JP2022006385A - Top-blown lance for converter dephosphorization treatment and converter blowing method - Google Patents

Top-blown lance for converter dephosphorization treatment and converter blowing method Download PDF

Info

Publication number
JP2022006385A
JP2022006385A JP2020108571A JP2020108571A JP2022006385A JP 2022006385 A JP2022006385 A JP 2022006385A JP 2020108571 A JP2020108571 A JP 2020108571A JP 2020108571 A JP2020108571 A JP 2020108571A JP 2022006385 A JP2022006385 A JP 2022006385A
Authority
JP
Japan
Prior art keywords
lance
jet
converter
blown
dephosphorization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020108571A
Other languages
Japanese (ja)
Other versions
JP7380444B2 (en
Inventor
裕美 村上
Hiromi Murakami
新吾 佐藤
Shingo Sato
悠喬 茶谷
Harutaka Chatani
向平 加藤
Kohei Kato
秀光 根岸
Hidemitsu Negishi
高太郎 田中
Kotaro Tanaka
涼 川畑
Ryo Kawabata
直樹 菊池
Naoki Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020108571A priority Critical patent/JP7380444B2/en
Publication of JP2022006385A publication Critical patent/JP2022006385A/en
Priority to JP2023143335A priority patent/JP2023160925A/en
Application granted granted Critical
Publication of JP7380444B2 publication Critical patent/JP7380444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

To provide a top-blown lance capable of suppressing the generation of slopping, and a converter blowing method using the top-blown lance.SOLUTION: A top-blown lance for converter dephosphorization treatment has plural circumferential holes rotationally symmetrically arranged with respect to the lance axis, in which jet straightness γ defined by the following equation (1) is 0.31 to 0.75, and a converter blowing method uses the top-blown lance: γ=Xjet/Xlinear(1); where Xi denotes a distance from a lance axis projection position at a bath surface corresponding position under conditions i, the subscript jet denotes the central position of the jet deflected by interference, and the subscript linear denotes the position on the extension of a circumferential hole central axis.SELECTED DRAWING: Figure 3

Description

本発明は、酸素を用いて溶鉄を酸化脱りん吹錬する転炉脱りん処理用の上吹きランスおよびそれを用いた転炉の吹錬方法に関する。 The present invention relates to a top-blown lance for a converter dephosphorization treatment in which molten iron is oxidatively dephosphorized using oxygen, and a method for blowing a converter using the top-blown lance.

近年、銑鋼一貫製鉄所においてはコスト面及び品質面で有利であることから、転炉での脱炭精錬の前に予備処理工程として脱りん処理を実施し、あらかじめ溶鉄中のりんを除去するプロセスが広く行われている。これは、脱りん反応は精錬温度が低いほど進行しやすく、溶鋼段階よりも溶鉄段階のほうが脱りん反応は進行しやすく少ない副原料で脱りん精錬を行うことができるためである。 In recent years, since pig iron integrated steelworks are advantageous in terms of cost and quality, dephosphorization is performed as a pretreatment process before decarburization refining in a converter to remove phosphorus in molten iron in advance. The process is widespread. This is because the dephosphorization reaction is more likely to proceed as the refining temperature is lower, and the dephosphorization reaction is more likely to proceed in the molten iron stage than in the molten steel stage, and the dephosphorization can be performed with less auxiliary raw materials.

この溶鉄の脱りん処理は、生石灰などのCaOを主成分とする脱りん用媒溶材を添加し、かつ酸素ガスや酸化鉄などの酸素源を脱りん剤として添加する。溶鉄の脱りん現象を以下の反応式(3)に示す。
2[P]+2(FeO)+3(CaO・FeO)(l)
→ (3CaO・P)(s)+5[Fe] ・・・(3)
ここで、[M]は溶鉄中の元素Mを表し、(S)はスラグ中の化学物質Sを表す。
(3)式よりわかる通り、脱りん反応は酸化反応であり、酸化鉄(FeO)の存在が不可欠である。また生成したりん酸化物(P)は不安定であるので、石灰(CaO)と反応させて(3CaO・P)として、スラグ中に安定化させる必要がある。そのため、脱りんには、石灰が同様に不可欠である。スラグ中の(FeO)は上吹きランスから噴出される酸素含有ガスが鉄浴面に吹き付けられる面である火点に吸収され、鉄を酸化することで生成する。また、りん酸化物と反応する石灰は、投入された時点では融点が2500℃以上であり、炉内温度1300~1500℃に比べ圧倒的に融点が高く反応効率が著しく低位である。しかしながら、酸化鉄と反応して低融点のカルシウムフェライト(CaO・FeO)を形成することで滓化し、脱りん反応に寄与することになる。上記のことから酸化鉄は、直接Pを酸化するだけでなく、石灰の滓化を通じて脱りん反応効率の向上にも寄与することがわかる。
In this dephosphorization treatment of molten iron, a medium-dissolving material for dephosphorization containing CaO as a main component such as quicklime is added, and an oxygen source such as oxygen gas or iron oxide is added as a dephosphorizing agent. The dephosphorization phenomenon of molten iron is shown in the following reaction formula (3).
2 [P] +2 (FeO) +3 (CaO ・ FeO) (l)
→ (3CaO ・ P 2O 5 ) (s) + 5 [Fe] ・ ・ ・ (3)
Here, [M] represents the element M in the molten iron, and (S) represents the chemical substance S in the slag.
As can be seen from the equation (3), the dephosphorization reaction is an oxidation reaction, and the presence of iron oxide (FeO) is indispensable. Moreover, since the produced phosphorus oxide (P 2 O 5 ) is unstable, it is necessary to react it with lime (CaO) to form (3 CaO · P 2 O 5 ) and stabilize it in the slag. Therefore, lime is equally essential for dephosphorization. The (FeO) in the slag is generated by oxidizing the iron by absorbing the oxygen-containing gas ejected from the top-blown lance to the fire point, which is the surface on which the iron bath surface is blown. Further, the melting point of lime that reacts with the phosphorus oxide is 2500 ° C. or higher at the time of charging, and the melting point is overwhelmingly higher than the furnace temperature of 1300 to 1500 ° C., and the reaction efficiency is remarkably low. However, it reacts with iron oxide to form low melting point calcium ferrite (CaO / FeO), which causes slag and contributes to the dephosphorization reaction. From the above, it can be seen that iron oxide not only directly oxidizes P but also contributes to the improvement of the dephosphorization reaction efficiency through the slagging of lime.

