JP2022012992A - MANUFACTURING METHOD OF AlN SINTERED MEMBER, MANUFACTURING METHOD OF ELECTRODE EMBEDDING MEMBER, AND ELECTRODE EMBEDDING MEMBER - Google Patents

MANUFACTURING METHOD OF AlN SINTERED MEMBER, MANUFACTURING METHOD OF ELECTRODE EMBEDDING MEMBER, AND ELECTRODE EMBEDDING MEMBER Download PDF

Info

Publication number
JP2022012992A
JP2022012992A JP2020115207A JP2020115207A JP2022012992A JP 2022012992 A JP2022012992 A JP 2022012992A JP 2020115207 A JP2020115207 A JP 2020115207A JP 2020115207 A JP2020115207 A JP 2020115207A JP 2022012992 A JP2022012992 A JP 2022012992A
Authority
JP
Japan
Prior art keywords
aln
electrode
manufacturing
calcined body
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020115207A
Other languages
Japanese (ja)
Other versions
JP7521783B2 (en
Inventor
裕明 鈴木
Hiroaki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2020115207A priority Critical patent/JP7521783B2/en
Publication of JP2022012992A publication Critical patent/JP2022012992A/en
Application granted granted Critical
Publication of JP7521783B2 publication Critical patent/JP7521783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To provide a manufacturing method of an AlN sintered member having improved dimensional accuracy, and an electrode embedding member having high thickness uniformity of an isolation layer and high physical properties.SOLUTION: A method includes the steps of: forming a first and a second AlN compact from an AlN raw material powder; preparing a first and a second AlN degreased body by degreasing the first and the second AlN compact at a temperature higher than or equal to a predetermined temperature for a period longer than or equal to a predetermined time; preparing a first and a second AlN calcined body by calcining the first and the second AlN degreased body; forming a first or a second plain face for the first and the second AlN calcined body; forming a recess at least on one of the first or the second plain face; laminating the first AlN calcined body and the second AlN calcined body with the first plain face being in contact with the second plain face; and firing the first AlN calcined body and the second AlN calcined body having been laminated together while applying a pressure of 10 kgf/cm2 or higher in a lamination direction.SELECTED DRAWING: Figure 1

Description

本発明は、AlN焼結部材の製造方法、電極埋設部材の製造方法および電極埋設部材に関する。 The present invention relates to a method for manufacturing an AlN sintered member, a method for manufacturing an electrode-embedded member, and an electrode-embedded member.

半導体製造装置において、ウエハなどの基板を表面に保持するセラミック製静電チャックは、基板載置面とセラミックスに埋設されている静電吸着用電極や高周波電極までの離間距離、すなわち絶縁層の厚みを均一にすることが要求されている。そしてこのようなセラミックス素材として、AlN(窒化アルミニウム)焼結体が用いられている。 In semiconductor manufacturing equipment, the ceramic electrostatic chuck that holds a substrate such as a wafer on the surface is the separation distance between the substrate mounting surface and the electrostatic adsorption electrode or high frequency electrode embedded in the ceramics, that is, the thickness of the insulating layer. Is required to be uniform. As such a ceramic material, an AlN (aluminum nitride) sintered body is used.

しかしながら、AlN焼結体は焼結温度が高く、難焼結性であり、かつ、金属電極をAlN焼結体中に埋設するにはホットプレス焼成など手段が限られていた。 However, the AlN sintered body has a high sintering temperature and is difficult to sinter, and means such as hot press firing are limited for embedding the metal electrode in the AlN sintered body.

なお、特許文献1には、セラミックス仮焼体同士を通常の焼成温度より高い温度で常圧、荷重下で焼成することにより、一体化する技術が開示されている。ただし、錘を載置した荷重下でアルミナの仮焼体同士及びムライトの仮焼体同士を一体化した実施例しか挙げられておらず、AlN仮焼体を一体化する実施例は挙げられていない。 In addition, Patent Document 1 discloses a technique of integrating ceramic calcined bodies by firing them at a temperature higher than a normal firing temperature under normal pressure and load. However, only the examples in which the alumina calcined bodies and the mullite calcined bodies are integrated under the load on which the weight is placed are given, and the examples in which the AlN calcined bodies are integrated are mentioned. do not have.

また、特許文献2には、2つの被焼結体をホットプレス成形することにより厚さの異なるセラミックス焼結体を得る技術が開示されている。被焼結体には、セラミックス粉末、セラミックス成形体、セラミックス脱脂体及びセラミックス焼結体が含まれるとされている。成形型上に形成された成形体の上に金属部材を載せ、その上に粉末を収容しホットプレス焼成する技術が開示されている。 Further, Patent Document 2 discloses a technique for obtaining ceramic sintered bodies having different thicknesses by hot-press molding two sintered bodies. The sintered body is said to include a ceramic powder, a ceramic molded body, a ceramic degreased body, and a ceramic sintered body. A technique of placing a metal member on a molded body formed on a molding die, accommodating powder on the metal member, and hot-press firing is disclosed.

また、特許文献3には、冷間等方圧加圧法(CIP)によりセラミックス成形体を成形し、セラミックス成形体に形成した溝内に電極を収容し、複数のセラミックス成形体を重ね合わせ、重ね合わせ方向に加圧しながら焼成することにより、電極が内蔵されたセラミックス焼成体を製造する技術が開示されている。 Further, in Patent Document 3, a ceramic molded body is molded by a cold isotropic pressure method (CIP), an electrode is housed in a groove formed in the ceramic molded body, and a plurality of ceramic molded bodies are superposed and stacked. A technique for manufacturing a ceramic fired body having a built-in electrode by firing while pressurizing in the mating direction is disclosed.

特開平6-298574号公報Japanese Unexamined Patent Publication No. 6-298574 特開2000-141336号公報Japanese Unexamined Patent Publication No. 2000-141336 特許6148845号公報Japanese Patent No. 6148845

しかしながら、上記特許文献1に記載された技術では、実際にはAlN仮焼体同士を焼成しても一体化することはできないという課題があった。また、特許文献2、3に記載された技術では、セラミックス中に電極等が埋設された部材を製造した際、その各部寸法精度にバラツキがみられる。たとえば、セラミックスからなる絶縁層の厚みの均一性が要求される場合や絶縁層自体の物性を製造条件で調節することは困難であり、特に所定の電気的特性を要求される電極埋設部材の製法としては適当でないという課題があった。 However, the technique described in Patent Document 1 has a problem that the AlN calcined bodies cannot be integrated even if they are actually fired. Further, in the techniques described in Patent Documents 2 and 3, when a member in which an electrode or the like is embedded in ceramics is manufactured, the dimensional accuracy of each part varies. For example, when the uniformity of the thickness of the insulating layer made of ceramics is required, or it is difficult to adjust the physical properties of the insulating layer itself under the manufacturing conditions, a method for manufacturing an electrode embedded member which requires predetermined electrical characteristics in particular. There was a problem that it was not appropriate.

本発明は、このような事情に鑑みてなされたものであり、寸法精度の向上したAlN焼結部材の製造方法、および絶縁層の厚みの均一性が高く物性が調整された電極埋設部材を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention has been made in view of such circumstances, and provides a method for manufacturing an AlN sintered member with improved dimensional accuracy, and an electrode-embedded member having a highly uniform thickness of an insulating layer and adjusted physical properties. The purpose is to do.

(1)上記の目的を達成するため、本発明のAlN焼結部材の製造方法は、AlNを主成分とするAlN焼結部材の製造方法であって、AlN原料粉から第1および第2のAlN成形体を形成する工程と、前記第1および第2のAlN成形体を所定の温度以上、所定の時間以上脱脂処理して第1および第2のAlN脱脂体を作製する工程と、前記第1および第2のAlN脱脂体を仮焼して第1および第2のAlN仮焼体を作製する工程と、前記第1のAlN仮焼体に第1の平面を形成する工程と、前記第2のAlN仮焼体に第2の平面を形成する工程と、前記第1の平面または前記第2の平面の少なくとも一方に凹部を形成する工程と、前記第1のAlN仮焼体と前記第2のAlN仮焼体とを、前記第1の平面と前記第2の平面とを接触させた状態で積層する工程と、前記積層した前記第1のAlN仮焼体および前記第2のAlN仮焼体を、積層方向に10kgf/cm以上の圧力を加えながら焼成する工程と、を備えることを特徴としている。 (1) In order to achieve the above object, the method for producing an AlN sintered member of the present invention is a method for producing an AlN sintered member containing AlN as a main component, and is the first and second methods for producing an AlN raw material powder. A step of forming an AlN molded body, a step of degreasing the first and second AlN molded bodies at a predetermined temperature or higher and a predetermined time or longer to produce first and second AlN degreased bodies, and the first step. A step of calcining the first and second AlN degreased bodies to prepare first and second AlN calcined bodies, a step of forming a first plane on the first AlN calcined body, and the first step. A step of forming a second plane in the AlN calcined body of 2, a step of forming a recess in at least one of the first plane or the second plane, and the first AlN calcined body and the first. The step of laminating the AlN calcined body of 2 in a state where the first plane and the second plane are in contact with each other, and the laminated first AlN calcined body and the second AlN temporary calcined body. It is characterized by comprising a step of firing the fired body while applying a pressure of 10 kgf / cm 2 or more in the laminating direction.

