JP2022029448A - Nonaqueous electrolyte and nonaqueous electrolyte secondary battery comprising nonaqueous electrolyte - Google Patents

Nonaqueous electrolyte and nonaqueous electrolyte secondary battery comprising nonaqueous electrolyte Download PDF

Info

Publication number
JP2022029448A
JP2022029448A JP2021128252A JP2021128252A JP2022029448A JP 2022029448 A JP2022029448 A JP 2022029448A JP 2021128252 A JP2021128252 A JP 2021128252A JP 2021128252 A JP2021128252 A JP 2021128252A JP 2022029448 A JP2022029448 A JP 2022029448A
Authority
JP
Japan
Prior art keywords
group
aqueous electrolyte
formula
mass
electrolyte solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021128252A
Other languages
Japanese (ja)
Inventor
遼 野澤
Ryo Nozawa
亮 山口
Akira Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
MU Ionic Solutions Corp
Original Assignee
Mitsubishi Chemical Corp
MU Ionic Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, MU Ionic Solutions Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2022029448A publication Critical patent/JP2022029448A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

To provide a nonaqueous electrolyte that may improve the battery capacity after a high-temperature preservation test.SOLUTION: The nonaqueous electrolyte contains a compound (A) represented by formula (I) or (II), and one or more salts (B) selected from the group consisting of phosphates having a P-F bond and sulfonates having an S-F bond. (In formula (I), R1, R2 and R3 are each independently a hydrogen atom, halogen atom or hydrocarbon group, where R1 and R2 may be bound to each other to form a cyclic structure; n is an integer from 0 to 4; and M1 is a monovalent cation. In formula (II), R4 is a hydrogen atom, halogen atom or hydrocarbon group; n is an integer from 0 to 4; and M2 is a monovalent cation.)SELECTED DRAWING: None

Description

本発明は、非水系電解液及び該非水系電解液を備える非水系電解液二次電池に関する。 The present invention relates to a non-aqueous electrolyte solution and a non-aqueous electrolyte secondary battery including the non-aqueous electrolyte solution.

含リチウム遷移金属酸化物を正極に用い、非水溶媒を電解液に用いるリチウム非水系電解液二次電池は、高いエネルギー密度を実現できることから、携帯電話、ラップトップコンピュータ等の小型電源から、自動車や鉄道、ロードレベリング用の大型電源まで広範な用途に適用されている。しかしながら、近年の非水系電解液二次電池に対する高性能化の要求はますます高まっており、各種特性の改善が強く要求されている。 A lithium non-aqueous electrolyte secondary battery that uses a lithium-containing transition metal oxide as the positive electrode and a non-aqueous solvent as the electrolyte can achieve a high energy density, so it can be used from small power sources such as mobile phones and laptop computers to automobiles. It is applied to a wide range of applications, including large power sources for railways, railways, and road leveling. However, in recent years, there has been an increasing demand for higher performance of non-aqueous electrolyte secondary batteries, and there is a strong demand for improvement of various characteristics.

例えば、特許文献1には、特定の負極活物質を含有する負極、炭素-炭素二重結合を有する有機スルホン酸リチウム塩を含有する非水系電解液及び特定のセパレータを有することを特徴とする電気化学素子が開示され、過充電時における安全性に優れること、高温貯蔵性に優れること、すなわち電池の膨れを抑制できること、および低温での充電特性に優れることが開示されている。 For example, Patent Document 1 comprises a negative electrode containing a specific negative electrode active material, a non-aqueous electrolytic solution containing an organic sulfonic acid lithium salt having a carbon-carbon double bond, and a specific separator. The chemical element is disclosed, and it is disclosed that it is excellent in safety at the time of overcharging, excellent in high temperature storage property, that is, it can suppress swelling of a battery, and it is excellent in charging characteristics at low temperature.

特許文献2には、スルホン酸イオン基を持つモノマーを含有する電解液が開示され、当該電解液を用いた二次電池は充放電サイクル時の放電容量維持率が改善することが開示されている。 Patent Document 2 discloses an electrolytic solution containing a monomer having a sulfonic acid ion group, and discloses that a secondary battery using the electrolytic solution has an improved discharge capacity retention rate during a charge / discharge cycle. ..

特許文献3には、特定の正極活物質を含む正極合材層を有する正極、及び炭素―炭素二重結合を有する有機スルホン酸リチウム塩を含有する非水電解質を備えた非水二次電池が開示され、放電容量、充放電サイクル特性、安全性が改善することが開示される。 Patent Document 3 describes a non-aqueous secondary battery including a positive electrode having a positive electrode mixture layer containing a specific positive electrode active material and a non-aqueous electrolyte containing an organic sulfonic acid lithium salt having a carbon-carbon double bond. It is disclosed that the discharge capacity, charge / discharge cycle characteristics, and safety are improved.

特開2010-277723号公報Japanese Unexamined Patent Publication No. 2010-277723 特開2007-42387号公報Japanese Unexamined Patent Publication No. 2007-423787 特開2009-110943号公報Japanese Unexamined Patent Publication No. 2009-110943

近年の非水系電解液二次電池は、特に電池搭載自動車が求める要求特性がますます高くなり、高温保存後の電池容量の改善が高いレベルで求められている。特に、リン酸塩又はスルホン酸塩を添加することにより、容量維持率等の電池性能を向上できる点から、例えば、ジフルオロリン酸リチウムなどが非水系電解液二次電池において添加剤として利用される。
しかしながら、特許文献1に記載の非水系電解液二次電池では、特定のセパレータと炭素-炭素不飽和結合を有する有機スルホン酸リチウム塩含有する非水電解液を組み合わせることにより電池の膨れを抑制できることが記載されているが、高温保存後の電池容量に関しては検討もされておらず記載もない。また、特許文献2に記載の非水系電解液では、サイクル試験時の放電容量維持率が改善できることが記載されているが、高温保存後の電池容量に関しては検討もされておらず記載もない。さらに、特許文献3に記載の非水二次電池では、特定の正極合剤層と炭素―炭素二重結合を有する電解液を組み合わせることによりサイクル特性が改善できることが記載されているが、リン酸塩又はスルホン酸塩を共添加した時の電池特性評価については記載されていない。
In recent years, non-aqueous electrolyte secondary batteries are required to have higher and higher required characteristics, especially for vehicles equipped with batteries, and improvement of battery capacity after high temperature storage is required at a high level. In particular, lithium difluorophosphate is used as an additive in a non-aqueous electrolyte secondary battery because the battery performance such as capacity retention can be improved by adding a phosphate or a sulfonate. ..
However, in the non-aqueous electrolytic solution secondary battery described in Patent Document 1, swelling of the battery can be suppressed by combining a specific separator with a non-aqueous electrolytic solution containing an organic sulfonic acid lithium salt having a carbon-carbon unsaturated bond. However, the battery capacity after high-temperature storage has not been examined and is not described. Further, it is described that the non-aqueous electrolyte solution described in Patent Document 2 can improve the discharge capacity retention rate during the cycle test, but the battery capacity after high temperature storage has not been investigated and is not described. Further, in the non-aqueous secondary battery described in Patent Document 3, it is described that the cycle characteristics can be improved by combining a specific positive electrode mixture layer and an electrolytic solution having a carbon-carbon double bond. The evaluation of battery characteristics when a salt or sulfonate is co-added is not described.

本発明では、非水系電解液二次電池において上記問題点を解決できる、高温保存後の電池容量を改善し得る非水系電解液を提供することを課題とする。 An object of the present invention is to provide a non-aqueous electrolyte solution that can solve the above problems in a non-aqueous electrolyte secondary battery and can improve the battery capacity after high temperature storage.

本発明者は、上記の課題を解決すべく鋭意検討した結果、特定の炭素-炭素不飽和結合を有するスルホン酸塩及び特定のリン酸塩又はスルホン酸塩を非水系電解液に含有することで、上記課題を解決できることを見出し、本発明に到達した。 As a result of diligent studies to solve the above problems, the present inventor has determined that a sulfonate having a specific carbon-carbon unsaturated bond and a specific phosphate or sulfonate are contained in the non-aqueous electrolyte solution. , The present invention has been reached by finding that the above problems can be solved.

即ち、本発明の要旨は、以下に存する。
[1]式(I)又は式(II)で表される化合物(A)、並びにP-F結合を有するリン酸塩及びS-F結合を有するスルホン酸塩からなる群より選ばれる塩(B)を1種以上含有することを特徴とする非水系電解液。

Figure 2022029448000001


(式(I)中、R、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭化水素基であり、RとRは互いに結合し環状構造を形成していてもよく;nは0~4の整数であり;Mは1価のカチオンである。
式(II)中、Rは水素原子、ハロゲン原子、又は炭化水素基であり;nは0~4の整数であり;Mは1価のカチオンである。)
[2]前記式(I)中、R、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数6~12のアリール基、又は炭素数7~18のアラルキル基である、[1]に記載の非水系電解液。
[3]前記式(II)中、Rが、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数6~12のアリール基、又は炭素数7~18のアラルキル基である、請求項[1]又は[2]に記載の非水系電解液。
[4]前記式(I)又は式(II)で表される化合物(A)を0.01質量%以上10質量%以下含有する、[1]~[3]のいずれかに記載の非水系電解液。
[5]前記P-F結合を有するリン酸塩及びS-F結合を有するスルホン酸塩からなる群より選ばれる塩(B)を、0.01質量%以上10質量%以下含有する、[1]~[4]のいずれかに記載の非水系電解液。
[6]金属イオンを吸蔵及び放出しうる正極活物質を有する正極と、金属イオンを吸蔵及び放出しうる負極活物質を有する負極と、[1]~[5]のいずれかに記載の非水系電解液と、を備える非水系電解液二次電池。 That is, the gist of the present invention lies in the following.
[1] A salt (B) selected from the group consisting of the compound (A) represented by the formula (I) or the formula (II), and a phosphate having a PF bond and a sulfonate having an SF bond. ) Is contained in one or more kinds of non-aqueous electrolyte solution.
Figure 2022029448000001


In formula (I), R 1 , R 2 and R 3 are independently hydrogen atoms, halogen atoms or hydrocarbon groups, and R 1 and R 2 are bonded to each other to form a cyclic structure. Often; n is an integer from 0 to 4; M 1 is a monovalent cation.
In formula (II), R 4 is a hydrogen atom, a halogen atom, or a hydrocarbon group; n is an integer of 0-4; M 2 is a monovalent cation. )
[2] In the above formula (I), R 1 , R 2 and R 3 independently have a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and a carbon number of carbon atoms. The non-aqueous electrolyte solution according to [1], which is an aryl group of 6 to 12 or an aralkyl group having 7 to 18 carbon atoms.
[3] In the formula (II), R4 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a carbon number of carbon atoms. The non-aqueous electrolyte solution according to claim [1] or [2], which is an aralkyl group of 7 to 18.
[4] The non-aqueous system according to any one of [1] to [3], which contains 0.01% by mass or more and 10% by mass or less of the compound (A) represented by the formula (I) or the formula (II). Electrolyte.
[5] The salt (B) selected from the group consisting of the phosphate having a PF bond and the sulfonate having an SF bond is contained in an amount of 0.01% by mass or more and 10% by mass or less [1]. ] To [4]. The non-aqueous electrolyte solution according to any one of [4].
[6] A positive electrode having a positive electrode active material capable of occluding and releasing metal ions, a negative electrode having a negative electrode active material capable of occluding and releasing metal ions, and a non-aqueous system according to any one of [1] to [5]. A non-aqueous electrolyte secondary battery comprising an electrolyte.

本発明によれば、高温保存後の電池容量を改善し得る非水系電解液を提供できる。また、当該非水系電解液を備えた非水系電解液二次電池を提供できる。 According to the present invention, it is possible to provide a non-aqueous electrolyte solution capable of improving the battery capacity after high temperature storage. Further, it is possible to provide a non-aqueous electrolyte secondary battery provided with the non-aqueous electrolyte.

以下に、本発明を実施するための形態を詳細に説明する。ただし、以下に記載する説明
は本発明の実施形態の一例(代表例)であり、本発明は請求項に記載の要旨を超えない限り、これらの内容に限定されるものではない。
Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the description described below is an example (representative example) of the embodiment of the present invention, and the present invention is not limited to these contents as long as it does not exceed the gist of the claims.

[1.非水系電解液]
本発明の実施形態に係る非水系電解液二次電池に用いる非水系電解液は、一般的な非水系電解液と同様に、電解質及びこれを溶解する非水溶媒を含有し、式(I)又は式(II)で表される化合物(A)(以下、炭素-炭素不飽和結合を有するスルホン酸塩と記す場合がある)、並びにP=O結合及びP-F結合を有するリン酸塩及びS-F結合を有するスルホン酸塩からなる群より選ばれる塩(B)((以下、「フッ素原子を有するリン酸塩又はスルホン酸塩」と記す場合がある))を1種以上含有する非水系電解液である。

Figure 2022029448000002


(式(I)中、R、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭化水素基であり、R、Rは互いに結合し環状構造を形成していてもよく;nは0~4の整数であり;Mは1価のカチオンである。
式(II)中、Rは水素原子、ハロゲン原子又は炭化水素基であり;nは0~4の整数であり;Mは1価のカチオンである。)
本発明に係る非水系電解液は、高温保存後の電池容量を改善し得る点で好ましい。このような優れた効果を奏する理由について、本発明者は以下のように推測する。
二次電池の充放電に伴い、式(I)又は式(II)で表される化合物(A)の炭素-炭素不飽和結合が電極上で多量化し、さらにP-F結合を有するリン酸塩又はS-F結合を有するスルホン酸塩(B)と反応し、電極上で難溶解性かつ強固な共被膜を形成することで、電極活物質と溶媒等との副反応を抑制するものと考える。
すなわち、本発明は、非水系電解液中に、炭素-炭素不飽和結合を有するスルホン酸塩と特定のリン酸塩又は特定のスルホン酸塩とを含有させることで、従来より高いレベルまで、高温保存後の電池容量を効率的に改善できると考える。
以下、各構成について説明する。 [1. Non-aqueous electrolyte solution]
The non-aqueous electrolyte solution used for the non-aqueous electrolyte secondary battery according to the embodiment of the present invention contains an electrolyte and a non-aqueous solvent for dissolving the electrolyte, like a general non-aqueous electrolyte solution, and has the formula (I). Alternatively, the compound (A) represented by the formula (II) (hereinafter, may be referred to as a sulfonate having a carbon-carbon unsaturated bond), and a phosphate having a P = O bond and a PF bond and A non-containing salt (B) selected from the group consisting of sulfonates having an SF bond ((hereinafter, may be referred to as "phosphate or sulfonate having a fluorine atom")). It is an aqueous electrolyte.
Figure 2022029448000002


In formula (I), R 1 , R 2 and R 3 are independently hydrogen atoms, halogen atoms or hydrocarbon groups, and R 1 and R 2 are bonded to each other to form a cyclic structure. Often; n is an integer from 0 to 4; M 1 is a monovalent cation.
In formula (II), R 4 is a hydrogen atom, a halogen atom or a hydrocarbon group; n is an integer of 0-4; M 2 is a monovalent cation. )
The non-aqueous electrolyte solution according to the present invention is preferable in that it can improve the battery capacity after high temperature storage. The present inventor presumes the reason for achieving such an excellent effect as follows.
With the charging and discharging of the secondary battery, the carbon-carbon unsaturated bond of the compound (A) represented by the formula (I) or the formula (II) increases on the electrode, and the phosphate having a PF bond further increases. Alternatively, it is considered that the side reaction between the electrode active material and the solvent or the like is suppressed by reacting with the sulfonate (B) having an SF bond to form a sparingly soluble and strong co-coating on the electrode. ..
That is, the present invention contains a sulfonate having a carbon-carbon unsaturated bond and a specific phosphate or a specific sulfonate in a non-aqueous electrolyte solution at a high temperature to a higher level than before. We believe that the battery capacity after storage can be improved efficiently.
Hereinafter, each configuration will be described.

