JP2022035881A - Vacuum pump, fixed blade and spacer - Google Patents

Vacuum pump, fixed blade and spacer Download PDF

Info

Publication number
JP2022035881A
JP2022035881A JP2020140495A JP2020140495A JP2022035881A JP 2022035881 A JP2022035881 A JP 2022035881A JP 2020140495 A JP2020140495 A JP 2020140495A JP 2020140495 A JP2020140495 A JP 2020140495A JP 2022035881 A JP2022035881 A JP 2022035881A
Authority
JP
Japan
Prior art keywords
fixed wing
outer rim
rim
exhaust port
tapered surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020140495A
Other languages
Japanese (ja)
Inventor
透 三輪田
Toru Miwata
永偉 時
Nagatake Toki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edwards Japan Ltd
Original Assignee
Edwards Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edwards Japan Ltd filed Critical Edwards Japan Ltd
Priority to JP2020140495A priority Critical patent/JP2022035881A/en
Priority to IL300054A priority patent/IL300054A/en
Priority to CN202180049707.XA priority patent/CN115803530A/en
Priority to US18/006,290 priority patent/US20230323890A1/en
Priority to KR1020237000181A priority patent/KR20230050310A/en
Priority to EP21858144.5A priority patent/EP4202227A1/en
Priority to PCT/JP2021/028253 priority patent/WO2022038996A1/en
Publication of JP2022035881A publication Critical patent/JP2022035881A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • F04D29/547Ducts having a special shape in order to influence fluid flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

To provide a vacuum pump in which exhaust performance is further improved by devising a fixed blade (an inner rim and an outer rim) installed in a vacuum pump, and a spacer.SOLUTION: In a vacuum pump configured so that an outer diameter of one stage of a rotor blade is formed so as to be smaller on an exhaust port side, or an inner diameter of one stage of the rotary blade is formed so as to be larger on the exhaust port side, at least on either an outer peripheral part or an inner peripheral part of a fixed blade arranged at a position directly above the rotary blade having a small outer diameter or directly above the rotary blade having a large inner diameter, a tapered surface having a down gradient toward the exhaust port side is provided. Due to the tapered surface, when a molecule enters, it is reflected at a right angle, sent to the inner peripheral side, and sent to the next exhaust stage by being hit by an upper rotary blade.SELECTED DRAWING: Figure 9

Description

本発明は、真空ポンプ、固定翼、およびスペーサに関し、より詳しくは、真空ポンプにおける排気効率をより高める構造に関する。 The present invention relates to vacuum pumps, fixed wings, and spacers, and more particularly to structures that further enhance exhaust efficiency in vacuum pumps.

従来、吸気口および排気口を有するケーシングの内部でロータ部(シャフトやロータ)および回転翼や回転円筒体も含む回転部を高速回転させて排気処理を行うターボ分子ポンプなどの真空ポンプが広く普及していた。
これらの真空ポンプでは、高速回転する複数段の回転翼と、ケーシングに対して固定されている複数段の固定翼との相互作用により、排気処理を行っていた。
図30に示すように、ここで用いられる固定翼123は、複数枚のブレード550と、この複数枚のブレード550を保持し、内側(設置時のロータ部側)を保持、固定する内リム600と、外側(設置時のケーシング側)を保持、固定する外リム700とから構成されている。図31は、図30に示した固定翼123の破線の円部分の部分拡大図である。
なお、図32に示すような、外リム700が存在しないタイプ(内リム600のみで、ブレード550を保持、固定するタイプ)の固定翼123も用いられている。
図32は、半割の状態の固定翼123を、図33は、図32の破線の円部分の部分拡大図である。
ところで、この真空ポンプでは、設計上の要請から、複数段の回転翼の一段の回転翼の外径が、吸気口側より排気口側の方が小径に形成されている場合、もしくは、複数段の回転翼のうち一段の回転翼の内径が、吸気口側より排気口側の方が大径に形成されているものが存在する。
Conventionally, vacuum pumps such as turbo molecular pumps that perform exhaust processing by rotating the rotor part (shaft and rotor) and the rotating part including the rotor blade and rotating cylinder at high speed inside the casing having the intake port and the exhaust port have become widespread. Was.
In these vacuum pumps, exhaust treatment is performed by the interaction between a multi-stage rotary blade that rotates at high speed and a multi-stage fixed blade that is fixed to the casing.
As shown in FIG. 30, the fixed wing 123 used here holds a plurality of blades 550 and the plurality of blades 550, and the inner rim 600 that holds and fixes the inside (rotor portion side at the time of installation). It is composed of an outer rim 700 that holds and fixes the outside (casing side at the time of installation). FIG. 31 is a partially enlarged view of the broken line circular portion of the fixed wing 123 shown in FIG.
As shown in FIG. 32, a fixed wing 123 of a type in which the outer rim 700 does not exist (a type in which only the inner rim 600 holds and fixes the blade 550) is also used.
FIG. 32 is a partially enlarged view of the fixed wing 123 in a half-split state, and FIG. 33 is a partially enlarged view of the broken line portion of FIG. 32.
By the way, in this vacuum pump, if the outer diameter of the one-stage rotor of the multi-stage rotor is smaller on the exhaust port side than on the intake port side, or in the case of multiple stages, due to design requirements. Among the rotor blades of the above, there is one in which the inner diameter of the one-stage rotary blade is formed to be larger on the exhaust port side than on the intake port side.

図34および図35は、従来技術を説明するための図である。
図34は、従来のターボ分子ポンプにおける内リム600と外リム700を有する固定翼123(図30に示すタイプ)を用いた場合を説明するための断面図である。
図35は、図34の部分拡大図である。
図35に示すように、排気されるガスの流れは、吸気口側から排気口側へ矢印で示す方向である。
この図35に示すように、配置された固定翼123の内リム600(外側)及び外リム700(内側)は、排気方向に対して、水平に配置されており、ターボ分子ポンプの排気作業に対しては、特段の働きをしていなかった。
また、回転翼の外径の縮径位置にある固定翼スペーサの上面で、排気方向に対し垂直な面となる部分が存在し、上流側の回転翼で移送されたガス分子をそのまま吸気口側に反射する構造となっており、排気性能を低下させる要因となっていた。
34 and 35 are diagrams for explaining the prior art.
FIG. 34 is a cross-sectional view for explaining a case where a fixed wing 123 (type shown in FIG. 30) having an inner rim 600 and an outer rim 700 is used in a conventional turbo molecular pump.
FIG. 35 is a partially enlarged view of FIG. 34.
As shown in FIG. 35, the flow of the exhausted gas is the direction indicated by the arrow from the intake port side to the exhaust port side.
As shown in FIG. 35, the inner rim 600 (outside) and the outer rim 700 (inside) of the arranged fixed wing 123 are arranged horizontally with respect to the exhaust direction, and are used for the exhaust work of the turbo molecular pump. On the other hand, it did not work in particular.
In addition, there is a portion of the upper surface of the fixed blade spacer at the reduced diameter position of the outer diameter of the rotor that is perpendicular to the exhaust direction, and the gas molecules transferred by the rotor on the upstream side are directly taken to the intake port side. It has a structure that reflects on the air, which has been a factor in lowering the exhaust performance.

特開2007-2692号JP-A-2007-2692 特開2018-35718号JP-A-2018-35718

上記、特許文献1及び特許文献2に開示されている真空ポンプでは、固定翼の外リム及び内リムが、ガスの排気方向に対して水平に配置されており、排気効率に対する貢献はしていなかった。
近年、真空ポンプにおいて、ポンプのサイズの拡大や、ロータ部の回転速度をあげることなく、より排気効率を向上させることが求められていた。
In the vacuum pumps disclosed in Patent Document 1 and Patent Document 2, the outer rim and inner rim of the fixed wing are arranged horizontally with respect to the gas exhaust direction, and do not contribute to the exhaust efficiency. rice field.
In recent years, in vacuum pumps, it has been required to further improve the exhaust efficiency without increasing the size of the pump or increasing the rotation speed of the rotor portion.

そこで、本発明では、真空ポンプに設置される固定翼(内リム及び外リム)、およびスペーサに工夫をすることにより、より排気性能が向上した真空ポンプを提供することを目的とする。 Therefore, an object of the present invention is to provide a vacuum pump having further improved exhaust performance by devising fixed wings (inner rim and outer rim) and spacers installed in the vacuum pump.

請求項1記載の発明では、吸気口と排気口を有するケーシングと、前記ケーシングの内部に、回転自在に支持された回転軸と、前記回転軸に固定され、前記回転軸と共に回転可能な複数段の回転翼と、前記ケーシングに対して固定され、かつ、前記回転翼間に配置される複数段の固定翼とを、備え、前記複数段の回転翼のうち少なくとも一段の回転翼の外径が、前記吸気口側より前記排気口側の方が小径に形成された、もしくは、前記複数段の回転翼のうち少なくとも一段の回転翼の内径が、前記吸気口側より前記排気口側の方が大径に形成された真空ポンプであって、外径が小径に形成された前記回転翼の直上位置または内径が大径に形成された前記回転翼の直上位置に配置された固定翼の外周部または内周部に、前記排気口側に向かって下り勾配を有するテーパー面が設けられていることを特徴とする真空ポンプを提供する。
請求項2記載の発明では、前記固定翼は、放射状に配置される複数枚のブレードと、これらの複数枚のブレードを保持する内リムまたは外リムを有し、前記内リムの外周面または前記外リムの内周面に、前記排気口側に向かって下り勾配を有するテーパー面が設けられていることを特徴とする請求項1記載の真空ポンプを提供する。
請求項3記載の発明では、前記固定翼は、放射状に配置される複数枚のブレードと、これらの複数枚のブレードを保持し、かつ、前記固定翼の高さ方向の位置決めを行うスペーサ部を有し、前記スペーサ部の内周面に、前記排気口側に向かって下り勾配を有するテーパー面が設けられていることを特徴とする請求項1記載の真空ポンプを提供する。
請求項4記載の発明では、前記固定翼の前記複数枚のブレードの前記排気口側の面までアンダーカットされていることを特徴とする請求項2または請求項3記載の真空ポンプを提供する。
請求項5記載の発明では、前記固定翼の前記複数枚のブレードの後方に垂直面またはテーパー面が設けられていることを特徴とする請求項2または請求項3記載の真空ポンプを提供する。
請求項6記載の発明では、前記固定翼の前記ケーシング側を保持し、かつ、前記固定翼の高さ方向の位置決めを行うスペーサ部から前記固定翼の高さ方向の範囲内に突出する突出部が設けられ、前記スペーサ部の内周面および前記突出部の少なくとも一部に、前記排気口側に向かって下り勾配を有するテーパー面が設けられていることを特徴とする請求項1記載の真空ポンプを提供する。
請求項7記載の発明では、吸気口と排気口を有するケーシングを備えた真空ポンプに用いられる固定翼であって、放射状に配置される複数枚のブレードと、これらの複数枚のブレードを保持する内リムまたは外リムを有し、前記内リムの外周面または前記外リムの内周面に、前記排気口側に向かって下り勾配を有するテーパー面が設けられている固定翼を提供する。
請求項8記載の発明では、吸気口と排気口を有するケーシングを備えた真空ポンプに用いられるスペーサであって、放射状に配置される複数枚のブレードを有する固定翼の配置時に、前記ケーシング側を保持し、かつ、前記固定翼の高さ方向の位置決めを行うスペーサ部を有し、前記スペーサ部から前記固定翼の高さ方向の範囲内に突出する突出部が設けられ、前記スペーサ部の内周面および前記突出部の少なくとも一部に、前記排気口側に向かって下り勾配を有するテーパー面が設けられていることを特徴とするスペーサを提供する。
In the invention according to claim 1, a casing having an intake port and an exhaust port, a rotary shaft rotatably supported inside the casing, and a plurality of stages fixed to the rotary shaft and rotatable together with the rotary shaft. The rotary wing is provided with a plurality of stages of fixed wing fixed to the casing and arranged between the rotary wing, and the outer diameter of at least one stage of the rotary wing of the plurality of stages is increased. The exhaust port side is formed to have a smaller diameter than the intake port side, or the inner diameter of at least one stage of the plurality of rotor blades is smaller on the exhaust port side than on the intake port side. A vacuum pump formed with a large diameter, the outer peripheral portion of a fixed blade arranged at a position directly above the rotary blade having a small outer diameter or directly above the rotary blade having a large inner diameter. Alternatively, the present invention provides a vacuum pump characterized in that a tapered surface having a downward gradient toward the exhaust port side is provided on the inner peripheral portion.
In the invention according to claim 2, the fixed wing has a plurality of blades arranged radially and an inner rim or an outer rim holding the plurality of blades, and the outer peripheral surface of the inner rim or the said. The vacuum pump according to claim 1, wherein a tapered surface having a downward gradient toward the exhaust port side is provided on the inner peripheral surface of the outer rim.
In the invention according to claim 3, the fixed wing has a plurality of blades arranged radially and a spacer portion for holding the plurality of blades and positioning the fixed wing in the height direction. The vacuum pump according to claim 1, wherein the inner peripheral surface of the spacer portion is provided with a tapered surface having a downward gradient toward the exhaust port side.
The invention according to claim 4 provides the vacuum pump according to claim 2 or 3, wherein the plurality of blades of the fixed wing are undercut to the surface on the exhaust port side.
The invention according to claim 5 provides the vacuum pump according to claim 2 or 3, wherein a vertical surface or a tapered surface is provided behind the plurality of blades of the fixed wing.
In the invention according to claim 6, a protruding portion protruding from a spacer portion that holds the casing side of the fixed wing and positions the fixed wing in the height direction within a range in the height direction of the fixed wing. The vacuum according to claim 1, wherein a tapered surface having a downward gradient toward the exhaust port side is provided on an inner peripheral surface of the spacer portion and at least a part of the protruding portion. Provide a pump.
The invention according to claim 7 is a fixed wing used in a vacuum pump having a casing having an intake port and an exhaust port, and holds a plurality of blades arranged radially and the plurality of blades thereof. Provided is a fixed wing having an inner rim or an outer rim and having a tapered surface having a downward slope toward the exhaust port side on the outer peripheral surface of the inner rim or the inner peripheral surface of the outer rim.
The invention according to claim 8 is a spacer used for a vacuum pump having a casing having an intake port and an exhaust port, and when a fixed wing having a plurality of blades arranged radially is arranged, the casing side is set. It has a spacer portion that holds and positions the fixed wing in the height direction, and a protrusion portion that protrudes from the spacer portion within the range in the height direction of the fixed wing is provided, and the inside of the spacer portion. Provided is a spacer characterized in that a peripheral surface and at least a part of the protruding portion are provided with a tapered surface having a downward gradient toward the exhaust port side.

