JP7217538B2/en
Publication of JP2022053841A publication Critical patent/JP2022053841A/en
Application granted granted Critical
Publication of JP7217538B2 publication Critical patent/JP7217538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a lithium-ion battery characteristic measurement method and system that can measure the characteristics of a large number of lithium-ion batteries at the same time without increasing the cost, and also improve the accuracy and regeneration efficiency on the low voltage side.SOLUTION: N (≥2) lithium ion batteries are connected in series, the lithium ion battery is charged with constant current, the total voltage of the lithium ion battery is monitored, and when the total voltage exceeds a rated voltage, the constant current charging is switched to constant voltage charging, balance control is performed for each lithium ion battery, and when the charging current of constant voltage charging becomes less than a rated current, the constant voltage charging is stopped, and the lithium ion battery is discharged with constant current, the voltage between each terminal of the lithium ion battery and the current of series connection is measured, when the terminal voltage reaches a cutoff voltage, the constant current discharge is stopped for various constant currents and various constant voltages, and the characteristics of N lithium ion batteries are measured.SELECTED DRAWING: Figure 5

Description

本発明はリチウムイオン電池の特性計測方法及びシステムに関し、特に複数のリチウムイオン電池を直列に接続し、同時に複数のリチウムイオン電池の特性計測を行い得る方法及びシステムに関する。 The present invention relates to a method and system for measuring the characteristics of a lithium ion battery, and more particularly to a method and a system capable of connecting a plurality of lithium ion batteries in series and simultaneously measuring the characteristics of a plurality of lithium ion batteries.

正極と負極とで挟持されたセパレータで成るリチウムイオン電池(リチウムセル)は、高容量、高安全、長寿命といった特長を有しているため、薄型・軽量化されてスマートフォンやタブレット、ノートパソコンなどの電子機器に広く利用されている。図1は、リチウムイオン電池の外観の一例を示しており、平板状の電池本体10の上面に、正極端子11及び負極端子12が設けられた外観構成となっている。 Lithium-ion batteries (lithium cells), which consist of a separator sandwiched between a positive electrode and a negative electrode, have features such as high capacity, high safety, and long life, so they are thinner and lighter, such as smartphones, tablets, and laptop computers. Widely used in electronic devices. FIG. 1 shows an example of the appearance of a lithium ion battery, and has an external configuration in which a positive electrode terminal 11 and a negative electrode terminal 12 are provided on the upper surface of a flat plate-shaped battery body 10.

このようなリチウムイオン電池の特性向上のために、近年、電池構成部材の開発が盛んに行われている。そこで欠かせないのが、リチウムイオン電池の特性計測である。リチウムイオン電池の特性計測には、充放電レート特性、充放電容量、充放電サイクル劣化などがあり、いずれの計測もリチウムイオン電池に対して充電及び放電を伴っている。 In recent years, battery components have been actively developed in order to improve the characteristics of such lithium-ion batteries. Therefore, it is indispensable to measure the characteristics of lithium-ion batteries. The characteristic measurement of the lithium ion battery includes charge / discharge rate characteristics, charge / discharge capacity, charge / discharge cycle deterioration, and the like, and all the measurements involve charging and discharging the lithium ion battery.

図2は充放電レート計測の特性例を示しており、リチウムイオン電池を満充電した後に定電流で放電させ、時間と共にリチウムイオン電池電圧がどのように低下するかの計測例を示している。定電流の大きさとして、この例では1C(電池の公称容量を1時間で完全放電させる電流値)及び0.2C(電池の公称容量を5時間で完全放電させる電流値)を示しているが、これを更に0.5C、2C、3Cのように電流値を変化させて電圧の計測を繰り返し、総合特性を評価する。 FIG. 2 shows a characteristic example of charge / discharge rate measurement, and shows a measurement example of how the lithium ion battery voltage decreases with time after the lithium ion battery is fully charged and then discharged at a constant current. As the magnitude of the constant current, 1C (current value that completely discharges the nominal capacity of the battery in 1 hour) and 0.2C (current value that completely discharges the nominal capacity of the battery in 5 hours) are shown in this example. The current value is further changed to 0.5C, 2C, 3C, and the voltage measurement is repeated to evaluate the overall characteristics.

このような特性計測システムは図3の構成であり、全体を制御するコントローラ(例えばパソコンやCPU(Central Processing Unit),MPU(Micro Processor Unit),MCU(Micro Controller Unit)などで構成)1Aに、充放電と共に電流検出機能を有する充放電電源2と、端子間電圧を計測する電圧計測器4とが接続されており、充放電電源2及び電圧計測器4の間に1個のリチウムイオン電池(正極及び負極)3が接続されている。 Such a characteristic measurement system has the configuration shown in FIG. 3, and is configured in 1A of a controller (for example, a personal computer, a CPU (Central Processing Unit), an MPU (Micro Processor Unit), an MCU (Micro Controller Unit), etc.) that controls the whole. A charge / discharge power supply 2 having a charge / discharge and current detection function and a voltage measuring device 4 for measuring the voltage between terminals are connected, and one lithium ion battery (one lithium ion battery) is connected between the charge / discharge power supply 2 and the voltage measuring device 4. Positive positive and negative negative) 3 are connected.

このような構成において、CC(定電流)充電/CC(定電流)放電を例として、図4のフローチャートを参照して基本動作を説明する。 In such a configuration, the basic operation will be described with reference to the flowchart of FIG. 4 by taking CC (constant current) charging / CC (constant current) discharging as an example.

先ず、コントローラ1Aは充放電電源2に対して正方向の定電流出力を指示し、これにより充放電電源2はリチウムイオン電池3を充電する(ステップS1)。充電期間中、コントローラ1Aは電圧計測器4によりリチウムイオン電池3の端子間電圧を計測し、充放電電源2により充電電流値を計測する(ステップS2)。コントローラ1Aは、電圧計測器4により定格電圧が計測されるまで上記充電を継続し(ステップS3)、計測電圧が定格電圧に達した時点で充電を停止する(ステップS4)。 First, the controller 1A instructs the charging / discharging power supply 2 to output a constant current in the positive direction, whereby the charging / discharging power supply 2 charges the lithium ion battery 3 (step S1). During the charging period, the controller 1A measures the voltage between the terminals of the lithium ion battery 3 by the voltage measuring instrument 4, and measures the charging current value by the charging / discharging power supply 2 (step S2). The controller 1A continues the above charging until the rated voltage is measured by the voltage measuring instrument 4 (step S3), and stops charging when the measured voltage reaches the rated voltage (step S4).

次いで、コントローラ1Aは充放電電源2に対して負方向の定電流出力を指示し、リチウムイオン電池3を放電する(ステップS5)。放電期間中、コントローラ1Aは電圧計測器4によりリチウムイオン電池3の端子間電圧を計測し、充放電電源2により放電電流値を計測する(ステップS6)。コントローラ1Aは、電圧計測器4により終止電圧が計測されるまで上記放電を継続し(ステップS7)、端子間電圧の計測電圧が終止電圧に達した時点で放電を停止する(ステップS8)。 Next, the controller 1A instructs the charging / discharging power source 2 to output a constant current in the negative direction, and discharges the lithium ion battery 3 (step S5). During the discharge period, the controller 1A measures the voltage between the terminals of the lithium ion battery 3 by the voltage measuring instrument 4, and measures the discharge current value by the charging / discharging power supply 2 (step S6). The controller 1A continues the discharge until the end voltage is measured by the voltage measuring instrument 4 (step S7), and stops the discharge when the measured voltage of the terminal voltage reaches the end voltage (step S8).

上記充放電を複数の定電流について実施し、リチウムイオン電池3の特性を計測する。 The charging / discharging is carried out for a plurality of constant currents, and the characteristics of the lithium ion battery 3 are measured.