上述の通り、溶鉄の脱りん処理においてCaOの滓化が重要な役割を担っているため、CaOの滓化を促すため、溶鉄に酸素噴流が直接接触し、絶えずFeOが供給されている火点へ石灰を供給することでCaOの滓化を促進する手法が採用されることが多い。 As mentioned above, since CaO slag plays an important role in the dephosphorization treatment of molten iron, in order to promote CaO slag, the oxygen jet comes into direct contact with the molten iron, and the fire point where FeO is constantly supplied. A method of promoting CaO slag by supplying calcium oxide is often adopted.

例えば、特許文献1では、転炉内の溶鉄に対してCaO源を主体とする脱りん用媒溶材を添加し、上吹きランスから溶鉄浴面に酸素ガスの吹き付けを行う脱りん処理方法において、上吹きランスからの酸素ガスの供給速度を1.5-5.0Nm/min/溶鉄-tonとしスラグ中FeO濃度を高く維持し、前記脱りん用媒溶材のうち少なくとも一部が酸素ガスの吹き付けによって溶鉄浴面に生ずる火点に吹き付けられるようにすることでカルシウムフェライトの形成を促進し効率よく脱りんする方法が提案されている。 For example, in Patent Document 1, in a dephosphorization treatment method in which a medium-melting material for dephosphorization mainly composed of a CaO source is added to molten iron in a converter and oxygen gas is sprayed from a top-blown slag to the molten iron bath surface. The supply rate of oxygen gas from the top-blown lance was set to 1.5-5.0 Nm 3 / min / molten iron-ton to maintain a high FeO concentration in the slag, and at least a part of the medium-melting material for dephosphorization was oxygen gas. A method has been proposed in which the formation of calcium ferrite is promoted and the phosphorus is efficiently dephosphorized by spraying the fire point generated on the surface of the molten iron bath by spraying.

また、特許文献2では、上吹きランスの主孔の平均傾角が13°以上とされており、また隣り合う主孔からの噴流間干渉率は30~60%の範囲内とし噴流を合体させることで減衰の少ない超音速ジェットが得られるものでありながら、媒溶材の吹き付けを行ってもノズルの損耗が少なくなるような設計がなされている。特許文献2では、粉体状媒溶材は合体した噴流と同様の軌跡をとり、火点へ効果的に投射できるとされている。 Further, in Patent Document 2, the average tilt angle of the main holes of the upper blowing lance is set to 13 ° or more, and the interference rate between jets from adjacent main holes is set within the range of 30 to 60% to combine the jets. It is designed so that the wear of the nozzle is reduced even if the medializing material is sprayed, while the supersonic jet with less attenuation can be obtained. In Patent Document 2, it is stated that the powdery medium-melting material has a trajectory similar to that of a coalesced jet and can be effectively projected to a fire point.

特開2008-266666号公報Japanese Unexamined Patent Publication No. 2008-266666 特開2006-336033号公報Japanese Unexamined Patent Publication No. 2006-336033

しかしながら、上記従来技術には以下の問題がある。
特許文献1に開示の技術では、送酸量に適正範囲を指定しているものの、上記適正範囲は生成したFeOが脱りん・脱炭反応のために消費され続けることを前提としており、上記前提を満たすための言及はなされていない。
However, the above-mentioned prior art has the following problems.
In the technique disclosed in Patent Document 1, although an appropriate range is specified for the amount of acid feed, the above-mentioned appropriate range is based on the premise that the generated FeO will continue to be consumed for the dephosphorization / decarburization reaction. No mention is made to meet.

生成したFeOが脱りん・脱炭反応に寄与し消費されるづけるためには反応物である溶鉄中のPやCがFeOの存在するスラグメタル界面、あるいは火点領域へ供給される必要がある。ところが、上吹きランス噴流の浴面動圧が不足し、溶鉄の攪拌が不足するとその供給が滞り、脱りん・脱炭反応が低位となる。そのため、FeOの消費が少なくなり、スラグ中に過剰にたまる。この問題を回避するため、ランスを設計する際は操業ごとに目標とする浴面動圧が決まっており、上記を達成しうるようにランス形状を設定することが一般的である。 In order for the generated FeO to contribute to the dephosphorization / decarburization reaction and be consumed, P and C in the molten iron, which is a reactant, must be supplied to the slag metal interface where FeO exists or the fire point region. .. However, if the bath surface dynamic pressure of the top-blown lance jet is insufficient and the stirring of molten iron is insufficient, the supply will be delayed and the dephosphorization / decarburization reaction will be low. Therefore, the consumption of FeO is reduced, and it accumulates excessively in the slag. In order to avoid this problem, when designing a lance, the target bath surface dynamic pressure is determined for each operation, and it is common to set the lance shape so that the above can be achieved.