本発明によれば、真空ポンプにおける固定翼の内リム又は外リムもしくはスペーサの形状を工夫することにより、真空ポンプの排気性能をより向上させることができる。 According to the present invention, the exhaust performance of the vacuum pump can be further improved by devising the shape of the inner rim, the outer rim, or the spacer of the fixed wing in the vacuum pump.

本発明の実施形態に係るターボ分子ポンプの概略構成例を示した図である。It is a figure which showed the schematic structural example of the turbo molecular pump which concerns on embodiment of this invention. 本発明の実施形態で用いるアンプ回路の回路図を示した図である。It is a figure which showed the circuit diagram of the amplifier circuit used in embodiment of this invention. 本発明の実施形態における電流指令値が検出値より大きい場合の制御を示すタイムチャートである。6 is a time chart showing control when the current command value in the embodiment of the present invention is larger than the detected value. 本発明の実施形態における電流指令値が検出値より小さい場合の制御を示すタイムチャートである。6 is a time chart showing control when the current command value in the embodiment of the present invention is smaller than the detected value. 本発明の第1の実施形態に係るターボ分子ポンプの概略構成例を示した図である。It is a figure which showed the schematic structural example of the turbo molecular pump which concerns on 1st Embodiment of this invention. 図5に示す第1の実施形態に係るターボ分子ポンプの部分拡大図である。It is a partially enlarged view of the turbo molecular pump which concerns on 1st Embodiment shown in FIG. 第1の実施形態Aに係る内リムにテーパー面を設けた固定翼を示した図である。It is a figure which showed the fixed wing which provided the tapered surface on the inner rim which concerns on 1st Embodiment A. 第1の実施形態Bに係る内リムにテーパー面を設け、かつ垂直面と円周面を設けた固定翼を示した図である。It is a figure which showed the fixed wing which provided the tapered surface on the inner rim which concerns on 1st Embodiment B, and provided the vertical surface and the circumferential surface. 第1の実施形態Cに係る内リム及び外リムにテーパー面を設けた固定翼を示した図である。It is a figure which showed the fixed wing which provided the tapered surface on the inner rim and the outer rim which concerns on 1st Embodiment C. 第1の実施形態Dに係る内リム及び外リムにテーパー面を設け、かつ垂直面と円周面を設けた固定翼を示した図である。It is a figure which showed the fixed wing which provided the tapered surface on the inner rim and the outer rim which concerns on 1st Embodiment D, and provided the vertical surface and the circumferential surface. 第1の実施形態Eに係る内リム及び外リムにテーパー面を設け、かつ外リムのブレードより上側(下側)にもテーパー面がある固定翼を示した図である。It is a figure which showed the fixed wing which provided the tapered surface on the inner rim and the outer rim which concerns on 1st Embodiment E, and also had a tapered surface on the upper side (lower side) than the blade of the outer rim. 第1の実施形態Fに係る内リム及び外リムにテーパー面を設け、かつブレードより上側(下側)に内周面がある固定翼を示した図である。It is a figure which showed the fixed wing which provided the tapered surface on the inner rim and the outer rim which concerns on 1st Embodiment F, and has an inner peripheral surface on the upper side (lower side) than a blade. 第1の実施形態Gに係る内リム及び外リムにテーパー面を設け、かつ外リムのブレードより上側(下側)に内周面があり、垂直面を設けた固定翼を示した図である。It is a figure which showed the fixed wing which provided the tapered surface on the inner rim and the outer rim which concerns on 1st Embodiment G, and had the inner peripheral surface on the upper side (lower side) than the blade of the outer rim, and provided the vertical surface. .. 第1の実施形態Hに係る内リム及び外リムにテーパー面を設け、かつ外リムのブレードより上側(下側)にもテーパー面があり、垂直面を設けた固定翼を示した図である。It is a figure which showed the fixed wing which provided the tapered surface on the inner rim and the outer rim which concerns on 1st Embodiment H, and also had the tapered surface on the upper side (lower side) than the blade of the outer rim, and provided the vertical surface. .. 第1の実施形態Iに係る内リム及び外リムにテーパー面を設け、かつフランジを設けた固定翼を示した図である。It is a figure which showed the fixed wing which provided the tapered surface and provided the flange on the inner rim and the outer rim which concerns on 1st Embodiment I. 第1の実施形態Jに係る内リム及び外リムにテーパー面を設け、かつフランジを設け、垂直面を設けた固定翼を示した図である。It is a figure which showed the fixed wing which provided the tapered surface, the flange, and the vertical surface on the inner rim and the outer rim which concerns on 1st Embodiment J. 本発明の第2の実施形態に係るターボ分子ポンプの概略構成例を示した部分拡大図である。It is a partially enlarged view which showed the schematic structural example of the turbo molecular pump which concerns on 2nd Embodiment of this invention. 第2の実施形態Aに係る外リムにテーパー面及び内周面を設けた固定翼を示した図である。It is a figure which showed the fixed wing which provided the tapered surface and the inner peripheral surface on the outer rim which concerns on 2nd Embodiment A. 第2の実施形態Bに係る外リムにテーパー面及び内周面を設け、かつフランジを設けた固定翼を示した図である。It is a figure which showed the fixed wing which provided the tapered surface and the inner peripheral surface, and provided the flange on the outer rim which concerns on 2nd Embodiment B. 第2の実施形態Cに係る外リムにテーパー面及び内周面を設け、かつ内リム垂直面及び外リム垂直面を設けた固定翼を示した図である。It is a figure which showed the fixed wing which provided the tapered surface and the inner peripheral surface in the outer rim which concerns on 2nd Embodiment C, and provided the inner rim vertical plane and the outer rim vertical plane. 第2の実施形態Dに係る外リムにテーパー面及び内周面を設け、かつフランジを設けた固定翼を示した図である。It is a figure which showed the fixed wing which provided the tapered surface and the inner peripheral surface, and provided the flange on the outer rim which concerns on 2nd Embodiment D. 第3の実施形態に係るターボ分子ポンプの部分拡大図である。It is a partially enlarged view of the turbo molecular pump which concerns on 3rd Embodiment. 第4の実施形態に係るターボ分子ポンプの部分拡大図である。It is a partially enlarged view of the turbo molecular pump which concerns on 4th Embodiment. 第4の実施形態Aに係る内リムに内リムテーパー面を設けた固定翼を示した図である。It is a figure which showed the fixed wing which provided the inner rim taper surface on the inner rim which concerns on 4th Embodiment A. 第4の実施形態Bに係る内リムに内リムテーパー面を設け、かつ内リム垂直面を設けた固定翼を示した図である。It is a figure which showed the fixed wing which provided the inner rim tapered surface and provided the inner rim vertical surface in the inner rim which concerns on 4th Embodiment B. 第5の実施形態に係るターボ分子ポンプの部分拡大図である。It is a partially enlarged view of the turbo molecular pump which concerns on 5th Embodiment. 第5の実施形態Aに係る固定翼スペーサの外観を示した図である。It is a figure which showed the appearance of the fixed wing spacer which concerns on 5th Embodiment A. 第5の実施形態Bに係る固定翼スペーサの外観を示した図である。It is a figure which showed the appearance of the fixed wing spacer which concerns on 5th Embodiment B. テーパーの角度を説明するための図である。It is a figure for demonstrating the angle of a taper. 従来の固定翼を示した図である。It is a figure which showed the conventional fixed wing. 図30に示した固定翼の部分拡大図である。It is a partially enlarged view of the fixed wing shown in FIG. 従来の外リムがないタイプの固定翼を示した図である。It is a figure which showed the type fixed wing which does not have a conventional outer rim. 図32に示した固定翼の部分拡大図である。It is a partially enlarged view of the fixed wing shown in FIG. 32. 従来のターボ分子ポンプの概略構成例を示した図である。It is a figure which showed the schematic structure example of the conventional turbo molecular pump. 図34に示したターボ分子ポンプの部分拡大図である。It is a partially enlarged view of the turbo molecular pump shown in FIG. 34.

(i)実施形態の概要
本実施形態では、複数段の回転翼のうち少なくとも一段の回転翼の外径が、排気口側の方が小径に形成された、もしくは、複数段の回転翼のうち少なくとも一段の回転翼の内径が、排気口側の方が大径に形成された真空ポンプにおいて、外径が小径に形成された回転翼の直上位置または内径が大径に形成された回転翼の直上位置に配置された固定翼の少なくとも外周部または内周部の何れか一方に、排気口側に向かって下り勾配を有するテーパー面(傾斜面)が設けられている。
このテーパー面を設けることで、分子が入ると直角の角度で反射し、分子を内周側に送り、上段の回転翼でたたかれることで次の排気段に送られることとなる。
(I) Outline of the Embodiment In the present embodiment, the outer diameter of at least one stage of the rotary blade of the plurality of stages is formed to be smaller on the exhaust port side, or of the multiple stages of the rotary blade. In a vacuum pump in which the inner diameter of at least one stage rotor is larger on the exhaust port side, the position directly above the rotor with a smaller outer diameter or the rotor with a larger inner diameter A tapered surface (inclined surface) having a downward slope toward the exhaust port side is provided on at least one of the outer peripheral portion and the inner peripheral portion of the fixed blade arranged at the position directly above.
By providing this tapered surface, when a molecule enters, it is reflected at a right angle, sent to the inner peripheral side, and is sent to the next exhaust stage by being hit by the upper rotary blade.

こうして、従来技術では、排気には作用していなかった固定翼の外周部または内周部も、排気に貢献することとなり、真空ポンプの排気効率を向上させることとなる。 Thus, in the prior art, the outer peripheral portion or the inner peripheral portion of the fixed wing, which did not act on the exhaust, also contributes to the exhaust, and the exhaust efficiency of the vacuum pump is improved.

