JP2022038859A - Alloy ingot for bonding material - Google Patents

Alloy ingot for bonding material Download PDF

Info

Publication number
JP2022038859A
JP2022038859A JP2020143554A JP2020143554A JP2022038859A JP 2022038859 A JP2022038859 A JP 2022038859A JP 2020143554 A JP2020143554 A JP 2020143554A JP 2020143554 A JP2020143554 A JP 2020143554A JP 2022038859 A JP2022038859 A JP 2022038859A
Authority
JP
Japan
Prior art keywords
mass
alloy
intermetallic compound
alloy ingot
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020143554A
Other languages
Japanese (ja)
Other versions
JP6890201B1 (en
Inventor
重信 関根
Shigenobu Sekine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Napra Co Ltd
Original Assignee
Napra Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Napra Co Ltd filed Critical Napra Co Ltd
Priority to JP2020143554A priority Critical patent/JP6890201B1/en
Priority to TW110116698A priority patent/TWI752878B/en
Application granted granted Critical
Publication of JP6890201B1 publication Critical patent/JP6890201B1/en
Priority to CN202110709413.7A priority patent/CN114101967B/en
Publication of JP2022038859A publication Critical patent/JP2022038859A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/282Zn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin

Abstract

To provide an alloy ingot for a bonding material, which has excellent bonding strength even in a severe temperature change in an extremely high temperature or low temperature environment, has flexibility characteristics capable of withstanding a continuous vibration operation, and has excellent mechanical strength.SOLUTION: There is provided an alloy ingot for a bonding material, in which an intermetallic compound crystal containing Sn, Cu, Ni and Ge is contained in a host phase containing Sn and Sn-Cu alloy, the composition of the intermetallic compound crystal is 5 to 50 mass% of Cu, 6.5 to 0.1 mass% of Ni, 0.001-0.1 mass% of Ge, and the remainder of Sn, the composition of the host phase is 95 to 99.9 mass% of Sn, 5 mass% or less of Cu, and 0.1 mass% or less of inevitable impurities, and the Sn-Cu alloy in the host phase and at least one part of the intermetallic compound crystal are end-taxial-bonded.SELECTED DRAWING: Figure 1

Description

本発明は、接合材用合金インゴットに関する。 The present invention relates to an alloy ingot for a bonding material.

IoT(Internet of Things)の進展や、一層の省エネルギーが求められる中で、その技術の核心を担うパワー半導体の重要性が益々高まっている。しかしながら、その活用には多くの課題がある。パワー半導体は、高電圧、大電流の大きな電力を扱うことから、多くの熱を発して高温となる。現行のSiパワー半導体に求められる耐熱性は約175℃程度への対応であるが、約200℃の温度に耐えるSiパワー半導体の開発が進められており、また、SiCやGaN、Ga2O3、のような次世代のパワー半導体は250~500℃に耐えることができ、さらに乗り物に搭載させる場合は過酷な振動連続動作状態に耐え得る柔軟性特性(以下、振動連続動作状態特性とも言う)が要求される。 With the progress of IoT (Internet of Things) and the demand for further energy saving, the importance of power semiconductors, which play a central role in the technology, is increasing. However, there are many problems in its utilization. Since power semiconductors handle large amounts of high voltage and large current, they generate a lot of heat and become hot. The heat resistance required for current Si power semiconductors is about 175 ° C, but the development of Si power semiconductors that can withstand a temperature of about 200 ° C is underway, and SiC, GaN, and Ga 2 O 3 are being developed. Next-generation power semiconductors such as , can withstand 250 to 500 ° C, and when mounted on a vehicle, they have flexibility characteristics that can withstand harsh vibration continuous operation conditions (hereinafter, also referred to as vibration continuous operation state characteristics). Is required.

一方、接合材に関して言えば、上述のようなSiCやGaNのような次世代のパワー半導体に求められる高い耐熱性を有し、かつ振動連続動作状態特性を有するものは、従来技術には存在しない。
例えば、特許文献1に開示されているSnAgCu系接合材(はんだ材料)では、約125℃程度に対応したパワー半導体に適用可能であるに過ぎず、次世代のパワー半導体に適用することができない。また特許文献3、特許文献4に開示されている低融点ろう材、ハンダ合金では、振動連続動作状態特性を持っていない。
On the other hand, regarding the bonding material, there is no conventional technology that has high heat resistance and vibration continuous operation state characteristics required for next-generation power semiconductors such as SiC and GaN as described above. ..
For example, the SnAgCu-based bonding material (solder material) disclosed in Patent Document 1 can only be applied to a power semiconductor corresponding to about 125 ° C., and cannot be applied to a next-generation power semiconductor. Further, the low melting point brazing material and the solder alloy disclosed in Patent Document 3 and Patent Document 4 do not have the vibration continuous operation state characteristic.

一方、本出願人は特許文献2において、外殻と、コア部とから成る金属粒子であって、前記コア部は、金属又は合金を含み、前記外殻は、金属間化合物から成り、前記コア部を覆っており、前記コア部は、Sn又はSn合金を含み、前記外殻は、SnとCuとの金属間化合物を含む、金属粒子を提案している。この金属粒子により形成された接合部は、長時間にわたって、高温動作状態から低温停止状態へと大きな温度変動を伴うなど、過酷な環境下で使用された場合でも、長期にわたって高い耐熱性、接合強度及び機械的強度を維持することができることが確認されている。しかし、接合構造部に対して過酷な振動連続動作状態が伴った場合、金属間化合物の欠点である脆さが障害になる。 On the other hand, in Patent Document 2, the applicant is a metal particle composed of an outer shell and a core portion, the core portion contains a metal or an alloy, and the outer shell is composed of an intermetallic compound, and the core. The core portion covers a portion, the core portion contains a Sn or Sn alloy, and the outer shell proposes a metal particle containing an intermetallic compound of Sn and Cu. The joint formed by these metal particles has high heat resistance and joint strength for a long period of time even when used in a harsh environment such as a large temperature fluctuation from a high temperature operation state to a low temperature stop state for a long time. And it has been confirmed that the mechanical strength can be maintained. However, when the joint structure is accompanied by a severe continuous vibration operation state, the brittleness, which is a drawback of the intermetallic compound, becomes an obstacle.

