JP2022032164A - (meth)acrylic resin composition and (meth)acrylic resin film - Google Patents

(meth)acrylic resin composition and (meth)acrylic resin film Download PDF

Info

Publication number
JP2022032164A
JP2022032164A JP2020135685A JP2020135685A JP2022032164A JP 2022032164 A JP2022032164 A JP 2022032164A JP 2020135685 A JP2020135685 A JP 2020135685A JP 2020135685 A JP2020135685 A JP 2020135685A JP 2022032164 A JP2022032164 A JP 2022032164A
Authority
JP
Japan
Prior art keywords
meth
acrylic resin
resin film
acrylic
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020135685A
Other languages
Japanese (ja)
Inventor
毅 長倉
Takeshi Nagakura
真人 客野
Masato Kyakuno
萌美 廣神
Moemi Hirokami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimori Kogyo Co Ltd
Original Assignee
Fujimori Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimori Kogyo Co Ltd filed Critical Fujimori Kogyo Co Ltd
Priority to JP2020135685A priority Critical patent/JP2022032164A/en
Priority to KR1020210095972A priority patent/KR102645990B1/en
Priority to CN202110837249.8A priority patent/CN114075362A/en
Priority to TW110128879A priority patent/TW202206536A/en
Publication of JP2022032164A publication Critical patent/JP2022032164A/en
Priority to KR1020240031702A priority patent/KR20240034728A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/04Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • C09J2433/006Presence of (meth)acrylic polymer in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2451/00Presence of graft polymer
    • C09J2451/006Presence of graft polymer in the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a (meth)acrylic resin composition that can be used in a solution cast process for making a thin resin film, and has excellent folding resistance, cutting resistance, spreadability, and solvent resistance, and a (meth)acrylic resin film.SOLUTION: The (meth)acrylic resin composition contains a (meth)acrylic polymer, a rubber compound, and a cross-linker. The (meth)acrylic polymer comprises a copolymer with a weight average molecular weight of more than 100,000 and 1,000,000 or less, the copolymer consisting of (A) components: methyl methacrylates of 80 pts.wt. or more, and alkyl (meth)acrylates, excluding methyl methacrylates, having the homopolymer Tg of 0°C or higher, and comprising C1-C14 alkyl groups, the (A) components totaling 100 pts.wt. and (B) component: a copolymerizable monomer having a functional group reactable with the cross-linker of 1.0-20.0 pts.wt. Relative to 100 pts.wt of the total of the (A) components, the content of the rubber compound is 1.0-25.0 pts.wt.SELECTED DRAWING: None

Description

本発明は、(メタ)アクリル系樹脂フィルム等の形成に好適に用いられる(メタ)アクリル系樹脂組成物、及びそれを用いた(メタ)アクリル系樹脂フィルムに関する。 The present invention relates to a (meth) acrylic resin composition suitably used for forming a (meth) acrylic resin film or the like, and a (meth) acrylic resin film using the same.

従来から、高透明性、加熱加工性、耐候性、耐薬品性に優れていることから、電子機器、家電製品、自動車内外装部品、建築部材などの各種機器部品の表面被覆に用いる樹脂フィルムとして、(メタ)アクリル系樹脂フィルムが用いられている。
また、近年では、高透明性、耐候性などに優れていることから、(メタ)アクリル系樹脂フィルムが、光学用フィルムとして用いられている。
Since it has been excellent in high transparency, heat processability, weather resistance, and chemical resistance, it has been used as a resin film for surface coating of various equipment parts such as electronic devices, home appliances, automobile interior / exterior parts, and building materials. , (Meta) acrylic resin film is used.
Further, in recent years, a (meth) acrylic resin film has been used as an optical film because of its excellent high transparency and weather resistance.

従来、ポリメチルメタクリレート(PMMA)樹脂からなる(メタ)アクリル系樹脂フィルム(PMMAフィルム)を製造する方法としては、生産性が高いことから、PMMA樹脂を溶融押出法により製膜する方法が採用されていた。 Conventionally, as a method for producing a (meth) acrylic resin film (PMMA film) made of polymethylmethacrylate (PMMA) resin, a method of forming a film of PMMA resin by a melt extrusion method has been adopted because of its high productivity. Was there.

例えば、特許文献1には、アクリル樹脂フィルムと成形樹脂とを一体化する部材に好適に使用可能なアクリル樹脂フィルムであって、特に、表面の保護層の形成に好適な塗装代替アクリル樹脂フィルムが開示されている。特許文献1に記載の発明に係わるアクリル樹脂フィルムは、アクリル樹脂フィルムに添加する紫外線吸収剤と滑剤とを特定の種類で組み合わせ、しかもこれらの成分を特定の含有量としている。このため、特許文献1では、表面の保護層の形成に使用する塗装代替アクリル樹脂フィルムとして、好適に使用できるとしている。 For example, Patent Document 1 describes an acrylic resin film that can be suitably used for a member that integrates an acrylic resin film and a molding resin, and in particular, a coating alternative acrylic resin film that is suitable for forming a protective layer on the surface. It has been disclosed. The acrylic resin film according to the invention described in Patent Document 1 is a combination of an ultraviolet absorber and a lubricant added to the acrylic resin film in a specific type, and has a specific content of these components. Therefore, Patent Document 1 states that it can be suitably used as a coating substitute acrylic resin film used for forming a protective layer on the surface.

また、特許文献2には、アクリル系樹脂の長所である独特の美しい色調、及び透明性が損なわれる原因となるゴム含有グラフト共重合体を含有させないで、アクリル系樹脂の本質的な欠点である耐衝撃性を改善する方法が開示されている。特許文献2に記載の発明に係わるアクリル系樹脂組成物は、前記樹脂組成物を溶融押出法によりフィルム化する際に溶融押出温度を高くすると、前記グラフト共重合体が熱分解することにより発生する分解ガス、又はブリードアウト物により、キャストロール等の冷却ロールが汚染されて、生産性が落ちるという問題を解決できるとしている。 Further, Patent Document 2 does not contain a rubber-containing graft copolymer that causes the peculiar beautiful color tone, which is an advantage of the acrylic resin, and the transparency to be impaired, and is an essential drawback of the acrylic resin. Methods for improving impact resistance are disclosed. The acrylic resin composition according to the invention described in Patent Document 2 is generated by thermal decomposition of the graft copolymer when the melt extrusion temperature is raised when the resin composition is formed into a film by a melt extrusion method. It is said that the problem that the cooling rolls such as cast rolls are contaminated by the decomposition gas or the bleed-out material and the productivity is lowered can be solved.

特開2009-286960号公報Japanese Unexamined Patent Publication No. 2009-286960 国際公開第2016/139927号International Publication No. 2016/139927

ところで、特許文献1に記載の発明に係わるアクリル樹脂フィルムは、熱可塑性重合体を含むアクリル樹脂組成物の混合物を脱気式二軸押出機にて混練して、アクリル樹脂組成物のペレットを得た後に、溶融押出機にて溶融した樹脂組成物をTダイに押し出して行う溶融押出法により、アクリル樹脂フィルムを製膜したものである。また、特許文献1に記載の実施例1~6では、膜厚が50~125μmのアクリル樹脂フィルムが得られている。しかし、特許文献1に記載の発明に係わるアクリル樹脂フィルムは、溶融押出法により製膜した樹脂フィルムであることから、膜厚が40μm以下の薄い樹脂フィルムを得ることが困難であるという問題を有していた。 By the way, in the acrylic resin film according to the invention described in Patent Document 1, a mixture of an acrylic resin composition containing a thermoplastic polymer is kneaded with a degassing twin-screw extruder to obtain pellets of the acrylic resin composition. After that, the acrylic resin film is formed by a melt extrusion method in which the resin composition melted by a melt extruder is extruded into a T-die. Further, in Examples 1 to 6 described in Patent Document 1, an acrylic resin film having a film thickness of 50 to 125 μm is obtained. However, since the acrylic resin film according to the invention described in Patent Document 1 is a resin film formed by a melt extrusion method, there is a problem that it is difficult to obtain a thin resin film having a film thickness of 40 μm or less. Was.

また、特許文献2に記載の発明に係わるアクリル樹脂組成物は、3~4段階のグラフト重合反応を行い徐々にグラフト共重合体を完成させるため、グラフト共重合体を得る工程に長時間を要するという問題を有していた。また、特許文献2の、溶融押出法によりアクリル樹脂フィルムを製造した実施例6~8では、延伸しないで得られたアクリル樹脂フィルムの膜厚が80μmであり、延伸しないで膜厚が40μm以下の薄い樹脂フィルムが得られていなかった。 Further, since the acrylic resin composition according to the invention described in Patent Document 2 undergoes a graft polymerization reaction in 3 to 4 steps to gradually complete the graft copolymer, it takes a long time to obtain the graft copolymer. Had the problem. Further, in Examples 6 to 8 in which the acrylic resin film was produced by the melt extrusion method of Patent Document 2, the film thickness of the acrylic resin film obtained without stretching was 80 μm, and the film thickness was 40 μm or less without stretching. No thin resin film was obtained.

こうしたなか、溶融押出法に比べて、より簡便な樹脂フィルムの製膜方法であり、薄膜化にできる利点がある溶液キャスト法によりPMMA樹脂を製膜する方法が求められていた。本発明者らは、溶液キャスト法によりPMMA樹脂を製膜する方法を鋭意検討した。その結果、特定のPMMA樹脂組成物を用いることにより、溶液キャスト法により製膜した場合でも、溶融押出法により製膜したものと同等以上の優れた物性を有するPMMA樹脂フィルムが得られることを見出し、本発明を完成させることができた。 Under these circumstances, there has been a demand for a method for forming a PMMA resin by a solution casting method, which is a simpler method for forming a resin film than a melt extrusion method and has an advantage of being able to form a thin film. The present inventors have diligently studied a method for forming a PMMA resin by a solution casting method. As a result, it was found that by using a specific PMMA resin composition, a PMMA resin film having excellent physical properties equal to or higher than those formed by the melt extrusion method can be obtained even when the film is formed by the solution casting method. , The present invention could be completed.

従来の溶融押出法により、(メタ)アクリル系樹脂フィルムを製膜する方法の場合には、40μm以下の厚みに薄膜化することが困難であった。一方、溶液キャスト法により、(メタ)アクリル系樹脂フィルムを製膜する方法の場合には、40μm以下の厚みに薄膜化することが可能であるが、得られた(メタ)アクリル系樹脂フィルムの物性として耐溶剤性の性能を向上させることが難しいという問題があった。また、溶液キャスト法においては、(メタ)アクリル系樹脂組成物に含有する未架橋のPMMA樹脂の重量平均分子量を100万以上の大きな値にする必要があるため、該(メタ)アクリル系樹脂組成物の溶液が高粘度であり、製膜工程での作業性が良くないという問題があった。 In the case of the method of forming a (meth) acrylic resin film by the conventional melt extrusion method, it is difficult to thin the film to a thickness of 40 μm or less. On the other hand, in the case of the method of forming a (meth) acrylic resin film by the solution casting method, it is possible to thin the film to a thickness of 40 μm or less, but the obtained (meth) acrylic resin film can be thinned. There is a problem that it is difficult to improve the solvent resistance performance as a physical property. Further, in the solution casting method, since it is necessary to set the weight average molecular weight of the uncrosslinked PMMA resin contained in the (meth) acrylic resin composition to a large value of 1 million or more, the (meth) acrylic resin composition. There is a problem that the solution of the substance has a high viscosity and the workability in the film forming process is not good.

本発明は、薄い膜厚の樹脂フィルムを得るための溶液キャスト法に使用できる(メタ)アクリル系樹脂組成物であって、製膜した樹脂フィルム等の成形品が耐折性、耐切性、伸び性、耐溶剤性に優れている(メタ)アクリル系樹脂組成物、及び(メタ)アクリル系樹脂フィルムを提供することを課題とする。
なお、製膜した(メタ)アクリル系樹脂フィルムの各種の物性は、例えば、「耐折性」については「耐折回数」の測定、「耐切性」については「引張破断強度」の測定、「伸び性」については「破断伸び率」の測定、「耐溶剤性」については「ゲル分率」の測定、をそれぞれ行うことにより判定することが可能である。
The present invention is a (meth) acrylic resin composition that can be used in a solution casting method for obtaining a resin film having a thin film thickness, and a molded product such as a film-formed resin film has folding resistance, cutting resistance, and elongation. It is an object of the present invention to provide a (meth) acrylic resin composition having excellent properties and solvent resistance, and a (meth) acrylic resin film.
The various physical properties of the formed (meth) acrylic resin film are, for example, the measurement of "folding resistance" for "folding resistance", the measurement of "tensile breaking strength" for "cutting resistance", and " The "elongability" can be determined by measuring the "break elongation rate", and the "solvent resistance" can be determined by measuring the "gel fraction".

本発明者らは、上記の課題を解決するために鋭意検討した結果、(メタ)アクリル系ポリマーと、ゴム化合物と、架橋剤とを含有する(メタ)アクリル系樹脂組成物であって、前記(メタ)アクリル系ポリマーが、MMA(メチルメタクリレート)と、前記MMA以外の、ホモポリマーのTgが0℃以上であり、且つアルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートと、官能基を有する共重合可能なモノマーの少なくとも1種以上とを、特定の割合で共重合させた共重合体からなる(メタ)アクリル系ポリマーとすることにより、このような(メタ)アクリル系樹脂組成物を用いて、溶液キャスト法により得られた(メタ)アクリル系樹脂フィルムは、耐折性、耐切性、伸び性、耐溶剤性に優れていて、特に耐折性、伸び性が格段に向上することを見出し、本発明を完成させることができた。すなわち、本発明は、特定の(メタ)アクリル系ポリマーと、ゴム化合物と、架橋剤とを含有する(メタ)アクリル系樹脂組成物を架橋させた樹脂層からなる(メタ)アクリル系樹脂フィルムを、溶液キャスト法により得ることを技術思想としている。 As a result of diligent studies to solve the above problems, the present inventors have obtained a (meth) acrylic resin composition containing a (meth) acrylic polymer, a rubber compound, and a cross-linking agent. The (meth) acrylic polymer includes MMA (methyl methacrylate) and an alkyl (meth) acrylate other than the MMA, in which the Tg of the homopolymer is 0 ° C. or higher and the number of carbon atoms of the alkyl group is C1 to C14. Such a (meth) acrylic resin by forming a (meth) acrylic polymer composed of a copolymer obtained by copolymerizing at least one of the copolymerizable monomers having a functional group at a specific ratio. The (meth) acrylic resin film obtained by the solution casting method using the composition is excellent in folding resistance, cutting resistance, extensibility, and solvent resistance, and in particular, the folding resistance and extensibility are remarkably excellent. We found that it was improved, and we were able to complete the present invention. That is, the present invention comprises a (meth) acrylic resin film composed of a resin layer obtained by cross-linking a (meth) acrylic resin composition containing a specific (meth) acrylic polymer, a rubber compound, and a cross-linking agent. , The technical idea is to obtain by the solution casting method.