本発明のAlN焼結部材の製造方法によれば、凹部に由来する中空構造を有するAlN焼結部材を得ることが可能となる。第1および第2のAlN仮焼体に第1および第2の平面並びに凹部を形成しているが、これらを形成するための研削や研磨などの作業は、AlN焼結体にこれらを形成する場合と比較して、作業時間の短縮化を図ることが可能となる。また、凹部を形成したAlN成形体同士を焼成して一体化する場合と比較して、凹部に由来するAlN焼結部材の外形および中空構造の寸法精度の向上を図ることが可能となる。また、錘を用いた小さな荷重を加えた状態で焼成を行う上記特許文献1に開示された技術と比較して、10kgf/cm(=0.98MPa)以上の加圧を行いながら焼成を行うので、接合強度の向上、およびAlN焼結部材の緻密化を図ることが可能となる。 According to the method for manufacturing an AlN sintered member of the present invention, it is possible to obtain an AlN sintered member having a hollow structure derived from a recess. The first and second planes and recesses are formed on the first and second AlN calcined bodies, but the work such as grinding and polishing to form these is formed on the AlN sintered body. Compared with the case, it is possible to shorten the working time. Further, it is possible to improve the dimensional accuracy of the outer shape and the hollow structure of the AlN sintered member derived from the concave portion as compared with the case where the AlN molded bodies having the concave portions are fired and integrated. Further, as compared with the technique disclosed in Patent Document 1 above, in which firing is performed in a state where a small load is applied using a weight, firing is performed while applying a pressure of 10 kgf / cm 2 (= 0.98 MPa) or more. Therefore, it is possible to improve the bonding strength and to densify the AlN sintered member.

(2)また、本発明のAlN焼結部材の製造方法において、前記第1および第2のAlN仮焼体を作製する工程の仮焼温度は、1200℃以上1700℃以下であり、かつ、前記焼成する工程の焼成温度は、1800℃以上2000℃以下であることを特徴としている。これにより、AlN焼結部材を形成する各層の接合強度が強くなる。 (2) Further, in the method for manufacturing an AlN sintered member of the present invention, the calcining temperature in the steps of producing the first and second AlN calcined bodies is 1200 ° C. or higher and 1700 ° C. or lower, and the above-mentioned The firing temperature in the firing step is 1800 ° C. or higher and 2000 ° C. or lower. As a result, the bonding strength of each layer forming the AlN sintered member is increased.

(3)また、本発明のAlN焼結部材の製造方法は、前記第1のAlN仮焼体と前記第2のAlN仮焼体とを積層する工程において、前記凹部の少なくとも一部に電極を配置して積層することを特徴としている。これにより、電極が埋設されたAlN焼結部材の寸法精度の向上を図ることが可能となる。例えば、AlN焼結部材の絶縁層となる層の厚みの寸法精度を向上させると、絶縁層の厚みのバラツキを低減させることができる。 (3) Further, in the method for manufacturing an AlN sintered member of the present invention, in the step of laminating the first AlN calcined body and the second AlN calcined body, an electrode is provided in at least a part of the recess. It is characterized by arranging and stacking. This makes it possible to improve the dimensional accuracy of the AlN sintered member in which the electrodes are embedded. For example, if the dimensional accuracy of the thickness of the layer to be the insulating layer of the AlN sintered member is improved, the variation in the thickness of the insulating layer can be reduced.

(4)また、本発明のAlN焼結部材の製造方法において、前記第1または第2のAlN成形体を形成する前記AlN原料粉は、少なくとも一方にY成分が添加され、前記第1および第2のAlN脱脂体を作製する工程において、Y成分が添加された前記第1または第2のAlN成形体は、脱脂温度T(℃)と脱脂時間H(h)と添加したY成分をY換算した内比でC(wt%)として、T>20×C+440かつH≧300/{T-(20×C+440)}を満たす条件で前記第1または第2のAlN脱脂体が作製されることを特徴としている。これにより、電極が埋設されたAlN焼結部材の少なくとも一部の焼結体の体積抵抗率を相対的に低い値に調整することができる。例えば、AlN焼結部材が静電チャックとして使用される場合、絶縁層の体積抵抗率を低い値に調整することにより、処理対象に対し強い静電吸着力を発揮できる。 (4) Further, in the method for producing an AlN sintered member of the present invention, the AlN raw material powder forming the first or second AlN molded body is added with a Y component to at least one of the first and second AlN raw materials. In the step of producing the AlN degreased body of 2, the first or second AlN molded body to which the Y component was added has a degreasing temperature T (° C.), a degreasing time H (h), and a Y component added to Y 2 . The first or second AlN degreased body is produced under the condition that T> 20 × C + 440 and H ≧ 300 / {T- (20 × C + 440)} as C (wt%) in the internal ratio converted to O3. It is characterized by that. Thereby, the volume resistivity of at least a part of the sintered body of the AlN sintered member in which the electrode is embedded can be adjusted to a relatively low value. For example, when the AlN sintered member is used as an electrostatic chuck, a strong electrostatic adsorption force can be exerted on the object to be treated by adjusting the volume resistivity of the insulating layer to a low value.

(5)また、本発明の電極埋設部材は、一体に形成され、処理対象を表面上に保持する電極埋設部材であって、AlNを主成分とするセラミックス焼結体で形成された絶縁層およびバルク層と、前記絶縁層とバルク層との間に設けられた電極と、を備え、前記絶縁層の厚みのバラツキは75μm以下であることを特徴としている。このように絶縁層の厚みのバラツキが低減されていることにより、例えば、電極埋設部材が静電チャックとして使用される場合、面内の吸着力の差を低減することができる。また、例えば、ウエハ加熱用ヒーターとして用いられる場合、面内の温度のバラツキを低減することができる。 (5) Further, the electrode-embedded member of the present invention is an electrode-embedded member that is integrally formed and holds a processing target on the surface, and is an insulating layer formed of a ceramic sintered body containing AlN as a main component and an insulating layer. It comprises a bulk layer and an electrode provided between the insulating layer and the bulk layer, and is characterized in that the thickness variation of the insulating layer is 75 μm or less. By reducing the variation in the thickness of the insulating layer in this way, for example, when the electrode embedded member is used as an electrostatic chuck, it is possible to reduce the difference in the suction force in the plane. Further, for example, when it is used as a heater for heating a wafer, it is possible to reduce in-plane temperature variation.

(6)また、本発明の電極埋設部材において、前記絶縁層は、前記セラミックス焼結体のAlN粒界にYAG粒子が含まれ、YAP粒子およびYAM粒子が含まれないことを特徴としている。これにより、絶縁層の体積抵抗率を小さい範囲で調整することができ、例えば、電極埋設部材が静電チャックとして使用される場合、処理対象に対し強い静電吸着力を発揮できる。 (6) Further, in the electrode-embedded member of the present invention, the insulating layer is characterized in that YAG particles are contained in the AlN grain boundaries of the ceramic sintered body, and YAP particles and YAM particles are not contained. Thereby, the volume resistivity of the insulating layer can be adjusted in a small range. For example, when the electrode embedded member is used as an electrostatic chuck, a strong electrostatic adsorption force can be exerted on the object to be processed.

(7)また、本発明の電極埋設部材は、さらに、前記処理対象を保持する表面と対向する面にAlNを主成分とするセラミックス焼結体で形成された支持部材が接合されていることを特徴としている。これにより、電極埋設部材をシャフト付きヒーター等に適用することができる。 (7) Further, in the electrode-embedded member of the present invention, a support member formed of a ceramic sintered body containing AlN as a main component is further bonded to a surface facing the surface holding the object to be treated. It is a feature. Thereby, the electrode embedded member can be applied to a heater with a shaft or the like.

本発明の第1および第2の実施形態に係るAlN焼結部材の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the AlN sintered member which concerns on 1st and 2nd Embodiment of this invention. (a)~(d)それぞれ第1の実施形態の製造工程の一段階を模式的に示す断面図である。It is sectional drawing which shows typically one step of the manufacturing process of 1st Embodiment, each of (a)-(d). (a)~(d)それぞれ第2の実施形態の製造工程の一段階を模式的に示す断面図である。It is sectional drawing which shows typically one step of the manufacturing process of 2nd Embodiment in each of (a)-(d). Y成分の添加量としきい式の関係を例示した図である。It is a figure which exemplifies the relationship between the addition amount of the Y component and the threshold formula. 第2の実施形態に係る電極埋設部材を模式的に示す正断面図である。It is a front sectional view schematically showing the electrode embedded member which concerns on 2nd Embodiment. 第2の実施形態に係る電極埋設部材を模式的に示す正断面図である。It is a front sectional view schematically showing the electrode embedded member which concerns on 2nd Embodiment. 各試料の製造条件および評価結果を示す表である。It is a table which shows the manufacturing condition and evaluation result of each sample. 各試料の製造条件および評価結果を示す表である。It is a table which shows the manufacturing condition and evaluation result of each sample.

次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。なお、構成図において、各構成要素の大きさは概念的に表したものであり、必ずしも実際の寸法比率を表すものではない。 Next, an embodiment of the present invention will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference number is assigned to the same component in each drawing, and duplicate description is omitted. In the configuration diagram, the size of each component is conceptually represented, and does not necessarily represent the actual dimensional ratio.

[第1の実施形態]
(AlN焼結部材の製造方法)
図1は、本発明の第1および第2の実施形態に係るAlN焼結部材の製造方法を示すフローチャートである。本発明の第1の実施形態に係るAlN焼結部材10の製造方法は、図1に示すように、第1および第2のAlN成形体形成工程STEP1、第1および第2のAlN脱脂体作製工程STEP2、第1および第2のAlN仮焼体作製工程STEP3、第1の平面形成工程STEP4、第2の平面形成工程STEP5、凹部形成工程STEP6、積層工程STEP7および焼成工程STEP8を備えている。
[First Embodiment]
(Manufacturing method of AlN sintered member)
FIG. 1 is a flowchart showing a method for manufacturing an AlN sintered member according to the first and second embodiments of the present invention. As shown in FIG. 1, the method for manufacturing the AlN sintered member 10 according to the first embodiment of the present invention is the first and second AlN molded body forming steps STEP 1, the first and second AlN degreased body preparation. It includes a step STEP2, a first and second AlN calcined body manufacturing step STEP3, a first plane forming step STEP4, a second plane forming step STEP5, a recess forming step STEP6, a laminating step STEP7, and a firing step STEP8.

図2(a)~(d)は、それぞれ本実施形態の製造工程の一段階を模式的に示す断面図である。第1および第2のAlN成形体形成工程STEP1では、AlN原料粉から第1および第2のAlN成形体11、12を形成する。例えば、AlN粉末に焼結助剤、熱硬化性樹脂バインダなどの添加剤を適宜添加して混合して、AlN原料粉を作製し、顆粒を造粒後、加圧成形してAlN成形体を形成することができる。 2 (a) to 2 (d) are cross-sectional views schematically showing one step of the manufacturing process of the present embodiment, respectively. In the first and second AlN molded body forming steps STEP1, the first and second AlN molded bodies 11 and 12 are formed from the AlN raw material powder. For example, an additive such as a sintering aid and a thermosetting resin binder is appropriately added to the AlN powder and mixed to prepare an AlN raw material powder, and after granulating the granules, pressure molding is performed to obtain an AlN molded product. Can be formed.