特開2007-268569号公報Japanese Unexamined Patent Publication No. 2007-268569 特許第6029222号公報Japanese Patent No. 60292222 特許第6369620号公報Japanese Patent No. 6369620 国際公開WO2014/084242A1パンフレットInternational release WO2014 / 084242A1 pamphlet

本発明の目的は、極高温ないし極低温環境の過酷な温度変動に対しても、優れた接合強度を有し、かつ、振動連続動作状態に耐え得る柔軟性特性を有し、優れた機械的強度を有する接合材となり得る、接合材用合金インゴットを提供することにある。 An object of the present invention is to have excellent bonding strength even with severe temperature fluctuations in an extremely high temperature or extremely low temperature environment, and to have flexibility characteristics capable of withstanding continuous vibration operation, and to have excellent mechanical properties. It is an object of the present invention to provide an alloy ingot for a bonding material which can be a bonding material having strength.

本発明者は鋭意検討を重ねた結果、特定の組成を有する母相中に、特定の元素組成および結晶構造を有する金属間化合物結晶を含み、前記母相と前記金属間化合物結晶の少なくとも1部をエンドタキシャル接合させてなる接合材用合金インゴットが、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of diligent studies, the present inventor contains an intermetallic compound crystal having a specific elemental composition and a crystal structure in a matrix having a specific composition, and at least one part of the matrix and the intermetallic compound crystal. We have found that an alloy ingot for a bonding material obtained by end-tactically bonding the above-mentioned problems can solve the above-mentioned problems, and have completed the present invention.

すなわち本発明は、SnおよびSn-Cu合金を含む母相中に、Sn、Cu、NiおよびGeを含む金属間化合物結晶を有する、接合材用合金インゴットであって、前記金属間化合物結晶の組成が、Cu5~50質量%、Ni6.5~0.1質量%、Ge0.001~0.1質量%、残部がSnであり、前記母相の組成がSn95~99.9質量%、Cu5質量%以下および不可避不純物0.1質量%以下であり、前記母相中のSn-Cu合金と前記金属間化合物結晶の少なくとも1部が、エンドタキシャル接合してなることを特徴とする接合材用合金インゴットを提供するものである。 That is, the present invention is an alloy ingot for a bonding material having an intermetallic compound crystal containing Sn, Cu, Ni and Ge in a matrix phase containing Sn and Sn—Cu alloy, and the composition of the intermetallic compound crystal. However, Cu5 to 50% by mass, Ni6.5 to 0.1% by mass, Ge0.001 to 0.1% by mass, the balance is Sn, and the composition of the matrix is Sn95 to 99.9% by mass, Cu5% by mass or less. An alloy ingot for a bonding material, which has an unavoidable impurity of 0.1% by mass or less and in which at least one part of the Sn—Cu alloy and the intermetallic compound crystal in the matrix are endtically bonded. It is to provide.

本発明によれば、極高温ないし極低温環境の過酷な温度変動に対しても、優れた接合強度を有し、かつ、振動連続動作状態に耐え得る柔軟性特性を有し、優れた機械的強度を有する接合材となり得る、接合材用合金インゴットを提供することができる。 According to the present invention, it has excellent bonding strength even with severe temperature fluctuations in an extremely high temperature or extremely low temperature environment, and has flexibility characteristics capable of withstanding continuous vibration operation, and is excellent in mechanical operation. It is possible to provide an alloy ingot for a bonding material which can be a bonding material having strength.

本発明の合金インゴットを樹脂包埋して薄くカッティングした断面のSEM像である。It is an SEM image of the cross section which cut thinly by embedding the alloy ingot of this invention with resin. 合金インゴット断面の金属間化合物結晶のEDSによる元素マッピング分析結果である。It is the element mapping analysis result by EDS of the intermetallic compound crystal of the alloy ingot cross section. 実施例1で得られた合金インゴットの断面のTEM像および透過型電子回折パターンである。It is a TEM image and a transmission electron diffraction pattern of the cross section of the alloy ingot obtained in Example 1. 比較例1の合金インゴットを樹脂包埋して薄くカッティングした断面のSEM像である。6 is an SEM image of a cross section obtained by embedding the alloy ingot of Comparative Example 1 in a resin and cutting it thinly. 比較例2の合金インゴットを樹脂包埋して薄くカッティングした断面のSEM像である。It is an SEM image of the cross section which the alloy ingot of Comparative Example 2 was embedded with resin and cut thinly. 実施例2、比較例1、2の合金インゴットの柔軟特性試験の結果を示す光学顕微鏡写真である。It is an optical micrograph which shows the result of the flexibility property test of the alloy ingot of Example 2, Comparative Examples 1 and 2. 本発明の合金インゴットを用いて接合可能な構造を説明するための模式断面図である。It is a schematic cross-sectional view for demonstrating the structure which can be joined using the alloy ingot of this invention.

以下、本発明をさらに詳しく説明する。
先に、本明細書における用語法は、特に説明がない場合であっても、以下による。
(1)金属というときは、金属元素単体のみならず、複数の金属元素を含む合金、金属間化合物を含むことがある。
(2)ある単体の金属元素に言及する場合、完全に純粋に当該金属元素のみからなる物質だけを意味するものではなく、微かな他の物質を含む場合もあわせて意味する。すなわち、当該金属元素の性質にほとんど影響を与えない微量の不純物を含むものを除外する意味ではないことは勿論、たとえば、母相という場合、Snの結晶中の原子の一部が他の元素(たとえば、Cu)に置き換わっているものを除外する意味ではない。例えば、前記他の物質または他の元素は、対象となる物質中、0~0.1質量%含まれる場合がある。
(3)エンドタキシャル接合とは、金属・合金となる物質中(本発明ではSnおよびSn-Cu合金を含む母相)に金属間化合物結晶が析出し、この析出の最中にSn-Cu合金と金属間化合物結晶とが結晶格子レベルで接合し、結晶粒を構成することを意味している。エンドタキシャルという用語は公知であり、例えばNature Chemisry 3(2): 160-6、2011年の160頁左欄最終パラグラフに記載がある。
Hereinafter, the present invention will be described in more detail.
First, the terminology used herein is as follows, even if not specifically explained.
(1) When referring to a metal, it may include not only a simple substance of a metal element but also an alloy containing a plurality of metal elements and an intermetallic compound.
(2) When referring to a single metal element, it does not mean only a substance completely composed of the metal element, but also means a case containing a slight other substance. That is, it does not mean to exclude those containing a trace amount of impurities that have almost no effect on the properties of the metal element. Of course, for example, in the case of a matrix phase, some of the atoms in the Sn crystal are other elements ( For example, it does not mean to exclude those that have been replaced with Cu). For example, the other substance or other element may be contained in the target substance in an amount of 0 to 0.1% by mass.
(3) Endotactic junction means that intermetallic compound crystals are precipitated in a material that becomes a metal / alloy (a matrix containing Sn and Sn—Cu alloy in the present invention), and the Sn—Cu alloy is deposited during this precipitation. It means that the intermetallic compound crystal and the intermetallic compound crystal are joined at the crystal lattice level to form crystal grains. The term endotactic is well known and is described, for example, in Nature Chemisry 3 (2): 160-6, 2011, page 160, left column, final paragraph.