WO2017/187637WO2017 / 187637 WO2018/187888WO2018 / 187888 特開2011-29139号公報Japanese Unexamined Patent Publication No. 2011-29139

上述した従来の特性計測方式の最大の課題は、コストが嵩むことである。即ち、リチウムイオン電池工場では、例えば1000個以上のセルを同時に計測するニーズがあるが、従来の計測方式では、多数のリチウムイオン電池を同時に特性計測する場合には、充放電電源の対象となるリチウムイオン電池の個数と同数だけ用意する必要がある。しかしながら、充放電電源は高価であるため、複数個を用意するとなると、設備費用が膨大になってしまうのが大きな問題である。また、リチウムイオン電池を1個ずつ特性計測すれば、多数のリチウムイオン電池を特性計測する場合には、時間と労力がかかり極めて不経済である。 The biggest problem of the above-mentioned conventional characteristic measurement method is that the cost increases. That is, in a lithium-ion battery factory, for example, there is a need to measure 1000 or more cells at the same time, but in the conventional measurement method, when the characteristics of a large number of lithium-ion batteries are measured at the same time, it is a target of charge / discharge power supply. It is necessary to prepare as many lithium-ion batteries as there are. However, since the charge / discharge power supply is expensive, it is a big problem that the equipment cost becomes enormous when a plurality of charge / discharge power supplies are prepared. Further, if the characteristics of each lithium ion battery are measured, it takes time and labor to measure the characteristics of a large number of lithium ion batteries, which is extremely uneconomical.

2つ目の課題は、放電時におけるリチウムイオン電池の最小電圧が低いことである。充放電電源で放電すると、リチウムイオン電池の端子間電圧は時間と共に徐々に低下し、遂には終止電圧に至る。しかしながら、終止電圧は非常に低いため、電源によっては放電可能な最小電圧を下回る場合がある。その場合、完全な放電の手前までしか正確な計測を行うことはできず、特性計測の信頼性が損なわれる。一方、放電可能な最小電圧が低い電源もあるが、それらは一般に高価であり、低電圧放電時の電流精度や回生効率など、性能面で不安が残る。 The second problem is that the minimum voltage of the lithium-ion battery at the time of discharge is low. When discharged by the charge / discharge power supply, the voltage between the terminals of the lithium ion battery gradually decreases with time, and finally reaches the final voltage. However, since the final voltage is very low, it may be lower than the minimum dischargeable voltage depending on the power source. In that case, accurate measurement can be performed only before the complete discharge, and the reliability of characteristic measurement is impaired. On the other hand, there are power supplies with a low minimum voltage that can be discharged, but they are generally expensive, and there are concerns about performance such as current accuracy and regenerative efficiency during low voltage discharge.

本発明は上述のような事情に基づいてなされたものであり、本発明の目的は、コストが嵩むことなく、多数のリチウムイオン電池の特性計測を同時に行い得ると共に、低電圧側の精度向上及び回生効率向上を実現するリチウムイオン電池の特性計測方法及びシステムを提供することにある。 The present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to be able to simultaneously measure the characteristics of a large number of lithium-ion batteries without increasing the cost, and to improve the accuracy on the low voltage side. It is an object of the present invention to provide a characteristic measurement method and a system of a lithium ion battery that realizes improvement of regeneration efficiency.

本発明はリチウムイオン電池の特性計測方法に関し、本発明の上記目的は、N(≧2)個のリチウムイオン電池を直列に接続し、前記N個のリチウムイオン電池を定電流充電し、前記N個のリチウムイオン電池の総電圧を監視し、前記総電圧が定格電圧以上となったときに、前記定電流充電を定電圧充電に切り替え、前記N個のリチウムイオン電池のそれぞれにバランス制御を実施し、前記定電圧充電の充電電流が定格電流以下となったときに、前記定電圧充電を停止し、前記N個のリチウムイオン電池を定電流放電し、前記N個のリチウムイオン電池の各端子間電圧及び直列接続の電流を計測し、前記端子間電圧が終止電圧となったときに、前記定電流放電を停止することを、種々の定電流及び種々の定電圧に対して実施し、前記N個のリチウムイオン電池の特性を計測することにより達成される。 The present invention relates to a method for measuring the characteristics of a lithium ion battery, and an object of the present invention is to connect N (≧ 2) lithium ion batteries in series, charge the N lithium ion batteries with a constant current, and charge the N lithium ion batteries with a constant current. The total voltage of the lithium ion batteries is monitored, and when the total voltage exceeds the rated voltage, the constant current charging is switched to the constant voltage charging, and balance control is performed for each of the N lithium ion batteries. Then, when the charging current of the constant voltage charging becomes equal to or less than the rated current, the constant voltage charging is stopped, the N lithium ion batteries are discharged at a constant current, and each terminal of the N lithium ion batteries is discharged. When the inter-terminal voltage and the current of the series connection are measured and the terminal-to-terminal voltage reaches the end voltage, the constant current discharge is stopped for various constant currents and various constant voltages. This is achieved by measuring the characteristics of N lithium-ion batteries.

また、本発明はリチウムイオン電池の特性計測システムに関し、本発明の上記目的は、全体を制御するコントローラと、N(≧2)個のリチウムイオン電池を直列に接続するセル接続手段と、前記コントローラに接続され、直列接続された前記N個のリチウムイオン電池を定電流充電、定電圧充電及び定電流放電する充放電電源と、前記コントローラに接続され、前記N個のリチウムイオン電池の各端子間電圧を計測する電圧計測器と、前記コントローラからのバランス指令に基づき、前記N個のリチウムイオン電池をバランス制御するバランス回路とを具備し、前記N個のリチウムイオン電池に対して前記充放電電源により定電流充電を行うと共に、第1の所定条件により定電圧充電に切り替え、前記バランス回路によるバランス制御が第2の所定条件となったときに、前記充放電電源は定電流放電を行い、前記N個のリチウムイオン電池の端子間電圧が第3の所定条件となったときに放電を停止し、前記N個のリチウムイオン電池の特性を計測することにより達成される。 Further, the present invention relates to a characteristic measurement system for a lithium ion battery, and the above object of the present invention is a controller for controlling the whole, a cell connecting means for connecting N (≧ 2) lithium ion batteries in series, and the controller. Between the charging / discharging power supply that charges the N lithium-ion batteries connected in series to the constant current charge, the constant voltage charge, and the constant current discharge, and the terminals of the N lithium ion batteries connected to the controller. A voltage measuring instrument for measuring voltage and a balance circuit for balancing control of the N lithium-ion batteries based on a balance command from the controller are provided, and the charge / discharge power supply for the N lithium-ion batteries is provided. When the constant current charging is performed and the constant voltage charging is switched to according to the first predetermined condition, and the balance control by the balance circuit becomes the second predetermined condition, the charge / discharge power supply performs constant current discharge, and the above. This is achieved by stopping the discharge when the voltage between the terminals of the N lithium-ion batteries reaches the third predetermined condition and measuring the characteristics of the N lithium-ion batteries.

本発明によれば、多数のリチウムイオン電池(セル)を同時に特性計測でき、非常に効率的かつ経済的である。従来と比較してバランス回路が付加され、充放電容量計測の場合には更に電流センサが付加されるが、これらは充放電電源より遥かに安価であるため、トータルコストが嵩むことはない。 According to the present invention, the characteristics of a large number of lithium ion batteries (cells) can be measured at the same time, which is very efficient and economical. A balance circuit is added as compared with the conventional case, and a current sensor is further added in the case of charge / discharge capacity measurement, but since these are much cheaper than the charge / discharge power supply, the total cost does not increase.

また、N個のリチウムイオン電池を直列接続することにより、リチウムイオン電池の総電圧は1セルのN倍となる。これにより、放電時におけるリチウムイオン電池の最小電圧が低いことに起因する充放電電源の課題を解決することができる。即ち、放電可能な最小電圧が低い高価な電源を必要とせず、低電圧放電時の電流精度や回生効率などを心配する必要がなくなる。 Further, by connecting N lithium ion batteries in series, the total voltage of the lithium ion batteries becomes N times that of one cell. This makes it possible to solve the problem of the charge / discharge power source caused by the low minimum voltage of the lithium ion battery at the time of discharge. That is, it does not require an expensive power source having a low minimum voltage that can be discharged, and it is not necessary to worry about current accuracy and regenerative efficiency at the time of low voltage discharge.