[1-1.式(I)又は式(II)中で表される化合物(A)(炭素-炭素不飽和結合を有するスルホン酸塩)]
[1-1-1.式(I)中で表される化合物]

Figure 2022029448000003

式(I)中、R、R及びRは、それぞれ独立に、水素原子、ハロゲン原子又は炭化水素基である。なかでも、水素原子又は炭化水素基が好ましい。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が挙げられる。なかでも、フッ素原子が、電解液への安定性の点で好ましい。
炭化水素基としては、アルキル基、アルケニル基、アルキニル基、アリール基又はアラルキル基が挙げられる。なかでも、アルキル基、アルケニル基、アリール基、及びアラルキル基が特に好ましい。なお、炭化水素基はフッ素原子等の置換基を有していてもよい。また、アリール基は、任意の環原子がヘテロ原子で置換されているヘテロアリール基も含むものとする。
アルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、及びデシル基等が挙げられる。なかでも、炭素数が1~6のアルキル基が、電解液への溶解性の点で好ましい。
アルケニル基としては、ビニル基、アリル基、メタリル基、2-ブテニル基、3-メチル2-ブテニル基、3-ブテニル基、4-ペンテニル基、5-ヘキセニル基、6-ヘプテニル基、及び7-オクテニル基等が挙げられる。なかでも、炭素数が2~6のアルケニル基が電解液への溶解性の点で好ましい。
アルキニル基としては、エチニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ペンチニル基、5-ヘキシニル基、6-ヘプチニル基、及び7-オクチニル基等が挙げられる。なかでも、炭素数が2~6のアルキニル基が電解液への溶解性の点で好ましい。
アリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、2-チエニル基、3-チエニル基、2-フリル基、3-フリル基、2-ピロリル基、3-ピロリル基、及びベンジル基等が挙げられる。なかでも、炭素原子数が6~12のアリール基が好ましく、フェニル基、1-ナフチル基、及び2-ナフチル基が電解液への溶解性の点で特に好ましい。
アラルキル基としては、フェニルメチル基(ベンジル基)、フェニルエチル基(フェネチル基)、フェニルプロピル基、フェニルブチル基、及びフェニルイソプロピル基等が挙げられる。なかでも、ベンジル基及びフェネチル基が好ましく、ベンジル基が電解液への安定性の点で特に好ましい。
式(I)中のRとRは互いに結合し環状構造を形成していてもよい。環状構造としては、シクロヘキセン環、シクロペンテン環、ベンゼン環、ナフタレン環、ピロール環、チオフェン環、フラン環、イミダゾール環、チアゾール環、カルバゾール環、及びピリジン環等が挙げられる。なかでも、シクロヘキセン環、ベンゼン環、ナフタレン環、ピロール環、チオフェン環、及びフラン環が、電解液への安定性の点で好ましく、より好ましくは、シクロヘキセン環、ベンゼン環、及びナフタレン環である。また、環状構造を形成する原子にフッ素原子等の置換基を有していてもよい。
式(I)中のMは1価のカチオンであり、好ましくは、リチウムイオン、ナトリウム
イオン、カリウムイオン、ルビジウムイオン、及びセシウムイオンである。なかでも、リチウムイオン、ナトリウムイオン又はカリウムイオンが電解液への溶解性の点で好ましく、リチウムイオン、又はナトリウムイオンがより好ましい。
nは0~4の整数であり、電解液への溶解性の点で好ましくは、0~2の整数であり、0又は1がより好ましい。 [1-1. Compound (A) represented in formula (I) or formula (II) (sulfonate having carbon-carbon unsaturated bond)]
[1-1-1. Compound represented in formula (I)]
Figure 2022029448000003

In formula (I), R 1 , R 2 and R 3 are independently hydrogen atoms, halogen atoms or hydrocarbon groups, respectively. Of these, a hydrogen atom or a hydrocarbon group is preferable.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Of these, the fluorine atom is preferable in terms of stability to the electrolytic solution.
Examples of the hydrocarbon group include an alkyl group, an alkenyl group, an alkynyl group, an aryl group or an aralkyl group. Of these, an alkyl group, an alkenyl group, an aryl group, and an aralkyl group are particularly preferable. The hydrocarbon group may have a substituent such as a fluorine atom. The aryl group also includes a heteroaryl group in which any ring atom is substituted with a heteroatom.
Alkyl groups include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, n-pentyl group, hexyl group, heptyl group, octyl group, nonyl group, and decyl. Group etc. can be mentioned. Of these, an alkyl group having 1 to 6 carbon atoms is preferable in terms of solubility in an electrolytic solution.
The alkenyl group includes a vinyl group, an allyl group, a metalyl group, a 2-butenyl group, a 3-methyl2-butenyl group, a 3-butenyl group, a 4-pentenyl group, a 5-hexenyl group, a 6-heptenyl group, and a 7- Examples thereof include an octenyl group. Of these, an alkenyl group having 2 to 6 carbon atoms is preferable in terms of solubility in an electrolytic solution.
Examples of the alkynyl group include an ethynyl group, a 2-propynyl group, a 2-butynyl group, a 3-butynyl group, a 4-pentynyl group, a 5-hexynyl group, a 6-heptinyl group, a 7-octynyl group and the like. Of these, an alkynyl group having 2 to 6 carbon atoms is preferable in terms of solubility in an electrolytic solution.
The aryl group includes a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 2-thienyl group, a 3-thienyl group, a 2-furyl group, a 3-furyl group, a 2-pyrrolill group, a 3-pyrrolill group, and a benzyl group. The group etc. can be mentioned. Of these, an aryl group having 6 to 12 carbon atoms is preferable, and a phenyl group, a 1-naphthyl group, and a 2-naphthyl group are particularly preferable in terms of solubility in an electrolytic solution.
Examples of the aralkyl group include a phenylmethyl group (benzyl group), a phenylethyl group (phenethyl group), a phenylpropyl group, a phenylbutyl group, a phenylisopropyl group and the like. Of these, a benzyl group and a phenethyl group are preferable, and a benzyl group is particularly preferable in terms of stability to an electrolytic solution.
R 1 and R 2 in the formula (I) may be bonded to each other to form a cyclic structure. Examples of the cyclic structure include a cyclohexene ring, a cyclopentene ring, a benzene ring, a naphthalene ring, a pyrrole ring, a thiophene ring, a furan ring, an imidazole ring, a thiazole ring, a carbazole ring, and a pyridine ring. Among them, the cyclohexene ring, the benzene ring, the naphthalene ring, the pyrrole ring, the thiophene ring, and the furan ring are preferable in terms of stability to the electrolytic solution, and more preferably the cyclohexene ring, the benzene ring, and the naphthalene ring. Further, the atom forming the cyclic structure may have a substituent such as a fluorine atom.
M 1 in the formula (I) is a monovalent cation, preferably lithium ion, sodium ion, potassium ion, rubidium ion, and cesium ion. Among them, lithium ion, sodium ion or potassium ion is preferable in terms of solubility in an electrolytic solution, and lithium ion or sodium ion is more preferable.
n is an integer of 0 to 4, preferably an integer of 0 to 2 in terms of solubility in the electrolytic solution, and more preferably 0 or 1.

式(I)で表される化合物としては、具体的には以下の化合物が挙げられる。

Figure 2022029448000004
Specific examples of the compound represented by the formula (I) include the following compounds.
Figure 2022029448000004

Figure 2022029448000005
Figure 2022029448000005

Figure 2022029448000006
Figure 2022029448000006

なかでも、以下の化合物が好ましい。

Figure 2022029448000007
Among them, the following compounds are preferable.
Figure 2022029448000007

Figure 2022029448000008
Figure 2022029448000008

Figure 2022029448000009
Figure 2022029448000009

より好ましくは、以下の化合物が挙げられる。

Figure 2022029448000010
More preferably, the following compounds are mentioned.
Figure 2022029448000010

Figure 2022029448000011
Figure 2022029448000011

さらに好ましくは、以下の化合物が挙げられる。

Figure 2022029448000012
More preferably, the following compounds are mentioned.
Figure 2022029448000012

Figure 2022029448000013
Figure 2022029448000013

特に好ましくは、以下の化合物が挙げられる。

Figure 2022029448000014
Particularly preferred are the following compounds.
Figure 2022029448000014

式(I)中で表される化合物の含有量は、特段の制限はないが、非水系電解液中が、前記式(I)で表される化合物を好ましくは0.01質量%以上、より好ましくは0.05質量%以上含有し、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましく6質量%以下、特に好ましくは4質量%以下で含有する。式(I)で表される化合物は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
式(I)で表される化合物と後述する式(II)で表される化合物を併用する場合には、式(I)で表される化合物及び式(II)で表される化合物の合計量、すなわち、炭素-炭素不飽和結合を有するスルホン酸塩(A)の総量が、上記範囲内となるようにすればよいが、式(I)で表される化合物のみを用いるのが好ましい。
炭素-炭素不飽和結合を有するスルホン酸塩の同定や含有量の測定は、核磁気共鳴(NMR)分光法により行う。
The content of the compound represented by the formula (I) is not particularly limited, but the compound represented by the formula (I) is preferably 0.01% by mass or more in the non-aqueous electrolyte solution. It is preferably contained in an amount of 0.05% by mass or more, preferably 10% by mass or less, more preferably 8% by mass or less, still more preferably 6% by mass or less, and particularly preferably 4% by mass or less. As the compound represented by the formula (I), one type may be used alone, or two or more types may be used in combination in any combination and ratio.
When the compound represented by the formula (I) and the compound represented by the formula (II) described later are used in combination, the total amount of the compound represented by the formula (I) and the compound represented by the formula (II). That is, the total amount of the sulfonate (A) having a carbon-carbon unsaturated bond may be within the above range, but it is preferable to use only the compound represented by the formula (I).
The identification and content measurement of sulfonates with carbon-carbon unsaturated bonds are performed by nuclear magnetic resonance (NMR) spectroscopy.

[1-1-2.式(II)で表される化合物]

Figure 2022029448000015
[1-1-2. Compound represented by formula (II)]
Figure 2022029448000015

式(II)中のRは、水素原子、ハロゲン原子又は炭化水素基である。ここで、Rに係るハロゲン原子又は炭化水素基は、R~Rで例示したものが挙げられ、好ましくは、水素原子、ハロゲン原子、炭素数2~6のアルケニル基、炭素数6~12のアリール基又は炭素数7~18のアラルキル基であり、より好ましくは、水素原子又はフェニル基であり、さらに好ましくは、水素原子である。
式(II)中のMは1価のカチオンであり、具体的には、Mで例示したものが挙げられ、リチウムイオン、ナトリウムイオン、又はカリウムイオンが電解液への溶解性の点で好ましい。
nは0~4の整数であり、電解液への溶解性の点で好ましくは、0~2の整数であり、0又は1がより好ましい。
R4 in the formula (II) is a hydrogen atom, a halogen atom or a hydrocarbon group. Here, examples of the halogen atom or hydrocarbon group according to R 4 include those exemplified by R 1 to R 3 , and preferably a hydrogen atom, a halogen atom, an alkenyl group having 2 to 6 carbon atoms, and 6 to 6 carbon atoms. It is an aryl group of 12 or an aralkyl group having 7 to 18 carbon atoms, more preferably a hydrogen atom or a phenyl group, and further preferably a hydrogen atom.
M 2 in the formula (II) is a monovalent cation, and specific examples thereof include those exemplified by M 1 , in which lithium ion, sodium ion, or potassium ion is soluble in an electrolytic solution. preferable.
n is an integer of 0 to 4, preferably an integer of 0 to 2 in terms of solubility in the electrolytic solution, and more preferably 0 or 1.

式(II)で表される化合物としては、具体的には以下の化合物が挙げられる。

Figure 2022029448000016
Specific examples of the compound represented by the formula (II) include the following compounds.
Figure 2022029448000016

Figure 2022029448000017
Figure 2022029448000017

なかでも、以下の化合物が好ましい。

Figure 2022029448000018
Among them, the following compounds are preferable.
Figure 2022029448000018

より好ましくは、以下の化合物が挙げられる。

Figure 2022029448000019
More preferably, the following compounds are mentioned.
Figure 2022029448000019

さらに好ましくは、以下の化合物が挙げられる。

Figure 2022029448000020
More preferably, the following compounds are mentioned.
Figure 2022029448000020

特に好ましくは、以下の化合物が挙げられる。

Figure 2022029448000021
Particularly preferred are the following compounds.
Figure 2022029448000021

非水系電解液中、式(II)で表される化合物の含有量は、特段の制限はないが、非水系電解液中が、前記式(I)で表される化合物を好ましくは0.01質量%以上、より好ましくは0.05質量%以上含有し、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましく6質量%以下、特に好ましくは4質量%以下で含有する。式(II)で表される化合物は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
上述した通り、式(I)で表される化合物と式(II)で表される化合物を併用する場合には、式(I)で表される化合物及び式(II)で表される化合物の合計量、すなわち、炭素-炭素不飽和結合を有するスルホン酸塩(A)の総量が、上記範囲内となるようにすればよい。
The content of the compound represented by the formula (II) in the non-aqueous electrolyte solution is not particularly limited, but the compound represented by the formula (I) is preferably 0.01 in the non-aqueous electrolyte solution. It is contained in an amount of% by mass or more, more preferably 0.05% by mass or more, preferably 10% by mass or less, more preferably 8% by mass or less, still more preferably 6% by mass or less, and particularly preferably 4% by mass or less. As the compound represented by the formula (II), one type may be used alone, or two or more types may be used in combination in any combination and ratio.
As described above, when the compound represented by the formula (I) and the compound represented by the formula (II) are used in combination, the compound represented by the formula (I) and the compound represented by the formula (II) are used in combination. The total amount, that is, the total amount of the sulfonate (A) having a carbon-carbon unsaturated bond may be within the above range.

[1-2.フッ素原子を有するリン酸塩及びS-F結合を有するスルホン酸塩]
[1-2-1.P-F結合を有するリン酸塩(フッ素原子を有するリン酸塩)]
本発明に係るP-F結合を有するリン酸塩としては、具体的にはモノフルオロリン酸リチウム、モノフルオロリン酸ナトリウム、モノフルオロリン酸カリウム、モノフルオロリン酸ルビジウム、モノフルオロリン酸セシウム、ジフルオロリン酸リチウム、ジフルオロリン酸ナトリウム、ジフルオロリン酸カリウム、ジフルオロリン酸ルビジウム、ジフルオロリン酸セシウム、モノフルオロモノメチルリン酸リチウム、モノフルオロモノメチルリン酸ナトリウム、モノフルオロモノメチルリン酸カリウム、モノフルオロモノメチルリン酸ルビジウム、モノフルオロモノメチルリン酸セシウムが挙げられる。なかでも、モノフルオロリン酸リチウム、ジフルオロリン酸リチウムが電解液安定性の点で特に好ましい。
非水系電解液中、びP-F結合を有するリン酸塩の含有量は、特段の制限はないが、非水系電解液中がP-F結合を有するリン酸塩を、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上含有し、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは6質量%以下で含有する。P-F結合を有するリン酸塩の同定や含有量の測定は、核磁気共鳴(NMR)分光法により行う。
[1-2. Phosphate with fluorine atom and sulfonate with SF bond]
[1-2-1. Phosphate with PF bond (phosphate with fluorine atom)]
Specific examples of the phosphate having a PF bond according to the present invention include lithium monofluorophosphate, sodium monofluorophosphate, potassium monofluorophosphate, rubidium monofluorophosphate, and cesium monofluorophosphate. Lithium difluorophosphate, sodium difluorophosphate, potassium difluorophosphate, rubidium difluorophosphate, cesium difluorophosphate, lithium monofluoromonomethylphosphate, sodium monofluoromonomethylphosphate, potassium monofluoromonomethylphosphate, monofluoromonomethylphosphorus Examples include rubidium acid acid and cesium monofluoromonomethylphosphate. Of these, lithium monofluorophosphate and lithium difluorophosphate are particularly preferable in terms of electrolyte stability.
The content of the phosphate having a PF bond in the non-aqueous electrolyte solution is not particularly limited, but the phosphate having a PF bond in the non-aqueous electrolyte solution is preferably 0.01. It is contained in an amount of% by mass or more, more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, preferably 10% by mass or less, more preferably 8% by mass or less, still more preferably 6% by mass or less. do. Identification of phosphates with PF bonds and measurement of their content are performed by nuclear magnetic resonance (NMR) spectroscopy.