本発明の接合材用合金インゴットは、高い靭性を有することから、上記課題を解決することができる。この高い靭性は、とくに、前記母相中に特定の組成を有する金属間化合物、すなわちSn、Cu、NiおよびGeを含む金属間化合物結晶を有すること、並びに、前記母相中のSn-Cu合金および前記金属間化合物結晶の少なくとも1部が、エンドタキシャル接合してなることに基づく。この構成によれば、とくに、接合材用合金インゴットに対して振動連続動作状態に耐え得る柔軟性特性を付与することが可能となる。 Since the alloy ingot for a bonding material of the present invention has high toughness, the above-mentioned problems can be solved. This high toughness particularly has an intermetallic compound having a specific composition in the matrix, that is, an intermetallic compound crystal containing Sn, Cu, Ni and Ge, and a Sn—Cu alloy in the matrix. And based on the fact that at least one part of the intermetallic compound crystal is endoxically bonded. According to this configuration, in particular, it is possible to impart flexibility characteristics that can withstand a continuous vibration operating state to an alloy ingot for a bonding material.

本発明の接合材用合金インゴット(以下、本発明の合金インゴットと呼ぶことがある)についてさらに説明する。 The alloy ingot for a bonding material of the present invention (hereinafter, may be referred to as an alloy ingot of the present invention) will be further described.

図1は、本発明の合金インゴットを樹脂包埋して薄くカッティングした断面のSEM像である。図1(b)は、図1(a)の部分拡大図である。図1(b)を参照すると、該合金インゴット10は、SnおよびSn-Cu合金を含む母相140中に、Sn、Cu、NiおよびGeを含む金属間化合物結晶120を有することが分かった。
また、金属間化合物結晶120は、単斜方晶及び六方晶の結晶構造を含有することが判明した。この金属間化合物結晶構造の確認は島津制XRD-6100観察装置とデーターベース:ICDD(International Centre for Diffraction Data)により行った。
FIG. 1 is an SEM image of a cross section obtained by embedding an alloy ingot of the present invention in a resin and cutting it thinly. 1 (b) is a partially enlarged view of FIG. 1 (a). Referring to FIG. 1 (b), it was found that the alloy ingot 10 has an intermetallic compound crystal 120 containing Sn, Cu, Ni and Ge in the matrix 140 containing the Sn and Sn—Cu alloys.
Further, it was found that the intermetallic compound crystal 120 contains a monochromatic orthorhombic crystal structure and a hexagonal crystal structure. This intermetallic compound crystal structure was confirmed by the Shimadzu XRD-6100 observation device and database: ICDD (International Center for Diffraction Data).

本発明の合金インゴットにおいて、金属間化合物結晶の組成は、Cu5~50質量%、Ni6.5~0.1質量%、Ge0.001~0.1質量%、残部がSnであり、好ましくは、Cuが40~10質量%、Niが0.3~5質量%、Geが0.001~0.01質量%、残部がSnである。 In the alloy ingot of the present invention, the composition of the intermetallic compound crystal is Cu 5 to 50% by mass, Ni 6.5 to 0.1% by mass, Ge 0.001 to 0.1% by mass, and the balance is Sn, preferably Cu. 40 to 10% by mass, Ni is 0.3 to 5% by mass, Ge is 0.001 to 0.01% by mass, and the balance is Sn.

本発明の合金インゴットは、例えば金属Cu8質量%、金属Ni1質量%、金属Ge0.001質量%および残部が金属Snからなる組成の原材料から製造することができる。例えば、本発明の合金インゴットは、該原材料を真空下、高周波誘導加熱することにより溶融させ、これを窒素ガス雰囲気中、大気圧下で鋳型鋳込みを行い、冷却固化させることにより得られる。 The alloy ingot of the present invention can be produced from, for example, a raw material having a composition of 8% by mass of metal Cu, 1% by mass of metal Ni, 0.001% by mass of metal Ge and the balance of metal Sn. For example, the alloy ingot of the present invention is obtained by melting the raw material by high-frequency induction heating under vacuum, casting the raw material into a mold under atmospheric pressure in a nitrogen gas atmosphere, and cooling and solidifying the raw material.

上記高周波誘導加熱および冷却固化条件は、本発明の合金インゴットを形成するために重要である。
例えば次のような条件が挙げられる。
高周波誘導加熱:9×10-2Pa程度まで減圧可能な性能を有する真空槽内に高周波溶解用るつぼを設置し、該るつぼに上記原材料を導入し、上記減圧度程度まで減圧したまま上記原材料に対し高周波誘導加熱を行い、加熱温度を600℃~800℃にして上記原材料を溶解させ、その温度を5分~15分保持する。
冷却固化:続いて、15~50℃の窒素ガスを槽内に流しつつ、大気圧下で上記加熱温度を約400℃以上に設定し、鋳型鋳込みを行い、30℃以下で冷却固化させる。
The high frequency induction heating and cooling solidification conditions are important for forming the alloy ingot of the present invention.
For example, the following conditions can be mentioned.
High-frequency induction heating: A high-frequency melting pot is installed in a vacuum chamber capable of depressurizing to about 9 × 10 -2 Pa, the above raw material is introduced into the pot, and the raw material is used while being depressurized to about the degree of decompression. On the other hand, high frequency induction heating is performed to melt the raw materials at a heating temperature of 600 ° C to 800 ° C, and the temperature is maintained for 5 to 15 minutes.
Cooling and solidification: Subsequently, while flowing nitrogen gas at 15 to 50 ° C. into the tank, the heating temperature is set to about 400 ° C. or higher under atmospheric pressure, mold casting is performed, and cooling and solidification is performed at 30 ° C. or lower.

また、本発明の合金インゴット中の金属間化合物結晶の割合は、例えば20~60質量%であり、30~40質量%が好ましい。
前記金属間化合物結晶の組成および割合は、前記合金インゴットの製造条件に従うことにより満たすことができる。
The proportion of intermetallic compound crystals in the alloy ingot of the present invention is, for example, 20 to 60% by mass, preferably 30 to 40% by mass.
The composition and proportion of the intermetallic compound crystal can be satisfied according to the production conditions of the alloy ingot.