リチウムイオン電池の一例を示す外観図である。It is an external view which shows an example of a lithium ion battery. リチウムイオン電池の充放電レートの計測例を示す特性図である。It is a characteristic diagram which shows the measurement example of the charge / discharge rate of a lithium ion battery. リチウムイオン電池の従来の特性計測システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the conventional characteristic measurement system of a lithium ion battery. 従来の特性計測システムの動作例を示すフローチャートである。It is a flowchart which shows the operation example of the conventional characteristic measurement system. 本発明の構成例(第1実施形態)を示すブロック図である。It is a block diagram which shows the structural example (1st Embodiment) of this invention. 複数のリチウムイオン電池を直列に接続するセル接続手段の一例を示す外観展開図である。It is an external development view which shows an example of the cell connection means which connects a plurality of lithium ion batteries in series. 本発明で使用するダミーセルの一例を示す外観図である。It is an external view which shows an example of the dummy cell used in this invention. コントローラの構成例を示すブロック図である。It is a block diagram which shows the configuration example of a controller. バランス回路の構成例を示すブロック図である。It is a block diagram which shows the structural example of a balance circuit. バランス回路要素の負荷回路の構成例を示すブロック図である。It is a block diagram which shows the structural example of the load circuit of a balance circuit element. 本発明の動作例(第1実施形態)を示すフローチャートである。It is a flowchart which shows the operation example (1st Embodiment) of this invention. 本発明の構成例(第2実施形態)を示すブロック図である。It is a block diagram which shows the structural example (second embodiment) of this invention. 本発明の動作例(第2実施形態)を示すフローチャートである。It is a flowchart which shows the operation example (second embodiment) of this invention.

本発明では、CPU等で成るコントローラを介して、直列接続された多数個N(≧2)のリチウムイオン電池(以下、「セル」と称する場合もある)の特性計測を1個の充放電電源により同時に行い得ると共に、N個のリチウムイオン電池のそれぞれについてバランス制御を行うバランス回路を設けることにより、低電圧側の精度向上と回生効率の向上とを図り、効率的かつ経済的な特性計測を実現している。 In the present invention, the characteristics of a large number of N (≧ 2) lithium ion batteries (hereinafter, may be referred to as “cells”) connected in series via a controller including a CPU or the like are measured by one charge / discharge power supply. By providing a balance circuit that controls the balance of each of the N lithium-ion batteries at the same time, the accuracy on the low voltage side and the regeneration efficiency can be improved, and efficient and economical characteristic measurement can be performed. It has been realized.

以下に、本発明の実施形態を、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図5は、本発明の第1実施形態を図3に対応させて示しており、本発明では全体の制御や判定、管理等をコントローラ1が行い、N個(≧2)のリチウムイオン電池3-1~3-Nをセル接続手段に収容して電気的に直列に接続し、充放電電源2は、直列接続のリチウムイオン電池3-1~3-Nを定電流若しくは定電圧で充放電すると共に、充放電電流を計測し、更に両端部(リチウムイオン電池3-1の正極及びリチウムイオン電池3-Nの負極)の総電圧を計測するようになっている。 FIG. 5 shows the first embodiment of the present invention in correspondence with FIG. 3. In the present invention, the controller 1 performs overall control, determination, management, and the like, and N (≧ 2) lithium ion batteries 3 -1 to 3-N are housed in the cell connection means and electrically connected in series, and the charge / discharge power supply 2 charges / discharges the series-connected lithium ion batteries 3-1 to 3-N with a constant current or a constant voltage. At the same time, the charge / discharge current is measured, and the total voltage of both ends (the positive electrode of the lithium ion battery 3-1 and the negative electrode of the lithium ion battery 3-N) is measured.

図6に、N個のリチウムイオン電池3-1~3-Nを直列接続するセル接続手段の構成例を、リチウムイオン電池3-1~3-4の4個とした場合について示し説明する。リチウムイオン電池3-1~3-4にはそれぞれ正極端子3-1P~3-4P及び負極端子3-1N~3-4Nが設けられており、その配置関係は図6に示すように左右方向に正負交互の関係になっている。セル接続手段は、検査のためのリチウムイオン電池を収容する収容体30と、収納したリチウムイオン電池を保持して固定すると共に、電気的な接続を行うための固定部材20とで構成されている。収容体30には、リチウムイオン電池3-1~3-4を入れて収納するための断面矩形状の収納孔31~34が穿設されており、収納孔31~34の上方からリチウムイオン電池3-1~3-4をそれぞれ収納した後、上方より固定部材20を収容体30に装着して固定する構成となっている。 FIG. 6 shows and describes a configuration example of a cell connecting means for connecting N lithium ion batteries 3-1 to 3-N in series with four lithium ion batteries 3-1 to 3-4. The lithium ion batteries 3-1 to 3-4 are provided with positive electrode terminals 3-1P to 3-4P and negative electrode terminals 3-1N to 3-4N, respectively, and their arrangement is in the left-right direction as shown in FIG. There is an alternating positive and negative relationship. The cell connecting means includes an accommodating body 30 for accommodating a lithium ion battery for inspection, and a fixing member 20 for holding and fixing the accommodating lithium ion battery and making an electrical connection. .. The housing 30 is provided with storage holes 31 to 34 having a rectangular cross section for storing the lithium ion batteries 3-1 to 3-4, and the lithium ion batteries are provided from above the storage holes 31 to 34. After storing each of 3-1 to 3-4, the fixing member 20 is attached to the housing 30 from above and fixed.

固定部材20は、収容体30の上面を覆う平板状の蓋板21を備え、蓋板21の左右側面に、収容体30の側面を摺動して装着を円滑にするための長形状のガイド板22及び23が配設されていると共に、蓋板21の中央部に側板24が延接されている。側板24にはボールねじ25が螺合されており、ボールねじ25を回動することにより、側板24を介して蓋板21が昇降するようになっている。また、蓋板21の下面には電導材で成るプローブPR1~PR8が設けられており、プローブPR1~PR8は電気的に電圧計測器4及びバランス回路5に接続されると共に、プローブPR1は充放電電源2の正端子(+)に、プローブPR7は充放電電源2の負端子(-)にそれぞれ接続されている。プローブPR2及びPR4は導体片26-1により、プローブPR3及びPR5は導体片26-2により、プローブPR6及びPR8は導体片26-3によりそれぞれ接続されている。 The fixing member 20 includes a flat plate-shaped lid plate 21 that covers the upper surface of the accommodating body 30, and is a long guide for facilitating mounting by sliding the side surface of the accommodating body 30 on the left and right side surfaces of the lid plate 21. The plates 22 and 23 are arranged, and the side plate 24 is extended to the center of the lid plate 21. A ball screw 25 is screwed into the side plate 24, and by rotating the ball screw 25, the lid plate 21 moves up and down via the side plate 24. Further, probes PR1 to PR8 made of a conductive material are provided on the lower surface of the lid plate 21, and the probes PR1 to PR8 are electrically connected to the voltage measuring instrument 4 and the balance circuit 5, and the probe PR1 is charged and discharged. The probe PR7 is connected to the positive terminal (+) of the power supply 2, and the probe PR7 is connected to the negative terminal (−) of the charge / discharge power supply 2. The probes PR2 and PR4 are connected by a conductor piece 26-1, the probes PR3 and PR5 are connected by a conductor piece 26-2, and the probes PR6 and PR8 are connected by a conductor piece 26-3.

