JP2022021807A - Biological state monitoring system, bed system equipped with the same, and biological state monitoring method - Google Patents

Biological state monitoring system, bed system equipped with the same, and biological state monitoring method Download PDF

Info

Publication number
JP2022021807A
JP2022021807A JP2020125623A JP2020125623A JP2022021807A JP 2022021807 A JP2022021807 A JP 2022021807A JP 2020125623 A JP2020125623 A JP 2020125623A JP 2020125623 A JP2020125623 A JP 2020125623A JP 2022021807 A JP2022021807 A JP 2022021807A
Authority
JP
Japan
Prior art keywords
load
subject
bed
difference
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020125623A
Other languages
Japanese (ja)
Other versions
JP7409987B2 (en
Inventor
真佑 轟
Shinsuke Todoroki
重巳 増田
Shigemi Masuda
悟 和田
Satoru Wada
雄二 高田
Yuji Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MinebeaMitsumi Inc
Original Assignee
MinebeaMitsumi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MinebeaMitsumi Inc filed Critical MinebeaMitsumi Inc
Priority to JP2020125623A priority Critical patent/JP7409987B2/en
Publication of JP2022021807A publication Critical patent/JP2022021807A/en
Application granted granted Critical
Publication of JP7409987B2 publication Critical patent/JP7409987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

To provide an alternative system for monitoring a biological state of a subject by using a load detector.SOLUTION: A biological state monitoring system for monitoring a biological state of a subject on a bed includes: a first load detector provided on the bed or at the lower part of the leg of the bed on one side in a width direction of the bed for detecting a first load, which is a load by the subject, including a load component that vibrates in response to breathing of the subject and a load component that vibrates in response to a heart beat of the subject; a second load detector provided on the bed or at the lower part of the leg of the bed on the other side in the width direction of the bed for detecting a second load, which is a load by the subject, including a load component that vibrates in response to breathing of the subject and a load component that vibrates in response to a heart beat of the subject; a heart beat state determination unit for obtaining a difference between the first load and the second load, and determining a heart beat state of the subject from the difference; and a correction unit for correcting the difference so that the load component that vibrates in response to the breathing of the subject included in the difference becomes small on the basis of an inclination in a direction of a body axis of the subject with respect to a length direction of the bed.SELECTED DRAWING: Figure 1

Description

本発明は、複数の荷重検出器を備える生体状態モニタリングシステム、当該システムを備えるベッドシステム、及び複数の荷重検出器を用いる生体状態モニタリング方法に関する。 The present invention relates to a biological condition monitoring system including a plurality of load detectors, a bed system including the system, and a biological condition monitoring method using a plurality of load detectors.

医療や介護の分野において、荷重検出器を介してベッド上の被験者の荷重を検出し、検出した荷重に基づいて被験者の状態を判定することが提案されている。具体的には例えば、検出した荷重に基づいて被験者の呼吸数や心拍数の推定を行うことが提案されている。 In the fields of medical care and long-term care, it has been proposed to detect the load of a subject on a bed via a load detector and determine the state of the subject based on the detected load. Specifically, for example, it has been proposed to estimate the respiratory rate and heart rate of a subject based on the detected load.

特許文献1は、濾波器を備え、被検生体の重心位置の変動出力の高い周波数成分から被検生体の心臓運動を検出し、被検生体の重心位置の変動出力の低い周波数成分から被検生体の呼吸運動を検出する、呼吸及び心臓運動測定装置を開示している。特許文献2は、就寝面上の利用者の重心位置の変化を高速フーリエ変換等によって処理することにより呼吸の変化周期を抽出して呼吸周波数として出力することのできる動作検出装置を開示している。また、本出願人に発行された特許文献3は、ベッド上の被験者の重心位置の時間的変動及び体動に関する情報を用いて、当該被験者の呼吸数を高精度に求める方法を開示している。 Patent Document 1 is provided with a filter, detects the cardiac motion of the test body from a frequency component having a high fluctuation output of the center of gravity position of the test body, and is tested from a frequency component having a low fluctuation output of the center of gravity position of the test body. It discloses a respiratory and cardiac motility measuring device that detects the respiratory motility of a living body. Patent Document 2 discloses an motion detection device capable of extracting a respiratory change cycle and outputting it as a respiratory frequency by processing a change in the position of the center of gravity of a user on a sleeping surface by a fast Fourier transform or the like. .. Further, Patent Document 3 issued to the present applicant discloses a method for obtaining the respiratory rate of a subject with high accuracy by using information on the temporal fluctuation of the position of the center of gravity of the subject on the bed and the body movement. ..

特公昭61-24010号公報Special Publication No. 61-24010 特開2014-180432号公報Japanese Unexamined Patent Publication No. 2014-180432 特許第6105703号明細書Japanese Patent No. 6105703

本発明は、荷重検出器を用いて被験者の生体状態をモニタするための代替的なシステム及び方法を提供することを目的とする。 It is an object of the present invention to provide an alternative system and method for monitoring the biological condition of a subject using a load detector.

本発明の第1の態様に従えば、
ベッド上の被験者の生体状態をモニタする生体状態モニタリングシステムであって、
ベッドの幅方向の一方側においてベッド又はベッドの脚下に設けられ、且つ前記被験者による荷重であって、該被験者の呼吸に応じて振動する荷重成分と該被験者の心拍に応じて振動する荷重成分とを含む第1荷重を検出する第1荷重検出器と、
ベッドの幅方向の他方側においてベッド又はベッドの脚下に設けられ、且つ前記被験者による荷重であって、該被験者の呼吸に応じて振動する荷重成分と該被験者の心拍に応じて振動する荷重成分とを含む第2荷重を検出する第2荷重検出器と、
第1荷重と第2荷重との差分を求めて、該差分から前記被験者の心拍状態を決定する心拍状態決定部と、
前記差分に含まれる前記被験者の呼吸に応じて振動する荷重成分が小さくなるように、前記差分を、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づいて補正する補正部とを備える生体状態モニタリングシステムが提供される。
According to the first aspect of the present invention,
A biological condition monitoring system that monitors the biological condition of a subject on the bed.
A load component provided on one side in the width direction of the bed under the bed or under the leg of the bed and which is a load by the subject and vibrates according to the subject's breathing and a load component vibrating according to the subject's heartbeat. A first load detector that detects the first load including
A load component provided on the other side in the width direction of the bed under the bed or under the leg of the bed and which is a load by the subject and vibrates according to the subject's breath and a load component that vibrates according to the subject's heartbeat. A second load detector that detects a second load including
A heartbeat state determination unit that obtains the difference between the first load and the second load and determines the heartbeat state of the subject from the difference.
With a correction unit that corrects the difference based on the inclination of the subject's body axis with respect to the length direction of the bed so that the load component that vibrates according to the subject's respiration included in the difference becomes small. A biological condition monitoring system is provided.

第1の態様の生体状態モニタリングシステムにおいて、前記補正部は、第1荷重の変動と第2荷重の変動とに基づいて前記被験者の体軸の方向を決定してもよい。 In the biological condition monitoring system of the first aspect, the correction unit may determine the direction of the body axis of the subject based on the fluctuation of the first load and the fluctuation of the second load.

第1の態様の生体状態モニタリングシステムにおいて、第1荷重検出器と第2荷重検出器とは、ベッドの幅方向中央でベッドの長さ方向に延びる軸に関して対称に配置されていてもよい。 In the biological condition monitoring system of the first aspect, the first load detector and the second load detector may be arranged symmetrically with respect to an axis extending in the length direction of the bed at the center in the width direction of the bed.

第1の態様の生体状態モニタリングシステムにおいて、第2荷重検出器はベッドの長さ方向の一方側に設けられていてもよい。また、第1の態様の生体状態モニタリングシステムは、更に、ベッドの長さ方向の他方側においてベッド又はベッドの脚下に設けられ、且つ前記被験者による荷重であって、該被験者の呼吸に応じて振動する荷重成分を含む第3荷重を検出する第3荷重検出器を備えても良く、第2荷重と第3荷重との差分を求めて、該差分から前記被験者の呼吸状態を決定する呼吸状態決定部を備えてもよい。 In the biological condition monitoring system of the first aspect, the second load detector may be provided on one side in the length direction of the bed. Further, the biological condition monitoring system of the first aspect is further provided on the bed or under the legs of the bed on the other side in the length direction of the bed, and is a load by the subject and vibrates according to the respiration of the subject. A third load detector that detects a third load including a load component may be provided, and a difference between the second load and the third load is obtained, and the respiratory state determination of the subject is determined from the difference. It may be provided with a part.

第1の態様の生体状態モニタリングシステムにおいて、前記補正部は、第2荷重と第3荷重との前記差分に含まれる前記被験者の呼吸に応じて振動する荷重成分が大きくなるように、該差分を、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づいて補正してもよい。 In the biological condition monitoring system of the first aspect, the correction unit makes the difference so that the load component that vibrates according to the respiration of the subject included in the difference between the second load and the third load becomes large. , May be corrected based on the inclination of the subject in the direction of the body axis with respect to the length direction of the bed.

第1の態様の生体状態モニタリングシステムにおいて、第1荷重検出器はベッドの長さ方向の一方側に設けられていてもよく、第3荷重検出器はベッドの幅方向の他方側に設けられていてもよく、第3荷重検出器により検出される前記被験者による荷重は該被験者の心拍に応じて振動する荷重成分を含んでもよい。また、第1の態様の生体状態モニタリングシステムは、更に、ベッドの幅方向の一方側且つベッドの長さ方向の他方側においてベッド又はベッドの脚下に設けられ、且つ前記被験者による荷重であって、該被験者の呼吸に応じて振動する荷重成分と該被験者の心拍に応じて振動する荷重成分とを含む第4荷重を検出する第4荷重検出器を備えてもよく、前記心拍状態決定部は、第1荷重と第4荷重の和と、第2荷重と第3荷重の和との差分を求めて、該差分から前記被験者の心拍状態を決定してもよく、前記呼吸状態決定部は、第1荷重と第2荷重の和と、第3荷重と第4荷重の和との差分を求めて、該差分から前記被験者の呼吸状態を決定してもよい。 In the biological condition monitoring system of the first aspect, the first load detector may be provided on one side in the length direction of the bed, and the third load detector may be provided on the other side in the width direction of the bed. The load by the subject detected by the third load detector may include a load component that vibrates according to the heartbeat of the subject. Further, the biological condition monitoring system of the first aspect is further provided on one side in the width direction of the bed and the other side in the length direction of the bed under the bed or under the legs of the bed, and is a load by the subject. A fourth load detector that detects a fourth load including a load component that vibrates according to the subject's breath and a load component that vibrates according to the subject's heartbeat may be provided, and the heartbeat state determining unit may be provided. The difference between the sum of the first load and the fourth load and the sum of the second load and the third load may be obtained, and the heartbeat state of the subject may be determined from the difference. The difference between the sum of the first load and the second load and the sum of the third load and the fourth load may be obtained, and the breathing state of the subject may be determined from the difference.

第1の態様の生体状態モニタリングシステムにおいて、前記補正部は、第1荷重と第4荷重の和と第2荷重と第3荷重の和との前記差分に含まれる前記被験者の呼吸に応じて振動する荷重成分が小さくなるように、該差分を、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づいて補正してもよく、且つ第1荷重と第2荷重の和と第3荷重と第4荷重の和との前記差分に含まれる前記被験者の呼吸に応じて振動する荷重成分が大きくなるように、該差分を、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づいて補正してもよい。 In the biological condition monitoring system of the first aspect, the correction unit vibrates according to the breath of the subject included in the difference between the sum of the first load and the fourth load and the sum of the second load and the third load. The difference may be corrected based on the inclination of the subject's body axis with respect to the length direction of the bed so that the load component to be applied becomes small, and the sum of the first load and the second load and the second load may be corrected. The difference is set in the direction of the subject's body axis with respect to the length direction of the bed so that the load component that vibrates in response to the subject's breathing, which is included in the difference between the sum of the three loads and the fourth load, becomes large. It may be corrected based on the inclination of.

第1の態様の生体状態モニタリングシステムにおいて、前記補正部は、前記被験者の体軸の方向を回転して前記ベッドの長さ方向に略一致させる回転変換を行う回転行列を用いて補正を行ってもよい。 In the biological condition monitoring system of the first aspect, the correction unit performs correction using a rotation matrix that rotates the direction of the body axis of the subject and performs a rotation transformation that substantially matches the length direction of the bed. May be good.

本発明の第2の態様に従えば、
ベッドと、
第1の態様の生体状態モニタリングシステムとを備えるベッドシステムが提供される。
According to the second aspect of the present invention,
Bed and
A bed system comprising the biological condition monitoring system of the first aspect is provided.

本発明の第3の態様に従えば、
ベッド上の被験者の生体状態をモニタする生体状態モニタリング方法であって、
ベッドの幅方向の一方側においてベッド又はベッドの脚下に設けられた第1荷重検出器により、前記被験者による荷重であって、該被験者の呼吸に応じて振動する荷重成分と該被験者の心拍に応じて振動する荷重成分とを含む第1荷重を検出することと、
ベッドの幅方向の他方側においてベッド又はベッドの脚下に設けられた第2荷重検出器により、前記被験者による荷重であって、該被験者の呼吸に応じて振動する荷重成分と該被験者の心拍に応じて振動する荷重成分とを含む第2荷重を検出することと、
第1荷重と第2荷重との差分を求めて、該差分から前記被験者の心拍状態を決定することと、
第1荷重と第2荷重との前記差分に含まれる前記被験者の呼吸に応じて振動する荷重成分が小さくなるように、前記差分を、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づいて補正することを含む生体状態モニタリング方法が提供される。
According to the third aspect of the present invention,
It is a biological condition monitoring method that monitors the biological condition of the subject on the bed.
By the first load detector provided on the bed or under the leg of the bed on one side in the width direction of the bed, the load by the subject corresponds to the load component vibrating according to the subject's breath and the subject's heartbeat. To detect the first load including the load component that vibrates and
By the second load detector provided on the other side of the width direction of the bed on the bed or under the legs of the bed, the load by the subject is based on the load component vibrating according to the subject's breath and the subject's heartbeat. To detect the second load including the load component that vibrates
The difference between the first load and the second load is obtained, and the heartbeat state of the subject is determined from the difference.
The difference is set in the direction of the subject's body axis with respect to the length direction of the bed so that the load component that vibrates in response to the subject's respiration included in the difference between the first load and the second load becomes smaller. Biological condition monitoring methods are provided that include correction based on tilt.

第3の態様の生体状態モニタリング方法は、更に、第1荷重の変動と第2荷重の変動とに基づいて前記被験者の体軸の方向を決定すること含んでもよい。 The biological condition monitoring method of the third aspect may further include determining the direction of the body axis of the subject based on the fluctuation of the first load and the fluctuation of the second load.

第3の態様の生体状態モニタリング方法において、第1荷重検出器と第2荷重検出器とは、ベッドの幅方向中央でベッドの長さ方向に延びる軸に関して対称に配置されてもよい。 In the biological condition monitoring method of the third aspect, the first load detector and the second load detector may be arranged symmetrically with respect to an axis extending in the length direction of the bed at the center in the width direction of the bed.

第3の態様の生体状態モニタリング方法において、第2荷重検出器はベッドの長さ方向の一方側に設けられていてもよい。また第3の態様の生体状態モニタリング方法は、更に、ベッドの長さ方向の他方側においてベッド又はベッドの脚下に設けられた第3荷重検出器により、前記被験者による荷重であって、該被験者の呼吸に応じて振動する荷重成分を含む第3荷重を検出することを含んでも良く、第2荷重と第3荷重との差分を求めて、該差分から前記被験者の呼吸状態を決定することを含んでもよい。 In the biological condition monitoring method of the third aspect, the second load detector may be provided on one side in the length direction of the bed. Further, the biological condition monitoring method according to the third aspect is a load by the subject by a third load detector provided on the bed or under the leg of the bed on the other side in the length direction of the bed, and the subject's load is obtained. It may include detecting a third load including a load component that vibrates in response to breathing, and includes obtaining a difference between the second load and the third load and determining the breathing state of the subject from the difference. But it may be.

第3の態様の生体状態モニタリング方法は、更に、第2荷重と第3荷重との前記差分に含まれる前記被験者の呼吸に応じて振動する荷重成分が大きくなるように、該差分を、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づいて補正することを含んでもよい。 In the biological condition monitoring method of the third aspect, the difference is further set to the bed so that the load component that vibrates according to the respiration of the subject included in the difference between the second load and the third load becomes large. It may include correction based on the inclination of the subject in the direction of the body axis with respect to the length direction of the subject.

第3の態様の生体状態モニタリング方法において、第1荷重検出器はベッドの長さ方向の一方側に設けられていてもよく、第3荷重検出器はベッドの幅方向の他方側に設けられていてもよく、第3荷重検出器により検出される前記被験者による荷重は該被験者の心拍に応じて振動する荷重成分を含んでもよい。また、第3の態様の生体状態モニタリング方法は、更に、ベッドの幅方向の一方側且つベッドの長さ方向の他方側においてベッド又はベッドの脚下に設けられた第4荷重検出器により、前記被験者による荷重であって、該被験者の呼吸に応じて振動する荷重成分と該被験者の心拍に応じて振動する荷重成分とを含む第4荷重を検出することを含んでもよく、前記心拍状態を決定することは、第1荷重と第4荷重の和と、第2荷重と第3荷重の和との差分を求めて、該差分から前記被験者の心拍状態を決定することであってもよく、前記呼吸状態を決定することは、第1荷重と第2荷重の和と、第3荷重と第4荷重の和との差分を求めて、該差分から前記被験者の呼吸状態を決定することであってもよい。 In the biological condition monitoring method of the third aspect, the first load detector may be provided on one side in the length direction of the bed, and the third load detector may be provided on the other side in the width direction of the bed. The load by the subject detected by the third load detector may include a load component that vibrates according to the heartbeat of the subject. Further, in the biological condition monitoring method of the third aspect, the subject is further subjected to a fourth load detector provided under the bed or the leg of the bed on one side in the width direction of the bed and the other side in the length direction of the bed. The load may include detecting a fourth load including a load component that vibrates according to the subject's breath and a load component that vibrates according to the subject's heartbeat, and determines the heartbeat state. That is, the difference between the sum of the first load and the fourth load and the sum of the second load and the third load may be obtained, and the heartbeat state of the subject may be determined from the difference. Determining the state may be to obtain the difference between the sum of the first load and the second load and the sum of the third load and the fourth load, and determine the respiratory state of the subject from the difference. good.

第3の態様の生体状態モニタリング方法において、前記第1荷重と第2荷重との差分を補正することは、第1荷重と第4荷重の和と第2荷重と第3荷重の和との前記差分に含まれる前記被験者の呼吸に応じて振動する荷重成分が小さくなるように、該差分を、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づいて補正することであってもよく、前記第2荷重と第3荷重との差分を補正することは、第1荷重と第2荷重の和と第3荷重と第4荷重の和との前記差分に含まれる前記被験者の呼吸に応じて振動する荷重成分が大きくなるように、該差分を、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づいて補正することであってもよい。 In the biological condition monitoring method of the third aspect, correcting the difference between the first load and the second load is the sum of the first load and the fourth load and the sum of the second load and the third load. The difference is corrected based on the inclination of the subject's body axis with respect to the length direction of the bed so that the load component that vibrates according to the subject's breath included in the difference becomes small. Often, correcting the difference between the second load and the third load is the breathing of the subject included in the difference between the sum of the first load and the second load and the sum of the third load and the fourth load. The difference may be corrected based on the inclination of the subject's body axis with respect to the length direction of the bed so that the load component vibrating in response to the increase becomes large.