(ii)実施形態の詳細
以下、本発明の好適な実施の形態について、図1から図29を参照して詳細に説明する。
(真空ポンプの構成)
図1は、本発明の実施形態に係るターボ分子ポンプ100の概略構成例を示した図であり、ターボ分子ポンプ100は、円筒状の外筒127の上端に吸気口101が形成されている。そして、外筒127の内方には、ガスを吸引排気するためのタービンブレードである複数の回転翼102(102a、102b、102c・・・)を周部に放射状かつ多段に形成した回転体103が備えられている。この回転体103の中心にはロータ軸113が取り付けられており、このロータ軸113は、例えば5軸制御の磁気軸受により空中に浮上支持かつ位置制御されている。
(Ii) Details of Embodiments Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 29.
(Vacuum pump configuration)
FIG. 1 is a diagram showing a schematic configuration example of the turbo molecular pump 100 according to the embodiment of the present invention. In the turbo molecular pump 100, an intake port 101 is formed at the upper end of a cylindrical outer cylinder 127. A rotating body 103 having a plurality of rotary blades 102 (102a, 102b, 102c ...), which are turbine blades for sucking and exhausting gas, radially and multistagely formed on the peripheral portion inside the outer cylinder 127. Is provided. A rotor shaft 113 is attached to the center of the rotating body 103, and the rotor shaft 113 is floated and supported and position-controlled in the air by, for example, a 5-axis controlled magnetic bearing.

上側径方向電磁石104は、4個の電磁石がX軸とY軸とに対をなして配置されている。この上側径方向電磁石104の近接に、かつ上側径方向電磁石104のそれぞれに対応されて4個の上側径方向センサ107が備えられている。上側径方向センサ107は、例えば伝導巻線を有するインダクタンスセンサや渦電流センサなどが用いられ、ロータ軸113の位置に応じて変化するこの伝導巻線のインダクタンスの変化に基づいてロータ軸113の位置を検出する。この上側径方向センサ107はロータ軸113、すなわちそれに固定された回転体103の径方向変位を検出し、制御装置200に送るように構成されている。 In the upper radial electromagnet 104, four electromagnets are arranged in pairs on the X-axis and the Y-axis. Four upper radial sensors 107 are provided in the vicinity of the upper radial electromagnet 104 and corresponding to each of the upper radial electromagnets 104. As the upper radial sensor 107, for example, an inductance sensor having a conduction winding, an eddy current sensor, or the like is used, and the position of the rotor shaft 113 is based on the change in the inductance of the conduction winding that changes according to the position of the rotor shaft 113. Is detected. The upper radial sensor 107 is configured to detect the radial displacement of the rotor shaft 113, that is, the rotating body 103 fixed to the rotor shaft 113, and send it to the control device 200.

この制御装置200においては、例えばPID調節機能を有する補償回路が、上側径方向センサ107によって検出された位置信号に基づいて、上側径方向電磁石104の励磁制御指令信号を生成し、図2に示すアンプ回路150(後述する)が、この励磁制御指令信号に基づいて、上側径方向電磁石104を励磁制御することで、ロータ軸113の上側の径方向位置が調整される。 In this control device 200, for example, a compensator circuit having a PID adjustment function generates an excitation control command signal of the upper radial electromagnet 104 based on a position signal detected by the upper radial sensor 107, and is shown in FIG. The amplifier circuit 150 (described later) excites and controls the upper radial electromagnet 104 based on this excitation control command signal, so that the upper radial position of the rotor shaft 113 is adjusted.

そして、このロータ軸113は、高透磁率材(鉄、ステンレスなど)などにより形成され、上側径方向電磁石104の磁力により吸引されるようになっている。かかる調整は、X軸方向とY軸方向とにそれぞれ独立して行われる。また、下側径方向電磁石105及び下側径方向センサ108が、上側径方向電磁石104及び上側径方向センサ107と同様に配置され、ロータ軸113の下側の径方向位置を上側の径方向位置と同様に調整している。 The rotor shaft 113 is made of a high magnetic permeability material (iron, stainless steel, etc.) and is attracted by the magnetic force of the upper radial electromagnet 104. Such adjustment is performed independently in the X-axis direction and the Y-axis direction, respectively. Further, the lower radial electric magnet 105 and the lower radial sensor 108 are arranged in the same manner as the upper radial electric magnet 104 and the upper radial sensor 107, and the lower radial position of the rotor shaft 113 is set to the upper radial position. It is adjusted in the same way as.

さらに、軸方向電磁石106A、106Bが、ロータ軸113の下部に備えた円板状の金属ディスク111を上下に挟んで配置されている。金属ディスク111は、鉄などの高透磁率材で構成されている。ロータ軸113の軸方向変位を検出するために軸方向センサ109が備えられ、その軸方向位置信号が制御装置200に送られるように構成されている。 Further, the axial electromagnets 106A and 106B are arranged so as to vertically sandwich the disk-shaped metal disk 111 provided in the lower part of the rotor shaft 113. The metal disk 111 is made of a high magnetic permeability material such as iron. An axial sensor 109 is provided to detect the axial displacement of the rotor shaft 113, and the axial position signal thereof is configured to be sent to the control device 200.

そして、制御装置200において、例えばPID調節機能を有する補償回路が、軸方向センサ109によって検出された軸方向位置信号に基づいて、軸方向電磁石106Aと軸方向電磁石106Bのそれぞれの励磁制御指令信号を生成し、アンプ回路150が、これらの励磁制御指令信号に基づいて、軸方向電磁石106Aと軸方向電磁石106Bをそれぞれ励磁制御することで、軸方向電磁石106Aが磁力により金属ディスク111を上方に吸引し、軸方向電磁石106Bが金属ディスク111を下方に吸引し、ロータ軸113の軸方向位置が調整される。 Then, in the control device 200, for example, a compensation circuit having a PID adjustment function sends an excitation control command signal for each of the axial electromagnet 106A and the axial electromagnet 106B based on the axial position signal detected by the axial sensor 109. The generated amplifier circuit 150 excites and controls the axial electromagnet 106A and the axial electromagnet 106B based on these excitation control command signals, so that the axial electromagnet 106A attracts the metal disk 111 upward by magnetic force. , The axial electromagnet 106B attracts the metal disk 111 downward, and the axial position of the rotor shaft 113 is adjusted.

このように、制御装置200は、この軸方向電磁石106A、106Bが金属ディスク111に及ぼす磁力を適当に調節し、ロータ軸113を軸方向に磁気浮上させ、空間に非接触で保持するようになっている。なお、これら上側径方向電磁石104、下側径方向電磁石105及び軸方向電磁石106A、106Bを励磁制御するアンプ回路150については、後述する。 As described above, the control device 200 appropriately adjusts the magnetic force exerted by the axial electromagnets 106A and 106B on the metal disk 111, magnetically levitates the rotor shaft 113 in the axial direction, and holds the rotor shaft 113 in the space in a non-contact manner. ing. The amplifier circuit 150 that excites and controls the upper radial electromagnet 104, the lower radial electromagnet 105, and the axial electromagnets 106A and 106B will be described later.

一方、モータ121は、ロータ軸113を取り囲むように周状に配置された複数の磁極を備えている。各磁極は、ロータ軸113との間に作用する電磁力を介してロータ軸113を回転駆動するように、制御装置200によって制御されている。また、モータ121には図示しない例えばホール素子、レゾルバ、エンコーダなどの回転速度センサが組み込まれており、この回転速度センサの検出信号によりロータ軸113の回転速度が検出されるようになっている。 On the other hand, the motor 121 includes a plurality of magnetic poles arranged in a circumferential shape so as to surround the rotor shaft 113. Each magnetic pole is controlled by the control device 200 so as to rotationally drive the rotor shaft 113 via an electromagnetic force acting on the rotor shaft 113. Further, the motor 121 incorporates a rotation speed sensor such as a Hall element, a resolver, an encoder, etc. (not shown), and the rotation speed of the rotor shaft 113 is detected by the detection signal of the rotation speed sensor.

さらに、例えば下側径方向センサ108近傍に、図示しない位相センサが取り付けてあり、ロータ軸113の回転の位相を検出するようになっている。制御装置200では、この位相センサと回転速度センサの検出信号を共に用いて磁極の位置を検出するようになっている。 Further, for example, a phase sensor (not shown) is attached in the vicinity of the lower radial sensor 108 to detect the phase of rotation of the rotor shaft 113. The control device 200 detects the position of the magnetic pole by using both the detection signals of the phase sensor and the rotation speed sensor.

回転翼102(102a、102b、102c・・・)とわずかの空隙を隔てて複数枚の固定翼123(123a、123b、123c・・・)が配設されている。回転翼102(102a、102b、102c・・・)は、それぞれ排気ガスの分子を衝突により下方向に移送するため、ロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成されている。 A plurality of fixed wings 123 (123a, 123b, 123c ...) Are arranged with the rotary blades 102 (102a, 102b, 102c ...) Separated from a slight gap. The rotary blades 102 (102a, 102b, 102c ...) Are formed so as to be inclined by a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113 in order to transfer exhaust gas molecules downward by collision. There is.

また、固定翼123も、同様にロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成され、かつ外筒127の内方に向けて回転翼102の段と互い違いに配設されている。そして、固定翼123の外周端は、複数の段積みされた固定翼スペーサ125(125a、125b、125c・・・)の間に嵌挿された状態で支持されている。 Similarly, the fixed blade 123 is also formed so as to be inclined by a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113, and is arranged alternately with the steps of the rotary blade 102 toward the inside of the outer cylinder 127. ing. The outer peripheral end of the fixed wing 123 is supported in a state of being fitted between a plurality of stacked fixed wing spacers 125 (125a, 125b, 125c ...).

固定翼スペーサ125はリング状の部材であり、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。固定翼スペーサ125の外周には、わずかの空隙を隔てて外筒127が固定されている。外筒127の底部にはベース部129が配設されている。ベース部129には排気口133が形成され、外部に連通されている。チャンバ側から吸気口101に入ってベース部129に移送されてきた排気ガスは、排気口133へと送られる。 The fixed wing spacer 125 is a ring-shaped member, and is made of, for example, a metal such as aluminum, iron, stainless steel, or copper, or a metal such as an alloy containing these metals as a component. An outer cylinder 127 is fixed to the outer periphery of the fixed wing spacer 125 with a slight gap. A base portion 129 is arranged at the bottom of the outer cylinder 127. An exhaust port 133 is formed in the base portion 129 and communicates with the outside. The exhaust gas that has entered the intake port 101 from the chamber side and has been transferred to the base portion 129 is sent to the exhaust port 133.

さらに、ターボ分子ポンプ100の用途によって、固定翼スペーサ125の下部とベース部129の間には、ネジ付スペーサ131が配設される。ネジ付スペーサ131は、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成分とする合金などの金属によって構成された円筒状の部材であり、その内周面に螺旋状のネジ溝131aが複数条刻設されている。ネジ溝131aの螺旋の方向は、回転体103の回転方向に排気ガスの分子が移動したときに、この分子が排気口133の方へ移送される方向である。回転体103の回転翼102(102a、102b、102c・・・)に続く最下部には円筒部102dが垂下されている。この円筒部102dの外周面は、円筒状で、かつネジ付スペーサ131の内周面に向かって張り出されており、このネジ付スペーサ131の内周面と所定の隙間を隔てて近接されている。回転翼102および固定翼123によってネジ溝131aに移送されてきた排気ガスは、ネジ溝131aに案内されつつベース部129へと送られる。 Further, depending on the application of the turbo molecular pump 100, a threaded spacer 131 is arranged between the lower portion of the fixed wing spacer 125 and the base portion 129. The threaded spacer 131 is a cylindrical member made of a metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals as a component, and has a plurality of spiral thread grooves 131a on the inner peripheral surface thereof. It is engraved. The direction of the spiral of the thread groove 131a is the direction in which the molecules of the exhaust gas are transferred toward the exhaust port 133 when the molecules of the exhaust gas move in the rotation direction of the rotating body 103. A cylindrical portion 102d is hung at the lowermost portion of the rotating body 103 following the rotary blades 102 (102a, 102b, 102c ...). The outer peripheral surface of the cylindrical portion 102d is cylindrical and projects toward the inner peripheral surface of the threaded spacer 131, and is brought close to the inner peripheral surface of the threaded spacer 131 with a predetermined gap. There is. The exhaust gas transferred to the screw groove 131a by the rotary blade 102 and the fixed blade 123 is sent to the base portion 129 while being guided by the screw groove 131a.

ベース部129は、ターボ分子ポンプ100の基底部を構成する円盤状の部材であり、一般には鉄、アルミニウム、ステンレスなどの金属によって構成されている。ベース部129はターボ分子ポンプ100を物理的に保持すると共に、熱の伝導路の機能も兼ね備えているので、鉄、アルミニウムや銅などの剛性があり、熱伝導率も高い金属が使用されるのが望ましい。 The base portion 129 is a disk-shaped member constituting the base portion of the turbo molecular pump 100, and is generally made of a metal such as iron, aluminum, or stainless steel. Since the base portion 129 physically holds the turbo molecular pump 100 and also has the function of a heat conduction path, a metal having rigidity such as iron, aluminum or copper and having high thermal conductivity is used. Is desirable.