なお、プローブPR1~PR8の配設位置は、上下方向の関係において、リチウムイオン電池3-1~3-4の正極端子3-1P~3-4P及び負極端子3-1N~3-4Nに対向するようになっており、プローブPR1~PR8は同一の高さに形成されている。プローブPR1~PR8の形状は図示に限定されるものではなく、正極端子及び負極端子に接触若しくは押圧された状態で、電気的に導通できるものであれば良い。 The positions of the probes PR1 to PR8 face the positive electrode terminals 3-1P to 3-4P and the negative electrode terminals 3-1N to 3-4N of the lithium ion batteries 3-1 to 3-4 in the vertical relationship. The probes PR1 to PR8 are formed at the same height. The shapes of the probes PR1 to PR8 are not limited to those shown in the drawing, and may be any as long as they can be electrically conducted in a state of being in contact with or pressed against the positive electrode terminal and the negative electrode terminal.

このような構成において、リチウムイオン電池3-1~3-4をそれぞれ収容体30の収納孔31~34に収納した後、上方よりガイド板22及び23に沿って固定部材20を収容体30に被せて装着して固定する。その後、ボールねじ25をモータ等により回動することにより、側板24を経て蓋板21が徐々に下降し、遂にはプローブPR1、PR2,PR3,PR4、PR5、PR6、PR7、PR8の各先端がそれぞれ正極端子3-1P、負極端子3-1N、負極端子3-2N、正極端子3-2P、正極端子3-3P、負極端子3-3N、負極端子3-4N、正極端子3-4Pに接触若しくは押圧するので、その状態で停止する。この状態を保持することにより、図5に示すようなリチウムイオン電池3-1~3-4の直列接続を形成することができる。即ち、充放電電源2(+)→プローブPR1→正極端子3-1P→リチウムイオン電池3-1→負極端子3-1N→プローブPR2→導体片26-1→プローブPR4→正極端子3-2P→リチウムイオン電池3-2→負極端子3-2N→プローブPR3→導体片26-2→プローブPR5→正極端子3-3P→リチウムイオン電池3-3→負極端子3-3N→プローブPR6→導体片26-3→プローブPR8→正極端子3-4P→リチウムイオン電池3-4→負極端子3-4N→プローブPR7→充放電電源2(-+)の直列接続の経路を形成できる。 In such a configuration, after the lithium ion batteries 3-1 to 3-4 are housed in the storage holes 31 to 34 of the housing body 30, respectively, the fixing member 20 is placed in the housing body 30 along the guide plates 22 and 23 from above. Cover and attach to fix. After that, by rotating the ball screw 25 with a motor or the like, the lid plate 21 gradually descends through the side plate 24, and finally the tips of the probes PR1, PR2, PR3, PR4, PR5, PR6, PR7, and PR8 are reached. Contact with positive electrode terminal 3-1P, negative electrode terminal 3-1N, negative electrode terminal 3-2N, positive electrode terminal 3-2P, positive electrode terminal 3-3P, negative electrode terminal 3-3N, negative electrode terminal 3-4N, and positive electrode terminal 3-4P, respectively. Or, since it is pressed, it stops in that state. By maintaining this state, it is possible to form a series connection of the lithium ion batteries 3-1 to 3-4 as shown in FIG. That is, charge / discharge power supply 2 (+) → probe PR1 → positive electrode terminal 3-1P → lithium ion battery 3-1 → negative electrode terminal 3-1N → probe PR2 → conductor piece 26-1 → probe PR4 → positive electrode terminal 3-2P → Lithium ion battery 3-2 → Negative electrode terminal 3-2N → Probe PR3 → Conductor piece 26-2 → Probe PR5 → Positive electrode terminal 3-3P → Lithium ion battery 3-3 → Negative electrode terminal 3-3N → Probe PR6 → Conductor piece 26 -3 → Probe PR8 → Positive electrode terminal 3-4P → Lithium ion battery 3-4 → Negative electrode terminal 3-4N → Probe PR7 → Charge / discharge power supply 2 (− +) can be connected in series.

また、後述する特性計測に基づいて不良品をセル接続手段から排除した場合には、図7に示すように正負端子を導体片41で短絡したダミーセル40を、排除した不良品の代わりに収納部に収納する。ダミーセル40は正負端子を導体片41で短絡しただけの模擬品なので、コントローラ1はダミーセル40に対するバランス制御や電圧計測を無効化する。 Further, when a defective product is excluded from the cell connecting means based on the characteristic measurement described later, as shown in FIG. 7, the dummy cell 40 in which the positive and negative terminals are short-circuited by the conductor piece 41 is replaced with a storage unit instead of the excluded defective product. Store in. Since the dummy cell 40 is a simulated product in which the positive and negative terminals are simply short-circuited by the conductor piece 41, the controller 1 invalidates the balance control and the voltage measurement for the dummy cell 40.

なお、上述のセル接続手段では、4個のリチウムイオン電池3-1~3-4について説明しているが、4個に限定されるものではなく、任意の複数の直列接続の構成が可能である。つまり、N個(≧2)のリチウムイオン電池3-1~3-Nを収納孔に入れて収納したときに、プローブや導体片を介して電気的に直列に接続されると共に、リチウムイオン電池3-1~3-Nのそれぞれの正極及び負極を電気的に充放電電源2、電圧計測器4及びバランス回路5に接続可能な構造であれば良い。 In the above-mentioned cell connection means, four lithium ion batteries 3-1 to 3-4 are described, but the number is not limited to four, and any plurality of series connections can be configured. be. That is, when N (≧ 2) lithium-ion batteries 3-1 to 3-N are placed in the storage holes and stored, they are electrically connected in series via a probe or a conductor piece, and are lithium-ion batteries. Any structure may be used as long as the positive and negative electrodes of 3-1 to 3-N can be electrically connected to the charge / discharge power supply 2, the voltage measuring instrument 4, and the balance circuit 5.

図8はコントローラ1の機能的な構成例を示しており、CPU1-1が全体の制御等を行い、CPU1-1には充放電電源2、電圧計測器4及びバランス回路5が接続されると共に、充電指令部1-2、放電指令部1-3、電圧判定部1-4、電流判定部1-5、総電圧監視部1-6、切り替え部1-7、バランス指令部1-8が相互に接続されている。 FIG. 8 shows a functional configuration example of the controller 1, in which the CPU 1-1 controls the whole, and the charge / discharge power supply 2, the voltage measuring instrument 4, and the balance circuit 5 are connected to the CPU 1-1. , Charge command unit 1-2, discharge command unit 1-3, voltage judgment unit 1-4, current judgment unit 1-5, total voltage monitoring unit 1-6, switching unit 1-7, balance command unit 1-8. They are interconnected.

また、リチウムイオン電池3-1~3-Nのそれぞれの正極及び負極は、バランス回路5を構成するバランス回路要素5-1~5-Nに接続されると共に、電圧計測器4に接続されている。 Further, the positive electrode and the negative electrode of the lithium ion batteries 3-1 to 3-N are connected to the balance circuit elements 5-1 to 5-N constituting the balance circuit 5, and are also connected to the voltage measuring instrument 4. There is.

バランス回路要素5-1~5-Nはいずれも同一の構成であり、例えばリチウムイオン電池3-1に接続されているバランス回路要素5-1の構成は図9に示すようになっている。即ち、リチウムイオン電池3-1の端子間電圧Vtを検出し、端子間電圧Vtに応じた電流指令CMを出力する電圧検出部5-11と、電流指令CMに従って“A→B”又は“B→A”いずれの方向にも指定値の電流を流すことが可能で、それにより端子間電圧Vtを調整する負荷回路5-12とで構成されている。リチウムイオン電池3-1の端子間電圧Vtは電圧検出部5-11で検出され、検出結果として電流指令CMが出力されて負荷回路5-12に入力される。電圧検出部5-11は、端子間電圧Vtが上限電圧V以上の場合に、電流指令CMを出力して“A→B”の方向に電流を流し、端子間電圧Vtの上昇を抑制する。また、端子間電圧Vtが下限電圧V以下の場合に、電流指令CMを出力して“B→A”の方向に電流を流し、端子間電圧Vtの下降を抑制する。 The balance circuit elements 5-1 to 5-N all have the same configuration. For example, the configuration of the balance circuit element 5-1 connected to the lithium ion battery 3-1 is as shown in FIG. That is, the voltage detection unit 5-11 that detects the voltage Vt between the terminals of the lithium ion battery 3-1 and outputs the current command CM corresponding to the voltage Vt between the terminals, and "A → B" or "B" according to the current command CM. → A ”It is possible to pass a specified value of current in either direction, and it is composed of a load circuit 5-12 that adjusts the voltage Vt between terminals. The voltage Vt between terminals of the lithium ion battery 3-1 is detected by the voltage detection unit 5-11, and a current command CM is output as a detection result and input to the load circuit 5-12. When the terminal voltage Vt is equal to or higher than the upper limit voltage VH , the voltage detection unit 5-11 outputs a current command CM to flow a current in the direction of “A → B” to suppress an increase in the terminal voltage Vt. .. Further, when the voltage between terminals Vt is equal to or less than the lower limit voltage VL , a current command CM is output and a current is passed in the direction of “B → A” to suppress a decrease in the voltage Vt between terminals.