前記課題を解決するため、本発明は、(メタ)アクリル系ポリマーと、ゴム化合物と、架橋剤とを含有する(メタ)アクリル系樹脂組成物であって、前記(メタ)アクリル系ポリマーが、(A)メチルメタクリレートを80重量部以上と、前記メチルメタクリレート以外の、ホモポリマーのTgが0℃以上であり、且つアルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートの少なくとも1種以上との合計を100重量部と、(B)前記架橋剤と反応できる官能基を有する共重合可能なモノマーの少なくとも1種以上の合計を1.0~20.0重量部と、を共重合させた重量平均分子量が10万超過100万以下の共重合体からなる(メタ)アクリル系ポリマーであり、前記(A)の合計100重量部に対して、前記ゴム化合物を1.0~25.0重量部の割合で含有してなることを特徴とする(メタ)アクリル系樹脂組成物を提供する。 In order to solve the above problems, the present invention is a (meth) acrylic resin composition containing a (meth) acrylic polymer, a rubber compound, and a cross-linking agent, wherein the (meth) acrylic polymer is used. (A) At least one kind of alkyl (meth) acrylate having 80 parts by weight or more of methyl methacrylate, a homopolymer having a Tg of 0 ° C. or higher, and an alkyl group having C1 to C14 carbon atoms other than the methyl methacrylate. The total of the above is 100 parts by weight, and (B) the total of at least one copolymerizable monomer having a functional group capable of reacting with the cross-linking agent is 1.0 to 20.0 parts by weight. It is a (meth) acrylic polymer composed of a copolymer having a weight average molecular weight of more than 100,000 and 1 million or less, and 1.0 to 25. Provided is a (meth) acrylic resin composition characterized by being contained in a proportion of 0 parts by weight.

前記(メタ)アクリル系ポリマーが、(A)メチルメタクリレートを80~99重量部と、前記メチルメタクリレート以外の、ホモポリマーのTgが0℃以上であり、且つアルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートの少なくとも1種以上の1~20重量部との合計を100重量部と、(B)前記架橋剤と反応できる官能基を有する共重合可能なモノマーとして、水酸基を有する共重合可能なモノマー、及びカルボキシル基を有する共重合可能なモノマーからなるモノマー群の中から選択した少なくとも1種以上のモノマーの合計を1.0~20.0重量部と、を共重合させた重量平均分子量が10万超過100万以下の共重合体からなる(メタ)アクリル系ポリマーであることが好ましい。 The (meth) acrylic polymer has 80 to 99 parts by weight of (A) methyl methacrylate, the Tg of the homopolymer other than the methyl methacrylate is 0 ° C. or higher, and the number of carbon atoms of the alkyl group is C1 to C14. A total of 1 to 20 parts by weight of at least one kind of certain alkyl (meth) acrylate is 100 parts by weight, and (B) a copolymer having a hydroxyl group as a copolymerizable monomer having a functional group capable of reacting with the cross-linking agent. The total weight of at least one selected from the group of monomers composed of polymerizable monomers and copolymerizable monomers having a carboxyl group is 1.0 to 20.0 parts by weight. It is preferably a (meth) acrylic polymer composed of a copolymer having an average molecular weight of more than 100,000 and not more than 1 million.

前記架橋剤が、エポキシ化合物、アジリジン化合物、イソシアネート化合物からなる化合物群から選択した1種以上であることが好ましい。 It is preferable that the cross-linking agent is at least one selected from the compound group consisting of an epoxy compound, an aziridine compound, and an isocyanate compound.

前記ゴム化合物が、コア部にSBR又はブタジエンを主体としたゴム層と、シェル部にメチルメタクリレートを主体としたアクリル層とから形成されたコアシェル粒子であり、前記コアシェル粒子の体積基準平均粒子径が0.05~2.0μmであることが好ましい。 The rubber compound is a core-shell particle formed by a rubber layer mainly composed of SBR or butadiene in the core portion and an acrylic layer mainly composed of methyl methacrylate in the shell portion, and the volume-based average particle diameter of the core-shell particles is large. It is preferably 0.05 to 2.0 μm.

前記水酸基を有する共重合可能なモノマーが、8-ヒドロキシオクチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、N-ヒドロキシ(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミドからなる化合物群から選択された少なくとも1種以上であり、かつ、8-ヒドロキシオクチルメタクリレート、6-ヒドロキシヘキシルメタクリレート、4-ヒドロキシブチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレートからなる化合物群から選択された少なくとも1種以上を含むことが好ましい。 The copolymerizable monomer having a hydroxyl group is 8-hydroxyoctyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, N-hydroxy. At least one selected from the compound group consisting of (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, and N-hydroxyethyl (meth) acrylamide, and 8-hydroxyoctyl methacrylate and 6-hydroxyhexyl methacrylate. , 4-Hydroxybutyl methacrylate, 2-hydroxyethyl methacrylate, and 2-hydroxyethyl acrylate are preferably contained at least one selected from the compound group.

また、本発明は、前記(メタ)アクリル系樹脂組成物を架橋してなる樹脂層である厚みが10~50μmの(メタ)アクリル系樹脂フィルムであり、前記(メタ)アクリル系樹脂フィルムの面内位相差Reが1.0nm以下、ヘイズ値が3.0%以下であることを特徴とする(メタ)アクリル系樹脂フィルムを提供する。 Further, the present invention is a (meth) acrylic resin film having a thickness of 10 to 50 μm, which is a resin layer formed by cross-linking the (meth) acrylic resin composition, and is a surface of the (meth) acrylic resin film. Provided is a (meth) acrylic resin film characterized by an internal phase difference Re of 1.0 nm or less and a haze value of 3.0% or less.

また、本発明は、前記(メタ)アクリル系樹脂組成物を架橋してなる樹脂層である(メタ)アクリル系樹脂フィルムであり、前記(メタ)アクリル系樹脂フィルムの耐溶剤性としてのゲル分率が90%以上であり、かつ、耐折性としての耐折回数(JIS P8115)が100回以上、かつ、伸び性としての破断伸び率が10%以上であることを特徴とする(メタ)アクリル系樹脂フィルムを提供する。 Further, the present invention is a (meth) acrylic resin film which is a resin layer formed by cross-linking the (meth) acrylic resin composition, and the gel content of the (meth) acrylic resin film as solvent resistance. It is characterized in that the rate is 90% or more, the number of times of folding resistance (JIS P8115) is 100 times or more, and the breaking elongation rate as extensibility is 10% or more (meth). Provided is an acrylic resin film.

また、本発明は、前記(メタ)アクリル系樹脂組成物を架橋してなる樹脂層である(メタ)アクリル系樹脂フィルムの片面または両面に、粘着層を形成してなることを特徴とする粘着シートを提供する。 Further, the present invention is characterized in that an adhesive layer is formed on one side or both sides of a (meth) acrylic resin film which is a resin layer formed by cross-linking the (meth) acrylic resin composition. Provide a sheet.

また、本発明は、前記(メタ)アクリル系樹脂組成物を架橋してなる樹脂層である(メタ)アクリル系樹脂フィルムを、偏光子の片面または両面に形成してなることを特徴とする偏光フィルムを提供する。 Further, the present invention is characterized in that a (meth) acrylic resin film, which is a resin layer formed by cross-linking the (meth) acrylic resin composition, is formed on one side or both sides of a polarizing element. Provide film.

本発明によれば、薄い膜厚の樹脂フィルムを得るための溶液キャスト法に使用できる(メタ)アクリル系樹脂組成物であって、製膜した樹脂フィルム等の成形品が耐折性、耐切性、伸び性、耐溶剤性に優れている(メタ)アクリル系樹脂組成物、及び(メタ)アクリル系樹脂フィルムを提供することができる。
なお、本発明では、耐溶剤性の試験方法として、(メタ)アクリル系樹脂フィルムの試験片を、溶剤の液中に所定時間に渡り浸漬した後、前記溶剤に溶出しないで不溶分(残渣)として残った(メタ)アクリル系樹脂フィルムの割合(いわゆる、ゲル分率)を測定し、耐溶剤性を試験した。
また、従来技術の溶融押出法により(メタ)アクリル系樹脂フィルムを製膜する場合は、樹脂フィルムを製膜した後に、1軸又は2軸の延伸加工を施さない限り膜厚を40μm以下とすることができなかった。一方、本発明の(メタ)アクリル系樹脂組成物を用いれば、溶液キャスト法のみを用いて、膜厚が40μm以下である薄膜の(メタ)アクリル系樹脂フィルムを製造することができ、製造工程がより簡便になると共に、製造装置の費用低減を図ることができる。
According to the present invention, it is a (meth) acrylic resin composition that can be used in a solution casting method for obtaining a resin film having a thin film thickness, and a molded product such as a film-formed resin film has folding resistance and cutting resistance. , A (meth) acrylic resin composition having excellent extensibility and solvent resistance, and a (meth) acrylic resin film can be provided.
In the present invention, as a solvent resistance test method, a test piece of a (meth) acrylic resin film is immersed in a solvent solution for a predetermined time, and then insoluble (residue) is not eluted in the solvent. The ratio of the remaining (meth) acrylic resin film (so-called gel fraction) was measured, and the solvent resistance was tested.
When a (meth) acrylic resin film is formed by the melt extrusion method of the prior art, the film thickness is 40 μm or less unless a uniaxial or biaxial stretching process is performed after the resin film is formed. I couldn't. On the other hand, if the (meth) acrylic resin composition of the present invention is used, a thin (meth) acrylic resin film having a film thickness of 40 μm or less can be produced by using only the solution casting method, and the production process can be performed. It becomes easier and the cost of the manufacturing equipment can be reduced.

以下、好適な実施形態に基づいて、本発明を説明する。 Hereinafter, the present invention will be described based on a preferred embodiment.

本実施形態の(メタ)アクリル系樹脂組成物は、(メタ)アクリル系ポリマーと、ゴム化合物と、架橋剤とを含有する(メタ)アクリル系樹脂組成物であって、前記(メタ)アクリル系ポリマーが、(A)メチルメタクリレートを80重量部以上と、前記メチルメタクリレート以外の、ホモポリマーのTgが0℃以上であり、且つアルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートの少なくとも1種以上との合計を100重量部と、(B)前記架橋剤と反応できる官能基を有する共重合可能なモノマーの少なくとも1種以上の合計を1.0~20.0重量部と、を共重合させた重量平均分子量が10万超過100万以下の共重合体からなる(メタ)アクリル系ポリマーであり、前記(A)の合計100重量部に対して、前記ゴム化合物を1.0~25.0重量部の割合で含有してなることを特徴とする。 The (meth) acrylic resin composition of the present embodiment is a (meth) acrylic resin composition containing a (meth) acrylic polymer, a rubber compound, and a cross-linking agent, and is the (meth) acrylic resin composition. The polymer is an alkyl (meth) acrylate in which (A) methyl methacrylate is 80 parts by weight or more, the Tg of the homopolymer other than the methyl methacrylate is 0 ° C. or more, and the carbon number of the alkyl group is C1 to C14. The total of at least one kind and more is 100 parts by weight, and (B) the total of at least one kind of copolymerizable monomer having a functional group capable of reacting with the cross-linking agent is 1.0 to 20.0 parts by weight. It is a (meth) acrylic polymer composed of a copolymer having a weight average molecular weight of more than 100,000 and 1 million or less obtained by copolymerizing the above (A). It is characterized in that it is contained in a proportion of up to 25.0 parts by weight.

本実施形態の(メタ)アクリル系樹脂組成物に用いられる(メタ)アクリル系ポリマーは、アルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートを主成分とし、特にメチルメタクリレート(MMA)を主成分とする(メタ)アクリル系ポリマーであることが好ましい。前記アルキル(メタ)アクリレートのアルキル基は、非環状(直鎖、分枝状)、環状(単環、多環)のいずれでもよい。前記(メタ)アクリル系ポリマーは、アルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートの少なくとも2種以上を含有する共重合体であることが好ましい。前記(メタ)アクリル系ポリマーは、ホモポリマーのTgが0℃以上であり、且つアルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートの少なくとも1種以上を共重合させた共重合体であることが好ましい。ここで、(メタ)アクリル系ポリマーの主成分とは、1種類で(メタ)アクリル系ポリマーの50重量%以上の割合を占める化合物、又は2種類以上の合計で(メタ)アクリル系ポリマーの50重量%以上の割合を占める化合物群を意味する。つまり、(メタ)アクリル系ポリマーの100重量部のうち、主成分が50重量部以上の割合を占める場合である。なお、以下の説明において、モノマーについて、単にTgという場合は、ホモポリマーのTgを指す場合がある。 The (meth) acrylic polymer used in the (meth) acrylic resin composition of the present embodiment contains an alkyl (meth) acrylate having an alkyl group having C1 to C14 as a main component, and particularly methyl methacrylate (MMA). It is preferable that it is a (meth) acrylic polymer containing. The alkyl group of the alkyl (meth) acrylate may be acyclic (straight chain, branched) or cyclic (monocyclic, polycyclic). The (meth) acrylic polymer is preferably a copolymer containing at least two kinds of alkyl (meth) acrylates having an alkyl group having C1 to C14 carbon atoms. The (meth) acrylic polymer is a copolymer obtained by copolymerizing at least one of alkyl (meth) acrylates having a homopolymer Tg of 0 ° C. or higher and an alkyl group having C1 to C14 carbon atoms. Is preferable. Here, the main component of the (meth) acrylic polymer is a compound that occupies 50% by weight or more of the (meth) acrylic polymer in one kind, or 50 of the (meth) acrylic polymer in total of two or more kinds. It means a group of compounds that occupy a proportion of% by weight or more. That is, the main component accounts for 50 parts by weight or more of 100 parts by weight of the (meth) acrylic polymer. In the following description, when the monomer is simply referred to as Tg, it may refer to Tg of a homopolymer.

前記(メタ)アクリル系ポリマーにおいて、ホモポリマーのTgが0℃以上であり、且つアルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、s-ブチルメタクリレート、t-ブチル(メタ)アクリレート、n-ペンチルメタクリレート、イソペンチルメタクリレート、n-ヘキシルメタクリレート、イソヘキシルメタクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートからなる化合物群から選択した1種以上が挙げられる。ここで、(メタ)アクリレートは、アクリレート又はメタクリレートの少なくとも一方を意味する。 In the (meth) acrylic polymer, the alkyl (meth) acrylate in which the Tg of the homopolymer is 0 ° C. or higher and the number of carbon atoms of the alkyl group is C1 to C14 is methyl (meth) acrylate, ethyl methacrylate, n. -Propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, s-butyl methacrylate, t-butyl (meth) acrylate, n-pentyl methacrylate, isopentyl methacrylate, n-hexyl methacrylate, isohexyl methacrylate, cyclohexyl (meth) One or more selected from the compound group consisting of acrylate, isobornyl (meth) acrylate, and dicyclopentanyl (meth) acrylate can be mentioned. Here, (meth) acrylate means at least one of acrylate and methacrylate.

前記(メタ)アクリル系ポリマーにおいて、ホモポリマーのTgが0℃以上であり、且つアルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートとしては、アルキル基の炭素数がC1~C6であるアルキル(メタ)アクリレートが好ましく、アルキル基の炭素数がC1~C4であるアルキル(メタ)アクリレートがより好ましい。また、メチルメタクリレート以外の、アルキル基の炭素数がC1~C4であるアルキル(メタ)アクリレートの中では、メチルアクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、s-ブチルメタクリレート、t-ブチルアクリレート、t-ブチルメタクリレートからなる化合物群から選択した1種以上であることが特に好ましい。 In the (meth) acrylic polymer, the alkyl (meth) acrylate in which the Tg of the homopolymer is 0 ° C. or higher and the carbon number of the alkyl group is C1 to C14 is C1 to C6. A certain alkyl (meth) acrylate is preferable, and an alkyl (meth) acrylate having an alkyl group having C1 to C4 carbon atoms is more preferable. In addition to methyl methacrylate, among alkyl (meth) acrylates having an alkyl group having C1 to C4 carbon atoms, methyl acrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, and s. -It is particularly preferable that one or more selected from the compound group consisting of butyl methacrylate, t-butyl acrylate and t-butyl methacrylate.