しかし、実操業において設計通りの浴面動圧を恒常的に得ることは困難である。ランスから吐出された噴流は雰囲気ガスを巻き込み流速の減衰を続けながら浴面へ達するため、浴面動圧を検討する際にはランスから浴面までの距離(ランス高さ)が重要な因子として寄与する。一方で実転炉では冷鉄源として投入したスクラップの溶け残りや炉内付着地金等に起因して、炉内の形状・容積が時々刻々変化する。結果、浴面位置が設計位置に対し100~300mm程度増減することが頻繁に発生する。特に浴面位置が低下するような場合では浴面の低下分だけランスから浴面までの距離が大きくなって噴流が余分に減衰し、浴面動圧不足となる。このときスラグ中には反応に寄与しない余剰のFeOが大量に存在することになる。 However, it is difficult to constantly obtain the bath surface dynamic pressure as designed in actual operation. Since the jet flow discharged from the lance reaches the bath surface while entraining the atmospheric gas and continuing to attenuate the flow velocity, the distance from the lance to the bath surface (lance height) is an important factor when considering the dynamic pressure of the bath surface. Contribute. On the other hand, in an actual converter, the shape and volume of the inside of the furnace change from moment to moment due to the undissolved residue of scrap input as a cold iron source and the metal adhering to the inside of the furnace. As a result, the bath surface position frequently increases or decreases by about 100 to 300 mm with respect to the design position. In particular, when the position of the bath surface is lowered, the distance from the lance to the bath surface is increased by the amount of the lowered bath surface, the jet is excessively attenuated, and the dynamic pressure of the bath surface becomes insufficient. At this time, a large amount of surplus FeO that does not contribute to the reaction is present in the slag.

上記のような環境では、スラグ中に懸濁する粒鉄中のCと脱りんや脱炭に寄与しない過大なFeOとの間で反応が進行し大量のCOガスがスラグ中に生じる。その結果、スラグが過剰に泡立ち、炉口からあふれだすスロッピングと呼ばれる現象が発生する。スロッピングによりあふれたスラグは炉下に飛散し出湯・排滓用の鍋台車用線路をふさぐため、頻繁に炉下を掃除する必要が発生し操業を阻害する。ゆえに、上吹きランスからの酸素含有ガスの噴射においては、適量のFeOを供給すると同時に適切に溶鉄中PやCとの反応を進行させ続けなければならない。 In the above environment, the reaction proceeds between C in the granular iron suspended in the slag and the excessive FeO that does not contribute to dephosphorization or decarburization, and a large amount of CO gas is generated in the slag. As a result, a phenomenon called sloping occurs in which the slag foams excessively and overflows from the furnace opening. The slag that overflows due to sloping scatters under the furnace and blocks the track for the pot trolley for hot water discharge and drainage, so it is necessary to clean the furnace frequently, which hinders operations. Therefore, in the injection of the oxygen-containing gas from the top-blown lance, it is necessary to supply an appropriate amount of FeO and at the same time to appropriately continue the reaction with P and C in the molten iron.

特許文献1では、脱りんに必要となるFeOの供給量を富化するために必要な酸素供給量に関し言及しているが、上述の通り操業の中で湯面位置が低下し、ランス高さが高くなり攪拌動力が不足した際、溶鉄中のPやCとの反応が滞る問題に対する対策がなされていない。この問題は操業阻害因子となるスロッピングを引き起こし、生産性を著しく悪化させるため重要な課題である。 Patent Document 1 refers to the oxygen supply amount required to enrich the supply amount of FeO required for dephosphorization, but as described above, the position of the molten metal is lowered during the operation and the lance height is increased. There is no countermeasure against the problem that the reaction with P and C in the molten iron is delayed when the stirring power becomes insufficient. This problem is an important issue because it causes sloping, which is an operational inhibitor, and significantly deteriorates productivity.

上記課題の解決法として、ランス高さに対する噴流の減衰が小さな上吹きランスが開発されている。たとえば、特許文献2に開示の技術では、多孔ノズルから吐出される噴流同士をあえて干渉・偏向するよう設計し合体噴流とし減衰の少ないジェットとすることで、前記ランス高さの影響を受けず狙いの動圧を安定的に得ている。しかし、特許文献2に開示の方法では、ランスノズルから供給される粉体が噴流と同様の軌跡を得られる根拠が示されていない。そのため、酸化性ガス噴流が溶鉄に吸収されてFeOが生成される領域と、脱りんに必要な副原料である脱りん剤が到達する領域が異なるおそれがある。したがって、FeO、PおよびCaOの3者の共存を必要とする上掲式(3)の反応式の進行が悪くなることが課題となる。特許文献2に示すようなランスでは、密度が大きく慣性力の大きな粉体状脱りん剤は噴流よりも直進性が高く、噴流が干渉・偏向したとしても、噴流への追従性が悪くなり、反応に寄与しない脱りん剤が多く発生する。そのため、脱りん反応効率も悪化する。 As a solution to the above-mentioned problems, a top-blown lance has been developed in which the attenuation of the jet flow with respect to the height of the lance is small. For example, in the technique disclosed in Patent Document 2, the jets discharged from the porous nozzles are designed to interfere with each other and deflect each other, and the jets are combined to form a jet with less attenuation, so that the jets are not affected by the height of the lance. The dynamic pressure of is stably obtained. However, the method disclosed in Patent Document 2 does not show the grounds that the powder supplied from the lance nozzle can obtain a trajectory similar to that of a jet. Therefore, there is a possibility that the region where the oxidizing gas jet is absorbed by the molten iron to generate FeO and the region where the dephosphorizing agent, which is an auxiliary raw material required for dephosphorization, reaches are different. Therefore, it is a problem that the reaction formula of the above formula (3), which requires the coexistence of FeO, P, and CaO, progresses poorly. In a lance as shown in Patent Document 2, a powder dephosphorizing agent having a high density and a large inertial force has a higher straightness than a jet, and even if the jet interferes or deflects, the followability to the jet deteriorates. Many dephosphorizers that do not contribute to the reaction are generated. Therefore, the efficiency of the dephosphorization reaction also deteriorates.