負荷回路5-12の構成は、例えば図10(A)に示す抵抗スイッチング方式、又は図10(B)に示す定電流制御方式である。図10(A)に示す抵抗スイッチング方式は、抵抗Rに直列接続されたスイッチ5-122を、電流指令CMに基づく駆動回路5-121によってON/OFF(開閉)するものであり、安価な回路であり、スイッチ5-122のON/OFF頻度を制御することにより所望の平均電流を得る方式である。また、図10(B)に示す定電流制御方式は、電流センサ5-124に直列接続されたFET(Field-Effect Transistor)を、電流指令CMに基づいて、電流センサ5-124の検出電流に従って定電流制御するものであり、高性能で所望の電流を滑らかに精度良く得る方式である。 The configuration of the load circuit 5-12 is, for example, the resistance switching method shown in FIG. 10A or the constant current control method shown in FIG. 10B. In the resistance switching method shown in FIG. 10A, the switch 5-122 connected in series with the resistance R is turned on / off (opened / closed) by the drive circuit 5-121 based on the current command CM, which is an inexpensive circuit. This is a method of obtaining a desired average current by controlling the ON / OFF frequency of the switches 5-122. Further, in the constant current control method shown in FIG. 10B, an FET (Field-Effect Transistor) connected in series to the current sensor 5-124 is connected according to the detected current of the current sensor 5-124 based on the current command CM. It controls a constant current, and is a method that obtains a desired current smoothly and accurately with high performance.

このような構成において、CC(定電流)-CV(定電圧)充電/CC(定電流)放電を例として、図11のフローチャートを参照して基本動作を説明する。下記特性計測を種々の定電流及び定電圧で行い、一定時間が経過しても、端子間電圧Vtが定格電圧に達しないセルがあれば、当該セルを不良品と判定して排除し、代わりに上述したダミーセル40を収納してから、残りのセルで特性計測の判定を継続する。 In such a configuration, the basic operation will be described with reference to the flowchart of FIG. 11 by taking CC (constant current) -CV (constant voltage) charging / CC (constant current) discharging as an example. The following characteristic measurement is performed with various constant currents and constant voltages, and if there is a cell whose terminal voltage Vt does not reach the rated voltage even after a certain period of time, the cell is judged to be defective and eliminated, and replaced. After storing the above-mentioned dummy cell 40 in the cell, the determination of the characteristic measurement is continued in the remaining cells.

先ず、N個のリチウムイオン電池を図6で説明したようなセル接続手段に収容して、リチウムイオン電池の直列接続を形成する。コントローラ1は、充電指令部1-2から充放電電源2に対して正の定電流出力を指示し、充放電電源2は直列接続された全てのリチウムイオン電池3-1~3-Nを同時に充電する(ステップS10)。充電期間中、コントローラ1は、電圧計測器4によりリチウムイオン電池3-1~3-Nの各端子間電圧Vtを計測すると共に、充放電電源2により直列接続を流れる充電電流を計測する(ステップS11)。また、充放電電源2は、直列接続されたリチウムイオン電池3-1~3-Nの総電圧を検出し(ステップS12)、総電圧監視部1-6により上記総電圧が定格電圧以上であるか否かを判定する(ステップS13)。なお、総電圧は、電圧計測器4で計測される各セルの端子間電圧を加算することによっても得られる。 First, N lithium-ion batteries are housed in the cell connection means as described with reference to FIG. 6 to form a series connection of the lithium-ion batteries. The controller 1 instructs the charge / discharge power supply 2 to output a positive constant current from the charge command unit 1-2, and the charge / discharge power supply 2 simultaneously connects all the lithium ion batteries 3-1 to 3-N connected in series. Charging (step S10). During the charging period, the controller 1 measures the voltage Vt between the terminals of the lithium ion batteries 3-1 to 3-N by the voltage measuring instrument 4, and measures the charging current flowing through the series connection by the charging / discharging power supply 2 (step). S11). Further, the charge / discharge power supply 2 detects the total voltage of the lithium ion batteries 3-1 to 3-N connected in series (step S12), and the total voltage monitoring unit 1-6 makes the total voltage equal to or higher than the rated voltage. Whether or not it is determined (step S13). The total voltage can also be obtained by adding the voltage between the terminals of each cell measured by the voltage measuring instrument 4.

上記ステップS13において総電圧が定格電圧よりも小さいと判定された場合には、上記定電流充電を継続し、総電圧が定格電圧以上になった場合には、切り替え部1-7により定電流充電を定電圧充電に切り替える(ステップS14)。同時に、コントローラ1はバランス指令部1-8からバランス指令BCを出力し、バランス回路5(バランス回路要素5-1~5-N)にリチウムイオン電池3-1~3-Nをそれぞれバランス制御するように指示する(ステップS20)。 If it is determined in step S13 that the total voltage is smaller than the rated voltage, the constant current charging is continued, and if the total voltage exceeds the rated voltage, the switching unit 1-7 charges the constant current. Is switched to constant voltage charging (step S14). At the same time, the controller 1 outputs the balance command BC from the balance command unit 1-8, and balance-controls the lithium ion batteries 3-1 to 3-N to the balance circuit 5 (balance circuit elements 5-1 to 5-N). (Step S20).

バランス回路5は、バランス回路要素5-1~5-Nにより各セルの端子間電圧Vtが、それぞれ指定された上限電圧Vを維持するように正側(A→Bの方向)に電流を流す。正側への充電の進行に伴い充電電流は徐々に小さくなるが、コントローラ1の電流判定部1-5は、充電電流が定格電流以下になったか否かを判定する(ステップS30)。上記ステップS30において充電電流が定格電流より大きいと判定された場合には、上記バランス制御を継続し、充電電流が定格電流以下になった場合には、充電指令部1-2により充放電電源2は充電を停止する(ステップS31)。 The balance circuit 5 applies a current to the positive side (in the direction of A → B) so that the voltage Vt between the terminals of each cell maintains the specified upper limit voltage VH by the balance circuit elements 5-1 to 5-N. Shed. The charging current gradually decreases as the charging to the positive side progresses, but the current determination unit 1-5 of the controller 1 determines whether or not the charging current is equal to or less than the rated current (step S30). If it is determined in step S30 that the charging current is larger than the rated current, the balance control is continued, and if the charging current is equal to or less than the rated current, the charging / discharging power supply 2 is supplied by the charging command unit 1-2. Stops charging (step S31).