[1-2-2.S-F結合を有するスルホン酸塩(フッ素原子を有するスルホン酸塩)]
本発明のS-F結合を有するスルホン酸塩としては、具体的にはフルオロスルホン酸リチウム、フルオロスルホン酸ナトリウム、フルオロスルホン酸カリウム、フルオロスルホン酸ルビジウム、フルオロスルホン酸セシウム、ビスフルオロスルホニルイミドリチウムが挙げられる。なかでも、フルオロスルホン酸リチウム、ビスフルオロスルホニルイミドリチウムが、電解液安定性の点で特に好ましい。
非水系電解液中、S-F結合を有するスルホン酸塩の含有量は、特段の制限はないが、非水系電解液中がS-F結合を有するスルホン酸塩を好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上含有し、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは6質量%以下で含有する。
[1-2-2. Sulfonate with SF bond (sulphonate with fluorine atom)]
Specific examples of the sulfonate having an SF bond of the present invention include lithium fluorosulfonate, sodium fluorosulfonate, potassium fluorosulfonate, rubidium fluorosulfonate, cesium fluorosulfonate, and bisfluorosulfonylimide lithium. Can be mentioned. Of these, lithium fluorosulfonate and lithium bisfluorosulfonylimide are particularly preferable in terms of electrolyte stability.
The content of the sulfonate having an SF bond in the non-aqueous electrolyte solution is not particularly limited, but the sulfonate having an SF bond in the non-aqueous electrolyte solution is preferably 0.01% by mass. As described above, it is more preferably contained in an amount of 0.05% by mass or more, further preferably 0.1% by mass or more, preferably 10% by mass or less, more preferably 8% by mass or less, still more preferably 6% by mass or less.

すなわち、非水系電解液中、フッ素原子を有するリン酸塩又はスルホン酸塩(B)の含有量は、非水系電解液が好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上含有し、好ましくは10質量以下、より好ましくは、8質量%以下、さらに好ましくは6質量%以下で含有する。P-F結合を有するリン酸塩及びS-F結合を有するスルホン酸塩を2種以上含む場合には、P-F結合を有するリン酸塩及びS-F結合を有するスルホン酸塩の合計量、すなわち塩(B)の総量が上述の範囲となるようにすればよい。 That is, the content of the phosphate or sulfonate (B) having a fluorine atom in the non-aqueous electrolyte solution is preferably 0.01% by mass or more, more preferably 0.05% by mass or more in the non-aqueous electrolyte solution. It is further preferably contained in an amount of 0.1% by mass or more, preferably 10% by mass or less, more preferably 8% by mass or less, still more preferably 6% by mass or less. When two or more phosphates having a PF bond and sulfonates having an SF bond are contained, the total amount of the phosphate having a PF bond and the sulfonate having an SF bond That is, the total amount of the salt (B) may be within the above range.

[1-2.電解質]
<リチウム塩>
非水系電解液における電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを用いることができ、具体的には以下のものが挙げられる。
[1-2. Electrolytes]
<Lithium salt>
As the electrolyte in the non-aqueous electrolyte solution, a lithium salt is usually used. The lithium salt is not particularly limited as long as it is known to be used for this purpose, and any lithium salt can be used, and specific examples thereof include the following.

例えば、フルオロホウ酸リチウム塩類、フルオロリン酸リチウム塩類、タングステン酸リチウム塩類、カルボン酸リチウム塩類、スルホン酸リチウム塩類、リチウムイミド塩類、リチウムメチド塩類、リチウムオキサラート塩類、及び含フッ素有機リチウム塩類等が挙げられる。 Examples thereof include lithium fluoroborate salts, lithium fluorophosphate salts, lithium tungstic acid salts, lithium carboxylic acid salts, lithium sulfonic acid salts, lithium imide salts, lithium methides salts, lithium oxalate salts, and fluorine-containing organic lithium salts. ..

中でも、フルオロホウ酸リチウム塩類としてLiBF;フルオロリン酸リチウム塩類としてLiPF;スルホン酸リチウム塩類として、CHSOLi;リチウムイミド塩類としてLiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド;リチウムメチド塩類として、LiC(FSO、LiC(CFSO、LiC(CSO;リチウムオキサラート塩類として、リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート、リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート;等が、低温出力特性やハイレート充放電特性、インピーダンス特性、高温保存特性、サイクル特性等を向上させる効果がある点からより好ましい。さらに好ましくは、LiPF及びリチウムビス(オキサラト)ボレートであり、特に好ましくはLiPFである。また、上記電解質は、単独で用いても、2種以上を併用してもよい。ただし、「1-1.式(I)又は式(II)中で表される化合物(A)(炭素-炭素不飽和結合を有するスルホン酸塩)」又は「1-2.フッ素原子を有するリン酸塩及びS-F結合を有するスルホン酸塩」に該当するリチウム塩が非水系電解液に含まれる場合、「1-1.式(I)又は式(II)中で表される化合物(A)(炭素-炭素不飽和結合を有するスルホン酸塩)」又は「1-2.フッ素原子を有するリン酸塩及びS-F結合を有するスルホン酸塩」に該当するリチウム塩以外の電解質を必ず含有する。
2種類以上の電解質の組み合わせとして、特段の制限はないが、LiPF及びLiBFの組み合わせ並びにLiPF及びLiN(CFSOの組み合わせが挙げられる。なかでも、LiPF及びLiBFの組み合わせが好ましい。
Among them, LiBF 4 as lithium fluoroborate salts; LiPF 6 as lithium fluorophosphate salts; CH 3 SO 3 Li as lithium sulfonic acid salts; LiN (FSO 2 ) (CF 3 SO 2 ) and LiN (CF) as lithium imide salts. 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , Lithium cyclic 1,2-perfluoroethanedisulfonylimide, Lithium cyclic 1,3-perfluoropropanedisulfonylimide; LiC (FSO) as lithium methide salts 2 ) 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 ; Lithium difluorooxalattobolate, lithium bis (oxalate) borate, lithium tetrafluorooxalattophosphate as lithium oxalate salts , Lithium difluorobis (oxalat) phosphate, lithium tris (oxalat) phosphate; etc. are more preferable because they have the effect of improving low temperature output characteristics, high rate charge / discharge characteristics, impedance characteristics, high temperature storage characteristics, cycle characteristics, etc. .. LiPF 6 and lithium bis (oxalate) borate are more preferable, and LiPF 6 is particularly preferable. Further, the above-mentioned electrolyte may be used alone or in combination of two or more. However, "1-1. Compound (A) represented in formula (I) or formula (II) (sulfonate having carbon-carbon unsaturated bond)" or "1-2. Phosphorus having a fluorine atom" When the non-aqueous electrolyte solution contains a lithium salt corresponding to "a salt and a sulfonate having an SF bond", the compound (A) represented by the formula (I) or the formula (II) is contained in the non-aqueous electrolyte solution. ) (Sulfonate having a carbon-carbon unsaturated bond) ”or“ 1-2. Phosphate having a fluorine atom and sulfonate having an SF bond ”must contain an electrolyte other than the lithium salt. do.
The combination of two or more kinds of electrolytes is not particularly limited, and examples thereof include a combination of LiPF 6 and LiBF 4 and a combination of LiPF 6 and LiN (CF 3 SO 2 ) 2 . Of these, the combination of LiPF 6 and LiBF 4 is preferable.

非水系電解液中の電解質の総濃度は、特に制限はないが、非水系電解液の全量に対して、通常8質量%以上、好ましくは8.5質量%以上、より好ましくは9質量%以上であり、また、通常18質量%以下、好ましくは17質量%以下、より好ましくは16質量%以下である。電解質の総濃度が上記範囲内であると、電気伝導率が電池動作に適正となるため、十分な出力特性が得られる傾向にある。 The total concentration of the electrolyte in the non-aqueous electrolyte solution is not particularly limited, but is usually 8% by mass or more, preferably 8.5% by mass or more, more preferably 9% by mass or more, based on the total amount of the non-aqueous electrolyte solution. It is usually 18% by mass or less, preferably 17% by mass or less, and more preferably 16% by mass or less. When the total concentration of the electrolyte is within the above range, the electric conductivity becomes appropriate for battery operation, so that sufficient output characteristics tend to be obtained.

[1-3.非水系溶媒]
非水系電解液は、一般的な非水系電解液と同様、通常はその主成分として、上述した電解質を溶解する非水系溶媒を含有する。用いられる非水系溶媒は上述した電解質を溶解すれば特に制限はなく、公知の有機溶媒を用いることができる。有機溶媒としては、飽和環状カーボネート、鎖状カーボネート、鎖状カルボン酸エステル、環状カルボン酸エステル、エーテル系化合物、及びスルホン系化合物等が挙げられるが、これらに特に限定されない。有機溶媒は、1種を単独で又は2種以上を組み合わせて用いることができる。
2種以上の有機溶媒の組み合わせとして、特段の制限はないが、飽和環状カーボネート及び鎖状カルボン酸エステル、環状カルボン酸エステル及び鎖状カーボネート、並びに飽和環状カーボネート、鎖状カーボネート及び鎖状カルボン酸エステルが挙げられる。なかでも、飽和環状カーボネート及び鎖状カーボネート、並びに飽和環状カーボネート、鎖状カーボネート及び鎖状カルボン酸エステルが好ましい。
[1-3. Non-aqueous solvent]
Like a general non-aqueous electrolyte solution, the non-aqueous electrolyte solution usually contains a non-aqueous solvent that dissolves the above-mentioned electrolyte as its main component. The non-aqueous solvent used is not particularly limited as long as the above-mentioned electrolyte is dissolved, and a known organic solvent can be used. Examples of the organic solvent include saturated cyclic carbonates, chain carbonates, chain carboxylic acid esters, cyclic carboxylic acid esters, ether compounds, sulfone compounds and the like, but are not particularly limited thereto. As the organic solvent, one kind may be used alone or two or more kinds may be used in combination.
The combination of two or more organic solvents is not particularly limited, but is limited to saturated cyclic carbonate and chain carboxylic acid ester, cyclic carboxylic acid ester and chain carbonate, and saturated cyclic carbonate, chain carbonate and chain carboxylic acid ester. Can be mentioned. Of these, saturated cyclic carbonates and chain carbonates, and saturated cyclic carbonates, chain carbonates and chain carboxylic acid esters are preferable.

[1-3-1.飽和環状カーボネート]
飽和環状カーボネートとしては、例えば、炭素数2~4のアルキレン基を有するものが挙げられ、リチウムイオン解離度の向上に由来する電池特性向上の点から炭素数2~3の飽和環状カーボネートが好ましく用いられる。
[1-3-1. Saturated cyclic carbonate]
Examples of the saturated cyclic carbonate include those having an alkylene group having 2 to 4 carbon atoms, and a saturated cyclic carbonate having 2 to 3 carbon atoms is preferably used from the viewpoint of improving battery characteristics resulting from an improvement in the degree of lithium ion dissociation. Be done.

飽和環状カーボネートとしては、具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネート又はプロピレンカーボネートが好ましく、酸化・還元されにくいエチレンカーボネートがより好ましい。飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Specific examples of the saturated cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate and the like. Of these, ethylene carbonate or propylene carbonate is preferable, and ethylene carbonate, which is difficult to be oxidized or reduced, is more preferable. As the saturated cyclic carbonate, one type may be used alone, or two or more types may be used in combination in any combination and ratio.

飽和環状カーボネートの含有量は、特に制限されず、本実施形態に係る発明の効果を著しく損なわない限り任意であるが、非水系電解液の非水系溶媒全量に対して、通常3体積%以上、好ましくは5体積%以上であり、一方、通常90体積%以下、好ましくは85体積%以下、より好ましくは80体積%以下である。この範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液二次電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなり、非水系電解液の酸化・還元耐性が向上し、高温保存時の安定性が向上する傾向にある。
なお、本実施形態における体積%とは25℃、1気圧における体積を意味する。
The content of the saturated cyclic carbonate is not particularly limited and is arbitrary as long as the effect of the invention according to the present embodiment is not significantly impaired, but is usually 3% by volume or more based on the total amount of the non-aqueous solvent of the non-aqueous electrolyte solution. It is preferably 5% by volume or more, while it is usually 90% by volume or less, preferably 85% by volume or less, and more preferably 80% by volume or less. By setting it within this range, the decrease in electrical conductivity due to the decrease in the dielectric constant of the non-aqueous electrolyte solution is avoided, and the large current discharge characteristics of the non-aqueous electrolyte secondary battery, the stability with respect to the negative electrode, and the cycle characteristics are good. It tends to be easy to set the range, the oxidation / reduction resistance of the non-aqueous electrolyte solution is improved, and the stability at high temperature storage tends to be improved.
The volume% in this embodiment means the volume at 25 ° C. and 1 atm.

[1-3-2.鎖状カーボネート]
鎖状カーボネートとしては、通常炭素数3~7のものが用いられ、電解液の粘度を適切な範囲に調整するために、炭素数3~5の鎖状カーボネートが好ましく用いられる。
[1-3-2. Chain carbonate]
As the chain carbonate, one having 3 to 7 carbon atoms is usually used, and in order to adjust the viscosity of the electrolytic solution in an appropriate range, a chain carbonate having 3 to 5 carbon atoms is preferably used.

具体的には、鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、ジイソプロピルカーボネート、n-プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル-n-プロピルカーボネートが挙げられる。特に好ましくはジメチルカーボネート、ジエチルカーボネート又はエチルメチルカーボネートである。 Specifically, examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propylisopropyl carbonate, ethylmethylcarbonate, and methyl-n-propyl carbonate. Particularly preferred is dimethyl carbonate, diethyl carbonate or ethylmethyl carbonate.

また、フッ素原子を有する鎖状カーボネート類(以下、「フッ素化鎖状カーボネート」と略記する場合がある。)も好適に用いることができる。フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、当該複数のフッ素原子は互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。
フッ素化鎖状カーボネートとしては、フルオロメチルメチルカーボネート等のフッ素化ジメチルカーボネート誘導体;2-フルオロエチルメチルカーボネート等のフッ素化エチルメチルカーボネート誘導体;エチル-(2-フルオロエチル)カーボネート等のフッ素化ジエチルカーボネート誘導体;等が挙げられる。
Further, chain carbonates having a fluorine atom (hereinafter, may be abbreviated as "fluorinated chain carbonate") can also be preferably used. The number of fluorine atoms contained in the fluorinated chain carbonate is not particularly limited as long as it is 1 or more, but is usually 6 or less, preferably 4 or less. When the fluorinated chain carbonate has a plurality of fluorine atoms, the plurality of fluorine atoms may be bonded to the same carbon or may be bonded to different carbons.
Examples of the fluorinated chain carbonate include a fluorinated dimethyl carbonate derivative such as fluoromethylmethyl carbonate; a fluorinated ethylmethyl carbonate derivative such as 2-fluoroethylmethyl carbonate; and a fluorinated diethyl carbonate such as ethyl- (2-fluoroethyl) carbonate. Derivatives; etc.

鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 As the chain carbonate, one type may be used alone, or two or more types may be used in combination in any combination and ratio.