かかる構成において、回転翼102がロータ軸113と共にモータ121により回転駆動されると、回転翼102と固定翼123の作用により、吸気口101を通じてチャンバから排気ガスが吸気される。吸気口101から吸気された排気ガスは、回転翼102と固定翼123の間を通り、ベース部129へ移送される。このとき、排気ガスが回転翼102に接触する際に生ずる摩擦熱や、モータ121で発生した熱の伝導などにより、回転翼102の温度は上昇するが、この熱は、輻射又は排気ガスの気体分子などによる伝導により固定翼123側に伝達される。 In such a configuration, when the rotary blade 102 is rotationally driven by the motor 121 together with the rotor shaft 113, exhaust gas is taken in from the chamber through the intake port 101 by the action of the rotary blade 102 and the fixed blade 123. The exhaust gas taken in from the intake port 101 passes between the rotary blade 102 and the fixed blade 123, and is transferred to the base portion 129. At this time, the temperature of the rotary blade 102 rises due to frictional heat generated when the exhaust gas comes into contact with the rotary blade 102, conduction of heat generated by the motor 121, etc., but this heat is radiation or gas of the exhaust gas. It is transmitted to the fixed wing 123 side by conduction by molecules or the like.

固定翼スペーサ125は、外周部で互いに接合しており、固定翼123が回転翼102から受け取った熱や排気ガスが固定翼123に接触する際に生ずる摩擦熱などを外部へと伝達する。 The fixed wing spacers 125 are joined to each other at the outer peripheral portion, and transfer heat received by the fixed wing 123 from the rotary wing 102, frictional heat generated when exhaust gas comes into contact with the fixed wing 123, and the like to the outside.

なお、上記では、ネジ付スペーサ131は回転体103の円筒部102dの外周に配設し、ネジ付スペーサ131の内周面にネジ溝131aが刻設されているとして説明した。しかしながら、これとは逆に円筒部102dの外周面にネジ溝が刻設され、その周囲に円筒状の内周面を有するスペーサが配置される場合もある。 In the above description, it is assumed that the threaded spacer 131 is arranged on the outer periphery of the cylindrical portion 102d of the rotating body 103, and the screw groove 131a is engraved on the inner peripheral surface of the threaded spacer 131. However, on the contrary, there is a case where a screw groove is carved on the outer peripheral surface of the cylindrical portion 102d, and a spacer having a cylindrical inner peripheral surface is arranged around the thread groove.

また、ターボ分子ポンプ100の用途によっては、吸気口101から吸引されたガスが上側径方向電磁石104、上側径方向センサ107、モータ121、下側径方向電磁石105、下側径方向センサ108、軸方向電磁石106A、106B、軸方向センサ109などで構成される電装部に侵入することのないよう、電装部は周囲をステータコラム122で覆われ、このステータコラム122内はパージガスにて所定圧に保たれる場合もある。 Further, depending on the application of the turbo molecular pump 100, the gas sucked from the intake port 101 is the upper radial electromagnet 104, the upper radial sensor 107, the motor 121, the lower radial electromagnet 105, the lower radial sensor 108, and the shaft. The circumference of the electrical component is covered with a stator column 122 so that it does not invade the electrical component composed of the directional electromagnets 106A, 106B, the axial sensor 109, etc., and the inside of the stator column 122 is kept at a predetermined pressure by a purge gas. It may hang down.

この場合には、ベース部129には図示しない配管が配設され、この配管を通じてパージガスが導入される。導入されたパージガスは、保護ベアリング120とロータ軸113間、モータ121のロータとステータ間、ステータコラム122と回転翼102の内周側円筒部の間の隙間を通じて排気口133へ送出される。 In this case, a pipe (not shown) is arranged in the base portion 129, and purge gas is introduced through this pipe. The introduced purge gas is sent to the exhaust port 133 through the gaps between the protective bearing 120 and the rotor shaft 113, between the rotor and the stator of the motor 121, and between the stator column 122 and the inner peripheral side cylindrical portion of the rotary blade 102.

ここに、ターボ分子ポンプ100は、機種の特定と、個々に調整された固有のパラメータ(例えば、機種に対応する諸特性)に基づいた制御を要する。この制御パラメータを格納するために、上記ターボ分子ポンプ100は、その本体内に電子回路部141を備えている。電子回路部141は、EEP-ROM等の半導体メモリ及びそのアクセスのための半導体素子等の電子部品、それらの実装用の基板143等から構成される。この電子回路部141は、ターボ分子ポンプ100の下部を構成するベース部129の例えば中央付近の図示しない回転速度センサの下部に収容され、気密性の底蓋145によって閉じられている。 Here, the turbo molecular pump 100 requires identification of a model and control based on individually adjusted unique parameters (for example, various characteristics corresponding to the model). In order to store this control parameter, the turbo molecular pump 100 includes an electronic circuit unit 141 in its main body. The electronic circuit unit 141 is composed of a semiconductor memory such as EEPROM, electronic components such as a semiconductor element for accessing the semiconductor memory, a substrate 143 for mounting them, and the like. The electronic circuit portion 141 is housed in a lower portion of a rotational speed sensor (not shown) near the center of a base portion 129 constituting the lower portion of the turbo molecular pump 100, and is closed by an airtight bottom lid 145.

ところで、半導体の製造工程では、チャンバに導入されるプロセスガスの中には、その圧力が所定値よりも高くなり、あるいは、その温度が所定値よりも低くなると、固体となる性質を有するものがある。ターボ分子ポンプ100内部では、排気ガスの圧力は、吸気口101で最も低く排気口133で最も高い。プロセスガスが吸気口101から排気口133へ移送される途中で、その圧力が所定値よりも高くなったり、その温度が所定値よりも低くなったりすると、プロセスガスは、固体状となり、ターボ分子ポンプ100内部に付着して堆積する。 By the way, in the semiconductor manufacturing process, some of the process gases introduced into the chamber have the property of becoming solid when the pressure becomes higher than the predetermined value or the temperature becomes lower than the predetermined value. be. Inside the turbo molecular pump 100, the pressure of the exhaust gas is the lowest at the intake port 101 and the highest at the exhaust port 133. If the pressure rises above a predetermined value or the temperature drops below a predetermined value while the process gas is being transferred from the intake port 101 to the exhaust port 133, the process gas becomes a solid state and becomes a turbo molecule. It adheres to the inside of the pump 100 and accumulates.

例えば、Alエッチング装置にプロセスガスとしてSiClが使用された場合、低真空(760[torr]~10-2[torr])かつ、低温(約20[℃])のとき、固体生成物(例えばAlCl)が析出し、ターボ分子ポンプ100内部に付着堆積することが蒸気圧曲線からわかる。これにより、ターボ分子ポンプ100内部にプロセスガスの析出物が堆積すると、この堆積物がポンプ流路を狭め、ターボ分子ポンプ100の性能を低下させる原因となる。そして、前述した生成物は、排気口付近やネジ付スペーサ131付近の圧力が高い部分で凝固、付着し易い状況にあった。 For example, when SiCl 4 is used as a process gas in an Al etching apparatus, it is a solid product (for example, at a low vacuum (760 [torr] to 10-2 [torr]) and at a low temperature (about 20 [° C.]). It can be seen from the vapor pressure curve that AlCl 3 ) is deposited and adheres to the inside of the turbo molecular pump 100. As a result, when a deposit of process gas is deposited inside the turbo molecular pump 100, this deposit narrows the pump flow path and causes the performance of the turbo molecular pump 100 to deteriorate. The above-mentioned product was in a state of being easily solidified and adhered in a high pressure portion near the exhaust port and the screwed spacer 131.

そのため、この問題を解決するために、従来はベース部129等の外周に図示しないヒータや環状の水冷管149を巻着させ、かつ例えばベース部129に図示しない温度センサ(例えばサーミスタ)を埋め込み、この温度センサの信号に基づいてベース部129の温度を一定の高い温度(設定温度)に保つようにヒータの加熱や水冷管149による冷却の制御(以下TMSという。TMS;Temperature Management System)が行われている。 Therefore, in order to solve this problem, conventionally, a heater or an annular water cooling tube 149 (not shown) is wound around the outer periphery of the base portion 129 or the like, and a temperature sensor (for example, a thermistor) (for example, not shown) is embedded in the base portion 129, for example. Based on the signal of this temperature sensor, the heating of the heater and the control of cooling by the water cooling tube 149 (hereinafter referred to as TMS; Temperature Management System) are performed so as to keep the temperature of the base portion 129 at a constant high temperature (set temperature). It has been.

次に、このように構成されるターボ分子ポンプ100に関して、その上側径方向電磁石104、下側径方向電磁石105及び軸方向電磁石106A、106Bを励磁制御するアンプ回路150について説明する。このアンプ回路150の回路図を図2に示す。 Next, with respect to the turbo molecular pump 100 configured as described above, an amplifier circuit 150 that excites and controls the upper radial electromagnet 104, the lower radial electromagnet 105, and the axial electromagnets 106A and 106B will be described. The circuit diagram of this amplifier circuit 150 is shown in FIG.

図2において、上側径方向電磁石104等を構成する電磁石巻線151は、その一端がトランジスタ161を介して電源171の正極171aに接続されており、また、その他端が電流検出回路181及びトランジスタ162を介して電源171の負極171bに接続されている。そして、トランジスタ161、162は、いわゆるパワーMOSFETとなっており、そのソース-ドレイン間にダイオードが接続された構造を有している。 In FIG. 2, one end of the electromagnet winding 151 constituting the upper radial electromagnet 104 and the like is connected to the positive electrode 171a of the power supply 171 via the transistor 161 and the other end thereof is the current detection circuit 181 and the transistor 162. It is connected to the negative electrode 171b of the power supply 171 via. The transistors 161 and 162 are so-called power MOSFETs, and have a structure in which a diode is connected between the source and the drain thereof.

このとき、トランジスタ161は、そのダイオードのカソード端子161aが正極171aに接続されるとともに、アノード端子161bが電磁石巻線151の一端と接続されるようになっている。また、トランジスタ162は、そのダイオードのカソード端子162aが電流検出回路181に接続されるとともに、アノード端子162bが負極171bと接続されるようになっている。 At this time, in the transistor 161 the cathode terminal 161a of the diode is connected to the positive electrode 171a, and the anode terminal 161b is connected to one end of the electromagnet winding 151. Further, in the transistor 162, the cathode terminal 162a of the diode is connected to the current detection circuit 181 and the anode terminal 162b is connected to the negative electrode 171b.

一方、電流回生用のダイオード165は、そのカソード端子165aが電磁石巻線151の一端に接続されるとともに、そのアノード端子165bが負極171bに接続されるようになっている。また、これと同様に、電流回生用のダイオード166は、そのカソード端子166aが正極171aに接続されるとともに、そのアノード端子166bが電流検出回路181を介して電磁石巻線151の他端に接続されるようになっている。そして、電流検出回路181は、例えばホールセンサ式電流センサや電気抵抗素子で構成されている。 On the other hand, in the current regeneration diode 165, the cathode terminal 165a is connected to one end of the electromagnet winding 151, and the anode terminal 165b is connected to the negative electrode 171b. Similarly, in the current regeneration diode 166, the cathode terminal 166a is connected to the positive electrode 171a, and the anode terminal 166b is connected to the other end of the electromagnet winding 151 via the current detection circuit 181. It has become so. The current detection circuit 181 is composed of, for example, a hall sensor type current sensor or an electric resistance element.

以上のように構成されるアンプ回路150は、一つの電磁石に対応されるものである。そのため、磁気軸受が5軸制御で、電磁石104、105、106A、106Bが合計10個ある場合には、電磁石のそれぞれについて同様のアンプ回路150が構成され、電源171に対して10個のアンプ回路150が並列に接続されるようになっている。 The amplifier circuit 150 configured as described above corresponds to one electromagnet. Therefore, when the magnetic bearing is controlled by 5 axes and there are a total of 10 electromagnets 104, 105, 106A, and 106B, the same amplifier circuit 150 is configured for each of the electromagnets, and 10 amplifier circuits are provided for the power supply 171. 150 are connected in parallel.

さらに、アンプ制御回路191は、例えば、制御装置200の図示しないディジタル・シグナル・プロセッサ部(以下、DSP部という)によって構成され、このアンプ制御回路191は、トランジスタ161、162のon/offを切り替えるようになっている。 Further, the amplifier control circuit 191 is composed of, for example, a digital signal processor unit (hereinafter referred to as a DSP unit) (hereinafter, referred to as a DSP unit) of the control device 200, and the amplifier control circuit 191 switches on / off of the transistors 161 and 162. It has become like.