次いで、コントローラ1は、放電指令部1-3により充放電電源2に対して負(B→Aの方向)の定電流出力を指示し、直列接続されたリチウムイオン電池3-1~3-Nを放電する(ステップS40)。放電期間中、コントローラ1は、電圧計測器4によりリチウムイオン電池3-1~3-Nの各端子間電圧Vtを計測し、充放電電源2により直列接続の放電電流を計測する(ステップS41)。コントローラ1は、電圧判定部1-4により電圧計測器4で計測された端子間電圧Vtが終止電圧となるまで上記放電を継続し(ステップS42)、計測された端子間電圧Vtが終止電圧に達した時点で、放電指令部1-3により放電を停止する(ステップS43)。コントローラ1は、N個のセルのうち、1つでも端子間電圧Vtが終止電圧に達したら放電を停止する。 Next, the controller 1 instructs the charge / discharge power supply 2 to output a negative (direction B → A) constant current by the discharge command unit 1-3, and the lithium ion batteries 3-1 to 3-N connected in series are connected in series. Is discharged (step S40). During the discharge period, the controller 1 measures the voltage Vt between the terminals of the lithium ion batteries 3-1 to 3-N by the voltage measuring instrument 4, and measures the discharge current of the series connection by the charging / discharging power supply 2 (step S41). .. The controller 1 continues the above discharge until the terminal voltage Vt measured by the voltage measuring instrument 4 by the voltage determination unit 1-4 reaches the cutoff voltage (step S42), and the measured terminal voltage Vt becomes the cutoff voltage. When it reaches the point, the discharge command unit 1-3 stops the discharge (step S43). The controller 1 stops discharging when the voltage Vt between terminals reaches the final voltage even at one of the N cells.

上記充放電を複数の定電流、定電圧について実施し、リチウムイオン電池3-1~3-Nの特性を同時に計測する。 The above charging and discharging are carried out for a plurality of constant currents and constant voltages, and the characteristics of the lithium ion batteries 3-1 to 3-N are measured at the same time.

次に、リチウムイオン電池の充放電容量計測を行う場合の本発明の実施形態(第2実施形態)を、図5に対応させた図12に示して説明する。 Next, an embodiment (second embodiment) of the present invention in the case of measuring the charge / discharge capacity of the lithium ion battery will be described with reference to FIG. 12 corresponding to FIG.

本第2実施形態では、バランス回路5によるバランス制御時の、リチウムイオン電池3-1~3-Nの各バランス電流を計測するための電流センサ6-1~6-Nが、各セルの負極に接続されている。なお、電流センサ6-1~6-Nは、各セルの正極に接続されていても良い
このような構成において、CC(定電流)-CV(定電圧)充電/CC-CV
放電を例として、基本動作を図13のフローチャートを参照して説明する。下記の特性計測を行い、計測電流値と時間からセル容量を計算し、規定容量に満たないセルがあれば、当該セルを不良品と判定して排除し、代わりに上述したダミーセル40を収納してから、残りのセルで特性計測の判定を継続する。
In the second embodiment, the current sensors 6-1 to 6-N for measuring each balance current of the lithium ion batteries 3-1 to 3-N at the time of balance control by the balance circuit 5 are the negative electrodes of each cell. It is connected to the. The current sensors 6-1 to 6-N may be connected to the positive electrode of each cell. In such a configuration, CC (constant current) -CV (constant voltage) charging / CC-CV
Taking discharge as an example, the basic operation will be described with reference to the flowchart of FIG. The following characteristic measurement is performed, the cell capacity is calculated from the measured current value and time, and if there is a cell that does not meet the specified capacity, the cell is judged to be defective and eliminated, and the above-mentioned dummy cell 40 is stored instead. After that, the judgment of characteristic measurement is continued in the remaining cells.

先ず、N個のリチウムイオン電池を図6で説明したようなセル接続手段に収容して、リチウムイオン電池の直列接続を形成する。コントローラ1は、充電指令部1-2から充放電電源2に対して正の定電流出力を指示し、充放電電源2は直列接続された全てのリチウムイオン電池3-1~3-Nを同時に充電する(ステップS10)。充電期間中、コントローラ1は、電圧計測器4によりリチウムイオン電池3-1~3-Nの各端子間電圧Vtを計測すると共に、充放電電源2により直列接続を流れる充電電流を計測する(ステップS11)。また、充放電電源2は直列接続されたリチウムイオン電池3-1~3-Nの総電圧を検出し(ステップS12)、総電圧監視部1-6により総電圧が定格電圧以上であるか否かを判定する(ステップS13)。 First, N lithium-ion batteries are housed in the cell connection means as described with reference to FIG. 6 to form a series connection of the lithium-ion batteries. The controller 1 instructs the charge / discharge power supply 2 to output a positive constant current from the charge command unit 1-2, and the charge / discharge power supply 2 simultaneously connects all the lithium ion batteries 3-1 to 3-N connected in series. Charging (step S10). During the charging period, the controller 1 measures the voltage Vt between the terminals of the lithium ion batteries 3-1 to 3-N by the voltage measuring instrument 4, and measures the charging current flowing through the series connection by the charging / discharging power supply 2 (step). S11). Further, the charge / discharge power supply 2 detects the total voltage of the lithium ion batteries 3-1 to 3-N connected in series (step S12), and whether or not the total voltage is equal to or higher than the rated voltage by the total voltage monitoring unit 1-6. (Step S13).

上記ステップS13において総電圧が定格電圧よりも小さいと判定された場合には、上記定電流充電を継続し、総電圧が定格電圧以上になった場合には、切り替え部1-7により定電流充電を定電圧充電に切り替える(ステップS14)。同時に、コントローラ1はバランス指令部1-8からバランス指令BCを出力し、バランス回路5(バランス回路要素5-1~5-N)にリチウムイオン電池3-1~3-Nをバランス制御するように指示する(ステップS20)。 If it is determined in step S13 that the total voltage is smaller than the rated voltage, the constant current charging is continued, and if the total voltage exceeds the rated voltage, the switching unit 1-7 charges the constant current. Is switched to constant voltage charging (step S14). At the same time, the controller 1 outputs the balance command BC from the balance command unit 1-8, and controls the balance of the lithium ion batteries 3-1 to 3-N to the balance circuit 5 (balance circuit elements 5-1 to 5-N). (Step S20).

バランス回路5は、バランス回路要素5-1~5-Nにより各セルの端子間電圧Vtが、それぞれ指定された上限電圧Vを維持するように正側(A→Bの方向)に電流を流す。この時、後の容量計算のために、電流センサ6-1~6-Nにより各セルのバランス電流を計測する(ステップS20A)。正側への充電の進行に伴い充電電流は徐々に小さくなるが、コントローラ1の充電判定部1-5は、充電電流が定格電流以下になったか否かを判定する(ステップS30)。上記ステップS30において充電電流が定格電流より大きいと判定された場合には、上記バランス制御を継続し、充電電流が定格電流以下になった場合には、充電指令部1-2により充放電電源2は充電を停止すると共に(ステップS31)、放電時間の計測を開始する(ステップS32)。 The balance circuit 5 applies a current to the positive side (in the direction of A → B) so that the voltage Vt between the terminals of each cell maintains the specified upper limit voltage VH by the balance circuit elements 5-1 to 5-N. Shed. At this time, the balance current of each cell is measured by the current sensors 6-1 to 6-N for the later capacity calculation (step S20A). The charging current gradually decreases as the charging to the positive side progresses, but the charging determination unit 1-5 of the controller 1 determines whether or not the charging current is equal to or less than the rated current (step S30). If it is determined in step S30 that the charging current is larger than the rated current, the balance control is continued, and if the charging current is equal to or less than the rated current, the charging / discharging power supply 2 is supplied by the charging command unit 1-2. Stops charging (step S31) and starts measuring the discharge time (step S32).