鎖状カーボネートの含有量は特に限定されないが、非水系電解液の非水系溶媒全量に対して、通常15体積%以上であり、好ましくは20体積%以上、より好ましくは25体積%以上であり、また、通常90体積%以下、好ましくは85体積%以下、より好ましくは80体積%以下である。鎖状カーボネートの含有量を上記範囲とすることによって、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液二次電池の出力特性を良好な範囲としやすくなる。 The content of the chain carbonate is not particularly limited, but is usually 15% by volume or more, preferably 20% by volume or more, more preferably 25% by volume or more, based on the total amount of the non-aqueous solvent of the non-aqueous electrolyte solution. Further, it is usually 90% by volume or less, preferably 85% by volume or less, and more preferably 80% by volume or less. By setting the content of the chain carbonate in the above range, the viscosity of the non-aqueous electrolyte solution is set in an appropriate range, the decrease in ionic conductivity is suppressed, and the output characteristics of the non-aqueous electrolyte secondary battery are in a good range. It becomes easy to do.

さらに、特定の鎖状カーボネートに対して、エチレンカーボネートを特定の含有量で組み合わせることにより、電池性能を著しく向上させることができる。 Further, by combining ethylene carbonate with a specific chain carbonate in a specific content, the battery performance can be remarkably improved.

例えば、特定の鎖状カーボネートとしてジメチルカーボネートとエチルメチルカーボネートを選択した場合、エチレンカーボネートの含有量は、特に制限されず、本実施形態に係る発明の効果を著しく損なわない限り任意であるが、非水系電解液の非水系溶媒全量に対して、通常15体積%以上、好ましくは20体積%以上、また、通常45体積%以下、好ましくは40体積%以下であり、ジメチルカーボネートの含有量は、非水系電解液の非水系溶媒全量に対して、通常20体積%以上、好ましくは30体積%以上、また、通常50体積%以下、好ましくは45体積%以下であり、エチルメチルカーボネートの含有量は非水系電解液の非水系溶媒全量に対して、通常20体積%以上、好ましくは30体積%以上、また、通常50体積%以下、好ましくは45体積%以下である。含有量を上記範囲内とすることで、高温安定性に優れ、ガス発生が抑制される傾向がある。 For example, when dimethyl carbonate and ethyl methyl carbonate are selected as the specific chain carbonate, the content of ethylene carbonate is not particularly limited and is arbitrary as long as the effect of the invention according to the present embodiment is not significantly impaired. The content of dimethyl carbonate is usually 15% by volume or more, preferably 20% by volume or more, and usually 45% by volume or less, preferably 40% by volume or less, based on the total amount of the non-aqueous solvent of the aqueous electrolytic solution. The content of ethylmethyl carbonate is usually 20% by volume or more, preferably 30% by volume or more, and usually 50% by volume or less, preferably 45% by volume or less, based on the total amount of the non-aqueous solvent of the aqueous electrolyte solution. It is usually 20% by volume or more, preferably 30% by volume or more, and usually 50% by volume or less, preferably 45% by volume or less, based on the total amount of the non-aqueous solvent of the aqueous electrolytic solution. By setting the content within the above range, high temperature stability is excellent and gas generation tends to be suppressed.

[1-3-3.鎖状カルボン酸エステル]
鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、酪酸エチル、吉草酸メチル、イソ酪酸メチル、イソ酪酸エチル、及びピバル酸メチルが挙げられる。なかでも、酢酸メチル、酢酸エチル、酢酸プロピル、又は酢酸ブチルが電池特性
向上の点から好ましい。上述の化合物の水素の一部をフッ素原子で置換した鎖状カルボン酸エステル(例えば、トリフルオロ酢酸メチル、トリフルオロ酢酸エチル等)も好適に使える。
鎖状カルボン酸エステルの配合量は、非水系溶媒全量に対して、通常1体積%以上、好ましくは5体積%以上、より好ましくは15体積%以上である。この範囲であれば、非水系電解液の電気伝導率を改善し、非水系電解液電池の大電流放電特性を向上させやすくなる。また、鎖状カルボン酸エステルの配合量は、通常70体積%以下、好ましくは50体積%以下、より好ましくは40体積%以下である。このように上限を設定することにより、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。
[1-3-3. Chain carboxylic acid ester]
Examples of the chain carboxylic acid ester include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate, methyl pentanoate, methyl isobutyrate, ethyl isobutyrate, etc. And methyl pivalate. Of these, methyl acetate, ethyl acetate, propyl acetate, or butyl acetate are preferable from the viewpoint of improving battery characteristics. A chain carboxylic acid ester in which a part of hydrogen of the above-mentioned compound is replaced with a fluorine atom (for example, methyl trifluoroacetate, ethyl trifluoroacetate, etc.) can also be preferably used.
The blending amount of the chain carboxylic acid ester is usually 1% by volume or more, preferably 5% by volume or more, and more preferably 15% by volume or more with respect to the total amount of the non-aqueous solvent. Within this range, the electric conductivity of the non-aqueous electrolyte solution can be improved, and the large current discharge characteristics of the non-aqueous electrolyte battery can be easily improved. The blending amount of the chain carboxylic acid ester is usually 70% by volume or less, preferably 50% by volume or less, and more preferably 40% by volume or less. By setting the upper limit in this way, the viscosity of the non-aqueous electrolyte is set within an appropriate range, the decrease in electrical conductivity is avoided, the increase in negative electrode resistance is suppressed, and the large current discharge of the non-aqueous electrolyte secondary battery is performed. It is easy to set the characteristics in a good range.

[1-3-4.環状カルボン酸エステル]
環状カルボン酸エステルとしては、γ-ブチロラクトン、及びγ-バレロラクトンが挙げられる。これらの中でも、γ-ブチロラクトンがより好ましい。上述の化合物の水素の一部をフッ素で置換した環状カルボン酸エステルも好適に使える。
環状カルボン酸エステルの配合量は、非水系溶媒全量に対して、通常1体積%以上、好ましくは5体積%以上、より好ましくは15体積%以上である。この範囲であれば、非水系電解液の電気伝導率を改善し、非水系電解液電池の大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルの配合量は、非水系溶媒全量に対して、通常70体積%以下、好ましくは50体積%以下、より好ましくは40体積%以下である。このように上限を設定することにより、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。
[1-3-4. Cyclic carboxylic acid ester]
Examples of the cyclic carboxylic acid ester include γ-butyrolactone and γ-valerolactone. Among these, γ-butyrolactone is more preferable. A cyclic carboxylic acid ester in which a part of hydrogen of the above-mentioned compound is replaced with fluorine can also be preferably used.
The blending amount of the cyclic carboxylic acid ester is usually 1% by volume or more, preferably 5% by volume or more, and more preferably 15% by volume or more with respect to the total amount of the non-aqueous solvent. Within this range, the electric conductivity of the non-aqueous electrolyte solution can be improved, and the large current discharge characteristics of the non-aqueous electrolyte battery can be easily improved. The blending amount of the cyclic carboxylic acid ester is usually 70% by volume or less, preferably 50% by volume or less, and more preferably 40% by volume or less with respect to the total amount of the non-aqueous solvent. By setting the upper limit in this way, the viscosity of the non-aqueous electrolyte is set within an appropriate range, the decrease in electrical conductivity is avoided, the increase in negative electrode resistance is suppressed, and the large current discharge of the non-aqueous electrolyte secondary battery is performed. It is easy to set the characteristics in a good range.

[1-3-5.エーテル系化合物]
エーテル系化合物としては、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル等の炭素数3~10の鎖状エーテル、及びテトラヒドロフラン、2-メチルテトラヒドロフラン、3-メチルテトラヒドロフラン、1,3-ジオキサン、2-メチル-1,3-ジオキサン、4-メチル-1,3-ジオキサン、1,4-ジオキサン等炭素数3~6の環状エーテルが好ましい。なお、上述のエーテル系化合物の一部の水素がフッ素にて置換されていてもよい。
なかでも、炭素数3~10の鎖状エーテルとして、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させ、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、又はエトキシメトキシメタンが好ましく、炭素数3~6の環状エーテルとして、高いイオン電導度を与えることから、テトラヒドロフラン、1,3-ジオキサン、又は1,4-ジオキサン等が好ましい。
[1-3-5. Ethereal compounds]
Examples of the ether compound include chain ethers having 3 to 10 carbon atoms such as dimethoxymethane, diethoxymethane, ethoxymethoxymethane, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, and diethylene glycol dimethyl ether, and tetrahydrofuran. , 2-Methyl tetrahydrofuran, 3-Methyltetraxane, 1,3-dioxane, 2-methyl-1,3-dioxane, 4-methyl-1,3-dioxane, 1,4-dioxane, etc. Cyclic with 3 to 6 carbon atoms Ether is preferred. In addition, some hydrogen of the above-mentioned ether compound may be substituted with fluorine.
Among them, as a chain ether having 3 to 10 carbon atoms, dimethoxymethane and diethoxymethane have high solvent solvability to lithium ions, improve ion dissociability, have low viscosity, and give high ionic conductivity. , Or ethoxymethoxymethane is preferable, and tetrahydrofuran, 1,3-dioxane, 1,4-dioxane or the like is preferable as the cyclic ether having 3 to 6 carbon atoms because it gives high ionic conductivity.

エーテル系化合物の含有量は、特に制限されず、本実施形態に係る発明の効果を著しく損なわない限り任意であるが、非水系溶媒全量に対して、通常1体積%以上、好ましくは2体積%以上、より好ましくは3体積%以上、また、通常30体積%以下、好ましくは25体積%以下、より好ましくは20体積%以下である。エーテル系化合物の含有量が前記好ましい範囲内であれば、エーテルのリチウムイオン解離度の向上と粘度低下に由来するイオン伝導度の向上効果を確保しやすい。また、負極活物質が炭素系材料の場合、鎖状エーテルがリチウムイオンと共に共挿入される現象を抑制できることから、入出力特性や充放電レート特性を適正な範囲とすることができる。 The content of the ether compound is not particularly limited and is arbitrary as long as the effect of the invention according to the present embodiment is not significantly impaired, but is usually 1% by volume or more, preferably 2% by volume, based on the total amount of the non-aqueous solvent. As mentioned above, it is more preferably 3% by volume or more, and usually 30% by volume or less, preferably 25% by volume or less, and more preferably 20% by volume or less. When the content of the ether compound is within the above-mentioned preferable range, it is easy to secure the effect of improving the lithium ion dissociation degree of the ether and the effect of improving the ionic conductivity derived from the decrease in viscosity. Further, when the negative electrode active material is a carbon-based material, the phenomenon that the chain ether is co-inserted together with the lithium ion can be suppressed, so that the input / output characteristics and the charge / discharge rate characteristics can be set in an appropriate range.

[1-3-6.スルホン系化合物]
スルホン系化合物としては、特に制限されず、環状スルホンであってもよく、鎖状スルホンであってもよい。環状スルホンの場合、炭素数が通常3~6、好ましくは3~5であ
り、鎖状スルホンの場合、炭素数が通常2~6、好ましくは2~5である。また、スルホン系化合物1分子中のスルホニル基の数は、特に制限されないが、通常1又は2である。
[1-3-6. Sulfone compounds]
The sulfone compound is not particularly limited, and may be a cyclic sulfone or a chain sulfone. In the case of a cyclic sulfone, the number of carbon atoms is usually 3 to 6, preferably 3 to 5, and in the case of a chain sulfone, the number of carbon atoms is usually 2 to 6, preferably 2 to 5. The number of sulfonyl groups in one molecule of the sulfone compound is not particularly limited, but is usually 1 or 2.

環状スルホンとしては、モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類等;ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、又はヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。 Examples of the cyclic sulfone include trimethylene sulfones, tetramethylene sulfones, hexamethylene sulfones, etc., which are monosulfone compounds; and trimethylene disulfones, tetramethylene disulfones, hexamethylene disulfones, etc., which are disulfone compounds. Among them, tetramethylene sulfones, tetramethylene disulfones, hexamethylene sulfones, or hexamethylene disulfones are more preferable, and tetramethylene sulfones (sulfolanes) are particularly preferable, from the viewpoint of dielectric constant and viscosity.

スルホラン類としては、スルホラン及びスルホラン誘導体が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子、アルキル基、フッ素置換アルキル基で置換されたものが好ましい。 As the sulfolanes, sulfolanes and sulfolane derivatives are preferable. As the sulfolane derivative, one in which one or more of the hydrogen atoms bonded on the carbon atom constituting the sulfolane ring is substituted with a fluorine atom, an alkyl group or a fluorine-substituted alkyl group is preferable.

中でも、2-メチルスルホラン、3-メチルスルホラン、2-フルオロスルホラン、3-フルオロスルホラン、2,3-ジフルオロスルホラン、2-トリフルオロメチルスルホラン、3-トリフルオロメチルスルホラン等が、イオン伝導度が高く入出力が高い点で好ましい。 Among them, 2-methylsulfolane, 3-methylsulfolane, 2-fluorosulfolane, 3-fluorosulfolane, 2,3-difluorosulfolane, 2-trifluoromethylsulfolane, 3-trifluoromethylsulfolane and the like have high ionic conductivity. It is preferable because the input / output is high.

また、鎖状スルホンとしては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、ペンタフルオロエチルメチルスルホン等が挙げられる。なかでも、ジメチルスルホン、エチルメチルスルホン、モノフルオロメチルメチルスルホンが電解液の高温保存安定性が向上する点で好ましい。 Examples of the chain sulfone include dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, monofluoromethyl methyl sulfone, difluoromethyl methyl sulfone, trifluoromethyl methyl sulfone, pentafluoroethyl methyl sulfone and the like. Of these, dimethyl sulfone, ethyl methyl sulfone, and monofluoromethyl methyl sulfone are preferable because they improve the high temperature storage stability of the electrolytic solution.

スルホン系化合物の含有量は、特に制限されず、本実施形態に係る発明の効果を著しく損なわない限り任意であるが、非水系電解液の溶媒全量に対して、通常0.3体積%以上、好ましくは0.5体積%以上、より好ましくは1体積%以上であり、また、通常40体積%以下、好ましくは35体積%以下、より好ましくは30体積%以下である。スルホン系化合物の含有量が前記範囲内であれば、高温保存安定性に優れた電解液が得られる傾向にある。 The content of the sulfone compound is not particularly limited and is arbitrary as long as the effect of the invention according to the present embodiment is not significantly impaired, but is usually 0.3% by volume or more with respect to the total amount of the solvent of the non-aqueous electrolyte solution. It is preferably 0.5% by volume or more, more preferably 1% by volume or more, and usually 40% by volume or less, preferably 35% by volume or less, and more preferably 30% by volume or less. When the content of the sulfone compound is within the above range, an electrolytic solution having excellent high temperature storage stability tends to be obtained.

[1-4.助剤]
本発明の非水系電解液には、本発明の効果を著しく損なわない範囲において、各種の助剤を含有していてもよい。助剤としては、従来公知のものを任意に用いることができる。なお、助剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
[1-4. Auxiliary agent]
The non-aqueous electrolyte solution of the present invention may contain various auxiliaries as long as the effects of the present invention are not significantly impaired. As the auxiliary agent, conventionally known ones can be arbitrarily used. As the auxiliary agent, one type may be used alone, or two or more types may be used in combination in any combination and ratio.

