JP2022021154A - Optical system, optical equipment, and manufacturing method for optical system - Google Patents

Optical system, optical equipment, and manufacturing method for optical system Download PDF

Info

Publication number
JP2022021154A
JP2022021154A JP2020124588A JP2020124588A JP2022021154A JP 2022021154 A JP2022021154 A JP 2022021154A JP 2020124588 A JP2020124588 A JP 2020124588A JP 2020124588 A JP2020124588 A JP 2020124588A JP 2022021154 A JP2022021154 A JP 2022021154A
Authority
JP
Japan
Prior art keywords
lens group
focusing
optical system
focusing lens
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020124588A
Other languages
Japanese (ja)
Inventor
幸介 町田
Kosuke Machida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2020124588A priority Critical patent/JP2022021154A/en
Publication of JP2022021154A publication Critical patent/JP2022021154A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

To provide an optical system which has a plurality of focusing states different in aberration amount at a prescribed photographic distance and can control a prescribed aberration amount without influencing focusing.SOLUTION: An optical system to be used for optical equipment such as a camera 1 or the like is configured to have a first focus lens group moving when focusing and a second focus lens group that is arranged nearer on an image side than the first focus lens group and moves in a trajectory different from the first focus lens group when focusing, to have a plurality of focusing states different in aberration amount at a prescribed photographic distance, to move the first focus lens group and the second focus lens group when one focusing state shifts to another focusing state different in aberration amount at the prescribed photographic distance, and to make a relative moving direction of the first focus lens group and the second focus lens group when focusing differ from a relative moving direction of the first focus lens group and the second focus lens group when a different focusing state is set at the prescribed photographic distance.SELECTED DRAWING: Figure 1

Description

本発明は、光学系、光学機器、および光学系の製造方法に関する。 The present invention relates to an optical system, an optical instrument, and a method for manufacturing the optical system.

従来、所定の撮影距離において複数の合焦状態を有する光学系が提案されている(例えば、特許文献1を参照)。 Conventionally, an optical system having a plurality of in-focus states at a predetermined shooting distance has been proposed (see, for example, Patent Document 1).

特開2018-097240号公報JP-A-2018-092240

本開示の光学系は、合焦の際移動する第1合焦レンズ群と、第1合焦レンズ群より像側に配置され、合焦の際に、第1合焦レンズ群とは異なる軌跡で移動する第2合焦レンズ群とを有し、所定の撮影距離において、収差量の異なる複数の合焦状態を有し、所定の撮影距離において、一の合焦状態から収差量の異なる他の合焦状態になる際に、第1合焦レンズ群と第2合焦レンズ群が移動し、合焦の際の第1合焦レンズ群および第2合焦レンズ群の相対的な移動の方向と、所定の撮影距離において一の合焦状態から他の合焦状態になる際の第1合焦レンズ群および第2合焦レンズ群の相対的な移動の方向とが異なる。 The optical system of the present disclosure is arranged on the image side of the first focusing lens group that moves during focusing and the first focusing lens group, and has a trajectory different from that of the first focusing lens group during focusing. It has a second in-focus lens group that moves with, has a plurality of in-focus states with different amounts of aberration at a predetermined shooting distance, and has a different amount of aberration from one in-focus state at a predetermined shooting distance. The first in-focus lens group and the second in-focus lens group move when the in-focus state is reached, and the relative movement of the first in-focus lens group and the second in-focus lens group during in-focus movement. The direction and the relative movement direction of the first in-focus lens group and the second in-focus lens group when changing from one in-focus state to another in a predetermined shooting distance are different.

本開示の光学系は、合焦の際移動する第1合焦レンズ群と、少なくとも1つのレンズ群とを有し、所定の撮影距離において、収差量の異なる複数の合焦状態を有し、所定の撮影距離において、一の合焦状態から収差量の異なる他の合焦状態になる際に、第1合焦レンズ群と、第1合焦レンズ群よりも像側に配置された第2合焦レンズ群とが移動し、合焦の際、第2合焦レンズ群は固定され、合焦の際の第1レンズ群および第2合焦レンズ群の相対的な移動の方向と、所定の撮影距離において一の合焦状態から他の合焦状態になる際の第1合焦レンズ群および第2合焦レンズ群の相対的な移動の方向とが異なる。 The optical system of the present disclosure has a first focusing lens group that moves during focusing and at least one lens group, and has a plurality of focusing states having different amounts of aberrations at a predetermined shooting distance. When one in-focus state changes to another in-focus state with a different amount of aberration at a predetermined shooting distance, the first in-focus lens group and the second in-focus lens group arranged on the image side of the first in-focus lens group. The in-focus lens group moves, and at the time of in-focus, the second in-focus lens group is fixed, and the relative movement direction of the first lens group and the second in-focus lens group at the time of in-focus and a predetermined direction. The relative movement directions of the first in-focus lens group and the second in-focus lens group when changing from one in-focus state to another in the shooting distance are different.

本開示の光学系の製造方法は、第1合焦レンズ群および第2合焦レンズ群を含む複数のレンズからなる光学系の製造方法であって、合焦の際移動する第1合焦レンズ群より像側に、合焦の際に、第1合焦レンズ群とは異なる軌跡で移動する第2合焦レンズ群を配置し、所定の撮影距離において、収差量の異なる複数の合焦状態を有し、所定の撮影距離において、一の合焦状態から収差量の異なる他の合焦状態に遷移する際に、第1合焦レンズ群と第2合焦レンズ群とが移動し、合焦の際の第1合焦レンズ群および第2合焦レンズ群の相対的な移動の方向と、所定の撮影距離において一の合焦状態から他の合焦状態になる際の第1合焦レンズ群および第2合焦レンズ群の相対的な移動の方向とが異なるように、複数のレンズを配置する。 The method for manufacturing an optical system of the present disclosure is a method for manufacturing an optical system including a plurality of lenses including a first focusing lens group and a second focusing lens group, and is a first focusing lens that moves during focusing. A second focusing lens group that moves on a trajectory different from that of the first focusing lens group at the time of focusing is arranged on the image side of the group, and a plurality of focusing states having different amounts of aberrations at a predetermined shooting distance. The first in-focus lens group and the second in-focus lens group move when transitioning from one in-focus state to another in-focus state with a different amount of aberration at a predetermined shooting distance. The relative movement direction of the first focusing lens group and the second focusing lens group during focusing, and the first focusing state when one focusing state changes to another focusing state at a predetermined shooting distance. A plurality of lenses are arranged so that the relative directions of movement of the lens group and the second focusing lens group are different.

第1実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on 1st Example. 第1実施例に係る光学系の無限遠物体合焦時における第1合焦状態の諸収差図である。It is a diagram of various aberrations of the first focusing state at the time of infinity object focusing of the optical system which concerns on 1st Example. 第1実施例に係る光学系の近距離物体合焦時における第1合焦状態の諸収差図である。It is a diagram of various aberrations of the first focusing state at the time of focusing on a short-distance object of the optical system according to the first embodiment. 第1実施例に係る光学系の無限遠物体合焦時における第2合焦状態の諸収差図である。It is a diagram of various aberrations of the second focusing state at the time of infinity object focusing of the optical system which concerns on 1st Embodiment. 第1実施例に係る光学系の無限遠物体合焦時における第3合焦状態の諸収差図である。It is a diagram of various aberrations of the third focusing state at the time of focusing an object at infinity of the optical system which concerns on 1st Embodiment. 第2実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on 2nd Example. 第2実施例に係る光学系の無限遠物体合焦時における第1合焦状態の諸収差図である。It is a diagram of various aberrations of the first focusing state at the time of focusing an object at infinity of the optical system which concerns on 2nd Embodiment. 第2実施例に係る光学系の近距離物体合焦時における第1合焦状態の諸収差図である。It is a diagram of various aberrations of the first focusing state at the time of focusing on a short-distance object of the optical system according to the second embodiment. 第2実施例に係る光学系の無限遠物体合焦時における第2合焦状態の諸収差図である。It is a diagram of various aberrations of the 2nd focusing state at the time of infinity object focusing of the optical system which concerns on 2nd Embodiment. 第2実施例に係る光学系の無限遠物体合焦時における第3合焦状態の諸収差図である。It is a diagram of various aberrations of the third focusing state at the time of focusing an object at infinity of the optical system which concerns on 2nd Embodiment. 第3実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on 3rd Example. 第3実施例に係る光学系の無限遠物体合焦時における第1合焦状態の諸収差図である。It is a diagram of various aberrations of the 1st focusing state at the time of focusing an object at infinity of the optical system which concerns on 3rd Embodiment. 第3実施例に係る光学系の近距離物体合焦時における第1合焦状態の諸収差図である。It is a diagram of various aberrations of the first focusing state at the time of focusing a short-distance object of the optical system according to the third embodiment. 第3実施例に係る光学系の無限遠物体合焦時における第2合焦状態の諸収差図である。It is a diagram of various aberrations of the second focusing state at the time of infinity object focusing of the optical system which concerns on 3rd Example. 第3実施例に係る光学系の無限遠物体合焦時における第3合焦状態の諸収差図である。It is a figure of various aberrations of the 3rd focus state at the time of infinity object focusing of the optical system which concerns on 3rd Embodiment. 第4実施例に係る光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the optical system which concerns on 4th Embodiment. 第4実施例に係る光学系の無限遠物体合焦時における第1合焦状態の諸収差図である。It is a diagram of various aberrations of the 1st focusing state at the time of focusing an object at infinity of the optical system which concerns on 4th Embodiment. 第4実施例に係る光学系の近距離物体合焦時における第1合焦状態の諸収差図である。It is a diagram of various aberrations of the first focusing state at the time of focusing on a short-distance object of the optical system according to the fourth embodiment. 第4実施例に係る光学系の無限遠物体合焦時における第2合焦状態の諸収差図である。It is a diagram of various aberrations of the second focusing state at the time of infinity object focusing of the optical system which concerns on 4th Embodiment. 第4実施例に係る光学系の無限遠物体合焦時における第3合焦状態の諸収差図である。It is a figure of various aberrations of the 3rd focus state at the time of infinity object focusing of the optical system which concerns on 4th Embodiment. 本実施形態の光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the optical system of this embodiment. 本実施形態の光学系の製造方法の概略を示すフローチャートである。It is a flowchart which shows the outline of the manufacturing method of the optical system of this embodiment.

以下、本開示の実施形態の光学系、光学機器、および光学系の製造方法について説明する。 Hereinafter, an optical system, an optical device, and a method for manufacturing the optical system according to the embodiment of the present disclosure will be described.

本実施形態の光学系は、合焦の際移動する第1合焦レンズ群と、第1合焦レンズ群より像側に配置され、合焦の際に、第1合焦レンズ群とは異なる軌跡で移動する第2合焦レンズ群とを有し、所定の撮影距離において収差量の異なる複数の合焦状態を有し、所定の撮影距離において、一の合焦状態から収差量の異なる他の合焦状態になる際に、第1合焦レンズ群と第2合焦レンズ群が移動し、合焦の際の第1合焦レンズ群および第2合焦レンズ群の相対的な移動の方向と、所定の撮影距離において一の合焦状態から他の合焦状態になる際の第1合焦レンズ群および第2合焦レンズ群の相対的な移動の方向とが異なる。 The optical system of the present embodiment is arranged on the image side of the first focusing lens group that moves during focusing and the first focusing lens group, and is different from the first focusing lens group during focusing. It has a second in-focus lens group that moves along a trajectory, has a plurality of in-focus states with different amounts of aberration at a predetermined shooting distance, and has a different amount of aberration from one in-focus state at a predetermined shooting distance. The first in-focus lens group and the second in-focus lens group move when the in-focus state is reached, and the relative movement of the first in-focus lens group and the second in-focus lens group during in-focus movement. The direction and the relative movement direction of the first in-focus lens group and the second in-focus lens group when changing from one in-focus state to another in a predetermined shooting distance are different.

「第1合焦レンズ群および第2合焦レンズ群の相対的な移動の方向」とは、第1合焦レンズ群が所定の一方向(例えば像側)へ移動するときの第2合焦レンズ群の移動方向をいう。したがって、「合焦の際の第1合焦レンズ群および第2合焦レンズ群の相対的な移動の方向と、所定の撮影距離において一の合焦状態から他の合焦状態になる際の第1合焦レンズ群および第2合焦レンズ群の相対的な移動の方向とが異なる」とは、例えば、合焦の際に第1合焦レンズ群が像側へ移動するときに第2合焦レンズ群が物体側に移動する一方、所定の撮影距離において一の合焦状態から他の合焦状態になる際に第1合焦レンズ群が像側へ移動するときに第2合焦レンズ群が物体側でない方向(像側)に移動することを表す。 The "direction of relative movement of the first focusing lens group and the second focusing lens group" is the second focusing when the first focusing lens group moves in a predetermined one direction (for example, the image side). The direction of movement of the lens group. Therefore, "when the relative movement direction of the first focusing lens group and the second focusing lens group at the time of focusing and the change from one focusing state to another focusing state at a predetermined shooting distance". "The relative directions of movement of the first in-focus lens group and the second in-focus lens group are different" means, for example, that when the first in-focus lens group moves to the image side during focusing, the second While the in-focus lens group moves to the object side, the second in-focus lens group moves to the image side when one in-focus state changes to another in-focus state at a predetermined shooting distance. Indicates that the lens group moves in a direction other than the object side (image side).

本実施形態の光学系は、合焦の際移動する少なくとも2つの合焦レンズ群を有し、各合焦レンズ群が光軸方向に移動することで、所定の撮影距離において収差量の異なる複数の合焦状態を有することができる。また、合焦の際の第1合焦レンズ群および第2合焦レンズ群の相対的な移動の方向と、所定の撮影距離において一の合焦状態から収差量の異なる他の合焦状態になる際の第1合焦レンズ群および第2合焦レンズ群の移動する方向が異なることで、合焦に影響を与えることなく所定の収差量をコントロールすることができる。 The optical system of the present embodiment has at least two focusing lens groups that move during focusing, and each of the focusing lens groups moves in the optical axis direction, so that a plurality of lenses having different aberration amounts at a predetermined shooting distance are present. Can have an in-focus state. Further, the relative movement direction of the first focusing lens group and the second focusing lens group at the time of focusing, and from one focusing state to another focusing state having a different amount of aberration at a predetermined shooting distance. Since the moving directions of the first focusing lens group and the second focusing lens group are different, it is possible to control a predetermined amount of aberration without affecting the focusing.