本発明の合金インゴットは、前記母相中のSn-Cu合金および前記金属間化合物結晶の少なくとも1部が、エンドタキシャル接合してなる。上述のように、エンドタキシャル接合とは、金属・合金となる物質中(本発明ではSnおよびSn-Cu合金を含む母相)に金属間化合物が析出し、この析出の最中にSn-Cu合金と金属間化合物結晶とが結晶格子レベルで接合し、結晶粒を構成するものである。エンドタキシャル接合の形成と共にSn-Cu金属間化合物結晶に特定高融点金属元素を置換、侵入させた金属間化合物を作り出し、金属間化合物結晶の脆さの課題を解決できるとともに、下記で説明するSnの結晶構造の変化による機械的強度の低下も抑制でき、更に高い耐熱性、接合強度及び機械的強度を有する接合材を提供できる。なお、本発明の合金インゴットを用いて形成されたハンダ線は、金属粒子内の母相中のSn-Cu合金と金属間化合物結晶とのエンドタキシャル接合が維持されることを本発明者らは確認している。 In the alloy ingot of the present invention, at least one part of the Sn—Cu alloy and the intermetallic compound crystal in the matrix are endarily bonded. As described above, in the end-tactical junction, an intermetallic compound is precipitated in a material that becomes a metal / alloy (a matrix including Sn and Sn—Cu alloy in the present invention), and Sn—Cu is in the middle of this precipitation. The alloy and the intermetallic compound crystal are bonded at the crystal lattice level to form crystal grains. Along with the formation of the endpointic junction, the Sn-Cu intermetallic compound crystal is replaced with a specific refractory metal element to create an intermetallic compound, which can solve the problem of brittleness of the intermetallic compound crystal and Sn described below. It is possible to suppress a decrease in mechanical strength due to a change in the crystal structure of the above, and it is possible to provide a bonding material having higher heat resistance, bonding strength and mechanical strength. In addition, the present inventors have stated that the solder wire formed by using the alloy ingot of the present invention maintains the endaxial bonding between the Sn—Cu alloy in the matrix in the metal particles and the intermetallic compound crystal. I'm checking.

Snの結晶構造は、約13℃~約160℃の温度領域では正方晶(なお、正方晶の結晶構造を有するSnをβ-Snという。)であり、これより低い温度領域になると立方晶(なお、立方晶の結晶構造を有するSnをα-Snという。)に結晶構造が変化する。また、β-Snの結晶構造は、約160℃を超える温度領域で高温相結晶の斜方晶に変化する(なお、斜方晶の結晶構造を有するSnをγ-Snという。)。そして、とりわけ正方晶のβ-Snと立方晶のα-Snの間の相転移時には、大きな体積変化が生じることが一般的に知られている。
本発明の合金インゴットから製造された接合材(例えばハンダ線)は、約160℃以下でも(たとえば、常温でも)高温相結晶を含有している。例えば、この接合材を接合工程で加熱する際に、当該接合材を完全には溶融させない半溶融状態とし、金属間化合物と母相とのエンドタキシャル接合を含む状態とすれば、冷却後の160℃以下の温度領域でも高温相結晶を含む状態を維持する。そして、かかる高温相結晶は、ある程度まで温度を下げても、正方晶の低温相結晶β-Snへの相転移を起こしにくく、正方晶のβ-Snに相転移しないままのSnについては、α-Snへの相転移が生じず、温度の低下によるα-Snへの相転移に伴う大きな体積変化が生じない。したがって、160℃以下の温度領域でも(たとえば、常温でも)高温相結晶を有するSnを含む接合材は、Snを組成に含む他の接合材(すなわち、160℃以下の温度領域でも高温結晶相を意図的には含ませていないもの)よりも、温度変化による体積変化が低減される。
また、電子部品には、Cu、Ag、Au、Niその他さまざまな金属が用いられるが、Snは、これらのさまざまな金属と良好に接合する。
したがって、本発明の合金インゴットから製造された接合材は、幅広い温度領域で(たとえば、常温でも)高温相結晶相を含有し、正方晶の低温相β-Snが生じることを出来る限り回避することによって、温度変化による正方晶のβ-Snから立方晶のα-Snへの相転移に伴う大きな体積変化を起こしにくいという性質を有し、かつ、電子部品に用いられるさまざまな金属とも良好に接合するため、とりわけ微細な接合箇所の接合材に有用である。
The crystal structure of Sn is tetragonal (note that Sn having a tetragonal crystal structure is referred to as β-Sn) in the temperature region of about 13 ° C to about 160 ° C, and cubic (cubic) in the lower temperature region. Sn having a tetragonal crystal structure is referred to as α-Sn), and the crystal structure changes. Further, the crystal structure of β-Sn changes to an orthorhombic crystal of a high-temperature phase crystal in a temperature region exceeding about 160 ° C. (Note that Sn having an orthorhombic crystal structure is referred to as γ-Sn). It is generally known that a large volume change occurs, especially during the phase transition between the tetragonal β-Sn and the cubic α-Sn.
The bonding material (for example, solder wire) produced from the alloy ingot of the present invention contains high temperature phase crystals even at about 160 ° C. or lower (for example, at room temperature). For example, when the bonding material is heated in the bonding process, the bonding material is in a semi-molten state in which the bonding material is not completely melted, and if the state includes an endaxial bonding between the intermetallic compound and the matrix, 160 after cooling. The state containing high temperature phase crystals is maintained even in the temperature range below ° C. Even if the temperature of the high-temperature phase crystal is lowered to a certain extent, the phase transition of the square crystal to the low-temperature phase crystal β-Sn is unlikely to occur, and for Sn that does not undergo the phase transition to the square β-Sn, α No phase transition to -Sn occurs, and no large volume change occurs due to the phase transition to α-Sn due to a decrease in temperature. Therefore, a Sn-containing bonding material having a high-temperature phase crystal even in a temperature region of 160 ° C. or lower (for example, even at room temperature) has a high-temperature crystal phase in another bonding material containing Sn in the composition (that is, even in a temperature region of 160 ° C. or lower). The volume change due to temperature change is reduced as compared with the one not intentionally included).
Further, Cu, Ag, Au, Ni and various other metals are used for electronic components, and Sn is satisfactorily bonded to these various metals.
Therefore, the bonding material produced from the alloy ingot of the present invention contains a high temperature phase crystal phase in a wide temperature range (for example, even at room temperature), and avoids the formation of a square low temperature phase β-Sn as much as possible. Therefore, it has the property that it is difficult to cause a large volume change due to the phase transition from β-Sn of a square crystal to α-Sn of a cubic crystal due to a temperature change, and it is well bonded to various metals used for electronic parts. Therefore, it is particularly useful as a joining material for fine joining points.