また、前記(メタ)アクリル系ポリマーにおいて、(A)メチルメタクリレートと、前記メチルメタクリレート以外の、ホモポリマーのTgが0℃以上であり、且つアルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートの少なくとも1種以上との合計の100重量部のうち、メチルメタクリレートを80重量部以上と、前記メチルメタクリレート以外の、ホモポリマーのTgが0℃以上であり、且つアルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートの少なくとも1種以上の合計を、20重量部以下との割合で含有することが好ましく、メチルメタクリレートを80~99重量部と、前記メチルメタクリレート以外の、ホモポリマーのTgが0℃以上であり、且つアルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートの少なくとも1種以上の合計を、1~20重量部との割合で含有することがより好ましい。 Further, in the (meth) acrylic polymer, the Tg of the homopolymer other than (A) methyl methacrylate and the methyl methacrylate is 0 ° C. or higher, and the number of carbon atoms of the alkyl group is C1 to C14. ) Of the total 100 parts by weight of at least one type of acrylate, 80 parts by weight or more of methyl methacrylate, Tg of a homopolymer other than the methyl methacrylate is 0 ° C. or more, and the number of carbon atoms of the alkyl group is 0 or more. It is preferable to contain a total of at least one of the alkyl (meth) acrylates C1 to C14 in a proportion of 20 parts by weight or less, and 80 to 99 parts by weight of methyl methacrylate and a homozygous other than the methyl methacrylate. It is possible to contain at least one total of alkyl (meth) acrylates having a Tg of the polymer of 0 ° C. or higher and an alkyl group having C1 to C14 carbon atoms in a proportion of 1 to 20 parts by weight. preferable.

前記(メタ)アクリル系ポリマーが、前記(A)メチルメタクリレートと、前記メチルメタクリレート以外の、ホモポリマーのTgが0℃以上であり、且つアルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートの少なくとも1種以上との合計の100重量部に対して、前記(B)架橋剤と反応できる官能基を有する共重合可能なモノマーの少なくとも1種以上の合計を1.0~20.0重量部の割合で含有することが好ましく、1.0~12.0重量部の割合で含有することがより好ましく、1.0~9.0重量部の割合で含有することが特に好ましい。 The (meth) acrylic polymer is an alkyl (meth) in which the Tg of the homopolymer other than the (A) methyl methacrylate and the methyl methacrylate is 0 ° C. or higher and the number of carbon atoms of the alkyl group is C1 to C14. The total of at least one copolymerizable monomer having a functional group capable of reacting with the (B) cross-linking agent is 1.0 to 20.0 with respect to 100 parts by weight of the total of at least one acrylate. It is preferably contained in a proportion of parts by weight, more preferably 1.0 to 12.0 parts by weight, and particularly preferably 1.0 to 9.0 parts by weight.

前記(B)架橋剤と反応できる官能基を有する共重合可能なモノマーとしては、水酸基を有する共重合可能なモノマー、及びカルボキシル基を有する共重合可能なモノマーからなるモノマー群の中から選択した少なくとも1種以上のモノマーが挙げられる。前記(B)架橋剤と反応できる官能基を有する共重合可能なモノマーは、水酸基を有する共重合可能なモノマーのみでもよく、カルボキシル基を有する共重合可能なモノマーのみでもよく、水酸基を有する共重合可能なモノマー及びカルボキシル基を有する共重合可能なモノマーの両方を併用してもよい。 The copolymerizable monomer having a functional group capable of reacting with the (B) cross-linking agent is at least selected from a group of monomers consisting of a copolymerizable monomer having a hydroxyl group and a copolymerizable monomer having a carboxyl group. One or more types of monomers can be mentioned. The copolymerizable monomer having a functional group capable of reacting with the (B) cross-linking agent may be only a copolymerizable monomer having a hydroxyl group, or may be only a copolymerizable monomer having a carboxyl group, or a copolymer having a hydroxyl group. Both a possible monomer and a copolymerizable monomer having a carboxyl group may be used in combination.

前記水酸基を有する共重合可能なモノマーとしては、ヒドロキシアルキル(メタ)アクリレート類、及び水酸基含有(メタ)アクリルアミド類などからなる化合物群の中から選択された少なくとも1種以上であることが好ましい。
また、前記水酸基を有する共重合可能なモノマーとしては、具体的には、8-ヒドロキシオクチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、N-ヒドロキシ(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミドからなる化合物群の中から選択された少なくとも1種以上であることが好ましい。
The copolymerizable monomer having a hydroxyl group is preferably at least one selected from the compound group consisting of hydroxyalkyl (meth) acrylates, hydroxyl group-containing (meth) acrylamides and the like.
Specific examples of the copolymerizable monomer having a hydroxyl group include 8-hydroxyoctyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxyethyl. It is preferably at least one selected from the compound group consisting of (meth) acrylate, N-hydroxy (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, and N-hydroxyethyl (meth) acrylamide.

また、前記水酸基を有する共重合可能なモノマーが、8-ヒドロキシオクチルメタクリレート、6-ヒドロキシヘキシルメタクリレート、4-ヒドロキシブチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレートからなる化合物群から選択された少なくとも1種以上を含むことが好ましい。 Further, the copolymerizable monomer having a hydroxyl group was selected from the compound group consisting of 8-hydroxyoctyl methacrylate, 6-hydroxyhexyl methacrylate, 4-hydroxybutyl methacrylate, 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate. It is preferable to contain at least one kind.

前記カルボキシル基を有する共重合可能なモノマーとしては、(メタ)アクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシプロピルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルマレイン酸、カルボキシポリカプロラクトンモノ(メタ)アクリレート、2-(メタ)アクリロイロキシエチルテトラヒドロフタル酸などからなる化合物群の中から選択された、少なくとも1種以上であることが好ましい。 Examples of the copolymerizable monomer having a carboxyl group include (meth) acrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, and 2-(. Meta) acryloyloxypropyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl phthalic acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl maleic acid, carboxypolycaprolactone It is preferably at least one selected from the group of compounds consisting of mono (meth) acrylate, 2- (meth) acryloyloxyethyl tetrahydrophthalic acid and the like.

前記アクリル系ポリマーは、前記(A)メチルメタクリレートと、前記メチルメタクリレート以外の、ホモポリマーのTgが0℃以上であり、且つアルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートの少なくとも1種以上との合計の100重量部に対して、前記(B)架橋剤と反応できる官能基を有する共重合可能なモノマーとして、水酸基を有する共重合可能なモノマー、及びカルボキシル基を有する共重合可能なモノマーからなるモノマー群の中から選択した少なくとも1種以上のモノマーの合計を1.0~20.0重量部の割合で含有することが好ましく、1.0~12.0重量部の割合で含有することがより好ましく、1.0~9.0重量部の割合で含有することが特に好ましい。 The acrylic polymer is at least one of the (A) methyl methacrylate and an alkyl (meth) acrylate other than the methyl methacrylate, in which the Tg of the homopolymer is 0 ° C. or higher and the number of carbon atoms of the alkyl group is C1 to C14. As a copolymerizable monomer having a functional group capable of reacting with the cross-linking agent (B), a copolymerizable monomer having a hydroxyl group and a copolymerizing having a carboxyl group with respect to 100 parts by weight of the total of one or more kinds. It is preferable to contain the total of at least one or more monomers selected from the monomer group consisting of possible monomers in a proportion of 1.0 to 20.0 parts by weight, preferably 1.0 to 12.0 parts by weight. It is more preferable to contain it in a proportion of 1.0 to 9.0 parts by weight, and it is particularly preferable to contain it in a proportion of 1.0 to 9.0 parts by weight.

前記アクリル系ポリマーの製造方法は、特に限定されるものではなく、溶液重合法、乳化重合法等、適宜、公知の重合方法が使用可能である。前記アクリル系ポリマーは、重量平均分子量が10万超過100万以下の共重合体であることが好ましく、重量平均分子量が10万超過95万以下の共重合体であることがより好ましく、重量平均分子量が10万超過90万以下の共重合体であることが特に好ましい。前記アクリル系ポリマーの重量平均分子量が10万以下であると、(メタ)アクリル系樹脂組成物を架橋しても優れた物性を有する(メタ)アクリル系樹脂フィルム等の成形品が得られ難くなる。前記アクリル系ポリマーの重量平均分子量が100万より大きいと、(メタ)アクリル系樹脂組成物の溶液が高粘度となり、製膜工程の作業性が良くない。 The method for producing the acrylic polymer is not particularly limited, and known polymerization methods such as a solution polymerization method and an emulsion polymerization method can be used as appropriate. The acrylic polymer is preferably a copolymer having a weight average molecular weight of more than 100,000 and 1 million or less, more preferably a copolymer having a weight average molecular weight of more than 100,000 and 950,000 or less, and a weight average molecular weight. Is particularly preferable to be a copolymer having a molecular weight of more than 100,000 and not more than 900,000. When the weight average molecular weight of the acrylic polymer is 100,000 or less, it becomes difficult to obtain a molded product such as a (meth) acrylic resin film having excellent physical properties even when the (meth) acrylic resin composition is crosslinked. .. When the weight average molecular weight of the acrylic polymer is larger than 1,000,000, the solution of the (meth) acrylic resin composition becomes highly viscous, and the workability of the film forming process is not good.

前記架橋剤としては、前記(メタ)アクリル系ポリマーの有する官能基と、架橋反応することができる架橋性官能基を有する化合物が挙げられる。前記架橋剤は、前記(メタ)アクリル系樹脂組成物の保存安定性等の観点から、常温(一般には5~35℃)では架橋反応が起こり難く、所定の温度以上に加熱すると架橋反応が開始する化合物であることが好ましい。 Examples of the cross-linking agent include a compound having a functional group of the (meth) acrylic polymer and a cross-linking functional group capable of a cross-linking reaction. From the viewpoint of storage stability of the (meth) acrylic resin composition, the cross-linking agent is unlikely to undergo a cross-linking reaction at room temperature (generally 5 to 35 ° C.), and the cross-linking reaction starts when heated to a predetermined temperature or higher. It is preferable that the compound is a cross-linking compound.

前記架橋剤が、エポキシ化合物、アジリジン化合物、イソシアネート化合物からなる化合物群から選択した1種以上であることが好ましい。本実施形態の(メタ)アクリル系樹脂組成物は、前記(A)メチルメタクリレートと、前記メチルメタクリレート以外の、ホモポリマーのTgが0℃以上であり、且つアルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートの少なくとも1種以上との合計の100重量部に対して、前記架橋剤を0.01~10重量部の割合で含有することが好ましい。 It is preferable that the cross-linking agent is at least one selected from the compound group consisting of an epoxy compound, an aziridine compound, and an isocyanate compound. In the (meth) acrylic resin composition of the present embodiment, the Tg of the homopolymer other than the (A) methyl methacrylate and the methyl methacrylate is 0 ° C. or higher, and the carbon number of the alkyl group is C1 to C14. It is preferable that the cross-linking agent is contained in a ratio of 0.01 to 10 parts by weight with respect to 100 parts by weight of the total of at least one kind of certain alkyl (meth) acrylate.

前記エポキシ化合物からなる架橋剤(エポキシ系架橋剤)としては、2官能以上のエポキシ化合物であれば特に限定されないが、例えば、ポリオール類(ジオール類、グリコール類、ビスフェノール類を含む。)のポリグリシジルエーテル、ジカルボン酸のジグリシジルエステル、ジグリシジル置換のアミン類、テトラグリシジル置換のジアミン類などからなる化合物群から選択される少なくとも1種以上が挙げられる。 The cross-linking agent (epoxy-based cross-linking agent) composed of the epoxy compound is not particularly limited as long as it is a bifunctional or higher functional epoxy compound, but for example, polyglycidyl of polyols (including diols, glycols, and bisphenols). At least one selected from the compound group consisting of ethers, diglycidyl esters of dicarboxylic acids, diglycidyl-substituted amines, tetraglycidyl-substituted diamines, and the like can be mentioned.

前記エポキシ系架橋剤のうち、ポリオール類のポリグリシジルエーテルとしては、例えば、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、レゾルシンジグリシジルエーテル、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル等が挙げられる。
また、ジカルボン酸のジグリシジルエステルとしては、例えば、アジピン酸ジグリシジルエステル、フタル酸ジグリシジルエステル等が挙げられる。
また、ジグリシジル置換のアミン類としては、例えば、N,N-ジグリシジルアニリン、N,N-ジグリシジルトルイジン等が挙げられる。
また、テトラグリシジル置換のジアミン類としては、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N′,N′-テトラグリシジル-m-キシレンジアミン等が挙げられる。
Among the epoxy-based cross-linking agents, examples of the polyglycidyl ethers of polyols include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and polyethylene glycol. Examples thereof include diglycidyl ether, resorcin diglycidyl ether, glycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether, pentaerythritol polyglycidyl ether, sorbitol polyglycidyl ether and the like.
Examples of the diglycidyl ester of dicarboxylic acid include adipic acid diglycidyl ester and phthalic acid diglycidyl ester.
Examples of diglycidyl-substituted amines include N, N-diglycidyl aniline and N, N-diglycidyl toluidine.
Examples of the diamines substituted with tetraglycidyl include 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N', N'-tetraglycidyl-m-xylene diamine and the like.

前記アジリジン化合物からなる架橋剤(アジリジン系架橋剤)としては、2官能以上のアジリジン化合物、1分子中に2個以上のアジリジン系官能基を有する化合物等であれば特に限定されない。アジリジン系官能基としては、1-アジリジニル基〔-N(CH〕、2-アジリジニル基、メチル基等の置換基を有する置換アジリジニル基等が挙げられる。アジリジン系架橋剤の具体例としては、例えば、次の(1)~(2)のような、ポリイソシアネート化合物とアジリジンとの付加生成物、次の(3)~(4)のような、ポリオールポリアクリレート化合物とアジリジンとの付加生成物、次の(5)~(7)のような、その他のポリアクリジン化合物が挙げられる。 The cross-linking agent composed of the aziridine compound (aziridin-based cross-linking agent) is not particularly limited as long as it is a bifunctional or higher functional aziridine compound, a compound having two or more aziridine-based functional groups in one molecule, or the like. Examples of the aziridine-based functional group include a substituted aziridine group having a substituent such as a 1-aziridinyl group [-N (CH 2 ) 2 ], a 2-aziridinyl group, and a methyl group. Specific examples of the aziridine-based cross-linking agent include, for example, an addition product of a polyisocyanate compound and aziridine as in the following (1) and (2), and a polyol as in the following (3) and (4). Addition products of the polyacrylate compound and aziridine, and other polyacridine compounds such as the following (5) to (7) can be mentioned.