アンプ制御回路191は、電流検出回路181が検出した電流値(この電流値を反映した信号を電流検出信号191cという)と所定の電流指令値とを比較するようになっている。そして、この比較結果に基づき、PWM制御による1周期である制御サイクルTs内に発生させるパルス幅の大きさ(パルス幅時間Tp1、Tp2)を決めるようになっている。その結果、このパルス幅を有するゲート駆動信号191a、191bを、アンプ制御回路191からトランジスタ161、162のゲート端子に出力するようになっている。 The amplifier control circuit 191 is adapted to compare a current value detected by the current detection circuit 181 (a signal reflecting this current value is referred to as a current detection signal 191c) with a predetermined current command value. Then, based on this comparison result, the magnitude of the pulse width (pulse width time Tp1 and Tp2) generated in the control cycle Ts, which is one cycle by PWM control, is determined. As a result, the gate drive signals 191a and 191b having this pulse width are output from the amplifier control circuit 191 to the gate terminals of the transistors 161 and 162.

なお、回転体103の回転速度の加速運転中に共振点を通過する際や定速運転中に外乱が発生した際等に、高速かつ強い力での回転体103の位置制御をする必要がある。そのため、電磁石巻線151に流れる電流の急激な増加(あるいは減少)ができるように、電源171としては、例えば50V程度の高電圧が使用されるようになっている。また、電源171の正極171aと負極171bとの間には、電源171の安定化のために、通常コンデンサが接続されている(図示略)。 It is necessary to control the position of the rotating body 103 at high speed and with a strong force when the rotating body 103 passes through the resonance point during the accelerated operation of the rotating speed or when a disturbance occurs during the constant speed operation. .. Therefore, a high voltage of, for example, about 50 V is used as the power supply 171 so that the current flowing through the electromagnet winding 151 can be rapidly increased (or decreased). Further, a normal capacitor is normally connected between the positive electrode 171a and the negative electrode 171b of the power supply 171 for the purpose of stabilizing the power supply 171 (not shown).

かかる構成において、トランジスタ161、162の両方をonにすると、電磁石巻線151に流れる電流(以下、電磁石電流iLという)が増加し、両方をoffにすると、電磁石電流iLが減少する。 In such a configuration, when both the transistors 161 and 162 are turned on, the current flowing through the electromagnet winding 151 (hereinafter referred to as the electromagnet current iL) increases, and when both are turned off, the electromagnet current iL decreases.

また、トランジスタ161、162の一方をonにし他方をoffにすると、いわゆるフライホイール電流が保持される。そして、このようにアンプ回路150にフライホイール電流を流すことで、アンプ回路150におけるヒステリシス損を減少させ、回路全体としての消費電力を低く抑えることができる。また、このようにトランジスタ161、162を制御することにより、ターボ分子ポンプ100に生じる高調波等の高周波ノイズを低減することができる。さらに、このフライホイール電流を電流検出回路181で測定することで電磁石巻線151を流れる電磁石電流iLが検出可能となる。 Further, when one of the transistors 161 and 162 is turned on and the other is turned off, the so-called flywheel current is maintained. By passing the flywheel current through the amplifier circuit 150 in this way, the hysteresis loss in the amplifier circuit 150 can be reduced, and the power consumption of the entire circuit can be suppressed to a low level. Further, by controlling the transistors 161 and 162 in this way, it is possible to reduce high frequency noise such as harmonics generated in the turbo molecular pump 100. Further, by measuring this flywheel current with the current detection circuit 181 it becomes possible to detect the electromagnet current iL flowing through the electromagnet winding 151.

すなわち、検出した電流値が電流指令値より小さい場合には、図3に示すように制御サイクルTs(例えば100μs)中で1回だけ、パルス幅時間Tp1に相当する時間分だけトランジスタ161、162の両方をonにする。そのため、この期間中の電磁石電流iLは、正極171aから負極171bへ、トランジスタ161、162を介して流し得る電流値iLmax(図示せず)に向かって増加する。 That is, when the detected current value is smaller than the current command value, as shown in FIG. 3, the transistors 161 and 162 are used only once in the control cycle Ts (for example, 100 μs) for the time corresponding to the pulse width time Tp1. Turn both on. Therefore, the electromagnet current iL during this period increases from the positive electrode 171a to the negative electrode 171b toward the current value iLmax (not shown) that can be passed through the transistors 161 and 162.

一方、検出した電流値が電流指令値より大きい場合には、図4に示すように制御サイクルTs中で1回だけパルス幅時間Tp2に相当する時間分だけトランジスタ161、162の両方をoffにする。そのため、この期間中の電磁石電流iLは、負極171bから正極171aへ、ダイオード165、166を介して回生し得る電流値iLmin(図示せず)に向かって減少する。 On the other hand, when the detected current value is larger than the current command value, as shown in FIG. 4, both the transistors 161 and 162 are turned off only once in the control cycle Ts for the time corresponding to the pulse width time Tp2. .. Therefore, the electromagnet current iL during this period decreases from the negative electrode 171b to the positive electrode 171a toward the current value iLmin (not shown) that can be regenerated via the diodes 165 and 166.

そして、いずれの場合にも、パルス幅時間Tp1、Tp2の経過後は、トランジスタ161、162のどちらか1個をonにする。そのため、この期間中は、アンプ回路150にフライホイール電流が保持される。 In either case, after the pulse width times Tp1 and Tp2 have elapsed, either one of the transistors 161 and 162 is turned on. Therefore, during this period, the flywheel current is held in the amplifier circuit 150.

(第1の実施形態)
次に、図5から図16を参照して、第1の実施形態を説明する。
図5は、第1の実施形態に係るターボ分子ポンプの概略構成例を示した図であり、図6は、図5に示す第1の実施形態に係るターボ分子ポンプの部分拡大図である。
この第1の実施形態では、固定翼123の内リム600又は外リム700もしくは双方に、排気口側に向かって下り勾配を有するテーパー面(内リムテーパー面610、外リムテーパー面710)が設けられている。
このテーパー面が設けられているのは、複数段の回転翼のうち一段の回転翼の外径が、排気口側の方が小径に形成されている箇所、もしくは、複数段の回転翼のうち一段の回転翼の内径が、排気口側の方が大径に形成されている箇所である。これらの回転翼の間に、テーパー面が設けられた固定翼123が、配置されている。
(First Embodiment)
Next, the first embodiment will be described with reference to FIGS. 5 to 16.
FIG. 5 is a diagram showing a schematic configuration example of the turbo molecular pump according to the first embodiment, and FIG. 6 is a partially enlarged view of the turbo molecular pump according to the first embodiment shown in FIG.
In this first embodiment, the inner rim 600, the outer rim 700, or both of the fixed wing 123 are provided with tapered surfaces (inner rim tapered surface 610, outer rim tapered surface 710) having a downward gradient toward the exhaust port side. There is.
This tapered surface is provided at a location where the outer diameter of one-stage rotor is smaller on the exhaust port side, or among multiple-stage rotors. The inner diameter of the one-stage rotor is formed to be larger on the exhaust port side. A fixed wing 123 provided with a tapered surface is arranged between these rotor blades.

図7は、第1の実施形態Aに係る内リムにテーパー面を設けた固定翼123を示した図である。
この図に示すように、内リム600に排気口側に向かって下り勾配を有する内リムテーパー面610が設けられている。この内リムテーパー面610に送られてきた分子が当たると、直角に反射し、上段の回転翼にたたかれ、次段へ送られる。この観点から、内リム600も内リムテーパー面610を設けたことにより、排気作用に貢献することとなる。
この図から明らかなように、固定翼123のブレード550は、内リム600と外リム700により、保持、固定されている。
FIG. 7 is a diagram showing a fixed wing 123 having a tapered surface on the inner rim according to the first embodiment A.
As shown in this figure, the inner rim 600 is provided with an inner rim tapered surface 610 having a downward gradient toward the exhaust port side. When the molecule sent to the inner rim taper surface 610 hits, it is reflected at a right angle, hit by the rotor blade of the upper stage, and sent to the next stage. From this point of view, the inner rim 600 also contributes to the exhaust action by providing the inner rim tapered surface 610.
As is clear from this figure, the blade 550 of the fixed wing 123 is held and fixed by the inner rim 600 and the outer rim 700.

図8は、第1の実施形態Bに係る内リムにテーパー面を設けた固定翼123を示した図である。この第1の実施形態Bに係る固定翼123は、内リム垂直面620と、内リム円周面630が形成されている。
固定翼123は、例えばアルミニウムを材料としており、金型で鋳物として製造されるか、切削で製造される。
金型で鋳物として製造される場合、製品を金型から抜く必要があるため、内リム垂直面620を設けている。ブレード550の下側には、内リム垂直面620が形成される箇所に、外リム700と平行な内リム円周面630が形成されている。
FIG. 8 is a diagram showing a fixed wing 123 having a tapered surface on the inner rim according to the first embodiment B. The fixed wing 123 according to the first embodiment B is formed with an inner rim vertical surface 620 and an inner rim peripheral surface 630.
The fixed wing 123 is made of, for example, aluminum, and is manufactured as a casting in a mold or by cutting.
When manufactured as a casting in a mold, the product needs to be removed from the mold, so an inner rim vertical surface 620 is provided. On the lower side of the blade 550, an inner rim peripheral surface 630 parallel to the outer rim 700 is formed at a position where the inner rim vertical surface 620 is formed.

図9は、第1の実施形態Cに係る内リム及び外リムにテーパー面を設けた固定翼123を示した図である。この図に示すように、内リム600だけでなく、外リム700にも排気口側に向かって下り勾配を有する外リムテーパー面710が設けられている。
この第1の実施形態Cでは、内リム600だけでなく外リム700も排気作用に貢献することとなる。
なお、この第1の実施形態Cでは、内リム600及び外リム700の両方にテーパー面(610、710)を設けているが、外リム700のみに外リムテーパー面710を設けるようにしてもよい。
FIG. 9 is a diagram showing a fixed wing 123 having tapered surfaces on the inner rim and the outer rim according to the first embodiment C. As shown in this figure, not only the inner rim 600 but also the outer rim 700 is provided with an outer rim tapered surface 710 having a downward gradient toward the exhaust port side.
In the first embodiment C, not only the inner rim 600 but also the outer rim 700 contributes to the exhaust action.
In the first embodiment C, the inner rim 600 and the outer rim 700 are both provided with tapered surfaces (610, 710), but the outer rim 700 may be provided with the outer rim tapered surface 710 only. ..

図10は、第1の実施形態Dに係る内リム及び外リムにテーパー面を設け、かつ垂直面と円周面を設けた固定翼123を示した図である。
第1の実施形態Bと同様に、金型で鋳物として製造される場合、製品を金型から抜く必要があるため、外リム垂直面720を設けている。ブレード550の下側には、外リム垂直面720が形成される箇所に、内リム600と平行な外リム円周面730が形成されている。
FIG. 10 is a diagram showing a fixed wing 123 in which the inner rim and the outer rim according to the first embodiment D are provided with tapered surfaces, and a vertical surface and a circumferential surface are provided.
Similar to the first embodiment B, when the product is manufactured as a casting with a mold, it is necessary to remove the product from the mold, so that the outer rim vertical surface 720 is provided. On the lower side of the blade 550, an outer rim peripheral surface 730 parallel to the inner rim 600 is formed at a position where the outer rim vertical surface 720 is formed.

図11(a)(b)は、第1の実施形態Eに係る内リム及び外リムにテーパー面を設け、かつ外リムのブレードより上側(下側)にもテーパー面がある固定翼123を示した図である。
この第1の実施形態Eは、内リム600側は、第1の実施形態Aや実施形態Cと同一形状であるが、外リム700の構成が第1の実施形態Cと相違している。すなわち、図11(a)に示す実施形態では、ブレード550の表面より上側まで外リムテーパー面710が形成されて、余剰部740が存在している。
一方、図11(b)に示す実施形態では、ブレード550の裏面より下側まで外リムテーパー面710が形成されて、余剰部740が存在している。
この余剰部740が、存在していることで、固定翼123の軸方向の寸法を規定するのが容易になる。すなわち、ブレード550が影響しない範囲で高さ方向の調整を行うことができる。
この第1の実施形態Eでは、内リム600及び外リム700の両方にテーパー面(610、710)を設けているが、外リム700のみに外リムテーパー面710を設けるようにしてもよい。
なお、この第1の実施形態Eは、垂直面が存在しないので、切削で製造されている。
11 (a) and 11 (b) show a fixed wing 123 having a tapered surface on the inner rim and the outer rim according to the first embodiment E and also having a tapered surface on the upper side (lower side) of the blade of the outer rim. It is a figure shown.
In the first embodiment E, the inner rim 600 side has the same shape as the first embodiment A and the embodiment C, but the configuration of the outer rim 700 is different from that of the first embodiment C. That is, in the embodiment shown in FIG. 11A, the outer rim tapered surface 710 is formed up to the upper side from the surface of the blade 550, and the surplus portion 740 exists.
On the other hand, in the embodiment shown in FIG. 11B, the outer rim tapered surface 710 is formed from the back surface to the lower side of the blade 550, and the surplus portion 740 exists.
The presence of this surplus portion 740 makes it easy to define the axial dimensions of the fixed blade 123. That is, the adjustment in the height direction can be performed within a range that the blade 550 does not affect.
In the first embodiment E, both the inner rim 600 and the outer rim 700 are provided with tapered surfaces (610, 710), but the outer rim taper surface 710 may be provided only on the outer rim 700.
Since the vertical plane does not exist, the first embodiment E is manufactured by cutting.