上記Snの結晶構造の変化の抑制による効果は、合金インゴット中の母相と金属間化合物結晶とのエンドタキシャル接合によって良好に奏される。 The effect of suppressing the change in the crystal structure of Sn is satisfactorily achieved by the endotropic bonding between the matrix phase in the alloy ingot and the intermetallic compound crystal.

また本発明の合金インゴットにおいて、エンドタキシャル接合は、母相と金属間化合物結晶との接合面の全体を100%としたとき、30%以上が好ましく、60%以上がさらに好ましい。前記エンドタキシャル接合の割合は、例えば次のようにして算出できる。
下記図1で示すような合金インゴットの断面を電子顕微鏡写真撮影し、Sn-Cu合金と金属間化合物結晶との接合面を任意に50か所サンプリングする。続いて、その接合面を画像解析し、下記実施例で示すようなエンドタキシャル接合が、サンプリングした接合面に対してどの程度存在するのかを調べる。
Further, in the alloy ingot of the present invention, the endotactic junction is preferably 30% or more, more preferably 60% or more, when the entire junction surface between the matrix and the intermetallic compound crystal is 100%. The ratio of the endotactic junction can be calculated, for example, as follows.
An electron micrograph is taken of the cross section of the alloy ingot as shown in FIG. 1 below, and the joint surface between the Sn—Cu alloy and the intermetallic compound crystal is sampled at an arbitrary 50 points. Subsequently, the joint surface is image-analyzed to investigate how much end-tactical joint as shown in the following examples exists with respect to the sampled joint surface.

一方、本発明の合金インゴットは、常法によって粒子化することも可能である。このようにして得られた金属粒子の粒子径は、例えば好適には1μm~50μmの範囲である。この金属粒子を、シート状あるいはペースト状に加工し、これを接合対象物に接した状態で160℃~180℃を3分以上保持し235℃~265℃で溶融させた上で固化させることにより、良好な接合を形成することができる。また、接合時に、減圧条件下(50cmHg~100cmHgの減圧度)で1秒程度保持後、大気圧下で230℃程度に加熱し、続いて、この温度で雰囲気圧力を0.5~2MPaに維持し、最後に室温で固化させることによっても、良好な接合を形成することができる。
なお、本発明の合金インゴットを用いて形成された上記金属粒子は、金属粒子内の母相中のSn-Cu合金と金属間化合物結晶とのエンドタキシャル接合が維持されることを本発明者らは確認している。
On the other hand, the alloy ingot of the present invention can also be atomized by a conventional method. The particle size of the metal particles thus obtained is preferably in the range of, for example, 1 μm to 50 μm. By processing these metal particles into a sheet or paste, holding the metal particles at 160 ° C to 180 ° C for 3 minutes or more in contact with the object to be bonded, melting them at 235 ° C to 265 ° C, and then solidifying them. , A good bond can be formed. In addition, at the time of joining, after holding for about 1 second under decompression conditions (decompression degree of 50 cmHg to 100 cmHg), heat to about 230 ° C under atmospheric pressure, and then maintain the atmospheric pressure at this temperature to 0.5 to 2 MPa. Finally, solidification at room temperature can also form a good bond.
It should be noted that the present inventors have stated that the metal particles formed by using the alloy ingot of the present invention maintain the endaxial bonding between the Sn—Cu alloy in the matrix in the metal particles and the intermetallic compound crystal. Is confirming.

上記金属粒子のシートは、例えば、当該金属粒子を以下のようにローラーで圧接することによって得ることができる。すなわち、対向する向きに回転する一対の圧接ローラーの間に、上記金属粒子を供給し、圧接ローラーから金属粒子に約100℃から150℃程度の熱を加えて、金属粒子を圧接することによりシートが得られる。
また、上記ペーストは、金属粒子を有機ビヒクル中に混在させることにより得ることができる。
なお、シート状あるいはペースト状に加工された後の金属粒子においても、本発明の合金インゴットと同じ結晶構造を有することを本発明者らは確認している。
The sheet of the metal particles can be obtained, for example, by pressing the metal particles with a roller as follows. That is, the metal particles are supplied between the pair of pressure welding rollers rotating in opposite directions, heat of about 100 ° C. to 150 ° C. is applied to the metal particles from the pressure welding rollers, and the metal particles are pressure-welded to the sheet. Is obtained.
Further, the paste can be obtained by mixing metal particles in an organic vehicle.
The present inventors have confirmed that the metal particles after being processed into a sheet or a paste have the same crystal structure as the alloy ingot of the present invention.

なお、前記シートまたは前記導電性ペーストは、SnAgCu系合金粒子、Cu、Cu合金粒子、Ni、Ni合金粒子またはこれらの混合物のような他の粒子を加え、金属粒子との混合物としてもよい。これら他の粒子は、必要に応じてSiのような金属でコートされていてもよい。
例えば、Snより導電性が高いCuやNi合金粒子と組み合わせると、導電性がよく、かつ、比較的幅広い温度領域で体積変化が抑制された接合層が得られる。
The sheet or the conductive paste may be mixed with metal particles by adding other particles such as SnAgCu alloy particles, Cu, Cu alloy particles, Ni, Ni alloy particles or a mixture thereof. These other particles may be coated with a metal such as Si, if necessary.
For example, when combined with Cu or Ni alloy particles having higher conductivity than Sn, a bonded layer having good conductivity and suppressed volume change in a relatively wide temperature range can be obtained.

前記シートまたは前記導電性ペーストにおける、上記金属粒子の割合は、例えば50質量%以上であり、好ましくは70~80質量%である。 The proportion of the metal particles in the sheet or the conductive paste is, for example, 50% by mass or more, preferably 70 to 80% by mass.

図7は、本発明の合金インゴットを用いて接合可能な構造を説明するための模式断面図である。
基板100,500は、半導体素子を備え、例えばパワーデバイスなどの電子・電気機器を構成する基板であり、金属/合金体101,501は、電極、バンプ、端子またはリード導体などとして、基板100,500に一体的に設けられている接続部材である。パワーデバイスなどの電子・電気機器では、金属/合金体101,501は、一般にはCuまたはその合金として構成される。もっとも、基板100,500に相当する部分が、金属/合金体で構成されたものを排除するものではない。
FIG. 7 is a schematic cross-sectional view for explaining a structure that can be joined using the alloy ingot of the present invention.
The substrates 100 and 500 include semiconductor elements and constitute, for example, electronic and electrical equipment such as power devices, and the metal / alloy bodies 101 and 501 are used as electrodes, bumps, terminals, lead conductors and the like. It is a connecting member integrally provided on the 500. In electronic and electrical equipment such as power devices, the metal / alloy bodies 101 and 501 are generally configured as Cu or an alloy thereof. However, the portion corresponding to the substrates 100, 500 does not exclude the one made of a metal / alloy body.