非水系電解液に含有していてもよい助剤としては、炭素-炭素不飽和結合を有する環状カーボネート、フッ素含有環状カーボネート、イソシアネート基を有する化合物、イソシアヌル酸骨格を有する化合物、硫黄含有有機化合物、リン含有有機化合物、シアノ基を有する有機化合物、ケイ素含有化合物、芳香族化合物、フッ素非含有カルボン酸エステル、エーテル結合を有する環状化合物、カルボン酸無水物、ホウ酸塩、シュウ酸塩等が例示できる。例えば、国際公開公報第2015/111676号に記載の化合物等が挙げられる。
助剤の含有量は特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系電解液全量に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは1質量%以下、特に好ましくは1質量%未満である。
エーテル結合を有する環状化合物は、非水系電解液において助剤として用いることもできるし、1-3.で示したとおり非水系溶媒としても用いることができるものも含まれる。エーテル結合を有する環状化合物を助剤として用いる場合は、4質量%未満の量で用いる。ホウ酸塩、及びシュウ酸塩は、非水系電解液において助剤として用いることもできるし、1-2.で示したとおり電解質として用いることができるものも含まれる。これら化合物を助剤として用いる場合は、3質量%未満で用いる。
Auxiliaries that may be contained in the non-aqueous electrolyte solution include cyclic carbonates having a carbon-carbon unsaturated bond, fluorine-containing cyclic carbonates, compounds having an isocyanate group, compounds having an isocyanuric acid skeleton, and sulfur-containing organic compounds. Examples thereof include phosphorus-containing organic compounds, cyano group-containing organic compounds, silicon-containing compounds, aromatic compounds, fluorine-free carboxylic acid esters, cyclic compounds having ether bonds, carboxylic acid anhydrides, borates, and oxalates. .. For example, the compounds described in International Publication No. 2015/111676 and the like can be mentioned.
The content of the auxiliary agent is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.001% by mass or more, preferably 0.01% by mass or more, based on the total amount of the non-aqueous electrolyte solution. More preferably 0.1% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, and particularly preferably less than 1% by mass. be.
The cyclic compound having an ether bond can also be used as an auxiliary agent in a non-aqueous electrolyte solution, and 1-3. As shown in the above, those that can also be used as a non-aqueous solvent are also included. When a cyclic compound having an ether bond is used as an auxiliary agent, it is used in an amount of less than 4% by mass. Borate and oxalate can also be used as an auxiliary agent in a non-aqueous electrolyte solution 1-2. As shown in the above, those that can be used as an electrolyte are also included. When these compounds are used as auxiliaries, they are used in an amount of less than 3% by mass.

[2.非水系電解液二次電池]
本発明の一実施態様である非水系電解液二次電池は、金属イオンを吸蔵及び放出しうる正極活物質を有する正極と、金属イオンを吸蔵及び放出しうる負極活物質を有する負極とを備える非水系電解液二次電池であって、非水系電解液を含む。
[2. Non-aqueous electrolyte secondary battery]
A non-aqueous electrolyte secondary battery according to an embodiment of the present invention includes a positive electrode having a positive electrode active material capable of storing and releasing metal ions, and a negative electrode having a negative electrode active material capable of storing and releasing metal ions. Non-aqueous electrolyte secondary battery, which includes a non-aqueous electrolyte.

[2-1.非水系電解液]
非水系電解液としては、上述の非水系電解液を用いる。なお、本発明の趣旨を逸脱しない範囲において上述の非水系電解液に対し、その他の非水系電解液を混合して用いることも可能である。
[2-1. Non-aqueous electrolyte solution]
As the non-aqueous electrolyte solution, the above-mentioned non-aqueous electrolyte solution is used. It is also possible to mix and use another non-aqueous electrolyte solution with the above-mentioned non-aqueous electrolyte solution as long as the gist of the present invention is not deviated.

[2-2.負極]
負極は、負極活物質及び結着剤を含む負極活物質層並びに集電体からなる。
[2-2-1.負極活物質]
負極に使用される負極活物質としては、電気化学的に金属イオンを吸蔵・放出可能なものであれば、特に制限はない。具体例としては、炭素系材料、Liと合金化可能な金属元素及び/若しくは半金属元素を含有する材料、リチウム含有金属複合酸化物材料、及びこれらの混合物等が挙げられる。これらの中でもサイクル特性及び安全性が良好でさらに連続充電特性も優れている点で、炭素系材料を使用するのが好ましい。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
[2-2. Negative electrode]
The negative electrode comprises a negative electrode active material layer containing a negative electrode active material and a binder, and a current collector.
[2-2-1. Negative electrode active material]
The negative electrode active material used for the negative electrode is not particularly limited as long as it can electrochemically occlude and release metal ions. Specific examples include carbon-based materials, materials containing metal elements and / or semi-metal elements that can be alloyed with Li, lithium-containing metal composite oxide materials, and mixtures thereof. Among these, it is preferable to use a carbon-based material because it has good cycle characteristics and safety, and also has excellent continuous charging characteristics. One of these may be used alone, or two or more thereof may be arbitrarily combined and used in combination.

[2-2-1-1.炭素系材料]
炭素系材料としては、天然黒鉛、人造黒鉛、非晶質炭素、炭素被覆黒鉛、黒鉛被覆黒鉛及び樹脂被覆黒鉛等が挙げられる。なかでも、天然黒鉛が好ましい。炭素系材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
天然黒鉛としては、鱗状黒鉛、鱗片状黒鉛及び/又はこれらの黒鉛に球形化や緻密化等の処理を施した黒鉛粒子等が挙げられる。これらの中でも、粒子の充填性又は充放電レート特性の観点から、球形化処理を施した球状もしくは楕円体状の黒鉛粒子が特に好ましい。
黒鉛粒子の平均粒子径(d50)は、通常1μm以上、100μm以下である。
[2-2-1-1. Carbon-based materials]
Examples of the carbon-based material include natural graphite, artificial graphite, amorphous carbon, carbon-coated graphite, graphite-coated graphite, resin-coated graphite and the like. Of these, natural graphite is preferable. As the carbon-based material, one kind may be used alone, or two or more kinds may be used in any combination and ratio.
Examples of natural graphite include scaly graphite, scaly graphite, and / or graphite particles obtained by subjecting these graphites to spheroidization, densification, or the like. Among these, spherical or ellipsoidal graphite particles that have been subjected to a spheroidizing treatment are particularly preferable from the viewpoint of particle filling property or charge / discharge rate characteristics.
The average particle diameter (d50) of the graphite particles is usually 1 μm or more and 100 μm or less.

[2-2-1-2.炭素系材料の物性]
負極活物質としての炭素系材料は、以下の(1)~(4)に示した物性及び形状等の特徴の内、少なくとも1つを満たしていることが好ましく、複数を同時に満たすことが特に好ましい。
(1)X線回折パラメータ
炭素系材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)は、通常0.335nm以上0.360nm以下である。また、学振法によるX線回折で求めた炭素系材料の結晶子サイズ(Lc)は、通常1.0nm以上である。
(2)体積基準平均粒径
炭素系材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)であり、通常1μm以上、100μm以下である。
(3)ラマンR値、ラマン半値幅
炭素系材料のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定
した値であり、通常0.01以上、1.5以下である。
また、炭素系材料の1580cm-1付近のラマン半値幅は特に制限されないが、通常10cm-1以上、100cm-1以下である。
(4)BET比表面積
炭素系材料のBET比表面積は、BET法を用いて測定した比表面積の値であり、通常0.1m・g-1以上100m・g-1以下である。
負極活物質中に性質の異なる炭素系材料が2種以上含有していてもよい。ここでいう性質とは、X線回折パラメータ、体積基準平均粒径、ラマンR値、ラマン半値幅及びBET比表面積を意味する。
好ましい例としては、体積基準粒度分布がメジアン径を中心としたときに左右対称とならないこと、ラマンR値が異なる炭素系材料を2種以上含有すること、及びX線パラメータが異なる炭素系材料を2種以上含有すること等が挙げられる。
[2-2-1-2. Physical characteristics of carbon-based materials]
The carbon-based material as the negative electrode active material preferably satisfies at least one of the characteristics such as physical properties and shape shown in the following (1) to (4), and is particularly preferably satisfied at the same time. ..
(1) X-ray diffraction parameters The d value (interlayer distance) of the lattice planes (002 planes) obtained by X-ray diffraction by the Gakushin method of carbon-based materials is usually 0.335 nm or more and 0.360 nm or less. The crystallite size (Lc) of the carbon-based material determined by X-ray diffraction by the Gakushin method is usually 1.0 nm or more.
(2) Volume-based average particle size The volume-based average particle size of the carbon-based material is the volume-based average particle size (median diameter) obtained by the laser diffraction / scattering method, and is usually 1 μm or more and 100 μm or less.
(3) Raman R value, Raman half width The Raman R value of a carbon-based material is a value measured by using an argon ion laser Raman spectrum method, and is usually 0.01 or more and 1.5 or less.
The full width at half maximum of Raman around 1580 cm -1 of the carbon-based material is not particularly limited, but is usually 10 cm -1 or more and 100 cm -1 or less.
(4) BET Specific Surface Area The BET specific surface area of the carbon-based material is a value of the specific surface area measured by the BET method, and is usually 0.1 m 2 · g -1 or more and 100 m 2 · g -1 or less.
The negative electrode active material may contain two or more carbon-based materials having different properties. The property referred to here means an X-ray diffraction parameter, a volume-based average particle size, a Raman R value, a Raman half width, and a BET specific surface area.
Preferred examples include a volume-based particle size distribution that is not symmetrical when centered on the median diameter, contains two or more carbon-based materials with different Raman R values, and carbon-based materials with different X-ray parameters. It may contain two or more kinds.

[2-2-1-3.Liと合金化可能な金属元素及び/若しくは半金属元素を含有する材料]
Liと合金化可能な金属元素及び/若しくは半金属元素を含有する材料は、従来公知のいずれのものも使用可能であるが、容量とサイクル寿命の点から、例えば、Sb、Si、Sn、Al、As、及びZnからなる群より選ばれる金属及び/若しくは半金属元素の単体又はその化合物であることが好ましい。また、Liと合金化可能な金属元素及び/若しくは半金属元素を含有する材料が2種類以上の元素を含有する場合、当該材料は、これらの金属の合金からなる合金材料であってもよい。
また、Liと合金化可能な金属元素及び/若しくは半金属元素の材料としては、酸化物、窒化物、炭化物等が挙げられる。これらは、Liと合金化可能な金属元素及び/若しくは半金属元素を2種以上含有していてもよい。なかでも、金属Si(以下、Siと記載する場合がある)又はSi含有無機化合物が高容量化の点で、好ましい。
また、Liと合金化可能な金属元素及び/若しくは半金属元素の材料は、後述する負極の製造時で既にLiと合金化されていてもよい。
[2-2-1-3. Materials containing metal elements and / or metalloid elements that can be alloyed with Li]
As a material containing a metal element and / or a metalloid element that can be alloyed with Li, any conventionally known material can be used, but from the viewpoint of capacity and cycle life, for example, Sb, Si, Sn, Al. , As, and Zn, preferably a simple substance of a metal and / or a metalloid element selected from the group, or a compound thereof. Further, when the material containing a metal element and / or a metalloid element that can be alloyed with Li contains two or more kinds of elements, the material may be an alloy material made of an alloy of these metals.
Examples of the material of the metal element and / or the metalloid element that can be alloyed with Li include oxides, nitrides, and carbides. These may contain two or more kinds of metal elements and / or metalloid elements that can be alloyed with Li. Among them, metallic Si (hereinafter, may be referred to as Si) or Si-containing inorganic compound is preferable in terms of increasing the capacity.
Further, the material of the metal element and / or the metalloid element that can be alloyed with Li may already be alloyed with Li at the time of manufacturing the negative electrode described later.

本明細書では、Si又はSi含有無機化合物を総称してSi化合物と呼ぶ。Si化合物としては、具体的には、SiO(0≦x≦2)等が挙げられる。Liと合金化された金属化合物としては、具体的には、LiSi(0<y≦4.4)、LiSiO2+z(0<z≦2)等が挙げられる。Si化合物としてSi酸化物(SiOx1、0<x1≦2)が、黒鉛と比較して理論容量が大きい点で好ましく、又は非晶質SiもしくはナノサイズのSi結晶が、リチウムイオン等のアルカリイオンの出入りがしやすく、高容量を得ることが可能である点で好ましい。
Liと合金化可能な金属元素及び/若しくは半金属元素を含有する材料が粒子である場合、その平均粒子径(d50)は、サイクル寿命の観点から、通常0.01μm以上、10μm以下である。
In the present specification, Si or Si-containing inorganic compounds are collectively referred to as Si compounds. Specific examples of the Si compound include SiO x (0 ≦ x ≦ 2). Specific examples of the metal compound alloyed with Li include Li y Si (0 <y ≦ 4.4) and Li 2 SiO 2 + z (0 <z ≦ 2). Si oxide (SiO x1 , 0 <x1 ≦ 2) is preferable as the Si compound in that it has a larger theoretical capacity than graphite, or amorphous Si or nano-sized Si crystals are alkaline ions such as lithium ions. It is preferable in that it is easy to get in and out of the silicon and it is possible to obtain a high capacity.
When the material containing a metal element and / or a metalloid element that can be alloyed with Li is a particle, the average particle diameter (d50) thereof is usually 0.01 μm or more and 10 μm or less from the viewpoint of cycle life.

[2-2-1-4.Liと合金化可能な金属元素及び/若しくは半金属元素を含有する材料と炭素系材料との混合物]
負極活物質として用いられるLiと合金化可能な金属元素及び/若しくは半金属元素を含有する材料と炭素系材料との混合物は、前述のLiと合金化可能な金属元素及び/若しくは半金属元素を含有する材料と前述の炭素系材料が互いに独立した材料の状態で混合されている混合体でもよいし、Liと合金化可能な金属元素及び/若しくは半金属元素を含有する材料が炭素系材料の表面又は内部に存在している複合体でもよい。
Liと合金化可能な金属元素及び/若しくは半金属元素を含有する材料と炭素系材料の合計に対するLiと合金化可能な金属元素及び/若しくは半金属元素を含有する材料の含有割合は、通常1質量%以上、99質量%以下である。
[2-2-1-4. A mixture of a carbon-based material and a material containing a metal element and / or a metalloid element that can be alloyed with Li]
The mixture of the carbon-based material and the material containing the metal element and / or the semi-metal element that can be alloyed with Li used as the negative electrode active material is the above-mentioned metal element and / or the semi-metal element that can be alloyed with Li. It may be a mixture in which the contained material and the above-mentioned carbon-based material are mixed in the state of independent materials, or the material containing a metal element and / or a semi-metal element that can be alloyed with Li is a carbon-based material. It may be a complex existing on the surface or inside.
The content ratio of the metal element that can be alloyed with Li and / or the material containing the semi-metal element to the total of the material containing the metal element and / or the semi-metal element that can be alloyed with Li and the carbon-based material is usually 1. It is mass% or more and 99 mass% or less.

[2-2-1-5.リチウム含有金属複合酸化物材料]
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムイオンを吸蔵及び放出可能であれば、特に制限されないが、高電流密度充放電特性の点からチタンを含むリチウム含有金属複合酸化物材料が好ましく、リチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記する場合がある)がより好ましく、スピネル構造を有するリチウムチタン複合酸化物が出力抵抗を大きく低減するので特に好ましい。
[2-2-1-5. Lithium-containing metal composite oxide material]
The lithium-containing metal composite oxide material used as the negative electrode active material is not particularly limited as long as it can store and release lithium ions, but it is a lithium-containing metal composite oxide containing titanium from the viewpoint of high current density charge / discharge characteristics. The material is preferable, the composite oxide of lithium and titanium (hereinafter, may be abbreviated as "lithium titanium composite oxide") is more preferable, and the lithium titanium composite oxide having a spinel structure greatly reduces the output resistance. preferable.

また、リチウムチタン複合酸化物のリチウム及び/又はチタンが、他の金属元素、例えば、Al、Ga、Cu及びZnからなる群より選ばれる少なくとも1種の元素で置換されていてもよい。
リチウムチタン複合酸化物として、Li4/3Ti5/3、LiTi及びLi4/5Ti11/5が好ましい。また、リチウム及び/又はチタンの一部が他の元素で置換されたリチウムチタン複合酸化物として、例えば、Li4/3Ti4/3Al1/3が好ましい。
Further, lithium and / or titanium of the lithium titanium composite oxide may be replaced with another metal element, for example, at least one element selected from the group consisting of Al, Ga, Cu and Zn.
As the lithium-titanium composite oxide, Li 4/3 Ti 5/3 O 4 , Li 1 Ti 2 O 4 and Li 4/5 Ti 11/5 O 4 are preferred. Further, as the lithium titanium composite oxide in which lithium and / or a part of titanium is substituted with another element, for example, Li 4/3 Ti 4/3 Al 1/3 O 4 is preferable.