本実施形態の光学系は、合焦の際移動する第1合焦レンズ群と、第1合焦レンズより像側に配置され、合焦の際固定される第2合焦レンズ群とを有し、各合焦レンズ群が光軸方向に移動することで、所定の撮影距離において収差量の異なる複数の合焦状態を有することができる。また、合焦の際の第1合焦レンズ群および第2合焦レンズ群の相対的な移動の方向と、所定の撮影距離において一の合焦状態から収差量の異なる他の合焦状態になる際の第1合焦レンズ群および第2合焦レンズ群の移動する方向が異なることで、合焦に影響を与えることなく所定の収差量をコントロールすることができる。 The optical system of the present embodiment includes a first focusing lens group that moves during focusing and a second focusing lens group that is arranged on the image side of the first focusing lens and fixed at the time of focusing. However, by moving each in-focus lens group in the optical axis direction, it is possible to have a plurality of in-focus states having different aberration amounts at a predetermined shooting distance. Further, the relative movement direction of the first focusing lens group and the second focusing lens group at the time of focusing, and from one focusing state to another focusing state having a different amount of aberration at a predetermined shooting distance. Since the moving directions of the first focusing lens group and the second focusing lens group are different, it is possible to control a predetermined amount of aberration without affecting the focusing.

また、本実施形態の光学系は、第1合焦レンズ群および第2合焦レンズ群がそれぞれ有する屈折力の符号が異なることで、所定の撮影距離において一の合焦状態から他の合焦状態になる際の焦点位置の変動を抑制することができる。 Further, in the optical system of the present embodiment, the symbols of the refractive powers of the first focusing lens group and the second focusing lens group are different from each other, so that one focusing state to another focusing state at a predetermined shooting distance can be achieved. It is possible to suppress fluctuations in the focal position when the state is reached.

また、本実施形態の光学系は、第1合焦レンズ群が負の屈折力を有することで、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を効果的に抑えつつ、所定の撮影距離における複数の合焦状態で所望の収差性能を得ることができる。 Further, in the optical system of the present embodiment, since the first focusing lens group has a negative refractive power, various aberrations such as spherical aberration at the time of focusing from an infinity object to a short-range object fluctuate. It is possible to obtain desired aberration performance in a plurality of focused states at a predetermined shooting distance while effectively suppressing the above.

また、本実施形態の光学系は、第1合焦レンズ群が無限遠物体から近距離物体への合焦の際、像側へ移動することで、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を効果的に抑えつつ、所定の撮影距離における複数の合焦状態で所望の収差性能を得ることができる。 Further, in the optical system of the present embodiment, when the first focusing lens group focuses from an infinity object to a short-range object, it moves to the image side to focus from the infinity object to the short-range object. It is possible to obtain desired aberration performance in a plurality of focused states at a predetermined shooting distance while effectively suppressing fluctuations in various aberrations such as spherical aberration.

また、本実施形態の光学系は、第2合焦レンズ群が無限遠物体から近距離物体への合焦の際、物体側へ移動することで、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を効果的に抑えつつ、所定の撮影距離における複数の合焦状態で所望の収差性能を得ることができる。 Further, in the optical system of the present embodiment, when the second focusing lens group focuses from an infinity object to a short-range object, it moves to the object side to focus from the infinity object to the short-range object. It is possible to obtain desired aberration performance in a plurality of focused states at a predetermined shooting distance while effectively suppressing fluctuations in various aberrations such as spherical aberration.

また、本実施形態の光学系は、合焦の際、第1合焦レンズ群および第2合焦レンズ群が異なる方向に移動することで、合焦域全域で収差の発生を抑制することができる。さらに、本実施形態の光学系は、所定の撮影距離において一の合焦状態から他の合焦状態になる際、第1合焦レンズ群および第2合焦レンズ群が同一の方向に移動することで、球面収差の量を変動させつつ他の収差の発生を抑制することができる。 Further, in the optical system of the present embodiment, when focusing, the first focusing lens group and the second focusing lens group move in different directions to suppress the occurrence of aberration in the entire focusing region. can. Further, in the optical system of the present embodiment, when one in-focus state changes to another in-focus state at a predetermined shooting distance, the first in-focus lens group and the second in-focus lens group move in the same direction. This makes it possible to suppress the occurrence of other aberrations while varying the amount of spherical aberration.

また、本実施形態の光学系は、合焦レンズ群を開口絞りより像側に配置することで、合焦レンズ群を小型軽量化できる。 Further, in the optical system of the present embodiment, the focusing lens group can be made smaller and lighter by arranging the focusing lens group on the image side of the aperture stop.

また、本実施形態の光学系は、第1合焦レンズ群と第2合焦レンズ群とを隣り合わせに配置することで、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を効果的に抑えつつ、所定の撮影距離における複数の合焦状態で所望の収差性能を得ることができる。 Further, in the optical system of the present embodiment, by arranging the first focusing lens group and the second focusing lens group next to each other, spherical aberration at the time of focusing from an infinity object to a short-range object is started. It is possible to obtain desired aberration performance in a plurality of focused states at a predetermined shooting distance while effectively suppressing fluctuations in various aberrations.

また、本実施形態の光学系は、以下の条件式(1)を満足することが望ましい。
(1) 0.20<(-fF1)/fF2<5.00
ただし、
fF1:第1合焦レンズ群の焦点距離
fF2:第2合焦レンズ群の焦点距離
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (1).
(1) 0.20 <(-fF1) / fF2 <5.00
However,
fF1: Focal length of the first focusing lens group
fF2: Focal length of the second focusing lens group

条件式(1)は、第1合焦レンズ群の焦点距離と第2合焦レンズ群の焦点距離との比を規定するものである。この条件式(1)を満足することで、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑え、所定の撮影距離における複数の合焦状態で所望の収差性能を得ることができる。 The conditional equation (1) defines the ratio between the focal length of the first focusing lens group and the focal length of the second focusing lens group. By satisfying this conditional equation (1), fluctuations in various aberrations such as spherical aberration when focusing from an infinite object to a short-range object can be suppressed, and in a plurality of focused states at a predetermined shooting distance. The desired aberration performance can be obtained.

本実施形態の光学系の条件式(1)の対応値が上限値を上回ると、第2合焦レンズ群の屈折力が強くなりすぎ、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(1)の上限値を5.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(1)の上限値を4.80、4.50、4.25、4.00、3.75、3.50、3.25、3.00、2.80、2.65、2.50、2.40、2.35、さらに2.30にすることが好ましい。 When the corresponding value of the conditional equation (1) of the optical system of the present embodiment exceeds the upper limit value, the refractive power of the second focusing lens group becomes too strong, and when focusing from an infinity object to a short-range object, It becomes difficult to suppress fluctuations in various aberrations such as spherical aberration. By setting the upper limit of the conditional expression (1) to 5.00, the effect of this embodiment can be further ensured. Further, in order to further ensure the effect of this embodiment, the upper limit of the conditional expression (1) is set to 4.80, 4.50, 4.25, 4.00, 3.75, 3.50, 3.25, 3.00, 2.80, 2.65, 2.50, 2.40, 2.35, Further, it is preferable to set it to 2.30.

一方、本実施形態の光学系の条件式(1)の対応値が下限値を下回ると、第1合焦レンズ群の屈折力が強くなりすぎ、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(1)の下限値を0.20に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(1)の下限値を0.25、0.40、0.60、0.80、1.00、1.10、1.20、1.25、1.30、1.35、1.40、さらに1.45にすることが好ましい。 On the other hand, when the corresponding value of the conditional equation (1) of the optical system of the present embodiment is less than the lower limit value, the refractive power of the first focusing lens group becomes too strong, and the focusing from an infinity object to a short-range object becomes too strong. It becomes difficult to suppress fluctuations in various aberrations such as spherical aberration. By setting the lower limit of the conditional expression (1) to 0.20, the effect of this embodiment can be further ensured. Further, in order to further ensure the effect of this embodiment, the lower limit of the conditional expression (1) is set to 0.25, 0.40, 0.60, 0.80, 1.00, 1.10, 1.20, 1.25, 1.30, 1.35, 1.40, and further 1.45. Is preferable.

また本実施形態の光学系は、第1合焦レンズ群より物体側に正の屈折力を有する第1レンズ群を有することが望ましく、さらに、以下の条件式(2)を満足することが望ましい。
(2) 0.20<f1/(-fF1)<3.00
ただし、
f1:第1レンズ群の焦点距離
Further, it is desirable that the optical system of the present embodiment has a first lens group having a positive refractive power on the object side of the first focusing lens group, and further, it is desirable to satisfy the following conditional expression (2). ..
(2) 0.20 <f1 / (-fF1) <3.00
However,
f1: Focal length of the first lens group

条件式(2)は、第1レンズ群の焦点距離と第1合焦レンズ群の焦点距離との比を規定するものである。この条件式(2)を満足することで、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。 The conditional equation (2) defines the ratio between the focal length of the first lens group and the focal length of the first focusing lens group. By satisfying this conditional equation (2), it is possible to suppress fluctuations in various aberrations such as spherical aberration when focusing from an infinity object to a short-distance object.

本実施形態の光学系の条件式(2)の対応値が上限値を上回ると、第1合焦レンズ群の屈折力が強くなり、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(2)の上限値を3.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(2)の上限値を2.75、2.50、2.25、2.00、1.75、1.50、1.25、1.00、0.95、0.90、さらに0.88にすることが好ましい。 When the corresponding value of the conditional equation (2) of the optical system of the present embodiment exceeds the upper limit value, the refractive power of the first focusing lens group becomes stronger, and the spherical surface at the time of focusing from an infinity object to a short-range object. It becomes difficult to suppress fluctuations in various aberrations including aberrations. By setting the upper limit of the conditional expression (2) to 3.00, the effect of this embodiment can be further ensured. Further, in order to further ensure the effect of this embodiment, the upper limit of the conditional expression (2) may be set to 2.75, 2.50, 2.25, 2.00, 1.75, 1.50, 1.25, 1.00, 0.95, 0.90, and further 0.88. preferable.

一方、本実施形態の光学系の条件式(2)の対応値が下限値を下回ると、第1レンズ群の屈折力が強くなり、無限遠物体から近距離物体への合焦の際の球面収差の変動を抑えることが困難となる。なお、条件式(2)の下限値を0.20に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(2)の下限値を0.30、0.40、0.50、0.55、0.60、0.65、0.70、さらに0.72にすることが好ましい。 On the other hand, when the corresponding value of the conditional equation (2) of the optical system of the present embodiment is lower than the lower limit value, the refractive power of the first lens group becomes stronger, and the spherical surface at the time of focusing from an infinity object to a short-range object. It becomes difficult to suppress fluctuations in aberrations. By setting the lower limit of the conditional expression (2) to 0.20, the effect of this embodiment can be further ensured. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit of the conditional expression (2) to 0.30, 0.40, 0.50, 0.55, 0.60, 0.65, 0.70, and further 0.72.

また、本実施形態の光学系は、以下の条件式(3)を満足することが望ましい。
(3) 0.20<f1/fF2<4.00
ただし、
f1:第1レンズ群の焦点距離
fF2:第2合焦レンズ群の焦点距離
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (3).
(3) 0.20 <f1 / fF2 <4.00
However,
f1: Focal length of the first lens group
fF2: Focal length of the second focusing lens group

条件式(3)は、第1レンズ群の焦点距離と第2合焦レンズ群の焦点距離との比を規定するものである。この条件式(2)を満足することで、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。 The conditional equation (3) defines the ratio between the focal length of the first lens group and the focal length of the second focusing lens group. By satisfying this conditional equation (2), it is possible to suppress fluctuations in various aberrations such as spherical aberration when focusing from an infinity object to a short-distance object.

本実施形態の光学系の条件式(3)の対応値が上限値を上回ると、第2合焦レンズ群の屈折力が強くなり、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(3)の上限値を4.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(3)の上限値を3.75、3.50、3.25、3.00、2.75、2.50、2.25、2.00、1.90、1.80、1.75、さらに1.73にすることが好ましい。 When the corresponding value of the conditional equation (3) of the optical system of the present embodiment exceeds the upper limit value, the refractive power of the second focusing lens group becomes stronger, and the spherical surface at the time of focusing from an infinity object to a short-range object. It becomes difficult to suppress fluctuations in various aberrations including aberrations. By setting the upper limit of the conditional expression (3) to 4.00, the effect of this embodiment can be further ensured. Further, in order to further ensure the effect of this embodiment, the upper limit of the conditional expression (3) is set to 3.75, 3.50, 3.25, 3.00, 2.75, 2.50, 2.25, 2.00, 1.90, 1.80, 1.75, and further 1.73. Is preferable.

一方、本実施形態の光学系の条件式(3)の対応値が下限値を下回ると、第1レンズ群の屈折力が強くなり、無限遠物体から近距離物体への合焦の際の球面収差の変動を抑えることが困難となる。なお、条件式(3)の下限値を0.20に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(3)の下限値を0.35、0.50、0.60、0.70、0.80、0.90、1.00、1.05、1.10、さらに1.15にすることが好ましい。 On the other hand, when the corresponding value of the conditional equation (3) of the optical system of the present embodiment is lower than the lower limit value, the refractive power of the first lens group becomes stronger, and the spherical surface at the time of focusing from an infinity object to a short-range object. It becomes difficult to suppress fluctuations in aberrations. By setting the lower limit of the conditional expression (3) to 0.20, the effect of this embodiment can be further ensured. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit of the conditional expression (3) to 0.35, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 1.05, 1.10, and further 1.15.

また、本実施形態の光学系は、以下の条件式(4)を満足することが望ましい。
(4) 0.05<BF/f<0.50
ただし、
BF:光学系のバックフォーカス
f:光学系の焦点距離
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (4).
(4) 0.05 <BF / f <0.50
However,
BF: Back focus of optical system
f: Focal length of optical system

条件式(4)は、光学系のバックフォーカスと光学系の焦点距離との比を規定するものである。この条件式(4)を満足することで、コマ収差をはじめとする諸収差を効果的に補正することができる。 The conditional expression (4) defines the ratio between the back focus of the optical system and the focal length of the optical system. By satisfying this conditional equation (4), various aberrations such as coma can be effectively corrected.