第3の態様の生体状態モニタリング方法において、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づく補正は、前記被験者の体軸の方向を回転して前記ベッドの長さ方向に略一致させる回転変換を行う回転行列を用いて行われても良い。 In the biological condition monitoring method of the third aspect, the correction based on the inclination of the subject's body axis direction with respect to the bed length direction is performed by rotating the subject's body axis direction in the bed length direction. It may be performed by using a rotation matrix that performs a rotation conversion that substantially matches.

本発明によれば、荷重検出器を用いて被験者の生体状態をモニタするための代替的なシステム及び方法が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, an alternative system and method for monitoring the biological condition of a subject using a load detector are provided.

図1は、本発明の実施形態に係る生体状態モニタリングシステムの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a biological condition monitoring system according to an embodiment of the present invention. 図2は、荷重検出器のベッドに対する配置を示す説明図である。FIG. 2 is an explanatory diagram showing the arrangement of the load detector with respect to the bed. 図3は、生体状態モニタリングシステムを用いた生体状態モニタリング方法を示すフローチャートである。FIG. 3 is a flowchart showing a biological condition monitoring method using a biological condition monitoring system. 図4は、ベッドの四隅に配置された荷重検出器の各々からの荷重信号の様子を説明するための説明図である。中央の図は、ベッド、当該ベッド上に仰臥する被験者、及びベッドの四隅に配置された荷重検出器の位置関係を示す概略的な平面図である。右下、左下、左上、右上のグラフは、それぞれ、ベッドの右下、左下、左上、右上の隅部に配置された荷重検出器からの荷重信号の波形を示すグラフである。各グラフ中の波形は、被験者の呼吸に応じて振動する荷重成分を示す波形と、被験者の心拍に応じて振動する荷重成分を示す波形とに分離して示されている。FIG. 4 is an explanatory diagram for explaining the state of the load signal from each of the load detectors arranged at the four corners of the bed. The central figure is a schematic plan view showing the positional relationship between the bed, the subject lying on the bed, and the load detectors arranged at the four corners of the bed. The lower right, lower left, upper left, and upper right graphs are graphs showing the waveforms of load signals from load detectors arranged in the lower right, lower left, upper left, and upper right corners of the bed, respectively. The waveform in each graph is shown separately as a waveform showing a load component that vibrates according to the respiration of the subject and a waveform showing a load component that vibrates according to the heartbeat of the subject. 図5は、被験者の脚側に配置された荷重検出器からの荷重信号と、被験者の頭側に配置された荷重検出器からの荷重信号との差分であるY軸信号(呼吸信号)の一例を示すグラフである。FIG. 5 is an example of a Y-axis signal (breathing signal) which is a difference between a load signal from a load detector arranged on the leg side of the subject and a load signal from the load detector arranged on the head side of the subject. It is a graph which shows. 図6(a)、図6(b)は、被験者の右側に配置された荷重検出器からの荷重信号と、被験者の左側に配置された荷重検出器からの荷重信号との差分であるX軸信号(心拍信号)の一例を示すグラフである。図6(a)は被験者の体軸がベッドの長さ方向に一致している状況下で得られたX軸信号の一例を示し、図6(b)は被験者の体軸がベッドの長さ方向に対して傾いている状況下で得られたX軸信号の一例を示す。6 (a) and 6 (b) are X-axis which is the difference between the load signal from the load detector arranged on the right side of the subject and the load signal from the load detector arranged on the left side of the subject. It is a graph which shows an example of a signal (heartbeat signal). FIG. 6 (a) shows an example of an X-axis signal obtained under the condition that the body axis of the subject coincides with the length direction of the bed, and FIG. 6 (b) shows the body axis of the subject having the length of the bed. An example of an X-axis signal obtained in a situation of being tilted with respect to a direction is shown. 図7(a)~図7(d)は、実施形態の生体状態モニタリングシステムの荷重検出部により検出された被験者の荷重信号の一例である。図7(a)、図7(b)、図7(c)、図7(d)はそれぞれ、被験者の右下、左下、左上、右上に配置された荷重検出器により検出された荷重信号の一例を示すグラフである。7 (a) to 7 (d) are examples of the load signal of the subject detected by the load detection unit of the biological condition monitoring system of the embodiment. 7 (a), 7 (b), 7 (c), and 7 (d) show the load signals detected by the load detectors located at the lower right, lower left, upper left, and upper right of the subject, respectively. It is a graph which shows an example. 図8は、図7(a)~図7(d)に示す荷重信号の差分であるY軸信号(呼吸信号)を示すグラフである。FIG. 8 is a graph showing a Y-axis signal (breathing signal) which is a difference between the load signals shown in FIGS. 7 (a) to 7 (d). 図9は、図7(a)~図7(d)に示す荷重信号が検出された期間と同一の期間に、図7(a)~図7(d)に示す荷重信号の検出が行われた被験者と同一の被験者について行った、呼吸流量計を用いた計測の結果を示すグラフである。In FIG. 9, the load signals shown in FIGS. 7 (a) to 7 (d) are detected during the same period as the period in which the load signals shown in FIGS. 7 (a) to 7 (d) are detected. It is a graph which shows the result of the measurement using the respiratory flow meter performed on the same subject as the subject. 図10(a)、図10(b)、図10(c)、図10(d)はそれぞれ、図7(a)、図7(b)、図7(c)、図7(d)に示すグラフの一部を拡大したグラフである。10 (a), 10 (b), 10 (c), and 10 (d) are shown in FIGS. 7 (a), 7 (b), 7 (c), and 7 (d), respectively. It is a graph which enlarged a part of the graph shown. 図11は、図10(a)~図10(d)に示す荷重信号の差分である心拍信号を示すグラフである。FIG. 11 is a graph showing a heartbeat signal which is a difference between the load signals shown in FIGS. 10A to 10D. 図12は、図10(a)~図10(d)に示す荷重信号が検出された期間と同一の期間に、図10(a)~図10(d)に示す荷重信号の検出が行われた被験者と同一の被験者について行った、指先血圧計を用いた計測の結果を示すグラフである。In FIG. 12, the load signals shown in FIGS. 10 (a) to 10 (d) are detected during the same period as the period in which the load signals shown in FIGS. 10 (a) to 10 (d) are detected. It is a graph which shows the result of the measurement using the fingertip sphygmomanometer performed on the same subject as the subject. 図13(a)は、体軸をベッドの長さ方向に対して傾けてベッド上に位置している被験者と、ベッド下に配置された荷重検出器との位置関係を示す説明図である。図13(b)は、図13(a)に示す状況下での、xy平面上での点Pの移動範囲、及び点Pの軌跡に応じて描かれるx軸波形及びy軸波形の一例を示す説明図である。FIG. 13A is an explanatory diagram showing a positional relationship between a subject located on the bed with the body axis tilted with respect to the length direction of the bed and a load detector arranged under the bed. FIG. 13B is an example of an x-axis waveform and a y-axis waveform drawn according to the movement range of the point P on the xy plane and the locus of the point P under the situation shown in FIG. 13A. It is explanatory drawing which shows. 図14(a)は、体軸をベッドの長さ方向に一致させてベッド上に位置している被験者と、ベッド下に配置された荷重検出器との位置関係を示す説明図である。図14(b)は、図14(a)に示す状況下での、xy平面上での点Pの移動範囲、及び点Pの軌跡に応じて描かれるx軸波形及びy軸波形の一例を示す説明図である。FIG. 14A is an explanatory diagram showing a positional relationship between a subject located on the bed with the body axis aligned with the length direction of the bed and a load detector arranged under the bed. 14 (b) is an example of an x-axis waveform and a y-axis waveform drawn according to the movement range of the point P on the xy plane and the locus of the point P under the situation shown in FIG. 14 (a). It is explanatory drawing which shows. 図15(a)は、被験者の体軸がベッドの長さ方向に対して反時計回りに角度θ傾いている状況下で、実施形態の生体状態モニタリングシステムの信号補正部により描かれた点Pの軌跡の一例を示す。図15(b)は、図15(a)の軌跡を時計回りに角度θ回転して得られた軌跡を示す。FIG. 15A is a point P drawn by the signal correction unit of the biological condition monitoring system of the embodiment under the condition that the body axis of the subject is tilted by an angle θ counterclockwise with respect to the length direction of the bed. An example of the trajectory of is shown. FIG. 15B shows a locus obtained by rotating the locus of FIG. 15A by an angle θ in a clockwise direction. 図16(a)は、図15(a)の軌跡に応じて描かれるx軸波形の一部を示し、図16(b)は図15(b)の軌跡に応じて描かれる補正x軸波形の一部を示す。16 (a) shows a part of the x-axis waveform drawn according to the locus of FIG. 15 (a), and FIG. 16 (b) shows the corrected x-axis waveform drawn according to the locus of FIG. 15 (b). Shows a part of. 図17(a)は、図15(a)の軌跡に応じて描かれるy軸波形の一部を示し、図17(b)は図15(b)の軌跡に応じて描かれる変換y軸波形の一部を示す。17 (a) shows a part of the y-axis waveform drawn according to the locus of FIG. 15 (a), and FIG. 17 (b) shows the converted y-axis waveform drawn according to the locus of FIG. 15 (b). Shows a part of. 図18は、変形例に係るベッドシステムの全体構成を示すブロック図である。FIG. 18 is a block diagram showing the overall configuration of the bed system according to the modified example.

<実施形態>
本発明の実施形態について、図1に示す構成を有する生体状態モニタリングシステム100を、図2に示すベッドBDとともに使用して、被験者の呼吸状態及び心拍状態をモニタする場合を例として説明する。
<Embodiment>
An embodiment of the present invention will be described as an example in which a biological condition monitoring system 100 having the configuration shown in FIG. 1 is used together with the bed BD shown in FIG. 2 to monitor the respiratory condition and the heartbeat condition of a subject.

以下の説明においては、直方形のベッドBDの中心を中心Oとして、中心Oを通りベッドBDの短手(幅方向)に延びる軸をベッドBDのX軸とし、中心Oを通りベッドBDの長手(長さ方向、上下方向)に延びる軸をベッドBDのY軸とする。ベッドBDの平面視において、ベッドBDの中心Oの右側をX軸の正側、左側をX軸の負側とし、ベッドBDの中心Oの下側をY軸の正側、上側をY軸の負側とする。被験者SがベッドBD上に横たわる場合は、一般にY軸に沿って横たわり、Y軸方向の負側に頭部を置き、正側に脚部を置く。 In the following description, the center of the rectangular bed BD is the center O, the axis extending through the center O and extending in the lateral direction (width direction) of the bed BD is the X axis of the bed BD, and the length of the bed BD passing through the center O. The axis extending in the (length direction, vertical direction) is the Y axis of the bed BD. In the plan view of the bed BD, the right side of the center O of the bed BD is the positive side of the X axis, the left side is the negative side of the X axis, the lower side of the center O of the bed BD is the positive side of the Y axis, and the upper side is the Y axis. Negative side. When the subject S lies on the bed BD, he generally lies along the Y-axis, with his head on the negative side in the Y-axis direction and his legs on the positive side.

図1に示す通り、本実施形態の生体状態モニタリングシステム100は、荷重検出部1及び生体状態決定部(制御部)3を主に有する。荷重検出部1と生体状態決定部3とは、A/D変換部2を介して接続されている。生体状態決定部3には更に記憶部4、表示部5、報知部6、及び入力部7が接続されている。 As shown in FIG. 1, the biological condition monitoring system 100 of the present embodiment mainly includes a load detection unit 1 and a biological condition determination unit (control unit) 3. The load detection unit 1 and the biological state determination unit 3 are connected via an A / D conversion unit 2. A storage unit 4, a display unit 5, a notification unit 6, and an input unit 7 are further connected to the biological state determination unit 3.

荷重検出部1は、4つの荷重検出器1a、1b、1c、1d(第1荷重検出器、第2荷重検出器、第3荷重検出器、第4荷重検出器)を備える。荷重検出器1a、1b、1c、1dのそれぞれは、例えばビーム形のロードセルを用いて荷重を検出する荷重検出器である。このような荷重検出器は例えば、特許第4829020号や特許第4002905号に記載されている。荷重検出器1a、1b、1c、1dはそれぞれ、配線によりA/D変換部2に接続されている。 The load detector 1 includes four load detectors 1a, 1b, 1c, and 1d (first load detector, second load detector, third load detector, fourth load detector). Each of the load detectors 1a, 1b, 1c, and 1d is a load detector that detects a load using, for example, a beam-shaped load cell. Such load detectors are described, for example, in Japanese Patent No. 4829020 and Japanese Patent No. 4002905. The load detectors 1a, 1b, 1c, and 1d are each connected to the A / D conversion unit 2 by wiring.

荷重検出部1の4つの荷重検出器1a、1b、1c、1dは、被験者が使用するベッドの脚の下に配置される。具体的には例えば、荷重検出器1a、1b、1c、1dは、図2に示す通り、ベッドBDの四隅の脚の下端部に取り付けられたキャスターCの下にそれぞれ配置される。本実施形態では、荷重検出器1a、1b、1c、1dはそれぞれ、ベッドBDの、X軸方向正側且つY軸方向正側、X軸方向負側且つY軸方向正側、X軸方向負側且つY軸方向負側、X軸方向正側且つY軸方向負側においてキャスターCの下に配置されている。 The four load detectors 1a, 1b, 1c, and 1d of the load detection unit 1 are arranged under the legs of the bed used by the subject. Specifically, for example, the load detectors 1a, 1b, 1c, and 1d are respectively arranged under the casters C attached to the lower ends of the legs at the four corners of the bed BD, as shown in FIG. In the present embodiment, the load detectors 1a, 1b, 1c, and 1d are the positive side in the X-axis direction and the positive side in the Y-axis direction, the negative side in the X-axis direction and the positive side in the Y-axis direction, and the negative side in the X-axis direction, respectively, of the bed BD. It is arranged under the caster C on the side and the negative side in the Y-axis direction, and on the positive side in the X-axis direction and the negative side in the Y-axis direction.

荷重検出器1a、1bは、Y軸に対して軸対称な位置に設置され、即ちY軸から等距離に設置されている。荷重検出器1c、1dも同様にY軸に対して軸対称な位置に設置され、即ちY軸から等距離に設置されている。また、荷重検出器1a、1dは、X軸に対して軸対称な位置に設置され、即ちX軸から等距離に設置されている。荷重検出器1b、1cも同様にX軸に対して軸対称な位置に設置され、即ちX軸から等距離に設置されている。 The load detectors 1a and 1b are installed at positions symmetrical with respect to the Y axis, that is, equidistant from the Y axis. Similarly, the load detectors 1c and 1d are installed at positions symmetrical with respect to the Y axis, that is, installed equidistant from the Y axis. Further, the load detectors 1a and 1d are installed at positions symmetrical with respect to the X axis, that is, installed equidistant from the X axis. Similarly, the load detectors 1b and 1c are installed at positions symmetrical with respect to the X axis, that is, installed equidistant from the X axis.

A/D変換部2は、荷重検出部1からのアナログ信号をデジタル信号に変換するA/D変換器を備え、荷重検出部1と生体状態決定部3にそれぞれ配線で接続されている。 The A / D conversion unit 2 includes an A / D converter that converts an analog signal from the load detection unit 1 into a digital signal, and is connected to the load detection unit 1 and the biological state determination unit 3 by wiring, respectively.

生体状態決定部(制御部)3は、荷重検出部1からの荷重信号に基づいて、被験者の生体状態、例えば呼吸状態や心拍状態を決定する。本実施形態では、生体状態決定部3は、呼吸状態を決定する呼吸状態決定部31と、心拍状態を決定する心拍状態決定部32と、心拍状態の決定に用いる信号を必要に応じて補正する信号補正部33(補正部)とを備える。生体状態決定部(制御部)3は、専用又は汎用のコンピュータであってよい。生体状態決定部3における被験者の生体状態の決定について、詳細は後述する。 The biological state determination unit (control unit) 3 determines the biological state of the subject, for example, the respiratory state and the heartbeat state, based on the load signal from the load detection unit 1. In the present embodiment, the biological state determining unit 3 corrects the respiratory state determining unit 31 for determining the respiratory state, the heartbeat state determining unit 32 for determining the heartbeat state, and the signal used for determining the heartbeat state, if necessary. A signal correction unit 33 (correction unit) is provided. The biological state determination unit (control unit) 3 may be a dedicated or general-purpose computer. The details of the determination of the biological condition of the subject in the biological condition determination unit 3 will be described later.

記憶部4は、生体状態モニタリングシステム100において使用されるデータを記憶する記憶装置であり、例えばハードディスク(磁気ディスク)を用いることができる。 The storage unit 4 is a storage device for storing data used in the biological condition monitoring system 100, and for example, a hard disk (magnetic disk) can be used.

表示部5は、生体状態決定部3から出力される被験者の生体状態等を生体状態モニタリングシステム100の使用者に表示する液晶モニター等のモニターである。報知部6は、生体状態決定部3からの出力(生体状態に関する情報等)に基づいて所定の報知を聴覚的に行う装置、例えばスピーカを備える。入力部7は、生体状態モニタリングシステム100に対して所定の入力を行うためのインターフェイスであり、キーボード及びマウスにし得る。 The display unit 5 is a monitor such as a liquid crystal monitor that displays the biological condition of the subject output from the biological condition determination unit 3 to the user of the biological condition monitoring system 100. The notification unit 6 includes a device that aurally performs a predetermined notification based on an output (information about the biological condition, etc.) from the biological state determination unit 3, for example, a speaker. The input unit 7 is an interface for performing a predetermined input to the biological condition monitoring system 100, and may be a keyboard and a mouse.

このような生体状態モニタリングシステム100を使用して、ベッド上の被験者の生体状態をモニタする方法について説明する。ここで、被験者の生体状態とは、具体的には例えば、被験者の呼吸状態及び/又は心拍状態である。 A method of monitoring the biological condition of a subject on a bed by using such a biological condition monitoring system 100 will be described. Here, the biological state of the subject is specifically, for example, the respiratory state and / or the heartbeat state of the subject.

生体状態モニタリングシステム100を使用した被験者の生体状態の決定は、図3のフローチャートに示す通り、複数の荷重検出器により被験者の荷重を検出する荷重検出工程S1と、複数の荷重検出器からの荷重信号の間の差分を求め、当該差分から被験者の呼吸状態を決定する呼吸状態決定工程S2と、複数の荷重検出器からの荷重信号の間の差分を求め、当該差分から被験者の心拍状態を決定する心拍状態決定工程S3と、ベッドの長さ方向に対する被験者の体軸の方向の傾きに基づいて心拍状態決定工程S3で求めた差分を補正する信号補正工程S4と、決定した呼吸状態及び心拍状態を表示する表示工程S5とを主に含む。 As shown in the flowchart of FIG. 3, the biological condition of the subject using the biological condition monitoring system 100 is determined by the load detection step S1 in which the load of the subject is detected by the plurality of load detectors and the load from the plurality of load detectors. The difference between the signals is obtained, and the difference between the respiratory state determination step S2 for determining the respiratory state of the subject from the difference and the load signals from the plurality of load detectors is obtained, and the heartbeat state of the subject is determined from the difference. The heartbeat state determination step S3, the signal correction step S4 for correcting the difference obtained in the heartbeat state determination step S3 based on the inclination of the subject's body axis with respect to the length direction of the bed, and the determined respiratory state and heartbeat state. Is mainly included in the display step S5 for displaying.