図12は、第1の実施形態Fに係る内リム及び外リムにテーパー面を設け、かつブレードより上側(下側)に内周面がある固定翼123を示した図である。
この第1の実施形態Fは、内リム600側は、第1の実施形態Aや実施形態Cと同一形状であるが、外リム700の構成が第1の実施形態Cと相違している。すなわち、ブレード550の表面より上側(下側)に、外リム内周面760が形成されている。外リム内周面760は、外リムテーパー面710と異なり、ターボ分子ポンプ100の軸線方向と平行な面である。
この外リム内周面760を設け、軸方向の寸法を調整することで、固定翼123をターボ分子ポンプ100内に設置する際、軸方向位置決めを行うことができる。
この第1の実施形態Fでは、内リム600及び外リム700の両方にテーパー面(610、710)を設けているが、外リム700のみにテーパー面710を設けるようにしてもよい。
なお、この第1の実施形態Fは、垂直面が存在しないので、切削で製造されている。
FIG. 12 is a diagram showing a fixed wing 123 having a tapered surface on the inner rim and the outer rim according to the first embodiment F and an inner peripheral surface on the upper side (lower side) of the blade.
In the first embodiment F, the inner rim 600 side has the same shape as the first embodiment A and the embodiment C, but the configuration of the outer rim 700 is different from that of the first embodiment C. That is, the outer rim inner peripheral surface 760 is formed on the upper side (lower side) of the surface of the blade 550. The outer rim inner peripheral surface 760 is a surface parallel to the axial direction of the turbo molecular pump 100, unlike the outer rim tapered surface 710.
By providing the outer rim inner peripheral surface 760 and adjusting the axial dimension, axial positioning can be performed when the fixed wing 123 is installed in the turbo molecular pump 100.
In the first embodiment F, the tapered surface (610, 710) is provided on both the inner rim 600 and the outer rim 700, but the tapered surface 710 may be provided only on the outer rim 700.
Since the vertical plane does not exist, the first embodiment F is manufactured by cutting.

図13は、第1の実施形態Gに係る内リム及び外リムにテーパー面を設け、かつ外リムのブレードより上側(下側)に内周面があり、垂直面を設けた固定翼123を示した図である。この実施形態Gと第1の実施形態Fとの相違点は、内リム垂直面620と外リム垂直面720が設けられている点である。
この外リム内周面760を設け、軸方向の寸法を調整することで、固定翼123をターボ分子ポンプ100内に設置する際、軸方向位置決めを行うことができる。
この第1の実施形態Gでは、内リム600及び外リム700の両方にテーパー面(610、710)を設けているが、外リム700のみに外リムテーパー面710を設けるようにしてもよい。
FIG. 13 shows a fixed wing 123 having a tapered surface on the inner rim and the outer rim according to the first embodiment G, an inner peripheral surface on the upper side (lower side) of the blade of the outer rim, and a vertical surface. It is a figure shown. The difference between the embodiment G and the first embodiment F is that the inner rim vertical surface 620 and the outer rim vertical surface 720 are provided.
By providing the outer rim inner peripheral surface 760 and adjusting the axial dimension, axial positioning can be performed when the fixed wing 123 is installed in the turbo molecular pump 100.
In the first embodiment G, both the inner rim 600 and the outer rim 700 are provided with tapered surfaces (610, 710), but the outer rim taper surface 710 may be provided only on the outer rim 700.

図14(a)、(b)は、第1の実施形態Hに係る内リム及び外リムにテーパー面を設け、かつ外リムのブレードより上側(下側)にもテーパー面があり、垂直面を設けた固定翼123を示した図である。(a)は、上側から見た外観図であり、(b)は、下側から見た外観図である。
この実施形態と第1の実施形態Eとの相違点は、内リム垂直面620と外リム垂直面720が設けられている点である。
余剰部740が存在していることで、固定翼123の軸方向の寸法を規定するのが容易になる。
この第1の実施形態Hでは、内リム600及び外リム700の両方にテーパー面(610、710)を設けているが、外リム700のみにテーパー面710を設けるようにしてもよい。
14 (a) and 14 (b) show a vertical surface having a tapered surface on the inner rim and the outer rim according to the first embodiment H, and also having a tapered surface on the upper side (lower side) of the blade of the outer rim. It is a figure which showed the fixed wing 123 provided with. (A) is an external view seen from the upper side, and (b) is an external view seen from the lower side.
The difference between this embodiment and the first embodiment E is that the inner rim vertical surface 620 and the outer rim vertical surface 720 are provided.
The presence of the surplus portion 740 facilitates defining the axial dimensions of the fixed wing 123.
In the first embodiment H, the tapered surface (610, 710) is provided on both the inner rim 600 and the outer rim 700, but the tapered surface 710 may be provided only on the outer rim 700.

図15は、第1の実施形態Iに係る内リム及び外リムにテーパー面を設け、かつフランジを設けた固定翼123を示した図である。
この実施形態Iでは、外リム700から外側(設置時に外筒127側)に突出したフランジ750が設けられている。
このフランジ750により、固定翼123の軸方向の位置決めや保持を行うことができる。すなわち、フランジ750の厚み(軸方向の高さ)の調整をすることで、固定翼123の軸方向の位置決めを行うことができ、かつ、このフランジ750を挟持することで、外筒127に固定することができる。
この第1の実施形態Iでは、内リム600及び外リム700の両方にテーパー面(610、710)を設けているが、外リム700のみに外リムテーパー面710を設けるようにしてもよい。
なお、この第1の実施形態Iは、垂直面が存在しないので、切削で製造されている。
FIG. 15 is a diagram showing a fixed wing 123 in which the inner rim and the outer rim according to the first embodiment I are provided with tapered surfaces and flanges are provided.
In the first embodiment, a flange 750 projecting from the outer rim 700 to the outside (on the outer cylinder 127 side at the time of installation) is provided.
With this flange 750, the fixed blade 123 can be positioned and held in the axial direction. That is, by adjusting the thickness (height in the axial direction) of the flange 750, the fixed blade 123 can be positioned in the axial direction, and by sandwiching the flange 750, it is fixed to the outer cylinder 127. can do.
In the first embodiment I, both the inner rim 600 and the outer rim 700 are provided with tapered surfaces (610, 710), but the outer rim taper surface 710 may be provided only on the outer rim 700.
Since this first embodiment I does not have a vertical plane, it is manufactured by cutting.

図16は、第1の実施形態Jに係る内リム及び外リムにテーパー面を設け、かつ内リム垂直面と外リム垂直面を設け、フランジを設けた固定翼123を示した図である。
この実施形態Jでは、実施形態Iと同様に、外リム700から外側(設置時に外筒127側)に突出したフランジ750が設けられている。
このフランジ750により、固定翼123の軸方向の位置決めや保持を行うことができる。すなわち、フランジ750の厚み(軸方向の高さ)の調整を行うことで、固定翼123の軸方向の位置決めを行うことができ、かつ、このフランジ750を挟持することで、外筒127に固定することができる。
この実施形態Jと第1の実施形態Iとの相違点は、内リム垂直面620と外リム垂直面720が設けられている点である。
この第1の実施形態Jでは、内リム600及び外リム700の両方にテーパー面(610、710)を設けているが、外リム700のみに外リムテーパー面710を設けるようにしてもよい。
FIG. 16 is a diagram showing a fixed wing 123 in which the inner rim and the outer rim according to the first embodiment J are provided with tapered surfaces, and the inner rim vertical surface and the outer rim vertical surface are provided and flanges are provided.
In the embodiment J, similarly to the embodiment I, a flange 750 protruding from the outer rim 700 to the outside (on the outer cylinder 127 side at the time of installation) is provided.
With this flange 750, the fixed blade 123 can be positioned and held in the axial direction. That is, by adjusting the thickness (height in the axial direction) of the flange 750, the fixed blade 123 can be positioned in the axial direction, and by sandwiching the flange 750, it is fixed to the outer cylinder 127. can do.
The difference between the embodiment J and the first embodiment I is that the inner rim vertical surface 620 and the outer rim vertical surface 720 are provided.
In the first embodiment J, both the inner rim 600 and the outer rim 700 are provided with tapered surfaces (610, 710), but the outer rim taper surface 710 may be provided only on the outer rim 700.

(第2の実施形態)
次に、図17から図21を参照して、第2の実施形態を説明する。
図17は、第2の実施形態に係るターボ分子ポンプの部分拡大図である。
この第2の実施形態では、固定翼123の外リム700に、排気口側に向かって下り勾配を有する外リムテーパー面710と外リム内周面760が設けられている。すなわち、外リム700に、外リムテーパー面710と外リム内周面760が共存していることを特徴とする。なお、内リム600に関しては、第1の実施形態と同様である。
(Second embodiment)
Next, a second embodiment will be described with reference to FIGS. 17 to 21.
FIG. 17 is a partially enlarged view of the turbo molecular pump according to the second embodiment.
In this second embodiment, the outer rim 700 of the fixed wing 123 is provided with an outer rim tapered surface 710 and an outer rim inner peripheral surface 760 having a downward gradient toward the exhaust port side. That is, the outer rim 700 is characterized in that the outer rim tapered surface 710 and the outer rim inner peripheral surface 760 coexist. The inner rim 600 is the same as that of the first embodiment.

図18は、第2の実施形態Aに係る外リムにテーパー面及び内周面を設けた固定翼123を示した図である。
外リムテーパー面710は、ブレード550に対応した位置に配置されている。その下部に外リム内周面760が設けられている。この外リム内周面760は、傾斜がなく、ターボ分子ポンプ100の軸線方向と平行である。
この外リム内周面760の高さ方向を調整することで、固定翼123の位置決めを行うことができる。この外リム内周面760に対応する位置には、ブレード550が存在しないので、調整を容易に行うことができる。
この第2の実施形態Aでは、内リム600及び外リム700の両方にテーパー面(610、710)を設けているが、外リム700のみに外リムテーパー面710を設けるようにしてもよい。
なお、この第2の実施形態Aは、垂直面が存在しないので、切削で製造されている。
FIG. 18 is a diagram showing a fixed wing 123 provided with a tapered surface and an inner peripheral surface on the outer rim according to the second embodiment A.
The outer rim tapered surface 710 is arranged at a position corresponding to the blade 550. An outer rim inner peripheral surface 760 is provided below the outer rim. The outer rim inner peripheral surface 760 has no inclination and is parallel to the axial direction of the turbo molecular pump 100.
By adjusting the height direction of the outer rim inner peripheral surface 760, the fixed wing 123 can be positioned. Since the blade 550 does not exist at the position corresponding to the inner peripheral surface of the outer rim 760, adjustment can be easily performed.
In the second embodiment A, both the inner rim 600 and the outer rim 700 are provided with tapered surfaces (610, 710), but the outer rim taper surface 710 may be provided only on the outer rim 700.
Since the second embodiment A does not have a vertical plane, it is manufactured by cutting.