本発明は、このような事情に鑑みてなされたものであって、その目的とするところは、連続操業の中で変動し、かつ制御困難なパラメーターであるランス高さの影響を最小化しスロッピングの発生を抑制しうることを達成したうえで、さらに脱りん剤の反応効率の高い上吹きランスを提供するとともに、その上吹きランスを使用した転炉の吹錬方法を提案することにある。 The present invention has been made in view of such circumstances, and an object thereof is to minimize the influence of the lance height, which is a parameter that fluctuates in continuous operation and is difficult to control, and sloping. It is an object of the present invention to provide a top-blown lance having a higher reaction efficiency of a dephosphorizing agent and to propose a method for blowing a converter using the top-blown lance, while achieving the ability to suppress the occurrence of the above-blown lance.

上記課題を有利に解決する本発明の転炉脱りん処理用上吹きランスは、ランス軸に対し回転対称に配置された複数の周孔を有し、下記の(1)式(式中、Xiは、条件iにおいて、浴面相当面上のランス軸投影位置からの距離を表し、添字jetは、干渉によって偏向させられた噴流の中心位置を示し、添字linearは、周孔中心軸線の延長上の位置を表す。)で定義される噴流直進度γが0.31以上0.75以下であることを特徴とする。
γ=Xjet/Xlinear ・・・(1)
The top-blown lance for converter dephosphorization treatment of the present invention, which advantageously solves the above problems, has a plurality of peripheral holes arranged rotationally symmetric with respect to the lance axis, and has the following equation (1) (in the equation, Xi). Represents the distance from the lance axis projection position on the bath surface equivalent surface under the condition i, the subscript jet indicates the center position of the jet deflected by the interference, and the subscript liner indicates the extension of the peripheral hole center axis. The jet straightness γ defined by) is characterized by being 0.31 or more and 0.75 or less.
γ = X jet / X linear ... (1)

なお、本発明にかかる転炉脱りん処理用上吹きランスは、転炉内の溶鉄に上吹きランスから酸素ガスとともにCaOを主成分とする脱りん用媒溶材を転炉内の溶鉄に吹き付けて、溶鉄からりんを酸化除去するための上吹きランスであって、下記の(2)式で定義される媒溶材のラップ率λが、0.19以上となるよう設計されていること、がより好ましい解決手段になり得るものと考えられる。
λ=(火点内へ投射された媒溶材総重量)/(供給した媒溶材総重量) ・・・(2)
In the top-blown lance for converter dephosphorization according to the present invention, the molten iron for dephosphorization containing CaO as a main component is sprayed on the molten iron in the converter together with oxygen gas from the top-blown lance. It is a top-blown lance for oxidizing and removing phosphorus from molten iron, and it is designed so that the lap ratio λ of the medialable material defined by the following equation (2) is 0.19 or more. It could be a preferred solution.
λ = (total weight of the medial material projected into the fire point) / (total weight of the supplied medial material) ・ ・ ・ (2)

上記課題を有利に解決する転炉吹錬方法は、上吹きランスを用い、該上吹きランスから酸素ガスを吹き付けて溶鉄からりんを酸化除去する転炉吹錬方法であって、前記上吹きランスは、ランス軸に対し回転対称に配置された複数の周孔を有し、上記の(1)式で定義される噴流直進度γを0.31以上0.75以下とすることを特徴とする。 The converter blowing method that advantageously solves the above problems is a converter blowing method that uses a top-blown lance and blows oxygen gas from the top-blown lance to oxidize and remove phosphorus from molten iron. Is characterized by having a plurality of peripheral holes arranged rotationally symmetrically with respect to the lance axis, and having a jet flow straightness γ defined by the above equation (1) of 0.31 or more and 0.75 or less. ..

なお、本発明にかかる転炉吹錬方法は、転炉内の溶鉄に上吹きランスから酸素ガスを吹き付けるとともに、CaOを主成分とする脱りん用媒溶材を転炉内の溶鉄に供給して溶鉄からりんを酸化除去する転炉吹錬方法であって、前記脱りん用媒溶材の少なくとも一部を上吹きランスから転炉内の溶鉄浴面に向けて吹き付け添加するにあたり、上記の(2)式で定義される媒溶材のラップ率λを、0.19以上とすること、がより好ましい解決手段になり得るものと考えられる。 In the converter blowing method according to the present invention, oxygen gas is blown from a top-blown lance to the molten iron in the converter, and a medium-melting material for dephosphorization containing CaO as a main component is supplied to the molten iron in the converter. It is a converter blowing method for oxidizing and removing phosphorus from molten iron, and when at least a part of the medium-melting material for dephosphorization is sprayed from a top blowing lance toward a molten iron bath surface in a converter and added, the above (2). It is considered that setting the wrap ratio λ of the insoluble material defined by the formula) to 0.19 or more can be a more preferable solution.

本発明によれば、多孔ランスから供給される酸素ジェットを積極的に干渉させ、合体噴流とし、ランス高さの変動による減衰の小さな噴流を得ることでスロッピングを抑制しうる。その結果、安定して脱りん処理を行うことができる。 According to the present invention, sloping can be suppressed by positively interfering with the oxygen jet supplied from the porous lance to form a coalesced jet and obtaining a jet with a small attenuation due to the fluctuation of the lance height. As a result, the dephosphorization treatment can be performed stably.