本実施形態の光学系の条件式(4)の対応値が上限値を上回ると、焦点距離に対してバックフォーカスが大きくなり、コマ収差をはじめとする諸収差を補正することが困難となる。なお、条件式(4)の上限値を0.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(4)の上限値を0.45、0.40、0.35、0.30、0.28、0.25、0.23、0.20、0.18、さらに0.15にすることが好ましい。 When the corresponding value of the conditional expression (4) of the optical system of the present embodiment exceeds the upper limit value, the back focus becomes large with respect to the focal length, and it becomes difficult to correct various aberrations such as coma. By setting the upper limit of the conditional expression (4) to 0.50, the effect of this embodiment can be further ensured. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the upper limit of the conditional expression (4) to 0.45, 0.40, 0.35, 0.30, 0.28, 0.25, 0.23, 0.20, 0.18, and further 0.15.

一方、本実施形態の光学系の条件式(4)の対応値が下限値を下回ると、焦点距離に対して バックフォーカスが小さくなり、コマ収差をはじめとする諸収差を補正することが困難となる。また、鏡筒のメカ部材を配置するのが困難となる。なお、条件式(4)の下限値を0.05に設定することで、本実施形態の効果をより確実なものとすることができる。また、本願の効果をより確実にするために、条件式(4)の下限値を0.07、0.09、0.10、0.11、さらに0.12にすることが好ましい。 On the other hand, when the corresponding value of the conditional expression (4) of the optical system of the present embodiment is less than the lower limit value, the back focus becomes smaller with respect to the focal length, and it is difficult to correct various aberrations such as coma. Become. In addition, it becomes difficult to arrange the mechanical member of the lens barrel. By setting the lower limit of the conditional expression (4) to 0.05, the effect of this embodiment can be further ensured. Further, in order to further ensure the effect of the present application, it is preferable to set the lower limit values of the conditional expression (4) to 0.07, 0.09, 0.10, 0.11 and further 0.12.

また、本実施形態の光学系は、以下の条件式(5)を満足することが望ましい。
(5) -15.00<MF1/MF2<-0.50
ただし、
MF1:第1合焦レンズ群の無限遠物体から近距離物体への合焦の際の移動量
MF2:第2合焦レンズ群の無限遠物体から近距離物体への合焦の際の移動量
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (5).
(5) -15.00 <MF1 / MF2 <-0.50
However,
MF1: Amount of movement when focusing from an infinity object to a short-distance object in the first focusing lens group
MF2: Amount of movement when focusing from an infinity object to a short-distance object in the second focusing lens group

条件式(5)は、合焦レンズ群の内、第1合焦レンズ群の無限遠物体から近距離物体への合焦の際の移動量と、第2合焦レンズ群の無限遠物体から近距離物体への合焦の際の移動量との比を規定するものである。この条件式(5)を満足することで、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。 The conditional equation (5) is based on the amount of movement during focusing from the infinity object of the first focusing lens group to the short-range object and the infinity object of the second focusing lens group in the focusing lens group. It defines the ratio to the amount of movement when focusing on a short-range object. By satisfying this conditional equation (5), it is possible to suppress fluctuations in various aberrations such as spherical aberration when focusing from an infinity object to a short-distance object.

本実施形態の光学系の条件式(5)の対応値が上限値を上回ると、第2合焦レンズ群の移動量が大きくなりすぎ、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(5)の上限値を-0.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(5)の上限値を-0.80、-1.00、-1.25、-1.50、-1.75、-2.00、さらに-2.20にすることが好ましい。 When the corresponding value of the conditional equation (5) of the optical system of the present embodiment exceeds the upper limit value, the amount of movement of the second focusing lens group becomes too large, and when focusing from an infinity object to a short-range object. It becomes difficult to suppress fluctuations in various aberrations such as spherical aberration. By setting the upper limit of the conditional expression (5) to -0.50, the effect of this embodiment can be further ensured. Further, in order to further ensure the effect of this embodiment, it is preferable to set the upper limit of the conditional expression (5) to -0.80, -1.00, -1.25, -1.50, -1.75, -2.00, and further -2.20. ..

一方、本実施形態の光学系の条件式(5)の対応値が下限値を下回ると、第1合焦レンズ群の移動量が大きくなりすぎ、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(5)の下限値を-15.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(5)の下限値を-12.00、-10.00、-9.00、-8.50、-8.00、-7.75、-7.00、-5.00、-3.50、さらに-3.00にすることが好ましい。 On the other hand, when the corresponding value of the conditional equation (5) of the optical system of the present embodiment is less than the lower limit value, the amount of movement of the first focusing lens group becomes too large, and the focusing from the infinity object to the short-range object becomes too large. It becomes difficult to suppress fluctuations in various aberrations such as spherical aberration. By setting the lower limit of the conditional expression (5) to -15.00, the effect of this embodiment can be further ensured. Further, in order to further ensure the effect of this embodiment, the lower limit of the conditional expression (5) is set to -12.00, -10.00, -9.00, -8.50, -8.00, -7.75, -7.00, -5.00, -3.50. , Further preferably -3.00.

また、本実施形態の光学系は、以下の条件式(6)を満足することが望ましい。
(6) 1.00<βF1/βF2<8.00
ただし、
βF1:第1合焦レンズ群の無限遠物体合焦時の横倍率
βF2:第2合焦レンズ群の無限遠物体合焦時の横倍率
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (6).
(6) 1.00 <βF1 / βF2 <8.00
However,
βF1: Lateral magnification when focusing an infinite object in the first focusing lens group βF2: Lateral magnification when focusing an infinity object in the second focusing lens group

条件式(6)は、第1合焦レンズ群の無限遠物体合焦時の横倍率と第2合焦レンズ群の無限遠物体合焦時の横倍率との比を規定するものである。この条件式(6)を満足することで、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。 The conditional equation (6) defines the ratio between the lateral magnification of the first in-focus lens group when the infinity object is in focus and the lateral magnification of the second in-focus lens group when the infinity object is in focus. By satisfying this conditional equation (6), it is possible to suppress fluctuations in various aberrations such as spherical aberration when focusing from an infinity object to a short-distance object.

本実施形態の光学系の条件式(6)の対応値が上限値を上回ると、第1合焦レンズ群の無限遠物体合焦時の横倍率が大きくなりすぎ、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(6)の上限値を8.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(6)の上限値を7.75、7.50、7.25、7.00、6.75、6.50、6.25、6.00、5.75、5.50、さらに5.25にすることが好ましい。 When the corresponding value of the conditional equation (6) of the optical system of the present embodiment exceeds the upper limit value, the lateral magnification of the first focusing lens group at the time of focusing the infinity object becomes too large, and the object at a short distance from the infinity object. It becomes difficult to suppress fluctuations in various aberrations such as spherical aberration during focusing on the lens. By setting the upper limit of the conditional expression (6) to 8.00, the effect of this embodiment can be further ensured. Further, in order to further ensure the effect of this embodiment, the upper limit of the conditional expression (6) may be set to 7.75, 7.50, 7.25, 7.00, 6.75, 6.50, 6.25, 6.00, 5.75, 5.50, and further 5.25. preferable.

一方、本実施形態の光学系の条件式(6)の対応値が下限値を下回ると、第2合焦レンズ群の無限遠物体合焦時の横倍率が大きくなりすぎ、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(6)の下限値を1.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(6)の下限値を1.50、2.00、2.25、2.50、2.75、3.00、3.25、3.50、3.60、さらに3.70にすることが好ましい。 On the other hand, when the corresponding value of the conditional equation (6) of the optical system of the present embodiment is lower than the lower limit value, the lateral magnification of the second focusing lens group at the time of focusing on an infinity object becomes too large, and the lateral magnification becomes too large and is close to the infinity object. It becomes difficult to suppress fluctuations in various aberrations such as spherical aberration when focusing on a distant object. By setting the lower limit of the conditional expression (6) to 1.00, the effect of this embodiment can be further ensured. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit of the conditional expression (6) to 1.50, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 3.60, and further 3.70.

また、本実施形態の光学系は、以下の条件式(7)を満足することが望ましい。
(7) 0.10<MDCP1/MDCP2<5.00
ただし、
MDCP1:所定の撮影距離において一の合焦状態から他の合焦状態になる際の第1合焦レンズ群の移動量
MDCP2:所定の撮影距離において一の合焦状態から他の合焦状態になる際の第2合焦レンズ群の移動量
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (7).
(7) 0.10 <MDCP1 / MDCP2 <5.00
However,
MDCP1: The amount of movement of the first in-focus lens group when changing from one in-focus state to another in-focus state at a predetermined shooting distance.
MDCP2: The amount of movement of the second in-focus lens group when changing from one in-focus state to another in-focus state at a predetermined shooting distance.

条件式(7)は、所定の撮影距離において一の合焦状態から他の合焦状態になる際の、第1合焦レンズ群の移動量と第2合焦レンズ群の移動量との比を規定するものである。この条件式(7)を満足することで、所定の撮影距離における複数の合焦状態で所望の収差性能を得ることができる。 In the conditional equation (7), the ratio of the amount of movement of the first focusing lens group to the amount of movement of the second focusing lens group when changing from one in-focus state to another in-focus state at a predetermined shooting distance. It regulates. By satisfying this conditional expression (7), desired aberration performance can be obtained in a plurality of focused states at a predetermined shooting distance.

本実施形態の光学系の条件式(7)の対応値が上限値を上回ると、第1合焦レンズ群の移動量が大きくなりすぎ、所定の撮影距離における複数の合焦状態で所望の収差性能を得ることが困難となる。なお、条件式(7)の上限値を5.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(7)の上限値を4.50、4.00、3.50、3.00、2.75、2.50、2.25、2.00、1.85、さらに1.70にすることが好ましい。 When the corresponding value of the conditional expression (7) of the optical system of the present embodiment exceeds the upper limit value, the amount of movement of the first focusing lens group becomes too large, and the desired aberration is obtained in a plurality of focusing states at a predetermined shooting distance. It becomes difficult to obtain performance. By setting the upper limit of the conditional expression (7) to 5.00, the effect of this embodiment can be further ensured. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the upper limit of the conditional expression (7) to 4.50, 4.00, 3.50, 3.00, 2.75, 2.50, 2.25, 2.00, 1.85, and further 1.70.

一方、本実施形態の光学系の条件式(7)の対応値が下限値を下回ると、第2合焦レンズ群の移動量が大きくなりすぎ、所定の撮影距離における複数の合焦状態で所望の収差性能を得ることが困難となる。なお、条件式(7)の下限値を0.10に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(7)の下限値を0.25、0.40、0.50、0.60、0.65、0.70、0.75、0.80、0.83、さらに0.85にすることが好ましい。 On the other hand, when the corresponding value of the conditional expression (7) of the optical system of the present embodiment is less than the lower limit value, the amount of movement of the second focusing lens group becomes too large, and it is desired in a plurality of focusing states at a predetermined shooting distance. It becomes difficult to obtain the aberration performance of. By setting the lower limit of the conditional expression (7) to 0.10, the effect of this embodiment can be further ensured. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit of the conditional expression (7) to 0.25, 0.40, 0.50, 0.60, 0.65, 0.70, 0.75, 0.80, 0.83, and further 0.85.

また、本実施形態の光学系は、以下の条件式(8)を満足することが望ましい。
(8) (γ1/|γ1|)×(MDCP1/|MDCP1|)/(γ2/|γ2|)×(MDCP2/|MDCP2|)<0.00
ただし、
γ1:第1合焦レンズ群の無限遠物体合焦時の像面移動係数
γ2:第2合焦レンズ群の無限遠物体合焦時の像面移動係数
MDCP1:所定の撮影距離において一の合焦状態から他の合焦状態になる際の第1合焦レンズ群の移動量
MDCP2:所定の撮影距離において一の合焦状態から他の合焦状態になる際の第2合焦レンズ群の移動量
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (8).
(8) (γ1 / | γ1 |) × (MDCP1 / | MDCP1 |) / (γ2 / | γ2 |) × (MDCP2 / | MDCP2 |) <0.00
However,
γ1: Image plane movement coefficient when the first in-focus lens group is in focus at infinity object γ2: Image plane movement coefficient when the infinity object is in focus in the second in-focus lens group
MDCP1: The amount of movement of the first in-focus lens group when changing from one in-focus state to another in-focus state at a predetermined shooting distance.
MDCP2: The amount of movement of the second in-focus lens group when changing from one in-focus state to another in-focus state at a predetermined shooting distance.

条件式(8)において、像面移動係数は、所定の撮影距離において一の合焦状態から他の合焦状態になる際の合焦レンズ群の移動量と像面の移動量との比である。条件式(8)は、第1合焦レンズ群における像面移動係数の符号(1または-1)と移動量の符号(1または-1)との積と、第2合焦レンズ群における像面移動係数の符号と移動量の符号との積との比が負となることを規定するものである。第1合焦レンズ群における像面移動係数の符号と移動量の符号との積の符号と、第2合焦レンズ群における像面移動係数の符号と移動量の符号との積の符号とが異なる場合に、条件式(8)が満足される。この条件式(8)を満足することで、所定の撮影距離において一の合焦状態から他の合焦状態になる際の焦点位置の変動を抑制することができる。 In the conditional equation (8), the image plane movement coefficient is the ratio of the movement amount of the in-focus lens group to the movement amount of the image plane when changing from one in-focus state to another in-focus state at a predetermined shooting distance. be. Conditional expression (8) is the product of the sign (1 or -1) of the image plane movement coefficient in the first focusing lens group and the sign (1 or -1) of the moving amount, and the image in the second focusing lens group. It stipulates that the ratio of the product of the sign of the surface movement coefficient and the sign of the movement amount is negative. The sign of the product of the sign of the image plane movement coefficient and the sign of the movement amount in the first focusing lens group and the sign of the product of the sign of the image plane movement coefficient and the sign of the movement amount in the second focusing lens group are If they are different, the conditional equation (8) is satisfied. By satisfying this conditional expression (8), it is possible to suppress fluctuations in the focal position when one in-focus state changes to another in-focus state at a predetermined shooting distance.