図19は、第2の実施形態Bに係る外リムにテーパー面及び内周面を設け、かつフランジを設けた固定翼123を示した図である。
外リムテーパー面710は、ブレード550に対応した位置に配置されている。その下部に外リム内周面760が設けられている。
この第2の実施形態Bと第2の実施形態Aとの相違点は、外リム700の外側(設置時に外筒127側)に突出したフランジ750が設けられていることである。
このフランジ750により、固定翼123の軸方向の位置決めや保持を行うことができる。すなわち、フランジ750の厚み(軸方向の高さ)の調整を行うことで、固定翼123の軸方向の位置決めを行うことができ、かつ、このフランジ750を挟持することで、外筒127に固定することができる。
この第2の実施形態Bでは、内リム600及び外リム700の両方にテーパー面(610、710)を設けているが、外リム700のみに外リムテーパー面710を設けるようにしてもよい。
なお、この第2の実施形態Bは、垂直面が存在しないので、切削で製造されている。
FIG. 19 is a diagram showing a fixed wing 123 provided with a tapered surface and an inner peripheral surface on the outer rim according to the second embodiment B and provided with a flange.
The outer rim tapered surface 710 is arranged at a position corresponding to the blade 550. An outer rim inner peripheral surface 760 is provided below the outer rim.
The difference between the second embodiment B and the second embodiment A is that a flange 750 protruding from the outside of the outer rim 700 (on the side of the outer cylinder 127 at the time of installation) is provided.
With this flange 750, the fixed blade 123 can be positioned and held in the axial direction. That is, by adjusting the thickness (height in the axial direction) of the flange 750, the fixed blade 123 can be positioned in the axial direction, and by sandwiching the flange 750, it is fixed to the outer cylinder 127. can do.
In the second embodiment B, both the inner rim 600 and the outer rim 700 are provided with tapered surfaces (610, 710), but the outer rim taper surface 710 may be provided only on the outer rim 700.
Since the second embodiment B does not have a vertical plane, it is manufactured by cutting.

図20は、第2の実施形態Cに係る外リムにテーパー面及び内周面を設け、かつ内リム垂直面及び外リム垂直面を設けた固定翼123を示した図である。
外リムテーパー面710は、ブレード550に対応した位置に配置されている。その下部に外リム内周面760が設けられている。
この実施形態Cと第2の実施形態Aと相違する点は、金型で鋳物として製造される場合、製品を金型から抜く必要があるため、内リム垂直面630及び外リム垂直面720を設けていることである。
この第2の実施形態Cでは、内リム600及び外リム700の両方にテーパー面(610、710)を設けているが、外リム700のみに外リムテーパー面710を設けるようにしてもよい。
FIG. 20 is a diagram showing a fixed wing 123 provided with a tapered surface and an inner peripheral surface on the outer rim according to the second embodiment C, and also provided with an inner rim vertical surface and an outer rim vertical surface.
The outer rim tapered surface 710 is arranged at a position corresponding to the blade 550. An outer rim inner peripheral surface 760 is provided below the outer rim.
The difference between this embodiment C and the second embodiment A is that when the product is manufactured as a casting with a mold, it is necessary to remove the product from the mold, so that the inner rim vertical surface 630 and the outer rim vertical surface 720 are used. It is to be provided.
In the second embodiment C, both the inner rim 600 and the outer rim 700 are provided with tapered surfaces (610, 710), but the outer rim taper surface 710 may be provided only on the outer rim 700.

図21は、第2の実施形態Dに係る外リムにテーパー面及び内周面を設け、かつ、フランジを設けた固定翼123を示した図である。
外リムテーパー面710は、ブレード550に対応した位置に配置されている。その下部に外リム内周面760が設けられている。
この第2の実施形態Dと第2の実施形態Cとの相違点は、外リム700の外側(設置時に外筒127側)に突出したフランジ750が設けられていることである。
このフランジ750により、固定翼123の軸方向の位置決めや保持を行うことができる。すなわち、フランジ750の厚み(軸方向の高さ)の調整を行うことで、固定翼123の軸方向の位置決めを行うことができ、かつこのフランジ750を挟持することで、外筒127に固定することができる。
この第2の実施形態Dでは、内リム600及び外リム700の両方にテーパー面(610、710)を設けているが、外リム700のみに外リムテーパー面710を設けるようにしてもよい。
FIG. 21 is a diagram showing a fixed wing 123 provided with a tapered surface and an inner peripheral surface on the outer rim according to the second embodiment D and provided with a flange.
The outer rim tapered surface 710 is arranged at a position corresponding to the blade 550. An outer rim inner peripheral surface 760 is provided below the outer rim.
The difference between the second embodiment D and the second embodiment C is that a flange 750 protruding from the outside of the outer rim 700 (on the side of the outer cylinder 127 at the time of installation) is provided.
With this flange 750, the fixed blade 123 can be positioned and held in the axial direction. That is, by adjusting the thickness (height in the axial direction) of the flange 750, the fixed wing 123 can be positioned in the axial direction, and by sandwiching the flange 750, it is fixed to the outer cylinder 127. be able to.
In the second embodiment D, both the inner rim 600 and the outer rim 700 are provided with tapered surfaces (610, 710), but the outer rim taper surface 710 may be provided only on the outer rim 700.

(第3の実施形態)
次に、図22を参照して、第3の実施形態を説明する。
図22は、第3の実施形態に係るターボ分子ポンプの部分拡大図である。
この第3の実施形態では、第1の実施形態で用いた固定翼123を逆向き又は同一向きに配置する。そして、少なくとも最終段の固定翼123は、逆向きに配置する。
このように固定翼123を配置することにより、同一サイズの製品(固定翼123)を兼用して用いることができ、製造コストを削減することができる。
また、外リムテーパー面710が、連続して繋がるため、スペーサに対しての隙間を設けなくすることができる。
(Third embodiment)
Next, a third embodiment will be described with reference to FIG.
FIG. 22 is a partially enlarged view of the turbo molecular pump according to the third embodiment.
In this third embodiment, the fixed wings 123 used in the first embodiment are arranged in the opposite direction or in the same direction. Then, at least the final stage fixed wing 123 is arranged in the opposite direction.
By arranging the fixed wing 123 in this way, a product of the same size (fixed wing 123) can be used in combination, and the manufacturing cost can be reduced.
Further, since the outer rim tapered surface 710 is continuously connected, it is possible to eliminate the gap with respect to the spacer.

(第4の実施形態)
次に、図23から図25を参照して、第4の実施形態を説明する。
図23は、第4の実施形態に係るターボ分子ポンプの部分拡大図である。
この第4の実施形態では、固定翼123の内リム600に、排気口側に向かって下り勾配を有する内リムテーパー面610が設けられている。すなわち、上流に位置する固定翼123のブレード550の根元径が下流に位置する固定翼123のブレード550の根元径より小さい箇所に位置している内リム600に内リムテーパー面610が設けられている。
(Fourth Embodiment)
Next, a fourth embodiment will be described with reference to FIGS. 23 to 25.
FIG. 23 is a partially enlarged view of the turbo molecular pump according to the fourth embodiment.
In this fourth embodiment, the inner rim 600 of the fixed wing 123 is provided with an inner rim tapered surface 610 having a downward gradient toward the exhaust port side. That is, the inner rim tapered surface 610 is provided on the inner rim 600 located at a position where the root diameter of the blade 550 of the fixed wing 123 located upstream is smaller than the root diameter of the blade 550 of the fixed wing 123 located downstream. ..

図24は、第4の実施形態Aに係る内リム600に内リムテーパー面610を設けた固定翼123を示している。この図24に示した内リム600は、内リム垂直面620が存在しないので、切削で製造されたものである。
図25は、第4の実施形態Bに係る内リム600に内リムテーパー面610を設け、かつ内リム垂直面を設けた固定翼123を示している。この図25に示した内リム600は、内リム垂直面620が存在するので、金型により鋳物で製造されたものである。
図24及び図25には、共に外リム700が存在しないタイプの固定翼123を示しているが、この実施形態4は、外リム700が存在するタイプの固定翼123にも適用することができる。
FIG. 24 shows a fixed wing 123 in which the inner rim 600 according to the fourth embodiment A is provided with the inner rim tapered surface 610. The inner rim 600 shown in FIG. 24 is manufactured by cutting because the inner rim vertical surface 620 does not exist.
FIG. 25 shows a fixed wing 123 provided with an inner rim tapered surface 610 and an inner rim vertical surface provided on the inner rim 600 according to the fourth embodiment B. The inner rim 600 shown in FIG. 25 is manufactured by casting with a mold because the inner rim vertical surface 620 is present.
Although FIGS. 24 and 25 show a fixed wing 123 in which the outer rim 700 is not present, the fourth embodiment can be applied to the fixed wing 123 in which the outer rim 700 is present. ..

(第5の実施形態)
次に、図26から図28を参照して、第5の実施形態を説明する。
図26は、第5の実施形態に係るターボ分子ポンプの部分拡大図である。
この第5の実施形態では、外枠127側を保持し、固定翼123の高さ方向の位置決めを行う固定翼スペーサ部870を有する固定翼スペーサ800に関する。
図27(第5の実施形態A)及び図28(第5の実施形態B)は、この固定翼スペーサ800の外観を示した図である。これらの図に示すように、この固定翼スペーサ800は、スペーサ部870から固定翼123の高さ方向の範囲内に突出する高さ方向に突出する突出部860が設けられ、固定翼スペーサ部870の内周面830及び突出部860の少なくとも一部に、排気口側に向かって下り勾配を有する固定翼スペーサテーパー面810が形成されている。固定翼スペーサ部870の内周面830及び突出部860が固定翼123の高さ方向の範囲内に突出した範囲も「固定翼の外周部」として定義する。
(Fifth Embodiment)
Next, a fifth embodiment will be described with reference to FIGS. 26 to 28.
FIG. 26 is a partially enlarged view of the turbo molecular pump according to the fifth embodiment.
The fifth embodiment relates to a fixed wing spacer 800 having a fixed wing spacer portion 870 that holds the outer frame 127 side and positions the fixed wing 123 in the height direction.
27 (Fifth Embodiment A) and FIG. 28 (fifth embodiment B) are views showing the appearance of the fixed wing spacer 800. As shown in these figures, the fixed wing spacer 800 is provided with a protruding portion 860 that protrudes in the height direction from the spacer portion 870 to the range in the height direction of the fixed wing 123, and the fixed wing spacer portion 870 is provided. A fixed wing spacer tapered surface 810 having a downward slope toward the exhaust port side is formed on at least a part of the inner peripheral surface 830 and the protruding portion 860. The range in which the inner peripheral surface 830 and the protruding portion 860 of the fixed wing spacer portion 870 protrude within the range in the height direction of the fixed wing 123 is also defined as the “outer peripheral portion of the fixed wing”.

各突出部860の間には、設置時に固定翼123のブレード550を嵌合させて保持するブレードの嵌合溝820が設けられている。
図28に示した固定翼スペーサ800は、さらに、固定翼スペーサフランジ850が設けられている。この固定翼スペーサフランジ850により、固定翼スペーサ800の高さ方向の位置決めを行ったり、これを挟持されることにより、固定翼スペーサ800を保持、固定することができる。
Between each protrusion 860, a blade fitting groove 820 for fitting and holding the blade 550 of the fixed wing 123 at the time of installation is provided.
The fixed wing spacer 800 shown in FIG. 28 is further provided with a fixed wing spacer flange 850. The fixed wing spacer 800 can be held and fixed by positioning the fixed wing spacer 800 in the height direction by the fixed wing spacer flange 850 or by sandwiching the fixed wing spacer 800.

(テーパー面の角度について)
上記各実施形態1から5におけるテーパー面の角度について説明する。
テーパー面の角度については、排気口側に向かって下り勾配を有するテーパー面(傾斜面)であれば、特に制限はない。
図29(a)は、第1の実施形態Hに対応した固定翼123の断面図である。この図に示す例では、固定翼スペーサ125の内径下端Aと固定翼スペーサ125の内径上端Bを結ぶ線(仮想線)の角度で固定翼123にテーパー面を設けている。
また、図29(b)は、第2の実施形態Dに対応した固定翼123の断面図である。この図に示す例では、上段の回転翼102の先端Xから下段の固定翼123へ下ろした垂線の交点Hから(1)(固定翼123のブレード550の付け根)、又は(2)(固定翼123の内周下面)の各点を結ぶ線(仮想線)の何れかの角度で固定翼123にテーパー面を設けている。
このように、テーパー面の角度は種々の角度が可能であり、各種状況に応じて適宜決定できる事項である。
(About the angle of the tapered surface)
The angle of the tapered surface in each of the above embodiments 1 to 5 will be described.
The angle of the tapered surface is not particularly limited as long as it is a tapered surface (inclined surface) having a downward slope toward the exhaust port side.
FIG. 29A is a cross-sectional view of the fixed wing 123 corresponding to the first embodiment H. In the example shown in this figure, the fixed wing 123 is provided with a tapered surface at an angle of a line (virtual line) connecting the lower end A of the inner diameter of the fixed wing spacer 125 and the upper end B of the inner diameter of the fixed wing spacer 125.
Further, FIG. 29 (b) is a cross-sectional view of the fixed wing 123 corresponding to the second embodiment D. In the example shown in this figure, (1) (the base of the blade 550 of the fixed wing 123) or (2) (fixed wing) from the intersection H of the vertical line drawn from the tip X of the upper rotary wing 102 to the lower fixed wing 123. A tapered surface is provided on the fixed wing 123 at any angle of a line (virtual line) connecting each point of the inner peripheral lower surface of the 123.
As described above, the angle of the tapered surface can be various angles, and is a matter that can be appropriately determined according to various situations.