[2-2-1-6.表面被覆]
負極活物質は、その表面に、負極活物質とは異なる組成の物質が付着したもの(表面付着物質)を用いてもよい。表面付着物質としては酸化アルミニウム等の酸化物、硫酸リチウム等の硫酸塩、炭酸リチウム等の炭酸塩等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて前記負極活物質に含浸添加、乾燥する方法等により、負極活物質表面に付着させることができる。
表面付着物質の量としては、該正極活物質に対して、好ましくは1μmol/g以上であり、また、10μmol/g以上が好ましく、通常1mmol/g以下で用いられる。
本明細書においては、負極活物質の表面に、前記表面付着物質が付着したものも「負極活物質」という。
[2-2-1-6. Surface coating]
As the negative electrode active material, a substance having a composition different from that of the negative electrode active material adhered to the surface thereof (surface adhering substance) may be used. Examples of the surface adhering substance include oxides such as aluminum oxide, sulfates such as lithium sulfate, and carbonates such as lithium carbonate.
These surface-adhering substances can be attached to the surface of the negative electrode active material by, for example, a method of dissolving or suspending the substance in a solvent, impregnating the negative electrode active material, adding the substance, and drying the substance.
The amount of the surface-adhering substance is preferably 1 μmol / g or more, preferably 10 μmol / g or more, and usually used at 1 mmol / g or less with respect to the positive electrode active material.
In the present specification, a substance having the surface-adhering substance attached to the surface of the negative electrode active material is also referred to as a “negative electrode active material”.

[2-2-2.負極の構成と製造方法]
負極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法を用いてもよい。例えば、負極活物質に、結着剤、水系溶媒又は有機系溶媒等の溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスして負極活物質層を形成することによって作製することができる。この際、負極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。
[2-2-2. Negative electrode configuration and manufacturing method]
Any known method may be used for producing the negative electrode as long as the effect of the present invention is not significantly impaired. For example, a binder, a solvent such as an aqueous solvent or an organic solvent, and if necessary, a thickener, a conductive material, a filler, etc. are added to the negative electrode active material to form a slurry, which is applied to the current collector. It can be produced by pressing after drying to form a negative electrode active material layer. At this time, in order to increase the packing density of the negative electrode active material, it is preferable to consolidate with a hand press, a roller press or the like.

[2-2-2-1.活物質含有量]
負極活物質の、負極活物質層中の含有量は、通常80質量%以上、99.5質量%以下である。
[2--2-2-1. Active substance content]
The content of the negative electrode active material in the negative electrode active material layer is usually 80% by mass or more and 99.5% by mass or less.

[2-2-2-2.増粘剤]
増粘剤は、通常、スラリーの粘度を調整するために使用される。増粘剤としては、特に制限されないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、通常0.1質量%以上、5質量%以下である。
[2-2-2-2. Thickener]
Thickeners are typically used to adjust the viscosity of the slurry. The thickener is not particularly limited, and specific examples thereof include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol and the like. These may be used alone or in combination of two or more in any combination and ratio.
When a thickener is used, the ratio of the thickener to the negative electrode active material is usually 0.1% by mass or more and 5% by mass or less.

[2-2-2-3.結着剤]
負極活物質を結着する結着剤としては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、SBR(スチレン-ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル-ブタジエンゴム)、エチレン-プロピレンゴム等のゴム状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、テトラフルオロエチレン-エチレン共重合体等のフッ素系高分子等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極活物質に対する結着剤の割合は、通常0.1質量%以上20質量%以下である。
特に、結着剤がSBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対する結着剤の割合は、好ましくは0.1質量%以上5質量%以下である。また、結着剤がポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する結着剤の割合は、好ましくは1質量%以上、15質量%以下である。
[2-2-2-3. Binder]
The binder for binding the negative electrode active material is not particularly limited as long as it is a non-aqueous electrolyte solution or a material stable to the solvent used in the production of the electrode.
Specific examples include rubber-like polymers such as SBR (styrene-butadiene rubber), isoprene rubber, butadiene rubber, fluororubber, NBR (acrylonitrile-butadiene rubber), and ethylene-propylene rubber; Examples thereof include fluoropolymers such as tetrafluoroethylene-ethylene copolymer. These may be used alone or in combination of two or more in any combination and ratio.
The ratio of the binder to the negative electrode active material is usually 0.1% by mass or more and 20% by mass or less.
In particular, when the binder contains a rubber-like polymer typified by SBR as a main component, the ratio of the binder to the negative electrode active material is preferably 0.1% by mass or more and 5% by mass or less. .. When the binder contains a fluorine-based polymer typified by polyvinylidene fluoride as a main component, the ratio of the binder to the negative electrode active material is preferably 1% by mass or more and 15% by mass or less. ..

[2-2-2-4.溶媒]
スラリーを形成するための溶媒としては、負極活物質、結着剤、並びに必要に応じて使用される増粘剤、導電材、充填剤等を溶解または分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
[2-2-2-4. solvent]
As the solvent for forming the slurry, any solvent can be used as long as it can dissolve or disperse the negative electrode active material, the binder, and the thickener, the conductive material, the filler, etc. used as needed. The type is not particularly limited, and either an aqueous solvent or an organic solvent may be used.

[2-2-2-5.集電体]
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
集電体の形状としては、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。これらのうち、金属箔又は金属薄膜が好ましい。なお、金属箔及び金属薄膜は適宜メッシュ状に形成してもよい。
負極の集電体の形状が板状や膜状等である場合、該集電体の厚さは任意であるが、通常1μm以上、1mm以下である。
[2-2-2-5. Current collector]
As the current collector for holding the negative electrode active material, a known one can be arbitrarily used. Examples of the current collector of the negative electrode include metal materials such as aluminum, copper, nickel, stainless steel, and nickel-plated steel, but copper is particularly preferable from the viewpoint of ease of processing and cost.
Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, foamed metal and the like. Of these, a metal foil or a metal thin film is preferable. The metal foil and the metal thin film may be appropriately formed in a mesh shape.
When the shape of the current collector of the negative electrode is plate-like, film-like, or the like, the thickness of the current collector is arbitrary, but is usually 1 μm or more and 1 mm or less.

[2-2-2-6.負極活物質層の厚さ及び密度]
負極活物質層の厚さとは、負極全体の厚さから集電体の厚さを差し引いた厚さであり、、特に制限されないが、高容量かつ高出力の観点から、通常15μm以上、300μm以下である。また、負極活物質層の密度は、通常0.8g・cm-3以上、1.7g・cm-3以下である。
負極活物質層の密度の測定は、負極活物質層の厚さ及び重量を測定することにより行う。
[2-2-2-6. Negative electrode active material layer thickness and density]
The thickness of the negative electrode active material layer is the thickness obtained by subtracting the thickness of the current collector from the thickness of the entire negative electrode, and is not particularly limited, but is usually 15 μm or more and 300 μm or less from the viewpoint of high capacity and high output. Is. The density of the negative electrode active material layer is usually 0.8 g · cm -3 or more and 1.7 g · cm -3 or less.
The density of the negative electrode active material layer is measured by measuring the thickness and weight of the negative electrode active material layer.

[2-2-2-7.負極板の表面被覆]
また、上記負極板は、その表面に、負極活物質とは異なる組成の物質が付着したもの(表面付着物質)を用いてもよい。表面付着物質としては酸化アルミニウム等の酸化物、硫酸リチウム等の硫酸塩、炭酸リチウム等の炭酸塩等が挙げられる。
[2-2-2-7. Surface coating of negative electrode plate]
Further, as the negative electrode plate, a substance having a composition different from that of the negative electrode active material adhered to the surface thereof (surface adhering substance) may be used. Examples of the surface adhering substance include oxides such as aluminum oxide, sulfates such as lithium sulfate, and carbonates such as lithium carbonate.

[2-3.正極]
正極は、正極活物質及び結着剤を含む正極活物質層並びに集電体からなる。
[2-3-1.正極活物質]
正極に使用される正極活物質としては、電気化学的に金属イオンを吸蔵・放出可能なものであれば、特に制限はない。具体例としては、リチウム遷移金属系化合物等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
[2-3. Positive electrode]
The positive electrode comprises a positive electrode active material layer containing a positive electrode active material and a binder, and a current collector.
[2-3-1. Positive electrode active material]
The positive electrode active material used for the positive electrode is not particularly limited as long as it can electrochemically occlude and release metal ions. Specific examples include lithium transition metal compounds and the like. One of these may be used alone, or two or more thereof may be arbitrarily combined and used in combination.

[2-3-1-1.リチウム遷移金属系化合物]
リチウム遷移金属系化合物とは、硫化物やリン酸塩化合物、ケイ酸化合物、ホウ酸化合
物、リチウム遷移金属複合酸化物等が挙げられる。なかでも、リン酸塩化合物、リチウム遷移金属複合酸化物が好ましく、リチウム遷移金属複合酸化物がより好ましい。
リチウム遷移金属複合酸化物としては、三次元的拡散が可能なスピネル構造や、リチウムイオンの二次元的拡散を可能にする層状構造に属するものが挙げられる。スピネル構造を有するものは、一般的に下記組成式(1)で表され、
Lix’M’・・・(1)
(式(1)中、x’は1≦x’≦1.5であり、M’は少なくとも1種の遷移金属元素を表す。)
具体的にはLiMn、LiCoMnO、LiNi0.5Mn1.5、LiCoVOなどが挙げられる。
層状構造を有するものは、一般的に下記組成式(2)で表される。
Li1+xMO・・・(2)
(式(2)中、xは-0.1≦x≦0.5であり、Mは少なくとも1種の遷移金属元素を表す。)
具体的にはLiCoO、LiNiO、LiNi0.85Co0.10Al0.05、LiNi0.80Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.05Ni0.33Co0.33Mn0.33、LiNi0.5Co0.2Mn0.3、Li1.05Ni0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.2、LiNi0.8Co0.1Mn0.1などが挙げられる。
[2-3-1-1. Lithium transition metal compounds]
Examples of the lithium transition metal compound include sulfides, phosphate compounds, silicic acid compounds, borate compounds, and lithium transition metal composite oxides. Of these, phosphate compounds and lithium transition metal composite oxides are preferable, and lithium transition metal composite oxides are more preferable.
Examples of the lithium transition metal composite oxide include those belonging to a spinel structure capable of three-dimensional diffusion and a layered structure capable of two-dimensional diffusion of lithium ions. Those having a spinel structure are generally represented by the following composition formula (1).
Li x'M ' 2 O 4 ... (1)
(In the formula (1), x'is 1 ≦ x'≦ 1.5, and M'represents at least one transition metal element.)
Specific examples thereof include LiMn 2 O 4 , LiCo MnO 4 , LiNi 0.5 Mn 1.5 O 4 , LiCo VO 4 and the like.
Those having a layered structure are generally represented by the following composition formula (2).
Li 1 + x MO 2 ... (2)
(In the formula (2), x is −0.1 ≦ x ≦ 0.5, and M represents at least one transition metal element.)
Specifically, LiCoO 2 , LiNiO 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 0.80 Co 0.15 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0 .33 O 2 , Li 1.05 Ni 0.33 Co 0.33 Mn 0.33 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , Li 1.05 Ni 0.5 Co 0. 2 Mn 0.3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 and the like can be mentioned.

なかでも、電池容量を向上させる観点から、層状構造を有するリチウム遷移金属複合酸化物が好ましく、下記組成式(3)で示される遷移金属複合酸化物であることがより好ましい。
Lia1Nib1c1・・・(3)
(式(3)中、a1、b1、及びc1はそれぞれ、0.90≦a1≦1.10、0.30≦b1≦0.98、0.01≦c1≦0.5を満たす数値を示し、0.50≦b1+c1かつb1+c1=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
組成式(3)中、0.01≦d1≦0.50の数値を示すことが好ましい。
Among them, a lithium transition metal composite oxide having a layered structure is preferable, and a transition metal composite oxide represented by the following composition formula (3) is more preferable, from the viewpoint of improving the battery capacity.
Li a1 Ni b1 M c1 O 2 ... (3)
(In the formula (3), a1, b1 and c1 indicate numerical values satisfying 0.90 ≦ a1 ≦ 1.10, 0.30 ≦ b1 ≦ 0.98 and 0.01 ≦ c1 ≦ 0.5, respectively. , 0.50 ≦ b1 + c1 and b1 + c1 = 1. M represents at least one element selected from the group consisting of Mn, Al, Mg, Zr, Fe, Ti and Er.)
In the composition formula (3), it is preferable to show a numerical value of 0.01 ≦ d1 ≦ 0.50.

特に、リチウム遷移金属複合酸化物の構造安定性の観点から、下記組成式(4)で示される遷移金属酸化物であることが好ましい。
Lia2Nib2Coc2d2・・・(4)
(式(4)中、a2、b2、及びc2はそれぞれ、0.90≦a2≦1.10、0.50≦b2≦0.98、0.01≦c2<0.50を満たす数値を示し、b2+c2=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
組成式(4)で表されるリチウム遷移金属酸化物の好適な具体例としては、例えば、LiNi0.85Co0.10Al0.05、LiNi0.80Co0.15Al0.05、LiNi0.5Co0.2Mn0.3、Li1.05Ni0.50Co0.20Mn0.30、LiNi0.6Co0.2Mn0.2、LiNi0.8Co0.1Mn0.1等が挙げられる。
各組成式中、MはMn又はAlを含むことが好ましく、Mnを含むことがより好ましく、Mn又はAlであることがさらに好ましい。リチウム遷移金属酸化物の構造安定性が高まり、繰り返し充放電した際の構造劣化が抑制されるためである。
In particular, from the viewpoint of the structural stability of the lithium transition metal composite oxide, the transition metal oxide represented by the following composition formula (4) is preferable.
Li a2 Ni b2 Co c2 M d2 O 2 ... (4)
(In the formula (4), a2, b2, and c2 represent numerical values satisfying 0.90 ≦ a2 ≦ 1.10, 0.50 ≦ b2 ≦ 0.98, and 0.01 ≦ c2 <0.50, respectively. , B2 + c2 = 1. M represents at least one element selected from the group consisting of Mn, Al, Mg, Zr, Fe, Ti and Er.)
Preferable specific examples of the lithium transition metal oxide represented by the composition formula (4) include, for example, LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 0.80 Co 0.15 Al 0. 05 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , Li 1.05 Ni 0.50 Co 0.20 Mn 0.30 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 Examples thereof include O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 .
In each composition formula, M preferably contains Mn or Al, more preferably Mn, and even more preferably Mn or Al. This is because the structural stability of the lithium transition metal oxide is enhanced and structural deterioration during repeated charging and discharging is suppressed.

[2-3-1-2.異元素導入]
また、リチウム遷移金属複合酸化物は、上述の組成式に含まれる元素以外の元素(異元素)が導入されてもよい。
[2-3-1-2. Introducing foreign elements]
Further, an element (different element) other than the element contained in the above composition formula may be introduced into the lithium transition metal composite oxide.

[2-3-1-3.表面被覆]
正極活物質は、その表面に、正極活物質とは異なる組成の物質が付着したもの(表面付着物質)を用いてもよい。表面付着物質としては酸化アルミニウム等の酸化物、硫酸リチウム等の硫酸塩、炭酸リチウム等の炭酸塩等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて前記正極活物質に含浸添加、乾燥する方法等により、正極活物質表面に付着させることができる。
表面付着物質の量としては、該正極活物質に対して、好ましくは1μmol/g以上であり、また、10μmol/g以上が好ましく、通常1mmol/g以下で用いられる。
本明細書においては、正極活物質の表面に、前記表面付着物質が付着したものも「正極活物質」という。
[2-3-1-4.ブレンド]
なお、これらの正極活物質は一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
[2-3-1-3. Surface coating]
As the positive electrode active material, a substance having a composition different from that of the positive electrode active material adhered to the surface thereof (surface adhering substance) may be used. Examples of the surface adhering substance include oxides such as aluminum oxide, sulfates such as lithium sulfate, and carbonates such as lithium carbonate.
These surface-adhering substances can be attached to the surface of the positive electrode active material by, for example, a method of dissolving or suspending the substance in a solvent, impregnating the positive electrode active material with impregnation, and drying the substance.
The amount of the surface-adhering substance is preferably 1 μmol / g or more, preferably 10 μmol / g or more, and usually used at 1 mmol / g or less with respect to the positive electrode active material.
In the present specification, a substance having the surface-adhering substance attached to the surface of the positive electrode active material is also referred to as a “positive electrode active material”.
[2-3-1-4. blend]
In addition, these positive electrode active materials may be used individually by 1 type, and 2 or more types may be used together by arbitrary combinations and ratios.