また、加えて、好ましくは、ノズル形状・粉体媒溶材粒度・送酸量などの設計項目のパラメーターが酸化性ガスと粉体媒溶材の軌道へ与える影響を事前に推定し、噴流合体下において火点へ到達する媒溶材量を最大化しうるランスを提供できる。その結果、スロッピングの恐れがなく安定操業可能であり、かつ、副原料コストの抑制が達成される。 In addition, preferably, the effects of design item parameters such as nozzle shape, powder medium particle size, and acid feed rate on the orbits of the oxidizing gas and powder medium and melt are estimated in advance, and under jet coalescence. It can provide a lance that can maximize the amount of medial material that reaches the fire point. As a result, stable operation is possible without fear of sloping, and the cost of auxiliary raw materials is suppressed.

本発明の一実施形態にかかる上吹きランス先端の縦断面の拡大模式図である。FIG. 3 is an enlarged schematic view of a vertical cross section of the tip of a top blown lance according to an embodiment of the present invention. 図1に示す周孔のノズル形状を拡大した断面図である。FIG. 3 is an enlarged cross-sectional view of the nozzle shape of the peripheral hole shown in FIG. 1. 本発明の一実施形態にかかる噴流直進度γの概念を示す模式図である。It is a schematic diagram which shows the concept of the jet straightness degree γ which concerns on one Embodiment of this invention. 数値解析により得た、浴面相当面上の火点分布に対する石灰の分布を示す図である。It is a figure which shows the distribution of lime with respect to the distribution of the fire point on the surface corresponding to the bath surface obtained by the numerical analysis.

以下、本発明を好ましい実施形態に基づき説明するにあたり、まず、本発明に至った検討結果について説明する。図1は、本発明の一実施形態にかかる上吹きランス先端部2の縦断面の拡大模式図である。図2は、図1に示す周孔のノズル部3形状を拡大した断面図である。 Hereinafter, in explaining the present invention based on a preferred embodiment, first, the results of studies leading to the present invention will be described. FIG. 1 is an enlarged schematic view of a vertical cross section of a top blown lance tip portion 2 according to an embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view of the shape of the nozzle portion 3 of the peripheral hole shown in FIG.

従来から、転炉脱りん処理用の上吹きランス1では、上掲(3)式にて表現される脱りん反応の促進を目的とし、FeOの生成を促す設計をしている。具体的には、(A)低浴面動圧によりスラグ中へのFeO蓄積量を高め、(B)鉄浴面に酸素が吸収される火点の面積を拡大するようにしている。つまり、上記AおよびBの条件を満たすため、複数個のノズルを有する多孔ランスを用いてジェットを分散させ、衝突圧を低減し、かつ、火点面積を拡大しうることを目的としたランス設計がなされていた。なお、上吹きランス先端部2に複数個のノズルを設置する場合、中心位置(ランス軸と同軸)に設置されたノズルを中心孔、中心孔の周囲に設置されたノズルを周孔4と称している。周孔4はランス軸を中心として回転対称に均等に配置される。一方で、ランスの孔数を増やして、ノズル間隔を狭めると、噴流どうしが相互に干渉し合体することが知られている。 Conventionally, the top blown lance 1 for converter dephosphorization treatment has been designed to promote the generation of FeO for the purpose of promoting the dephosphorization reaction expressed by the above equation (3). Specifically, (A) the amount of FeO accumulated in the slag is increased by the low dynamic pressure on the bath surface, and (B) the area of the fire point where oxygen is absorbed on the iron bath surface is expanded. That is, in order to satisfy the above conditions A and B, a lance design aimed at dispersing the jet using a porous lance having a plurality of nozzles, reducing the collision pressure, and expanding the firing point area. Was done. When a plurality of nozzles are installed at the tip portion 2 of the top blown lance, the nozzles installed at the center position (coaxial with the lance axis) are referred to as the center hole, and the nozzles installed around the center hole are referred to as the peripheral hole 4. ing. The peripheral holes 4 are evenly arranged rotationally symmetrically about the lance axis. On the other hand, it is known that when the number of holes in the lance is increased and the nozzle spacing is narrowed, the jets interfere with each other and coalesce.

また、従来の設計では、ノズル間隔を大きくとり、噴流どうしの干渉を避け、かつ火点を大きくするためにノズル傾角θを大きくするランス設計も広くとられてきた。ここで、ノズル傾角θとは、上吹きランスの中心軸(ランス軸)11と、各周孔4の吐出方向中心軸42とのなす角である。なお、ノズル傾角θを過度に大きくすると、ランス先端部2から吐出された酸化性ガス噴流が直接転炉内壁に衝突し炉内レンガを著しく損耗させるため、ノズル傾角θには上限が存在する。上記のように、従来の転炉脱りん処理用の上吹きランス1は独立噴流型の多孔ランスを使用してきた。 Further, in the conventional design, a lance design in which the nozzle spacing is large, the interference between jets is avoided, and the nozzle tilt angle θ is increased in order to increase the fire point has been widely adopted. Here, the nozzle tilt angle θ is an angle formed by the central axis (lance axis) 11 of the upper blowing lance and the discharge direction central axis 42 of each peripheral hole 4. If the nozzle tilt angle θ is excessively increased, the oxidizing gas jet discharged from the lance tip portion 2 directly collides with the inner wall of the converter and significantly wears the bricks in the furnace. Therefore, there is an upper limit to the nozzle tilt angle θ. As described above, the conventional top-blown lance 1 for converter dephosphorization treatment has used an independent jet type porous lance.