(1)4,4′-ビス[(1-アジリジニル)カルボニルアミノ]ジフェニルメタン
(CHNCONH-CCH-NHCON(CH
(2)1,6-ビス[(1-アジリジニル)カルボニルアミノ]ヘキサン
(CHNCONH-(CH-NHCON(CH
(3)トリメチロールプロパン-トリス[2-(1-アジリジニル)プロピオネート]
CHCHC[CHO-COCHCHN(CH
(4)テトラメチロールメタン-トリス[2-(1-アジリジニル)プロピオネート]
HOCHC[CHO-COCHCHN(CH
(5)トリス(1-アジリジニル)ホスフィンオキサイド
O=P[N(CH
(6)トリス(1-アジリジニル)ホスフィンスルフィド
S=P[N(CH
(7)2,4,6-トリス(1-アジリジニル)-1,3,5-トリアジン
(C)[N(CH
(1) 4,4'-bis [(1-aziridinyl) carbonylamino] diphenylmethane (CH 2 ) 2 NCON H-C 6 H 4 CH 2 C 6 H 4 -NHCON (CH 2 ) 2
(2) 1,6-bis [(1-aziridinyl) carbonylamino] hexane (CH 2 ) 2 NCONH- (CH 2 ) 6 -NHCON (CH 2 ) 2
(3) Trimethylolpropane-Tris [2- (1-aziridinyl) propionate]
CH 3 CH 2 C [CH 2 O-COCH 2 CH 2 N (CH 2 ) 2 ] 3
(4) Tetramethylolmethane-Tris [2- (1-aziridinyl) propionate]
HOCH 2 C [CH 2 O-COCH 2 CH 2 N (CH 2 ) 2 ] 3
(5) Tris (1-aziridinyl) phosphine oxide O = P [N (CH 2 ) 2 ] 3
(6) Tris (1-aziridinyl) phosphine sulfide S = P [N (CH 2 ) 2 ] 3
(7) 2,4,6-Tris (1-aziridinyl) -1,3,5-triazine (C 3 N 3 ) [N (CH 2 ) 2 ] 3

前記イソシアネート化合物からなる架橋剤(イソシアネート系架橋剤)としては、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、ジフェニルメタンジイソシアネート(MDI)、トリレンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)等の2官能イソシアネート(ジイソシアネート化合物)や、これらのビュレット変性体、イソシアヌレート変性体、アダクト体等の3官能以上のポリイソシアネート化合物からなる化合物群から選択される少なくとも1種以上が挙げられる。ここで、3官能以上のアダクト体は、ジイソシアネート化合物と、トリメチロールプロパン、グリセリン等の3価以上のポリオールとのアダクト体が挙げられる。 Examples of the cross-linking agent (isocyanate-based cross-linking agent) composed of the isocyanate compound include hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), and xylylene diisocyanate (XDI). Examples thereof include at least one selected from a compound group consisting of a bifunctional isocyanate (diisocyanate compound) and a trifunctional or higher polyisocyanate compound such as a bullet-modified product, an isocyanurate-modified product, and an adduct-type product. Here, examples of the trifunctional or higher adduct body include an adduct body of a diisocyanate compound and a trivalent or higher valent polyol such as trimethylolpropane and glycerin.

前記(メタ)アクリル系樹脂組成物は、(メタ)アクリル系ポリマーと、前記(メタ)アクリル系ポリマーを架橋させる架橋剤とに加えて、ゴム化合物を必須成分として含有する。本実施形態の(メタ)アクリル系樹脂組成物は、前記(A)メチルメタクリレートと、前記メチルメタクリレート以外の、ホモポリマーのTgが0℃以上であり、且つアルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートの少なくとも1種以上との合計の100重量部に対して、前記ゴム化合物を1.0~25.0重量部の割合で含有することが好ましく、3.0~20.0重量部の割合で含有することがより好ましい。 The (meth) acrylic resin composition contains a rubber compound as an essential component in addition to the (meth) acrylic polymer and the cross-linking agent for cross-linking the (meth) acrylic polymer. In the (meth) acrylic resin composition of the present embodiment, the Tg of the homopolymer other than the (A) methyl methacrylate and the methyl methacrylate is 0 ° C. or higher, and the number of carbon atoms of the alkyl group is C1 to C14. The rubber compound is preferably contained in a proportion of 1.0 to 25.0 parts by weight, preferably 3.0 to 20 parts by weight, based on 100 parts by weight of the total of at least one kind of certain alkyl (meth) acrylate. It is more preferable to contain it in a proportion of 0 parts by weight.

前記ゴム化合物としては、ゴム状の弾性を示す重合体(ポリマー)であれば特に限定されないが、前記(メタ)アクリル系ポリマーに対する分散性または混和性に優れるゴム化合物が好ましい。例えば、オレフィン系エラストマー、スチレン系エラストマー、アクリル系エラストマー、アクリルゴム、ニトリルゴム、ブタジエン系ゴム、ポリイソプレンゴム、天然ゴム等のビニル系重合体からなるゴム化合物が好ましい。前記ゴム化合物は、ハードセグメントとソフトセグメントとからなる共重合体であってもよく、例えば、(ハードセグメント)-(ソフトセグメント)-(ハードセグメント)のように、少なくとも3以上のブロックを有するブロック共重合体であってもよい。 The rubber compound is not particularly limited as long as it is a polymer exhibiting rubber-like elasticity, but a rubber compound having excellent dispersibility or miscibility with the (meth) acrylic polymer is preferable. For example, a rubber compound made of a vinyl polymer such as an olefin-based elastomer, a styrene-based elastomer, an acrylic-based elastomer, an acrylic rubber, a nitrile rubber, a butadiene-based rubber, a polyisoprene rubber, and a natural rubber is preferable. The rubber compound may be a copolymer composed of a hard segment and a soft segment, and may be a block having at least three or more blocks, for example, (hard segment)-(soft segment)-(hard segment). It may be a copolymer.

前記ゴム化合物は、物理架橋又は化学架橋により架橋されていることが好ましい。
物理架橋としては、例えば、水素結合、疎水結合等に限らず、共有結合によらない相互作用による架橋であれば特に限定されない。物理架橋の場合は、常温では架橋点が固定され、高温では結合が解離して、ゴム化合物が熱可塑性を示すことも可能である。
化学架橋としては、架橋性モノマー又は架橋剤のように、ビニル基、エポキシ基、イソシアネート基等の官能基を有する化合物が用いられる。架橋性モノマーを非架橋性モノマーと共重合させて、架橋ポリマーを合成してもよい。非架橋性モノマーから得られた非架橋ポリマーに架橋剤を反応させて、架橋ポリマーを合成してもよい。非架橋ポリマーの架橋は、過酸化物等のラジカル発生剤、紫外線等のエネルギー線などを用いて、ポリマー中に共有結合を導入することにより行うことも可能である。
The rubber compound is preferably crosslinked by physical or chemical cross-linking.
The physical cross-linking is not limited to, for example, a hydrogen bond, a hydrophobic bond, or the like, and is not particularly limited as long as it is a cross-linking by an interaction that does not depend on a covalent bond. In the case of physical cross-linking, the cross-linking point is fixed at room temperature, the bond is dissociated at high temperature, and the rubber compound can exhibit thermoplasticity.
As the chemical cross-linking, a compound having a functional group such as a vinyl group, an epoxy group or an isocyanate group, such as a cross-linking monomer or a cross-linking agent, is used. The crosslinkable monomer may be copolymerized with the non-crosslinkable monomer to synthesize a crosslinkable polymer. A cross-linking polymer may be synthesized by reacting a non-cross-linking polymer obtained from a non-cross-linking monomer with a cross-linking agent. Cross-linking of the non-crosslinked polymer can also be performed by introducing a covalent bond into the polymer using a radical generator such as a peroxide, an energy ray such as ultraviolet rays, or the like.

前記オレフィン系エラストマーとしては、プロピレン-エチレン共重合体、エチレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-1-オクテン共重合体、プロピレン-エチレン-1-ブテン共重合体、プロピレン-1-ブテン共重合体等の脂肪族オレフィンの共重合体が挙げられる。
前記スチレン系エラストマーとしては、スチレン-ブタジエンゴム(SBR)等のスチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、スチレン-エチレン共重合体等の芳香族オレフィン-脂肪族オレフィンの共重合体が挙げられる。
前記アクリル系エラストマーとしては、(メタ)アクリル酸エステル-アクリロニトリル共重合体、(メタ)アクリル酸エステル-エチレン共重合体、アクリル酸エステル-メタクリル酸エステルブロック共重合体等が挙げられる。
Examples of the olefin-based elastomer include a propylene-ethylene copolymer, an ethylene-1-butene copolymer, an ethylene-1-hexene copolymer, an ethylene-1-octene copolymer, and a propylene-ethylene-1-butene copolymer. Examples thereof include copolymers of aliphatic olefins such as coalesced and propylene-1-butene copolymers.
Examples of the styrene-based elastomer include styrene-butadiene copolymers such as styrene-butadiene rubber (SBR), aromatic olefin-aliphatic olefin copolymers such as styrene-isoprene copolymers and styrene-ethylene copolymers. Can be mentioned.
Examples of the acrylic elastomer include (meth) acrylic acid ester-acrylonitrile copolymer, (meth) acrylic acid ester-ethylene copolymer, acrylic acid ester-methacrylic acid ester block copolymer and the like.

前記アクリルゴムとしては、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-クロロエチルビニルエーテル共重合体等が挙げられる。
前記ニトリルゴムとしては、アクリロニトリル-ブタジエン共重合体、アクリロニトリル-イソプレン共重合体等が挙げられる。
前記ブタジエン系ゴムとしては、ポリブタジエン、アクリロニトリル-ブタジエン-スチレン共重合体、メチルメタクリレート-ブタジエン-スチレン共重合体等が挙げられる。
前記ゴム化合物として、アクリル酸エステルを主成分とし、アルキレングリコールジ(メタ)アクリレート、ポリアルキレングリコールジ(メタ)アクリレート、アリル(メタ)アクリレート等の架橋性モノマーを共重合させた架橋ゴムを用いてもよい。
Examples of the acrylic rubber include an acrylic acid ester-acrylonitrile copolymer, an acrylic acid ester-chloroethyl vinyl ether copolymer and the like.
Examples of the nitrile rubber include an acrylonitrile-butadiene copolymer, an acrylonitrile-isoprene copolymer and the like.
Examples of the butadiene-based rubber include polybutadiene, acrylonitrile-butadiene-styrene copolymer, and methyl methacrylate-butadiene-styrene copolymer.
As the rubber compound, a crosslinked rubber containing an acrylic acid ester as a main component and copolymerized with a crosslinkable monomer such as an alkylene glycol di (meth) acrylate, a polyalkylene glycol di (meth) acrylate, and an allyl (meth) acrylate is used. May be good.

前記ゴム化合物は、コア部のゴム層と、シェル部のアクリル層とから形成されたコアシェル粒子であることが好ましい。これにより、前記(メタ)アクリル系ポリマーに対する前記ゴム化合物の相溶性、分散性を向上することができる。前記コア部を形成するゴム層の材料としては、上述した各種のゴム化合物を採用することができる。ゴム化合物が、ブタジエン、イソプレン等の共役ジエンを含む共重合体であってもよい。 The rubber compound is preferably core-shell particles formed from the rubber layer of the core portion and the acrylic layer of the shell portion. This makes it possible to improve the compatibility and dispersibility of the rubber compound with respect to the (meth) acrylic polymer. As the material of the rubber layer forming the core portion, the above-mentioned various rubber compounds can be adopted. The rubber compound may be a copolymer containing a conjugated diene such as butadiene or isoprene.

前記シェル部のアクリル層を形成するアクリル系材料としては、(メタ)アクリル酸エステル、(メタ)アクリル酸、(メタ)アクリロニトリル等の少なくとも1種をモノマーとして含有する(メタ)アクリル系重合体が挙げられる。前記アクリル系材料は、メチルメタクリレート(MMA)を含有するメチルメタクリレート共重合体又はメチルメタクリレート単独重合体であってもよい。前記(メタ)アクリル系重合体は、エチレン、プロピレン、ブタジエン、イソプレン、スチレン等のオレフィン類を共重合させた(メタ)アクリル系共重合体であってもよい。前記アクリル系材料は、水酸基、カルボキシル基、ビニル基等の官能基を有するモノマーを共重合させた(メタ)アクリル系共重合体であってもよい。 As the acrylic material forming the acrylic layer of the shell portion, a (meth) acrylic polymer containing at least one of (meth) acrylic acid ester, (meth) acrylic acid, (meth) acrylonitrile and the like as a monomer is used. Can be mentioned. The acrylic material may be a methyl methacrylate copolymer containing methyl methacrylate (MMA) or a methyl methacrylate homopolymer. The (meth) acrylic polymer may be a (meth) acrylic copolymer obtained by copolymerizing olefins such as ethylene, propylene, butadiene, isoprene, and styrene. The acrylic material may be a (meth) acrylic copolymer obtained by copolymerizing a monomer having a functional group such as a hydroxyl group, a carboxyl group, or a vinyl group.

前記コアシェル粒子は、コア部の周囲をシェル部が完全に被覆した構造であってもよく、コア部の周囲の一部をシェル部で被覆した構造であってもよい。コア部の周囲で、樹脂の塗布、硬化等によりシェル部を形成してもよい。
前記コアシェル粒子は、コア部とシェル部との間に中間層を有してもよい。中間層が省略されて、コア部に接してシェル層が形成されていてもよい。中間層が、コア部を形成するゴム化合物と、シェル層を形成するアクリル層とが混在した過渡的な組成を有してもよい。中間層として、コア部とシェル部との接着層が積層されていてもよい。
The core-shell particles may have a structure in which the shell portion completely covers the periphery of the core portion, or may have a structure in which a part of the periphery of the core portion is covered with the shell portion. A shell portion may be formed around the core portion by applying a resin, curing, or the like.
The core-shell particles may have an intermediate layer between the core portion and the shell portion. The intermediate layer may be omitted to form a shell layer in contact with the core portion. The intermediate layer may have a transient composition in which a rubber compound forming a core portion and an acrylic layer forming a shell layer are mixed. As the intermediate layer, an adhesive layer between the core portion and the shell portion may be laminated.

前記コアシェル粒子において、コア部とシェル部とが化学結合を介して結合されていてもよい。例えば、コア部を形成するゴム化合物の粒子の存在下で、シェル部を形成する単量体を重合させることにより、シェル部を形成する樹脂をコア部にグラフト重合させた構造であってもよい。コア部とシェル部とが、一体のグラフト共重合体を形成していてもよい。 In the core-shell particles, the core portion and the shell portion may be bonded via a chemical bond. For example, the structure may be such that the resin forming the shell portion is graft-polymerized on the core portion by polymerizing the monomer forming the shell portion in the presence of the particles of the rubber compound forming the core portion. .. The core portion and the shell portion may form an integral graft copolymer.

前記コアシェル粒子の製造方法は特に限定されないが、例えば、コア部の乳化重合等により、コア部の所望の径に達するまでコア部の重合を進行させることにより、形状や寸法等の均一性が高い粒子状のコア部を形成することができる。さらに、シェル部の乳化重合等により、シェル部の所望の径に達するまでシェル部の重合を進行させることにより、形状や寸法等の均一性が高い粒子状のシェル部を形成することができる。コア部とシェル部とがグラフト重合により結合している場合は、コア部とシェル部とが化学結合を介して強固に一体化されるので、シェル層の剥離を抑制することができる。 The method for producing the core-shell particles is not particularly limited, but for example, by carrying out the polymerization of the core portion until the desired diameter of the core portion is reached by emulsion polymerization of the core portion or the like, the uniformity of the shape, dimensions and the like is high. A particle-like core portion can be formed. Further, by carrying out the polymerization of the shell portion until the desired diameter of the shell portion is reached by emulsion polymerization or the like of the shell portion, it is possible to form a particulate shell portion having high uniformity such as shape and dimensions. When the core portion and the shell portion are bonded by graft polymerization, the core portion and the shell portion are firmly integrated via a chemical bond, so that peeling of the shell layer can be suppressed.