[2-3-2.正極の構成と製造方法]
以下に、正極の構成と製造方法について述べる。本実施形態において、正極活物質を用いる正極の製造は、常法により行うことができる。即ち、正極活物質と結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を、水系溶媒又は有機系溶媒等の溶媒に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成する塗布法により正極を得ることができる。また、例えば、上述の正極活物質をロール成形してシート電極としてもよいし、圧縮成形によりペレット電極としてもよい。この際、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。
以下、正極集電体に順次スラリーの塗布及び乾燥する場合について説明する。
[2-3-2. Configuration and manufacturing method of positive electrode]
The configuration and manufacturing method of the positive electrode will be described below. In the present embodiment, the positive electrode using the positive electrode active material can be manufactured by a conventional method. That is, a positive electrode active material, a binder, and if necessary, a conductive material and a thickener are mixed in a dry manner to form a sheet, which is then pressure-bonded to the positive electrode current collector, or these materials are water-based. A positive electrode is obtained by a coating method in which a positive electrode active material layer is formed on the current collector by dissolving or dispersing it in a solvent such as a solvent or an organic solvent to form a slurry, which is applied to a positive electrode current collector and dried. be able to. Further, for example, the above-mentioned positive electrode active material may be roll-molded to form a sheet electrode, or may be compression-molded to form a pellet electrode. At this time, in order to increase the packing density of the positive electrode active material, it is preferable to consolidate with a hand press, a roller press or the like.
Hereinafter, a case where the slurry is sequentially applied to and dried on the positive electrode current collector will be described.

[2-3-2-1.活物質含有量]
正極活物質層中、正極活物質の含有量は、通常80質量%以上、99.5質量%以下である。
[2-3-2-1. Active substance content]
The content of the positive electrode active material in the positive electrode active material layer is usually 80% by mass or more and 99.5% by mass or less.

[2-3-2-2.導電材]
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素系材料;等が挙げられる。導電材は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上50質量%以下含有するように用いられる。
[2-3-2-2. Conductive material]
As the conductive material, a known conductive material can be arbitrarily used. Specific examples include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; carbon-based materials such as amorphous carbon such as needle coke; and the like. As the conductive material, one kind may be used alone, or two or more kinds may be used in any combination and ratio. The conductive material is usually used so as to be contained in the positive electrode active material layer in an amount of 0.01% by mass or more and 50% by mass or less.

[2-3-2-3.結着剤]
正極活物質層の製造に用いる結着剤としては、例えば、塗布法により正極活物質層を形成する場合は、スラリー用の溶媒に対して溶解又は分散される材料であれば、その種類は特に制限されないが、耐候性、耐薬品性、耐熱性、難燃性等からポリフッ化ビニル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂;ポリアクリロニトリル、ポリビニリデンシアニド等のCN基含有ポリマーなどが好ましい。
また、上記のポリマーなどの混合物、変成体、誘導体、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体なども使用できる。なお、結着剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
また、結着剤として樹脂を用いる場合、その樹脂の重量平均分子量は、本発明の効果を著しく損なわない限り任意であるが、通常1万以上300万以下である。分子量がこの範
囲であると電極の強度が向上し、電極の形成を好適に行うことができる。
正極活物質層中の結着剤の割合は、通常0.1質量%以上80質量%以下である。
[2-3-2-3. Binder]
As the binder used for producing the positive electrode active material layer, for example, when the positive electrode active material layer is formed by a coating method, the type is particularly limited as long as it is a material that is dissolved or dispersed in a solvent for a slurry. Fluorine-based resins such as polyvinyl fluoride, polyvinylidene fluoride, and polytetrafluoroethylene; CN group-containing polymers such as polyacrylonitrile and polyvinylidene cyanide, without limitation, due to weather resistance, chemical resistance, heat resistance, flame retardancy, etc. Etc. are preferable.
Further, a mixture such as the above polymer, a modified product, a derivative, a random copolymer, an alternating copolymer, a graft copolymer, a block copolymer and the like can also be used. As the binder, one type may be used alone, or two or more types may be used in combination in any combination and ratio.
When a resin is used as the binder, the weight average molecular weight of the resin is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 10,000 or more and 3 million or less. When the molecular weight is in this range, the strength of the electrode is improved, and the electrode can be preferably formed.
The proportion of the binder in the positive electrode active material layer is usually 0.1% by mass or more and 80% by mass or less.

[2-3-2-4.溶媒]
スラリーを形成するための溶媒としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
[2-3-2-4. solvent]
The solvent for forming the slurry is particularly selected as long as it is a solvent capable of dissolving or dispersing a positive electrode active material, a conductive material, a binder, and a thickener used as needed. There is no limitation, and either an aqueous solvent or an organic solvent may be used.

[2-3-2-5.集電体]
正極集電体の材質としては特に制限されず、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料が挙げられる。中でもアルミニウムが好ましい。
集電体の形状としては、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。これらのうち、金属箔又は金属薄膜が好ましい。なお、金属箔及び金属薄膜は適宜メッシュ状に形成してもよい。
正極の集電体の形状が板状や膜状等である場合、該集電体の厚さは任意であるが、通常1μm以上、1mm以下である。
[2-3-2-5. Current collector]
The material of the positive electrode current collector is not particularly limited, and any known material can be used. Specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum. Of these, aluminum is preferable.
Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, foamed metal and the like. Of these, a metal foil or a metal thin film is preferable. The metal foil and the metal thin film may be appropriately formed in a mesh shape.
When the shape of the current collector of the positive electrode is plate-like, film-like, or the like, the thickness of the current collector is arbitrary, but is usually 1 μm or more and 1 mm or less.

[2-3-2-6.正極活物質層の厚さ及び密度]
正極活物質層の厚さとは、正極全体の厚さから集電体の厚さを差し引いた厚さであり、特に限定されないが、高容量かつ高出力の観点から、集電体の片面に対して通常10μm以上、500μm以下である。また、正極活物質層の密度は、通常1.5g・cm-3以上、4.5g・cm-3以下である。
正極活物質層の密度の測定は、正極活物質層の厚さ及び重量を測定することにより行う。
[2-3-2-6. Thickness and density of positive electrode active material layer]
The thickness of the positive electrode active material layer is the thickness obtained by subtracting the thickness of the current collector from the thickness of the entire positive electrode, and is not particularly limited. Usually, it is 10 μm or more and 500 μm or less. The density of the positive electrode active material layer is usually 1.5 g · cm -3 or more and 4.5 g · cm -3 or less.
The density of the positive electrode active material layer is measured by measuring the thickness and weight of the positive electrode active material layer.

[2-3-2-7.正極板の表面被覆]
また、上記正極板は、その表面に、正極板とは異なる組成の物質が付着したものを用いてもよく、当該物質としては、正極活物質の表面に付着していてもよい表面付着物質と同じ物質が用いられる。
[2-3-2-7. Surface coating of positive electrode plate]
Further, as the positive electrode plate, a substance having a composition different from that of the positive electrode plate may be used on the surface thereof, and the substance may be a surface-adhering substance which may be attached to the surface of the positive electrode active material. The same substance is used.

[2-4.セパレータ]
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、非水系電解液は、通常はこのセパレータに含浸させて用いる。
[2-4. Separator]
A separator is usually interposed between the positive electrode and the negative electrode to prevent a short circuit. In this case, the non-aqueous electrolyte solution is usually used by impregnating this separator.

[2-4-1.材料]
セパレータの材料としては非水系電解液に対し安定な材料であれば特に制限されないが、好ましくは、例えば、アルミナや二酸化ケイ素等の酸化物類、窒化アルミや窒化ケイ素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類、ガラス繊維からなるガラスフィルター等の無機物;ポリオレフィン等の樹脂が挙げられ、より好ましくはポリオレフィンであり、特に好ましくはポリエチレン又はポリプロピレンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。また上記材料を積層させて用いてもよい。
[2-4-1. material]
The material of the separator is not particularly limited as long as it is a material stable to a non-aqueous electrolytic solution, but preferably, for example, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and barium sulfate. Inorganic substances such as sulfates such as calcium sulfate and glass filters made of glass fibers; resins such as polyolefin are more preferable, and polyethylene or polypropylene is particularly preferable. One of these materials may be used alone, or two or more of these materials may be used in any combination and ratio. Further, the above materials may be laminated and used.

[2-4-2.形態]
形態としては特に制限されないが、好ましくは、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01~1μm、厚さが1~50μmのものが好適に用いられる。独立した薄膜形状以外に、樹脂製の結着材を用いて無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いてもよい。セパレータは、好ましくは、保液性に優れるため、微多孔性フィルム及び不織布である。
[2-4-2. form]
The form is not particularly limited, but a thin film such as a non-woven fabric, a woven fabric, or a microporous film is preferably used. As the thin film shape, a thin film having a pore diameter of 0.01 to 1 μm and a thickness of 1 to 50 μm is preferably used. In addition to the independent thin film shape, a separator formed by forming a composite porous layer containing inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder may be used. The separator is preferably a microporous film or a non-woven fabric because it has excellent liquid retention properties.

[2-4-3.空孔率]
セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上90%以下である。
[2-4-3. Porosity]
When a porous sheet such as a porous sheet or a non-woven fabric is used as the separator, the porosity of the separator is arbitrary, but is usually 20% or more and 90% or less.

[2-4-4.透気度]
セパレータの非水系電解液二次電池における透気度は、ガーレ値で把握することができる。ガーレ値とは、フィルム厚さ方向の空気の通り抜け難さを示し、100mLの空気が該フィルムを通過するのに必要な秒数で表される。セパレータのガーレ値は、任意ではあるが、通常10~1000秒/100mLである。
[2-4-4. Air permeability]
The air permeability of the separator in the non-aqueous electrolyte secondary battery can be grasped by the galley value. The galley value indicates the difficulty of passing air through the film in the thickness direction, and is expressed by the number of seconds required for 100 mL of air to pass through the film. The galley value of the separator is arbitrary, but is usually 10 to 1000 seconds / 100 mL.

[2-5.電池設計]
[2-5-1.電極群]
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上90%以下である。
[2-5. Battery design]
[2-5-1. Electrode group]
The electrode group has a laminated structure in which the positive electrode plate and the negative electrode plate are interposed via the separator, and a structure in which the positive electrode plate and the negative electrode plate are spirally wound via the separator. Either may be used. The ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupancy rate) is usually 40% or more and 90% or less.

[2-5-2.集電構造]
電極群が前述の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。電極内に複数の端子を設けて抵抗を低減する構造も好適に用いられる。電極群が前述の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
[2-5-2. Current collector structure]
When the electrode group has the above-mentioned laminated structure, a structure formed by bundling the metal core portions of each electrode layer and welding them to the terminals is preferably used. A structure in which a plurality of terminals are provided in the electrode to reduce resistance is also preferably used. In the case where the electrode group has the above-mentioned winding structure, the internal resistance can be reduced by providing a plurality of lead structures on the positive electrode and the negative electrode and bundling them in the terminals.

[2-5-3.保護素子]
保護素子として、過大電流等による発熱とともに抵抗が増大するPTC(Positive Temperature Coefficient)素子、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等を使用することができる。上記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
[2-5-3. Protective element]
As a protective element, a PTC (Positive Temperature Coefficient) element whose resistance increases with heat generation due to excessive current, etc., a temperature fuse, a thermistor, and a valve that shuts off the current flowing through the circuit due to a sudden rise in battery internal pressure or internal temperature during abnormal heat generation. (Current cutoff valve) or the like can be used. It is preferable to select the protective element under conditions that do not operate under normal use with a high current, and it is more preferable to design the protective element so as not to cause abnormal heat generation or thermal runaway even without the protective element.

[2-5-4.外装体]
非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体(外装ケース)内に収納して構成される。この外装体に制限は無く、本発明の効果を著しく損なわない限り公知のものを任意に採用することができる。
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に限定されるものではないが、軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
上記金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、又は、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。
[2-5-4. Exterior]
The non-aqueous electrolyte secondary battery is usually configured by accommodating the above-mentioned non-aqueous electrolyte, negative electrode, positive electrode, separator and the like in an exterior body (exterior case). There are no restrictions on this exterior body, and known ones can be arbitrarily adopted as long as the effects of the present invention are not significantly impaired.
The material of the outer case is not particularly limited as long as it is a substance stable to the non-aqueous electrolyte solution used, but from the viewpoint of weight reduction, aluminum or an aluminum alloy metal or a laminated film is preferably used.
In the outer case using the above metals, the metals are welded together by laser welding, resistance welding, or ultrasonic welding to form a sealed and sealed structure, or the above metals are used to caulk the structure via a resin gasket. There is something to do.

[2-5-5.形状]
また、外装ケースの形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
[2-5-5. shape]
Further, the shape of the outer case is also arbitrary, and may be any of, for example, a cylindrical type, a square shape, a laminated type, a coin type, and a large size.

次に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はこれらの例に
よって限定されるものではない。
本実施例及び比較例に使用した化合物を以下に示す。
Next, specific embodiments of the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
The compounds used in this example and comparative examples are shown below.

Figure 2022029448000022
Figure 2022029448000022

[実施例1-1~1-2、2-1~2-2、比較例1-1~1-6、2-1~2-6]
[非水系電解液二次電池の作製]
<非水系電解液の調製>
乾燥アルゴン雰囲気下、エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートの混合物(体積比3:4:3)に、十分に乾燥させたLiPFを1.0mol/L(12.3質量%、非水系電解液中の濃度として)溶解させた非水系電解液を基準電解液として、表1、表2に記載の通り、添加剤1、2を溶解させて実施例1-1~1-2、2-1~2-2、比較例1-2~1-6、2-2~2-6の非水系電解液を調製した。比較例1-1、2-1の非水系電解液は、基準電解液を用いた。
[Examples 1-1 to 1-2, 2-1 to 2-2, Comparative Examples 1-1 to 1-6, 2-1 to 2-6]
[Manufacturing of non-aqueous electrolyte secondary battery]
<Preparation of non-aqueous electrolyte solution>
Under a dry argon atmosphere, 1.0 mol / L (12.3% by mass, non-aqueous electrolysis) of fully dried LiPF 6 was added to a mixture of ethylene carbonate, ethylmethyl carbonate and dimethyl carbonate (volume ratio 3: 4: 3). As shown in Tables 1 and 2, the non-aqueous electrolyte solution (as the concentration in the solution) was used as the reference electrolyte solution, and the additives 1 and 2 were dissolved to dissolve Examples 1-1 to 1-2 and 2-. Non-aqueous electrolyte solutions 1 to 2-2 and Comparative Examples 1-2 to 1-6 and 2-2-2-6 were prepared. As the non-aqueous electrolyte solution of Comparative Examples 1-1 and 2-1 was used as the reference electrolyte solution.

<正極の作製>
正極活物質としてLi1.05Ni0.34Mn0.33Co0.33を85質量部、導電材としてのアセチレンブラックを10質量部、結着剤としてのポリフッ化ビニリデン(PVdF)を5質量部と、N-メチル-2-ピロリドン中で混合してスラリー化した。これを厚さ15μmのアルミニウム箔に均一に塗布、乾燥した後、ロールプレスを行い、正極とした。なお、正極の極板密度は2.6g/cmであった。
<Manufacturing of positive electrode>
85 parts by mass of Li 1.05 Ni 0.34 Mn 0.33 Co 0.33 O 2 as the positive electrode active material, 10 parts by mass of acetylene black as the conductive material, and polyvinylidene fluoride (PVdF) as the binder. It was mixed with 5 parts by mass in N-methyl-2-pyrrolidone to form a slurry. This was uniformly applied to an aluminum foil having a thickness of 15 μm, dried, and then rolled pressed to obtain a positive electrode. The electrode plate density of the positive electrode was 2.6 g / cm 3 .