上記効果検討のため、発明者らは様々な形状の多孔ランスを用いて、340t規模の転炉を用いた脱りん吹錬試験を各ランスに対しそれぞれ40~80チャージ実施した。その際、酸化性ガス噴流の干渉度合いを定量評価するために、下記(1)式によって噴流直進度γを定義した。その概念を図3に示す。噴流直進度γは以下のように計算する。まず、酸素ジェットが直線的に進み偏向しないものとした場合に、酸化性ガス噴流中心の計算浴面到達位置(=ランス高さH相当位置100)、つまり、周孔中心軸42の延長線の浴面相当面100上位置と浴面相当面100上のランス軸11投影位置との間の距離(Xlinear)を分母とする。そして、噴流の干渉の影響を考慮して、数値流体解析にて算出した噴流中心101の浴面相当面100上位置と浴面相当面100上のランス軸11投影位置との間の距離(Xjet)を分子として表した数値である。噴流直進度γが高いほど噴流の独立性が高く、低いほど噴流が偏向し合体傾向が強くなっていることを表す。なお噴流の軌跡101を算出する数値流体解析はSTAR-CCM+を用いた。計算に当たり、上吹きランス1下端中心位置Oを原点とし、周孔出口41中心位置を含む水平線をX軸と置き、ランス軸11を垂直下向きにZ軸と置いた。また、X軸上(Z=0)の噴流開始位置は、上吹きランス下端位置での周孔出口41中心をつなぐ円の直径Pの半分と置いた。
γ=Xjet/Xlinear ・・・(1)
ここで、Xiは、条件iにおいて、浴面相当面上のランス軸投影位置からの距離を表し、
添字jetは、干渉によって偏向させられた噴流の中心位置101を示し、
添字linearは、周孔中心軸線42の延長上の位置を表す。
In order to examine the above effects, the inventors conducted a dephosphorization smelting test using a 340 ton scale converter using porous lances of various shapes, and each lance was charged with 40 to 80 charges. At that time, in order to quantitatively evaluate the degree of interference of the oxidizing gas jet, the jet straightness γ was defined by the following equation (1). The concept is shown in FIG. The jet straightness γ is calculated as follows. First, assuming that the oxygen jet advances linearly and does not deflect, the calculated bath surface arrival position (= lance height H equivalent position 100) at the center of the oxidizing gas jet, that is, the extension line of the peripheral hole central axis 42. The denominator is the distance (X linear ) between the position on the bath surface equivalent surface 100 and the projection position of the lance axis 11 on the bath surface equivalent surface 100. Then, in consideration of the influence of jet interference, the distance (X) between the position on the bath surface equivalent surface 100 of the jet center 101 and the projection position of the lance axis 11 on the bath surface equivalent surface 100 calculated by numerical fluid analysis. It is a numerical value expressing jet ) as a molecule. The higher the jet straightness γ, the higher the independence of the jet, and the lower the jet straightness γ, the more the jet is deflected and the tendency to coalesce becomes stronger. STAR-CCM + was used for the computational fluid dynamics to calculate the jet trajectory 101. In the calculation, the center position O at the lower end of the upper blow lance 1 was set as the origin, the horizontal line including the center position of the peripheral hole outlet 41 was set as the X axis, and the lance axis 11 was set as the Z axis vertically downward. The jet start position on the X-axis (Z = 0) was set to be half the diameter P of the circle connecting the center of the peripheral hole outlet 41 at the lower end position of the upper blow lance.
γ = X jet / X linear ... (1)
Here, Xi represents the distance from the lance axis projection position on the surface corresponding to the bath surface under the condition i.
The subscript jet indicates the center position 101 of the jet deflected by the interference.
The subscript liner represents a position on the extension of the peripheral hole center axis 42.

340t規模転炉での脱りん吹錬結果を実施した際、発明者らは噴流直進度γの高いランスほどスロッピング頻度が高くなる傾向を見出した。また、噴流直進度γの低いランスではスロッピングの発生頻度が低いことも併せて見出した。スロッピングの主たる原因が前述の通り上吹き噴流の動圧不足と考えると、噴流直進度の高いランスでは、吹錬時に設計浴面動圧以下に動圧が低下しているチャージが頻度として高かったことが推定される。これは上吹きランスから供給する酸素ガスが同じ総流量であっても、独立噴流とした場合のほうが噴流の表面積が大きく、雰囲気ガスを巻き込みやすくなることにより、噴流の減衰が顕著化して、ランス高さの影響に敏感になることが一因と考えられる。それに加え、吹錬ごとに炉内環境が変動し浴面高さが操業の中で時々刻々と変化して、設計値から外れた状態が発生しうることを合わせて考慮すれば定性的に説明可能である。 When the dephosphorization and smelting results were carried out in a 340t scale converter, the inventors found that the lance with a higher jet straightness γ tended to have a higher sloping frequency. It was also found that the frequency of sloping is low in the lance with a low jet straightness γ. Considering that the main cause of sloping is insufficient dynamic pressure of the upper jet as described above, in the lance with high jet straightness, the charge whose dynamic pressure drops below the design bath surface dynamic pressure at the time of blowing is high in frequency. It is presumed that it was. This is because even if the oxygen gas supplied from the top-blown lance has the same total flow rate, the surface area of the jet is larger and the atmospheric gas is more likely to be entrained in the case of an independent jet. It is thought that one of the reasons is that it becomes sensitive to the influence of height. In addition to that, it is qualitatively explained if the environment inside the furnace fluctuates with each smelting and the bath surface height changes from moment to moment during operation, and a state deviating from the design value may occur. It is possible.