また、本実施形態の光学系は、第1合焦レンズ群の各レンズが互いに空気間隔で隔てられていることで、球面収差、コマ収差等を良好に補正することができる。 Further, in the optical system of the present embodiment, spherical aberration, coma aberration and the like can be satisfactorily corrected because the lenses of the first focusing lens group are separated from each other by an air spacing.

また、本実施形態の光学系は、第1合焦レンズ群が少なくとも2つの負レンズを有し、少なくとも2つの負レンズのうち物体側から2つ目の負レンズの物体側レンズ面が物体側に凹の形状を有していることで、球面収差、コマ収差等を良好に補正することができる。 Further, in the optical system of the present embodiment, the first focusing lens group has at least two negative lenses, and the object side lens surface of the second negative lens from the object side of the at least two negative lenses is the object side. By having a concave shape, spherical aberration, coma aberration and the like can be satisfactorily corrected.

また、本実施形態の光学系は、以下の条件式(9)を満足することが好ましい。
(9) -1.00<(r2+r1)/(r2-r1)<1.50
ただし、
r1:第1合焦レンズ群が有するレンズのうち最も物体側のレンズの像側レンズ面の曲率半径
r2:第1合焦レンズ群が有するレンズのうち物体側から2番目のレンズの物体側レンズ面の曲率半径
Further, the optical system of the present embodiment preferably satisfies the following conditional expression (9).
(9) -1.00 <(r2 + r1) / (r2-r1) <1.50
However,
r1: Radius of curvature of the image side lens surface of the lens on the most object side among the lenses of the first focusing lens group
r2: Radius of curvature of the lens surface on the object side of the second lens from the object side among the lenses of the first in-focus lens group

条件式(9)は、第1合焦レンズ群において最も物体側のレンズと物体側から2番目のレンズとの間に形成される空気レンズの形状因子を規定するものである。この条件式(9)を満足することで、球面収差、コマ収差等を良好に補正することができる。 The conditional equation (9) defines the shape factor of the air lens formed between the lens on the most object side and the lens second from the object side in the first focusing lens group. By satisfying this conditional equation (9), spherical aberration, coma aberration and the like can be satisfactorily corrected.

条件式(9)の上限値を1.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(8)の上限値を1.40、1.25、1.00、0.95、0.90、0.85、0.80、0.75、0.70、0.65、さらに0.60にすることが好ましい。 By setting the upper limit value of the conditional expression (9) to 1.50, the effect of this embodiment can be further ensured. Further, in order to further ensure the effect of this embodiment, the upper limit of the conditional expression (8) may be set to 1.40, 1.25, 1.00, 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, and further 0.60. preferable.

条件式(9)の上限値を-1.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(8)の上限値を-0.50、-0.25、-0.10、0.00、0.10、0.25、0.30、0.40、0.45、さらに0.50にすることが好ましい。 By setting the upper limit value of the conditional expression (9) to -1.00, the effect of this embodiment can be further ensured. Further, in order to further ensure the effect of this embodiment, the upper limit of the conditional expression (8) should be -0.50, -0.25, -0.10, 0.00, 0.10, 0.25, 0.30, 0.40, 0.45, and further 0.50. Is preferable.

また、本実施形態の光学機器は、上述した構成の光学系を備えていることを特徴とする。これにより、所定の撮影距離において収差量の異なる複数の合焦状態を有し、合焦に影響を与えることなく所定の収差量をコントロールすることができる。 Further, the optical device of the present embodiment is characterized by including an optical system having the above-described configuration. As a result, it is possible to have a plurality of focusing states having different aberration amounts at a predetermined shooting distance and control the predetermined aberration amount without affecting the focusing.

本実施形態の光学系の製造方法は、第1合焦レンズ群および第2合焦レンズ群を含む複数のレンズからなる光学系の製造方法であって、合焦の際移動する第1合焦レンズ群より像側に、合焦の際に、第1合焦レンズ群とは異なる軌跡で移動する第2合焦レンズ群を配置し、所定の撮影距離において、収差量の異なる複数の合焦状態を有し、所定の撮影距離において、一の合焦状態から収差量の異なる他の合焦状態に遷移する際に、第1合焦レンズ群と第2合焦レンズ群とが移動し、合焦の際の第1合焦レンズ群および第2合焦レンズ群の相対的な移動の方向と、所定の撮影距離において一の合焦状態から他の合焦状態になる際の第1合焦レンズ群および第2合焦レンズ群の相対的な移動の方向とが異なるように、複数のレンズを配置する。 The method for manufacturing an optical system according to the present embodiment is a method for manufacturing an optical system including a plurality of lenses including a first focusing lens group and a second focusing lens group, and the first focusing lens group moves during focusing. A second in-focus lens group that moves in a trajectory different from that of the first in-focus lens group at the time of focusing is arranged on the image side of the lens group, and a plurality of in-focus lenses having different amounts of aberration are arranged at a predetermined shooting distance. The first focusing lens group and the second focusing lens group move when the lens has a state and transitions from one focusing state to another focusing state having a different amount of aberration at a predetermined shooting distance. The relative direction of movement of the first in-focus lens group and the second in-focus lens group during in-focus, and the first in-focus state when one in-focus state changes to another in-focus state at a predetermined shooting distance. A plurality of lenses are arranged so that the relative directions of movement of the focusing lens group and the second focusing lens group are different.

このような光学系の製造方法により、これにより、所定の撮影距離において収差量の異なる複数の合焦状態を有し、合焦に影響を与えることなく所定の収差量をコントロールする光学系を製造することができる。 By such an optical system manufacturing method, an optical system having a plurality of focusing states having different aberration amounts at a predetermined shooting distance and controlling a predetermined aberration amount without affecting the focusing is manufactured. can do.

(数値実施例)
以下、本願の数値実施例に係る光学系を図面に基づいて説明する。
(Numerical example)
Hereinafter, the optical system according to the numerical embodiment of the present application will be described with reference to the drawings.

(第1実施例)
図1は、第1実施例に係る光学系のレンズ構成を示す図である。
(First Example)
FIG. 1 is a diagram showing a lens configuration of an optical system according to the first embodiment.

本実施例に係る光学系は、物体側から順に、正屈折力を有する第1レンズ群G1と、開口絞りSと、負屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3と、負屈折力を有する第4レンズ群G4とから構成されている。 In the optical system according to this embodiment, in order from the object side, a first lens group G1 having a positive refractive power, an aperture aperture S, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. It is composed of a lens group G3 and a fourth lens group G4 having a negative refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13と物体側に凸面を向けた負メニスカスレンズL14との接合負レンズと、両凹形状の負レンズL15と物体側に凸面を向けた正メニスカスレンズL16との接合負レンズと、両凸形状の正レンズL17とからなる。 The first lens group G1 includes a positive meniscus lens L11 having a convex surface facing the object side, a positive meniscus lens L12 having a convex surface facing the object side, and a positive meniscus lens L13 having a convex surface facing the object side, in order from the object side. A junction negative lens with a negative meniscus lens L14 with a convex surface facing the object side, a junction negative lens with a biconcave negative lens L15 and a positive meniscus lens L16 with a convex surface facing the object side, and a biconvex positive lens. It consists of L17.

第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23とからなる。 The second lens group G2 is composed of a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, and a biconvex positive lens L23 in order from the object side.

第3レンズ群G3は、両凸形状の正レンズL31からなる。 The third lens group G3 is composed of a biconvex positive lens L31.

第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と物体側に凹面を向けた負メニスカスレンズL42との接合正レンズと、物体側に凸面を向けた負メニスカスレンズL43と物体側に凸面を向けた正メニスカスレンズL44との接合負レンズと、物体側に凹面を向けた負メニスカスレンズL45とからなる。 The fourth lens group G4 includes a positive meniscus lens L41 having a biconvex shape and a negative meniscus lens L42 having a concave surface facing the object side, and a negative meniscus lens L43 having a convex surface facing the object side, in order from the object side. It consists of a junction negative lens with a positive meniscus lens L44 with a convex surface facing the object side and a negative meniscus lens L45 with a concave surface facing the object side.

本実施例に係る光学系では、第2レンズ群G2と第3レンズ群G3をそれぞれ独立に、第2レンズ群G2は像面方向へ、第3レンズ群G3は物体方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。 In the optical system according to this embodiment, the second lens group G2 and the third lens group G3 are moved independently, the second lens group G2 is moved toward the image plane, and the third lens group G3 is moved toward the object. Focusing is performed from a long-range object to a short-range object.

本実施例に係る光学系では、第2レンズ群G2と第3レンズ群G3をそれぞれ独立に、第2レンズ群G2と第3レンズ群G3を同じ方向へ移動させることにより、所定の撮影距離において複数の合焦状態となることができる。 In the optical system according to the present embodiment, the second lens group G2 and the third lens group G3 are independently moved, and the second lens group G2 and the third lens group G3 are moved in the same direction at a predetermined shooting distance. There can be multiple in-focus states.

以下の表1に、本実施例に係る光学系の諸元の値を掲げる。表1において、fは焦点距離、BFはバックフォーカスを示す。 Table 1 below lists the values of the specifications of the optical system according to this embodiment. In Table 1, f indicates the focal length and BF indicates the back focus.

[面データ]において、面番号は物体側から数えたレンズ面の順番、rはレンズ面の曲率半径、dはレンズ面の間隔、ndはd線(波長λ=587.6nm)に対する屈折率、νdはd線(波長λ=587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、(絞りS)は開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示し、空気の屈折率nd=1.00000の記載は省略している。 In [plane data], the plane number is the order of the lens planes counted from the object side, r is the radius of curvature of the lens plane, d is the distance between the lens planes, nd is the refractive index for the d line (wavelength λ = 587.6 nm), νd. Shows the Abbe number for the d line (wavelength λ = 587.6 nm). Further, the object surface indicates an object surface, variable indicates a variable surface spacing, (aperture S) indicates an aperture aperture S, and an image surface indicates an image plane I. The radius of curvature r = ∞ indicates a plane, and the description of the refractive index nd = 1.00000 of air is omitted.

[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h^2/r)/[1+{1-K(h/r)^2}^(1/2)]+A4h^4+A6h^6+A8h^8+A10h^10
[Aspherical surface data] shows the aspherical surface coefficient and the conical constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
x = (h ^ 2 / r) / [1+ {1-K (h / r) ^ 2} ^ (1/2)] + A4h ^ 4 + A6h ^ 6 + A8h ^ 8 + A10h ^ 10

ここで、xは光軸から垂直方向の高さhにおける各非球面の頂点の接平面から光軸方向に沿った距離(サグ量)、Kを円錐定数、A4,A6,A8,A10を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。また、「E-n」(n:整数)は「×10^(-n)」を示し、例えば「1.234E-05」は「1.234×10^(-5)」を示す。 Here, x is the distance (sag amount) along the optical axis direction from the tangent plane of the apex of each aspherical surface at the height h in the direction perpendicular to the optical axis, K is the conical constant, and A4, A6, A8, A10 are not. Let the sphere coefficient and r be the radius of curvature of the reference sphere (near axis radius of curvature). Further, "E-n" (n: integer) indicates "× 10 ^ (-n)", and for example, “1.234E-05” indicates “1.234 × 10 ^ (-5)”.

[各種データ]において、FNOはFナンバー、2ωは画角、Ymaxは最大像高、TLは光学系全長、di(i:整数)は第i面の可変の面間隔をそれぞれ示す。なお、無限遠は無限遠物体への合焦時、近距離は近距離物体への合焦時をそれぞれ示す。 In [Various data], FNO is the F number, 2ω is the angle of view, Ymax is the maximum image height, TL is the total length of the optical system, and di (i: integer) is the variable plane spacing of the i-th plane. Note that infinity indicates the time of focusing on an infinity object, and short distance indicates the time of focusing on a short-distance object.

表1に示す第1合焦状態(無限遠物体合焦時)、第2合焦状態、および第3合焦状態は、所定の撮影距離である無限遠物体合焦時において収差量の異なる複数の合焦状態の一例である。 The first in-focus state (when infinity object is in focus), the second in-focus state, and the third in-focus state shown in Table 1 are a plurality of states having different amounts of aberrations when the infinity object is in focus at a predetermined shooting distance. This is an example of the in-focus state of.

ここで、表1に掲載されている焦点距離fや曲率半径r、及びその他長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。 Here, "mm" is generally used as the unit of the focal length f, the radius of curvature r, and other lengths listed in Table 1. However, the optical system is not limited to this because the same optical performance can be obtained even if the optical system is proportionally expanded or contracted.

なお、以上に述べた表1の符号は、後述する他の実施例の表においても同様に用いるものとする。 The reference numerals in Table 1 described above shall be used in the same manner in the tables of other examples described later.