以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されない。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited to the following examples.

実施例1
原材料として8質量%Cu、1質量%Ni、0.001質量%Ge、残部がSnからなる各金属の原材料を用い、下記条件の高周波誘導加熱および冷却固化を行い、本発明の合金インゴットを形成した。
高周波誘導加熱:9×10-2Pa程度まで減圧可能な性能を有する真空槽内に高周波溶解用るつぼを設置し、該るつぼに上記原材料を導入し、上記減圧度程度まで減圧したまま上記原材料に対し高周波誘導加熱を行い、加熱温度を650℃にして上記原材料を溶解させ、その温度を5分保持した。
冷却固化:続いて、15~50℃の窒素ガスを槽内に10分間流しつつ、大気圧下で原材料の加熱温度を約400℃に設定し、鋳型鋳込みを行い、室温で冷却固化させた。
得られた本発明の合金インゴットは、厚さ2cm、長さ20cm、幅3cmの矩形であり、前記図1に示すような断面を有していた。
図2は、図1(b)における「No,1」箇所の金属間化合物に対し、EDSによる元素マッピング分析を行った結果である。この分析結果から、金属間化合物結晶の組成は、Cuが17~33質量%、Niが1.8~4.22質量%、Geが0.007質量%、残部がSnであることが判明した。
Example 1
Using raw materials of each metal consisting of 8% by mass Cu, 1% by mass Ni, 0.001% by mass Ge, and the balance of Sn as raw materials, high-frequency induction heating and cooling solidification under the following conditions were performed to form the alloy ingot of the present invention.
High-frequency induction heating: A high-frequency melting pot is installed in a vacuum chamber capable of depressurizing to about 9 × 10 -2 Pa, the above raw material is introduced into the pot, and the raw material is used while being depressurized to about the degree of decompression. On the other hand, high frequency induction heating was performed, the heating temperature was set to 650 ° C., the above raw materials were melted, and the temperature was maintained for 5 minutes.
Cooling and solidification: Subsequently, while flowing nitrogen gas at 15 to 50 ° C. in the tank for 10 minutes, the heating temperature of the raw material was set to about 400 ° C. under atmospheric pressure, mold casting was performed, and cooling and solidification was performed at room temperature.
The obtained alloy ingot of the present invention was a rectangle having a thickness of 2 cm, a length of 20 cm, and a width of 3 cm, and had a cross section as shown in FIG.
FIG. 2 shows the results of element mapping analysis using EDS for the intermetallic compound at the “No. 1” location in FIG. 1 (b). From this analysis result, it was found that the composition of the intermetallic compound crystal was 17 to 33% by mass for Cu, 1.8 to 4.22% by mass for Ni, 0.007% by mass for Ge, and Sn for the balance.

また、得られた合金インゴットにおける金属間化合物は、合金インゴット中、30~35質量%を占めていた。 The intermetallic compound in the obtained alloy ingot accounted for 30 to 35% by mass in the alloy ingot.

図3は、得られた合金インゴットの断面のTEM像および透過型電子回折パターンである。
図3の透過型電子回折パターンは、エンドタキシャル接合部の状態を示すものであり、図3の透過型電子回折パターンから、淡色部で表される母相中のSn-Cu合金と、濃色部で表されるSn、Cu、NiおよびGeからなる金属間化合物とがエンドタキシャル接合していることが確認された。また、その結晶間にはバッファー層がないことも確認された。また、母相中のSn-Cu合金と金増感化合物との間で、格子定数(および結晶方位)が揃い、それぞれの結晶が、連続的に結晶格子レベルで接合していることが確認された。
FIG. 3 shows a TEM image of a cross section of the obtained alloy ingot and a transmission electron diffraction pattern.
The transmissive electron diffraction pattern of FIG. 3 shows the state of the end-axial junction, and from the transmissive electron diffraction pattern of FIG. 3, the Sn—Cu alloy in the matrix represented by the light-colored portion and the dark color. It was confirmed that the intermetallic compound composed of Sn, Cu, Ni and Ge represented by the part was endarily bonded. It was also confirmed that there was no buffer layer between the crystals. It was also confirmed that the lattice constants (and crystal orientations) of the Sn—Cu alloy and the gold sensitized compound in the matrix were uniform, and that each crystal was continuously bonded at the crystal lattice level. rice field.

比較例1
前記特許文献3(特許第6369620号公報)の実施例の記載に基づき試験を行った。原材料として8質量%Cu、1質量%Ni、0.001質量%Ge、残部がSnからなる各金属の原材料を用い、溶融炉の設定温度を450℃として原材料を溶融した後、水を循環させた回転鋳型の溝に溶融物を鋳込んだ。冷却速度は概ね30℃/sであった。そして、回転鋳型に超音波発振器を付設し、溶融はんだを鋳込む際に60kHzの超音波を印加した。
得られた比較例1の合金インゴットは、厚さ2cm、長さ20cm、幅3cmの矩形である。
図4は、比較例1の合金インゴットを樹脂包埋して薄くカッティングした断面のSEM像である。図4(b)は、図4(a)の部分拡大図である。図4(a)を参照すると、比較例1の合金インゴットは、SnおよびSn-Cu合金を含む母相240中に、Sn、Cu、NiおよびGeを含む金属間化合物結晶220を有するが、図4(b)で示すように、母相と金属間化合物結晶との界面で破断が生じ、エンドタキシャル接合が確認できなかった。
Comparative Example 1
The test was conducted based on the description of the examples in Patent Document 3 (Japanese Patent No. 6369620). Using raw materials of each metal consisting of 8% by mass Cu, 1% by mass Ni, 0.001% by mass Ge, and Sn as the raw material, the setting temperature of the melting furnace was set to 450 ° C., the raw materials were melted, and then water was circulated. The melt was cast into the groove of the mold. The cooling rate was approximately 30 ° C./s. Then, an ultrasonic oscillator was attached to the rotary mold, and 60 kHz ultrasonic waves were applied when casting the molten solder.
The obtained alloy ingot of Comparative Example 1 is a rectangle having a thickness of 2 cm, a length of 20 cm, and a width of 3 cm.
FIG. 4 is an SEM image of a cross section obtained by embedding the alloy ingot of Comparative Example 1 in a resin and cutting it thinly. FIG. 4B is a partially enlarged view of FIG. 4A. Referring to FIG. 4A, the alloy ingot of Comparative Example 1 has an intermetallic compound crystal 220 containing Sn, Cu, Ni and Ge in a matrix 240 containing a Sn and Sn—Cu alloy, which is shown in FIG. As shown in 4 (b), breakage occurred at the interface between the matrix and the intermetallic compound crystal, and endoaxial bonding could not be confirmed.