AlN粉末は、高純度であることが好ましく、その純度は、好ましくは96%以上、より好ましくは98%以上である。また、AlN粉末の平均粒径は、好ましくは0.1μm以上1.0μm以下、より好ましくは0.3μm以上0.8μm以下である。 The AlN powder is preferably of high purity, and the purity is preferably 96% or more, more preferably 98% or more. The average particle size of the AlN powder is preferably 0.1 μm or more and 1.0 μm or less, and more preferably 0.3 μm or more and 0.8 μm or less.

混合方法は、湿式、乾式の何れであってもよく、例えばボールミル、振動ミルなどの混合器を用いることができる。成形方法としては、例えば、一軸加圧成形や冷間静水等方圧加圧(CIP:Cold Isostatic Pressing)法などの公知の方法を用いればよい。 The mixing method may be either wet or dry, and for example, a mixer such as a ball mill or a vibration mill can be used. As the molding method, for example, a known method such as uniaxial pressure molding or cold isostatic pressing (CIP) method may be used.

第1および第2のAlN脱脂体作製工程STEP2では、第1および第2のAlN成形体11、12を所定の温度以上、所定の時間以上脱脂処理して第1および第2のAlN脱脂体21、22を作製する。AlN成形体は、例えば、400℃以上800℃以下の温度で熱処理され、AlN脱脂体となる。脱脂時間は、1時間以上120時間以下であることが好ましい。脱脂には、大気炉または窒素雰囲気炉を用いることができるが、バインダの有機成分を除去することが重要なので大気炉の方が好ましい。なお、第1および第2のAlN脱脂体作製工程STEP2において、第1および第2のAlN成形体の脱脂温度および脱脂時間は同じであっても、相違していてもよい。 In the first and second AlN degreasing body manufacturing steps STEP2, the first and second AlN molded bodies 11 and 12 are degreased at a predetermined temperature or higher and for a predetermined time or longer, and the first and second AlN degreasing bodies 21 are subjected to degreasing treatment. , 22 is produced. The AlN molded product is, for example, heat-treated at a temperature of 400 ° C. or higher and 800 ° C. or lower to become an AlN degreased product. The degreasing time is preferably 1 hour or more and 120 hours or less. An atmospheric furnace or a nitrogen atmosphere furnace can be used for degreasing, but the atmosphere furnace is preferable because it is important to remove the organic component of the binder. In the first and second AlN degreasing body manufacturing steps STEP2, the degreasing temperature and the degreasing time of the first and second AlN molded bodies may be the same or different.

第1および第2のAlN仮焼体作製工程STEP3では、第1および第2のAlN脱脂体21、22を1200℃以上1700℃以下の温度で仮焼して第1および第2のAlN仮焼体31、32を作製する。仮焼時間は、0.5時間以上12時間以下であることが好ましい。仮焼雰囲気は、窒素や不活性ガス雰囲気であることが好ましいが、真空などの雰囲気であってもよい。なお、第1および第2のAlN仮焼体作製工程STEP3において、第1および第2のAlN脱脂体の仮焼温度および仮焼時間は同じであっても、相違していてもよい。 In the first and second AlN calcined body preparation steps STEP3, the first and second AlN degreased bodies 21 and 22 are calcined at a temperature of 1200 ° C. or higher and 1700 ° C. or lower, and the first and second AlN calcined bodies are calcined. The bodies 31 and 32 are made. The calcination time is preferably 0.5 hours or more and 12 hours or less. The calcination atmosphere is preferably a nitrogen or inert gas atmosphere, but may be a vacuum or the like. In the first and second AlN calcined body preparation step STEP3, the calcining temperature and the calcining time of the first and second AlN degreased bodies may be the same or different.

第1の平面形成工程STEP4では、第1のAlN仮焼体31に第1の平面31aとその反対面31bを形成する。第2の平面形成工程STEP5では、第2のAlN仮焼体32に第2の平面32aとその反対面32bを形成する。なお、第1の平面31aと第2の平面32aは、積層工程STEP7において接触する面となる。 In the first plane forming step STEP4, the first plane 31a and the opposite surface 31b are formed on the first AlN calcined body 31. In the second plane forming step STEP5, the second plane 32a and the opposite surface 32b are formed on the second AlN calcined body 32. The first plane 31a and the second plane 32a are surfaces that come into contact with each other in the laminating step STEP7.

NC旋盤、MC加工機などの平面研削機やラッピング加工機などを用いて、例えば、表面粗さRaが、好ましくは0.15μm以上0.8μm以下、より好ましくは0.15μm以上0.4μm以下となるように研磨または研削を行うことにより、第1および第2の平面31a、32aを形成する。 Using a surface grinder such as an NC lathe or MC processing machine or a lapping processing machine, for example, the surface roughness Ra is preferably 0.15 μm or more and 0.8 μm or less, more preferably 0.15 μm or more and 0.4 μm or less. The first and second flat surfaces 31a and 32a are formed by polishing or grinding so as to be.

凹部形成工程STEP6においては、第1の平面31aまたは第2の平面32aの少なくとも一方に凹部33を形成する。凹部33は、第1の平面31a、第2の平面32aの何れか一方、または双方から掘り込むように研削加工などによって形成する。 In the recess forming step STEP6, the recess 33 is formed on at least one of the first plane 31a and the second plane 32a. The recess 33 is formed by grinding or the like so as to be dug from either or both of the first flat surface 31a and the second flat surface 32a.

なお、第1の平面形成工程STEP4または第2の平面形成工程STEP5において、第1または第2の平面31a、32aを研磨加工せずに、あるいは粗く研削加工しただけとしておき、凹部形成工程STEP5において凹部33を形成した後で、第1または第2の平面31a、32aを研磨加工、あるいは仕上げの研削加工を行ってもよい。 In the first flat surface forming step STEP4 or the second flat surface forming step STEP5, the first or second flat surfaces 31a and 32a are left unpolished or only roughly ground, and in the concave portion forming step STEP5. After forming the recess 33, the first or second flat surfaces 31a and 32a may be polished or finished by grinding.

なお、第1および第2の平面31a、32aの双方から掘り込むように凹部33を形成する場合、これらの凹部33は、第1および第2の平面31a、32aを積層工程STEP6において接触されたときに、一体化するものであってもよいが、他の平面によって閉じられるものであってもよい。 When the recesses 33 are formed so as to be dug from both the first and second planes 31a and 32a, these recesses 33 are brought into contact with the first and second planes 31a and 32a in the laminating step STEP6. Sometimes it may be integrated, but it may also be closed by another plane.

また、第1の平面形成工程STEP4、第2の平面形成工程STEP5または凹部形成工程STEP6において、乾式の研削加工または研磨加工により、第1の平面31a、第2の平面32aまたは凹部33を形成することが好ましい。これにより、研削液又は研磨液が第1または第2のAlN仮焼体31、32の内部に侵入し、AlN焼結部材10に不純物が残存するおそれの解消を図ることが可能となる。なお、研削加工および研磨加工を行う場合、これら加工の双方ともに乾式で行うことが好ましい。 Further, in the first flat surface forming step STEP4, the second flat surface forming step STEP5 or the concave portion forming step STEP6, the first flat surface 31a, the second flat surface 32a or the concave portion 33 is formed by dry grinding or polishing. Is preferable. This makes it possible to eliminate the possibility that the grinding liquid or the polishing liquid invades the inside of the first or second AlN calcined bodies 31 and 32 and impurities remain in the AlN sintered member 10. When performing grinding and polishing, it is preferable to perform both of these processes in a dry manner.

積層工程STEP7では、第1のAlN仮焼体31と第2のAlN仮焼体32とを、第1の平面31aと第2の平面32aとを接触させた状態で積層する。 In the laminating step STEP7, the first AlN calcined body 31 and the second AlN calcined body 32 are laminated in a state where the first flat surface 31a and the second flat surface 32a are in contact with each other.

焼成工程STEP8では、積層した第1のAlN仮焼体31および第2のAlN仮焼体32を、積層方向に10kgf/cm以上の圧力を加えながら1800℃以上2000℃以下で焼成する。これにより、第1および第2のAlN仮焼体31、32が焼結して、それぞれ第1および第2のAlN焼結体41、42となり、これらが一体化されたAlN焼結部材10が得られる。 In the firing step STEP8, the laminated first AlN calcined body 31 and the second AlN calcined body 32 are fired at 1800 ° C. or higher and 2000 ° C. or lower while applying a pressure of 10 kgf / cm 2 or more in the laminating direction. As a result, the first and second AlN calcined bodies 31 and 32 are sintered to become the first and second AlN sintered bodies 41 and 42, respectively, and the AlN sintered member 10 in which these are integrated is formed. can get.

焼成工程STEP8においては、少なくとも積層方向に加圧した状態で加熱するホットプレスなどによって、加圧焼結を行う。加熱時間は、好ましくは0.1時間以上10時間以下、より好ましくは1時間以上5時間以下である。そして、焼成雰囲気は、例えば、窒素や不活性ガス雰囲気であるが、真空などの雰囲気であってもよい。 In the firing step STEP8, pressure sintering is performed by a hot press or the like that heats at least in a state of being pressurized in the stacking direction. The heating time is preferably 0.1 hour or more and 10 hours or less, and more preferably 1 hour or more and 5 hours or less. The firing atmosphere is, for example, a nitrogen or inert gas atmosphere, but may be a vacuum or the like.