一般に浴面高さの測定にはサブランスを用いるが、サブランスでの浴面測定をしている時間の分、吹錬時間が延長するため、頻繁に実施することは生産性を著しく低下させる。安定して浴面高さを測定することが困難である以上、転炉脱りん処理用上吹きランスの具備条件としてランス高さの影響に鈍感であること、すなわち減衰しにくい噴流を満たす必要があると分かった。以上より、あえて噴流同士を干渉・合体させ減衰させにくくする合体噴流型の多孔ランスを採用するべきことを知見した。上記知見の確認のため試験結果より噴流の合体度を示す指標である噴流直進度γを低下させ噴流合体型ランスによる試験を実施したところ、噴流直進度γを0.75以下に設定するとスロッピング頻度を低減しうることを確認した。一方で噴流直進度を0.31よりも小さくした際、噴流が完全に合体し、単孔ノズル(中心孔のみのランス)と同様の挙動をとり制御しえない高浴面動圧をとなった。その結果、溶鉄の飛散が発生しランス地金付き等のトラブルが発生するおそれがあることがわかった。また0.31よりも小さくした水準では高浴面動圧の強すぎる攪拌力に起因し、生成したFeOが脱炭に消費されてしまい脱りん効率も悪化した。以上から噴流直進度γは0.31以上0.75以下の範囲とする必要があると判断した。より好ましくは、噴流直進度γが0.31以上0.50以下の範囲である。 Generally, a sublance is used to measure the bath surface height, but since the blowing time is extended by the amount of time during which the bath surface is measured by the sublance, frequent measurement significantly reduces productivity. Since it is difficult to measure the bath surface height in a stable manner, it is necessary to satisfy the insensitivity to the influence of the lance height, that is, the jet flow that is difficult to attenuate, as a condition for providing the top blow lance for converter dephosphorization treatment. I found out that there is. From the above, it was found that a combined jet type porous lance should be adopted, which makes it difficult for the jets to interfere with each other and be attenuated. In order to confirm the above findings, a test was conducted using a jet coalescence type lance by lowering the jet straightness γ, which is an index indicating the jet coalescence, from the test results. When the jet straightness γ was set to 0.75 or less, sloping It was confirmed that the frequency could be reduced. On the other hand, when the jet straightness is made smaller than 0.31, the jets are completely united, and the behavior is similar to that of a single-hole nozzle (lance with only the central hole), resulting in uncontrollable high bath surface dynamic pressure. rice field. As a result, it was found that the molten iron may be scattered and troubles such as lance with bullion may occur. Further, at a level smaller than 0.31, the generated FeO was consumed for decarburization due to the excessively strong stirring force of the high bath surface dynamic pressure, and the dephosphorization efficiency also deteriorated. From the above, it was judged that the jet straightness γ should be in the range of 0.31 or more and 0.75 or less. More preferably, the jet straightness γ is in the range of 0.31 or more and 0.50 or less.

CaOの滓化促進のために上吹きランスより酸化性ガスとともに石灰を含有する粉体状精錬媒溶材をFeO生成サイトである火点へ吹き付けるような操業を行う。このような操業に上記噴流合体型のランスを採用した際、噴流と石灰の軌道が異なることが懸念事項として挙げられた。これは低密度・低慣性力のため偏向しやすい噴流に対し密度が高く慣性力も大きな固体である粉体状媒溶材は直進性が高いことに起因する。上記を定量的に評価するため、本発明では下記(2)式で定義するラップ率λを採用した。上記検討の一例として、STAR-CCM+による数値流体解析を利用し、周孔数を8孔、ノズル傾角θ=16°のランスノズルから30000Nm/hの酸素ガスとともに平均粒度200μmの石灰を投射した際の火点相当領域6と石灰分布(石灰投射領域)7とを計算して比較した結果を図4に示す。なお、ここで火点相当領域6は0.1kPa以上の動圧がかかっている領域とした。本解析からもわかる通り、噴流が偏向する際の粉体の追従性は低く、火点相当領域6に到達しえない媒溶材が発生し脱りん吹錬への寄与効率が低下する。
λ=(火点内へ投射された媒溶材総重量)/(供給した媒溶材総重量) ・・・(2)
In order to promote the slagging of CaO, an operation is performed in which a powdery refining medium containing lime is sprayed from a top-blown lance to a fire point, which is a FeO generation site, together with an oxidizing gas. When the jet-combined lance was adopted for such an operation, it was raised as a concern that the jet and lime trajectories were different. This is due to the fact that the powdery medium-welded material, which is a solid with a high density and a large inertial force, has high straightness with respect to a jet that is easily deflected due to its low density and low inertial force. In order to evaluate the above quantitatively, the lap ratio λ defined by the following equation (2) was adopted in the present invention. As an example of the above study, using numerical fluid analysis by STAR-CCM +, lime with an average particle size of 200 μm was projected from a lance nozzle with 8 peripheral holes and a nozzle tilt angle of θ = 16 ° together with oxygen gas of 30,000 Nm 3 / h. FIG. 4 shows the results of calculating and comparing the area corresponding to the fire point 6 and the lime distribution (lime projection area) 7. Here, the region corresponding to the fire point 6 is defined as a region to which a dynamic pressure of 0.1 kPa or more is applied. As can be seen from this analysis, the followability of the powder when the jet is deflected is low, and the insoluble material that cannot reach the area corresponding to the fire point 6 is generated, and the efficiency of contribution to dephosphorization and blowing is reduced.
λ = (total weight of the medial material projected into the fire point) / (total weight of the supplied medial material) ・ ・ ・ (2)

上記欠点を改良するには粉体の追従性を上げるか、スロッピングを引き起こさない範囲で噴流の直進性を高めることにより解決可能である。しかし、粉体の追従性を向上するためには石灰の粒度を細かくする必要があり、粒度を細かくするほどに媒溶材の重量当たり単価が上がりコストが上昇する。そのうえ、過度に粒度の細かな粉体は静電気の影響を受けやすいため、送給の際に輸送管内へ固着しやすく閉塞を引き起こす。そこで、本実施形態ではスロッピングの発生しない領域で噴流の直進性を高めることを選択した。 The above-mentioned drawbacks can be improved by increasing the followability of the powder or by increasing the straightness of the jet within a range that does not cause sloping. However, in order to improve the followability of the powder, it is necessary to make the particle size of lime finer, and the finer the particle size, the higher the unit price per weight of the medial material and the higher the cost. Moreover, since the powder having an excessively fine particle size is easily affected by static electricity, it easily sticks to the inside of the transport pipe during feeding and causes clogging. Therefore, in the present embodiment, it is selected to improve the straightness of the jet in the region where sloping does not occur.