比較例2
前記特許文献4(国際公開WO2014/084242A1)に記載の方法に基づき試験を行った。原材料として8質量%Cu、1質量%Ni、0.001質量%Ge、残部がSnからなる各金属の原材料を用い、原材料を溶融した後、鋳型の溝に溶融物を鋳込み、室温で冷却した。
得られた比較例2の合金インゴットは、厚さ2cm、長さ20cm、幅3cmの矩形である。
図5は、比較例2の合金インゴットを樹脂包埋して薄くカッティングした断面のSEM像である。図5(b)は、図5(a)の部分拡大図である。図5(a)を参照すると、比較例2の合金インゴットは、SnおよびSn-Cu合金を含む母相340中に、Sn、Cu、NiおよびGeを含む金属間化合物結晶320を有するが、図5(b)で示すように、母相と金属間化合物結晶との界面で破断が生じ、エンドタキシャル接合が確認できなかった。
Comparative Example 2
The test was conducted based on the method described in Patent Document 4 (International Publication WO2014 / 084242A1). Using raw materials of each metal consisting of 8% by mass Cu, 1% by mass Ni, 0.001% by mass Ge and the balance of Sn as raw materials, the raw materials were melted, and then the melt was cast into the grooves of the mold and cooled at room temperature.
The obtained alloy ingot of Comparative Example 2 is a rectangle having a thickness of 2 cm, a length of 20 cm, and a width of 3 cm.
FIG. 5 is an SEM image of a cross section obtained by embedding the alloy ingot of Comparative Example 2 in a resin and cutting it thinly. FIG. 5B is a partially enlarged view of FIG. 5A. Referring to FIG. 5 (a), the alloy ingot of Comparative Example 2 has an intermetallic compound crystal 320 containing Sn, Cu, Ni and Ge in a matrix 340 containing a Sn and Sn—Cu alloy, which is shown in FIG. As shown in 5 (b), breakage occurred at the interface between the matrix and the intermetallic compound crystal, and endoaxial bonding could not be confirmed.

実施例2、比較例3~4
実施例1、比較例1、比較例2で作成した合金インゴットを用い、圧接加工することにより、厚さ100μm×15mm×15mmの薄片シートを作成した。
この薄片シートと、厚さ300μm×30mm×30mmの銅箔とを、ギ酸雰囲気中260℃で焼成貼り付けし、試験片を得た。この試験片の積層中心部を、190度折り曲げ、試験片表面の亀裂状態を光学顕微鏡により観察した。
その結果を図6に示す。
図6(a)の結果から、実施例1で作成した合金インゴットを用いて作成した試験片は、破断・亀裂なく接合を維持しており(符号701)、振動連続動作状態特性を維持できる柔軟性を有することが分かった。
また、図6(b)の結果から、比較例1で作成した合金インゴットを用いて作成した試験片は、190度折り曲げ材料表面に亀裂状態が確認され(符号702)、上記試験における折り曲げ引張力に対応できず、亀裂の発生を招き、振動連続動作状態特性を維持する柔軟性がないことが分かった。
また、図6(c)の結果から、比較例2で作成した合金インゴットを用いて作成した試験片は、190度折り曲げ材料表面に亀裂状態が確認され(符号703)、上記試験における折り曲げ引張力に対応できず、亀裂の発生を招き、振動連続動作状態特性を維持する柔軟性がないことが分かった。
Example 2, Comparative Examples 3 to 4
Using the alloy ingots prepared in Example 1, Comparative Example 1 and Comparative Example 2, a thin section sheet having a thickness of 100 μm × 15 mm × 15 mm was produced by pressure welding.
This thin sheet and a copper foil having a thickness of 300 μm × 30 mm × 30 mm were fired and pasted at 260 ° C. in a formic acid atmosphere to obtain a test piece. The center of the stack of the test pieces was bent 190 degrees, and the cracked state on the surface of the test pieces was observed with an optical microscope.
The results are shown in FIG.
From the results of FIG. 6A, the test piece prepared by using the alloy ingot prepared in Example 1 maintains the joint without breaking or cracking (reference numeral 701), and is flexible enough to maintain the vibration continuous operating state characteristics. It turned out to have sex.
Further, from the result of FIG. 6B, the test piece prepared by using the alloy ingot prepared in Comparative Example 1 was confirmed to have a crack state on the surface of the bending material of 190 degrees (reference numeral 702), and the bending tensile force in the above test was confirmed. It was found that it was not possible to cope with the problem, which caused cracks and did not have the flexibility to maintain the continuous vibration operating state characteristics.
Further, from the result of FIG. 6C, the test piece prepared by using the alloy ingot prepared in Comparative Example 2 was confirmed to have a crack state on the surface of the bending material of 190 degrees (reference numeral 703), and the bending tensile force in the above test was confirmed. It was found that it was not possible to cope with the problem, which caused cracks and did not have the flexibility to maintain the continuous vibration operating state characteristics.

以上、添付図面を参照して本発明を詳細に説明したが、本発明はこれらに限定されるものではなく、当業者であれば、その基本的技術思想および教示に基づき、種々の変形例を想到できることは自明である。 Although the present invention has been described in detail with reference to the accompanying drawings, the present invention is not limited thereto, and those skilled in the art can use various modifications based on the basic technical ideas and teachings thereof. It is self-evident that you can think of it.