(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 76.4681 6.281 1.81600 46.59
2 136.1942 0.200
3 57.4677 7.326 1.94595 17.98
4 105.7873 0.200
5 40.6164 9.165 1.49782 82.57
6 92.2146 1.400 1.85451 25.15
7 28.5437 13.082
8 -142.7840 1.300 1.85451 25.15
9 27.2692 12.407 1.85108 40.12
*10 284.8397 0.200
11 53.6840 8.675 1.87070 40.74
12 -146.3085 2.000
13(絞りS) ∞ d13(可変)

14 115.1093 1.300 1.84666 23.80
15 32.0404 7.425
16 -102.7052 1.300 1.69895 30.13
17 320.0536 0.200
18 75.4430 4.445 1.94595 17.98
19 -281.9525 d19(可変)

20 248.5984 6.000 1.82098 42.50
*21 -66.0535 d21(可変)

22 1465.7781 7.223 1.87070 40.74
23 -50.2112 1.200 1.80518 25.45
24 -135.6982 0.200
25 27007.9920 1.200 1.64769 33.73
26 65.5428 3.074 1.94595 17.98
27 113.9795 6.485
28 -45.8727 1.500 1.80518 25.45
29 -312.4149 BF
像面 ∞

[非球面データ]
第10面
K = 1.0000
A4 = 1.96303E-06
A6 = 6.61382E-10
A8 = -3.01202E-13
A10 = 8.18575E-16

第21面
K = 1.0000
A4 = -4.14941E-07
A6 = -1.24959E-09
A8 = 3.70095E-12
A10 = -4.48729E-15

[各種データ]
f 84.7
FNO 1.22
2ω 28.42
Ymax 21.60
TL 134.82
BF 11.46

第1合焦状態 第2合焦状態 第3合焦状態
無限遠 近距離 無限遠 無限遠
d13 2.902 5.140 3.775 2.000
d19 13.675 10.440 13.802 13.577
d21 3.000 3.997 2.000 4.000

[レンズ群データ]
群 始面 f
1 1 76.176
2 14 -94.259
3 20 64.118
4 22 -102.113

[条件式対応値]
(1) (-fF1)/fF2 = 1.470
(2) f1/(-fF1) = 0.808
(3) f1/fF2 = 1.188
(4) BF/f = 0.135
(5) MF1/MF2 = -2.247
(6) βF1/βF2 = 3.723
(7) MDCP1/MDCP2 = 0.873
(8) (γ1/|γ1|)×(MDCP1/|MDCP1|)/(γ2/|γ2|)×(MDCP2/|MDCP2|) = -1
(9) (r2+r1)/(r2-r1) = 0.524
(Table 1) First Example
[Surface data]
Surface number rd nd νd
Paraboloid ∞
1 76.4681 6.281 1.81600 46.59
2 136.1942 0.200
3 57.4677 7.326 1.94595 17.98
4 105.7873 0.200
5 40.6164 9.165 1.49782 82.57
6 92.2146 1.400 1.85451 25.15
7 28.5437 13.082
8 -142.7840 1.300 1.85451 25.15
9 27.2692 12.407 1.85108 40.12
* 10 284.8397 0.200
11 53.6840 8.675 1.87070 40.74
12 -146.3085 2.000
13 (Aperture S) ∞ d13 (Variable)

14 115.1093 1.300 1.84666 23.80
15 32.0404 7.425
16 -102.7052 1.300 1.69895 30.13
17 320.0536 0.200
18 75.4430 4.445 1.94595 17.98
19 -281.9525 d19 (variable)

20 248.5984 6.000 1.82098 42.50
* 21 -66.0535 d21 (variable)

22 1465.7781 7.223 1.87070 40.74
23 -50.2112 1.200 1.80518 25.45
24-135.6982 0.200
25 27007.9920 1.200 1.64769 33.73
26 65.5428 3.074 1.94595 17.98
27 113.9795 6.485
28 -45.8727 1.500 1.80518 25.45
29 -312.4149 BF
Image plane ∞

[Aspherical data]
Page 10
K = 1.0000
A4 = 1.96303E-06
A6 = 6.61382E-10
A8 = -3.01202E-13
A10 = 8.18575E-16

21st page
K = 1.0000
A4 = -4.14941E-07-07
A6 = -1.24959E-09
A8 = 3.70095E-12
A10 = -4.48729E-15

[Various data]
f 84.7
FNO 1.22
2ω 28.42
Ymax 21.60
TL 134.82
BF 11.46

1st focus state 2nd focus state 3rd focus state
Point at infinity Close range Point at infinity Point at infinity
d13 2.902 5.140 3.775 2.000
d19 13.675 10.440 13.802 13.577
d21 3.000 3.997 2.000 4.000

[Lens group data]
Group start surface f
1 1 76.176
2 14 -94.259
3 20 64.118
4 22 -102.113

[Conditional expression correspondence value]
(1) (-fF1) / fF2 = 1.470
(2) f1 / (-fF1) = 0.808
(3) f1 / fF2 = 1.188
(4) BF / f = 0.135
(5) MF1 / MF2 = -2.247
(6) βF1 / βF2 = 3.723
(7) MDCP1 / MDCP2 = 0.873
(8) (γ1 / | γ1 |) × (MDCP1 / | MDCP1 |) / (γ2 / | γ2 |) × (MDCP2 / | MDCP2 |) = -1
(9) (r2 + r1) / (r2-r1) = 0.524

図2(a)、及び図2(b)はそれぞれ、第1実施例に係る光学系の無限遠物体合焦時、近距離物体合焦時における第1合焦状態の諸収差図である。
図3は、第1実施例に係る光学系の無限遠物体合焦時における第2合焦状態の諸収差図である。
図4は、第1実施例に係る光学系の無限遠物体合焦時における第3合焦状態の諸収差図である。
2 (a) and 2 (b) are aberration diagrams of the first in-focus state of the optical system according to the first embodiment at the time of focusing on an infinite object and the time of focusing on a short-range object, respectively.
FIG. 3 is a diagram of various aberrations of the second in-focus state of the optical system according to the first embodiment when the infinity object is in focus.
FIG. 4 is a diagram of various aberrations of the third in-focus state of the optical system according to the first embodiment when the infinity object is in focus.

図2、図3、図4の各収差図において、FNOはFナンバー、NAは開口数、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す他の実施例の収差図においても、本実施例と同様の符号を用いる。 In each aberration diagram of FIGS. 2, 3 and 4, FNO indicates an F number, NA indicates a numerical aperture, and Y indicates an image height. The spherical aberration diagram shows the F number or numerical aperture value corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum image height, and the coma aberration diagram shows the value of each image height. .. d indicates the d line (λ = 587.6 nm), and g indicates the g line (λ = 435.8 nm). In the astigmatism diagram, the solid line shows the sagittal image plane and the broken line shows the meridional image plane. In the aberration diagrams of the other examples shown below, the same reference numerals as those of the present embodiment are used.

各諸収差図より、本実施例に係る光学系は、無限遠物体合焦状態から近距離物体合焦状態にわたって諸収差を良好に補正し優れた結像性能を有しており、所定の撮影距離における複数の合焦状態で所望の収差性能を得ることができていることがわかる。 From each aberration diagram, the optical system according to this embodiment satisfactorily corrects various aberrations from the in-focus state of an infinite object to the in-focus state of a short-range object, and has excellent imaging performance. It can be seen that the desired aberration performance can be obtained in a plurality of focused states at a distance.

(第2実施例)
図5は、第2実施例に係る光学系のレンズ構成を示す図である。
(Second Example)
FIG. 5 is a diagram showing a lens configuration of an optical system according to a second embodiment.

本実施例に係る光学系は、物体側から順に、正屈折力を有する第1レンズ群G1と、開口絞りSと、負屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3と、負屈折力を有する第4レンズ群G4とから構成されている。 In the optical system according to this embodiment, in order from the object side, a first lens group G1 having a positive refractive power, an aperture aperture S, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. It is composed of a lens group G3 and a fourth lens group G4 having a negative refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13と物体側に凸面を向けた負メニスカスレンズL14との接合負レンズと、両凹形状の負レンズL15と物体側に凸面を向けた正メニスカスレンズL16との接合負レンズと、両凸形状の正レンズL17とからなる。 The first lens group G1 includes a positive meniscus lens L11 having a convex surface facing the object side, a positive meniscus lens L12 having a convex surface facing the object side, and a positive meniscus lens L13 having a convex surface facing the object side, in order from the object side. A junction negative lens with a negative meniscus lens L14 with a convex surface facing the object side, a junction negative lens with a biconcave negative lens L15 and a positive meniscus lens L16 with a convex surface facing the object side, and a biconvex positive lens. It consists of L17.

第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23とからなる。 The second lens group G2 is composed of a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, and a biconvex positive lens L23 in order from the object side.

第3レンズ群G3は、両凸形状の正レンズL31からなる。 The third lens group G3 is composed of a biconvex positive lens L31.

第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズ41と物体側に凹面向けた負メニスカスレンズL42との接合正レンズと、両凹形状の負レンズL43と物体側に凸面を向けた正メニスカスレンズL44との接合負レンズと、物体側に凹面を向けた負メニスカスレンズL45とからなる。 The fourth lens group G4 consists of a positive meniscus lens 41 having a concave surface facing the object side and a negative meniscus lens L42 having a concave surface facing the object side, and a biconcave negative lens L43 and an object in order from the object side. It consists of a junction negative lens with a positive meniscus lens L44 with a convex surface facing side and a negative meniscus lens L45 with a concave surface facing the object side.

本実施例に係る光学系では、第2レンズ群G2と第3レンズ群G3をそれぞれ独立に、第2レンズ群G2は像面方向へ、第3レンズ群G3は物体方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。 In the optical system according to this embodiment, the second lens group G2 and the third lens group G3 are moved independently, the second lens group G2 is moved toward the image plane, and the third lens group G3 is moved toward the object. Focusing is performed from a long-range object to a short-range object.

本実施例に係る光学系では、第2レンズ群G2と第3レンズ群G3をそれぞれ独立に、第2レンズ群G2と第3レンズ群G3を同じ方向へ移動させることにより、所定の撮影距離において複数の合焦状態となることができる。 In the optical system according to the present embodiment, the second lens group G2 and the third lens group G3 are independently moved, and the second lens group G2 and the third lens group G3 are moved in the same direction at a predetermined shooting distance. There can be multiple in-focus states.

以下の表2に、本実施例に係る光学系の諸元の値を掲げる。 Table 2 below lists the values of the specifications of the optical system according to this embodiment.

(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 73.4000 5.501 1.81600 46.59
2 110.7457 0.200
3 58.8917 7.458 1.94595 17.98
4 111.0084 0.200
5 39.1598 9.057 1.49782 82.57
6 77.4229 1.400 1.80518 25.45
7 28.0712 13.538
8 -151.1995 1.300 1.85451 25.15
9 26.4878 12.639 1.82098 42.50
*10 242.2031 0.200
11 52.7537 8.844 1.87070 40.74
12 -140.0458 2.000
13(絞りS) ∞ d13(可変)

14 133.9543 1.300 1.84666 23.80
15 32.7409 7.152
16 -123.4300 1.300 1.75520 27.57
17 357.4047 0.200
18 74.6253 4.520 1.94595 17.98
19 -297.7591 d19(可変)

20 313.0221 6.000 1.88202 37.22
*21 -63.4643 d21(可変)

22 -1081.1156 7.420 1.87070 40.74
23 -44.2958 1.200 1.84666 23.80
24 -127.4625 0.200
25 -32333.6320 1.200 1.60342 38.03
26 66.4764 2.852 1.94595 17.98
27 107.6046 6.381
28 -44.1967 1.500 1.75520 27.57
29 -275.2791 BF
像面 ∞

[非球面データ]
第10面
K = 1.0000
A4 = 2.12690E-06
A6 = 4.27646E-10
A8 = 4.85052E-13
A10 = -3.78645E-16

第21面
K = 1.0000
A4 = -2.65193E-07
A6 = -1.87433E-09
A8 = 6.45118E-12
A10 = -8.11290E-15

[各種データ]
f 84.0
FNO 1.22
2ω 28.66
Ymax 21.60
TL 135.26
BF 11.46

第1合焦状態 第2合焦状態 第3合焦状態
無限遠 近距離 無限遠 無限遠
d13 3.338 5.621 4.740 2.000
d19 13.469 10.264 13.500 13.500
d21 3.432 4.354 2.000 4.739

[レンズ群データ]
群 始面 f
1 1 76.582
2 14 -96.956
3 20 60.274
4 22 -92.079

[条件式対応値]
(1) (-fF1)/fF2 = 1.609
(2) f1/(-fF1) = 0.790
(3) f1/fF2 = 1.271
(4) BF/f = 0.136
(5) MF1/MF2 = -2.477
(6) βF1/βF2 = 3.812
(7) MDCP1/MDCP2 = 0.979
(8) (γ1/|γ1|)×(MDCP1/|MDCP1|)/(γ2/|γ2|)×(MDCP2/|MDCP2|) = -1
(9) (r2+r1)/(r2-r1) = 0.581
(Table 2) Second Example
[Surface data]
Surface number rd nd νd
Paraboloid ∞
1 73.4000 5.501 1.81600 46.59
2 110.7457 0.200
3 58.8917 7.458 1.94595 17.98
4 111.0084 0.200
5 39.1598 9.057 1.49782 82.57
6 77.4229 1.400 1.80518 25.45
7 28.0712 13.538
8-151.1995 1.300 1.85451 25.15
9 26.4878 12.639 1.82098 42.50
* 10 242.2031 0.200
11 52.7537 8.844 1.87070 40.74
12 -140.0458 2.000
13 (Aperture S) ∞ d13 (Variable)

14 133.9543 1.300 1.84666 23.80
15 32.7409 7.152
16 -123.4300 1.300 1.75520 27.57
17 357.4047 0.200
18 74.6253 4.520 1.94595 17.98
19 -297.7591 d19 (variable)

20 313.0221 6.000 1.88202 37.22
* 21 -63.4643 d21 (variable)

22 -1081.1156 7.420 1.87070 40.74
23 -44.2958 1.200 1.84666 23.80
24 -127.4625 0.200
25 -32333.6320 1.200 1.60342 38.03
26 66.4764 2.852 1.94595 17.98
27 107.6046 6.381
28 -44.1967 1.500 1.75520 27.57
29 -275.2791 BF
Image plane ∞

[Aspherical data]
Page 10
K = 1.0000
A4 = 2.12690E-06
A6 = 4.27646E-10
A8 = 4.85052E-13
A10 = -3.78645E-16

21st page
K = 1.0000
A4 = -2.65193E-07
A6 = -1.87433E-09
A8 = 6.45118E-12
A10 = -8.11290E-15

[Various data]
f 84.0
FNO 1.22
2ω 28.66
Ymax 21.60
TL 135.26
BF 11.46

1st focus state 2nd focus state 3rd focus state
Point at infinity Close range Point at infinity Point at infinity
d13 3.338 5.621 4.740 2.000
d19 13.469 10.264 13.500 13.500
d21 3.432 4.354 2.000 4.739

[Lens group data]
Group start surface f
1 1 76.582
2 14 -96.956
3 20 60.274
4 22 -92.079

[Conditional expression correspondence value]
(1) (-fF1) / fF2 = 1.609
(2) f1 / (-fF1) = 0.790
(3) f1 / fF2 = 1.271
(4) BF / f = 0.136
(5) MF1 / MF2 = -2.477
(6) βF1 / βF2 = 3.812
(7) MDCP1 / MDCP2 = 0.979
(8) (γ1 / | γ1 |) × (MDCP1 / | MDCP1 |) / (γ2 / | γ2 |) × (MDCP2 / | MDCP2 |) = -1
(9) (r2 + r1) / (r2-r1) = 0.581

図6(a)、及び図6(b)はそれぞれ、第2実施例に係る光学系の無限遠物体合焦時、近距離物体合焦時における第1合焦状態の諸収差図である。
図7は、第2実施例に係る光学系の無限遠物体合焦時における第2合焦状態の諸収差図である。
図8は、第2実施例に係る光学系の無限遠物体合焦時における第3合焦状態の諸収差図である。
6 (a) and 6 (b) are aberration diagrams of the first in-focus state of the optical system according to the second embodiment at the time of focusing on an infinite object and the time of focusing on a short-range object, respectively.
FIG. 7 is a diagram of various aberrations of the second in-focus state of the optical system according to the second embodiment when the infinity object is in focus.
FIG. 8 is a diagram of various aberrations of the third in-focus state of the optical system according to the second embodiment when the infinity object is in focus.