前記ゴム化合物は、前記(メタ)アクリル系樹脂組成物において、粒子状であることが好ましい。前記(メタ)アクリル系樹脂組成物を加熱成形する際、前記ゴム化合物が粒子の形状を維持してもよく、あるいは、前記ゴム化合物が溶融して、前記(メタ)アクリル系樹脂組成物中に分散されてもよい。前記ゴム化合物の粒子径の種類としては、レーザ回折法等で測定可能な体積基準平均粒子径が挙げられる。前記ゴム化合物の体積基準平均粒子径は、例えば、0.05~2.0μmが好ましく、0.05~1.0μmがより好ましい。前記ゴム化合物が前記コアシェル粒子である場合は、前記コアシェル粒子の粒子径にはシェル部の範囲も含まれる。 The rubber compound is preferably in the form of particles in the (meth) acrylic resin composition. When the (meth) acrylic resin composition is heat-molded, the rubber compound may maintain the shape of the particles, or the rubber compound may be melted into the (meth) acrylic resin composition. It may be dispersed. Examples of the type of particle size of the rubber compound include a volume-based average particle size that can be measured by a laser diffraction method or the like. The volume-based average particle size of the rubber compound is, for example, preferably 0.05 to 2.0 μm, more preferably 0.05 to 1.0 μm. When the rubber compound is the core-shell particles, the particle diameter of the core-shell particles also includes the range of the shell portion.

前記ゴム化合物としては、コア部にスチレン-ブタジエンゴム(SBR)又はブタジエンを主体としたゴム層と、シェル部にメチルメタクリレート(MMA)を主体としたアクリル層とから形成されたコアシェル粒子であることが好ましく、前記コアシェル粒子の体積基準平均粒子径は、0.05~2.0μmが好ましく、0.05~1.0μmがより好ましい。 The rubber compound is a core-shell particle formed of a rubber layer mainly composed of styrene-butadiene rubber (SBR) or butadiene in the core portion and an acrylic layer mainly composed of methyl methacrylate (MMA) in the shell portion. The volume-based average particle diameter of the core-shell particles is preferably 0.05 to 2.0 μm, more preferably 0.05 to 1.0 μm.

前記(メタ)アクリル系樹脂組成物は、上述の添加剤に限らず、界面活性剤、硬化促進剤、硬化遅延剤、可塑剤、充填剤、滑剤、加工助剤、老化防止剤、熱安定剤、光安定剤、酸化防止剤、帯電防止剤、着色剤、紫外線吸収剤、赤外線吸収剤などの公知の添加剤が適宜に配合されてもよい。これらの添加剤は、単独で、もしくは2種以上を併せて用いることができる。 The (meth) acrylic resin composition is not limited to the above-mentioned additives, but is not limited to the above-mentioned additives, but is also a surfactant, a curing accelerator, a curing retarder, a plasticizer, a filler, a lubricant, a processing aid, an antiaging agent, and a heat stabilizer. , Light stabilizers, antioxidants, antistatic agents, colorants, UV absorbers, infrared absorbers and other known additives may be appropriately blended. These additives can be used alone or in combination of two or more.

前記(メタ)アクリル系樹脂組成物は、所定の形状に成形又は塗布した後で前記(メタ)アクリル系ポリマーと前記架橋剤とを反応させることにより、硬化させることができる。前記(メタ)アクリル系樹脂組成物から得られる成形品としては、特に限定されないが、フィルム、板(シート)、棒(ロッド)、繊維(ファイバー)などが挙げられる。前記成形品の成形方法は、特に限定されないが、キャスト成形、積層成形、押出成形などが挙げられる。前記(メタ)アクリル系樹脂組成物を、基材上に塗布する場合は、例えば、溶液コーティングにより該基材上に樹脂膜を形成することができる。該基材としては、特に限定されないが、樹脂フィルム、離型フィルム、紙基材、金属箔、積層体等が挙げられる。 The (meth) acrylic resin composition can be cured by molding or applying it to a predetermined shape and then reacting the (meth) acrylic polymer with the cross-linking agent. The molded product obtained from the (meth) acrylic resin composition is not particularly limited, and examples thereof include a film, a plate (sheet), a rod (rod), and a fiber (fiber). The molding method of the molded product is not particularly limited, and examples thereof include cast molding, laminated molding, and extrusion molding. When the (meth) acrylic resin composition is applied onto a substrate, for example, a resin film can be formed on the substrate by solution coating. The base material is not particularly limited, and examples thereof include a resin film, a release film, a paper base material, a metal foil, and a laminate.

前記(メタ)アクリル系樹脂組成物に含有されている前記架橋剤が、加熱により架橋反応を開始する熱架橋剤である場合、前記成形品の成形時において前記アクリル系ポリマーを加熱溶融させて流動化させるのではなく、前記(メタ)アクリル系樹脂組成物の溶液として流動化させるのが好ましい。前記(メタ)アクリル系樹脂組成物の溶液を得るための溶剤としては、前記アクリル系ポリマーの官能基及び前記架橋剤の反応性を損なうことなく、前記アクリル系ポリマーを溶解させることができれば特に限定されない。前記溶剤としては、トルエン等の炭化水素系溶剤、エタノールやイソプロピルアルコール等のアルコール系溶剤、ジエチルエーテルやテトラヒドロフラン等のエーテル系溶剤、アセトンやメチルエチルケトン(MEK)等のケトン系溶剤、酢酸エチル等のエステル系溶剤などが挙げられる。前記アクリル系ポリマーを溶液重合法により製造した場合、重合に用いた溶剤の少なくとも一部が、前記(メタ)アクリル系樹脂組成物の溶剤の少なくとも一部となってもよい。 When the cross-linking agent contained in the (meth) acrylic resin composition is a heat-cross-linking agent that initiates a cross-linking reaction by heating, the acrylic polymer is heated and melted during molding of the molded product to flow. It is preferable to fluidize it as a solution of the (meth) acrylic resin composition instead of converting it into a liquid. The solvent for obtaining the solution of the (meth) acrylic resin composition is particularly limited as long as the acrylic polymer can be dissolved without impairing the reactivity of the functional group of the acrylic polymer and the cross-linking agent. Not done. Examples of the solvent include a hydrocarbon solvent such as toluene, an alcohol solvent such as ethanol and isopropyl alcohol, an ether solvent such as diethyl ether and tetrahydrofuran, a ketone solvent such as acetone and methyl ethyl ketone (MEK), and an ester such as ethyl acetate. Examples include system solvents. When the acrylic polymer is produced by a solution polymerization method, at least a part of the solvent used for the polymerization may be at least a part of the solvent of the (meth) acrylic resin composition.

本実施形態の(メタ)アクリル系樹脂フィルムは、前記(メタ)アクリル系樹脂組成物を架橋してなる樹脂層であることを特徴とする。前記(メタ)アクリル系樹脂フィルムは、例えば、溶液キャスト法を用いることにより、前記(メタ)アクリル系樹脂組成物の溶液を所定の基材上に塗布して薄膜を形成した後、加熱乾燥させて前記薄膜から溶剤を揮発させると共に架橋させることにより、製造することができる。前記基材としては、固定された平面に限らず、樹脂フィルムのロール体から巻き戻された樹脂フィルム、可動のベルト、ドラムなどが挙げられる。前記基材の表面性状は、平滑面が好ましいが、基材に所定の凹凸を設けることにより、得られる前記(メタ)アクリル系樹脂フィルムの表面に凹凸を転写することも可能である。 The (meth) acrylic resin film of the present embodiment is characterized by being a resin layer formed by cross-linking the (meth) acrylic resin composition. The (meth) acrylic resin film is coated with a solution of the (meth) acrylic resin composition on a predetermined substrate to form a thin film by using, for example, a solution casting method, and then heated and dried. It can be produced by volatilizing and cross-linking the solvent from the thin film. The base material is not limited to a fixed flat surface, and examples thereof include a resin film rewound from a roll of the resin film, a movable belt, a drum, and the like. The surface texture of the base material is preferably a smooth surface, but it is also possible to transfer the unevenness to the surface of the obtained (meth) acrylic resin film by providing predetermined unevenness on the base material.

上記の、溶液キャスト法により得られた前記(メタ)アクリル系樹脂フィルムは、長手方向、幅方向等の所定の方向に延伸してもよく、無延伸のままとしてもよい。光学用フィルムの用途において、異方性を低減する必要がある場合は、前記(メタ)アクリル系樹脂フィルムを無延伸フィルムとすることが好ましい。前記(メタ)アクリル系樹脂フィルムの長手方向及び幅方向に延伸する操作を加えて、二軸延伸フィルムに加工してもよい。なお、フィルムの異方性としては、「破断伸び」などの機械的特性の異方性に限らず、「複屈折率」などの光学異方性も挙げられる。 The (meth) acrylic resin film obtained by the above-mentioned solution casting method may be stretched in a predetermined direction such as a longitudinal direction or a width direction, or may be left unstretched. When it is necessary to reduce anisotropy in the use of an optical film, it is preferable to use the (meth) acrylic resin film as a non-stretched film. The (meth) acrylic resin film may be processed into a biaxially stretched film by adding an operation of stretching in the longitudinal direction and the width direction. The anisotropy of the film is not limited to the anisotropy of mechanical properties such as "elongation at break", but also includes optical anisotropy such as "birefringence".

前記(メタ)アクリル系樹脂フィルムの機械的特性は、用途にも依存するが、粘着シート、光学用フィルム、表面保護フィルム、工程フィルム等に用いる場合や、長手方向の搬送、ロールからの繰り出し、ロールへの巻き取りなどを行う場合は、耐折性としての耐折回数が多いこと、及び耐切性としての引張破断強度が高いことに加えて、被着体等に対する追従性が得られるよう、伸び性としての適度な破断伸び率を有することが好ましい。 The mechanical properties of the (meth) acrylic resin film depend on the application, but when used for adhesive sheets, optical films, surface protective films, process films, etc., longitudinal transport, feeding from rolls, etc. When winding on a roll, in addition to having a large number of fold resistance as fold resistance and high tensile breaking strength as cut resistance, followability to adherends, etc. can be obtained. It is preferable to have an appropriate elongation at break as extensibility.

前記(メタ)アクリル系樹脂フィルムを構成する、前記(メタ)アクリル系樹脂組成物を架橋してなる樹脂層のゲル分率は、50%以上であることが好ましく、70%以上であることがより好ましく、90~100%であることがさらに好ましく、93~100%であることが特に好ましい。このように前記樹脂層のゲル分率が高いことにより、前記(メタ)アクリル系樹脂フィルムの必要とされる物性である耐溶剤性を改善することができる。 The gel fraction of the resin layer formed by cross-linking the (meth) acrylic resin composition constituting the (meth) acrylic resin film is preferably 50% or more, and preferably 70% or more. More preferably, it is more preferably 90 to 100%, and particularly preferably 93 to 100%. As described above, the high gel fraction of the resin layer makes it possible to improve the solvent resistance, which is a required physical property of the (meth) acrylic resin film.

前記(メタ)アクリル系樹脂フィルムの厚みは、特に限定されないが、例えば、光学用フィルムの場合は、10~200μm程度の厚みが好ましく、厚みが10~50μmであることがより好ましく、厚みが10~40μmであることが特に好ましく、厚みを40μm以下の薄膜にすることもできる。前記(メタ)アクリル系樹脂フィルムの片面または両面に他の材料を積層する場合は、必要に応じて、コロナ放電による表面改質、アンカーコート剤の塗付などの易接着処理を施してもよい。 The thickness of the (meth) acrylic resin film is not particularly limited, but for example, in the case of an optical film, the thickness is preferably about 10 to 200 μm, more preferably 10 to 50 μm, and the thickness is 10. It is particularly preferably about 40 μm, and a thin film having a thickness of 40 μm or less can be formed. When the other material is laminated on one side or both sides of the (meth) acrylic resin film, an easy-adhesion treatment such as surface modification by corona discharge or application of an anchor coating agent may be performed, if necessary. ..

前記(メタ)アクリル系樹脂フィルムは、前記(メタ)アクリル系樹脂組成物にゴム化合物を含有するため、耐屈曲性を向上することができる。前記(メタ)アクリル系樹脂フィルムは、JIS P8115(紙及び板紙-耐折強さ試験方法-MIT試験機法)に準拠して測定したとき、耐折性としての耐折回数が100回以上であることが好ましく、200回以上であることがより好ましい。耐折回数の通常の測定条件としては、幅15.0±0.1mm、長さ約110mmの試験片に対し、荷重9.8Nで毎分175±10回の速度で往復折曲げを繰り返す方法が挙げられる。試験片が破断するまでの往復折曲げ回数が、耐折回数として測定される。 Since the (meth) acrylic resin film contains a rubber compound in the (meth) acrylic resin composition, bending resistance can be improved. The (meth) acrylic resin film has a folding resistance of 100 times or more when measured in accordance with JIS P8115 (paper and paperboard-folding strength test method-MIT testing machine method). It is preferably present, and more preferably 200 times or more. As a normal measurement condition for the number of times of folding, a method of repeating reciprocating bending at a speed of 175 ± 10 times per minute with a load of 9.8 N for a test piece having a width of 15.0 ± 0.1 mm and a length of about 110 mm. Can be mentioned. The number of reciprocating bends until the test piece breaks is measured as the number of folding resistances.

前記(メタ)アクリル系樹脂フィルムは、前記(メタ)アクリル系樹脂組成物にゴム化合物を含有するため、変形性を向上することができる。前記(メタ)アクリル系樹脂フィルムの伸び性としての破断伸び率が、10%以上であることが好ましく、20%以上であることがより好ましい。フィルム類の破断伸び率は、例えば、JIS K7161(プラスチック-引張特性の求め方)、JIS K7127(プラスチック-引張特性の試験方法)等の規格に準拠して測定することができる。 Since the (meth) acrylic resin film contains a rubber compound in the (meth) acrylic resin composition, the deformability can be improved. The elongation at break as the extensibility of the (meth) acrylic resin film is preferably 10% or more, and more preferably 20% or more. The breaking elongation of films can be measured according to standards such as JIS K7161 (plastic-method for determining tensile properties) and JIS K7127 (plastic-testing method for tensile properties).

前記(メタ)アクリル系樹脂フィルムは、光学用フィルムの基材に用いてもよい。光学用フィルムとしては、偏光フィルム、位相差フィルム、反射防止フィルム、防眩(アンチグレア)フィルム、紫外線吸収フィルム、赤外線吸収フィルム、光学補償フィルム、輝度向上フィルムなどが挙げられる。光学用部材が適用される機器としては、液晶パネル、有機ELパネル、タッチパネルなどが挙げられる。前記(メタ)アクリル系樹脂フィルムを光学用フィルムとして用いる場合は、無色透明であることが好ましい。 The (meth) acrylic resin film may be used as a base material for an optical film. Examples of the optical film include a polarizing film, a retardation film, an antireflection film, an antiglare film, an ultraviolet absorbing film, an infrared absorbing film, an optical compensation film, and a brightness improving film. Examples of the device to which the optical member is applied include a liquid crystal panel, an organic EL panel, and a touch panel. When the (meth) acrylic resin film is used as an optical film, it is preferably colorless and transparent.

前記(メタ)アクリル系樹脂フィルムの面内位相差Reが1.0nm以下であることが好ましい。面内位相差Reが小さいほど、前記(メタ)アクリル系樹脂フィルムが光学的に等方的となり、光学装置に貼り付けたり、前記(メタ)アクリル系樹脂フィルムを光学的検査の用途に供したりしたときに、色調の変化を抑制することができる。 The in-plane retardation Re of the (meth) acrylic resin film is preferably 1.0 nm or less. The smaller the in-plane phase difference Re, the more isotropic the (meth) acrylic resin film becomes optically isotropic, and the film can be attached to an optical device or the (meth) acrylic resin film can be used for optical inspection. When this is done, the change in color tone can be suppressed.