[荷重検出工程]
荷重検出工程S1では、荷重検出器1a、1b、1c、1dを用いてベッドBD上の被験者Sの荷重を検出する。荷重検出器1a、1b、1c、1dの各々は、ベッドBDの各脚の下に配置されているため、ベッドBDの上面に加えられる荷重は、4つの荷重検出器1a、1b、1c、1dに分散して検知される。特に、荷重の中心(重心)がベッドBDの中心Oに存在していれば、4つの荷重検出器1a、1b、1c、1dに均一に分散して検知される。
[Load detection process]
In the load detection step S1, the load of the subject S on the bed BD is detected by using the load detectors 1a, 1b, 1c, and 1d. Since each of the load detectors 1a, 1b, 1c, and 1d is arranged under each leg of the bed BD, the load applied to the upper surface of the bed BD is the four load detectors 1a, 1b, 1c, 1d. It is detected in a distributed manner. In particular, if the center of load (center of gravity) is located at the center O of the bed BD, the four load detectors 1a, 1b, 1c, and 1d are uniformly dispersed and detected.

荷重検出器1a、1b、1c、1dはそれぞれ、荷重(荷重変化)を検出してアナログ信号としてA/D変換部2に出力する。A/D変換部2は、サンプリング周期を例えば5ミリ秒として、アナログ信号をデジタル信号に変換し、デジタル信号(以下「荷重信号」)として生体状態決定部3に出力する。以下では、荷重検出器1a、1b、1c、1dから出力され、A/D変換部2においてデジタル変換された荷重信号を、それぞれ荷重信号sa、sb、sc、sdと呼ぶ。 The load detectors 1a, 1b, 1c, and 1d each detect a load (load change) and output it as an analog signal to the A / D conversion unit 2. The A / D conversion unit 2 converts an analog signal into a digital signal with a sampling period of, for example, 5 milliseconds, and outputs the digital signal (hereinafter referred to as “load signal”) to the biological state determination unit 3. In the following, the load signals output from the load detectors 1a, 1b, 1c, and 1d and digitally converted by the A / D conversion unit 2 are referred to as load signals sa, sb, sc, and sd, respectively.

[呼吸状態決定工程、心拍状態決定工程]
呼吸状態決定工程S2及び心拍状態決定工程S3(両者をまとめて「生体状態決定工程」と呼ぶ)では、生体状態決定部3の呼吸状態決定部31及び心拍状態決定部32が、荷重信号sa~sdに基づいて、被験者Sの呼吸状態及び心拍状態を決定する。
[Respiratory state determination process, heart rate state determination process]
In the respiratory state determination step S2 and the heartbeat state determination step S3 (both are collectively referred to as a "biological state determination step"), the respiratory state determination unit 31 and the heartbeat state determination unit 32 of the biological state determination unit 3 are subjected to load signals sa to Based on sd, the respiratory state and heartbeat state of the subject S are determined.

人間の呼吸は胸郭及び横隔膜を移動させて、肺を膨張及び収縮させることにより行われる。ここで吸気時、すなわち肺が膨張する時には横隔膜は下方に下がり、内臓も下方に移動する。一方で呼気時、すなわち肺が収縮する時には横隔膜は上方に上がり、内臓も上方に移動する。本発明の発明者は、呼吸に関する研究により、被験者の重心が、呼吸に応じた内臓の上下移動により、被験者の上下方向(背骨の方向)、即ち被験者の体軸の延びる方向にほぼ沿って振動することを見出した。 Human breathing is performed by moving the thorax and diaphragm to inflate and contract the lungs. Here, during inspiration, that is, when the lungs expand, the diaphragm descends and the internal organs also move downward. On the other hand, when exhaling, that is, when the lungs contract, the diaphragm rises upward and the internal organs also move upward. According to a study on breathing, the inventor of the present invention vibrates the subject's center of gravity substantially along the subject's vertical direction (direction of the spine), that is, the direction in which the subject's body axis extends, due to the vertical movement of the internal organs in response to breathing. I found out to do.

以下では、被験者の重心の、被験者の呼吸に応じた、被験者の体軸方向に沿った振動を「呼吸振動」と呼ぶ。図4に両矢印bで示す通り、被験者Sの重心Gは、呼吸振動により、被験者Sの体軸SAの方向に沿って振動している。なお、両矢印bにより示される呼吸振動の振動量(振幅)は、説明上、誇張して表わされている。 Hereinafter, the vibration of the center of gravity of the subject along the body axis direction of the subject according to the breathing of the subject is referred to as “breathing vibration”. As shown by the double-headed arrow b in FIG. 4, the center of gravity G of the subject S vibrates along the direction of the body axis SA of the subject S due to the respiratory vibration. The vibration amount (amplitude) of the respiratory vibration indicated by the double-headed arrow b is exaggerated for the sake of explanation.

また、本発明の発明者は、被験者の重心が被験者の体軸に直交する方向にもわずかに振動していることを見出し、この振動が、被験者の心拍に応じた振動であることを見出した。 Further, the inventor of the present invention has found that the center of gravity of the subject vibrates slightly in the direction orthogonal to the body axis of the subject, and finds that this vibration corresponds to the heartbeat of the subject. ..

すなわち、本発明の発明者の知見によれば、被験者の重心は、被験者の心拍(心臓の拍動、即ち心臓の収縮と膨張)に伴って被験者の体軸方向とは異なる一軸方向に振動している。そのため、心拍は被験者の体軸方向と直交する方向の振動成分を有し、被験者の重心もまた、被験者の体軸に直交する方向にわずかに振動する成分を有する。 That is, according to the findings of the inventor of the present invention, the center of gravity of the subject vibrates in a uniaxial direction different from the body axis direction of the subject with the heartbeat of the subject (beating of the heart, that is, contraction and expansion of the heart). ing. Therefore, the heartbeat has a vibration component in the direction orthogonal to the body axis direction of the subject, and the center of gravity of the subject also has a component that slightly vibrates in the direction orthogonal to the body axis of the subject.

以下では、被験者の重心の、被験者の心拍に応じた、被験者の体軸方向とは異なる一軸方向に沿った振動を「心拍振動」と呼ぶ。また、心拍振動に含まれる、被験者の体軸方向と直交する方向に振動する成分を心拍振動成分と呼ぶ。被験者Sの心拍振動成分を、図4において両矢印hで示す。なお、両矢印hにより示される心拍振動成分の振動量(振幅)も、説明上、誇張して表わされている。 Hereinafter, the vibration of the center of gravity of the subject along the uniaxial direction different from the body axis direction of the subject according to the heartbeat of the subject is referred to as “heartbeat vibration”. Further, the component that vibrates in the direction orthogonal to the body axis direction of the subject, which is included in the heartbeat vibration, is called a heartbeat vibration component. The heartbeat vibration component of the subject S is shown by the double-headed arrow h in FIG. The vibration amount (amplitude) of the heartbeat vibration component indicated by the double-headed arrow h is also exaggerated for explanation.

本発明の発明者は、ベッド上の被験者からの荷重を検出するように配置した複数の荷重検出器からの複数の荷重信号の各々が、被験者の呼吸振動及び心拍振動に応じて特定の位相関係で変化していることに着目し、下記の原理により、複数の荷重信号間の差分を求めるだけで、被験者の重心位置を算出することなく、被験者の呼吸状態及び/又は心拍状態を決定できることを見出した。 The inventor of the present invention has a specific phase relationship in which each of a plurality of load signals from a plurality of load detectors arranged to detect a load from a subject on the bed has a specific phase relationship according to the subject's respiratory vibration and heartbeat vibration. By the following principle, it is possible to determine the respiratory state and / or the heartbeat state of the subject without calculating the position of the center of gravity of the subject by simply obtaining the difference between multiple load signals. I found it.

図4は、被験者Sが、ベッドBD上で、体軸SAがY軸と一致し、且つ呼吸振動の振動原点がベッドBDの中心Oに一致した状態で仰臥している場合の、荷重信号sa~sdの各々の、所定の5秒間における変化の様子を示す。なお、この5秒間において被験者Sに呼吸、心拍以外の体動は生じていない。 FIG. 4 shows the load signal sa when the subject S is lying on the bed BD with the body axis SA coincided with the Y axis and the vibration origin of the respiratory vibration coincided with the center O of the bed BD. The state of change in each of ~ sd in a predetermined 5 seconds is shown. In addition, no body movement other than respiration and heartbeat occurred in the subject S in these 5 seconds.

荷重信号sa~sdの各々は、被験者の呼吸(呼吸振動)に応じて変化する荷重成分(以下、「呼吸成分」と呼ぶ)と、被験者の心拍(心拍振動。より具体的には心拍振動成分)に応じて振動する荷重成分(以下、「心拍成分」と呼ぶ)とを含む。図4においては、説明の便宜上、荷重信号sa~sdの各々を呼吸成分と心拍成分とに周波数分離した状態で示している。 Each of the load signals sa to sd is a load component (hereinafter referred to as "respiratory component") that changes according to the subject's breathing (respiratory vibration) and the subject's heartbeat (heartbeat vibration, more specifically, the heartbeat vibration component). ) Includes a load component (hereinafter referred to as "heartbeat component") that vibrates in response to the above. In FIG. 4, for convenience of explanation, each of the load signals sa to sd is shown in a state where the respiratory component and the heartbeat component are frequency-separated.

図4の右下のグラフは、荷重検出器1aから出力された荷重信号saに含まれる呼吸成分saと心拍成分saとを示す。同様に、図4の左下のグラフは荷重検出器1bから出力された荷重信号sbに含まれる呼吸成分sbと心拍成分sbとを示し、図4の左上のグラフは荷重検出器1cから出力された荷重信号scに含まれる呼吸成分scと心拍成分scとを示し、図4の右上のグラフは荷重検出器1dから出力された荷重信号sdに含まれる呼吸成分sdと心拍成分sdとを示す。 The lower right graph of FIG. 4 shows the respiratory component sa b and the heart rate component sa h included in the load signal sa output from the load detector 1a. Similarly, the lower left graph of FIG. 4 shows the respiratory component sb b and the heartbeat component sb h included in the load signal sb output from the load detector 1b, and the upper left graph of FIG. 4 is output from the load detector 1c. The respiratory component sc b and the heartbeat component sc h included in the applied load signal sc are shown, and the graph on the upper right of FIG . 4 shows the respiratory component sdb and the heartbeat component sd included in the load signal sd output from the load detector 1d. Indicates h .

各信号の変動の様子(信号波形の形状)は、具体的には次の通りである。 Specifically, the state of fluctuation of each signal (shape of signal waveform) is as follows.

呼吸成分sa~sdは、いずれも被験者Sの呼吸振動に応じて振動(変動)しているため、振動の周期は互いに等しく、被験者Sの呼吸の周期を表わしている。 Since the respiratory components sa b to sdb all vibrate (variate) in response to the respiratory vibration of the subject S, the vibration cycles are equal to each other and represent the respiratory cycle of the subject S.

被験者Sの脚側(Y軸方向の正側)に配置された荷重検出器1aからの荷重信号saに含まれる呼吸成分saと、被験者Sの脚側に配置された荷重検出器1bからの荷重信号sbに含まれる呼吸成分sbとは同位相である。これは、前述のように被験者Sの呼吸による重心Gの移動方向が被験者Sの体軸SAの方向、即ちY軸方向にあり、Y軸方向において、荷重検出器1aと荷重検出器1bとが被験者Sの重心Gの位置に関して同じ側に位置しているためである。なお、呼吸成分saと呼吸成分sbとが同位相となることは後述の実験例から実証されている(図7(a)~図7(d)参照。図7(a)~図7(d)は呼吸成分と心拍成分とを含む波形であるが、後述する通り、呼吸成分の振幅は心拍成分の振幅に比較して大きいため、図7(a)~図7(d)からは各呼吸成分同士の位相関係を読み取ることができる)。 From the respiratory component sa b included in the load signal sa from the load detector 1a arranged on the leg side (positive side in the Y-axis direction) of the subject S and the load detector 1b arranged on the leg side of the subject S. It is in phase with the respiratory component sb b included in the load signal sb. This is because, as described above, the moving direction of the center of gravity G due to the breathing of the subject S is in the direction of the body axis SA of the subject S, that is, in the Y-axis direction, and the load detector 1a and the load detector 1b are in the Y-axis direction. This is because they are located on the same side with respect to the position of the center of gravity G of the subject S. It has been demonstrated from the experimental examples described later that the respiratory component sa b and the respiratory component s b b are in phase with each other (see FIGS. 7 (a) to 7 (d); FIGS. 7 (a) to 7 (7)). (D) is a waveform including a respiratory component and a heartbeat component, but as will be described later, since the amplitude of the respiratory component is larger than the amplitude of the heartbeat component, FIGS. 7 (a) to 7 (d) show. The phase relationship between each respiratory component can be read).

同様の理由により、被験者Sの頭側(Y軸方向の負側)に配置された荷重検出器1cからの荷重信号scに含まれる呼吸成分scと、被験者Sの頭側に配置された荷重検出器1dからの荷重信号sdに含まれる呼吸成分sdとは同位相である。 For the same reason, the respiratory component sc b included in the load signal sc from the load detector 1c placed on the head side (negative side in the Y-axis direction) of the subject S and the load placed on the head side of the subject S. It is in phase with the respiratory component sdb included in the load signal sd from the detector 1d.

被験者Sの脚側(Y軸方向の正側)に配置された荷重検出器1a、1bからの荷重信号sa、sbに含まれる呼吸成分sa、sbと、被験者Sの頭側(Y軸方向の負側)に配置された荷重検出器1c、1dからの荷重信号sc、sdに含まれる呼吸成分sc、sdとは、位相が互いに反転している。これは、被験者Sの呼吸による重心Gの移動方向が被験者Sの体軸SAの方向、即ちY軸方向にあり、Y軸方向において、荷重検出器1a、1bと荷重検出器1c、1dとが被験者Sの重心Gの位置に関して反対側に位置しているためである。なお、呼吸成分sa、sbと呼吸成分sb、scとが逆位相となることは後述の実験例から実証されている(図7(a)~図7(d)参照)。 Respiratory components sa b and sb b included in the load signals sa and sb from the load detectors 1a and 1b arranged on the leg side (positive side in the Y-axis direction) of the subject S, and the head side (Y-axis) of the subject S. The phases of the load signals sc from the load detectors 1c and 1d arranged on the negative side of the direction) and the respiratory components sc b and sd b included in the sd are reversed from each other. This is because the moving direction of the center of gravity G due to the breathing of the subject S is in the direction of the body axis SA of the subject S, that is, in the Y-axis direction, and the load detectors 1a and 1b and the load detectors 1c and 1d are in the Y-axis direction. This is because it is located on the opposite side of the position of the center of gravity G of the subject S. It has been demonstrated from the experimental examples described later that the respiratory components sa b and sb b and the respiratory components s b c and sc c have opposite phases (see FIGS. 7 (a) to 7 (d)).

心拍成分sa~sdは、いずれも被験者Sの心拍振動成分に応じて振動(変動)しているため、振動の周期は互いに等しく、被験者Sの心拍の周期を表わす。 Since the heartbeat components sa h to sd h all vibrate (variate) according to the heartbeat vibration component of the subject S, the vibration cycles are equal to each other and represent the heartbeat cycle of the subject S.

被験者Sの右側(X軸方向の正側)に配置された荷重検出器1aからの荷重信号saに含まれる心拍成分saと、被験者Sの右側に配置された荷重検出器1dからの荷重信号sdに含まれる心拍成分sdとは同位相である。これは、前述のように、被験者Sの心拍による重心Gの移動の成分(心拍振動成分)が被験者の体軸と直交する方向、即ちX軸方向にあり、X軸方向において、荷重検出器1a、1dが、被験者Sの重心Gに関して同じ側に位置しているためである。 The heartbeat component sa h included in the load signal sa from the load detector 1a arranged on the right side (positive side in the X-axis direction) of the subject S, and the load signal from the load detector 1d arranged on the right side of the subject S. It is in phase with the heartbeat component sdh contained in sd. This is because, as described above, the component of the movement of the center of gravity G due to the heartbeat of the subject S (heartbeat vibration component) is in the direction orthogonal to the body axis of the subject, that is, in the X-axis direction, and the load detector 1a is in the X-axis direction. This is because 1d is located on the same side with respect to the center of gravity G of the subject S.

同様の理由により、被験者Sの左側(X軸方向の負側)に配置された荷重検出器1bからの荷重信号sbに含まれる心拍成分sbと、被験者Sの左側に配置された荷重検出器1cからの荷重信号scに含まれる心拍成分scとは同位相である。 For the same reason, the heartbeat component sb h contained in the load signal sb from the load detector 1b arranged on the left side (negative side in the X-axis direction) of the subject S and the load detector arranged on the left side of the subject S. It is in phase with the heartbeat component sc h included in the load signal sc from 1c.

被験者Sの右側(X軸方向の正側)に配置された荷重検出器1a、1dからの荷重信号sa、sdに含まれる心拍成分sa、sdと、被験者Sの左側(X軸方向の負側)に配置された荷重検出器1b、1cからの荷重信号sb、scに含まれる呼吸成分sb、scとは、位相が互いに反転している。これは、被験者Sの心拍による重心Gの移動の成分(心拍振動成分)が被験者の体軸と直交する方向、即ちX軸方向にあり、X軸方向において、荷重検出器1a、1dと荷重検出器1b、1cとが被験者Sの重心Gの位置に関して反対側に位置しているためである。 The heart rate components sa h and sd h included in the load signals sa and sd from the load detectors 1a and 1d arranged on the right side of the subject S (on the positive side in the X-axis direction) and the left side of the subject S (in the X-axis direction). The phases of the load signals sb from the load detectors 1b and 1c arranged on the negative side) and the respiratory components sb h and sc h included in sc are reversed from each other. This is because the component of the movement of the center of gravity G due to the heartbeat of the subject S (heartbeat vibration component) is in the direction orthogonal to the body axis of the subject, that is, in the X-axis direction, and the load detectors 1a and 1d and the load detection are performed in the X-axis direction. This is because the vessels 1b and 1c are located on the opposite sides of the position of the center of gravity G of the subject S.

呼吸成分sa~sdと、心拍成分sa~sdとを比較すると、呼吸成分sa~sdの周期が心拍成分sa~sdの周期よりも長い。これは、人間の呼吸の回数は毎分12~20回程度であり、周期は約3~5秒(周波数は約0.2~0.33Hz)であるのに対し、人間の心拍の回数、即ち心拍数は毎分30~200回程度であり、周期は約0.3~2秒(周波数は約0.5~3.3Hz)であることに対応する。 Comparing the respiratory components sa b to sdb and the heart rate components sa h to sd h , the cycle of the respiratory components sa b to sdb is longer than the cycle of the heart rate components sa h to sd h . This is because the number of human breaths is about 12 to 20 times per minute, and the cycle is about 3 to 5 seconds (frequency is about 0.2 to 0.33 Hz), whereas the number of human heartbeats, That is, the heart rate is about 30 to 200 times per minute, and the cycle is about 0.3 to 2 seconds (frequency is about 0.5 to 3.3 Hz).