各諸収差図より、本実施例に係る光学系は、無限遠物体合焦状態から近距離物体合焦状態にわたって諸収差を良好に補正し優れた結像性能を有しており、所定の撮影距離における複数の合焦状態で所望の収差性能を得ることができていることがわかる。 From each aberration diagram, the optical system according to this embodiment satisfactorily corrects various aberrations from the in-focus state of an infinite object to the in-focus state of a short-range object, and has excellent imaging performance. It can be seen that the desired aberration performance can be obtained in a plurality of focused states at a distance.

(第3実施例)
図9は、第3実施例に係る光学系のレンズ構成を示す図である。
(Third Example)
FIG. 9 is a diagram showing a lens configuration of an optical system according to a third embodiment.

本実施例に係る光学系は、物体側から順に、正屈折力を有する第1レンズ群G1と、開口絞りSと、負屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3と、負屈折力を有する第4レンズ群G4とから構成されている。 In the optical system according to this embodiment, in order from the object side, a first lens group G1 having a positive refractive power, an aperture aperture S, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. It is composed of a lens group G3 and a fourth lens group G4 having a negative refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13と物体側に凸面を向けた負メニスカスレンズL14との接合負レンズと、両凹形状の負レンズL15と物体側に凸面を向けた正メニスカスレンズL16との接合負レンズと、両凸形状の正レンズL17とからなる。 The first lens group G1 includes a positive meniscus lens L11 having a convex surface facing the object side, a positive meniscus lens L12 having a convex surface facing the object side, and a positive meniscus lens L13 having a convex surface facing the object side, in order from the object side. A junction negative lens with a negative meniscus lens L14 with a convex surface facing the object side, a junction negative lens with a biconcave negative lens L15 and a positive meniscus lens L16 with a convex surface facing the object side, and a biconvex positive lens. It consists of L17.

第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凸面を向けた正メニスカスレンズL22とからなる。 The second lens group G2 is composed of a negative meniscus lens L21 having a convex surface facing the object side and a positive meniscus lens L22 having a convex surface facing the object side in order from the object side.

第3レンズ群G3は、両凸形状の正レンズL31からなる。 The third lens group G3 is composed of a biconvex positive lens L31.

第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズ41と物体側に凹面向けた負メニスカスレンズL42との接合正レンズと、物体側に凸面を向けた負メニスカスレンズL43と、物体側に凹面を向けた負メニスカスレンズL44とからなる。 The fourth lens group G4 consists of a positive meniscus lens 41 having a concave surface facing the object side and a negative meniscus lens L42 having a concave surface facing the object side, and a negative meniscus lens having a convex surface facing the object side, in order from the object side. It consists of a lens L43 and a negative meniscus lens L44 with a concave surface facing the object side.

本実施例に係る光学系では、第2レンズ群G2と第3レンズ群G3をそれぞれ独立に、第2レンズ群G2は像面方向へ、第3レンズ群G3は物体方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。 In the optical system according to this embodiment, the second lens group G2 and the third lens group G3 are moved independently, the second lens group G2 is moved toward the image plane, and the third lens group G3 is moved toward the object. Focusing is performed from a long-range object to a short-range object.

本実施例に係る光学系では、第2レンズ群G2と第3レンズ群G3をそれぞれ独立に、第2レンズ群G2と第3レンズ群G3を同じ方向へ移動させることにより、所定の撮影距離において複数の合焦状態となることができる。 In the optical system according to the present embodiment, the second lens group G2 and the third lens group G3 are independently moved, and the second lens group G2 and the third lens group G3 are moved in the same direction at a predetermined shooting distance. There can be multiple in-focus states.

以下の表3に、本実施例に係る光学系の諸元の値を掲げる。 Table 3 below lists the values of the specifications of the optical system according to this embodiment.

(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 85.6509 5.827 1.81600 46.59
2 154.3812 0.200
3 57.0937 8.593 1.92286 20.88
4 131.3921 0.200
5 47.2501 9.821 1.49782 82.57
6 207.3012 1.400 1.85451 25.15
7 30.6342 12.478
8 -132.1232 1.300 1.77047 29.74
9 30.0000 10.936 1.77387 47.25
*10 214.4708 0.200
11 56.4801 8.605 1.81600 46.59
12 -129.8822 2.000
13(絞りS) ∞ d13(可変)

14 2187.7832 1.300 1.80301 25.53
*15 37.8523 8.531
16 71.0452 3.814 1.94595 17.98
17 327.5416 d17(可変)

18 99.2162 5.806 1.81600 46.59
19 -71.0156 d19(可変)

*20 1514.5028 10.020 1.82098 42.50
21 -29.5144 1.200 1.77047 29.74
22 -104.3194 0.200
23 37090.0280 1.200 1.59349 67.00
24 51.3147 8.670
25 -46.7845 1.300 1.80400 46.60
26 -204.7043 BF
像面 ∞

[非球面データ]
第10面
K = 1.0000
A4 = 1.85982E-06
A6 = 4.65472E-10
A8 = -3.52700E-14
A10 = 4.70200E-16

第15面
K = 1.0000
A4 = -6.58221E-07
A6 = 6.37081E-12
A8 = 4.14480E-13
A10 = 5.88588E-16

第20面
K = 1.0000
A4 = -2.10883E-06
A6 = -8.12788E-11
A8 = -2.16381E-12
A10 = 1.67099E-15

[各種データ]
f 84.3
FNO 1.22
2ω 28.54
Ymax 21.60
TL 135.57
BF 11.46

第1合焦状態 第2合焦状態 第3合焦状態
無限遠 近距離 無限遠 無限遠
d13 2.798 6.123 4.698 1.500
d17 16.006 12.237 15.313 16.511
d19 1.706 2.151 0.500 2.500

[レンズ群データ]
群 始面 f
1 1 85.385
2 14 -116.374
3 18 51.512
4 20 -66.581

[条件式対応値]
(1) (-fF1)/fF2 = 2.259
(2) f1/(-fF1) = 0.734
(3) f1/fF2 = 1.658
(4) BF/f = 0.136
(5) MF1/MF2 = -7.480
(6) βF1/βF2 = 4.438
(7) MDCP1/MDCP2 = 1.575
(8) (γ1/|γ1|)×(MDCP1/|MDCP1|)/(γ2/|γ2|)×(MDCP2/|MDCP2|) = -1
(Table 3) Third Example
[Surface data]
Surface number rd nd νd
Paraboloid ∞
1 85.6509 5.827 1.81600 46.59
2 154.3812 0.200
3 57.0937 8.593 1.92286 20.88
4 131.3921 0.200
5 47.2501 9.821 1.49782 82.57
6 207.3012 1.400 1.85451 25.15
7 30.6342 12.478
8 -132.1232 1.300 1.77047 29.74
9 30.0000 10.936 1.77387 47.25
* 10 214.4708 0.200
11 56.4801 8.605 1.81600 46.59
12 -129.8822 2.000
13 (Aperture S) ∞ d13 (Variable)

14 2187.7832 1.300 1.80301 25.53
* 15 37.8523 8.531
16 71.0452 3.814 1.94595 17.98
17 327.5416 d17 (variable)

18 99.2162 5.806 1.81600 46.59
19 -71.0156 d19 (variable)

* 20 1514.5028 10.020 1.82098 42.50
21 -29.5144 1.200 1.77047 29.74
22 -104.3194 0.200
23 37090.0280 1.200 1.59349 67.00
24 51.3147 8.670
25 -46.7845 1.300 1.80400 46.60
26 -204.7043 BF
Image plane ∞

[Aspherical data]
Surface 10
K = 1.0000
A4 = 1.85982E-06
A6 = 4.65472E-10
A8 = -3.52700E-14
A10 = 4.70200E-16

Page 15
K = 1.0000
A4 = -6.58221E-07-07
A6 = 6.37081E-12
A8 = 4.14480E-13
A10 = 5.88588E-16

20th page
K = 1.0000
A4 = -2.10883E-06
A6 = -8.12788E-11
A8 = -2.16381E-12
A10 = 1.67099E-15

[Various data]
f 84.3
FNO 1.22
2ω 28.54
Ymax 21.60
TL 135.57
BF 11.46

1st focus state 2nd focus state 3rd focus state
Point at infinity Close range Point at infinity Point at infinity
d13 2.798 6.123 4.698 1.500
d17 16.006 12.237 15.313 16.511
d19 1.706 2.151 0.500 2.500

[Lens group data]
Group start surface f
1 1 85.385
2 14 -116.374
3 18 51.512
4 20 -66.581

[Conditional expression correspondence value]
(1) (-fF1) / fF2 = 2.259
(2) f1 / (-fF1) = 0.734
(3) f1 / fF2 = 1.658
(4) BF / f = 0.136
(5) MF1 / MF2 = -7.480
(6) βF1 / βF2 = 4.438
(7) MDCP1 / MDCP2 = 1.575
(8) (γ1 / | γ1 |) × (MDCP1 / | MDCP1 |) / (γ2 / | γ2 |) × (MDCP2 / | MDCP2 |) = -1

図10(a)、及び図10(b)はそれぞれ、第3実施例に係る光学系の無限遠物体合焦時、近距離物体合焦時における第1合焦状態の諸収差図である。
図11は、第3実施例に係る光学系の無限遠物体合焦時における第2合焦状態の諸収差図である。
図12は、第3実施例に係る光学系の無限遠物体合焦時における第3合焦状態の諸収差図である。
10 (a) and 10 (b) are aberration diagrams of the first in-focus state of the optical system according to the third embodiment at the time of focusing on an infinite object and the time of focusing on a short-range object, respectively.
FIG. 11 is a diagram of various aberrations of the second in-focus state of the optical system according to the third embodiment when the infinity object is in focus.
FIG. 12 is a diagram of various aberrations of the third in-focus state of the optical system according to the third embodiment when the infinity object is in focus.

各諸収差図より、本実施例に係る光学系は、無限遠物体合焦状態から近距離物体合焦状態にわたって諸収差を良好に補正し優れた結像性能を有しており、所定の撮影距離における複数の合焦状態で所望の収差性能を得ることができていることがわかる。 From each aberration diagram, the optical system according to this embodiment satisfactorily corrects various aberrations from the in-focus state of an infinite object to the in-focus state of a short-range object, and has excellent imaging performance. It can be seen that the desired aberration performance can be obtained in a plurality of focused states at a distance.

(第4実施例)
図13は、本願の第4実施例に係る光学系のレンズ構成を示す図である。
(Fourth Example)
FIG. 13 is a diagram showing a lens configuration of an optical system according to a fourth embodiment of the present application.

本実施例に係る光学系は、物体側から順に、正屈折力を有する第1レンズ群G1と、開口絞りSと、負屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3と、負屈折力を有する第4レンズ群G4とから構成されている。 In the optical system according to this embodiment, in order from the object side, a first lens group G1 having a positive refractive power, an aperture aperture S, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. It is composed of a lens group G3 and a fourth lens group G4 having a negative refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13と物体側に凸面を向けた負メニスカスレンズL14との接合負レンズと、両凹形状の負レンズL15と物体側に凸面を向けた正メニスカスレンズL16との接合負レンズと、両凸形状の正レンズL17とからなる。 The first lens group G1 includes a positive meniscus lens L11 having a convex surface facing the object side, a positive meniscus lens L12 having a convex surface facing the object side, and a positive meniscus lens L13 having a convex surface facing the object side, in order from the object side. A junction negative lens with a negative meniscus lens L14 with a convex surface facing the object side, a junction negative lens with a biconcave negative lens L15 and a positive meniscus lens L16 with a convex surface facing the object side, and a biconvex positive lens. It consists of L17.

第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、物体側に凸面を向けた正メニスカスレンズL22とからなる。 The second lens group G2 is composed of a negative lens L21 having a concave shape and a positive meniscus lens L22 having a convex surface facing the object side in order from the object side.

第3レンズ群G3は、両凸形状の正レンズL31からなる。 The third lens group G3 is composed of a biconvex positive lens L31.

第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズ41と物体側に凹面向けた負メニスカスレンズL42との接合正レンズと、両凹形状の負レンズL43と、物体側に凹面を向けた負メニスカスレンズL44とからなる。 The fourth lens group G4 includes a positive meniscus lens 41 having a concave surface facing the object side, a negative meniscus lens L42 having a concave surface facing the object side, a positive meniscus lens L42, and a negative lens L43 having a concave shape. It consists of a negative meniscus lens L44 with a concave surface facing the object side.

本実施例に係る光学系では、第2レンズ群G2を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。 In the optical system according to this embodiment, focusing of a long-distance object to a short-distance object is performed by moving the second lens group G2 in the image plane direction.

本実施例に係る光学系では、第2レンズ群G2と第3レンズ群G3とを同じ方向へ移動させることにより、所定の撮影距離において複数の合焦状態となることができる。 In the optical system according to the present embodiment, by moving the second lens group G2 and the third lens group G3 in the same direction, a plurality of focused states can be achieved at a predetermined shooting distance.