前記(メタ)アクリル系樹脂フィルムのヘイズ値が3.0%以下であることが好ましい。ヘイズ値が低いほど、前記(メタ)アクリル系樹脂フィルムを透過する際の光散乱が減少する。例えば、前記(メタ)アクリル系樹脂フィルムを、ディスプレイ等の光学装置に組み込んだときに、散乱光による漏光を抑制することができる。 The haze value of the (meth) acrylic resin film is preferably 3.0% or less. The lower the haze value, the less light scattering when passing through the (meth) acrylic resin film. For example, when the (meth) acrylic resin film is incorporated into an optical device such as a display, light leakage due to scattered light can be suppressed.

前記(メタ)アクリル系樹脂組成物の光学特性を比較する目的で、面内位相差Re、ヘイズ値等の光学特性を測定するときは、測定に用いる前記(メタ)アクリル系樹脂フィルムの厚みが、製品とする前記(メタ)アクリル系樹脂フィルムの厚みと異なってもよい。光学特性の基準とするときの前記(メタ)アクリル系樹脂フィルムの厚みは、例えば、20~30μmとしてもよく、より具体的には、25μmとしてもよい。 When measuring optical characteristics such as in-plane retardation Re and haze value for the purpose of comparing the optical characteristics of the (meth) acrylic resin composition, the thickness of the (meth) acrylic resin film used for the measurement is , The thickness of the (meth) acrylic resin film to be a product may be different. The thickness of the (meth) acrylic resin film as a reference for the optical characteristics may be, for example, 20 to 30 μm, and more specifically, 25 μm.

前記(メタ)アクリル系樹脂フィルムの片面または両面には、ハードコート層、帯電防止層、反射防止層、防汚層、防眩層、低屈折率層、粘着層、離型層などの1種又は2種以上を積層してもよい。低屈折率層形成用の組成物に用いられるフッ素化合物としては、フッ素化オレフィン類、フッ素化ビニルエーテル類、フッ素化アルキル(メタ)アクリレート等の1種又は2種以上の重合物である含フッ素共重合体、フッ素化アルキル基含有シラン化合物などの縮合物が挙げられる。含フッ素共重合体は、フッ素化されたモノマーに加えて、オレフィン類、ビニルエーテル類、(メタ)アクリレートなどの、フッ素化されていないモノマーが共重合されていてもよい。低屈折率層は、高屈折率層等と組み合わせて反射防止層を構成してもよい。 One type of the (meth) acrylic resin film, such as a hard coat layer, an antistatic layer, an antireflection layer, an antifouling layer, an antiglare layer, a low refractive index layer, an adhesive layer, and a release layer, on one or both sides of the (meth) acrylic resin film. Alternatively, two or more types may be laminated. Examples of the fluorine compound used in the composition for forming a low refractive index layer include fluorine-containing polymers which are one or more polymers such as fluorinated olefins, fluorinated vinyl ethers, and fluorinated alkyl (meth) acrylates. Examples thereof include a polymer and a condensate such as a fluorinated alkyl group-containing silane compound. In the fluorine-containing copolymer, in addition to the fluorinated monomer, a non-fluorinated monomer such as olefins, vinyl ethers, and (meth) acrylate may be copolymerized. The low refractive index layer may be combined with a high refractive index layer or the like to form an antireflection layer.

本実施形態の粘着シートは、前記(メタ)アクリル系樹脂組成物を架橋してなる樹脂層である前記(メタ)アクリル系樹脂フィルムの片面または両面に、粘着層を形成してなることを特徴とする。前記粘着層としては、(メタ)アクリル系粘着剤からなる粘着剤層が好ましい。前記(メタ)アクリル系樹脂フィルムに粘着層を形成する方法は、公知の方法で行えばよい。具体的には、リバースコーティング、コンマコーティング、グラビアコーティング、スロットダイコーティング、メイヤーバーコーティング、エアーナイフコーティングなどの、公知の塗工方法を使用することができる。 The pressure-sensitive adhesive sheet of the present embodiment is characterized in that the pressure-sensitive adhesive layer is formed on one side or both sides of the (meth) acrylic resin film, which is a resin layer formed by cross-linking the (meth) acrylic resin composition. And. As the pressure-sensitive adhesive layer, a pressure-sensitive adhesive layer made of a (meth) acrylic pressure-sensitive adhesive is preferable. The method for forming the adhesive layer on the (meth) acrylic resin film may be a known method. Specifically, known coating methods such as reverse coating, comma coating, gravure coating, slot die coating, Mayer bar coating, and air knife coating can be used.

前記粘着シートは、前記(メタ)アクリル系樹脂フィルムを基材としてなる光学用フィルムの少なくとも一方の面に、粘着層が積層されてなる粘着層付き光学用フィルムとしてもよい。粘着層付き光学用フィルムは、液晶表示装置、タッチパネル、電子ペーパー、有機EL等の各種表示装置における光学用フィルムの貼り合せに用いることができる。光学用フィルムの貼り合せに用いられる粘着層の粘着面は、離型フィルムを用いて保護してもよい。離型フィルムには、粘着層の粘着面と合わされる側の面に、シリコーン系、フッ素系の離型剤などにより離型処理が施されてもよい。 The pressure-sensitive adhesive sheet may be an optical film with an pressure-sensitive adhesive layer in which an pressure-sensitive adhesive layer is laminated on at least one surface of an optical film using the (meth) acrylic resin film as a base material. The optical film with an adhesive layer can be used for laminating optical films in various display devices such as liquid crystal displays, touch panels, electronic papers, and organic ELs. The adhesive surface of the adhesive layer used for laminating the optical film may be protected by using a release film. The release film may be subjected to a release treatment with a silicone-based or fluorine-based release agent or the like on the surface of the adhesive layer on the side to be combined with the adhesive surface.

前記粘着シートは、ガラス、光学用フィルム、光学用部材等の被着体の表面を保護するために前記粘着層を介して貼り合される表面保護フィルムを構成してもよい。表面保護フィルムを被着体に貼り合わせた状態で、被着体の光学特性、異物の有無等を光学的に検査することができる。また、被着体を製品に組み込む段階では、表面保護フィルムを被着体から剥離して除去することができる。 The adhesive sheet may constitute a surface protective film bonded via the adhesive layer in order to protect the surface of an adherend such as glass, an optical film, or an optical member. With the surface protective film attached to the adherend, the optical characteristics of the adherend, the presence or absence of foreign matter, and the like can be optically inspected. Further, at the stage of incorporating the adherend into the product, the surface protective film can be peeled off from the adherend and removed.

本実施形態の偏光フィルムは、前記(メタ)アクリル系樹脂組成物を架橋してなる樹脂層である前記(メタ)アクリル系樹脂フィルムを、偏光子の片面または両面に形成してなることを特徴とする。前記偏光子の保護層の表面に施されている表面処理が、未処理、AG処理、LR処理、AR処理、AG-LR処理、AG-AR処理からなる群より選択された少なくとも1種以上であってもよい。ここで、AGとはアンチグレア(Anti Glare)、LRとはローリフレクション(Low Reflection)、ARとはアンチリフレクション(Anti Reflection)である。 The polarizing film of the present embodiment is characterized in that the (meth) acrylic resin film, which is a resin layer formed by cross-linking the (meth) acrylic resin composition, is formed on one side or both sides of the polarizing element. And. The surface treatment applied to the surface of the protective layer of the polarizing element is at least one selected from the group consisting of untreated, AG treated, LR treated, AR treated, AG-LR treated, and AG-AR treated. There may be. Here, AG is anti-glare, LR is low reflection, and AR is anti-reflection.

前記偏光子の保護層としては、トリアセチルセルロース(TAC)、ポリメチルメタクリレート(PMMA)等のアクリル系樹脂、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂、環状オレフィン系ポリマー、ポリカーボネート等が挙げられる。前記偏光子の保護層に対して、前記粘着シートの粘着層を介して、前記(メタ)アクリル系樹脂フィルムを貼合してもよい。また、本実施形態の(メタ)アクリル系樹脂組成物を架橋してなる樹脂層である前記(メタ)アクリル系樹脂フィルムを、前記偏光子の保護層とすることも可能である。 Examples of the protective layer for the polarizing element include acrylic resins such as triacetyl cellulose (TAC) and polymethyl methacrylate (PMMA), polyester resins such as polyethylene terephthalate (PET), cyclic olefin polymers, and polycarbonates. The (meth) acrylic resin film may be attached to the protective layer of the polarizing element via the adhesive layer of the adhesive sheet. Further, the (meth) acrylic resin film, which is a resin layer obtained by cross-linking the (meth) acrylic resin composition of the present embodiment, can be used as a protective layer for the polarizing element.

以下、実施例をもって本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to Examples.

<(メタ)アクリル系ポリマー及び(メタ)アクリル系樹脂組成物の製造>
[実施例1]
撹拌機、温度計、還流冷却器及び窒素導入管を備えた反応装置に、窒素ガスを導入して、反応装置内の空気を窒素ガスで置換した。その後、反応装置に、メチルメタクリレート95重量部、メチルアクリレート5重量部、8-ヒドロキシオクチルメタクリレート3.0重量部とともに溶剤(酢酸エチル)を加えた。その後、重合開始剤としてアゾビスイソブチロニトリル0.1重量部を滴下させ、65℃に加熱して所定の時間反応させ、実施例1の(メタ)アクリル系ポリマー溶液を得た。この(メタ)アクリル系ポリマー溶液に含まれる(メタ)アクリル系ポリマーの重量平均分子量(Mw)を測定したところ、20万であった。実施例1の(メタ)アクリル系ポリマー溶液に対して、ゴム化合物として、カネエース(登録商標)M-230を10重量部と、架橋剤として、コロネート(登録商標)HXを3.0重量部の割合で加えて撹拌混合し、実施例1の(メタ)アクリル系樹脂組成物を得た。
<Manufacturing of (meth) acrylic polymer and (meth) acrylic resin composition>
[Example 1]
Nitrogen gas was introduced into a reactor equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen introduction tube, and the air in the reactor was replaced with nitrogen gas. Then, a solvent (ethyl acetate) was added to the reaction apparatus together with 95 parts by weight of methyl methacrylate, 5 parts by weight of methyl acrylate, and 3.0 parts by weight of 8-hydroxyoctyl methacrylate. Then, 0.1 part by weight of azobisisobutyronitrile was added dropwise as a polymerization initiator, and the mixture was heated to 65 ° C. and reacted for a predetermined time to obtain a (meth) acrylic polymer solution of Example 1. The weight average molecular weight (Mw) of the (meth) acrylic polymer contained in this (meth) acrylic polymer solution was measured and found to be 200,000. 10 parts by weight of Kaneace (registered trademark) M-230 as a rubber compound and 3.0 parts by weight of Coronate (registered trademark) HX as a cross-linking agent with respect to the (meth) acrylic polymer solution of Example 1. The mixture was added in proportion and stirred and mixed to obtain the (meth) acrylic resin composition of Example 1.

[実施例2~7及び比較例1~3]
実施例1の(メタ)アクリル系ポリマー及び(メタ)アクリル系樹脂組成物の組成を各々、表1の記載のようにした以外は、実施例1と同様にして、実施例2~7及び比較例1~3の(メタ)アクリル系ポリマー及び(メタ)アクリル系樹脂組成物を得た。実施例2~7及び比較例1~3の(メタ)アクリル系ポリマーの重量平均分子量(Mw)は、表1に示すとおりであった。
[Examples 2 to 7 and Comparative Examples 1 to 3]
The composition of the (meth) acrylic polymer and the (meth) acrylic resin composition of Example 1 is the same as that of Example 1 except that the compositions are as shown in Table 1, and the comparison is made with Examples 2 to 7. The (meth) acrylic polymer and the (meth) acrylic resin composition of Examples 1 to 3 were obtained. The weight average molecular weights (Mw) of the (meth) acrylic polymers of Examples 2 to 7 and Comparative Examples 1 to 3 were as shown in Table 1.

[比較例4]
溶融押出法により製造された市販のPMMAフィルム(厚み:80μm)を溶剤としてメチルエチルケトン(MEK)に溶解して、PMMAフィルムに含まれるポリマーの重量平均分子量(Mw)を測定したところ、30万であった。
[Comparative Example 4]
A commercially available PMMA film (thickness: 80 μm) produced by the melt extrusion method was dissolved in methyl ethyl ketone (MEK) as a solvent, and the weight average molecular weight (Mw) of the polymer contained in the PMMA film was measured and found to be 300,000. rice field.

Figure 2022032164000001
Figure 2022032164000001

表1において、(A)群のモノマーの合計を100重量部として求めた重量部の値を、化合物名に対応する略記号に添えて示す。
なお、表1で用いた略記号の意味(化合物名等)は、次のとおりである。
In Table 1, the value of the part by weight obtained by assuming that the total of the monomers of the group (A) is 100 parts by weight is shown by adding the abbreviation corresponding to the compound name.
The meanings of the abbreviations (compound names, etc.) used in Table 1 are as follows.

[(A)群のモノマー]
「MMA」:メチルメタクリレート
「MA」:メチルアクリレート
「TBA」:t-ブチルアクリレート
「BMA」:n-ブチルメタクリレート
「EMA」:エチルメタクリレート
「IBMA」:イソブチルメタクリレート
[Monomer of group (A)]
"MMA": Methyl methacrylate "MA": Methyl acrylate "TBA": t-Butyl acrylate "BMA": n-Butyl methacrylate "EMA": Ethyl methacrylate "IBMA": Isobutyl methacrylate

[(B)群のモノマー]
「8HOA」:8-ヒドロキシオクチルアクリレート
「8HOMA」:8-ヒドロキシオクチルメタクリレート
「6HHA」:6-ヒドロキシヘキシルアクリレート
「6HHMA」:6-ヒドロキシヘキシルメタクリレート
「4HBMA」:4-ヒドロキシブチルメタクリレート
「HEA」:2-ヒドロキシエチルアクリレート
「HEMA」:2-ヒドロキシエチルメタクリレート
「Aac」:アクリル酸
[Monomer of group (B)]
"8HOA": 8-hydroxyoctyl acrylate "8HOMA": 8-hydroxyoctyl methacrylate "6HHA": 6-hydroxyhexyl acrylate "6HHMA": 6-hydroxyhexyl methacrylate "4HBMA": 4-hydroxybutyl methacrylate "HEA": 2 -Hydroxyethyl acrylate "HEMA": 2-Hydroxyethyl methacrylate "Aac": Acrylic acid

[ゴム化合物]
なお、以下に示す粒子径は、いずれも体積基準平均粒子径である。
「M-230」:カネエース(登録商標)M-230(コアシェル粒子、粒子径:0.1μm、コア部:SBR、シェル部:MMA、株式会社カネカの商品名)
「M-210」:カネエース(登録商標)M-210(コアシェル粒子、粒子径:0.2μm、コア部:SBR、シェル部:MMA、株式会社カネカの商品名)
「B-513」:カネエース(登録商標)B-513(コアシェル粒子、粒子径:0.2μm、コア部:ブタジエン、シェル部:MMA、株式会社カネカの商品名)
「LP-4100」:メタブレン(登録商標)LP-4100(アクリルゴム粒子、粒子径:1μm、三菱ケミカル株式会社の商品名)
[Rubber compound]
The particle diameters shown below are all volume-based average particle diameters.
"M-230": Kaneka (registered trademark) M-230 (core shell particles, particle diameter: 0.1 μm, core part: SBR, shell part: MMA, trade name of Kaneka Corporation)
"M-210": Kaneka (registered trademark) M-210 (core shell particles, particle diameter: 0.2 μm, core part: SBR, shell part: MMA, trade name of Kaneka Corporation)
"B-513": Kaneka (registered trademark) B-513 (core shell particles, particle diameter: 0.2 μm, core part: butadiene, shell part: MMA, trade name of Kaneka Corporation)
"LP-4100": Metabrene (registered trademark) LP-4100 (acrylic rubber particles, particle diameter: 1 μm, trade name of Mitsubishi Chemical Corporation)

[架橋剤]
「HX」:コロネート(登録商標)HX(HDIイソシアヌレート体、東ソー株式会社の商品名)
「HL」:コロネート(登録商標)HL(HDIアダクト体、東ソー株式会社の商品名)
「D-140N」:タケネート(登録商標)D-140N(IPDIアダクト体、三井化学株式会社の商品名)
「T-X」:TETRAD(登録商標)-X(4官能エポキシ化合物、三菱ガス化学株式会社の商品名)
[Crosslinking agent]
"HX": Coronate (registered trademark) HX (HDI isocyanurate, trade name of Tosoh Corporation)
"HL": Coronate (registered trademark) HL (HDI Adduct body, product name of Tosoh Corporation)
"D-140N": Takenate (registered trademark) D-140N (IPDI adduct body, trade name of Mitsui Chemicals, Inc.)
"TX": TETRAD (registered trademark) -X (tetrafunctional epoxy compound, trade name of Mitsubishi Gas Chemical Company, Inc.)