また、一般に、呼吸振動による重心の移動量は心拍振動による重心の移動量より大きい。したがって、呼吸成分の振幅は、心拍成分の振幅よりも大きい。 Further, in general, the amount of movement of the center of gravity due to respiratory vibration is larger than the amount of movement of the center of gravity due to heartbeat vibration. Therefore, the amplitude of the respiratory component is larger than the amplitude of the heartbeat component.

荷重信号sa~sdの各々がこのような呼吸成分と心拍成分を含むことに基づき、荷重信号間の差分を求めることにより、被験者の呼吸状態と心拍状態を決定することができる。 Based on the fact that each of the load signals sa to sd contains such a respiratory component and a heartbeat component, the respiratory state and the heartbeat state of the subject can be determined by obtaining the difference between the load signals.

呼吸状態は、Y軸方向の一方側に配置された荷重検出器からの荷重信号と、Y軸方向の他方側に配置された荷重検出器からの荷重信号との差分を求めて、当該差分から決定することができる。具体的には例えば、Y方向正側の荷重検出器1a、1bからの荷重信号sa、sbの和と、Y方向負側の荷重検出器1c、1dからの荷重信号sc、sdの和との差分を求めてY軸信号SYを得て、Y軸信号SYから被験者Sの呼吸状態を決定する。これを式で表わすと

Figure 2022021807000002
である。 For the breathing state, the difference between the load signal from the load detector arranged on one side in the Y-axis direction and the load signal from the load detector arranged on the other side in the Y-axis direction is obtained, and the difference is used. Can be decided. Specifically, for example, the sum of the load signals sa and sb from the load detectors 1a and 1b on the positive side in the Y direction and the sum of the load signals sc and sd from the load detectors 1c and 1d on the negative side in the Y direction. The difference is obtained to obtain the Y-axis signal SY, and the respiratory state of the subject S is determined from the Y-axis signal SY. Expressing this as an expression
Figure 2022021807000002
Is.

荷重信号saと荷重信号sbの和においては、呼吸成分saと呼吸成分sbとは同位相であるため強めあい、心拍成分saと心拍成分sbとは逆位相であるため打消し合う。同様に、荷重信号scと荷重信号sdの和においては、呼吸成分scと呼吸成分sdとは同位相であるため強めあい、心拍成分scと心拍成分sdとは逆位相であるため打消し合う。荷重信号saと荷重信号sbの和と荷重信号scと荷重信号sdの和との差分においては、呼吸成分sa、sbと呼吸成分sc、sdとは逆位相であるため強め合う。すなわち、被験者Sが、ベッドBD上で、体軸SAがY軸と一致し、且つ呼吸振動の振動原点がベッドBDの中心Oに一致した状態で仰臥している場合には、Y軸信号SYは、Y軸方向に振動する被験者Sの重心Gの呼吸振動のみを反映したものとなる。 In the sum of the load signal sa and the load signal sb, the respiratory component sa b and the respiratory component sb b strengthen each other because they are in the same phase, and the heartbeat component sa h and the heartbeat component sb h cancel each other out because they are in the opposite phase. .. Similarly, in the sum of the load signal sc and the load signal sd, the respiratory component sc b and the respiratory component sdb are strengthened because they are in the same phase, and the heartbeat component sc h and the heartbeat component sd h are in opposite phases. Cancel each other. In the difference between the sum of the load signal sa and the load signal sb and the sum of the load signal sc and the load signal sd, the respiratory components sa b and sb b and the respiratory components sc b and sdb are in opposite phases, so that they are strengthened. That is, when the subject S is lying on the bed BD in a state where the body axis SA coincides with the Y axis and the vibration origin of the respiratory vibration coincides with the center O of the bed BD, the Y axis signal SY Reflects only the respiratory vibration of the center of gravity G of the subject S vibrating in the Y-axis direction.

Y軸信号SY(=sa+sb-sc-sd)を図5に示す。Y軸信号SYの振動の周期は、荷重信号sa~sdの呼吸成分sa~sdの周期に等しく、振幅は数式1からすると、呼吸成分sa~sdの振幅の絶対値の和である。なお、図5においては、Y軸信号SYの振幅は、図4に示す呼吸成分sa~sdの振幅の絶対値の和に比較して圧縮して描かれている。 The Y-axis signal SY (= sa + sb-sc-sd) is shown in FIG. The vibration cycle of the Y-axis signal SY is equal to the cycle of the respiratory components sa b to sdb of the load signal sa to sd, and the amplitude is the sum of the absolute values of the amplitudes of the respiratory components sa b to sdb according to Equation 1. be. In FIG. 5, the amplitude of the Y-axis signal SY is drawn compressed in comparison with the sum of the absolute values of the amplitudes of the respiratory components sa b to sdb shown in FIG .

Y軸信号SYの周期に基づいて、被験者Sの呼吸数等を算出することができる。具体的には、Y軸信号SYの1周期が被験者Sの呼吸1回に相当する。即ち、Y軸信号SY自体が被験者Sの呼吸状態を表わす呼吸信号であり、且つY軸信号SYに基づいてより詳細な呼吸状態を決定することもできる。 Based on the cycle of the Y-axis signal SY, the respiratory rate of the subject S and the like can be calculated. Specifically, one cycle of the Y-axis signal SY corresponds to one breath of the subject S. That is, the Y-axis signal SY itself is a respiratory signal representing the respiratory state of the subject S, and a more detailed respiratory state can be determined based on the Y-axis signal SY.

心拍状態は、X軸方向の一方側に配置された荷重検出器からの荷重信号と、X軸方向の他方側に配置された荷重検出器からの荷重信号との差分を求めて、当該差分から決定することができる。具体的には例えば、X方向正側の荷重検出器1a、1dからの荷重信号sa、sdの和と、X方向負側の荷重検出器1b、1cからの荷重信号sb、scの和との差分を求めてX軸信号を得て、X軸信号から、被験者Sの心拍状態を決定する。これを式で表わすと

Figure 2022021807000003
である。 For the heartbeat state, the difference between the load signal from the load detector arranged on one side in the X-axis direction and the load signal from the load detector arranged on the other side in the X-axis direction is obtained, and the difference is used. Can be decided. Specifically, for example, the sum of the load signals sa and sd from the load detectors 1a and 1d on the positive side in the X direction and the sum of the load signals sb and sc from the load detectors 1b and 1c on the negative side in the X direction. The difference is obtained to obtain an X-axis signal, and the heartbeat state of the subject S is determined from the X-axis signal. Expressing this as an expression
Figure 2022021807000003
Is.

荷重信号saと荷重信号sdの和においては、心拍成分saと心拍成分sdとは同位相であるため強めあい、呼吸成分saと呼吸成分sdとは逆位相であるため打消し合う。同様に、荷重信号sbと荷重信号scの和においては、心拍成分sbと心拍成分scとは同位相であるため強めあい、呼吸成分sbと呼吸成分scとは逆位相であるため打消し合う。荷重信号saと荷重信号sdの和と、荷重信号sbと荷重信号scの和との差分においては、心拍成分sa、sdと心拍成分sb、scとは逆位相であるため強め合う。すなわち、被験者Sが、ベッドBD上で、体軸SAがY軸と一致し、且つ呼吸振動の振動原点がベッドBDの中心Oに一致した状態で仰臥している場合には、X軸信号SXは、X軸方向に振動する被験者Sの重心Gの心拍振動成分のみを反映したものとなる。 In the sum of the load signal sa and the load signal sd, the heartbeat component sa h and the heartbeat component sd h are in phase with each other, so that they are strengthened. .. Similarly, in the sum of the load signal sb and the load signal sc, the heartbeat component sb h and the heartbeat component sc h are in phase with each other and thus strengthen each other, and the respiratory component sb b and the respiratory component sc b are in opposite phase. Cancel each other. In the difference between the sum of the load signal sa and the load signal sd and the sum of the load signal sb and the load signal sc, the heartbeat components sa h and sdh and the heartbeat components sb h and sc h are in opposite phases, so that they strengthen each other. .. That is, when the subject S is lying on the bed BD in a state where the body axis SA coincides with the Y axis and the vibration origin of the respiratory vibration coincides with the center O of the bed BD, the X-axis signal SX Reflects only the heartbeat vibration component of the center of gravity G of the subject S vibrating in the X-axis direction.

X軸信号SX(=sa-sb-sc+sd)を図6(a)に示す。X軸信号SXの振動の周期は、荷重信号sa~sdの心拍成分sa~sdの周期に等しく、振幅は、数式2からすると、心拍成分sa~sdの振幅の絶対値の和である。なお、図6(a)においては、X軸信号SXの振幅は、図4に示す心拍成分sa~sdの振幅の絶対値の和に比較して圧縮して描かれている。 The X-axis signal SX (= sa-sb-sc + sd) is shown in FIG. 6 (a). The vibration cycle of the X-axis signal SX is equal to the cycle of the heartbeat components sa h to sdh of the load signals sa to sd, and the amplitude is the sum of the absolute values of the amplitudes of the heartbeat components sa h to sd h according to Equation 2. Is. In FIG. 6A, the amplitude of the X-axis signal SX is drawn compressed in comparison with the sum of the absolute values of the amplitudes of the heartbeat components sah to sdh shown in FIG.

X軸信号SXの周期から、被験者Sの心拍数等を算出することができる。具体的には、X軸信号SXの1周期が被験者Sの心拍1回に相当する。即ち、X軸信号SX自体が被験者Sの心拍状態を表わす心拍信号であり、且つX軸信号SXに基づいてより詳細な心拍状態を決定することもできる。 From the cycle of the X-axis signal SX, the heart rate and the like of the subject S can be calculated. Specifically, one cycle of the X-axis signal SX corresponds to one heartbeat of the subject S. That is, the X-axis signal SX itself is a heartbeat signal representing the heartbeat state of the subject S, and a more detailed heartbeat state can be determined based on the X-axis signal SX.

なお、上記においては、生体状態決定部3が被験者Sの呼吸状態及び心拍状態を決定する原理について、被験者Sが、その体軸SAをベッドBDの中心O上でベッドBDのY軸と一致させた状態で仰臥している場合を例として説明した。しかしながら、上記の原理に基づく被験者Sの呼吸状態及び心拍状態の決定は、被験者Sの位置等が変化しても行うことができる。上記の原理に基づく被験者Sの呼吸状態及び心拍状態の決定は、被験者Sの体軸SAの方向がベッドBDのY軸方向(長手方向)に略一致した状態であれば、実行可能である。 In the above, regarding the principle that the biological state determining unit 3 determines the respiratory state and the heartbeat state of the subject S, the subject S makes the body axis SA coincide with the Y axis of the bed BD on the center O of the bed BD. The case of lying on the back was explained as an example. However, the determination of the respiratory state and the heartbeat state of the subject S based on the above principle can be performed even if the position of the subject S changes. The determination of the respiratory state and the heartbeat state of the subject S based on the above principle is feasible as long as the direction of the body axis SA of the subject S substantially coincides with the Y-axis direction (longitudinal direction) of the bed BD.

また、被験者Sの呼吸状態の決定は、被験者Sの体軸SAが、ベッドBDのY軸方向に対してある程度傾いている場合にも行うことができる。なぜなら、心拍振動の振幅は呼吸振動の振幅に比較して小さく、体軸SAの方向、即ち呼吸振動の振動方向がY軸に対してある程度傾いていても、呼吸振動のY軸方向成分を有意な大きさで検出することができるからである。 Further, the determination of the respiratory state of the subject S can be performed even when the body axis SA of the subject S is tilted to some extent with respect to the Y-axis direction of the bed BD. This is because the amplitude of the heartbeat vibration is smaller than the amplitude of the respiratory vibration, and even if the direction of the body axis SA, that is, the vibration direction of the respiratory vibration is tilted to some extent with respect to the Y axis, the Y-axis direction component of the respiratory vibration is significant. This is because it can be detected with a large size.

一方で、上記の原理に基づく被験者Sの心拍状態の決定は、被験者Sの体軸SAが、ベッドBDのY軸方向に対して傾いている場合は以下のような問題が生じる。呼吸振動の振幅が心拍振動の振幅に比較して大きく、体軸SAの方向、即ち呼吸振動の振動方向がY軸に対して傾くと、呼吸振動のX軸成分が現れるため、心拍振動成分のみを有意な大きさで検出することが容易でなくなる。 On the other hand, the determination of the heartbeat state of the subject S based on the above principle causes the following problems when the body axis SA of the subject S is tilted with respect to the Y-axis direction of the bed BD. When the amplitude of the respiratory vibration is larger than the amplitude of the heartbeat vibration and the direction of the body axis SA, that is, the vibration direction of the respiratory vibration is tilted with respect to the Y axis, the X-axis component of the respiratory vibration appears, so only the heartbeat vibration component. Will not be easy to detect in significant magnitude.

この場合は、信号補正部33が、心拍振動成分のみを有意な大きさで検出することができるよう、後述する方法によりX軸信号SXを補正する。 In this case, the signal correction unit 33 corrects the X-axis signal SX by a method described later so that only the heartbeat vibration component can be detected with a significant magnitude.

図7(a)~図7(d)に、本実施形態の生体状態モニタリングシステム100の荷重検出部1により、ある期間(0s~60s)に検出された荷重信号sa~sdを示す。呼吸状態決定部31は、このような荷重信号sa~sdを荷重検出部1より受け取り、これらに基づいて呼吸状態を決定する。 7 (a) to 7 (d) show the load signals sa to sd detected in a certain period (0s to 60s) by the load detection unit 1 of the biological condition monitoring system 100 of the present embodiment. The respiratory state determination unit 31 receives such load signals sa to sd from the load detection unit 1 and determines the respiratory state based on these.

呼吸状態決定部31はまず、荷重信号saと荷重信号sbの和と、荷重信号scと荷重信号sdの和との差分(sa+sb-sc-sd)を求めてY軸信号SYを算出(取得)する。算出されたY軸信号SYを図8に示す。 First, the respiratory state determination unit 31 calculates (acquires) the Y-axis signal SY by obtaining the difference (sa + sb-sc-sd) between the sum of the load signal sa and the load signal sb and the sum of the load signal sc and the load signal sd. do. The calculated Y-axis signal SY is shown in FIG.

ここで、図7(a)~図7(d)に示す荷重信号sa~sdが検出されたある期間(0s~60s)と同一の期間に、同一の被験者Sに対して行った、呼吸流量計を用いた計測の結果(呼吸流量波形)を図9に示す。呼吸流量計は、日本光電工業株式会社製の差圧トランスデューサTP-602Tを用いた。 Here, the respiratory flow rate performed on the same subject S during the same period (0s to 60s) when the load signals sa to sd shown in FIGS. 7 (a) to 7 (d) were detected. The result of the measurement using the meter (respiratory flow rate waveform) is shown in FIG. As the respiratory flow meter, a differential pressure transducer TP-602T manufactured by Nihon Kohden Co., Ltd. was used.

図8のY軸信号SYと、図9の呼吸流量波形との比較に基づき、次のことが言える。
(1)Y軸信号SYの周期は、呼吸流量波形の周期に略等しい。
(2)Y軸信号SYの振幅と、呼吸流量波形の振幅との間に相関関係が存在する。具体的には、0~20秒あたりの、呼吸流量波形が略同一の振幅で振動している期間では、Y軸信号SYも略同一の振幅で振動している。35秒、50秒あたりの、呼吸流量波形の振幅が大きくなっている時刻では、Y軸信号SYの振幅も大きくなっている。30秒、45秒あたりの呼吸流量波形の振幅が小さくなっている時刻では、Y軸信号SYの振幅も小さくなっている。
Based on the comparison between the Y-axis signal SY in FIG. 8 and the respiratory flow rate waveform in FIG. 9, the following can be said.
(1) The cycle of the Y-axis signal SY is substantially equal to the cycle of the respiratory flow waveform.
(2) There is a correlation between the amplitude of the Y-axis signal SY and the amplitude of the respiratory flow waveform. Specifically, during the period in which the breathing flow waveform oscillates with substantially the same amplitude per 0 to 20 seconds, the Y-axis signal SY also oscillates with substantially the same amplitude. At the time when the amplitude of the respiratory flow waveform is large around 35 seconds and 50 seconds, the amplitude of the Y-axis signal SY is also large. At the time when the amplitude of the respiratory flow rate waveform per 30 seconds and 45 seconds is small, the amplitude of the Y-axis signal SY is also small.

Y軸信号SYと呼吸流量波形とのこのような対応関係より、Y軸信号SYは少なくとも呼吸流量波形と同程度に被験者Sの呼吸状態を反映している(呼吸に関する情報を含んでいる)ことがわかる。そのため、Y軸信号SYに基づく呼吸数等の算出は、呼吸流量波形に基づく呼吸数等の算出と同程度又はそれ以上の精度で行うことができる。 Due to this correspondence between the Y-axis signal SY and the respiratory flow waveform, the Y-axis signal SY reflects the respiratory state of the subject S at least to the same extent as the respiratory flow waveform (includes information on breathing). I understand. Therefore, the calculation of the respiratory rate or the like based on the Y-axis signal SY can be performed with the same or higher accuracy as the calculation of the respiratory rate or the like based on the respiratory flow waveform.

また、図9に示す呼吸流量波形の面積に基づいて被験者の呼吸換気量(一回換気量)を求めることができるが、Y軸信号SYは呼吸流量波形と上述の対応関係を有するため、Y軸信号SYの波形の面積に基づいて被験者の呼吸換気量を算出することも可能である。 Further, the respiratory ventilation volume (tidal volume) of the subject can be obtained based on the area of the respiratory flow flow waveform shown in FIG. 9, but since the Y-axis signal SY has the above-mentioned correspondence with the respiratory flow flow waveform, Y It is also possible to calculate the respiratory ventilation volume of the subject based on the area of the waveform of the axis signal SY.

図10(a)~図10(d)に、本実施形態の生体状態モニタリングシステム100の荷重検出部1により、ある期間(20s~30s)に検出された荷重信号sa~sdを示す。心拍状態決定部32は、このような荷重信号sa~sdを荷重検出部1より受け取り、これらに基づいて心拍状態を決定する。 10 (a) to 10 (d) show load signals sa to sd detected in a certain period (20s to 30s) by the load detection unit 1 of the biological condition monitoring system 100 of the present embodiment. The heartbeat state determination unit 32 receives such load signals sa to sd from the load detection unit 1 and determines the heartbeat state based on these.

心拍状態決定部32はまず、荷重信号saと荷重信号sdの和と、荷重信号sbと荷重信号scの和との差分(sa-sb-sc+sd)を求めて、X軸信号SXを算出(取得)する。算出されたX軸信号SXを図11に示す。 First, the heart rate state determination unit 32 calculates (acquires) the X-axis signal SX by obtaining the difference (sa-sb-sc + sd) between the sum of the load signal sa and the load signal sd and the sum of the load signal sb and the load signal sc. )do. The calculated X-axis signal SX is shown in FIG.

ここで、図10(a)~図10(d)に示す荷重信号sa~sdが検出されたある期間(20s~30s)と同一の期間に、同一の被験者Sに対して行った、指先血圧計(NIBP)を用いた計測の結果(指先血圧波形)を図12に示す。指先血圧計は、バイオリサーチセンター株式会社製のヒト用NIBPシステム(型式ML282‐SS)を用いた。 Here, the fingertip blood pressure performed on the same subject S during the same period (20s to 30s) when the load signals sa to sd shown in FIGS. 10 (a) to 10 (d) were detected. The result of the measurement (fingertip blood pressure waveform) using the meter (NIBP) is shown in FIG. As the fingertip sphygmomanometer, a human NIBP system (model ML282-SS) manufactured by BioResearch Center Co., Ltd. was used.