また、各実施形態において、テーパー面だけでなく、緩やかな曲線形状の面を用いるようにしてもよい。 Further, in each embodiment, not only a tapered surface but also a surface having a gently curved shape may be used.

なお、本発明の実施形態および各変形例は、必要に応じて組み合わせる構成にしてもよい。 In addition, the embodiment of the present invention and each modification may be combined as necessary.

また、本発明は、本発明の精神を逸脱しない限り種々の改変をなすことができ、そして、本発明が当該改変されたものにも及ぶことは当然である。 Further, the present invention can be modified in various ways as long as it does not deviate from the spirit of the present invention, and it is natural that the present invention extends to the modified one.

100 ターボ分子ポンプ
101 吸気口
102 回転翼
103 回転体
113 ロータ軸
123 固定翼
125 固定翼スペーサ
127 外筒
129 ベース部
133 排気口
200 制御装置
550 ブレード
600 内リム
610 内リムテーパー面
620 内リム垂直面
630 内リム円周面
700 外リム
710 外リムテーパー面
720 外リム垂直面
730 外リム円周面
740 余剰部
750 フランジ
760 外リム内周面
800 固定翼スペーサ
810 固定翼スペーサテーパー面
820 ブレードの嵌合溝
830 固定翼スペーサ内周面
850 固定翼スペーサフランジ
860 突出部
870 固定翼スペーサ部
100 Turbo molecular pump 101 Intake port 102 Rotating wing 103 Rotating body 113 Rotor shaft 123 Fixed wing 125 Fixed wing spacer 127 Outer cylinder 129 Base part 133 Exhaust port 200 Control device 550 Blade 600 Inner rim 610 Inner rim Tapered surface 620 Inner rim Vertical surface 630 Inner rim circumference 700 Outer rim 710 Outer rim taper surface 720 Outer rim vertical surface 730 Outer rim circumference 740 Surplus part 750 Flange 760 Outer rim inner peripheral surface 800 Fixed blade spacer 810 Fixed blade spacer Tapered surface 820 Blade fitting groove 830 Fixed wing spacer inner peripheral surface 850 Fixed wing spacer flange 860 Protruding part 870 Fixed wing spacer part

Claims (8)

吸気口と排気口を有するケーシングと、
前記ケーシングの内部に、回転自在に支持された回転軸と、
前記回転軸に固定され、前記回転軸と共に回転可能な複数段の回転翼と、
前記ケーシングに対して固定され、かつ、前記回転翼間に配置される複数段の固定翼とを、備え、
前記複数段の回転翼のうち少なくとも一段の回転翼の外径が、前記吸気口側より前記排気口側の方が小径に形成された、もしくは、前記複数段の回転翼のうち少なくとも一段の回転翼の内径が、前記吸気口側より前記排気口側の方が大径に形成された真空ポンプであって、
外径が小径に形成された前記回転翼の直上位置または内径が大径に形成された前記回転翼の直上位置に配置された固定翼の外周部または内周部に、前記排気口側に向かって下り勾配を有するテーパー面が設けられていること
を特徴とする真空ポンプ。
A casing with intake and exhaust ports,
A rotating shaft rotatably supported inside the casing,
A multi-stage rotary blade that is fixed to the rotary shaft and can rotate with the rotary shaft,
A plurality of fixed blades fixed to the casing and arranged between the rotor blades are provided.
The outer diameter of at least one stage of the plurality of rotary blades is smaller on the exhaust port side than on the intake port side, or at least one stage of rotation of the plurality of stages of rotary blades. A vacuum pump in which the inner diameter of the blade is larger on the exhaust port side than on the intake port side.
The outer peripheral portion or the inner peripheral portion of the fixed wing arranged at the position directly above the rotary wing having a small outer diameter or the position directly above the rotary wing having a large inner diameter toward the exhaust port side. A vacuum pump characterized by being provided with a tapered surface having a downward slope.
前記固定翼は、放射状に配置される複数枚のブレードと、これらの複数枚のブレードを保持する内リムまたは外リムを有し、
前記内リムの外周面または前記外リムの内周面に、前記排気口側に向かって下り勾配を有するテーパー面が設けられていることを特徴とする請求項1記載の真空ポンプ。
The fixed wing has a plurality of blades arranged radially and an inner rim or an outer rim holding the plurality of blades.
The vacuum pump according to claim 1, wherein a tapered surface having a downward gradient toward the exhaust port side is provided on the outer peripheral surface of the inner rim or the inner peripheral surface of the outer rim.
前記固定翼は、放射状に配置される複数枚のブレードと、これらの複数枚のブレードを保持し、かつ、前記固定翼の高さ方向の位置決めを行うスペーサ部を有し、
前記スペーサ部の内周面に、前記排気口側に向かって下り勾配を有するテーパー面が設けられていることを特徴とする請求項1記載の真空ポンプ。
The fixed wing has a plurality of blades arranged radially and a spacer portion that holds the plurality of blades and positions the fixed wing in the height direction.
The vacuum pump according to claim 1, wherein a tapered surface having a downward gradient toward the exhaust port side is provided on the inner peripheral surface of the spacer portion.
前記固定翼の前記複数枚のブレードの前記排気口側の面までアンダーカットされていることを特徴とする請求項2または請求項3記載の真空ポンプ。
The vacuum pump according to claim 2 or 3, wherein the surface of the plurality of blades of the fixed wing on the exhaust port side is undercut.
前記固定翼の前記複数枚のブレードの後方に垂直面またはテーパー面が設けられていることを特徴とする請求項2または請求項3記載の真空ポンプ。
The vacuum pump according to claim 2 or 3, wherein a vertical surface or a tapered surface is provided behind the plurality of blades of the fixed blade.
前記固定翼の前記ケーシング側を保持し、かつ、前記固定翼の高さ方向の位置決めを行うスペーサ部から前記固定翼の高さ方向の範囲内に突出する突出部が設けられ、
前記スペーサ部の内周面および前記突出部の少なくとも一部に、前記排気口側に向かって下り勾配を有するテーパー面が設けられていることを特徴とする請求項1記載の真空ポンプ。
A protrusion is provided that holds the casing side of the fixed wing and projects from the spacer portion that positions the fixed wing in the height direction within the height range of the fixed wing.
The vacuum pump according to claim 1, wherein a tapered surface having a downward gradient toward the exhaust port side is provided on an inner peripheral surface of the spacer portion and at least a part of the protruding portion.
吸気口と排気口を有するケーシングを備えた真空ポンプに用いられる固定翼であって、
放射状に配置される複数枚のブレードと、これらの複数枚のブレードを保持する内リムまたは外リムを有し、
前記内リムの外周面または前記外リムの内周面に、前記排気口側に向かって下り勾配を有するテーパー面が設けられている固定翼。
A fixed wing used in a vacuum pump with a casing that has an intake and an exhaust.
It has multiple blades arranged radially and an inner or outer rim holding these multiple blades.
A fixed wing provided with a tapered surface having a downward gradient toward the exhaust port side on the outer peripheral surface of the inner rim or the inner peripheral surface of the outer rim.
吸気口と排気口を有するケーシングを備えた真空ポンプに用いられるスペーサであって、
放射状に配置される複数枚のブレードを有する固定翼の配置時に、前記ケーシング側を保持し、かつ、前記固定翼の高さ方向の位置決めを行うスペーサ部を有し、
前記スペーサ部から前記固定翼の高さ方向の範囲内に突出する突出部が設けられ、
前記スペーサ部の内周面および前記突出部の少なくとも一部に、前記排気口側に向かって下り勾配を有するテーパー面が設けられていることを特徴とするスペーサ。
A spacer used in a vacuum pump with a casing having an intake and an exhaust port.
It has a spacer portion that holds the casing side and positions the fixed wing in the height direction when the fixed wing having a plurality of blades arranged radially is arranged.
A protruding portion is provided so as to project from the spacer portion within the height range of the fixed wing.
A spacer characterized in that a tapered surface having a downward gradient toward the exhaust port side is provided on an inner peripheral surface of the spacer portion and at least a part of the protruding portion.
JP2020140495A 2020-08-21 2020-08-21 Vacuum pump, fixed blade and spacer Pending JP2022035881A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020140495A JP2022035881A (en) 2020-08-21 2020-08-21 Vacuum pump, fixed blade and spacer
IL300054A IL300054A (en) 2020-08-21 2021-07-30 Vacuum pump, stator blade, and spacer
CN202180049707.XA CN115803530A (en) 2020-08-21 2021-07-30 Vacuum pump, stationary vane, and spacer
US18/006,290 US20230323890A1 (en) 2020-08-21 2021-07-30 Vacuum pump, stator blade, and spacer
KR1020237000181A KR20230050310A (en) 2020-08-21 2021-07-30 Vacuum Pumps, Fixed Wings, and Spacers
EP21858144.5A EP4202227A1 (en) 2020-08-21 2021-07-30 Vacuum pump, fixed blade, and spacer
PCT/JP2021/028253 WO2022038996A1 (en) 2020-08-21 2021-07-30 Vacuum pump, fixed blade, and spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020140495A JP2022035881A (en) 2020-08-21 2020-08-21 Vacuum pump, fixed blade and spacer

Publications (1)

Publication Number Publication Date
JP2022035881A true JP2022035881A (en) 2022-03-04

Family

ID=80322644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020140495A Pending JP2022035881A (en) 2020-08-21 2020-08-21 Vacuum pump, fixed blade and spacer

Country Status (7)

Country Link
US (1) US20230323890A1 (en)
EP (1) EP4202227A1 (en)
JP (1) JP2022035881A (en)
KR (1) KR20230050310A (en)
CN (1) CN115803530A (en)
IL (1) IL300054A (en)
WO (1) WO2022038996A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19937392A1 (en) * 1999-08-07 2001-02-08 Leybold Vakuum Gmbh Friction vacuum pump with active pump elements
DE10338222A1 (en) * 2003-08-20 2005-03-10 Leybold Vakuum Gmbh Combined drive with storage
JP4749054B2 (en) 2005-06-22 2011-08-17 エドワーズ株式会社 Turbomolecular pump and method of assembling turbomolecular pump
JP7015106B2 (en) 2016-08-30 2022-02-02 エドワーズ株式会社 Vacuum pumps and rotating cylinders included in vacuum pumps
JP6782141B2 (en) * 2016-10-06 2020-11-11 エドワーズ株式会社 Vacuum pumps, as well as spiral plates, spacers and rotating cylinders on vacuum pumps
JP6882624B2 (en) * 2017-09-25 2021-06-02 株式会社島津製作所 Turbo molecular pump

Also Published As

Publication number Publication date
KR20230050310A (en) 2023-04-14
CN115803530A (en) 2023-03-14
IL300054A (en) 2023-03-01
US20230323890A1 (en) 2023-10-12
EP4202227A1 (en) 2023-06-28
WO2022038996A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
WO2022038996A1 (en) Vacuum pump, fixed blade, and spacer
CN117043469A (en) Turbomolecular pump
WO2022075228A1 (en) Vacuum pump and rotary cylindrical body provided to vacuum pump
WO2022153981A1 (en) Vacuum pump, and rotating body of same
WO2022054717A1 (en) Vacuum pump
JP7378447B2 (en) Vacuum pumps and fixed parts
WO2021246337A1 (en) Vacuum pump and vacuum pump rotating body
WO2022124240A1 (en) Vacuum pump
WO2022124239A1 (en) Vacuum pump, vacuum pump fixed components, and vacuum pump support component
WO2022255202A1 (en) Vacuum pump, spacer, and casing
WO2022163341A1 (en) Vacuum pump and spacer
WO2024135679A1 (en) Vacuum pump
WO2022075229A1 (en) Vacuum pump and vacuum exhaust system which uses same
WO2022131035A1 (en) Vacuum pump
WO2022030374A1 (en) Vacuum pump and rotor blade for vacuum pump
WO2023008302A1 (en) Vacuum pump
WO2022145292A1 (en) Vacuum pump and control device
JP2022094272A (en) Vacuum pump
KR20230154001A (en) vacuum pump
CN117337362A (en) Vacuum pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230804

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240501