上述した本発明のAlN焼結部材10の製造方法においては、凹部を形成したAlN成形体同士を焼成して一体化する場合と比較して、凹部33に由来するAlN焼結部材10の外形および中空構造などの寸法精度の向上を図ることが可能となる。AlN焼結部材に形成される中空構造は電極の配置スペースやガス流路、熱電対などの配線用の空間として利用される。 In the method for manufacturing the AlN sintered member 10 of the present invention described above, the outer shape of the AlN sintered member 10 derived from the recess 33 and the outer shape of the AlN sintered member 10 derived from the recess 33 are compared with the case where the AlN molded bodies having the recess formed are fired and integrated. It is possible to improve the dimensional accuracy of hollow structures and the like. The hollow structure formed in the AlN sintered member is used as a space for arranging electrodes, a gas flow path, a space for wiring such as a thermocouple, and the like.

さらに、錘を用いた小さな荷重を加えた状態で焼成を行う上記特許文献1に開示された技術と比較して、10kgf/cm以上の加圧を行いながら焼成を行うので、接合強度の向上、およびAlN焼結部材10の緻密化を図ることが可能となる。なお、10kgf/cm未満の加圧では、焼成時に第1及び第2のAlN仮焼体31、32の第1および第2の平面31a、32aの良好な面接触が得られず接合不良を引き起こすため不適である。 Further, as compared with the technique disclosed in Patent Document 1 in which firing is performed with a small load applied using a weight, firing is performed while applying a pressure of 10 kgf / cm 2 or more, so that the bonding strength is improved. , And the AlN sintered member 10 can be densified. If the pressure is less than 10 kgf / cm 2 , good surface contact between the first and second flat surfaces 31a and 32a of the first and second AlN calcined bodies 31 and 32 cannot be obtained at the time of firing, resulting in poor joining. Not suitable for causing.

[第2の実施形態]
(電極埋設部材の製造方法)
次に、本発明の第2の実施形態に係るAlN焼結部材の製造方法について説明する。本実施形態に係るAlN焼結部材の製造方法は、積層工程において、電極を配置して積層するため、電極が埋設されたAlN焼結部材(電極埋設部材)となる。このような電極埋設部材は、例えば、静電チャックやウエハ加熱用ヒーターとして使用される。また、さらに脱脂条件を調節してAlN脱脂体を作製することができる。ここで、脱脂条件を下記に示す条件とすることにより、静電チャックとしての機能をより高く発揮させることができる。
[Second Embodiment]
(Manufacturing method of electrode embedded member)
Next, a method for manufacturing the AlN sintered member according to the second embodiment of the present invention will be described. In the method for manufacturing an AlN sintered member according to the present embodiment, since the electrodes are arranged and laminated in the laminating step, the AlN sintered member (electrode embedded member) in which the electrodes are embedded is used. Such an electrode-embedded member is used, for example, as an electrostatic chuck or a wafer heating heater. Further, the degreasing conditions can be further adjusted to produce an AlN degreased body. Here, by setting the degreasing condition as the condition shown below, the function as an electrostatic chuck can be exhibited more highly.

本発明の第2の実施形態に係るAlN焼結部材(電極埋設部材)50の製造方法は、図1に示すように、第1および第2のAlN成形体形成工程STEP1、第1および第2のAlN脱脂体作製工程STEP2、第1および第2のAlN仮焼体作製工程STEP3、第1の平面形成工程STEP4、第2の平面形成工程STEP5、凹部形成工程STEP6、積層工程STEP7および焼成工程STEP8を備えている。本実施形態に係るAlN焼結部材の製造方法は、第1の実施形態に係るAlN焼結部材の製造方法と同様の方法で製造されるため、以下では、第1の実施形態に係るAlN焼結部材の製造方法と異なる点を説明する。 As shown in FIG. 1, the method for manufacturing the AlN sintered member (electrode embedded member) 50 according to the second embodiment of the present invention is the first and second AlN molded body forming steps STEP1, the first and the second. AlN degreased body manufacturing process STEP2, first and second AlN calcined body manufacturing process STEP3, first plane forming step STEP4, second plane forming step STEP5, recess forming step STEP6, laminating step STEP7 and firing step STEP8 It is equipped with. Since the method for manufacturing the AlN sintered member according to the present embodiment is the same as the method for manufacturing the AlN sintered member according to the first embodiment, the following describes the AlN firing according to the first embodiment. The difference from the manufacturing method of the connecting member will be described.

図3(a)~(d)は、それぞれ本実施形態の製造工程の一段階を模式的に示す断面図である。積層工程STEP7では、凹部形成工程STEP6で形成した凹部33の少なくとも一部に電極150を配置した後に、第1のAlN仮焼体31と第2のAlN仮焼体32とを、第1の平面31aと第2の平面32aとを接触させた状態で積層する。これにより、電極150が埋設されたAlN焼結部材50となる。 3 (a) to 3 (d) are cross-sectional views schematically showing one step of the manufacturing process of the present embodiment, respectively. In the laminating step STEP7, after the electrodes 150 are arranged in at least a part of the recesses 33 formed in the recess forming step STEP6, the first AlN calcined body 31 and the second AlN calcined body 32 are placed on the first flat surface. The 31a and the second flat surface 32a are laminated in contact with each other. As a result, the AlN sintered member 50 in which the electrode 150 is embedded becomes.

本発明のAlN焼結部材50の製造方法においては、凹部を形成したAlN成形体同士を焼成して一体化する場合と比較して、凹部33や電極150に由来するAlN焼結部材10の各層の厚み、外形、中空構造がある場合の中空構造などの寸法精度の向上を図ることが可能となるため、例えば、絶縁層となる層の厚みのバラツキを所定の範囲に収まるように調整することもできる。その結果、例えば、電極埋設部材が静電チャックとして使用される場合、面内の吸着力の差を低減することができる。また、例えば、ヒーターとして用いられる場合、面内の温度のバラツキを低減することができる。 In the method for manufacturing the AlN sintered member 50 of the present invention, each layer of the AlN sintered member 10 derived from the recess 33 and the electrode 150 is compared with the case where the AlN molded bodies having the recesses formed are fired and integrated. Since it is possible to improve the dimensional accuracy of the thickness, outer shape, hollow structure, etc. when there is a hollow structure, for example, the variation in the thickness of the layer to be the insulating layer should be adjusted so as to be within a predetermined range. You can also. As a result, for example, when the electrode embedded member is used as an electrostatic chuck, the difference in suction force in the plane can be reduced. Further, for example, when used as a heater, it is possible to reduce in-plane temperature variation.

第1および第2のAlN脱脂体作製工程STEP2では、以下の熱処理条件に従って脱脂することが好ましい。以下の熱処理条件に従って脱脂をする場合、第1および第2のAlN成形体形成工程STEP1における第1または第2のAlN成形体11、12を形成するAlN原料粉は、少なくとも一方にY成分が添加されていることとする。添加されるY成分は、Yであることが好ましいが、脱脂時の熱処理によりYとなるものであってもよい。Y成分は、AlN原料粉に対し、Yに換算した内比で0.3~7.0wt%添加することが好ましい。バインダは、PVA系であることが好ましい。 In the first and second AlN degreasing body manufacturing steps STEP2, it is preferable to degreasing according to the following heat treatment conditions. When degreasing is performed according to the following heat treatment conditions, the Y component is added to at least one of the AlN raw material powders forming the first or second AlN compacts 11 and 12 in the first and second AlN compact forming steps STEP1. It is assumed that it has been done. The Y component to be added is preferably Y 2 O 3 , but may be Y 2 O 3 by heat treatment during degreasing. The Y component is preferably added in an internal ratio of 0.3 to 7.0 wt% in terms of Y2O3 with respect to the AlN raw material powder. The binder is preferably PVA-based.

Y成分が添加されるAlN原料粉は、第1のAlN成形体11を形成するAlN原料粉および第2のAlN成形体12を形成するAlN原料粉の両方であってもよい。両方に添加される場合、以下の熱処理条件は、両方に適用されることが好ましいが、一方のみに適用される場合も、本発明の方法に含む。また、以下の熱処理条件は、少なくとも電極150の上部に配置され、焼成後絶縁層となるAlN形成体に適用されることが好ましい。 The AlN raw material powder to which the Y component is added may be both the AlN raw material powder forming the first AlN molded body 11 and the AlN raw material powder forming the second AlN molded body 12. When added to both, the following heat treatment conditions are preferably applied to both, but cases to which only one is applied are also included in the method of the invention. Further, the following heat treatment conditions are preferably applied to an AlN forming body which is arranged at least above the electrode 150 and becomes an insulating layer after firing.

(熱処理条件)
Y成分が添加された第1または第2のAlN成形体11、12は、脱脂温度T(℃)と脱脂時間H(h)と添加したY成分をY換算した内比でC(wt%)として、以下の式1および式2を満たすように制御して脱脂することで、第1または第2のAlN脱脂体21、22を作製することが好ましい。
T>20×C+440 … (式1)
H≧300/{T-(20×C+440)} … (式2)
(Heat treatment conditions)
In the first or second AlN molded bodies 11 and 12 to which the Y component was added, the degreasing temperature T (° C.), the degreasing time H (h), and the added Y component were converted into C (Y2O3). It is preferable that the first or second AlN degreasing bodies 21 and 22 are produced by controlling and degreasing so as to satisfy the following formulas 1 and 2 as wt%).
T> 20 × C + 440… (Equation 1)
H ≧ 300 / {T- (20 × C + 440)}… (Equation 2)

このような熱処理条件で作製された脱脂体を仮焼、焼成して作製されるセラミックス焼結体は、粒界にYAG粒子が含まれ、YAP粒子およびYAM粒子が含まれなくなる。粒界にYAGが生成するとAlNセラミックスの体積抵抗率が相対的に低くなる。そのため、静電チャックの絶縁層として用いることに好適となる。本発明の1つの態様として静電チャックがあり、その静電吸着力は絶縁層の体積抵抗率に影響を受ける。絶縁層の体積抵抗率は、脱脂(熱処理)条件を上記の所定の条件することにより、AlNセラミックスの粒界にYAG組織のみを生成させることができる。YAG組織のみが生成すると絶縁層の体積抵抗率は低くなる。 The ceramic sintered body produced by calcining and firing the degreased body produced under such heat treatment conditions contains YAG particles at the grain boundaries and does not contain YAP particles and YAM particles. When YAG is generated at the grain boundaries, the volume resistivity of AlN ceramics becomes relatively low. Therefore, it is suitable for use as an insulating layer of an electrostatic chuck. One embodiment of the present invention is an electrostatic chuck, and the electrostatic adsorption force thereof is affected by the volume resistivity of the insulating layer. As for the volume resistivity of the insulating layer, only the YAG structure can be generated at the grain boundaries of the AlN ceramics by subjecting the degreasing (heat treatment) conditions to the above-mentioned predetermined conditions. If only the YAG structure is generated, the volume resistivity of the insulating layer becomes low.