<(メタ)アクリル系樹脂フィルムの作製>
実施例1~7及び比較例1~3の(メタ)アクリル系樹脂組成物を溶液キャスト法により、樹脂フィルム状に製膜し、溶剤の乾燥及び架橋剤の硬化に適した温度条件にして加熱乾燥、及び架橋させて、実施例1~7及び比較例1~3の(メタ)アクリル系樹脂フィルムを得た。各フィルムの厚み(μm)を表2に示す。
また、比較例4の(メタ)アクリル系樹脂フィルムとしては、上記のとおり、溶融押出法により製造された市販のPMMAフィルム(厚み:80μm)を用いた。
<Making (meth) acrylic resin film>
The (meth) acrylic resin compositions of Examples 1 to 7 and Comparative Examples 1 to 3 were formed into a resin film by a solution casting method, and heated under temperature conditions suitable for drying the solvent and curing the cross-linking agent. It was dried and crosslinked to obtain (meth) acrylic resin films of Examples 1 to 7 and Comparative Examples 1 to 3. Table 2 shows the thickness (μm) of each film.
As the (meth) acrylic resin film of Comparative Example 4, a commercially available PMMA film (thickness: 80 μm) manufactured by the melt extrusion method was used as described above.

<(メタ)アクリル系樹脂フィルムの試験方法及び評価>
実施例1~7及び比較例1~4の(メタ)アクリル系樹脂フィルムを、以下の試験方法により評価した。
<Test method and evaluation of (meth) acrylic resin film>
The (meth) acrylic resin films of Examples 1 to 7 and Comparative Examples 1 to 4 were evaluated by the following test methods.

<ヘイズ値>
実施例1~7及び比較例1~4の(メタ)アクリル系樹脂フィルムから試験片を作製し、ヘイズメータ(製造者:日本電色株式会社、型式:Haze Meter、NDH2000)を用いて、ヘイズ値(%)を測定した。
<Haze value>
Test pieces were prepared from the (meth) acrylic resin films of Examples 1 to 7 and Comparative Examples 1 to 4, and the haze value was measured using a haze meter (manufacturer: Nippon Denshoku Industries, Ltd., model: Haze Meter, NDH2000). (%) Was measured.

<耐折性としての耐折回数>
実施例1~7及び比較例1~4の(メタ)アクリル系樹脂フィルムから試験片を作製した後、JIS P8115(紙及び板紙-耐折強さ試験方法-MIT試験機法)に準拠して、耐折度試験装置(メーカ:テスター産業株式会社、型式:MIT耐折度試験装置BE-201)を用いて耐折性の試験を行い、試験片が破断するまでの往復折曲げ回数(耐折回数)を測定した。
<Number of fold resistance as fold resistance>
After preparing test pieces from the (meth) acrylic resin films of Examples 1 to 7 and Comparative Examples 1 to 4, the test pieces are in accordance with JIS P8115 (paper and paperboard-folding strength test method-MIT tester method). , Fold resistance test is performed using a fold resistance test device (manufacturer: Tester Sangyo Co., Ltd., model: MIT fold resistance test device BE-201), and the number of reciprocating bends (resistance) until the test piece breaks. The number of folds) was measured.

<耐溶剤性としてのゲル分率>
耐溶剤性の試験方法として、下記のように(メタ)アクリル系樹脂フィルムの試験片を、溶剤の液中に所定時間に渡り浸漬した後、前記溶剤に溶出しないで不溶分(残渣)として残った(メタ)アクリル系樹脂フィルムの割合(いわゆる、ゲル分率)を測定し、耐溶剤性を試験した。
実施例1~7及び比較例1~4の(メタ)アクリル系樹脂フィルムから試験片を作製し、試験片の質量を正確に測定し、メチルエチルケトン(MEK)中に24hr浸漬した後、200メッシュの金網で濾過した。その後、濾過物を、温度100℃で、1hr乾燥して得られた残渣の質量を正確に測定して、以下の式から耐溶剤性の試験方法として、溶剤への浸漬によるゲル分率(%)を測定した。
ゲル分率(%)=不溶分(残渣)質量(g)/フィルム(試験片)質量(g)×100
<Gel fraction as solvent resistance>
As a solvent resistance test method, as shown below, a test piece of a (meth) acrylic resin film is immersed in a solvent solution for a predetermined time, and then remains as an insoluble component (residue) without being eluted with the solvent. The ratio of the (meth) acrylic resin film (so-called gel fraction) was measured, and the solvent resistance was tested.
Test pieces were prepared from the (meth) acrylic resin films of Examples 1 to 7 and Comparative Examples 1 to 4, the mass of the test pieces was accurately measured, and the test pieces were immersed in methyl ethyl ketone (MEK) for 24 hours and then 200 mesh. It was filtered with a wire mesh. Then, the filtrate was dried at a temperature of 100 ° C. for 1 hr, and the mass of the obtained residue was accurately measured. From the following formula, the gel fraction (%) by immersion in a solvent was used as a solvent resistance test method. ) Was measured.
Gel fraction (%) = insoluble matter (residue) mass (g) / film (test piece) mass (g) x 100

<耐切性としての引張破断強度、伸び性としての破断伸び率>
実施例1~7及び比較例1~4の(メタ)アクリル系樹脂フィルムから試験片を作製し、引張試験装置(メーカ:株式会社島津製作所、型式:AGS-X)を用いて測定し、試験片が破断するまでの耐切性としての引張破断強度(MPa)、及び、伸び性としての破断伸び率(%)の値を求めた。
<Tension breaking strength as cutting resistance, breaking elongation rate as extensibility>
Test pieces were prepared from the (meth) acrylic resin films of Examples 1 to 7 and Comparative Examples 1 to 4, measured and tested using a tensile test device (manufacturer: Shimadzu Corporation, model: AGS-X). The values of the tensile breaking strength (MPa) as the cutting resistance until the piece breaks and the breaking elongation rate (%) as the extensibility were obtained.

<位相差(面内位相差Re値)>
実施例1~7及び比較例1~4の(メタ)アクリル系樹脂フィルムの面内位相差(Re)値(nm)を、位相差測定装置(メーカ:王子計測機器株式会社、型式:KOBRA-HBPR/SPC)を用いて測定した。位相差の測定波長は、例えば450~550nm等の可視領域から適宜選択することができる。Re値は、面内の屈折率が最大になる方向をx軸(遅相軸)、これと直交する方向をy軸(進相軸)とするとき、x軸方向の屈折率nと、y軸方向の屈折率nと、フィルムの膜厚dとから、次の式により算出される。
面内位相差Re=(n-n)×d
ここで、フィルムの膜厚dは、面内位相差Reと同じくnm単位であるから、フィルムの厚み(μm)の1000倍である。
<Phase difference (in-plane phase difference Re value)>
The in-plane phase difference (Re) value (nm) of the (meth) acrylic resin film of Examples 1 to 7 and Comparative Examples 1 to 4 is measured by a phase difference measuring device (manufacturer: Oji Measuring Instruments Co., Ltd., model: KOBRA-). HBPR / SPC) was used for measurement. The measurement wavelength of the phase difference can be appropriately selected from the visible region such as 450 to 550 nm. The Re value is the refractive index n x in the x-axis direction when the direction in which the in-plane refractive index is maximized is the x-axis (slow-phase axis) and the direction orthogonal to this is the y-axis (phase-advancing axis). It is calculated by the following formula from the refractive index n y in the y-axis direction and the film thickness d.
In-plane phase difference Re = (n x − n y ) × d
Here, since the film thickness d is in nm units like the in-plane retardation Re, it is 1000 times the film thickness (μm).

表2に、実施例1~7及び比較例1~4の(メタ)アクリル系樹脂フィルムについての評価結果を示す。 Table 2 shows the evaluation results of the (meth) acrylic resin films of Examples 1 to 7 and Comparative Examples 1 to 4.

Figure 2022032164000002
Figure 2022032164000002

実施例1~5の(メタ)アクリル系樹脂フィルムは、厚みが40μm以下の薄膜に製膜されたものであり、ヘイズ値が3.0%以下、耐折性として耐折回数が200回以上、耐溶剤性としてゲル分率が90%以上、耐切性として引張破断強度が40MPa以上(約50MPa以上)、伸び性として破断伸び率が20%以上、面内位相差Reが1.0nm以下であった。このように、実施例1~5の(メタ)アクリル系樹脂フィルムは、いずれの物性も優れていた。 The (meth) acrylic resin films of Examples 1 to 5 are formed into a thin film having a thickness of 40 μm or less, have a haze value of 3.0% or less, and have a folding resistance of 200 times or more. The gel fraction is 90% or more as solvent resistance, the tensile breaking strength is 40 MPa or more (about 50 MPa or more) as the cutting resistance, the breaking elongation is 20% or more as the extensibility, and the in-plane retardation Re is 1.0 nm or less. there were. As described above, the (meth) acrylic resin films of Examples 1 to 5 were excellent in all physical properties.

実施例6の(メタ)アクリル系樹脂フィルムは、厚みが40μm以下の薄膜に製膜されたものであり、ヘイズ値がやや高いものの、耐折性として耐折回数が200回以上、耐溶剤性としてゲル分率が90%以上、耐切性として引張破断強度が50MPa以上、伸び性として破断伸び率が20%以上、面内位相差Reが1.0nm以下であった。このように、実施例6の(メタ)アクリル系樹脂フィルムは、いずれの物性も優れていた。 The (meth) acrylic resin film of Example 6 was formed into a thin film having a thickness of 40 μm or less, and although it had a slightly high haze value, it had a folding resistance of 200 times or more and a solvent resistance. The gel fraction was 90% or more, the tensile breaking strength was 50 MPa or more as the cutting resistance, the breaking elongation was 20% or more as the extensibility, and the in-plane retardation Re was 1.0 nm or less. As described above, the (meth) acrylic resin film of Example 6 was excellent in all physical properties.

実施例7の(メタ)アクリル系樹脂フィルムは、厚みが40μm以下の薄膜に製膜されたものであり、ヘイズ値が高いものの、耐折性として耐折回数が100回以上、耐溶剤性としてゲル分率が90%以上、耐切性として引張破断強度が50MPa以上、伸び性として破断伸び率が10%以上、面内位相差Reが1.0nm以下であった。このように、実施例7の(メタ)アクリル系樹脂フィルムは、いずれの物性も優れていた。 The (meth) acrylic resin film of Example 7 was formed into a thin film having a thickness of 40 μm or less, and although it had a high haze value, it had a folding resistance of 100 times or more and a solvent resistance. The gel fraction was 90% or more, the tensile breaking strength was 50 MPa or more as the cutting resistance, the breaking elongation was 10% or more as the extensibility, and the in-plane retardation Re was 1.0 nm or less. As described above, the (meth) acrylic resin film of Example 7 was excellent in all physical properties.

このように、実施例1~7の(メタ)アクリル系樹脂フィルムでは、本発明の課題を解決できることが実証されている。 As described above, it has been demonstrated that the (meth) acrylic resin films of Examples 1 to 7 can solve the problems of the present invention.

比較例1の(メタ)アクリル系樹脂フィルムは、(メタ)アクリル系樹脂組成物が、ゴム化合物を含有していないためか、耐折性としての耐折回数が少なかった。ゴム化合物の有無に関して、実施例7と比較例1とを比較すると、伸び性としての破断伸び率については、比較例1と実施例7とが略同等としても、耐折性としての耐折回数については、比較例1より実施例7の方が2倍以上優れている。 The (meth) acrylic resin film of Comparative Example 1 had a small number of folding resistances, probably because the (meth) acrylic resin composition did not contain a rubber compound. Comparing Example 7 and Comparative Example 1 with respect to the presence or absence of the rubber compound, even if Comparative Example 1 and Example 7 have substantially the same breaking elongation rate as the extensibility, the number of folding resistance as the folding resistance In terms of, Example 7 is more than twice as good as Comparative Example 1.

比較例2の(メタ)アクリル系樹脂フィルムは、(メタ)アクリル系ポリマーが、アルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートとしてMMAのみを共重合したものであり、MMA以外の、ホモポリマーのTgが0℃以上であり、アルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートを共重合していないためか、耐折性としての耐折回数が少なく、及び、伸び性としての破断伸び率が極めて低かった。 The (meth) acrylic resin film of Comparative Example 2 is obtained by copolymerizing only MMA as an alkyl (meth) acrylate in which the (meth) acrylic polymer has an alkyl group having C1 to C14 carbon atoms, and is other than MMA. This is probably because the homopolymer has a Tg of 0 ° C. or higher and the alkyl (meth) acrylate having an alkyl group having C1 to C14 carbon atoms is not copolymerized, and the number of folding resistances is small. The break elongation rate as extensibility was extremely low.

比較例3の(メタ)アクリル系樹脂フィルムは、(メタ)アクリル系樹脂組成物が、ゴム化合物及び架橋剤を含有していないためか、耐折性としての耐折回数が少なく、耐溶剤性としてのゲル分率が極めて低かった。耐溶剤性としてのゲル分率が極めて低いのは、前記(メタ)アクリル系樹脂組成物が、架橋剤により架橋されていないためと考えられる。 The (meth) acrylic resin film of Comparative Example 3 has a small number of folding resistances and is solvent resistant, probably because the (meth) acrylic resin composition does not contain a rubber compound and a cross-linking agent. The gel content was extremely low. It is considered that the gel fraction as solvent resistance is extremely low because the (meth) acrylic resin composition is not crosslinked by the crosslinking agent.

比較例4の(メタ)アクリル系樹脂フィルムは、溶融押出法により製造された樹脂フィルムであるが、耐折性としての耐折回数が少なく、耐溶剤性としてのゲル分率が極めて低く、面内位相差Reが大きかった。耐溶剤性としてのゲル分率が極めて低いのは、溶融押出法により製造された樹脂フィルムが、架橋剤により架橋されていないためと考えられる。 The (meth) acrylic resin film of Comparative Example 4 is a resin film produced by a melt extrusion method, but the number of folding resistances is small, the gel fraction as solvent resistance is extremely low, and the surface is surface. The internal phase difference Re was large. It is considered that the gel fraction as solvent resistance is extremely low because the resin film produced by the melt extrusion method is not crosslinked by the crosslinking agent.