図11のX軸信号SXと、図12の指先血圧波形との比較に基づき、次のことが言える。
(1)X軸信号SXの周期は、指先血圧波形の周期に略等しい。
(2)X軸信号SXの振幅と、指先血圧波形の振幅との間に相関関係が存在する。具体的には、指先血圧波形の振幅もX軸信号SXの振幅も、時間的にほとんど同一である。
Based on the comparison between the X-axis signal SX of FIG. 11 and the fingertip blood pressure waveform of FIG. 12, the following can be said.
(1) The cycle of the X-axis signal SX is substantially equal to the cycle of the fingertip blood pressure waveform.
(2) There is a correlation between the amplitude of the X-axis signal SX and the amplitude of the fingertip blood pressure waveform. Specifically, the amplitude of the fingertip blood pressure waveform and the amplitude of the X-axis signal SX are almost the same in time.

X軸信号SXと指先血圧波形とのこのような対応関係より、X軸信号SXは少なくとも指先血圧波形と同程度に被験者Sの心拍状態を反映している(心拍に関する情報を含んでいる)ことがわかる。そのため、X軸信号SXに基づく心拍数等の算出は、指先血圧波形に基づく心拍数等の算出と同程度又はそれ以上の精度で行うことができる。 Due to this correspondence between the X-axis signal SX and the fingertip blood pressure waveform, the X-axis signal SX reflects the heartbeat state of the subject S at least to the same extent as the fingertip blood pressure waveform (contains information on the heartbeat). I understand. Therefore, the calculation of the heart rate or the like based on the X-axis signal SX can be performed with the same or higher accuracy as the calculation of the heart rate or the like based on the fingertip blood pressure waveform.

また、図12に示す指先血圧波形に基づいて被験者の心拍出量を求めることができるが、X軸信号SXは指先血圧波形と上述の対応関係を有するため、X軸信号SXの波形に基づいて被験者の心拍出量を算出することも可能である。 Further, the cardiac output of the subject can be obtained based on the fingertip blood pressure waveform shown in FIG. 12, but since the X-axis signal SX has the above-mentioned correspondence with the fingertip blood pressure waveform, it is based on the waveform of the X-axis signal SX. It is also possible to calculate the cardiac output of the subject.

[信号補正工程]
信号補正工程S4では、信号補正部33が、被験者SのX軸信号SXの補正を行う。
[Signal correction process]
In the signal correction step S4, the signal correction unit 33 corrects the X-axis signal SX of the subject S.

上述の通り、ベッドBD上の被験者Sの体軸SAの延びる方向が、ベッドBDのY軸方向に対して傾いている場合には、呼吸振動のX軸成分が比較的大きく現れ、心拍振動成分のみを有意な大きさで検出することが容易でなくなる。 As described above, when the extending direction of the body axis SA of the subject S on the bed BD is tilted with respect to the Y-axis direction of the bed BD, the X-axis component of the respiratory vibration appears relatively large, and the heartbeat vibration component appears. It will not be easy to detect only in significant magnitude.

被験者Sの重心GがベッドBDの中心Oにあり、且つ被験者Sの体軸SAの延びる方向がベッドBDのY軸方向に対して反時計回り方向に角度θだけ傾いている状況下(図13(a))で得られるX軸信号SXの一例を図6(b)に示す。図6(b)に示すX軸信号SXの波形を図5に示すY軸信号SYの波形及び図6(a)に示すX軸信号SXの波形と比較すると、その周期は、図6(a)に示すX軸信号SXの波形の周期と大きく異なっており、図5に示すY軸信号SYの波形の周期に略一致していることが分かる。すなわち、図6(b)に示すX軸信号SXから被験者Sの心拍数等の心拍状態を決定することが容易ではないことがわかる。なお、被験者Sの体軸SAの方向がベッドBDのY軸方向に対して傾くことによってX軸信号SXの周期が呼吸振動の周期に略一致することは、後述の実験例(図15~図17参照)から実証されている。 Under the situation where the center of gravity G of the subject S is at the center O of the bed BD and the extending direction of the body axis SA of the subject S is tilted by an angle θ in the counterclockwise direction with respect to the Y-axis direction of the bed BD (FIG. 13). An example of the X-axis signal SX obtained in (a)) is shown in FIG. 6 (b). Comparing the waveform of the X-axis signal SX shown in FIG. 6B with the waveform of the Y-axis signal SY shown in FIG. 5 and the waveform of the X-axis signal SX shown in FIG. ) Is significantly different from the period of the waveform of the X-axis signal SX, and it can be seen that the period of the waveform of the Y-axis signal SY shown in FIG. 5 is substantially the same. That is, it can be seen that it is not easy to determine the heart rate state such as the heart rate of the subject S from the X-axis signal SX shown in FIG. 6 (b). It should be noted that the period of the X-axis signal SX substantially coincides with the period of respiratory vibration when the direction of the body axis SA of the subject S is tilted with respect to the Y-axis direction of the bed BD, which is an experimental example described later (FIGS. 15 to 15). 17).

そこで信号補正部33は、被験者Sの体軸SAの延びる方向がベッドBDのY軸方向に対して傾いていると判断した場合に、呼吸振動のX軸成分が小さくなるようにX軸信号SXを補正する。このように補正されたX軸信号SXからは、心拍振動成分を有意な大きさで検出することができる。 Therefore, when the signal correction unit 33 determines that the extending direction of the body axis SA of the subject S is tilted with respect to the Y-axis direction of the bed BD, the X-axis signal SX so that the X-axis component of the respiratory vibration becomes smaller. To correct. From the X-axis signal SX corrected in this way, the heartbeat vibration component can be detected with a significant magnitude.

(1)角度θの決定
まず、信号補正部33は、被験者Sの体軸SAの延びる方向とベッドBDのY軸との間の角度θ(傾き)を決定する。決定は、具体的には例えば、次の方法により行う。
(1) Determination of angle θ First, the signal correction unit 33 determines the angle θ (inclination) between the extending direction of the body axis SA of the subject S and the Y axis of the bed BD. Specifically, the determination is made by, for example, the following method.

荷重検出器1a、1b、1c、1dからの荷重信号sa、sb、sc、sdの各サンプリング時刻毎の値を、それぞれsa(t)、sb(t)、sc(t)、sd(t)とし、Y軸信号SY、X軸信号SXの各サンプリング時刻毎の値を、それぞれSX(t)、SY(t)とすると、数式1、数式2より、

Figure 2022021807000004
Figure 2022021807000005
である。 The values of the load signals sa, sb, sc, and sd from the load detectors 1a, 1b, 1c, and 1d for each sampling time are set to sa (t), sb (t), sc (t), and sd (t), respectively. Assuming that the values of the Y-axis signal SY and the X-axis signal SX for each sampling time are SX (t) and SY (t), respectively, from Equation 1 and Equation 2,
Figure 2022021807000004
Figure 2022021807000005
Is.

ここで、荷重検出器1a、1dがX軸方向において同じ位置に配置されており、荷重検出器1b、1cがX軸方向において同じ位置に配置されているため、被験者Sの重心GがベッドBD上でX軸方向に移動した場合には、sa(t)とsd(t)の変化量は同一であり、sb(t)とsc(t)の変化量は同一である。したがって、SY(t)は被験者Sの重心GがX軸方向に移動した場合には右辺の各項が打消し合うため変化せず、被験者Sの重心GがY軸方向に移動した場合にのみ、重心Gの移動量に比例し且つ荷重検出器1a、1bと荷重検出器1c、1dとの間の離間距離Dyに反比例した大きさの変化を示す。 Here, since the load detectors 1a and 1d are arranged at the same position in the X-axis direction and the load detectors 1b and 1c are arranged at the same position in the X-axis direction, the center of gravity G of the subject S is the bed BD. When moving in the X-axis direction above, the amount of change in sa (t) and sd (t) is the same, and the amount of change in sb (t) and sc (t) is the same. Therefore, SY (t) does not change when the center of gravity G of the subject S moves in the X-axis direction because the terms on the right side cancel each other out, and only when the center of gravity G of the subject S moves in the Y-axis direction. It shows a change in magnitude proportional to the amount of movement of the center of gravity G and inversely proportional to the separation distance Dy between the load detectors 1a and 1b and the load detectors 1c and 1d.

一方、荷重検出器1a、1bはY軸方向において同じ位置に配置されており、荷重検出器1c、1dもY軸方向において同じ位置に配置されているため、被験者Sの重心GがベッドBD上でY軸方向に移動した場合には、sa(t)とsb(t)の変化量は同一であり、sc(t)とsd(t)の変化量は同一である。したがって、SX(t)は被験者Sの重心GがY軸方向に移動した場合には右辺の各項が打消し合うため変化せず、被験者Sの重心GがX軸方向に移動した場合にのみ、重心Gの移動量に比例し且つ荷重検出器1a、1dと荷重検出器1b、1cとの間の離間距離Dxに反比例した大きさの変化を示す。 On the other hand, since the load detectors 1a and 1b are arranged at the same position in the Y-axis direction and the load detectors 1c and 1d are also arranged at the same position in the Y-axis direction, the center of gravity G of the subject S is on the bed BD. When moving in the Y-axis direction, the amount of change in sa (t) and sb (t) is the same, and the amount of change in sc (t) and sd (t) is the same. Therefore, SX (t) does not change when the center of gravity G of the subject S moves in the Y-axis direction because the terms on the right side cancel each other out, and only when the center of gravity G of the subject S moves in the X-axis direction. It shows a change in magnitude proportional to the amount of movement of the center of gravity G and inversely proportional to the separation distance Dx between the load detectors 1a and 1d and the load detectors 1b and 1c.

そのため、x(t)、y(t)を次のように定め、

Figure 2022021807000006
Figure 2022021807000007
xy平面上に点P(x(t)、y(t))をプロットすると、ベッドBD上での重心Gの移動とxy平面上での点Pの移動は、次の対応関係を有する。 Therefore, x (t) and y (t) are defined as follows.
Figure 2022021807000006
Figure 2022021807000007
When the point P (x (t), y (t)) is plotted on the xy plane, the movement of the center of gravity G on the bed BD and the movement of the point P on the xy plane have the following correspondence.

(一)点Pは、重心GがベッドBDの中心Oに位置する時に、xy平面の原点oに位置する。
(二)点Pは、重心GがX軸の正方向/負方向に移動した時にx軸の正方向/負方向に重心Gの移動距離に比例した距離だけ移動する。
(三)点Pは、重心GがY軸の正方向/負方向に移動した時にy軸の正方向/負方向に重心Gの移動距離に比例した距離だけ移動する。
(四)重心GのX軸方向の移動距離とこれに応じた点Pのx軸方向の移動距離との割合は、重心GのY軸方向の移動距離とこれに応じた点Pのy軸方向の移動距離との割合に等しく、共に被験者Sの体重に基づく定数となる。したがって、XY軸に対する重心Gの移動の方向と、xy軸に対する点Pの移動の方向とは互いに等しい。
以下では、点Pが、重心Gの移動に応じて上記の対応関係を有して移動することを「点Pは重心Gの移動に対応して移動する」と呼ぶ。
(1) The point P is located at the origin o of the xy plane when the center of gravity G is located at the center O of the bed BD.
(2) The point P moves in the positive / negative direction of the x-axis by a distance proportional to the moving distance of the center of gravity G when the center of gravity G moves in the positive / negative direction of the X-axis.
(3) The point P moves in the positive / negative direction of the y-axis by a distance proportional to the moving distance of the center of gravity G when the center of gravity G moves in the positive / negative direction of the Y-axis.
(4) The ratio of the moving distance of the center of gravity G in the X-axis direction to the corresponding moving distance of the point P in the x-axis direction is the moving distance of the center of gravity G in the Y-axis direction and the corresponding y-axis of the point P. It is equal to the ratio to the moving distance in the direction, and both are constants based on the weight of the subject S. Therefore, the direction of movement of the center of gravity G with respect to the XY axis and the direction of movement of the point P with respect to the xy axis are equal to each other.
Hereinafter, the movement of the point P having the above-mentioned correspondence relationship according to the movement of the center of gravity G is referred to as "the point P moves in correspondence with the movement of the center of gravity G".

このように、点Pが重心Gの移動に対応して移動するため、重心Gの呼吸振動に対応して振動する点Pの振動の方向とy軸との間の角度は、重心Gの呼吸振動の方向(即ち体軸SAの方向)とベッドBDのY軸との間の角度に等しい。よって、点Pの移動に基づいて角度θを求めることができる。 In this way, since the point P moves in response to the movement of the center of gravity G, the angle between the direction of vibration of the point P and the y-axis that vibrates in response to the breathing vibration of the center of gravity G is the breathing of the center of gravity G. It is equal to the angle between the direction of vibration (ie, the direction of the body axis SA) and the Y axis of the bed BD. Therefore, the angle θ can be obtained based on the movement of the point P.

図13(a)に示すように、被験者SがベッドBD上に、体軸SAをY軸から反時計回りに角度θだけ傾けた状態で横たわっている場合には、点Pは、被験者Sの重心Gの呼吸振動及び心拍振動に対応してxy平面上を移動し、その軌跡は、長手方向の寸法が呼吸振動の振幅に応じた大きさであり、短手方向の寸法が心拍振動成分の振幅に応じた大きさである矩形の領域R内に描かれる(図13(b))。領域Rの長手方向はy軸から反時計回りに角度θだけ傾いている。領域R内の点Pの軌跡は、被験者Sの呼吸振動に対応して領域Rの長手方向に振動し、同時に被験者Sの心拍振動に対応して領域Rの短手方向に振動する点Pの移動の軌跡となる。 As shown in FIG. 13 (a), when the subject S lies on the bed BD with the body axis SA tilted counterclockwise by an angle θ from the Y axis, the point P is the subject S. It moves on the xy plane in response to the respiratory vibration and heartbeat vibration of the center of gravity G, and its trajectory has a longitudinal dimension corresponding to the amplitude of the respiratory vibration and a lateral dimension of the heartbeat vibration component. It is drawn in a rectangular area R having a size corresponding to the amplitude (FIG. 13 (b)). The longitudinal direction of the region R is tilted counterclockwise by an angle θ from the y-axis. The locus of the point P in the region R vibrates in the longitudinal direction of the region R corresponding to the respiratory vibration of the subject S, and at the same time, the locus of the point P vibrates in the lateral direction of the region R corresponding to the heartbeat vibration of the subject S. It becomes the trajectory of movement.

重心Gの呼吸振動に対応して振動する点Pの振動の方向とy軸との間の角度(即ち、体軸SAとY軸との間の角度θ)を求める具体的な方法として、例えば、点Pの移動の軌跡のサンプリング周期を心拍の周期(約0.3秒~約2秒)よりも大きくし、各サンプリング点から次のサンプリング点へと向かうベクトルを求める。これらのベクトルの最頻値を求め、求めた最頻値ベクトルの方向を呼吸振動に対応して振動する点Pの振動の方向とみなして角度θを決定することができる。或いは、点Pの移動の軌跡のサンプリング周期を心拍の周期(約0.3秒~約2秒)よりも大きくし、各サンプリング点を繋ぐ近似直線を最小二乗法で求め、求めた直線の方向を呼吸振動に対応して振動する点Pの振動の方向とみなして角度θを決定してもよい。 As a specific method for obtaining the angle between the y-axis and the vibration direction of the point P that vibrates in response to the respiratory vibration of the center of gravity G (that is, the angle θ between the body axis SA and the Y-axis), for example. , The sampling cycle of the locus of movement of the point P is made larger than the cycle of the heartbeat (about 0.3 seconds to about 2 seconds), and the vector from each sampling point to the next sampling point is obtained. The mode of these vectors can be obtained, and the angle θ can be determined by regarding the direction of the obtained mode vector as the vibration direction of the point P that vibrates in response to the respiratory vibration. Alternatively, the sampling cycle of the locus of movement of the point P is made larger than the cycle of the heartbeat (about 0.3 seconds to about 2 seconds), and an approximate straight line connecting each sampling point is obtained by the minimum square method, and the direction of the obtained straight line is obtained. May be regarded as the vibration direction of the point P that vibrates in response to the breathing vibration, and the angle θ may be determined.

(2)X軸信号SXの補正
信号補正部33は、求めた角度θを所定値と比較し、角度θが所定値を超えている場合には、被験者Sの体軸SAがベッドBDのY軸に対して傾いているとみなしてX軸信号SXの補正を行う。一方、信号補正部33は、被験者Sの体軸SAとベッドBDのY軸との間の角度がこの所定値以下であれば被験者Sの体軸SAとベッドBDのY軸とは略一致しているとみなし、X軸信号SXの補正は行わない。
(2) Correction of X-axis signal SX The signal correction unit 33 compares the obtained angle θ with a predetermined value, and when the angle θ exceeds the predetermined value, the body axis SA of the subject S is Y of the bed BD. The X-axis signal SX is corrected by assuming that it is tilted with respect to the axis. On the other hand, if the angle between the body axis SA of the subject S and the Y axis of the bed BD is equal to or less than this predetermined value, the signal correction unit 33 substantially coincides with the body axis SA of the subject S and the Y axis of the bed BD. The X-axis signal SX is not corrected.

X軸信号SXの補正は、具体的には次の原理により行う。 Specifically, the correction of the X-axis signal SX is performed by the following principle.

図14(a)のように、被験者Sの体軸SAがベッドBDのY軸方向に一致している場合には、上述の通り、被験者Sの重心GのX軸方向の移動は被験者Sの心拍振動成分のみに基づき、被験者Sの重心GのY軸方向の移動は被験者Sの呼吸振動成分のみに基づく(実際には、心拍振動のY軸成分も影響しているが無視できる程度に小さい)。 As shown in FIG. 14A, when the body axis SA of the subject S coincides with the Y-axis direction of the bed BD, the movement of the center of gravity G of the subject S in the X-axis direction of the subject S is as described above. Based only on the heartbeat vibration component, the movement of the center of gravity G of the subject S in the Y-axis direction is based only on the respiratory vibration component of the subject S (actually, the Y-axis component of the heartbeat vibration is also affected, but it is negligibly small. ).

この場合、点Pは、被験者Sの重心Gの呼吸振動及び心拍振動に対応してy軸方向及びx軸方向に振動し、その軌跡は、短手方向がx軸方向に一致し、長手方向がy軸方向に一致した領域R内に描かれる(図14(b))。領域Rの長手方向の寸法は呼吸振動の振幅に比例しており、短手方向の寸法は心拍振動成分の振幅に比例している。領域R内を移動する点Pの軌跡は、被験者Sの呼吸振動に対応して領域Rの長手方向に振動し、同時に被験者Sの心拍振動に対応して領域Rの短手方向に振動する点Pの移動の軌跡となる。 In this case, the point P vibrates in the y-axis direction and the x-axis direction in response to the respiratory vibration and the heartbeat vibration of the center of gravity G of the subject S, and the locus thereof coincides with the x-axis direction in the lateral direction and is in the longitudinal direction. Is drawn in the region R corresponding to the y-axis direction (FIG. 14 (b)). The longitudinal dimension of the region R is proportional to the amplitude of the respiratory vibration, and the lateral dimension is proportional to the amplitude of the heartbeat vibration component. The locus of the point P moving in the region R is a point that vibrates in the longitudinal direction of the region R in response to the respiratory vibration of the subject S, and at the same time, vibrates in the lateral direction of the region R in response to the heartbeat vibration of the subject S. It becomes the locus of movement of P.