次いで、コントローラ1は、放電指令部1-3により充放電電源2に対して負(B→Aの方向)の定電流出力を指示し、直列接続されたリチウムイオン電池3-1~3-Nを放電する(ステップS40)。放電期間中、コントローラ1は、電圧計測器4によりリチウムイオン電池3-1~3-Nの各端子間電圧Vtを計測し、充放電電源2により直列接続の放電電流を計測する(ステップS41)。コントローラ1は、電圧判定部1-4により電圧計測器4で計測された端子間電圧Vtが終止電圧となるまで上記放電を継続し(ステップS42)、計測された端部電圧Vtが終止電圧に達した時点で、放電指令部1-3により放電を停止する(ステップS43)。コントローラ1は、N個のセルのうち、1つでも端子間電圧Vtが終止電圧に達したら放電を停止する。 Next, the controller 1 instructs the charge / discharge power supply 2 to output a negative (direction B → A) constant current by the discharge command unit 1-3, and the lithium ion batteries 3-1 to 3-N connected in series are connected in series. Is discharged (step S40). During the discharge period, the controller 1 measures the voltage Vt between the terminals of the lithium ion batteries 3-1 to 3-N by the voltage measuring instrument 4, and measures the discharge current of the series connection by the charging / discharging power supply 2 (step S41). .. The controller 1 continues the above discharge until the terminal voltage Vt measured by the voltage measuring instrument 4 by the voltage determination unit 1-4 reaches the cutoff voltage (step S42), and the measured end voltage Vt becomes the cutoff voltage. When it reaches the point, the discharge command unit 1-3 stops the discharge (step S43). The controller 1 stops discharging when at least one of the N cells reaches the final voltage Vt between terminals.

そして、計測している放電時間が規定時間以上となったときに終了となるが(ステップS43)、規定時間より前に終止電圧になるセルは放電容量不足なので、不良セルとして排除し、ダミーセル40と交換する(ステップS44)。 Then, the process ends when the measured discharge time exceeds the specified time (step S43), but the cell whose end voltage reaches the end voltage before the specified time has insufficient discharge capacity, so it is excluded as a defective cell and the dummy cell 40 is used. Is exchanged for (step S44).

上記充放電を複数の定電流、定電圧について実施し、リチウムイオン電池3-1~3-Nの特性を計測する。 The above charging and discharging are carried out for a plurality of constant currents and constant voltages, and the characteristics of the lithium ion batteries 3-1 to 3-N are measured.

本発明では、N個(複数)のリチウムイオン電池に対して、1個の充放電電源があれば良いので、大幅なコストダウンが可能となる。本発明は従来方式より、バランス回路や電流センサ(充放電容量計測のみに必要)が増えるが、これらは充放電電源より遥かに安価であるため、トータルコストの低さは変わらない。また、N個のリチウムイオン電池を直列接続することにより、セルの総電圧は1セルのN倍となる。これにより、放電時におけるセルの最小電圧が低いことに起因する充放電電源の課題を解決できる。つまり、放電可能な最小電圧が低い高価な電源を必要とせず、低電圧放電時の電流精度や回生効率などを心配する必要がなくなる。 In the present invention, one charge / discharge power source is required for N (plural) lithium ion batteries, so that the cost can be significantly reduced. The present invention requires more balance circuits and current sensors (necessary only for charge / discharge capacity measurement) than the conventional method, but these are much cheaper than the charge / discharge power supply, so the total cost remains low. Further, by connecting N lithium ion batteries in series, the total voltage of the cells becomes N times that of one cell. This can solve the problem of the charge / discharge power supply caused by the low minimum voltage of the cell at the time of discharge. That is, there is no need for an expensive power source having a low minimum voltage that can be discharged, and there is no need to worry about current accuracy and regenerative efficiency at the time of low voltage discharge.

1、1A コントローラ
1-1 CPU
1-2 充電指令部
1-3 放電指令部
1-4 電圧判定部
1-5 電流判定部
1-6 総電圧監視部
1-7 切り替え部
1-8 バランス指令部
2 充放電電源
3、3-1~3-N リチウムイオン電池(セル)
4 電圧計測器
5 バランス回路
5-1~5-N バランス回路要素
6-1~6-N 電流センサ
10 電池本体
11 正極端子
12 負極端子
20 固定部材
21 蓋部
22,23 ガイド
30 収容体
31~34 収納孔
40 ダミーセル
1, 1A controller 1-1 CPU
1-2 Charge command unit 1-3 Discharge command unit 1-4 Voltage judgment unit 1-5 Current judgment unit 1-6 Total voltage monitoring unit 1-7 Switching unit 1-8 Balance command unit 2 Charge / discharge power supply 3, 3- 1-3-N lithium-ion battery (cell)
4 Voltage measuring instrument 5 Balance circuit 5-1 to 5-N Balance circuit element 6-1 to 6-N Current sensor 10 Battery body 11 Positive electrode terminal 12 Negative electrode terminal 20 Fixing member 21 Lid 22, 23 Guide 30 Housing 31 to 34 Storage hole 40 Dummy cell

Claims (8)

N(≧2)個のリチウムイオン電池を直列に接続し、
前記N個のリチウムイオン電池を定電流充電し、
前記N個のリチウムイオン電池の総電圧を監視し、
前記総電圧が定格電圧以上となったときに、前記定電流充電を定電圧充電に切り替え、
前記N個のリチウムイオン電池のそれぞれにバランス制御を実施し、
前記定電圧充電の充電電流が定格電流以下となったときに、前記定電圧充電を停止し、
前記N個のリチウムイオン電池を定電流放電し、
前記N個のリチウムイオン電池の各端子間電圧及び直列接続の電流を計測し、
前記端子間電圧が終止電圧となったときに、前記定電流放電を停止することを、
種々の定電流及び種々の定電圧に対して実施し、前記N個のリチウムイオン電池の特性を計測することを特徴とするリチウムイオン電池の特性計測方法。
Connect N (≧ 2) lithium-ion batteries in series,
The N lithium-ion batteries are charged with a constant current to charge them.
Monitor the total voltage of the N lithium-ion batteries and
When the total voltage becomes equal to or higher than the rated voltage, the constant current charge is switched to the constant voltage charge.
Balance control was performed on each of the N lithium-ion batteries.
When the charging current of the constant voltage charge becomes equal to or less than the rated current, the constant voltage charge is stopped.
The N lithium-ion batteries are discharged with a constant current to be discharged.
The voltage between each terminal of the N lithium-ion batteries and the current connected in series were measured.
When the voltage between the terminals reaches the cutoff voltage, the constant current discharge is stopped.
A method for measuring the characteristics of a lithium ion battery, which is carried out for various constant currents and various constant voltages, and measures the characteristics of the N lithium ion batteries.
前記定電圧充電、前記定電圧充電及び前記定電流放電を各種電流、各種電圧について実施するようになっている。請求項1に記載のリチウムイオン電池の特性計測方法。 The constant voltage charge, the constant voltage charge, and the constant current discharge are performed for various currents and various voltages. The method for measuring the characteristics of a lithium ion battery according to claim 1. 前記バランス制御が、前記N個のリチウムイオン電池の各端子間電圧が所定の上限電圧を維持する制御である請求項1又は2に記載のリチウムイオン電池の特性計測方法。 The method for measuring the characteristics of a lithium ion battery according to claim 1 or 2, wherein the balance control is a control in which the voltage between each terminal of the N lithium ion batteries maintains a predetermined upper limit voltage. 前記バランス制御時に、前記N個のリチウムイオン電池の各バランス電流を計測し、前記各バランス電流に基づく容量によって特性計測を実施する請求項3に記載のリチウムイオン電池の特性計測方法。 The method for measuring the characteristics of a lithium ion battery according to claim 3, wherein each balance current of the N lithium ion batteries is measured at the time of the balance control, and the characteristics are measured by the capacity based on the respective balance currents. 全体を制御するコントローラと、
N(≧2)個のリチウムイオン電池を直列に接続するセル接続手段と、
前記コントローラに接続され、直列接続された前記N個のリチウムイオン電池を定電流充電、定電圧充電及び定電流放電する充放電電源と、
前記コントローラに接続され、前記N個のリチウムイオン電池の各端子間電圧を計測する電圧計測器と、
前記コントローラからのバランス指令に基づき、前記N個のリチウムイオン電池をバランス制御するバランス回路と、
を具備し、前記N個のリチウムイオン電池に対して前記充放電電源により定電流充電を行うと共に、第1の所定条件により定電圧充電に切り替え、前記バランス回路によるバランス制御が第2の所定条件となったときに、前記充放電電源は定電流放電を行い、前記N個のリチウムイオン電池の端子間電圧が第3の所定条件となったときに放電を停止し、前記N個のリチウムイオン電池の特性を計測することを特徴とするリチウムイオン電池の特性計測システム。
A controller that controls the whole,
A cell connection means for connecting N (≧ 2) lithium-ion batteries in series,
A charge / discharge power supply that charges the N lithium-ion batteries connected in series to the controller with constant current charging, constant voltage charging, and constant current discharge.
A voltage measuring instrument connected to the controller and measuring the voltage between each terminal of the N lithium-ion batteries, and a voltage measuring instrument.
A balance circuit that controls the balance of the N lithium-ion batteries based on the balance command from the controller, and
The N lithium-ion batteries are charged with a constant current by the charge / discharge power source, and switched to a constant voltage charge according to the first predetermined condition, and the balance control by the balance circuit is the second predetermined condition. When becomes, the charge / discharge power supply performs constant current discharge, stops discharging when the voltage between the terminals of the N lithium ion batteries reaches the third predetermined condition, and causes the N lithium ions. A characteristic measurement system for lithium-ion batteries, which is characterized by measuring the characteristics of the battery.
前記バランス回路が、前記N個のリチウムイオン電池のそれぞれに対応するバランス回路要素で構成されており、
前記バランス回路要素が、
前記リチウムイオン電池の端子間電圧を検出し、電流指令を出力する電圧検出部と、
前記電流指令に従って正又は負方向に電流を流すことが可能で、前記端子間電圧を調整する負荷回路と、
で構成されている請求項5に記載のリチウムイオン電池の特性計測システム。
The balance circuit is composed of balance circuit elements corresponding to each of the N lithium-ion batteries.
The balance circuit element
A voltage detector that detects the voltage between the terminals of the lithium-ion battery and outputs a current command,
A load circuit that can flow current in the positive or negative direction according to the current command and adjusts the voltage between the terminals.
The characteristic measurement system for a lithium ion battery according to claim 5.
前記負荷回路が抵抗スイッチング方式若しくは定電流制御方式である請求項6に記載のリチウムイオン電池の特性計測システム。 The characteristic measurement system for a lithium ion battery according to claim 6, wherein the load circuit is a resistance switching system or a constant current control system. 前記第1の所定条件が、前記N個のリチウムイオン電池の総電圧が定格電圧以上であるか否かであり、
前記第2の所定条件が、充電電流が定格電流以下であるか否かであり、
前記第3の所定条件が、前記各端子間電圧が終止電圧あるか否かである請求項5乃至7のいずれかに記載のリチウムイオン電池の特性計測システム。
The first predetermined condition is whether or not the total voltage of the N lithium-ion batteries is equal to or higher than the rated voltage.
The second predetermined condition is whether or not the charging current is equal to or less than the rated current.
The characteristic measurement system for a lithium ion battery according to any one of claims 5 to 7, wherein the third predetermined condition is whether or not the voltage between the terminals has a cutoff voltage.
JP2020160693A 2020-09-25 2020-09-25 METHOD AND SYSTEM FOR MEASURING CHARACTERISTICS OF LITHIUM-ION BATTERY Active JP7217538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020160693A JP7217538B2 (en) 2020-09-25 2020-09-25 METHOD AND SYSTEM FOR MEASURING CHARACTERISTICS OF LITHIUM-ION BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020160693A JP7217538B2 (en) 2020-09-25 2020-09-25 METHOD AND SYSTEM FOR MEASURING CHARACTERISTICS OF LITHIUM-ION BATTERY