以下の表4に、本実施例に係る光学系の諸元の値を掲げる。
(表4)第4実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 78.5786 6.005 1.81600 46.59
2 134.9510 0.200
3 63.3152 8.318 1.92286 20.88
4 162.9332 0.200
5 46.5652 11.196 1.49782 82.57
6 601.5323 1.400 1.85451 25.15
7 31.3946 12.043
8 -123.9626 1.300 1.77047 29.74
9 39.4141 9.061 1.77387 47.25
*10 763.9189 0.200
11 58.5717 8.089 1.81600 46.59
12 -152.3516 2.000
13(絞りS) ∞ d13(可変)

14 -1622.0766 1.300 1.80301 25.53
*15 35.6012 7.393
16 64.2543 3.869 1.94595 17.98
17 253.9967 d17(可変)

18 82.9841 7.059 1.81600 46.59
19 -73.7171 d19(可変)

*20 -849.6919 11.000 1.82098 42.50
21 -27.3710 1.200 1.77047 29.74
22 -72.9702 0.200
23 -149.2729 1.200 1.59349 67.00
24 59.2826 7.917
25 -43.8819 1.300 1.80400 46.60
26 -140.7336 BF
像面 ∞

[非球面データ]
第10面
K = 1.0000
A4 = 1.17966E-06
A6 = 2.97755E-11
A8 = 1.67487E-13
A10 = 9.63392E-17

第15面
K = 1.0000
A4 = -8.33627E-07
A6 = 1.21432E-10
A8 = 8.19084E-13
A10 = -2.95787E-16

第20面
K = 1.0000
A4 = -2.26252E-06
A6 = 3.22587E-10
A8 = -3.59413E-12
A10 = 2.28368E-15

[各種データ]
f 85.8
FNO 1.22
2ω 28.26
Ymax 21.60
TL 134.47
BF 11.46

第1合焦状態 第2合焦状態 第3合焦状態
無限遠 近距離 無限遠 無限遠
d13 2.996 6.554 4.436 1.500
d17 16.068 12.510 15.628 16.564
d19 1.500 1.500 0.500 2.500

[レンズ群データ]
群 始面 f
1 1 82.958
2 14 -97.795
3 18 48.829
4 20 -65.783

[条件式対応値]
(1) (-fF1)/fF2 = 2.003
(2) f1/(-fF1) = 0.848
(3) f1/fF2 = 1.699
(4) BF/f = 0.134
(6) βF1/βF2 = 5.043
(7) MDCP1/MDCP2 = 1.440
(8) (γ1/|γ1|)×(MDCP1/|MDCP1|)/(γ2/|γ2|)×(MDCP2/|MDCP2|) = -1
Table 4 below lists the values of the specifications of the optical system according to this embodiment.
(Table 4) Fourth Example
[Surface data]
Surface number rd nd νd
Paraboloid ∞
1 78.5786 6.005 1.81600 46.59
2 134.9510 0.200
3 63.3152 8.318 1.92286 20.88
4 162.9332 0.200
5 46.5652 11.196 1.49782 82.57
6 601.5323 1.400 1.85451 25.15
7 31.3946 12.043
8 -123.9626 1.300 1.77047 29.74
9 39.4141 9.061 1.77387 47.25
* 10 763.9189 0.200
11 58.5717 8.089 1.81600 46.59
12 -152.3516 2.000
13 (Aperture S) ∞ d13 (Variable)

14 -1622.0766 1.300 1.80301 25.53
* 15 35.6012 7.393
16 64.2543 3.869 1.94595 17.98
17 253.9967 d17 (variable)

18 82.9841 7.059 1.81600 46.59
19 -73.7171 d19 (variable)

* 20 -849.6919 11.000 1.82098 42.50
21 -27.3710 1.200 1.77047 29.74
22 -72.9702 0.200
23 -149.2729 1.200 1.59349 67.00
24 59.2826 7.917
25 -43.8819 1.300 1.80400 46.60
26 -140.7336 BF
Image plane ∞

[Aspherical data]
Page 10
K = 1.0000
A4 = 1.17966E-06
A6 = 2.97755E-11
A8 = 1.67487E-13
A10 = 9.63392E-17

Page 15
K = 1.0000
A4 = -8.33627E-07-07
A6 = 1.21432E-10
A8 = 8.19084E-13
A10 = -2.95787E-16

20th page
K = 1.0000
A4 = -2.26252E-06
A6 = 3.22587E-10
A8 = -3.59413E-12
A10 = 2.28368E-15

[Various data]
f 85.8
FNO 1.22
2ω 28.26
Ymax 21.60
TL 134.47
BF 11.46

1st focus state 2nd focus state 3rd focus state
Point at infinity Close range Point at infinity Point at infinity
d13 2.996 6.554 4.436 1.500
d17 16.068 12.510 15.628 16.564
d19 1.500 1.500 0.500 2.500

[Lens group data]
Group start surface f
1 1 82.958
2 14 -97.795
3 18 48.829
4 20 -65.783

[Conditional expression correspondence value]
(1) (-fF1) / fF2 = 2.003
(2) f1 / (-fF1) = 0.848
(3) f1 / fF2 = 1.699
(4) BF / f = 0.134
(6) βF1 / βF2 = 5.043
(7) MDCP1 / MDCP2 = 1.440
(8) (γ1 / | γ1 |) × (MDCP1 / | MDCP1 |) / (γ2 / | γ2 |) × (MDCP2 / | MDCP2 |) = -1

図14(a)、及び図14(b)はそれぞれ、第4実施例に係る光学系の無限遠物体合焦時、近距離物体合焦時における第1合焦状態の諸収差図である。
図15は、第4実施例に係る光学系の無限遠物体合焦時における第2合焦状態の諸収差図である。
図16は、第4実施例に係る光学系の無限遠物体合焦時における第3合焦状態の諸収差図である。
14 (a) and 14 (b) are aberration diagrams of the first in-focus state of the optical system according to the fourth embodiment at the time of focusing on an infinite object and the time of focusing on a short-range object, respectively.
FIG. 15 is a diagram of various aberrations in the second in-focus state of the optical system according to the fourth embodiment when the infinity object is in focus.
FIG. 16 is a diagram of various aberrations of the third in-focus state of the optical system according to the fourth embodiment when the infinity object is in focus.

各諸収差図より、本実施例に係る光学系は、無限遠物体合焦状態から近距離物体合焦状態にわたって諸収差を良好に補正し優れた結像性能を有しており、所定の撮影距離における複数の合焦状態で所望の収差性能を得ることができていることがわかる。 From each aberration diagram, the optical system according to this embodiment satisfactorily corrects various aberrations from the in-focus state of an infinite object to the in-focus state of a short-range object, and has excellent imaging performance. It can be seen that the desired aberration performance can be obtained in a plurality of focused states at a distance.

上記各実施例によれば、所定の撮影距離において収差量の異なる複数の合焦状態を有し、合焦に影響を与えることなく所定の収差量をコントロールすることができる光学系を実現することができる。 According to each of the above embodiments, it is possible to realize an optical system having a plurality of focusing states having different aberration amounts at a predetermined shooting distance and capable of controlling a predetermined aberration amount without affecting the focusing. Can be done.

ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。 Here, each of the above examples shows a specific example of the present invention, and the present invention is not limited thereto.

なお、以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。 The following contents can be appropriately adopted as long as the optical performance of the optical system of the present embodiment is not impaired.

本実施形態の光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。 The lens surface of the lens constituting the optical system of the present embodiment may be a spherical surface or a flat surface, or may be an aspherical surface. When the lens surface is spherical or flat, lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented, which is preferable. Further, even if the image plane is displaced, the deterioration of the depiction performance is small, which is preferable. When the lens surface is aspherical, it can be either an aspherical surface obtained by grinding, a glass mold aspherical surface formed by molding glass into an aspherical shape, or a composite aspherical surface formed by forming a resin provided on the glass surface into an aspherical shape. good. Further, the lens surface may be a diffraction surface, and the lens may be a refractive index distribution type lens (GRIN lens) or a plastic lens.

また、本実施形態の光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。 Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the optical system of the present embodiment. As a result, flare and ghost can be reduced, and high-contrast and high optical performance can be achieved.

次に、本実施形態の光学系を備えたカメラを図17に基づいて説明する。 Next, a camera provided with the optical system of the present embodiment will be described with reference to FIG.

図17は、本実施形態の光学系を備えたカメラの構成を示す図である。 FIG. 17 is a diagram showing a configuration of a camera provided with the optical system of the present embodiment.

カメラ1は、図17に示すように撮影レンズ2として上記第1実施例に係る光学系を備えたデジタルカメラである。 As shown in FIG. 17, the camera 1 is a digital camera provided with an optical system according to the first embodiment as a photographing lens 2.

カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、撮像素子3へ到達する。これにより被写体からの光は、当該撮像素子3によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。 In the camera 1, the light from an object (subject) (not shown) is collected by the photographing lens 2 and reaches the image sensor 3. As a result, the light from the subject is captured by the image sensor 3 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

以上の構成により、上記第1実施例に係る光学系を撮影レンズ2として搭載したカメラ1は、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を効果的に抑えつつ、所定の撮影距離における複数の合焦状態で所望の収差性能を得ることができる。なお、上記第2実施例、第3実施例、または第4実施例に係る光学系を撮影レンズ2として搭載したカメラを構成しても上記カメラ1と同様の効果を奏することができる。 With the above configuration, the camera 1 equipped with the optical system according to the first embodiment as the photographing lens 2 can change various aberrations such as spherical aberration when focusing from an infinity object to a short-range object. It is possible to obtain desired aberration performance in a plurality of focused states at a predetermined shooting distance while effectively suppressing the aberration. Even if a camera equipped with the optical system according to the second embodiment, the third embodiment, or the fourth embodiment is mounted as the photographing lens 2, the same effect as that of the camera 1 can be obtained.

最後に、本実施形態の光学系の製造方法の概略を、図18に基づいて説明する。
図18は、本実施形態の光学系の製造方法の概略を示すフローチャートである。
Finally, an outline of the method for manufacturing the optical system of the present embodiment will be described with reference to FIG.
FIG. 18 is a flowchart showing an outline of the manufacturing method of the optical system of the present embodiment.

図18に示す本実施形態の光学系の製造方法は、複数のレンズからなる光学系の製造方法であって、以下のステップS1、S2およびS3を含む。 The method for manufacturing an optical system according to the present embodiment shown in FIG. 18 is a method for manufacturing an optical system including a plurality of lenses, and includes the following steps S1, S2, and S3.

ステップS1:複数のレンズを準備する。 Step S1: Prepare multiple lenses.

ステップS2:合焦の際移動する第1合焦レンズ群より像側に、合焦の際第1合焦レンズ群とは異なる軌跡で移動する第2合焦レンズ群を配置する。 Step S2: A second focusing lens group that moves on a trajectory different from that of the first focusing lens group during focusing is arranged on the image side of the first focusing lens group that moves during focusing.

ステップS3:合焦の際、および、所定の撮影距離において一の合焦状態から他の合焦状態になるときに、第1合焦レンズ群と第2合焦レンズ群とがそれぞれ所定の方法で移動するようにする。 Step S3: The first focusing lens group and the second focusing lens group are each in a predetermined method at the time of focusing and when one focusing state changes to another focusing state at a predetermined shooting distance. To move with.

ここで、第1合焦レンズ群および第2合焦レンズ群は、合焦の際の第1合焦レンズ群および第2合焦レンズ群の相対的な移動の方向と、所定の撮影距離において一の合焦状態から他の合焦状態になる際の第1合焦レンズ群および第2合焦レンズ群の相対的な移動の方向とが異なるようにされる。 Here, the first in-focus lens group and the second in-focus lens group are in the relative movement direction of the first in-focus lens group and the second in-focus lens group at the time of focusing, and at a predetermined shooting distance. The relative movement directions of the first in-focus lens group and the second in-focus lens group when going from one in-focus state to another in-focus state are set to be different.

かかる本実施形態の光学系の製造方法によれば、所定の撮影距離において収差量の異なる複数の合焦状態を有し、合焦に影響を与えることなく所定の収差量をコントロールすることができる光学系を製造することができる。 According to the method for manufacturing an optical system of the present embodiment, it is possible to have a plurality of focusing states having different aberration amounts at a predetermined shooting distance and control the predetermined aberration amount without affecting the focusing. An optical system can be manufactured.

当業者は、本発明の精神および範囲から外れることなく、種々の変更、置換および修正をこれに加えることが可能であることを理解されたい。 It will be appreciated by those skilled in the art that various changes, substitutions and modifications can be made to this without departing from the spirit and scope of the invention.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
I 像面
S 開口絞り
G1 1st lens group
G2 2nd lens group
G3 3rd lens group
G4 4th lens group
I image plane
S Aperture aperture

Claims (23)