この軌跡をx軸に投影して描かれる時間波形(xの時間的変動を表わす波形。以下、「x軸信号Sxの波形」と呼ぶ)を図14(b)の下側に示す。上述した点Pの移動の様子から理解されるとおり、x軸信号Sxの波形の周期は心拍振動の周期に一致し、振幅は心拍振動成分の振幅に比例した大きさとなる。 A time waveform (a waveform representing a temporal fluctuation of x; hereinafter referred to as a “x-axis signal Sx waveform”) drawn by projecting this locus on the x-axis is shown at the lower side of FIG. 14 (b). As can be understood from the movement of the point P described above, the cycle of the waveform of the x-axis signal Sx corresponds to the cycle of the heartbeat vibration, and the amplitude becomes a magnitude proportional to the amplitude of the heartbeat vibration component.

なお、x軸信号Sxの波形は、図6(a)に示すX軸信号SXの波形と、振幅のみが異なり、周期及び位相は一致している。これは両波形が共に被験者SがベッドBDの中央に体軸SAとベッドBDのY軸とを一致させて横たわっている状況下で得られるものであり、且つ、x(t)=(Dx/2)・SX(t)(数式5)の関係を有するためである。右辺のx(t)は図14(b)の波形の各サンプリング時刻の値であり、右辺のSX(t)は図6(a)の波形の各サンプリング時刻の値である。 The waveform of the x-axis signal Sx differs from the waveform of the X-axis signal SX shown in FIG. 6A only in the amplitude, and the period and the phase are the same. Both waveforms are obtained in the situation where the subject S lies in the center of the bed BD with the body axis SA and the Y axis of the bed BD aligned with each other, and x (t) = (Dx /). 2) ・ This is because it has a relationship of SX (t) (formula 5). The x (t) on the right side is the value of each sampling time of the waveform of FIG. 14 (b), and the SX (t) of the right side is the value of each sampling time of the waveform of FIG. 6 (a).

また、上記の軌跡をy軸に投影して描かれる時間波形(yの時間的変動を表わす波形。以下、「y軸信号Syの波形」と呼ぶ)を図14(b)の右側に示す。上述した点Pの移動の様子より理解されるとおり、y軸信号Syの波形の周期は呼吸振動の周期に一致し、振幅は呼吸振動の振幅に比例した大きさとなる。 Further, a time waveform (a waveform representing a temporal fluctuation of y; hereinafter referred to as a “y-axis signal Sy waveform”) drawn by projecting the above locus on the y-axis is shown on the right side of FIG. 14 (b). As understood from the movement of the point P described above, the period of the waveform of the y-axis signal Sy corresponds to the period of the respiratory vibration, and the amplitude becomes a magnitude proportional to the amplitude of the respiratory vibration.

なお、y軸信号Syの波形は、図5に示すY軸信号SYの波形と、振幅のみが異なり、周期及び位相は一致している。これは両波形が共に被験者SがベッドBDの中央に体軸SAとベッドBDのY軸とを一致させて横たわっている状況下で得られるものであり、且つ、y(t)=(Dy/2)・SY(t)(数式6)の関係を有するためである。右辺のy(t)は図14(b)の波形の各サンプリング時刻の値であり、右辺のSY(t)は図5の波形の各サンプリング時刻の値である。 The waveform of the y-axis signal Sy differs from the waveform of the Y-axis signal SY shown in FIG. 5 only in amplitude, and has the same period and phase. Both waveforms are obtained in the situation where the subject S lies in the center of the bed BD with the body axis SA and the Y axis of the bed BD aligned with each other, and y (t) = (Dy /). 2) ・ This is because it has a relationship of SY (t) (formula 6). Y (t) on the right side is the value of each sampling time of the waveform of FIG. 14 (b), and SY (t) of the right side is the value of each sampling time of the waveform of FIG.

これに対して、図13(a)のように、被験者Sの体軸SAがベッドBDのY軸方向に対して傾いている場合には、被験者Sの重心GのX軸方向の移動は、被験者Sの呼吸振動のX軸成分の影響を受ける。また、被験者Sの重心GのY軸方向の移動は、被験者Sの呼吸振動のY軸成分のみに基づくものとなる(実際には、心拍振動のY軸成分も影響しているが無視できる程度に小さい)。 On the other hand, as shown in FIG. 13A, when the body axis SA of the subject S is tilted with respect to the Y-axis direction of the bed BD, the movement of the center of gravity G of the subject S in the X-axis direction is Subject S is affected by the X-axis component of the respiratory vibration. Further, the movement of the center of gravity G of the subject S in the Y-axis direction is based only on the Y-axis component of the respiratory vibration of the subject S (actually, the Y-axis component of the heartbeat vibration also affects it, but it can be ignored. Small).

この場合、点Pは、被験者Sの重心Gの呼吸振動及び心拍振動に対応してxy平面上を移動し、その軌跡は、長手方向がy軸方向に対して傾斜した領域R内に描かれる(図13(b))。領域R内を移動する点Pの軌跡は、被験者Sの呼吸振動に対応して領域Rの長手方向に振動し、同時に被験者Sの心拍振動に対応して領域Rの短手方向に振動する点Pの移動の軌跡となる。 In this case, the point P moves on the xy plane in response to the respiratory vibration and the heartbeat vibration of the center of gravity G of the subject S, and the locus is drawn in the region R whose longitudinal direction is inclined with respect to the y-axis direction. (FIG. 13 (b)). The locus of the point P moving in the region R is a point that vibrates in the longitudinal direction of the region R in response to the respiratory vibration of the subject S, and at the same time, vibrates in the lateral direction of the region R in response to the heartbeat vibration of the subject S. It becomes the locus of movement of P.

この軌跡をx軸に投影して描かれる時間波形(「x軸信号Sxの波形」)を図13(b)の下側に示す。上述した点Pの移動の様子から理解されるとおり、x軸信号Sxの波形の周期は呼吸振動の周期に一致し、振幅は呼吸振動のX軸成分の振幅に比例した大きさとなる。 A time waveform (“waveform of x-axis signal Sx”) drawn by projecting this locus on the x-axis is shown on the lower side of FIG. 13 (b). As can be understood from the movement of the point P described above, the period of the waveform of the x-axis signal Sx corresponds to the period of the respiratory vibration, and the amplitude has a magnitude proportional to the amplitude of the X-axis component of the respiratory vibration.

なお、x軸信号Sxの波形は、図6(b)に示すX軸信号SXの波形と、振幅のみが異なり、周期及び位相は一致している。これは両波形が共に被験者SがベッドBDの中央に体軸SAをベッドBDのY軸から反時計回りに角度θだけ傾けて横たわっている状況下で得られるものであり、且つx(t)=(Dx/2)・SX(t)(数式5)の関係を有するためである。 The waveform of the x-axis signal Sx differs from the waveform of the X-axis signal SX shown in FIG. 6B only in the amplitude, and the period and the phase are the same. Both waveforms are obtained under the condition that the subject S lies in the center of the bed BD with the body axis SA tilted counterclockwise by an angle θ from the Y axis of the bed BD, and x (t). This is because it has a relationship of = (Dx / 2) and SX (t) (formula 5).

また、上記の軌跡をy軸に投影して描かれる時間波形(「y軸信号Syの波形」)を図13(b)の右側に示す。上述した点Pの移動の様子から理解されるとおり、y軸信号Syの波形の周期は呼吸振動の周期に一致し、振幅は呼吸振動のY軸成分の振幅に比例した大きさとなる。この波形と図14(b)の右側の波形とを比べると、図13(b)の波形の振幅が図14(b)の波形の振幅よりもわずかに小さいほかは略同一の波形である。このことからも、上述の通り、体軸SAの方向、即ち呼吸振動の振動方向がY軸に対してある程度傾いていても、呼吸振動のY軸成分を有意な大きさで検出できることが分かる。 Further, a time waveform (“y-axis signal Sy waveform”) drawn by projecting the above locus on the y-axis is shown on the right side of FIG. 13 (b). As can be understood from the movement of the point P described above, the period of the waveform of the y-axis signal Sy corresponds to the period of the respiratory vibration, and the amplitude becomes a magnitude proportional to the amplitude of the Y-axis component of the respiratory vibration. Comparing this waveform with the waveform on the right side of FIG. 14 (b), the waveforms are substantially the same except that the amplitude of the waveform of FIG. 13 (b) is slightly smaller than the amplitude of the waveform of FIG. 14 (b). From this, as described above, it can be seen that the Y-axis component of the respiratory vibration can be detected with a significant magnitude even if the direction of the body axis SA, that is, the vibration direction of the respiratory vibration is tilted to some extent with respect to the Y-axis.

以上より、被験者Sの体軸SAがベッドBDのY軸に対して角度θだけ傾いており、点Pの軌跡に対応するX軸信号Sxにおいて呼吸振動の成分が支配的である場合には、点Pの軌跡を角度θだけ回転して、回転後の軌跡からX軸信号Sxを取り直すことで、呼吸振動の成分を除去又は小さくできることが分かる。 From the above, when the body axis SA of the subject S is tilted by an angle θ with respect to the Y axis of the bed BD and the component of respiratory vibration is dominant in the X-axis signal Sx corresponding to the locus of the point P, It can be seen that the component of respiratory vibration can be removed or reduced by rotating the locus of the point P by an angle θ and regaining the X-axis signal Sx from the locus after the rotation.

具体的には、図13(a)に示すように、被験者Sの体軸SAがベッドBDのY軸に対して角度θだけ傾いている場合には、X軸信号SX、Y軸信号SYの各サンプリング時刻の値SX(t)、SY(t)に基づいて決定される点P(x(t)、y(t))及びその軌跡を、次の回転行列を用いて、xy平面の原点oを中心に角度θだけ回転する(点P及びその軌跡を反時計回りに角度θ回転する場合は数式7中のθの値を正とし、時計回りに角度θ回転するときは数式7中のθの値を負とする)。

Figure 2022021807000008
Specifically, as shown in FIG. 13A, when the body axis SA of the subject S is tilted by an angle θ with respect to the Y axis of the bed BD, the X-axis signal SX and the Y-axis signal SY The points P (x (t), y (t)) determined based on the values SX (t) and SY (t) at each sampling time and their trajectories are the origins of the xy plane using the following rotation matrix. Rotate by an angle θ around o (when the point P and its locus are rotated by an angle θ counterclockwise, the value of θ in the formula 7 is positive, and when the point P and its locus are rotated by an angle θ, the value in the formula 7 is rotated. The value of θ is negative).
Figure 2022021807000008

これにより、長手方向がy軸方向に対して傾いた領域R(図13(b))内の点P(x(t)、y(t))及びその軌跡が、長手方向がy軸方向に一致した領域R’(図14(b))内の点P’(x’(t)、y’(t))及びその軌跡に変換(補正)される。その後、各サンプリング時刻における値がx’(t)である補正x軸信号Sx’、又は各サンプリング時刻における値がSX’(t)(=(2/Dx)・x’(t))である補正X軸信号SX’を求め、補正x軸信号Sx’又は補正X軸信号SX’から被験者Sの心拍状態を決定する。 As a result, the points P (x (t), y (t)) in the region R (FIG. 13 (b)) whose longitudinal direction is inclined with respect to the y-axis direction and their loci are oriented in the y-axis direction in the longitudinal direction. It is converted (corrected) into a point P'(x'(t), y'(t)) in the coincident region R'(FIG. 14 (b)) and its locus. After that, the corrected x-axis signal Sx'where the value at each sampling time is x'(t), or the value at each sampling time is SX'(t) (= (2 / Dx) · x'(t)). The corrected X-axis signal SX'is obtained, and the heartbeat state of the subject S is determined from the corrected x-axis signal Sx'or the corrected X-axis signal SX'.

図15(a)に被験者Sの体軸SAが、ベッドBDのY軸から反時計回りに角度θだけ傾いている状態における、点P(x(t)、y(t))の軌跡Tの一例を示す。軌跡Tは、略矩形の領域R内に描かれており、領域Rの長手方向は、y軸から反時計回りに角度θだけ傾いている。また、この軌跡Tが描かれた期間におけるx(t)の時間的変動を示す波形(x軸信号Sxの波形。X軸信号SXと数式5とに基づいて得られた波形である)を図16(a)に、yの時間的変動を示す波形(y軸信号Syの波形。Y軸信号SYと数式6とに基づいて得られた波形である)を図17(a)に示す。 FIG. 15A shows the locus T of the point P (x (t), y (t)) in a state where the body axis SA of the subject S is tilted counterclockwise by an angle θ from the Y axis of the bed BD. An example is shown. The locus T is drawn in a substantially rectangular region R, and the longitudinal direction of the region R is tilted counterclockwise by an angle θ from the y-axis. Further, a waveform showing a temporal variation of x (t) during the period in which this locus T is drawn (a waveform of the x-axis signal Sx, which is a waveform obtained based on the X-axis signal SX and the equation 5) is shown in the figure. 16 (a) shows a waveform showing a temporal variation of y (a waveform of the y-axis signal Sy, which is a waveform obtained based on the Y-axis signal SY and the equation 6), which is shown in FIG. 17 (a).

図15(b)に、図15(a)に描かれた軌跡Tを、数式7により変換(補正)して得られた軌跡T’を示す。軌跡T’は、略矩形の領域R’内に描かれており、領域R’の長手方向、短手方向は、それぞれy軸方向、x軸方向に一致している。また、この軌跡T’が描かれた期間におけるx’(t)の時間的変動を示す波形(補正x軸信号Sx’の波形)を図16(b)に、y’(t)の時間的変動を示す波形(変換y軸信号Sy’の波形)を図17(b)に示す。 FIG. 15 (b) shows the locus T'obtained by converting (correcting) the locus T drawn in FIG. 15 (a) by the mathematical formula 7. The locus T'is drawn in a substantially rectangular region R', and the longitudinal direction and the lateral direction of the region R'coincide with the y-axis direction and the x-axis direction, respectively. Further, a waveform (waveform of the corrected x-axis signal Sx') showing a temporal variation of x'(t) during the period in which this locus T'is drawn is shown in FIG. 16 (b) with respect to y'(t). The waveform showing the fluctuation (the waveform of the converted y-axis signal Sy') is shown in FIG. 17 (b).

図16(a)と図16(b)との比較から、周期が約4秒であり、呼吸振動の周期(約3~5秒)の範囲内にあるx軸信号Sxが、周期が約0.5秒であり、心拍振動の周期(約0.3~2秒)の範囲内にある補正x軸信号Sx’に補正されていることが分かる。この補正x軸信号Sx’から、被験者Sの心拍状態を決定することができる。 From the comparison between FIGS. 16 (a) and 16 (b), the x-axis signal Sx having a period of about 4 seconds and within the range of the period of respiratory vibration (about 3 to 5 seconds) has a period of about 0. It is .5 seconds, and it can be seen that the correction x-axis signal Sx'is corrected within the range of the heartbeat vibration cycle (about 0.3 to 2 seconds). From this corrected x-axis signal Sx', the heartbeat state of the subject S can be determined.

図17(a)と図17(b)との比較から、y軸信号Syと変換y軸信号Sy’とは、変換y軸信号Sy’の振幅がY軸信号Syの振幅に比べてわずかに大きい他は、大きな違いはない。したがって、変換y軸信号Sy’を用いて被験者Sの呼吸状態を決定してもよく、y軸信号Syを用いて被験者Sの呼吸状態を決定してもよい。変換y軸信号Sy’を用いることとすれば、変換前のy軸信号Syを複製して保存する必要がないため有利である。 From the comparison between FIGS. 17 (a) and 17 (b), the amplitude of the converted y-axis signal Sy'is slightly larger than the amplitude of the Y-axis signal Sy in the y-axis signal Sy and the converted y-axis signal Sy'. Other than the big one, there is no big difference. Therefore, the converted y-axis signal Sy'may be used to determine the respiratory state of the subject S, or the y-axis signal Sy may be used to determine the respiratory state of the subject S. It is advantageous to use the converted y-axis signal Sy'because it is not necessary to duplicate and store the y-axis signal Sy before conversion.

[表示工程]
表示工程S5においては、生体状態決定部3が、呼吸状態決定工程S2で決定した呼吸状態、及び心拍状態決定工程S3で決定した心拍状態を、一例として液晶モニターである表示部5に表示する。表示部5に表示される被験者Sの呼吸状態及び心拍状態は、Y軸信号SY(補正が行われた場合は変換y軸信号Sy’)及びX軸信号SX(補正が行われた場合は補正x軸信号Sx’及び/又は補正X軸信号SX)の波形であってもよく、これらに基づいて導出された呼吸数、呼吸換気量、心拍数、心拍出量等であってもよい。
[Display process]
In the display step S5, the biological state determination unit 3 displays the respiratory state determined in the respiratory state determination step S2 and the heartbeat state determined in the heartbeat state determination step S3 on the display unit 5 which is a liquid crystal monitor as an example. The respiratory state and heartbeat state of the subject S displayed on the display unit 5 are Y-axis signal SY (converted y-axis signal Sy'if correction is performed) and X-axis signal SX (correction if correction is performed). It may be the waveform of the x-axis signal Sx'and / or the corrected X-axis signal SX), and may be the respiratory rate, respiratory ventilation volume, heart rate, heart rate output, etc. derived based on these.

本実施形態の生体状態モニタリングシステム100及び生体状態モニタリング方法の効果を次にまとめる。 The effects of the biological condition monitoring system 100 and the biological condition monitoring method of the present embodiment are summarized below.

本実施形態の生体状態モニタリングシステム100は、従来技術で行われてきたような被験者Sの重心位置の算出を行うことなく、複数の荷重検出器からの複数の荷重信号の差分を求めることで、被験者Sの呼吸状態及び心拍状態を決定することができる。したがって、システムの構成を簡易とすることができる。 The biological condition monitoring system 100 of the present embodiment obtains the difference between a plurality of load signals from a plurality of load detectors without calculating the position of the center of gravity of the subject S as in the prior art. The respiratory state and heartbeat state of the subject S can be determined. Therefore, the system configuration can be simplified.

本実施形態の生体状態モニタリングシステム100及び生体状態モニタリング方法は、被験者Sの重心位置を算出することなく被験者Sの呼吸状態及び心拍状態を決定するため、演算処理の負担が少ない。 Since the biological condition monitoring system 100 and the biological condition monitoring method of the present embodiment determine the respiratory condition and the heartbeat state of the subject S without calculating the position of the center of gravity of the subject S, the burden of arithmetic processing is small.

本実施形態の生体状態モニタリングシステム100及び生体状態モニタリング方法は、被験者Sの体軸SAがベッドBDのY軸に対して傾いており、被験者Sの呼吸(重心Gの呼吸振動)がX軸信号SXに影響を及ぼしている場合であっても、信号補正部33によりX軸信号SXを補正して呼吸(呼吸振動)の影響を小さくし、心拍状態の決定を行うことができる。 In the biological condition monitoring system 100 and the biological condition monitoring method of the present embodiment, the body axis SA of the subject S is tilted with respect to the Y axis of the bed BD, and the respiration of the subject S (respiratory vibration of the center of gravity G) is an X-axis signal. Even when the SX is affected, the signal correction unit 33 can correct the X-axis signal SX to reduce the influence of respiration (respiratory vibration) and determine the heartbeat state.