Publications (2)

Publication Number Publication Date
JP2022053841A true JP2022053841A (en) 2022-04-06
JP7217538B2 JP7217538B2 (en) 2023-02-03

Family

ID=80994373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020160693A Active JP7217538B2 (en) 2020-09-25 2020-09-25 METHOD AND SYSTEM FOR MEASURING CHARACTERISTICS OF LITHIUM-ION BATTERY

Country Status (1)

Country Link
JP (1) JP7217538B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116613865A (en) * 2023-07-18 2023-08-18 广东电网有限责任公司东莞供电局 Battery quick-charging method, battery energy storage system and energy storage power station

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332310A (en) * 2000-05-22 2001-11-30 Nippon Telegr & Teleph Corp <Ntt> Capacity estimating method and deterioration judging apparatus for lithium ion cell and lithium ion cell pack
JP2002270249A (en) * 2001-03-08 2002-09-20 Fujitsu Denso Ltd Battery pack evaluation test system
WO2014017463A1 (en) * 2012-07-24 2014-01-30 株式会社日本マイクロニクス Charging/discharging device
WO2017073018A1 (en) * 2015-10-30 2017-05-04 三洋電機株式会社 Power storage unit and power storage system
WO2018203509A1 (en) * 2017-05-01 2018-11-08 株式会社Gsユアサ Power storage system and method for inspecting minute short-circuiting
JP2020020732A (en) * 2018-08-03 2020-02-06 株式会社Gsユアサ Inspection device and method for inspection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332310A (en) * 2000-05-22 2001-11-30 Nippon Telegr & Teleph Corp <Ntt> Capacity estimating method and deterioration judging apparatus for lithium ion cell and lithium ion cell pack
JP2002270249A (en) * 2001-03-08 2002-09-20 Fujitsu Denso Ltd Battery pack evaluation test system
WO2014017463A1 (en) * 2012-07-24 2014-01-30 株式会社日本マイクロニクス Charging/discharging device
WO2017073018A1 (en) * 2015-10-30 2017-05-04 三洋電機株式会社 Power storage unit and power storage system
WO2018203509A1 (en) * 2017-05-01 2018-11-08 株式会社Gsユアサ Power storage system and method for inspecting minute short-circuiting
JP2020020732A (en) * 2018-08-03 2020-02-06 株式会社Gsユアサ Inspection device and method for inspection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116613865A (en) * 2023-07-18 2023-08-18 广东电网有限责任公司东莞供电局 Battery quick-charging method, battery energy storage system and energy storage power station
CN116613865B (en) * 2023-07-18 2024-03-08 广东电网有限责任公司东莞供电局 Battery quick-charging method, battery energy storage system and energy storage power station

Also Published As

Publication number Publication date
JP7217538B2 (en) 2023-02-03

Similar Documents

Publication Publication Date Title
KR101497602B1 (en) Balancing system for battery and Method for balancing of battery using the same
US6504344B1 (en) Monitoring battery packs
CN109671997B (en) Electronic device and charging method
CN110764015A (en) Battery control apparatus and method for detecting internal short circuit of battery
US20120148890A1 (en) Battery system
CN113811781B (en) Battery diagnosis device and method
KR20100131002A (en) Method for detecting cell state-of-charge and state-of-discharge divergence of a series string of batteries or capacitors
CN101765941A (en) Battery internal short-circuit detecting device and method, battery pack, and electronic device system
US20170131363A1 (en) Improved Battery Testing Device
JP2015220856A (en) Battery residual amount prediction device and battery pack
JP2023522463A (en) Battery management system, battery pack, energy storage system and battery management method
JP2018054371A (en) Battery device and method of setting parameter
KR20210004646A (en) Dignosis apparatus and method of battery cell
JP2022053841A (en) Lithium-ion battery characteristic measurement method and system
EP4024070A1 (en) Battery control device
JP2016122542A (en) Failure determination method for power storage device
KR101734724B1 (en) Apparatus for detecting electric leakage of electric vehicle
KR102196270B1 (en) Method and apparatus for detecting short of a battery cell
Shili et al. Balancing circuit control for supercapacitor state estimation
WO2022044775A1 (en) Power storage device and life determination method
JP2018129896A (en) Battery Management Unit
US20070063672A1 (en) Rechargeable battery pack and electrical hand tool device
KR20210088124A (en) Voltage balancing apparatus battery cells and method thereof
US3431481A (en) Coulometer
EP4297236A1 (en) Battery equipment discharge balancing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230117

R150 Certificate of patent or registration of utility model

Ref document number: 7217538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150