上記式はYAG組織のみが生成するときの脱脂(熱処理)条件式であり、焼結助剤の量Cの値によって図4のようにしきい式が表すグラフが変わってくる。すなわち、上記しきい式を充足する条件で脱脂したのちに仮焼体接合して静電チャックを作製すると絶縁層の厚みバラツキが抑えられ、かつ良好な静電吸着力を発揮させることができる。図4は、Y成分の添加量としきい式の関係を例示した図である。 The above formula is a degreasing (heat treatment) condition formula when only the YAG structure is formed, and the graph represented by the threshold formula changes as shown in FIG. 4 depending on the value of the amount C of the sintering aid. That is, if an electrostatic chuck is manufactured by degreasing under the condition that the above-mentioned threshold is satisfied and then joining with a calcined body, the thickness variation of the insulating layer can be suppressed and a good electrostatic adsorption force can be exhibited. FIG. 4 is a diagram illustrating the relationship between the amount of the Y component added and the threshold formula.

(電極埋設部材の構成1)
次に、本実施形態に係る電極埋設部材の構成を説明する。図5は、本実施形態に係る電極埋設部材100を示す正断面図である。電極埋設部材100は、円板等の板状に形成され、絶縁層110、バルク層120および電極150を備える。絶縁層110およびバルク層120は、AlNを主成分とするセラミックス焼結体で形成されている。また、YとAlの複酸化物の結晶相が含まれていてもよい。電極150には、モリブデンまたはタングステンが用いられる。図4に示す例では、電極150が、絶縁層110とバルク層120との間のみに設けられているが、電極が複数の層をなすように設けられていてもよい。その場合、処理対象を保持する側の最外層を絶縁層110、その他の層をバルク層120という。
(Structure of electrode embedded member 1)
Next, the configuration of the electrode embedded member according to the present embodiment will be described. FIG. 5 is a normal cross-sectional view showing the electrode embedded member 100 according to the present embodiment. The electrode burying member 100 is formed in a plate shape such as a disk, and includes an insulating layer 110, a bulk layer 120, and an electrode 150. The insulating layer 110 and the bulk layer 120 are formed of a ceramic sintered body containing AlN as a main component. Further, a crystal phase of a double oxide of Y 2 O 3 and Al 2 O 3 may be contained. Molybdenum or tungsten is used for the electrode 150. In the example shown in FIG. 4, the electrode 150 is provided only between the insulating layer 110 and the bulk layer 120, but the electrodes may be provided so as to form a plurality of layers. In that case, the outermost layer on the side holding the processing target is referred to as an insulating layer 110, and the other layers are referred to as a bulk layer 120.

絶縁層110の厚みのバラツキは、75μm以下である。このように絶縁層110の厚みのバラツキが低減されていることにより、例えば、電極埋設部材100が静電チャックとして使用される場合、面内の吸着力の差を低減することができる。また、例えば、ウエハ加熱用ヒーターとして用いられる場合、面内の温度のバラツキを低減することができる。 The variation in the thickness of the insulating layer 110 is 75 μm or less. By reducing the variation in the thickness of the insulating layer 110 in this way, for example, when the electrode embedded member 100 is used as an electrostatic chuck, it is possible to reduce the difference in the suction force in the plane. Further, for example, when it is used as a heater for heating a wafer, it is possible to reduce in-plane temperature variation.

絶縁層110を構成するセラミックス焼結体のAlN粒界には、YAG粒子が含まれ、YAP粒子およびYAM粒子が含まれないことが好ましい。これにより、絶縁層110の体積抵抗率を絶縁層110を構成するセラミックス焼結体のAlN粒界にYAP粒子またはYAM粒子が含まれ、YAG粒子が含まれない場合と比べ相対的に低く調整することができ、例えば、電極埋設部材100が静電チャックとして使用される場合、処理対象に対し強い静電吸着力を発揮できる。 It is preferable that the AlN grain boundaries of the ceramic sintered body constituting the insulating layer 110 contain YAG particles and do not contain YAP particles and YAM particles. As a result, the volume resistance of the insulating layer 110 is adjusted to be relatively low as compared with the case where the AlN grain boundaries of the ceramic sintered body constituting the insulating layer 110 contain YAP particles or YAM particles and do not contain YAG particles. For example, when the electrode-embedded member 100 is used as an electrostatic chuck, it can exert a strong electrostatic attraction force on a processing target.

なお、このような組成は、X線回折においてYAG、YAM、YAPのピークが認められるか否かで評価できる。ピークか否かは、バックグラウンドの2倍以上の強度を示す先端があるか否かで判断できる。YAG粒子が含まれるか否かは、JCPDSカードICDD#01-073-3184に示されたYAGの回折ピークのうち、回折角度18.11°付近に表れるピークの有無で判断できる。YAM粒子が含まれるか否かは、JCPDSカードICDD#00-033-0368に示されたYAMの回折ピークのうち、回折角度30.60°付近に表れるピークの有無で判断できる。YAP粒子が含まれるか否かは、JCPDSカードICDD#00-033-0041に示されたYAPの回折ピークのうち、回折角度34.24°付近に表れるピークの有無で判断できる。 It should be noted that such a composition can be evaluated by whether or not peaks of YAG, YAM, and YAP are observed in X-ray diffraction. Whether it is a peak or not can be determined by whether or not there is a tip showing an intensity twice or more that of the background. Whether or not YAG particles are contained can be determined by the presence or absence of a peak appearing near the diffraction angle 18.11 ° among the diffraction peaks of YAG shown in the JCPDS card ICDD # 01-073-3184. Whether or not YAM particles are contained can be determined by the presence or absence of a peak appearing near a diffraction angle of 30.60 ° among the diffraction peaks of YAM shown in the JCPDS card ICDD # 00-033-0368. Whether or not YAP particles are contained can be determined by the presence or absence of a peak appearing at a diffraction angle of 34.24 ° among the diffraction peaks of YAP shown in the JCPDS card ICDD # 00-033-0041.

バルク層120を構成するセラミックス焼結体のAlN粒界には、YAP粒子またはYAM粒子が含まれ、YAG粒子が含まれないことが好ましい。これにより、体積抵抗率を相対的に高く維持でき、リーク電流を抑止できる。なお、電極埋設部材100は必ずしも静電チャックである必要はなく、電極150がヒーター用電極やRF電源の電極として用いられてもよい。 It is preferable that the AlN grain boundaries of the ceramic sintered body constituting the bulk layer 120 contain YAP particles or YAM particles and do not contain YAG particles. As a result, the volume resistivity can be maintained relatively high, and the leakage current can be suppressed. The electrode embedded member 100 does not necessarily have to be an electrostatic chuck, and the electrode 150 may be used as a heater electrode or an RF power supply electrode.

(電極埋設部材の構成2)
図6は、電極埋設部材200を示す正断面図である。電極埋設部材200は、処理対象を表面上に保持する板状の保持部材210と、保持部材210の処理対象を保持する表面と対向する面に接合され、保持部材210を支持する支持部材220とを備えている。電極埋設部材200は、例えば、ウエハ加熱用ヒーターや静電チャックとして用いることができる。なお、電極埋設部材200も電極150がヒーター用電極やRF電源の電極として用いられてもよい。
(Structure of electrode embedded member 2)
FIG. 6 is a normal cross-sectional view showing the electrode embedded member 200. The electrode-embedded member 200 includes a plate-shaped holding member 210 that holds the object to be processed on the surface, and a support member 220 that is joined to the surface of the holding member 210 that faces the surface that holds the object to be processed and supports the holding member 210. It is equipped with. The electrode embedded member 200 can be used, for example, as a wafer heating heater or an electrostatic chuck. As for the electrode burying member 200, the electrode 150 may be used as a heater electrode or an RF power supply electrode.

保持部材210は、円板等の板状に形成され、絶縁層110、バルク層120および電極150を備える。絶縁層110およびバルク層120は、AlNを主成分とするセラミックス焼結体で形成されている。また、YとAlの複酸化物の結晶相が含まれていてもよい。図6に示す例では、電極150が、絶縁層110とバルク層120との間のみに設けられているが、電極が複数の層をなすように設けられていてもよい。電極150には、モリブデンまたはタングステンが用いられる。 The holding member 210 is formed in a plate shape such as a disk, and includes an insulating layer 110, a bulk layer 120, and an electrode 150. The insulating layer 110 and the bulk layer 120 are formed of a ceramic sintered body containing AlN as a main component. Further, a crystal phase of a double oxide of Y 2 O 3 and Al 2 O 3 may be contained. In the example shown in FIG. 6, the electrode 150 is provided only between the insulating layer 110 and the bulk layer 120, but the electrodes may be provided so as to form a plurality of layers. Molybdenum or tungsten is used for the electrode 150.

支持部材220は、円筒等の柱状に形成される。支持部材220は、AlNを主成分とするセラミック焼結体で形成されている。また、YとAlの複酸化物の結晶相が含まれていてもよい。電極埋設部材200が、ウエハ加熱用ヒーターとして用いられる場合、支持部材220は、熱伝導率を低くする観点から、Y成分が含まれないことが好ましい。支持部材220は従前の接合材を用いた接合方法や接合材を用いない拡散接合によって一体化される。 The support member 220 is formed in a columnar shape such as a cylinder. The support member 220 is formed of a ceramic sintered body containing AlN as a main component. Further, a crystal phase of a double oxide of Y 2 O 3 and Al 2 O 3 may be contained. When the electrode-embedded member 200 is used as a wafer heating heater, it is preferable that the support member 220 does not contain the Y component from the viewpoint of lowering the thermal conductivity. The support member 220 is integrated by a conventional joining method using a joining material or diffusion joining without using a joining material.