本実施形態の生体状態モニタリングシステム100及び生体状態モニタリング方法は、複数の荷重検出器からの複数の荷重信号の差分を取り、複数の荷重信号の各々に含まれる呼吸成分を強めあうことにより呼吸信号を求めている。また、複数の荷重検出器からの複数の荷重信号の差分を取り、複数の荷重信号の各々に含まれる心拍成分を強めあうことにより心拍信号を求めている。したがって、被験者SがベッドBD上の偏った位置におり、ある荷重検出器から出力される荷重信号の強度が十分でない場合であっても、十分な強度を有する呼吸信号(呼吸状態を表わす信号)及び心拍信号(心拍状態を表わす信号)を算出(取得)することができる。 The biological condition monitoring system 100 and the biological condition monitoring method of the present embodiment take the difference between a plurality of load signals from a plurality of load detectors and strengthen the respiratory components contained in each of the plurality of load signals to enhance the respiratory signal. Seeking. Further, the heartbeat signal is obtained by taking the difference between the plurality of load signals from the plurality of load detectors and strengthening the heartbeat components contained in each of the plurality of load signals. Therefore, even if the subject S is in an unbalanced position on the bed BD and the strength of the load signal output from a certain load detector is not sufficient, a breathing signal having sufficient strength (a signal indicating a breathing state). And the heart rate signal (signal indicating the heart rate state) can be calculated (acquired).

本実施形態の生体状態モニタリングシステム100及び生体状態モニタリング方法は、体軸SAがY軸に対してある程度傾いていても、良好に呼吸状態を決定することができる。 The biological condition monitoring system 100 and the biological condition monitoring method of the present embodiment can satisfactorily determine the respiratory condition even if the body axis SA is tilted to some extent with respect to the Y axis.

<変形例>
上記実施形態の生体状態モニタリングシステム100、及び生体状態モニタリング方法において、次の変形態様を使用することもできる。
<Modification example>
The following modifications can also be used in the biological condition monitoring system 100 and the biological condition monitoring method of the above embodiment.

上記実施形態の生体状態モニタリングシステム100及び生体状態モニタリング方法においては、xy平面における点P(x(t)、y(t))の移動の軌跡に基づいて被験者Sの体軸SAの延びる方向とベッドBDのY軸方向との間の角度θを求めていたが、これには限られない。 In the biological condition monitoring system 100 and the biological condition monitoring method of the above embodiment, the direction in which the body axis SA of the subject S extends based on the locus of movement of the point P (x (t), y (t)) in the xy plane. The angle θ between the bed BD and the Y-axis direction has been obtained, but the present invention is not limited to this.

その他の方法として、ベッドBD上での被験者Sの重心G、及び重心Gの軌跡GTを求めて、軌跡GTに基づいて被験者Sの体軸SAの延びる方向、及び体軸SAとY軸との間の角度θを求めてもよい。ベッドBD上での被験者Sの重心Gの位置は、荷重検出器1a~1dからの荷重信号sa~sdの各サンプリング時刻における値と、ベッドBDの中心Oに対する荷重検出器1a~1dの位置とに基づいて算出することができる。軌跡GTは各サンプリング時刻における重心Gを繋ぐことで求められる。 As another method, the center of gravity G of the subject S on the bed BD and the locus GT of the center of gravity G are obtained, and the extending direction of the body axis SA of the subject S and the body axes SA and the Y axis are determined based on the locus GT. The angle θ between them may be obtained. The positions of the center of gravity G of the subject S on the bed BD are the values at each sampling time of the load signals sa to sd from the load detectors 1a to 1d and the positions of the load detectors 1a to 1d with respect to the center O of the bed BD. Can be calculated based on. The locus GT is obtained by connecting the center of gravity G at each sampling time.

重心Gの軌跡GTに基づいて被験者Sの体軸SAの延びる方向を求める方法として、具体的には例えば、被験者の心拍の周期よりも大きいサンプリング周期でサンプリングした重心Gの軌跡GTに基づき、各サンプリング点から次のサンプリング点へと向かうベクトルを求める。そしてこれらのベクトルの最頻値を求め、求めた最頻値ベクトルの方向を重心Gの呼吸振動の振動方向、即ち体軸SAの方向とする。 As a method of obtaining the extending direction of the body axis SA of the subject S based on the locus GT of the center of gravity G, specifically, for example, based on the locus GT of the center of gravity G sampled in a sampling cycle larger than the heartbeat cycle of the subject, each Find the vector from one sampling point to the next. Then, the mode values of these vectors are obtained, and the direction of the obtained mode value vector is set as the vibration direction of the respiratory vibration of the center of gravity G, that is, the direction of the body axis SA.

被験者Sの体軸SAの方向の決定及び/又は角度θの決定は、必ずしも信号補正部33で行う必要はなく、生体状態モニタリングシステム100内の任意の構成により実行し得る。一例として、呼吸状態決定部31や心拍状態決定部32が実行してもよく、生体状態決定部3の中に、別途、体軸(角度)決定部を設けてもよい。また、生体状態モニタリングシステム100の外部で決定した体軸SAの方向及び又は角度θを、入力部7等を介して入力する構成としてもよい。 The determination of the direction of the body axis SA of the subject S and / or the determination of the angle θ does not necessarily have to be performed by the signal correction unit 33, and may be performed by any configuration in the biological condition monitoring system 100. As an example, the respiratory state determination unit 31 or the heartbeat state determination unit 32 may be executed, or a body axis (angle) determination unit may be separately provided in the biological state determination unit 3. Further, the direction and / or angle θ of the body axis SA determined outside the biological condition monitoring system 100 may be input via the input unit 7 or the like.

上記実施形態の生体状態モニタリングシステム100においては、信号補正部33は、被験者Sの体軸SAの方向とベッドBDのY軸方向との間の角度θを所定値と比較し、角度θが所定値を超えている場合にX軸信号SXの補正を行っていたがこれには限られない。信号補正部33は、このような比較及び判断を行うことなく、常にX軸信号SX(及びY軸信号SY)の補正を行ってよい。被験者Sの体軸SAとベッドBDのY軸が一致しており角度θ=0の場合には、補正後の信号は補正前の信号と同一となる。 In the biological condition monitoring system 100 of the above embodiment, the signal correction unit 33 compares the angle θ between the direction of the body axis SA of the subject S and the Y-axis direction of the bed BD with a predetermined value, and the angle θ is predetermined. When the value is exceeded, the X-axis signal SX is corrected, but the present invention is not limited to this. The signal correction unit 33 may always correct the X-axis signal SX (and the Y-axis signal SY) without making such a comparison and determination. When the body axis SA of the subject S and the Y axis of the bed BD coincide with each other and the angle θ = 0, the corrected signal is the same as the uncorrected signal.

上記実施形態の生体状態モニタリングシステム100においては、信号補正部33において、リアルタイムで角度θを求めて、X軸信号SXを補正していたが、これには限られない。例えば、記憶部4に記憶させたX軸信号SXに対して、事後的に補正を行って、補正x軸信号Sx’及び/又は補正X軸信号SX’を求めてもよい。 In the biological condition monitoring system 100 of the above embodiment, the signal correction unit 33 obtains the angle θ in real time and corrects the X-axis signal SX, but the present invention is not limited to this. For example, the X-axis signal SX stored in the storage unit 4 may be corrected after the fact to obtain the corrected x-axis signal Sx'and / or the corrected X-axis signal SX'.

上記実施形態の生体状態モニタリングシステム100及び生体状態モニタリング方法においては、変換y軸信号Sy’を用いて被験者Sの呼吸状態を決定してもよく、Y軸信号SYを用いて被験者Sの呼吸状態を決定してもよい。しかしながら、被験者Sの体軸SAの延びる方向とベッドBDのY軸との間の角度θが大きくなるにしたがって、Y軸信号SYの振幅は小さくなる。したがって、より振幅の大きい信号を用いることが、呼吸数等を求める上で有利であれば、変換y軸信号Sy’、又は各サンプリング時刻における値がSY’(t)(=(2/Dy)・y’(t))である変換Y軸信号SY’を補正信号とみなし、この補正信号から被験者Sの呼吸状態を決定してもよい。即ち、信号補正部33が、X軸信号SX及びY軸信号SYの両方を補正してもよい。 In the biological condition monitoring system 100 and the biological condition monitoring method of the above-described embodiment, the respiratory state of the subject S may be determined using the converted y-axis signal Sy', and the respiratory state of the subject S may be determined using the Y-axis signal SY. May be determined. However, as the angle θ between the extending direction of the body axis SA of the subject S and the Y axis of the bed BD increases, the amplitude of the Y-axis signal SY decreases. Therefore, if it is advantageous to use a signal having a larger amplitude in obtaining the respiratory rate or the like, the converted y-axis signal Sy'or the value at each sampling time is SY'(t) (= (2 / Dy)). The converted Y-axis signal SY', which is y'(t)), may be regarded as a correction signal, and the respiratory state of the subject S may be determined from this correction signal. That is, the signal correction unit 33 may correct both the X-axis signal SX and the Y-axis signal SY.

上記実施形態の生体状態モニタリングシステム100及び生体状態モニタリング方法においては、生体状態決定部3が実行する呼吸状態決定工程S2において、荷重検出器1aからの荷重信号saと荷重検出器1bからの荷重信号sbの和と、荷重検出器1cからの荷重信号scと荷重検出器1dからの荷重信号sdの和との差分を求めて、Y軸信号SYを得ていた。しかしながら、これには限られず、荷重信号saと荷重信号sbの一方と、荷重信号scと荷重信号sdの一方との差分を求めて、Y軸信号SYを得ることもできる。この場合も、差分を求めることにより、互いに逆位相である呼吸成分同士の強めあいが生じる。 In the biological condition monitoring system 100 and the biological condition monitoring method of the above embodiment, in the respiratory condition determination step S2 executed by the biological condition determination unit 3, the load signal sa from the load detector 1a and the load signal from the load detector 1b The difference between the sum of sb and the sum of the load signal sc from the load detector 1c and the load signal sd from the load detector 1d was obtained to obtain the Y-axis signal SY. However, the present invention is not limited to this, and the Y-axis signal SY can be obtained by obtaining the difference between one of the load signal sa and the load signal sb and one of the load signal sc and the load signal sd. In this case as well, by obtaining the difference, the respiratory components having opposite phases are strengthened.

同様に、荷重信号saと荷重信号sdの一方と、荷重信号sbと荷重信号scの一方との差分を求めて、X軸信号SXを得ることもできる。この場合も、差分を求めることにより、互いに逆位相である心拍成分同士の強めあいが生じる。なおこの場合は、差分を求めることにより同位相である呼吸成分同士の打ち消し合いが生じるように、荷重信号saと荷重信号sbの差分、又は荷重信号sdと荷重信号scの差分を用いることが望ましい。 Similarly, the X-axis signal SX can be obtained by obtaining the difference between one of the load signal sa and the load signal sd and one of the load signal sb and the load signal sc. In this case as well, by obtaining the difference, the heartbeat components having opposite phases are strengthened. In this case, it is desirable to use the difference between the load signal sa and the load signal sb or the difference between the load signal sd and the load signal sc so that the respiratory components having the same phase cancel each other out by obtaining the difference. ..

上記実施形態の生体状態モニタリングシステム100の生体状態決定部3は、呼吸状態決定部31が被験者Sの呼吸状態を決定した後に、心拍状態決定部32が被験者Sの心拍状態を決定しているがこれには限られない。心拍状態決定部32が被験者Sの心拍状態を先に決定してもよく、或いは呼吸状態決定部31による被験者Sの呼吸状態の決定と心拍状態決定部32による被験者Sの心拍状態の決定とを同時に(並行に)行ってもよい。 In the biological condition determination unit 3 of the biological condition monitoring system 100 of the above embodiment, after the respiratory condition determination unit 31 determines the respiratory condition of the subject S, the heartbeat condition determination unit 32 determines the heartbeat state of the subject S. Not limited to this. The heart rate state determination unit 32 may determine the heart rate state of the subject S first, or the breathing state determination unit 31 determines the breathing state of the subject S and the heart rate state determination unit 32 determines the heart rate state of the subject S. It may be done at the same time (in parallel).

上記実施形態の生体状態モニタリングシステム100の生体状態決定部3は、呼吸状態決定部31と心拍状態決定部32を両方備えているがこれには限られない。生体状態決定部3は、呼吸状態決定部31と心拍状態決定部32のいずれか一方を有するのみでもよい。 The biological condition determination unit 3 of the biological condition monitoring system 100 of the above embodiment includes both the respiratory condition determination unit 31 and the heartbeat condition determination unit 32, but the present invention is not limited to this. The biological state determining unit 3 may have only one of the respiratory state determining unit 31 and the heartbeat state determining unit 32.

上記実施形態の生体状態モニタリングシステム100において、荷重検出部1は4つの荷重検出器1a~1dを備えていたが、これには限られない。荷重検出部1は、少なくとも2つの荷重検出器を備えていればよい。 In the biological condition monitoring system 100 of the above embodiment, the load detection unit 1 includes four load detectors 1a to 1d, but the present invention is not limited to this. The load detection unit 1 may include at least two load detectors.

荷重検出器が2つである場合は、例えば、X軸方向の正側に第1荷重検出器を設け、X軸方向の負側に第2荷重検出器を設ける。これにより、第1荷重検出器からの荷重信号と、第2荷重検出器からの荷重信号の差分を求めて、当該差分からベッドBD上の被験者Sの心拍状態を決定することができる。なお、第1荷重検出器と第2荷重検出器のY軸方向における位置は略同一とすることが望ましい。このような配置とすれば、第1荷重検出器と第2荷重検出器との中間位置に被験者Sが存在する場合には、両荷重検出器からの荷重信号の差分において、呼吸成分が良好にキャンセルされる。また、第1荷重検出器と第2荷重検出器とを、Y軸に関して対称に配置することがより望ましい。このような配置とすれば、被験者Sの体軸がY軸に一致している場合に、両荷重検出器からの荷重信号の差分において、呼吸成分が良好にキャンセルされる。 When there are two load detectors, for example, a first load detector is provided on the positive side in the X-axis direction, and a second load detector is provided on the negative side in the X-axis direction. Thereby, the difference between the load signal from the first load detector and the load signal from the second load detector can be obtained, and the heartbeat state of the subject S on the bed BD can be determined from the difference. It is desirable that the positions of the first load detector and the second load detector in the Y-axis direction are substantially the same. With such an arrangement, when the subject S is present at an intermediate position between the first load detector and the second load detector, the respiratory component is good in the difference between the load signals from both load detectors. It will be canceled. Further, it is more desirable to arrange the first load detector and the second load detector symmetrically with respect to the Y axis. With such an arrangement, when the body axis of the subject S coincides with the Y axis, the respiratory component is satisfactorily canceled in the difference between the load signals from both load detectors.

あるいは、Y軸方向の正側に第1荷重検出器を設け、Y軸方向の負側に第2荷重検出器を設けてもよい。これにより、第1荷重検出器からの荷重信号と、第2荷重検出器からの荷重信号の差分を求めて、当該差分からベッドBD上の被験者Sの呼吸状態を決定することができる。 Alternatively, the first load detector may be provided on the positive side in the Y-axis direction, and the second load detector may be provided on the negative side in the Y-axis direction. Thereby, the difference between the load signal from the first load detector and the load signal from the second load detector can be obtained, and the breathing state of the subject S on the bed BD can be determined from the difference.

荷重検出器が3つである場合は、例えば、上記実施形態の生体状態モニタリングシステム100において、荷重検出器1dを除いた構成とすることができる。この場合は例えば、荷重検出器1aからの荷重信号saと荷重検出器1bからの荷重信号sbとの差分を求めて、当該差分から被験者Sの心拍状態を決定し、荷重検出器1bからの荷重信号sbと荷重検出器1cからの荷重信号scとの差分を求めて、当該差分から被験者Sの呼吸状態を決定することができる。 When there are three load detectors, for example, the biological condition monitoring system 100 of the above embodiment may have a configuration excluding the load detector 1d. In this case, for example, the difference between the load signal sa from the load detector 1a and the load signal sb from the load detector 1b is obtained, the heartbeat state of the subject S is determined from the difference, and the load from the load detector 1b is determined. The difference between the signal sb and the load signal sc from the load detector 1c can be obtained, and the respiratory state of the subject S can be determined from the difference.

この場合は、数式3、数式4に代えて

Figure 2022021807000009
Figure 2022021807000010
を用いて上記実施形態と同様の方法でX軸信号SXを補正してもよい。 In this case, instead of formula 3 and formula 4,
Figure 2022021807000009
Figure 2022021807000010
May be used to correct the X-axis signal SX in the same manner as in the above embodiment.

上記実施形態の生体状態モニタリングシステム100において、荷重検出器1a、1b、1c、1dは、ビーム形ロードセルを用いた荷重センサに限られず、例えばフォースセンサを使用することもできる。 In the biological condition monitoring system 100 of the above embodiment, the load detectors 1a, 1b, 1c, and 1d are not limited to the load sensor using the beam type load cell, and for example, a force sensor can also be used.

上記実施形態の生体状態モニタリングシステム100においては、荷重検出器1a~1dの各々は、ベッドBDの脚の下端に取り付けられたキャスターCの下に配置されていたがこれには限られない。荷重検出器1a~1dの各々は、ベッドBDの4本の脚とベッドBDの床板との間に設けられてもよいし、ベッドBDの4本の脚が上下に分割可能であれば、上部脚と下部脚との間に設けられても良い。また、荷重検出器1a~1dをベッドBDと一体に又は着脱可能に組み合わせて、ベッドBDと本実施形態の生体状態モニタリングシステム100とからなるベッドシステムBDSを構成してもよい(図18)。なお、本明細書及び本発明において「ベッドに設けられた荷重検出器」とは、上述のようにベッドBDの4本の脚とベッドBDの床板との間に設けられた荷重検出器や、上部脚と下部脚との間に設けられた荷重検出器を意味する。 In the biological condition monitoring system 100 of the above embodiment, each of the load detectors 1a to 1d is arranged under the caster C attached to the lower end of the leg of the bed BD, but the present invention is not limited to this. Each of the load detectors 1a to 1d may be provided between the four legs of the bed BD and the floor plate of the bed BD, or if the four legs of the bed BD can be divided into upper and lower parts, the upper part may be provided. It may be provided between the leg and the lower leg. Further, the load detectors 1a to 1d may be integrally or detachably combined with the bed BD to form a bed system BDS including the bed BD and the biological condition monitoring system 100 of the present embodiment (FIG. 18). In the present specification and the present invention, the "load detector provided on the bed" refers to the load detector provided between the four legs of the bed BD and the floor plate of the bed BD as described above. It means a load detector provided between the upper leg and the lower leg.

上記実施形態の生体状態モニタリングシステム100において、荷重検出部1とA/D変換部2との間に、荷重検出部1からの荷重信号を増幅する信号増幅部や、荷重信号からノイズを取り除くフィルタリング部を設けても良い。 In the biological condition monitoring system 100 of the above embodiment, between the load detection unit 1 and the A / D conversion unit 2, a signal amplification unit that amplifies the load signal from the load detection unit 1 and filtering that removes noise from the load signal. A part may be provided.