<負極の作製>
グラファイト粉末49質量部に、増粘剤としてカルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)50質量部と、結着剤としてスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度49質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔に均一に塗布して乾燥し、ロールプレスして負極とした。
<Manufacturing of negative electrode>
To 49 parts by mass of graphite powder, 50 parts by mass of an aqueous dispersion of sodium carboxymethyl cellulose as a thickener (concentration of sodium carboxymethyl cellulose of 1% by mass) and an aqueous dispersion of styrene-butadiene rubber as a binder (styrene-butadiene rubber). 1 part by mass was added, and the mixture was mixed with a disperser to form a slurry. The obtained slurry was uniformly applied to a copper foil having a thickness of 10 μm, dried, and rolled to obtain a negative electrode.

<非水系電解液二次電池の製造>
上記の正極、負極、及びポリオレフィン製セパレータを、負極、セパレータ、正極の順に積層した。こうして得られた電池要素をアルミニウムラミネートフィルムで包み込み、前述の非水系電解液を注入した後で真空封止し、シート状の非水系電解液二次電池を作製した。
得られた非水系電解液二次電池において、残存容量及び回復容量の評価を前述の通りに行った。表1、表2に結果を示す。
<Manufacturing of non-aqueous electrolyte secondary batteries>
The above positive electrode, negative electrode, and polyolefin separator were laminated in the order of negative electrode, separator, and positive electrode. The battery element thus obtained was wrapped in an aluminum laminated film, injected with the above-mentioned non-aqueous electrolyte solution, and then vacuum-sealed to produce a sheet-shaped non-aqueous electrolyte secondary battery.
In the obtained non-aqueous electrolyte secondary battery, the remaining capacity and the recovery capacity were evaluated as described above. The results are shown in Tables 1 and 2.

[非水系電解液二次電池の評価]
実施例で作製した非水系電解液二次電池は以下のとおり評価した。
・保存後残存容量と回復容量の評価
25℃の恒温槽中、シート状の非水系電解液二次電池を0.025C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする。以下同様。)で3.6Vまで定電流充電し、次いで0.167Cで4.2Vの電圧まで定電流-定電圧充電し、その後0.167Cで2.5Vまでの定電流放電を行った。
さらに、4.1Vまで0.167Cで定電流-定電圧充電した後に、60℃で12時間保管することで非水系電解液二次電池を安定させた。その後、25℃にて2.5Vまで定電流放電し、次いで4.2Vの電圧まで0.167Cで定電流-定電圧充電を実施した。その後、0.167Cで2.5Vまでの定電流放電を行った。次に、4.2Vの電圧まで0.2Cで定電流-定電圧充電を実施し、初期充放電を完了した。上記初期充放電後の非水系電解液二次電池を、60℃、14日間静置した。14日間の静置後、25℃にて2.5Vまで定電流放電し、この時の放電容量を残存容量とした。次いで4.2Vの電圧まで0.2Cで定電流-定電圧充電を実施した。その後、0.2Cで2.5Vまでの定電流放電を行い、この時の放電容量を回復容量とした。結果を表1、表2に示す。表1、表2の残存容量、回復容量はそれぞれ比較例1-1と比較例2-1を100と規格化した値である。なお、残存容量、回復容量は大きいほど好ましいといえる。
[Evaluation of non-aqueous electrolyte secondary battery]
The non-aqueous electrolyte secondary battery produced in the examples was evaluated as follows.
・ Evaluation of remaining capacity and recovery capacity after storage 0.025C for sheet-shaped non-aqueous electrolyte secondary battery in a constant temperature bath at 25 ° C (current value for discharging the rated capacity by 1 hour rate discharge capacity in 1 hour) 1C; the same shall apply hereinafter.) Constant current charge to 3.6V, then constant current-constant voltage charge to 4.2V voltage at 0.167C, and then constant current discharge to 2.5V at 0.167C. Was done.
Further, after charging to 4.1 V at a constant current-constant voltage at 0.167 C, the non-aqueous electrolyte secondary battery was stabilized by storing at 60 ° C. for 12 hours. Then, constant current discharge was performed at 25 ° C. to 2.5 V, and then constant current-constant voltage charge was performed at 0.167 C to a voltage of 4.2 V. Then, constant current discharge up to 2.5V was performed at 0.167C. Next, constant current-constant voltage charging was performed at 0.2 C up to a voltage of 4.2 V, and the initial charge / discharge was completed. The non-aqueous electrolyte secondary battery after the initial charge and discharge was allowed to stand at 60 ° C. for 14 days. After standing for 14 days, a constant current was discharged to 2.5 V at 25 ° C., and the discharge capacity at this time was taken as the remaining capacity. Then, constant current-constant voltage charging was performed at 0.2 C up to a voltage of 4.2 V. After that, constant current discharge up to 2.5 V was performed at 0.2 C, and the discharge capacity at this time was taken as the recovery capacity. The results are shown in Tables 1 and 2. The remaining capacity and the recovery capacity in Tables 1 and 2 are values obtained by normalizing Comparative Example 1-1 and Comparative Example 2-1 to 100, respectively. It can be said that the larger the remaining capacity and the recovery capacity are, the more preferable.

Figure 2022029448000023
Figure 2022029448000023

表1より、実施例1-1及び実施例1-2と、比較例1-1~1-3及び比較例1-6とを比較すると、不飽和結合を有するスルホン酸塩とP-F結合を有するリン酸塩を非水
系電解液に共添加することにより、非水系電解液二次電池の残存容量と回復容量がさらに向上することが分かる。また、比較例1-4と比較例1-1との比較から、不飽和結合を有しないスルホン酸塩である化合物2を含有する非水系電解液を用いても、非水系二次電池の残存容量及び回復容量のいずれもほとんど変わらないことがわかる。さらに、比較例1-3~1-5からは、不飽和結合を有しないスルホン酸塩とP-F結合を有するリン酸塩を含有する非水系電解液を用いた場合は、P-F結合を有するリン酸塩のみを含む非水系電界液を用いた場合よりも、非水系二次電池の残存容量も回復容量も、低下したことがわかる。したがって、本願発明の非水系電解液は、不飽和結合を有するスルホン酸塩とP-F結合を有するリン酸塩を共添加することにより特異的に電池性能を向上できることが分かる。
From Table 1, when Example 1-1 and Example 1-2 are compared with Comparative Examples 1-1 to 1-3 and Comparative Example 1-6, a sulfonate having an unsaturated bond and a PF bond are compared. It can be seen that the residual capacity and the recovery capacity of the non-aqueous electrolyte secondary battery are further improved by co-adding the phosphate having the above to the non-aqueous electrolyte solution. Further, from the comparison between Comparative Example 1-4 and Comparative Example 1-1, even if a non-aqueous electrolyte solution containing the compound 2 which is a sulfonate having no unsaturated bond is used, the non-aqueous secondary battery remains. It can be seen that both the capacity and the recovery capacity are almost the same. Further, from Comparative Examples 1-3 to 1-5, when a non-aqueous electrolyte solution containing a sulfonate having no unsaturated bond and a phosphate having a PF bond was used, the PF bond was used. It can be seen that the remaining capacity and the recovery capacity of the non-aqueous secondary battery were lower than those in the case of using the non-aqueous electric field solution containing only the phosphate having the above. Therefore, it can be seen that the non-aqueous electrolyte solution of the present invention can specifically improve the battery performance by co-adding a sulfonate having an unsaturated bond and a phosphate having an PF bond.

Figure 2022029448000024
Figure 2022029448000024

表2より、実施例2-1及び実施例2-2と、比較例2-1~2-3及び比較例2-6とを比較すると、不飽和結合を有するスルホン酸塩とS-F結合を有するスルホン酸塩を非水系電解液に共添加することにより、非水系電解液二次電池の残存容量と回復容量がさらに向上することが分かる。
また、比較例2-4と比較例2-1との比較から、不飽和結合を有しないスルホン酸塩を用いても残存容量及び回復容量のいずれもほとんど変わらないことがわかる。一方、比較例2-3~2-5から、不飽和結合を有しないスルホン酸塩とS-F結合を有するスルホン酸塩である化合物2を含有する非水系電解液を用いても、S-F結合を有するスルホン酸塩の添加効果しか発現していないことがわかる。また、不飽和結合を有しないスルホン酸塩とS-F結合を有するスルホン酸塩を含有する非水系電解液を用いた場合は、S-F結合を有するスルホン酸塩のみを含む非水系電界液を用いた場合よりも、非水系電解液二次電池の残存容量はむしろ低下したことがわかる。
これらの結果から、本願発明の非水系電解液は、不飽和結合を有するスルホン酸塩とS-F結合を有するスルホン酸塩を共添加することにより特異的に電池性能を向上できることが分かる。
From Table 2, when Example 2-1 and Example 2-2 are compared with Comparative Examples 2-1 to 2-3 and Comparative Example 2-6, a sulfonate having an unsaturated bond and an SF bond are compared. It can be seen that the residual capacity and the recovery capacity of the non-aqueous electrolyte secondary battery are further improved by co-adding the sulfonate having the above to the non-aqueous electrolyte solution.
Further, from the comparison between Comparative Example 2-4 and Comparative Example 2-1 it can be seen that neither the residual capacity nor the recovery capacity is changed even if the sulfonate having no unsaturated bond is used. On the other hand, from Comparative Examples 2-3 to 2-5, even if a non-aqueous electrolyte solution containing compound 2 which is a sulfonate having an unsaturated bond and a sulfonate having an SF bond is used, S- It can be seen that only the effect of adding the sulfonate having an F bond is exhibited. When a non-aqueous electrolyte solution containing a sulfonate having no unsaturated bond and a sulfonate having an SF bond is used, a non-aqueous electrolyte solution containing only the sulfonate having an SF bond is used. It can be seen that the remaining capacity of the non-aqueous electrolyte secondary battery was rather lower than that in the case of using.
From these results, it can be seen that the non-aqueous electrolyte solution of the present invention can specifically improve the battery performance by co-adding a sulfonate having an unsaturated bond and a sulfonate having an SF bond.

Claims (6)

式(I)又は式(II)で表される化合物(A)、並びにP-F結合を有するリン酸塩及びS-F結合を有するスルホン酸塩からなる群より選ばれる塩(B)を1種以上含有することを特徴とする非水系電解液。
Figure 2022029448000025

(式(I)中、R、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭化水素基であり、RとRは互いに結合し環状構造を形成していてもよく;nは0~4の整数であり;Mは1価のカチオンである。
式(II)中、Rは水素原子、ハロゲン原子、又は炭化水素基であり;nは0~4の整数であり;Mは1価のカチオンである。)
1 is a salt (B) selected from the group consisting of the compound (A) represented by the formula (I) or the formula (II), and a phosphate having a PF bond and a sulfonate having an SF bond. A non-aqueous electrolyte solution containing more than a seed.
Figure 2022029448000025

In formula (I), R 1 , R 2 and R 3 are independently hydrogen atoms, halogen atoms or hydrocarbon groups, and R 1 and R 2 are bonded to each other to form a cyclic structure. Often; n is an integer from 0 to 4; M 1 is a monovalent cation.
In formula (II), R 4 is a hydrogen atom, a halogen atom, or a hydrocarbon group; n is an integer of 0-4; M 2 is a monovalent cation. )
前記式(I)中、R、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数6~12のアリール基、又は炭素数7~18のアラルキル基である、請求項1に記載の非水系電解液。 In the above formula (I), R 1 , R 2 and R 3 independently have a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and 6 to 12 carbon atoms, respectively. The non-aqueous electrolyte solution according to claim 1, which is an aryl group or an aralkyl group having 7 to 18 carbon atoms. 前記式(II)中、Rが、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数6~12のアリール基、又は炭素数7~18のアラルキル基である、請求項1又は2に記載の非水系電解液。 In the formula (II), R4 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aryl group having 7 to 18 carbon atoms. The non-aqueous electrolyte solution according to claim 1 or 2, which is an aralkyl group of the above. 前記式(I)又は式(II)で表される化合物(A)を0.01質量%以上10質量%以下含有する、請求項1~3のいずれか一項に記載の非水系電解液。 The non-aqueous electrolyte solution according to any one of claims 1 to 3, which contains 0.01% by mass or more and 10% by mass or less of the compound (A) represented by the formula (I) or the formula (II). 前記P-F結合を有するリン酸塩及びS-F結合を有するスルホン酸塩からなる群より選ばれる塩(B)を、0.01質量%以上10質量%以下含有する、請求項1~4のいずれか一項に記載の非水系電解液。 Claims 1 to 4 containing 0.01% by mass or more and 10% by mass or less of the salt (B) selected from the group consisting of the phosphate having a PF bond and the sulfonate having an SF bond. The non-aqueous electrolyte solution according to any one of the above items. 金属イオンを吸蔵及び放出しうる正極活物質を有する正極と、金属イオンを吸蔵及び放出しうる負極活物質を有する負極と、請求項1~5のいずれか1項に記載の非水系電解液と、を備える非水系電解液二次電池。 The positive electrode having a positive electrode active material capable of occluding and releasing metal ions, the negative electrode having a negative electrode active material capable of occluding and releasing metal ions, and the non-aqueous electrolyte solution according to any one of claims 1 to 5. , A non-aqueous electrolyte secondary battery.
JP2021128252A 2020-08-04 2021-08-04 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery comprising nonaqueous electrolyte Pending JP2022029448A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020132536 2020-08-04
JP2020132536 2020-08-04

Publications (1)

Publication Number Publication Date
JP2022029448A true JP2022029448A (en) 2022-02-17

Family

ID=80271465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021128252A Pending JP2022029448A (en) 2020-08-04 2021-08-04 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery comprising nonaqueous electrolyte

Country Status (1)

Country Link
JP (1) JP2022029448A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190239A1 (en) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 Negative-electrode material for secondary battery, and secondary battery
WO2023190241A1 (en) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 Negative electrode material for secondary batteries, and secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190239A1 (en) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 Negative-electrode material for secondary battery, and secondary battery
WO2023190241A1 (en) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 Negative electrode material for secondary batteries, and secondary battery

Similar Documents

Publication Publication Date Title
JP5429631B2 (en) Non-aqueous electrolyte battery
JP6113496B2 (en) Lithium secondary battery
US7169511B2 (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery employing the same
EP3096388A1 (en) Nonaqueous electrolyte secondary battery and battery pack of same
JP2007250440A (en) Nonaqueous electrolyte secondary battery
JP2014029840A (en) Lithium secondary battery
JP2017069164A (en) Lithium ion secondary battery
JP2022029448A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery comprising nonaqueous electrolyte
CN114846669A (en) Nonaqueous electrolyte solution and energy device
JPWO2012049723A1 (en) Nonaqueous electrolyte secondary battery
JP2005093414A (en) Lithium cell
CN106797050A (en) Rechargeable nonaqueous electrolytic battery
JP2012169299A (en) Method for manufacturing lithium ion secondary battery
JP2004111359A (en) Nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution
JP2015037068A (en) Positive electrode for lithium ion battery, and lithium ion secondary battery
JP7457620B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery containing the non-aqueous electrolyte
WO2015147007A1 (en) Electrolyte and electrochemical device
WO2021187625A1 (en) Nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution
JP2021007096A (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP2021002432A (en) Non-aqueous electrolyte power storage element, usage method thereof, and manufacturing method thereof
WO2022054471A1 (en) Non-aqueous liquid electrolyte, and non-aqueous liquid-electrolyte secondary cell in which said non-aqueous liquid electrolyte is used
JP2022018255A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery having nonaqueous electrolyte
JP2022135234A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery having the same
WO2022091939A1 (en) Nonaqueous electrolyte secondary battery
JP5678822B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240312