なお、本発明は、上述した第1または第2の実施形態に具体的に記載したAlN焼結部材の製造方法、電極埋設部材の製造方法および電極埋設部材の構成に限定されるものではなく、特許請求の範囲に記載した範囲内であれば適宜変更することができる。例えば、AlN焼結部材10、50は2個のAlN仮焼体が一体化したものであるが、3個以上のAlN仮焼体が一体化したものであってもよい。また、第2の実施形態において電極を埋設しない凹部が有っても、AlNセラミックスとしては一体化される。その場合、AlN焼結部材に形成される中空構造はガス流路や熱電対などの配線用の空間として利用されてもよい。 The present invention is not limited to the method for manufacturing the AlN sintered member, the method for manufacturing the electrode-embedded member, and the configuration of the electrode-embedded member specifically described in the first or second embodiment described above. It can be changed as appropriate within the scope of the claims. For example, the AlN sintered members 10 and 50 are those in which two AlN calcined bodies are integrated, but three or more AlN calcined bodies may be integrated. Further, even if there is a recess in which the electrode is not embedded in the second embodiment, it is integrated as AlN ceramics. In that case, the hollow structure formed in the AlN sintered member may be used as a space for wiring such as a gas flow path and a thermocouple.

[実施例および比較例]
(試料a1~a21、b1~b4)
図7および図8は各試料の製造条件および評価結果を示す表である。実施例a1~a21、b1~b4は、まず、第1および第2のAlN成形体形成工程STEP1として、純度98%、平均粒径0.5μmのAlN粉末に、焼結助剤としてYを0.3~5質量%、成形助剤としてPVAなどのバインダなどを添加したものを原料粉末とした。次に、この原料粉末をスプレードライヤーで顆粒化して顆粒を得た。
[Examples and Comparative Examples]
(Samples a1 to a21, b1 to b4)
7 and 8 are tables showing the production conditions and evaluation results of each sample. In Examples a1 to a21 and b1 to b4, first, as the first and second AlN molded body forming steps STEP1, AlN powder having a purity of 98% and an average particle size of 0.5 μm was added to Y2 O as a sintering aid. The raw material powder was prepared by adding 0.3 to 5% by mass of 3 and a binder such as PVA as a molding aid. Next, this raw material powder was granulated with a spray dryer to obtain granules.

そして、この顆粒を金型に充填し、圧力を20MPaとした一軸加圧成形して2個のAlN成形体を得た。 Then, the granules were filled in a mold and uniaxially pressure-molded at a pressure of 20 MPa to obtain two AlN molded articles.

次に、第1および第2のAlN脱脂体作製工程STEP2として、これらAlN成形体を大気雰囲気炉内にて図7または図8の表に記載する熱処理条件で脱脂とともに熱処理を行い2個のAlN脱脂体を得た。 Next, as the first and second AlN degreasing body manufacturing steps STEP2, these AlN molded bodies are heat-treated together with degreasing under the heat treatment conditions shown in the table of FIG. 7 or FIG. 8 in an air atmosphere furnace to perform two AlNs. A degreased body was obtained.

次に、第1および第2のAlN仮焼体作製工程STEP3として、これらAlN脱脂体を還元雰囲気炉内にて窒素雰囲気で炉内温度を実施例a1~a21において1700℃として3時間焼成、実施例b1~b4においては1100~1800℃、3時間として各水準2個のAlN仮焼体を得た。 Next, as the first and second AlN calcined body preparation steps STEP3, these AlN degreased bodies were fired in a reducing atmosphere furnace in a nitrogen atmosphere at a furnace temperature of 1700 ° C. for 3 hours. In Examples b1 to b4, two AlN calcined bodies of each level were obtained at 1100 to 1800 ° C. for 3 hours.

次に、第1および第2の平面形成工程STEP4、5として、2個のAlN仮焼体に、第1および第2の平面を形成した。第1および第2の平面の算術平均粗さ(Ra)および最大高さ(Rz)の平均は、Raが0.2~0.6μm、Rzが2~6μmであった。 Next, as the first and second plane forming steps STEP4 and 5, the first and second planes were formed on the two AlN calcined bodies. The average arithmetic mean roughness (Ra) and maximum height (Rz) of the first and second planes was 0.2 to 0.6 μm for Ra and 2 to 6 μm for Rz.

次に、凹部形成工程STEP6として、第2のAlN仮焼体の第2の平面に凹部を形成した。凹部は、深さ0.1mmの円形状とした。 Next, as the recess forming step STEP6, a recess was formed on the second plane of the second AlN calcined body. The concave portion has a circular shape with a depth of 0.1 mm.

次に、積層工程STEP7として、凹部に電極を配置して、第1のAlN仮焼体と第2のAlN仮焼体とを、電極を凹部に配置した後、第1の平面と第2の平面とを接触させた状態で積層させた。配置した電極の性状は以下の通りである。 Next, as the laminating step STEP7, an electrode is arranged in the recess, and the first AlN calcined body and the second AlN calcined body are arranged in the recess, and then the first plane and the second They were laminated in contact with a flat surface. The properties of the arranged electrodes are as follows.

(電極の性状)
材質:モリブデン
形態:メッシュ(平織り)、メッシュサイズ#50、モリブデンワイヤー径0.1mm
(Properties of electrodes)
Material: Molybdenum Form: Mesh (plain weave), mesh size # 50, molybdenum wire diameter 0.1 mm

次に、焼成工程STEP8として、このように積層した第1および第2のAlN仮焼体を焼成炉内にて窒素雰囲気で押圧板としてのカーボン平板で挟み込んで、1800℃、1MPa、2時間、窒素雰囲気中で焼結して、試料a1~a21、試料b1~b4を作製した。これにより、AlN焼結部材(電極埋設部材)が得られた。 Next, as the firing step STEP8, the first and second AlN calcined bodies thus laminated were sandwiched between carbon flat plates as a pressing plate in a nitrogen atmosphere in a firing furnace, and the temperature was 1800 ° C., 1 MPa, 2 hours. Samples a1 to a21 and samples b1 to b4 were prepared by sintering in a nitrogen atmosphere. As a result, an AlN sintered member (electrode embedded member) was obtained.

(試料c1~c3)
また、比較例として、試料c1~c3を作製した。試料c1およびc2は、いわゆる成形体ホットプレス法(特許6148845号公報に記載された方法)によって作製した。すなわち、実施例と同様に作製したAlN成形体に凹部加工を行った後、脱脂処理を行い、その後に電極を凹部に配置後、脱脂体を積層し、ホットプレス焼成(1800℃、1MPa、2時間)した。試料c1とc2は脱脂条件のみ異なり、c1は脱脂温度600℃、脱脂時間12時間とし、c2は脱脂温度600℃、脱脂時間4時間とした。
(Samples c1 to c3)
Further, as a comparative example, samples c1 to c3 were prepared. The samples c1 and c2 were prepared by a so-called molded body hot press method (method described in Japanese Patent No. 6148845). That is, the AlN molded body produced in the same manner as in the examples was subjected to recess processing, followed by degreasing treatment, and then the electrodes were placed in the recesses, and then the degreased bodies were laminated and hot press fired (1800 ° C., 1 MPa, 2). Time). Samples c1 and c2 differed only in degreasing conditions. C1 had a degreasing temperature of 600 ° C. and a degreasing time of 12 hours, and c2 had a degreasing temperature of 600 ° C. and a degreasing time of 4 hours.

試料c3は、いわゆる粉末ホットプレス法によって電極埋設部材を作製した。すなわち、AlN粉末をカーボン型に充填後、電極を配置し、更にその上にAlN粉末を充填し、ホットプレス焼成(1800℃、1MPa、2時間)した。なお、試料c3の作製工程には、脱脂工程はない。 For sample c3, an electrode-embedded member was prepared by a so-called powder hot press method. That is, after filling the carbon mold with the AlN powder, an electrode was placed, the AlN powder was further filled therein, and hot press firing (1800 ° C., 1 MPa, 2 hours) was performed. There is no degreasing step in the step of preparing the sample c3.

(絶縁層の厚みのバラツキ評価)
そして、これらのAlN焼結部材の各試料に対して、絶縁層の厚みが平均で1mmとなるように研削加工し、所定の位置の絶縁層の厚さを測定した。絶縁層の厚みは渦電流計で面内17か所(中心、R70-8等配、R140-8等配)で測定し、平均値および最小値、最大値を記録した。
(Evaluation of variation in the thickness of the insulating layer)
Then, each sample of these AlN sintered members was ground so that the thickness of the insulating layer was 1 mm on average, and the thickness of the insulating layer at a predetermined position was measured. The thickness of the insulating layer was measured at 17 locations in the plane (center, R70-8 equal distribution, R140-8 equal distribution) with an eddy current meter, and the average value, minimum value, and maximum value were recorded.

結果は、本発明による試料a1~a21の絶縁層のバラツキ(絶縁層厚み測定値の最大値-最小値)は35~58μmであった。試料b1は仮焼体の凹部形成工程で仮焼体の強度不足から破損し以後の工程は実施できなかった。試料b2の絶縁層のバラツキは75μm、試料b3は、60μmであった。試料b4は、焼成工程において第1の平面と第2の平面の間で接合不良が生じ評価ができなかった。また比較例として、従来の製法による試料c1~c3の絶縁層のバラツキは、c1が98μm、c2が95μm、c3が210μmであった。 As a result, the variation of the insulating layer of the samples a1 to a21 according to the present invention (maximum value-minimum value of the measured value of the insulating layer thickness) was 35 to 58 μm. Sample b1 was damaged in the process of forming the recesses of the calcined body due to insufficient strength of the calcined body, and the subsequent steps could not be carried out. The variation of the insulating layer of the sample b2 was 75 μm, and that of the sample b3 was 60 μm. Sample b4 could not be evaluated due to poor bonding between the first plane and the second plane in the firing step. As a comparative example, the variation of the insulating layers of the samples c1 to c3 by the conventional production method was 98 μm for c1, 95 μm for c2, and 210 μm for c3.