上記実施形態の生体状態モニタリングシステム100において、表示部5は、モニターに代えて、又はこれに加えて、生体状態を表わす情報を印字して出力するプリンタや、生体状態を表示するランプ等の簡易な視覚表示手段を備えてもよい。報知部6はスピーカーに代えて、又はこれに加えて、振動により報知を行う振動発生部を備えてもよい。 In the biological condition monitoring system 100 of the above embodiment, the display unit 5 is a simple device such as a printer that prints and outputs information indicating the biological condition, a lamp that displays the biological condition, or the like, in place of or in addition to the monitor. It may be provided with various visual display means. The notification unit 6 may include a vibration generation unit that performs notification by vibration in place of or in addition to the speaker.

本発明の特徴を維持する限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。 As long as the features of the present invention are maintained, the present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention. ..

本発明の生体状態モニタリングシステムによれば、構成が簡易で、処理負担の小さいシステムを用いて、呼吸状態や心拍状態等の被験者の生体状態を決定することができる。したがって、入院患者や入所者等の状態を、より安価且つ迅速に求めることのできるシステムを、病院や介護施設に提供することができる。 According to the biological condition monitoring system of the present invention, the biological condition of a subject such as a respiratory condition and a heartbeat condition can be determined by using a system having a simple configuration and a small processing load. Therefore, it is possible to provide hospitals and long-term care facilities with a system that can obtain the status of inpatients, inpatients, and the like more inexpensively and quickly.

1 荷重検出部、1a,1b,1c,1d 荷重検出器、2 A/D変換部、3 生体状態決定部、31 呼吸状態決定部、32 心拍状態決定部、33 信号補正部(補正部)、4 記憶部、5 表示部、6 報知部、7 入力部、100 生体状態モニタリングシステム、BD ベッド、BDS ベッドシステム、S 被験者
1 load detector, 1a, 1b, 1c, 1d load detector, 2 A / D conversion unit, 3 biological condition determination unit, 31 respiratory condition determination unit, 32 heartbeat condition determination unit, 33 signal correction unit (correction unit), 4 storage unit, 5 display unit, 6 notification unit, 7 input unit, 100 biological condition monitoring system, BD bed, BDS bed system, S subject

Claims (17)

ベッド上の被験者の生体状態をモニタする生体状態モニタリングシステムであって、
ベッドの幅方向の一方側においてベッド又はベッドの脚下に設けられ、且つ前記被験者による荷重であって、該被験者の呼吸に応じて振動する荷重成分と該被験者の心拍に応じて振動する荷重成分とを含む第1荷重を検出する第1荷重検出器と、
ベッドの幅方向の他方側においてベッド又はベッドの脚下に設けられ、且つ前記被験者による荷重であって、該被験者の呼吸に応じて振動する荷重成分と該被験者の心拍に応じて振動する荷重成分とを含む第2荷重を検出する第2荷重検出器と、
第1荷重と第2荷重との差分を求めて、該差分から前記被験者の心拍状態を決定する心拍状態決定部と、
前記差分に含まれる前記被験者の呼吸に応じて振動する荷重成分が小さくなるように、前記差分を、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づいて補正する補正部とを備える生体状態モニタリングシステム。
A biological condition monitoring system that monitors the biological condition of a subject on the bed.
A load component provided on one side in the width direction of the bed under the bed or under the leg of the bed and which is a load by the subject and vibrates according to the subject's breath and a load component that vibrates according to the subject's heartbeat. A first load detector that detects the first load including
A load component provided on the other side in the width direction of the bed under the bed or under the leg of the bed and which is a load by the subject and vibrates according to the subject's breath and a load component that vibrates according to the subject's heartbeat. A second load detector that detects a second load including
A heartbeat state determination unit that obtains the difference between the first load and the second load and determines the heartbeat state of the subject from the difference.
With a correction unit that corrects the difference based on the inclination of the subject's body axis with respect to the length direction of the bed so that the load component that vibrates according to the subject's respiration included in the difference becomes small. A biological condition monitoring system equipped with.
前記補正部は、第1荷重の変動と第2荷重の変動とに基づいて前記被験者の体軸の方向を決定する請求項1に記載の生体状態モニタリングシステム。 The biological condition monitoring system according to claim 1, wherein the correction unit determines the direction of the body axis of the subject based on the fluctuation of the first load and the fluctuation of the second load. 第1荷重検出器と第2荷重検出器とは、ベッドの幅方向中央でベッドの長さ方向に延びる軸に関して対称に配置される請求項1又は2に記載の生体状態モニタリングシステム。 The biological condition monitoring system according to claim 1 or 2, wherein the first load detector and the second load detector are arranged symmetrically with respect to an axis extending in the length direction of the bed at the center in the width direction of the bed. 第2荷重検出器はベッドの長さ方向の一方側に設けられており、
更に、ベッドの長さ方向の他方側においてベッド又はベッドの脚下に設けられ、且つ前記被験者による荷重であって、該被験者の呼吸に応じて振動する荷重成分を含む第3荷重を検出する第3荷重検出器と、
第2荷重と第3荷重との差分を求めて、該差分から前記被験者の呼吸状態を決定する呼吸状態決定部とを備える請求項1~3のいずれか一項に記載の生体状態モニタリングシステム。
The second load detector is provided on one side in the length direction of the bed.
Further, a third load provided under the bed or under the legs of the bed on the other side in the length direction of the bed and including a load component that is a load by the subject and vibrates in response to the subject's respiration is detected. With the load detector,
The biological condition monitoring system according to any one of claims 1 to 3, further comprising a respiratory condition determining unit that obtains a difference between a second load and a third load and determines the respiratory condition of the subject from the difference.
前記補正部は、第2荷重と第3荷重との前記差分に含まれる前記被験者の呼吸に応じて振動する荷重成分が大きくなるように、該差分を、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づいて補正する請求項4に記載の生体状態モニタリングシステム。 The correction unit sets the difference in the difference between the second load and the third load so that the load component vibrating in response to the subject's respiration becomes large. The biological condition monitoring system according to claim 4, wherein the correction is made based on the inclination in the direction of the body axis. 第1荷重検出器はベッドの長さ方向の一方側に設けられており、
第3荷重検出器はベッドの幅方向の他方側に設けられており、
第3荷重検出器により検出される前記被験者による荷重は該被験者の心拍に応じて振動する荷重成分を含み、
更に、ベッドの幅方向の一方側且つベッドの長さ方向の他方側においてベッド又はベッドの脚下に設けられ、且つ前記被験者による荷重であって、該被験者の呼吸に応じて振動する荷重成分と該被験者の心拍に応じて振動する荷重成分とを含む第4荷重を検出する第4荷重検出器を備え、
前記心拍状態決定部は、第1荷重と第4荷重の和と、第2荷重と第3荷重の和との差分を求めて、該差分から前記被験者の心拍状態を決定し
前記呼吸状態決定部は、第1荷重と第2荷重の和と、第3荷重と第4荷重の和との差分を求めて、該差分から前記被験者の呼吸状態を決定する請求項4に記載の生体状態モニタリングシステム。
The first load detector is provided on one side in the length direction of the bed.
The third load detector is provided on the other side of the bed in the width direction.
The load by the subject detected by the third load detector includes a load component that vibrates according to the subject's heartbeat.
Further, a load component provided under the bed or under the leg of the bed on one side in the width direction of the bed and the other side in the length direction of the bed, and which is a load by the subject and vibrates in response to the subject's breathing. It is equipped with a fourth load detector that detects a fourth load including a load component that vibrates according to the subject's heartbeat.
The heartbeat state determination unit obtains the difference between the sum of the first load and the fourth load and the sum of the second load and the third load, and determines the heartbeat state of the subject from the difference, and the breathing state determination unit. The biological condition monitoring system according to claim 4, wherein the difference between the sum of the first load and the second load and the sum of the third load and the fourth load is obtained, and the respiratory state of the subject is determined from the difference. ..
前記補正部は、第1荷重と第4荷重の和と第2荷重と第3荷重の和との前記差分に含まれる前記被験者の呼吸に応じて振動する荷重成分が小さくなるように、該差分を、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づいて補正し、且つ第1荷重と第2荷重の和と第3荷重と第4荷重の和との前記差分に含まれる前記被験者の呼吸に応じて振動する荷重成分が大きくなるように、該差分を、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づいて補正する請求項6に記載の生体状態モニタリングシステム。 The correction unit makes the difference so that the load component that vibrates according to the breath of the subject included in the difference between the sum of the first load and the fourth load and the sum of the second load and the third load becomes smaller. Is corrected based on the inclination of the subject's body axis with respect to the length direction of the bed, and is included in the difference between the sum of the first load and the second load and the sum of the third load and the fourth load. The living body according to claim 6, wherein the difference is corrected based on the inclination of the subject's body axis with respect to the length direction of the bed so that the load component vibrating in response to the subject's breathing becomes large. Status monitoring system. 前記補正部は、前記被験者の体軸の方向を回転して前記ベッドの長さ方向に略一致させる回転変換を行う回転行列を用いて補正を行う請求項1~7のいずれか一項に記載の生体状態モニタリングシステム。 The correction unit according to any one of claims 1 to 7, wherein the correction unit makes corrections using a rotation matrix that rotates the direction of the body axis of the subject to substantially match the length direction of the bed. Biological condition monitoring system. ベッドと、
請求項1~8のいずれか一項に記載の生体状態モニタリングシステムとを備えるベッドシステム。
Bed and
A bed system including the biological condition monitoring system according to any one of claims 1 to 8.
ベッド上の被験者の生体状態をモニタする生体状態モニタリング方法であって、
ベッドの幅方向の一方側においてベッド又はベッドの脚下に設けられた第1荷重検出器により、前記被験者による荷重であって、該被験者の呼吸に応じて振動する荷重成分と該被験者の心拍に応じて振動する荷重成分とを含む第1荷重を検出することと、
ベッドの幅方向の他方側においてベッド又はベッドの脚下に設けられた第2荷重検出器により、前記被験者による荷重であって、該被験者の呼吸に応じて振動する荷重成分と該被験者の心拍に応じて振動する荷重成分とを含む第2荷重を検出することと、
第1荷重と第2荷重との差分を求めて、該差分から前記被験者の心拍状態を決定することと、
第1荷重と第2荷重との前記差分に含まれる前記被験者の呼吸に応じて振動する荷重成分が小さくなるように、前記差分を、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づいて補正することを含む生体状態モニタリング方法。
It is a biological condition monitoring method that monitors the biological condition of the subject on the bed.
By the first load detector provided on the bed or under the leg of the bed on one side in the width direction of the bed, the load by the subject corresponds to the load component vibrating according to the subject's breath and the subject's heartbeat. To detect the first load including the load component that vibrates and
By the second load detector provided on the other side of the width direction of the bed on the bed or under the legs of the bed, the load by the subject is based on the load component vibrating according to the subject's breath and the subject's heartbeat. To detect the second load including the load component that vibrates
The difference between the first load and the second load is obtained, and the heartbeat state of the subject is determined from the difference.
The difference is set in the direction of the subject's body axis with respect to the length direction of the bed so that the load component that vibrates in response to the subject's respiration included in the difference between the first load and the second load becomes smaller. A biological condition monitoring method that includes correction based on tilt.
更に、第1荷重の変動と第2荷重の変動とに基づいて前記被験者の体軸の方向を決定すること含む請求項10に記載の生体状態モニタリング方法。 The biological condition monitoring method according to claim 10, further comprising determining the direction of the body axis of the subject based on the fluctuation of the first load and the fluctuation of the second load. 第1荷重検出器と第2荷重検出器とは、ベッドの幅方向中央でベッドの長さ方向に延びる軸に関して対称に配置される請求項10又は11に記載の生体状態モニタリング方法。 The biological condition monitoring method according to claim 10 or 11, wherein the first load detector and the second load detector are arranged symmetrically with respect to an axis extending in the length direction of the bed at the center in the width direction of the bed. 第2荷重検出器はベッドの長さ方向の一方側に設けられており、
更に、ベッドの長さ方向の他方側においてベッド又はベッドの脚下に設けられた第3荷重検出器により、前記被験者による荷重であって、該被験者の呼吸に応じて振動する荷重成分を含む第3荷重を検出することと、
第2荷重と第3荷重との差分を求めて、該差分から前記被験者の呼吸状態を決定することを含む請求項10~12のいずれか一項に記載の生体状態モニタリング方法。
The second load detector is provided on one side in the length direction of the bed.
Further, a third load detector provided on the other side in the length direction of the bed, which is provided on the bed or under the legs of the bed, includes a load component which is a load by the subject and vibrates in response to the subject's breathing. To detect the load and
The biological condition monitoring method according to any one of claims 10 to 12, wherein a difference between a second load and a third load is obtained, and the respiratory state of the subject is determined from the difference.
更に、第2荷重と第3荷重との前記差分に含まれる前記被験者の呼吸に応じて振動する荷重成分が大きくなるように、該差分を、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づいて補正することを含む請求項13に記載の生体状態モニタリング方法。 Further, the difference is set to the body axis of the subject with respect to the length direction of the bed so that the load component that vibrates according to the respiration of the subject included in the difference between the second load and the third load becomes large. The biological condition monitoring method according to claim 13, which comprises making corrections based on the inclination of the direction. 第1荷重検出器はベッドの長さ方向の一方側に設けられており、
第3荷重検出器はベッドの幅方向の他方側に設けられており、
第3荷重検出器により検出される前記被験者による荷重は該被験者の心拍に応じて振動する荷重成分を含み、
更に、ベッドの幅方向の一方側且つベッドの長さ方向の他方側においてベッド又はベッドの脚下に設けられた第4荷重検出器により、前記被験者による荷重であって、該被験者の呼吸に応じて振動する荷重成分と該被験者の心拍に応じて振動する荷重成分とを含む第4荷重を検出することを含み、
前記心拍状態を決定することは、第1荷重と第4荷重の和と、第2荷重と第3荷重の和との差分を求めて、該差分から前記被験者の心拍状態を決定することであり、
前記呼吸状態を決定することは、第1荷重と第2荷重の和と、第3荷重と第4荷重の和との差分を求めて、該差分から前記被験者の呼吸状態を決定することである請求項14に記載の生体状態モニタリング方法。
The first load detector is provided on one side in the length direction of the bed.
The third load detector is provided on the other side of the bed in the width direction.
The load by the subject detected by the third load detector includes a load component that vibrates according to the subject's heartbeat.
Further, by the fourth load detector provided under the bed or the leg of the bed on one side in the width direction of the bed and the other side in the length direction of the bed, the load by the subject is applied according to the breath of the subject. Includes detecting a fourth load that includes a vibrating load component and a load component that vibrates in response to the subject's heartbeat.
To determine the heartbeat state is to obtain the difference between the sum of the first load and the fourth load and the sum of the second load and the third load, and determine the heartbeat state of the subject from the difference. ,
The determination of the respiratory state is to obtain the difference between the sum of the first load and the second load and the sum of the third load and the fourth load, and determine the respiratory state of the subject from the difference. The biological condition monitoring method according to claim 14.
前記第1荷重と第2荷重との差分を補正することは、第1荷重と第4荷重の和と第2荷重と第3荷重の和との前記差分に含まれる前記被験者の呼吸に応じて振動する荷重成分が小さくなるように、該差分を、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づいて補正することであり、
前記第2荷重と第3荷重との差分を補正することは、第1荷重と第2荷重の和と第3荷重と第4荷重の和との前記差分に含まれる前記被験者の呼吸に応じて振動する荷重成分が大きくなるように、該差分を、前記ベッドの長さ方向に対する前記被験者の体軸の方向の傾きに基づいて補正することである請求項15に記載の生体状態モニタリング方法。
Correcting the difference between the first load and the second load depends on the breathing of the subject included in the difference between the sum of the first load and the fourth load and the sum of the second load and the third load. The difference is corrected based on the inclination of the subject's body axis with respect to the length direction of the bed so that the vibrating load component becomes smaller.
Correcting the difference between the second load and the third load depends on the breathing of the subject included in the difference between the sum of the first load and the second load and the sum of the third load and the fourth load. The biological condition monitoring method according to claim 15, wherein the difference is corrected based on the inclination of the subject's body axis with respect to the length direction of the bed so that the vibrating load component becomes large.
前記ベッドの長さ方向に対する被験者の体軸の方向の傾きに基づく補正は、前記被験者の体軸の方向を回転して前記ベッドの長さ方向に略一致させる回転変換を行う回転行列を用いて行われる請求項10~16のいずれか一項に記載の生体状態モニタリング方法。
The correction based on the inclination of the subject's body axis with respect to the bed length direction uses a rotation matrix that rotates the direction of the subject's body axis to substantially match the direction of the bed length. The biological condition monitoring method according to any one of claims 10 to 16.
JP2020125623A 2020-07-22 2020-07-22 Biological condition monitoring system, bed system equipped with the same, and biological condition monitoring method Active JP7409987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020125623A JP7409987B2 (en) 2020-07-22 2020-07-22 Biological condition monitoring system, bed system equipped with the same, and biological condition monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020125623A JP7409987B2 (en) 2020-07-22 2020-07-22 Biological condition monitoring system, bed system equipped with the same, and biological condition monitoring method

Publications (2)

Publication Number Publication Date
JP2022021807A true JP2022021807A (en) 2022-02-03
JP7409987B2 JP7409987B2 (en) 2024-01-09

Family

ID=80220926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020125623A Active JP7409987B2 (en) 2020-07-22 2020-07-22 Biological condition monitoring system, bed system equipped with the same, and biological condition monitoring method

Country Status (1)

Country Link
JP (1) JP7409987B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7699784B2 (en) 2006-07-05 2010-04-20 Stryker Corporation System for detecting and monitoring vital signs
JP2011120667A (en) 2009-12-09 2011-06-23 Aisin Seiki Co Ltd On-bed state detection device
JP6105703B1 (en) 2015-09-29 2017-03-29 ミネベアミツミ株式会社 Biological information monitoring system
JP6487081B2 (en) 2018-01-30 2019-03-20 ミネベアミツミ株式会社 Biological information monitoring system

Also Published As

Publication number Publication date
JP7409987B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
JP6093421B2 (en) Electrical impedance tomography imaging instrument and electrical impedance tomography imaging method
JP5674646B2 (en) Method and apparatus for changing acoustic information that can be used to examine a subject for a particular physiological condition
CN108289779B (en) Physical condition examination device, physical condition examination method, and bed system
EP3459455B1 (en) Biological information monitoring system
CN109414223B (en) Biological information monitoring system
EP3459452B1 (en) Respiration waveform drawing system and biological information monitoring system
CN113692523B (en) Biological information monitoring system, bed system, and biological information monitoring method
EP3459450B1 (en) Respiration waveform drawing system
EP3459451B1 (en) Respiration waveform drawing system and respiration waveform drawing method
JP2022021807A (en) Biological state monitoring system, bed system equipped with the same, and biological state monitoring method
JP7409986B2 (en) Biological condition monitoring system, bed system equipped with the same, and biological condition monitoring method
JP7094916B2 (en) Biometric information monitoring system, biometric information monitoring method, and bed system
JP6487081B2 (en) Biological information monitoring system
CN111867468B (en) Physical activity determination system
JP6535770B2 (en) Biological information monitoring system
CN112020326B (en) Biological state monitoring system
JP6670881B2 (en) Biological condition monitoring system
JP2018015210A (en) On-bed state monitoring system
JP2022018787A (en) Biological information acquisition system, and sensor arrangement determination program
JP2018015209A (en) On-bed state monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230713

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231221

R150 Certificate of patent or registration of utility model

Ref document number: 7409987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150