合焦の際移動する第1合焦レンズ群と、前記第1合焦レンズ群より像側に配置され、合焦の際に、前記第1合焦レンズ群とは異なる軌跡で移動する第2合焦レンズ群とを有し、
所定の撮影距離において、収差量の異なる複数の合焦状態を有し、
前記所定の撮影距離において、一の合焦状態から収差量の異なる他の合焦状態になる際に、前記第1合焦レンズ群と前記第2合焦レンズ群とが移動し、
合焦の際の前記第1合焦レンズ群および前記第2合焦レンズ群の相対的な移動の方向と、前記所定の撮影距離において前記一の合焦状態から前記他の合焦状態になる際の前記第1合焦レンズ群および前記第2合焦レンズ群の相対的な移動の方向とが異なる光学系。
A second in-focus lens group that moves during focusing and a second group that is arranged on the image side of the first in-focus lens group and moves in a trajectory different from that of the first in-focus lens group during in-focus. It has a focusing lens group and
It has a plurality of in-focus states with different amounts of aberrations at a predetermined shooting distance.
At the predetermined shooting distance, when one focusing state changes to another focusing state having a different amount of aberration, the first focusing lens group and the second focusing lens group move.
The relative movement direction of the first focusing lens group and the second focusing lens group at the time of focusing and the predetermined shooting distance change from the one focusing state to the other focusing state. An optical system in which the relative movement directions of the first focusing lens group and the second focusing lens group are different from each other.
合焦の際移動する第1合焦レンズ群と、前記第1合焦レンズ群より像側に配置され、合焦の際固定される第2合焦レンズ群とを有し、
所定の撮影距離において、収差量の異なる複数の合焦状態を有し、
前記所定の撮影距離において、一の合焦状態から収差量の異なる他の合焦状態になる際に、前記第1合焦レンズ群と前記第2合焦レンズ群とが移動し、
合焦の際の前記第1合焦レンズ群および前記第2合焦レンズ群の相対的な移動の方向と、前記所定の撮影距離において前記一の合焦状態から前記他の合焦状態になる際の前記第1合焦レンズ群および前記第2合焦レンズ群の相対的な移動の方向とが異なる光学系。
It has a first focusing lens group that moves during focusing and a second focusing lens group that is arranged on the image side of the first focusing lens group and fixed at the time of focusing.
It has a plurality of in-focus states with different amounts of aberrations at a predetermined shooting distance.
At the predetermined shooting distance, when one focusing state changes to another focusing state having a different amount of aberration, the first focusing lens group and the second focusing lens group move.
The relative movement direction of the first focusing lens group and the second focusing lens group at the time of focusing and the predetermined shooting distance change from the one focusing state to the other focusing state. An optical system in which the relative movement directions of the first focusing lens group and the second focusing lens group are different from each other.
前記第1合焦レンズ群および前記第2合焦レンズ群がそれぞれ有する屈折力の符号が異なる、請求項1または2に記載の光学系。 The optical system according to claim 1 or 2, wherein the first focusing lens group and the second focusing lens group have different signs of refractive power. 前記第1合焦レンズ群は、負の屈折力を有する、請求項3に記載の光学系。 The optical system according to claim 3, wherein the first focusing lens group has a negative refractive power. 前記第1合焦レンズ群は、無限遠物体から近距離物体への合焦の際、像側へ移動する、請求項1-4のいずれか一項に記載の光学系。 The optical system according to any one of claims 1-4, wherein the first focusing lens group moves to the image side when focusing from an infinity object to a short-range object. 前記第2合焦レンズ群は、無限遠物体から近距離物体への合焦の際、物体側へ移動する、請求項1に記載の光学系。 The optical system according to claim 1, wherein the second focusing lens group moves to the object side when focusing from an infinite object to a short-range object. 合焦の際、前記第1合焦レンズ群および前記第2合焦レンズ群が異なる方向に移動し、所定の撮影距離において前記一の合焦状態から前記他の合焦状態になる際、前記第1合焦レンズ群および前記第2合焦レンズ群が同一の方向に移動する、請求項1に記載の光学系。 When the first focusing lens group and the second focusing lens group move in different directions during focusing and change from the one focusing state to the other focusing state at a predetermined shooting distance, the above-mentioned The optical system according to claim 1, wherein the first focusing lens group and the second focusing lens group move in the same direction. 前記第1合焦レンズ群よりも物体側に開口絞りを有する、請求項1-7のいずれか一項に記載の光学系。 The optical system according to any one of claims 1-7, which has an aperture diaphragm on the object side of the first focusing lens group. 前記第1合焦レンズ群と前記第2合焦レンズ群とは隣接する、請求項1-8のいずれか一項に記載の光学系。 The optical system according to any one of claims 1-8, wherein the first focusing lens group and the second focusing lens group are adjacent to each other. 以下の条件式を満足する請求項1-9のいずれか一項に記載の光学系。
0.20<(-fF1)/fF2<5.00
ただし、
fF1:前記第1合焦レンズ群の焦点距離
fF2:前記第2合焦レンズ群の焦点距離
The optical system according to any one of claims 1-9, which satisfies the following conditional expression.
0.20 <(-fF1) /fF2 <5.00
However,
fF1: Focal length of the first focusing lens group
fF2: Focal length of the second focusing lens group
前記第1合焦レンズ群より物体側に、正の屈折力を有する第1レンズ群を有する、請求項1-10のいずれか一項に記載の光学系。 The optical system according to any one of claims 1-10, which has a first lens group having a positive refractive power on the object side of the first focusing lens group. 以下の条件式を満足する、請求項11に記載の光学系。
0.20<f1/(-fF1)<3.00
ただし、
f1:前記第1レンズ群の焦点距離
fF1:前記第1合焦レンズ群の焦点距離
The optical system according to claim 11, which satisfies the following conditional expression.
0.20 <f1 / (-fF1) <3.00
However,
f1: Focal length of the first lens group
fF1: Focal length of the first focusing lens group
以下の条件式を満足する、請求項11または12に記載の光学系。
0.20<f1/fF2<4.00
ただし、
f1:前記第1レンズ群の焦点距離
fF2:前記第2合焦レンズ群の焦点距離
The optical system according to claim 11 or 12, which satisfies the following conditional expression.
0.20 <f1 / fF2 <4.00
However,
f1: Focal length of the first lens group
fF2: Focal length of the second focusing lens group
以下の条件式を満足する、請求項1-13のいずれか一項に記載の光学系。
0.05<BF/f<0.50
ただし、
BF:無限遠合焦状態での前記光学系のバックフォーカス
f:無限遠合焦状態での前記光学系の焦点距離
The optical system according to any one of claims 1-13, which satisfies the following conditional expression.
0.05 <BF / f <0.50
However,
BF: Back focus of the optical system in the infinity in-focus state
f: Focal length of the optical system in the infinity focusing state
以下の条件式を満足する、請求項1に記載の光学系。
-15.00<MF1/MF2<-0.50
ただし、
MF1:前記第1合焦レンズ群の無限遠物体から近距離物体への合焦の際の移動量
MF2:前記第2合焦レンズ群の無限遠物体から近距離物体への合焦の際の移動量
The optical system according to claim 1, which satisfies the following conditional expression.
-15.00 <MF1 / MF2 <-0.50
However,
MF1: Amount of movement when focusing from an infinity object to a short-distance object in the first focusing lens group
MF2: Amount of movement when focusing from an infinity object to a short-distance object in the second focusing lens group
以下の条件式を満足する、請求項1-15のいずれか一項に記載の光学系。
1.00<βF1/βF2<8.00
ただし、
βF1:前記第1合焦レンズ群の無限遠物体合焦時の横倍率
βF2:前記第2合焦レンズ群の無限遠物体合焦時の横倍率
The optical system according to any one of claims 1-15, which satisfies the following conditional expression.
1.00 <βF1 / βF2 <8.00
However,
βF1: Lateral magnification when the first in-focus lens group is in focus at infinity βF2: Lateral magnification when the second in-focus lens group is in focus
以下の条件式を満足する、請求項1-16のいずれか一項に記載の光学系。
0.10<MDCP1/MDCP2<5.00
ただし、
MDCP1:所定の撮影距離において一の合焦状態から他の合焦状態になる際の前記第1合焦レンズ群の移動量
MDCP2:所定の撮影距離において一の合焦状態から他の合焦状態になる際の前記第2合焦レンズ群の移動量
The optical system according to any one of claims 1-16, which satisfies the following conditional expression.
0.10 <MDCP1 / MDCP2 <5.00
However,
MDCP1: The amount of movement of the first focusing lens group when changing from one focusing state to another focusing state at a predetermined shooting distance.
MDCP2: The amount of movement of the second focusing lens group when changing from one focusing state to another focusing state at a predetermined shooting distance.
以下の条件式を満足する、請求項1-17のいずれか一項に記載の光学系。
(γ1/|γ1|)×(MDCP1/|MDCP1|)/(γ2/|γ2|)×(MDCP2/|MDCP2|)<0.00
ただし、
γ1:前記第1合焦レンズ群の無限遠物体合焦時の像面移動係数
γ2:前記第2合焦レンズ群の無限遠物体合焦時の像面移動係数
MDCP1:所定の撮影距離において一の合焦状態から他の合焦状態になる際の前記第1合焦レンズ群の移動量
MDCP2:所定の撮影距離において一の合焦状態から他の合焦状態になる際の前記第2合焦レンズ群の移動量
The optical system according to any one of claims 1-17, which satisfies the following conditional expression.
(γ1 / | γ1 |) × (MDCP1 / | MDCP1 |) / (γ2 / | γ2 |) × (MDCP2 / | MDCP2 |) <0.00
However,
γ1: Image plane movement coefficient when the first in-focus lens group is in focus at infinity object γ2: Image plane movement coefficient when the second in-focus lens group is in focus at infinity object
MDCP1: The amount of movement of the first focusing lens group when changing from one focusing state to another focusing state at a predetermined shooting distance.
MDCP2: The amount of movement of the second focusing lens group when changing from one focusing state to another focusing state at a predetermined shooting distance.
前記第1合焦レンズ群の各レンズは互いに空気間隔で隔てられている、請求項1-18のいずれか一項に記載の光学系。 The optical system according to any one of claims 1-18, wherein the lenses of the first focusing lens group are separated from each other by an air gap. 前記第1合焦レンズ群は少なくとも2つの負レンズを有し、前記少なくとも2つの負レンズのうち物体側から2つ目の負レンズの物体側レンズ面は物体側に凹の形状を有している、請求項1-19のいずれか一項に記載の光学系。 The first in-focus lens group has at least two negative lenses, and the object-side lens surface of the second negative lens from the object side of the at least two negative lenses has a concave shape on the object side. The optical system according to any one of claims 1-19. 以下の条件式を満足する、請求項1-20のいずれか一項に記載の光学系。
-1.00<(r2+r1)/(r2-r1)<1.50
ただし、
r1:前記第1合焦レンズ群が有するレンズのうち最も物体側のレンズの像側レンズ面の曲率半径
r2:前記第1合焦レンズ群が有するレンズのうち物体側から2番目のレンズの物体側レンズ面の曲率半径
The optical system according to any one of claims 1-20, which satisfies the following conditional expression.
-1.00 <(r2 + r1) / (r2-r1) <1.50
However,
r1: Radius of curvature of the image side lens surface of the lens on the most object side among the lenses of the first focusing lens group
r2: Radius of curvature of the object-side lens surface of the second lens from the object-side among the lenses of the first in-focus lens group.
請求項1-21のいずれか一項に記載の光学系を有する光学機器。 An optical device having the optical system according to any one of claims 1-21. 第1合焦レンズ群および第2合焦レンズ群を含む複数のレンズからなる光学系の製造方法であって、
合焦の際移動する前記第1合焦レンズ群より像側に、合焦の際に、前記第1合焦レンズ群とは異なる軌跡で移動する前記第2合焦レンズ群を配置し、
所定の撮影距離において、収差量の異なる複数の合焦状態を有し、
前記所定の撮影距離において、一の合焦状態から収差量の異なる他の合焦状態に遷移する際に、前記第1合焦レンズ群と前記第2合焦レンズ群とが移動し、
合焦の際の前記第1合焦レンズ群および前記第2合焦レンズ群の相対的な移動の方向と、前記所定の撮影距離において前記一の合焦状態から前記他の合焦状態になる際の前記第1合焦レンズ群および前記第2合焦レンズ群の相対的な移動の方向とが異なるように、前記複数のレンズを配置する光学系の製造方法。
A method for manufacturing an optical system including a plurality of lenses including a first focusing lens group and a second focusing lens group.
The second focusing lens group that moves in a trajectory different from that of the first focusing lens group at the time of focusing is arranged on the image side of the first focusing lens group that moves during focusing.
It has a plurality of in-focus states with different amounts of aberrations at a predetermined shooting distance.
At the predetermined shooting distance, the first focusing lens group and the second focusing lens group move when transitioning from one focusing state to another focusing state having a different amount of aberration.
The relative movement direction of the first focusing lens group and the second focusing lens group at the time of focusing, and the change from the one focusing state to the other focusing state at the predetermined shooting distance. A method for manufacturing an optical system in which a plurality of lenses are arranged so that the relative movement directions of the first focusing lens group and the second focusing lens group are different from each other.
JP2020124588A 2020-07-21 2020-07-21 Optical system, optical equipment, and manufacturing method for optical system Pending JP2022021154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020124588A JP2022021154A (en) 2020-07-21 2020-07-21 Optical system, optical equipment, and manufacturing method for optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020124588A JP2022021154A (en) 2020-07-21 2020-07-21 Optical system, optical equipment, and manufacturing method for optical system

Publications (1)

Publication Number Publication Date
JP2022021154A true JP2022021154A (en) 2022-02-02

Family

ID=80220217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020124588A Pending JP2022021154A (en) 2020-07-21 2020-07-21 Optical system, optical equipment, and manufacturing method for optical system

Country Status (1)

Country Link
JP (1) JP2022021154A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172725A1 (en) * 2021-02-15 2022-08-18 株式会社ニコン Optical system, optical apparatus, and method for manufacturing optical system
WO2023190739A1 (en) * 2022-03-29 2023-10-05 株式会社ニコン Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172725A1 (en) * 2021-02-15 2022-08-18 株式会社ニコン Optical system, optical apparatus, and method for manufacturing optical system
WO2023190739A1 (en) * 2022-03-29 2023-10-05 株式会社ニコン Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system

Similar Documents

Publication Publication Date Title
CN111386486B (en) Variable magnification optical system and optical device
CN111527437B (en) Variable magnification optical system and optical device
JP7021683B2 (en) Zoom lenses and optics
JPWO2013146758A1 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
CN110058391B (en) Variable magnification optical system and optical apparatus
CN113820841B (en) Variable magnification optical system, optical apparatus, and image pickup apparatus
CN109964161B (en) Variable magnification optical system, optical apparatus, and image pickup apparatus
CN113589500B (en) Variable magnification optical system and optical apparatus
JP2022021154A (en) Optical system, optical equipment, and manufacturing method for optical system
CN109983386B (en) Variable magnification optical system, optical apparatus, and image pickup apparatus
JP2017068114A (en) Fisheye zoom lens, optical device, method for manufacturing the fisheye zoom lens
CN110888226B (en) Variable magnification optical system and optical device
JP6281200B2 (en) Variable magnification optical system and optical apparatus
CN113056693B (en) Variable power optical system and optical apparatus
JP2017068115A (en) Fisheye zoom lens, optical device, method for manufacturing the fisheye zoom lens
JP7459981B2 (en) Optical Systems and Instruments
JP6232805B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6260075B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP2018028687A (en) Variable power optical system, optical device, and manufacturing method for variable power optical system
JP6119953B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system
JP6601471B2 (en) Variable magnification optical system and optical apparatus
JP6256732B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP2015191055A (en) Variable power optical system, imaging apparatus, and method for manufacturing the variable power optical system
JP6098863B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system
JP6260074B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604