本発明の製法によって絶縁層のバラツキが従来製法によって作製された比較例と比較して改善されることが確認された。 It was confirmed that the variation of the insulating layer was improved by the production method of the present invention as compared with the comparative example produced by the conventional production method.

(体積抵抗率の測定)
次に、絶縁層の体積抵抗率を測定した。体積抵抗率の測定は、JIS C2139に準拠する方法で測定した。セラミック焼結体の両面に耐熱金属(Ni)の電極を配置し、電極間に電圧(500V)を印加し、電流を微小電流計(エーディーシー社R8340A)で測定した。温度は、300℃で測定した。そして、セラミック焼結体および電極寸法より体積抵抗率に換算した。体積抵抗率は、高圧電源と電流計により同様に電流値から算出してもよい。結果は、図7または図8の表に示す通りであった。
(Measurement of volume resistivity)
Next, the volume resistivity of the insulating layer was measured. The volume resistivity was measured by a method according to JIS C2139. Heat-resistant metal (Ni) electrodes were placed on both sides of the ceramic sintered body, a voltage (500 V) was applied between the electrodes, and the current was measured with a micro ammeter (ADC R8340A). The temperature was measured at 300 ° C. Then, it was converted into volume resistivity from the ceramic sintered body and the electrode dimensions. The volume resistivity may be similarly calculated from the current value by a high voltage power supply and an ammeter. The results were as shown in the table of FIG. 7 or FIG.

結果は、試料a1~a21を参照し、焼結助剤としてYを内比でC(wt%)添加して作製したAlN成形体を、脱脂温度T(℃)と脱脂時間H(h)として、T>20×C+440かつH≧300/{T-(20×C+440)}の熱処理条件を施したものは体積抵抗率が低下し、静電チャックの絶縁層として機能することがわかった。 For the results, refer to the samples a1 to a21, and add Y2O3 as a sintering aid at an internal ratio of C (wt%) to the AlN molded product, which was prepared by adding a degreasing temperature T (° C.) and a degreasing time H ( ° C). As h), it was found that the one subjected to the heat treatment conditions of T> 20 × C + 440 and H ≧ 300 / {T- (20 × C + 440)} has a reduced volume resistivity and functions as an insulating layer of the electrostatic chuck. rice field.

(4点曲げ強度)
次に、特性評価後のAlN焼結体を切断し、4点曲げ強度試験を行った。その結果、試料a1~a21の各々の10点の測定値の平均値が、最小値260MPa、最大値320MPaであり仮焼体接合後に得られるAlN焼結体部材として十分な機械的強度があることが確かめられた。
(4 point bending strength)
Next, the AlN sintered body after the characteristic evaluation was cut and a 4-point bending strength test was performed. As a result, the average value of the measured values at each of the 10 points of the samples a1 to a21 is 260 MPa at the minimum value and 320 MPa at the maximum value, and the AlN sintered body member obtained after the calcined body bonding has sufficient mechanical strength. Was confirmed.

(結晶相の確認)
次に、切断面を研磨加工した後、接合部および電極を拡大鏡などを用いて実験者が目視した。その結果、接合部に接合不良や破損などは確認されなかった。また、X線回折装置(Rigaku MultiFlex Cu Kα 40kV/40mA)を用いたAlN焼結体の粒界観察を行った。
(Confirmation of crystal phase)
Next, after the cut surface was polished, the experimenter visually inspected the joint and the electrode using a magnifying glass or the like. As a result, no joint failure or breakage was confirmed at the joint. In addition, the grain boundaries of the AlN sintered body were observed using an X-ray diffractometer (Rigaku MultiFlex Cu Kα 40kV / 40mA).

その結果、熱処理条件(脱脂条件)によって粒界に生成するイットリウム酸化物の結晶相が異なっていることが確認された。すなわち、粒界にYAG(YAl12)が生成し、YAP(YAlO)、YAM(YAl)が生成していないものは300℃での体積抵抗率が相対的に低くなっていることが確認された。また、YAGが生成せず、YAPやYAMが生成しているものは相対的に体積抵抗率が高くなっていることが確認された。また、従来製法による比較例のうち、脱脂時間が短かった試料c2の組織はYAG(YAl12)、YAM(YAl)が生成しておらず、YAP(YAlO)が生成していた。また、脱脂工程を設けていない試料c3の組織はYAG(YAl12)が生成しておらず、YAP(YAlO)、YAM(YAl)が生成していた。なお、従来製法による比較例のうち、脱脂時間が長かった試料c1は、YAG(YAl12)が生成し、YAP(YAlO)、YAM(YAl)が生成していなかった。 As a result, it was confirmed that the crystal phase of the yttrium oxide formed at the grain boundaries differs depending on the heat treatment conditions (defatting conditions). That is, those in which YAG (Y3 Al 5 O 12 ) is generated at the grain boundaries and YAP ( YAlO 3 ) and YAM (Y 4 Al 2 O 9 ) are not generated have a relative volume resistivity at 300 ° C. It was confirmed that it was low. Further, it was confirmed that those in which YAG was not generated and YAP and YAM were generated had a relatively high volume resistivity. Further, among the comparative examples by the conventional production method, YAG (Y 3 Al 5 O 12 ) and YAM (Y 4 Al 2 O 9 ) were not produced in the structure of the sample c2 whose degreasing time was short, and YAP (YAlO 3 ) was not produced. ) Was generated. Further, YAG (Y3 Al 5 O 12 ) was not produced in the structure of the sample c3 not provided with the degreasing step, and YAP ( YAlO 3 ) and YAM (Y 4 Al 2 O 9 ) were produced. Of the comparative examples produced by the conventional method, the sample c1 having a long degreasing time was produced by YAG (Y3 Al 5 O 12 ), and YAP ( YAlO 3 ) and YAM (Y 4 Al 2 O 9 ). I wasn't.

AlNセラミックスは本来体積抵抗率の高い絶縁体であるが、静電チャックの絶縁層として使用するには、ジョンセンラーベック力を誘起して強い静電吸着力を発現させるため絶縁層の体積抵抗率は一定程度低くすることが好ましい。そのため、YAGのみが生成しているAlNセラミックス組織からなる実施例は、特に静電チャックとしての用途に好適であることが確かめられた。 AlN ceramics is originally an insulator with high volume resistivity, but when used as an insulating layer of an electrostatic chuck, the volume resistance of the insulating layer is to induce a Johnsen Labeck force to develop a strong electrostatic adsorption force. The rate is preferably lowered to a certain extent. Therefore, it was confirmed that the example consisting of an AlN ceramic structure in which only YAG is produced is particularly suitable for use as an electrostatic chuck.

なお、脱脂条件と体積抵抗率低下の関係については、脱脂によりAlN粒子の表面にAlのような酸化物が生成し、これと焼結助剤のYが反応してイットリウムアルミニウム酸化物(YAG、YAP、YAM)が生成する。このときYの量に対してAlの量が多いとき、すなわち脱脂条件で温度が高くかつ脱脂時間が長い場合にYAGが生成されると考えられる。 Regarding the relationship between the degreasing conditions and the decrease in volume resistance, degreasing produces oxides such as Al 2 O 3 on the surface of AlN particles, which react with the sintering aid Y 2 O 3 to yttrium. Aluminum oxides (YAG, YAP, YAM) are produced. At this time, it is considered that YAG is generated when the amount of Al 2 O 3 is larger than the amount of Y 2 O 3 , that is, when the temperature is high and the degreasing time is long under degreasing conditions.

図7または図8の表には、Y添加量、脱脂時間、および脱脂温度とAlN焼結体の粒界の生成粒子の結晶相を測定した結果をまとめた。これらを整理すると、脱脂温度H(℃)と脱脂時間、Yの添加量がY換算でC(wt%)としてT>20×C+440かつH≧300/{T-(20×C+440)}であるときが粒界にYAGが生成し静電チャックの絶縁層として更に好適であることが確認された。 The table of FIG. 7 or FIG. 8 summarizes the results of measuring the amount of Y2O3 added , the degreasing time , the degreasing temperature, and the crystal phase of the generated particles at the grain boundaries of the AlN sintered body. To summarize these, the degreasing temperature H (° C.), the degreasing time, and the amount of Y added are T> 20 × C + 440 and H ≧ 300 / {T- (20 × C + 440) as C (wt%) in terms of Y2O3. }, It was confirmed that YAG was generated at the grain boundaries and was more suitable as an insulating layer for the electrostatic chuck.

以上により、本発明のAlN焼結部材の製造方法は、寸法精度の向上したAlN焼結部材を製造できることが分かった。また、本発明のAlN焼結部材(電極埋設部材)の製造方法は、絶縁層の厚みのバラツキを低減でき、体積抵抗率を小さい範囲で制御できることが分かった。また、本発明の電極埋設部材は、静電チャックやウエハ加熱用ヒーターとして好適であることが確かめられた。 From the above, it was found that the method for manufacturing an AlN sintered member of the present invention can manufacture an AlN sintered member with improved dimensional accuracy. Further, it was found that the method for manufacturing an AlN sintered member (electrode embedded member) of the present invention can reduce the variation in the thickness of the insulating layer and control the volume resistivity within a small range. Further, it was confirmed that the electrode-embedded member of the present invention is suitable as an electrostatic chuck or a heater for heating a wafer.

本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形および均等物に及ぶことはいうまでもない。また、各図面に示された構成要素の構造、形状、数、位置、大きさ等は説明の便宜上のものであり、適宜変更しうる。 It goes without saying that the present invention is not limited to the above embodiments and extends to various modifications and equivalents included in the idea and scope of the present invention. Further, the structure, shape, number, position, size, etc. of the components shown in each drawing are for convenience of explanation and can be changed as appropriate.