なお、比較例4の(メタ)アクリル系樹脂フィルムの厚みが20μmと仮定すると、Reの値は厚みの比率(20/80)に応じて、1/4の値となるが、それでもRe値が大きいことから、複屈折率(n-n)の値自体が大きいと考えられる。 Assuming that the thickness of the (meth) acrylic resin film of Comparative Example 4 is 20 μm, the Re value is 1/4 according to the thickness ratio (20/80), but the Re value is still high. Since it is large, it is considered that the value of the birefringence index (n x − n y ) itself is large.

以上のように、比較例1~4の(メタ)アクリル系樹脂フィルムでは、本発明の課題である、耐折性、耐切性、伸び性、耐溶剤性に優れている(メタ)アクリル系樹脂フィルムを提供することを解決することができなかった。 As described above, the (meth) acrylic resin films of Comparative Examples 1 to 4 are excellent in folding resistance, cutting resistance, extensibility, and solvent resistance, which are the subjects of the present invention. It could not be solved to provide the film.

本発明の(メタ)アクリル系樹脂組成物、及びそれを用いた(メタ)アクリル系樹脂フィルムは、従来の溶融押出法により得られた(メタ)アクリル系樹脂フィルムと比較すると、特に、薄膜化、耐折性、耐溶剤性の点において優れた物性を有することから、ディスプレイなどの各種光学機器の薄型化、及び耐久性の向上に効果を発揮することが期待できるため、産業上の利用価値が大である。 The (meth) acrylic resin composition of the present invention and the (meth) acrylic resin film using the same are particularly thin as compared with the (meth) acrylic resin film obtained by the conventional melt extrusion method. Since it has excellent physical properties in terms of folding resistance and solvent resistance, it can be expected to be effective in reducing the thickness of various optical devices such as displays and improving their durability, so it has industrial utility value. Is large.

Claims (9)

(メタ)アクリル系ポリマーと、ゴム化合物と、架橋剤とを含有する(メタ)アクリル系樹脂組成物であって、
前記(メタ)アクリル系ポリマーが、
(A)メチルメタクリレートを80重量部以上と、前記メチルメタクリレート以外の、ホモポリマーのTgが0℃以上であり、且つアルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートの少なくとも1種以上との合計を100重量部と、
(B)前記架橋剤と反応できる官能基を有する共重合可能なモノマーの少なくとも1種以上の合計を1.0~20.0重量部と、
を共重合させた重量平均分子量が10万超過100万以下の共重合体からなる(メタ)アクリル系ポリマーであり、
前記(A)の合計100重量部に対して、前記ゴム化合物を1.0~25.0重量部の割合で含有してなることを特徴とする(メタ)アクリル系樹脂組成物。
A (meth) acrylic resin composition containing a (meth) acrylic polymer, a rubber compound, and a cross-linking agent.
The (meth) acrylic polymer is
(A) At least one kind of alkyl (meth) acrylate having 80 parts by weight or more of methyl methacrylate, a homopolymer having a Tg of 0 ° C. or higher, and an alkyl group having C1 to C14 carbon atoms other than the methyl methacrylate. The total of the above is 100 parts by weight,
(B) The total of at least one copolymerizable monomer having a functional group capable of reacting with the cross-linking agent is 1.0 to 20.0 parts by weight.
It is a (meth) acrylic polymer composed of a copolymer having a weight average molecular weight of more than 100,000 and 1 million or less obtained by copolymerizing the above.
A (meth) acrylic resin composition comprising the rubber compound in a proportion of 1.0 to 25.0 parts by weight with respect to a total of 100 parts by weight of the above (A).
前記(メタ)アクリル系ポリマーが、
(A)メチルメタクリレートを80~99重量部と、前記メチルメタクリレート以外の、ホモポリマーのTgが0℃以上であり、且つアルキル基の炭素数がC1~C14であるアルキル(メタ)アクリレートの少なくとも1種以上の1~20重量部との合計を100重量部と、
(B)前記架橋剤と反応できる官能基を有する共重合可能なモノマーとして、水酸基を有する共重合可能なモノマー、及びカルボキシル基を有する共重合可能なモノマーからなるモノマー群の中から選択した少なくとも1種以上のモノマーの合計を1.0~20.0重量部と、
を共重合させた重量平均分子量が10万超過100万以下の共重合体からなる(メタ)アクリル系ポリマーであることを特徴とする請求項1に記載の(メタ)アクリル系樹脂組成物。
The (meth) acrylic polymer is
(A) At least 1 of an alkyl (meth) acrylate having 80 to 99 parts by weight of methyl methacrylate and a homopolymer having a Tg of 0 ° C. or higher and an alkyl group having C1 to C14 carbon atoms other than the methyl methacrylate. The total of 1 to 20 parts by weight of seeds or more is 100 parts by weight,
(B) As a copolymerizable monomer having a functional group capable of reacting with the cross-linking agent, at least one selected from a group of monomers consisting of a copolymerizable monomer having a hydroxyl group and a copolymerizable monomer having a carboxyl group. The total of the monomers of the seeds and above is 1.0 to 20.0 parts by weight,
The (meth) acrylic resin composition according to claim 1, which is a (meth) acrylic polymer comprising a copolymer having a weight average molecular weight of more than 100,000 and 1 million or less obtained by copolymerizing the above.
前記架橋剤が、エポキシ化合物、アジリジン化合物、イソシアネート化合物からなる化合物群から選択した1種以上であることを特徴とする請求項1又は2に記載の(メタ)アクリル系樹脂組成物。 The (meth) acrylic resin composition according to claim 1 or 2, wherein the cross-linking agent is at least one selected from the compound group consisting of an epoxy compound, an aziridine compound, and an isocyanate compound. 前記ゴム化合物が、コア部にSBR又はブタジエンを主体としたゴム層と、シェル部にメチルメタクリレートを主体としたアクリル層とから形成されたコアシェル粒子であり、前記コアシェル粒子の体積基準平均粒子径が0.05~2.0μmであることを特徴とする請求項1~3のいずれかに記載の(メタ)アクリル系樹脂組成物。 The rubber compound is a core-shell particle formed by a rubber layer mainly composed of SBR or butadiene in the core portion and an acrylic layer mainly composed of methyl methacrylate in the shell portion, and the volume-based average particle diameter of the core-shell particles is large. The (meth) acrylic resin composition according to any one of claims 1 to 3, wherein the composition is 0.05 to 2.0 μm. 前記水酸基を有する共重合可能なモノマーが、8-ヒドロキシオクチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、N-ヒドロキシ(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミドからなる化合物群から選択された少なくとも1種以上であり、かつ、8-ヒドロキシオクチルメタクリレート、6-ヒドロキシヘキシルメタクリレート、4-ヒドロキシブチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレートからなる化合物群から選択された少なくとも1種以上を含むことを特徴とする請求項2に記載の(メタ)アクリル系樹脂組成物。 The copolymerizable monomer having a hydroxyl group is 8-hydroxyoctyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, N-hydroxy. At least one selected from the compound group consisting of (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, and N-hydroxyethyl (meth) acrylamide, and 8-hydroxyoctyl methacrylate and 6-hydroxyhexyl methacrylate. The (meth) acrylic resin composition according to claim 2, which comprises at least one selected from the compound group consisting of 4-hydroxybutyl methacrylate, 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate. thing. 請求項1~5のいずれかに記載の(メタ)アクリル系樹脂組成物を架橋してなる樹脂層である厚みが10~50μmの(メタ)アクリル系樹脂フィルムであり、前記(メタ)アクリル系樹脂フィルムの面内位相差Reが1.0nm以下、ヘイズ値が3.0%以下であることを特徴とする(メタ)アクリル系樹脂フィルム。 A (meth) acrylic resin film having a thickness of 10 to 50 μm, which is a resin layer obtained by cross-linking the (meth) acrylic resin composition according to any one of claims 1 to 5, wherein the (meth) acrylic resin film is used. A (meth) acrylic resin film characterized in that the in-plane retardation Re of the resin film is 1.0 nm or less and the haze value is 3.0% or less. 請求項1~5のいずれかに記載の(メタ)アクリル系樹脂組成物を架橋してなる樹脂層である(メタ)アクリル系樹脂フィルムであり、前記(メタ)アクリル系樹脂フィルムの耐溶剤性としてのゲル分率が90%以上であり、かつ、耐折性としての耐折回数(JIS P8115)が100回以上、かつ、伸び性としての破断伸び率が10%以上であることを特徴とする(メタ)アクリル系樹脂フィルム。 A (meth) acrylic resin film which is a resin layer obtained by cross-linking the (meth) acrylic resin composition according to any one of claims 1 to 5, and has solvent resistance of the (meth) acrylic resin film. The gel content is 90% or more, the number of times of folding resistance (JIS P8115) is 100 times or more, and the breaking elongation rate as extensibility is 10% or more. (Meta) acrylic resin film. 請求項1~5のいずれかに記載の(メタ)アクリル系樹脂組成物を架橋してなる樹脂層である(メタ)アクリル系樹脂フィルムの片面または両面に、粘着層を形成してなることを特徴とする粘着シート。 An adhesive layer is formed on one or both sides of a (meth) acrylic resin film, which is a resin layer obtained by cross-linking the (meth) acrylic resin composition according to any one of claims 1 to 5. Characteristic adhesive sheet. 請求項1~5のいずれかに記載の(メタ)アクリル系樹脂組成物を架橋してなる樹脂層である(メタ)アクリル系樹脂フィルムを、偏光子の片面または両面に形成してなることを特徴とする偏光フィルム。 A (meth) acrylic resin film, which is a resin layer obtained by cross-linking the (meth) acrylic resin composition according to any one of claims 1 to 5, is formed on one side or both sides of a polarizing element. A characteristic polarizing film.
JP2020135685A 2020-08-11 2020-08-11 (meth)acrylic resin composition and (meth)acrylic resin film Pending JP2022032164A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020135685A JP2022032164A (en) 2020-08-11 2020-08-11 (meth)acrylic resin composition and (meth)acrylic resin film
KR1020210095972A KR102645990B1 (en) 2020-08-11 2021-07-21 (meth)acrylic-based resin composition and (meth)acrylic-based resin film
CN202110837249.8A CN114075362A (en) 2020-08-11 2021-07-23 (meth) acrylic resin composition and (meth) acrylic resin film
TW110128879A TW202206536A (en) 2020-08-11 2021-08-05 (meth)acrylic-based resin composition and (meth)acrylic-based resin film
KR1020240031702A KR20240034728A (en) 2020-08-11 2024-03-06 (meth)acrylic-based resin composition and (meth)acrylic-based resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020135685A JP2022032164A (en) 2020-08-11 2020-08-11 (meth)acrylic resin composition and (meth)acrylic resin film

Publications (1)

Publication Number Publication Date
JP2022032164A true JP2022032164A (en) 2022-02-25

Family

ID=80283154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020135685A Pending JP2022032164A (en) 2020-08-11 2020-08-11 (meth)acrylic resin composition and (meth)acrylic resin film

Country Status (4)

Country Link
JP (1) JP2022032164A (en)
KR (2) KR102645990B1 (en)
CN (1) CN114075362A (en)
TW (1) TW202206536A (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537378B1 (en) * 1971-03-18 1978-03-17
JP2006008901A (en) * 2004-06-28 2006-01-12 Kaneka Corp Methacrylic resin composition
JP4764055B2 (en) * 2005-04-14 2011-08-31 株式会社ブリヂストン Photocurable transfer sheet, method for producing optical information recording medium using the same, and optical information recording medium
JP5307378B2 (en) * 2007-10-26 2013-10-02 スリーエム イノベイティブ プロパティズ カンパニー (Meth) acrylic film and marking film using the same
JP5408885B2 (en) * 2008-02-28 2014-02-05 株式会社カネカ Resin composition, film and polarizing plate
JP2009286960A (en) 2008-05-30 2009-12-10 Mitsubishi Rayon Co Ltd Acrylic resin film composition and molded article using the same
JP5233614B2 (en) * 2008-11-27 2013-07-10 日立化成株式会社 Resin composition and transfer film using the same
JP5789292B2 (en) * 2011-02-21 2015-10-07 株式会社カネカ Acrylic resin film
CN103874730B (en) * 2011-10-05 2016-03-23 株式会社钟化 The acrylic resin film of bend-resistance albefaction and disruptiveness excellence
CN104619771A (en) * 2012-09-13 2015-05-13 株式会社钟化 Acrylic resin film
WO2015133153A1 (en) * 2014-03-07 2015-09-11 株式会社カネカ Methacrylic resin composition
EP3266827A4 (en) 2015-03-02 2018-09-19 Kaneka Corporation Acrylic resin composition, and molded product and film made from same
JP2018087834A (en) * 2015-03-31 2018-06-07 株式会社カネカ Polarizer protective film and polarizing plate
JP6580540B2 (en) * 2016-09-28 2019-09-25 藤森工業株式会社 Adhesive composition and adhesive film
KR101857577B1 (en) * 2016-12-30 2018-05-15 주식회사 효성 Method for manufacturing low haze acrylic resin film

Also Published As

Publication number Publication date
KR20240034728A (en) 2024-03-14
TW202206536A (en) 2022-02-16
KR102645990B1 (en) 2024-03-08
CN114075362A (en) 2022-02-22
KR20220020202A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
TWI553085B (en) Pressure sensitive adhesive sheet, optical film with pressure sensitive adhesive and optical laminate
WO2019163743A1 (en) Actinic ray-curable adhesive composition, polarization film and method for manufacturing same, optical film, and image display device
JP2018095843A (en) Adhesive composition for optical film, adhesive layer, optical member and image display device
JP2023178316A (en) (meth)acrylic resin composition and (meth)acrylic resin film
WO2020039896A1 (en) Polarizer, polarizing film, optical film and image display device
TW202229486A (en) Adhesive sheet equipped with release film, laminate for image display device equipped with release film, and method for producing laminate for image display device
WO2020039895A1 (en) Polarizer, polarizing film, optical film and image display device
TW202311481A (en) Adhesive sheet, laminate sheet, and flexible image display device
JP2022032164A (en) (meth)acrylic resin composition and (meth)acrylic resin film
JP2018109660A (en) Acrylic resin film and manufacturing method therefor
KR102403279B1 (en) Adhesive for optical film, adhesive layer, optical member and display apparatus
WO2019163749A1 (en) Polarizing film, method for manufacturing same, optical film, and image display device
CN115246976A (en) (meth) acrylic resin film
JP2019148793A (en) Polarizing film and manufacturing method therefor, optical film, and image display device
JP2024008152A (en) resin film
JP2024008150A (en) resin film
CN117359926A (en) Method for producing resin film
CN117363183A (en) UV adhesive composition, preparation process and polarizing plate thereof
TW202239902A (en) Optical laminate, image display device, and adhesive composition
JP2023144908A (en) Adhesive sheet, laminate for constructing image display device, and image display device
TW202348418A (en) Adhesive sheet and flexible image display device
WO2020039899A1 (en) Polarizer, polarizing film, optical film and image display device
WO2020039894A1 (en) Polarizer, polarizing film, optical film and image display device
JP2018024831A (en) Adhesive composition for optical films, adhesive layer and method for producing the same, optical member, and image display device
KR20150083213A (en) Adhesive composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240618