120,220,320 金属間化合物
140,240,340 母相
100,500 基板
101,501 合金/合金体
120, 220, 320 Intermetallic compound 140, 240, 340 Mother phase 100, 500 Substrate 101, 501 Alloy / alloy body

Claims (1)

SnおよびSn-Cu合金を含む母相中に、Sn、Cu、NiおよびGeを含む金属間化合物結晶を有する、接合材用合金インゴットであって、
前記金属間化合物結晶の組成が、Cu5~50質量%、Ni6.5~0.1質量%、Ge0.001~0.1質量%、残部がSnであり、
前記母相の組成がSn95~99.9質量%、Cu5質量%以下および不可避不純物0.1質量%以下であり、
前記母相中のSn-Cu合金と前記金属間化合物結晶の少なくとも1部が、エンドタキシャル接合してなる
ことを特徴とする接合材用合金インゴット。
An alloy ingot for a bonding material having an intermetallic compound crystal containing Sn, Cu, Ni and Ge in a matrix containing Sn and Sn—Cu alloy.
The composition of the intermetallic compound crystal is Cu 5 to 50% by mass, Ni 6.5 to 0.1% by mass, Ge 0.001 to 0.1% by mass, and the balance is Sn.
The composition of the matrix is Sn95-99.9% by mass, Cu5% by mass or less, and unavoidable impurities 0.1% by mass or less.
An alloy ingot for a bonding material, characterized in that at least one portion of the Sn—Cu alloy in the matrix and the intermetallic compound crystal is endically bonded.
JP2020143554A 2020-08-27 2020-08-27 Alloy ingot for bonding material Active JP6890201B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020143554A JP6890201B1 (en) 2020-08-27 2020-08-27 Alloy ingot for bonding material
TW110116698A TWI752878B (en) 2020-08-27 2021-05-10 Alloy Ingots for Joining Materials
CN202110709413.7A CN114101967B (en) 2020-08-27 2021-06-25 Alloy ingot for bonding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020143554A JP6890201B1 (en) 2020-08-27 2020-08-27 Alloy ingot for bonding material

Publications (2)

Publication Number Publication Date
JP6890201B1 JP6890201B1 (en) 2021-06-18
JP2022038859A true JP2022038859A (en) 2022-03-10

Family

ID=76429581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020143554A Active JP6890201B1 (en) 2020-08-27 2020-08-27 Alloy ingot for bonding material

Country Status (3)

Country Link
JP (1) JP6890201B1 (en)
CN (1) CN114101967B (en)
TW (1) TWI752878B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181485A (en) * 2002-12-03 2004-07-02 Senju Metal Ind Co Ltd Lead-free solder alloy
JP2018135574A (en) * 2017-02-23 2018-08-30 有限会社 ナプラ Metal particles
JP2019025540A (en) * 2017-07-25 2019-02-21 有限会社 ナプラ Metallic particle and joint structure part
JP2019118930A (en) * 2017-12-31 2019-07-22 千住金属工業株式会社 Solder alloy
JP6799701B1 (en) * 2020-03-12 2020-12-16 有限会社 ナプラ Metal particles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250582B2 (en) * 2010-04-22 2013-07-31 有限会社 ナプラ Filling substrate and filling method using the same
CN102974954B (en) * 2012-12-17 2015-03-11 南京航空航天大学 Tin-copper-nickel (Sn-Cu-Ni) lead-free solder containing ferrum (Fe) and praseodymium (Pr)
JP6111952B2 (en) * 2013-09-25 2017-04-12 日立金属株式会社 Lead-free solder alloy, bonding material and bonded body
JP2015131340A (en) * 2013-12-10 2015-07-23 住友金属鉱山株式会社 Au-Sn-Ag SERIES SOLDER ALLOY, ELECTRONIC COMPONENT SEALED USING THE Au-Sn-Ag SERIES SOLDER ALLOY AND ELECTRONIC COMPONENT-EQUIPPED DEVICE
JP6492017B2 (en) * 2014-01-16 2019-03-27 株式会社Uacj Aluminum alloy material and manufacturing method thereof, and aluminum alloy clad material and manufacturing method thereof
JP6144440B1 (en) * 2017-01-27 2017-06-07 有限会社 ナプラ Preform for semiconductor encapsulation
JP6355092B1 (en) * 2017-05-11 2018-07-11 パナソニックIpマネジメント株式会社 Solder alloy and joint structure using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181485A (en) * 2002-12-03 2004-07-02 Senju Metal Ind Co Ltd Lead-free solder alloy
JP2018135574A (en) * 2017-02-23 2018-08-30 有限会社 ナプラ Metal particles
JP2019025540A (en) * 2017-07-25 2019-02-21 有限会社 ナプラ Metallic particle and joint structure part
JP2019118930A (en) * 2017-12-31 2019-07-22 千住金属工業株式会社 Solder alloy
JP6799701B1 (en) * 2020-03-12 2020-12-16 有限会社 ナプラ Metal particles

Also Published As

Publication number Publication date
CN114101967A (en) 2022-03-01
JP6890201B1 (en) 2021-06-18
TW202208644A (en) 2022-03-01
CN114101967B (en) 2022-12-20
TWI752878B (en) 2022-01-11

Similar Documents

Publication Publication Date Title
JP5224430B2 (en) Power semiconductor module
JP4964009B2 (en) Power semiconductor module
WO2007094507A1 (en) Cr-Cu ALLOY, PROCESS FOR PRODUCING THE SAME, HEAT SINK FOR SEMICONDUCTOR, AND HEAT DISSIPATING COMPONENT FOR SEMICONDUCTOR
JP2017075382A (en) Oxygen free copper plate, manufacturing method of oxygen free copper plate and ceramic wiring board
JP6799701B1 (en) Metal particles
JP2021031741A (en) Metal particle
JP5030633B2 (en) Cr-Cu alloy plate, semiconductor heat dissipation plate, and semiconductor heat dissipation component
KR102040280B1 (en) Lead-free solder composition and manufacturing method of the same, bonding method using lead-free solder composition
TWI736017B (en) Joint structure
JP4138844B2 (en) Cr-Cu alloy, manufacturing method thereof, heat sink for semiconductor, and heat dissipation component for semiconductor
JP6890201B1 (en) Alloy ingot for bonding material
WO2017150096A1 (en) Semiconductor device
CN106132909B (en) Ceramics-the manufacturing method of aluminium conjugant, the manufacturing method of power module substrate and ceramics-aluminium conjugant, power module substrate
WO2015118790A1 (en) Bonding material, bonding method and semiconductor device for electric power
JP6205083B1 (en) Bonding structure
JP6898509B1 (en) Joint layer structure
JP6556198B2 (en) Bonding structure
JP2008072006A (en) Joined body
JP2009277991A (en) Substrate for power module, power module, and method of manufacturing substrate for power module
JP5652001B2 (en) Pb-free solder alloy based on Zn
JP7209126B1 (en) Metal particles for bonding materials
JP2010131618A (en) METHOD OF MANUFACTURING Bi-CONTAINING SOLDER FOIL, Bi-CONTAINING SOLDER FOIL, JOINED BODY AND POWER SEMICONDUCTOR MODULE
TW202415778A (en) Metal particles for bonding materials
JP2011240372A (en) Pb-FREE SOLDER ALLOY COMPOSED PRINCIPALLY OF Zn
JP2017035708A (en) Sb-Cu SOLDER ALLOY CONTAINING NO Pb

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200828

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200828

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R150 Certificate of patent or registration of utility model

Ref document number: 6890201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150