10、50 AlN焼結部材
11 第1のAlN成形体
12 第2のAlN成形体
21 第1のAlN脱脂体
22 第2のAlN脱脂体
31 第1のAlN仮焼体
31a 第1の平面
32 第2のAlN仮焼体
32a 第2の平面
33 凹部
41 第1のAlN焼結体
42 第2のAlN焼結体
100、200 電極埋設部材
110 絶縁層
120 バルク層
150 電極
210 保持部材
220 支持部材
10, 50 AlN sintered member 11 First AlN molded body 12 Second AlN molded body 21 First AlN degreased body 22 Second AlN degreased body 31 First AlN calcined body 31a First flat surface 32 First 2 AlN calcined body 32a Second flat surface 33 Recessed 41 First AlN sintered body 42 Second AlN sintered body 100, 200 Electrode embedded member 110 Insulation layer 120 Bulk layer 150 Electrode 210 Holding member 220 Support member

Claims (7)

AlNを主成分とするセラミックス焼結体で形成されたAlN焼結部材の製造方法であって、
AlN原料粉から第1および第2のAlN成形体を形成する工程と、
前記第1および第2のAlN成形体を所定の温度以上、所定の時間以上脱脂処理して第1および第2のAlN脱脂体を作製する工程と、
前記第1および第2のAlN脱脂体を仮焼して第1および第2のAlN仮焼体を作製する工程と、
前記第1のAlN仮焼体に第1の平面を形成する工程と、
前記第2のAlN仮焼体に第2の平面を形成する工程と、
前記第1の平面または前記第2の平面の少なくとも一方に凹部を形成する工程と、
前記第1のAlN仮焼体と前記第2のAlN仮焼体とを、前記第1の平面と前記第2の平面とを接触させた状態で積層する工程と、
前記積層した前記第1のAlN仮焼体および前記第2のAlN仮焼体を、積層方向に10kgf/cm以上の圧力を加えながら焼成する工程と、を備えることを特徴とするAlN焼結部材の製造方法。
A method for manufacturing an AlN sintered member formed of a ceramic sintered body containing AlN as a main component.
The process of forming the first and second AlN compacts from the AlN raw material powder, and
A step of degreasing the first and second AlN compacts at a predetermined temperature or higher and for a predetermined time or longer to prepare the first and second AlN degreased bodies.
The step of calcining the first and second AlN degreased bodies to prepare the first and second AlN calcined bodies, and
The step of forming the first plane on the first AlN calcined body and
The step of forming the second plane on the second AlN calcined body, and
The step of forming a recess in at least one of the first plane or the second plane, and
A step of laminating the first AlN calcined body and the second AlN calcined body in a state where the first plane and the second plane are in contact with each other.
AlN sintering comprising the step of firing the laminated first AlN calcined body and the second AlN calcined body while applying a pressure of 10 kgf / cm 2 or more in the laminating direction. Manufacturing method of parts.
前記第1および第2のAlN仮焼体を作製する工程の仮焼温度は、1200℃以上1700℃以下であり、かつ、前記焼成する工程の焼成温度は、1800℃以上2000℃以下であることを特徴とする請求項1記載のAlN焼結部材の製造方法。 The calcining temperature in the step of producing the first and second AlN calcined bodies is 1200 ° C. or higher and 1700 ° C. or lower, and the firing temperature in the firing step is 1800 ° C. or higher and 2000 ° C. or lower. The method for manufacturing an AlN sintered member according to claim 1, wherein the AlN sintered member is manufactured. 前記第1のAlN仮焼体と前記第2のAlN仮焼体とを積層する工程において、前記凹部の少なくとも一部に電極を配置して積層することを特徴とする請求項1または請求項2記載のAlN焼結部材の製造方法。 Claim 1 or claim 2 is characterized in that, in the step of laminating the first AlN calcined body and the second AlN calcined body, electrodes are arranged and laminated in at least a part of the recess. The method for manufacturing an AlN sintered member according to the description. 前記第1または第2のAlN成形体を形成する前記AlN原料粉は、少なくとも一方にY成分が添加され、
前記第1および第2のAlN脱脂体を作製する工程において、Y成分が添加された前記第1または第2のAlN成形体は、脱脂温度T(℃)と脱脂時間H(h)と添加したY成分をY換算した内比でC(wt%)として、T>20×C+440かつH≧300/{T-(20×C+440)}を満たす条件で前記第1または第2のAlN脱脂体が作製されることを特徴とする請求項3記載のAlN焼結部材の製造方法。
The AlN raw material powder forming the first or second AlN molded product has a Y component added to at least one of the powders.
In the step of producing the first and second AlN degreased bodies, the first or second AlN molded body to which the Y component was added was added with a degreasing temperature T (° C.) and a degreasing time H (h). The first or second AlN is satisfied under the condition that T> 20 × C + 440 and H ≧ 300 / {T- (20 × C + 440)}, where the Y component is C (wt%) in the internal ratio converted to Y 2 O 3 . The method for producing an AlN sintered member according to claim 3, wherein a degreased body is produced.
一体に形成され、処理対象を表面上に保持する電極埋設部材であって、
AlNを主成分とするセラミックス焼結体で形成された絶縁層およびバルク層と、
前記絶縁層とバルク層との間に設けられた電極と、を備え、
前記絶縁層の厚みのバラツキは75μm以下であることを特徴とする電極埋設部材。
An electrode-embedded member that is integrally formed and holds the object to be treated on the surface.
An insulating layer and a bulk layer formed of a ceramic sintered body containing AlN as a main component, and
An electrode provided between the insulating layer and the bulk layer is provided.
An electrode-embedded member having a variation in the thickness of the insulating layer of 75 μm or less.
前記絶縁層は、前記セラミックス焼結体のAlN粒界にYAG粒子が含まれ、YAP粒子およびYAM粒子が含まれないことを特徴とする請求項5記載の電極埋設部材。 The electrode-embedded member according to claim 5, wherein the insulating layer contains YAG particles in the AlN grain boundaries of the ceramic sintered body and does not contain YAP particles and YAM particles. 前記電極埋設部材は、さらに、前記処理対象を保持する表面と対向する面にAlNを主成分とするセラミックス焼結体で形成された支持部材が接合されていることを特徴とする請求項5または請求項6に記載の電極埋設部材。
5. The electrode embedded member according to claim 6.
JP2020115207A 2020-07-02 2020-07-02 Manufacturing method of AlN sintered member, manufacturing method of electrode-embedded member, and electrode-embedded member Active JP7521783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020115207A JP7521783B2 (en) 2020-07-02 2020-07-02 Manufacturing method of AlN sintered member, manufacturing method of electrode-embedded member, and electrode-embedded member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020115207A JP7521783B2 (en) 2020-07-02 2020-07-02 Manufacturing method of AlN sintered member, manufacturing method of electrode-embedded member, and electrode-embedded member

Publications (2)

Publication Number Publication Date
JP2022012992A true JP2022012992A (en) 2022-01-18
JP7521783B2 JP7521783B2 (en) 2024-07-24

Family

ID=80169391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020115207A Active JP7521783B2 (en) 2020-07-02 2020-07-02 Manufacturing method of AlN sintered member, manufacturing method of electrode-embedded member, and electrode-embedded member

Country Status (1)

Country Link
JP (1) JP7521783B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4970712B2 (en) 2003-06-19 2012-07-11 日本碍子株式会社 Aluminum nitride sintered body, aluminum nitride production method, and aluminum nitride evaluation method
JP2005203734A (en) 2003-12-15 2005-07-28 Toshiba Ceramics Co Ltd Ceramic article with embedded metal member and method of manufacturing the same
JP2005317749A (en) 2004-04-28 2005-11-10 Sumitomo Electric Ind Ltd Holding body for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus loaded therewith
JP5972630B2 (en) 2011-03-30 2016-08-17 日本碍子株式会社 Manufacturing method of electrostatic chuck
JP6783528B2 (en) 2016-02-29 2020-11-11 日本碍子株式会社 Ceramic structure, its manufacturing method and members for semiconductor manufacturing equipment
JP7519168B2 (en) 2018-09-13 2024-07-19 日本特殊陶業株式会社 Manufacturing method of ceramic member

Also Published As

Publication number Publication date
JP7521783B2 (en) 2024-07-24

Similar Documents

Publication Publication Date Title
KR101483921B1 (en) Cooling plate, method for manufacturing the same, and member for semiconductor manufacturing apparatus
US8956482B2 (en) Ceramics composite member and method of producing the same
KR101597881B1 (en) Heating device
TWI445682B (en) Alumina sintered body, and its manufacturing method and semiconductor manufacturing device parts
KR20140116015A (en) Ceramic member and member for semiconductor manufacturing equipment
KR101710203B1 (en) Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member
TWI830990B (en) Stacked structure and semiconductor manufacturing apparatus member
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
CN111902383B (en) Composite sintered body, semiconductor manufacturing apparatus component, and method for manufacturing composite sintered body
JPWO2019235594A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP5406565B2 (en) Aluminum oxide sintered body, manufacturing method thereof, and semiconductor manufacturing apparatus member
JP2005203734A (en) Ceramic article with embedded metal member and method of manufacturing the same
KR102541331B1 (en) Plasma resistant material with added fine particles and manufacturing method thereof
JP4596855B2 (en) Metal-ceramic composite structure and electrode member for plasma generation comprising the same
JP2022012992A (en) MANUFACTURING METHOD OF AlN SINTERED MEMBER, MANUFACTURING METHOD OF ELECTRODE EMBEDDING MEMBER, AND ELECTRODE EMBEDDING MEMBER
KR20230042679A (en) Composite sintered body and method of manufacturing composite sintered body
US11830753B2 (en) Composite sintered body, semiconductor manufacturing apparatus member and method of producing composite sintered body
KR101937961B1 (en) Silicon nitride substrate without planarization and method of manufacturing the same
CN114787105B (en) Plate-like silicon nitride sintered body and method for producing same
JP2020186151A (en) METHOD FOR PRODUCING SiC SINTERED MEMBER
JP7463641B2 (en) Joint, manufacturing method thereof, electrode-embedded member, and manufacturing method thereof
JP2020203825A (en) METHOD FOR PRODUCING SiC SINTERED MEMBER
KR20220031478A (en) Silicon nitride sintered body substrate and manufacturing method thereof
JP2024084292A (en) Zygote
JP2021038101A (en) METHOD OF PRODUCING SINTERED MEMBER OF Al2O3

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240704