噴流の直進性の向上のためには噴流の慣性力を大きくするか、噴流間の干渉を小さくすることがあげられる。前者に関しては送酸流量を大きくすることで達成しうるが、過度な送酸は脱炭を促進し、溶銑温度を上昇させるため脱りん反応にとっては不利となる。そこで、本実施形態では噴流間の干渉を小さくすることを採用した。噴流間の干渉を小さくすることは噴流間の距離を大きくとることと同義であり、上吹きランスではノズル孔数・傾角を変更することで調整する。本実施形態においてもノズル孔数、傾角θをパラメーターとし噴流の干渉を変化させ、このときの各ラップ率λを数値流体解析から評価した。なお本検討に関して、火点相当領域6は0.1kPa以上の動圧がかかっている領域を採用し、30000Nm/hの酸素ガスとともに平均粒度200μmの粉体石灰を5kg/t-溶鉄となるよう投射した場合を設定した。また同じ条件のもと340t転炉にて脱りん吹錬を実施した。 In order to improve the straightness of the jet, it is possible to increase the inertial force of the jet or reduce the interference between the jets. The former can be achieved by increasing the acid transfer flow rate, but excessive acid transfer promotes decarburization and raises the hot metal temperature, which is disadvantageous for the dephosphorization reaction. Therefore, in this embodiment, it is adopted to reduce the interference between jets. Reducing the interference between jets is synonymous with increasing the distance between jets, and in the top blow lance, it is adjusted by changing the number of nozzle holes and the inclination angle. Also in this embodiment, the number of nozzle holes and the tilt angle θ are used as parameters to change the interference of the jet, and each lap ratio λ at this time is evaluated from the numerical fluid analysis. Regarding this study, the region corresponding to the fire point 6 is a region where dynamic pressure of 0.1 kPa or more is applied, and the powdered lime having an average particle size of 200 μm is 5 kg / t-molten iron together with oxygen gas of 30,000 Nm 3 / h. I set the case of projecting. In addition, dephosphorization was carried out in a 340t converter under the same conditions.

上記検討の結果より、ノズル傾角θを大きくするに従いラップ率λが向上する傾向がえられたが、傾角θを20°としたときラップ率λが低下した。上記現象は、直進性の高い石灰は傾角θが大きくなるほど幾何学的にランス高さ×tanθだけランス中心から離れた箇所へ投射される一方で、噴流直進度γの向上が追随できなくなることに起因する。またラップ率λの向上に応じて石灰の脱りん能が向上したことから、ラップ率λが石灰の脱りん効率を表現しうることを確認した。このときラップ率λが0.19より小さくなると脱P量が1.0kg/tを下回ることから最低でもλを0.19以上とすることが望ましい。なお、上記した噴流直進度γの適切な範囲を考慮すると、ラップ率λの上限は0.55程度となる。より好ましくは、ラップ率λが0.20以上であり、さらに好ましくは、0.20~0.50の範囲である。 From the results of the above examination, it was found that the lap ratio λ tended to increase as the nozzle tilt angle θ increased, but the lap ratio λ decreased when the tilt angle θ was 20 °. The above phenomenon is that lime with high straightness is geometrically projected to a place away from the center of the lance by the lance height × tan θ as the inclination angle θ increases, but the improvement of the jet straightness γ cannot follow. to cause. In addition, since the lime dephosphorization ability improved as the lap ratio λ increased, it was confirmed that the lap ratio λ can express the lime dephosphorization efficiency. At this time, if the lap ratio λ is smaller than 0.19, the amount of de-P is less than 1.0 kg / t, so it is desirable to set λ to 0.19 or more at least. Considering the appropriate range of the jet straightness γ described above, the upper limit of the lap ratio λ is about 0.55. More preferably, the lap ratio λ is 0.20 or more, and even more preferably, it is in the range of 0.20 to 0.50.

以下、発明例を比較例とともに示す。容量が340トンで、酸素を上吹きし、攪拌用ガスを底吹きする上底吹き複合吹錬用転炉内に約340トンの溶鉄を装入し、脱りん吹錬を行った。用いた溶鉄は、脱硫処理後溶鉄であり、溶鉄のケイ素濃度は0.3~0.5質量%、リン濃度は0.12~0.14質量%であった。転炉内には石灰系フラックスを上吹きランスから精錬酸素とともに5kg/t-溶鉄となるよう投射した。転炉底吹き用に設置した羽口からは溶湯攪拌のためアルゴンまたは窒素を10~50Nm/minの範囲で吹き込んだ。また、送酸は上吹きランスにより行い、吹錬前半の脱Si期では50000Nm/h程度、後半の脱りん期では30000Nm/h程度吹き込んだ。ランス高さHは動圧が極力同一となるよう各ランスノズルに対して設定した。吹錬開始時の溶鉄温度は約1250℃、吹錬終了時の目標溶鉄温度は1380℃を目標とした。用いた発明例の上吹きランスは周孔のみがそれぞれ6~8個設置されたノズルで傾角θは14~20°、噴流直進度γは0.31~0.75、ラップ率λは0.19~0.56であった。 Hereinafter, examples of the invention are shown together with comparative examples. With a capacity of 340 tons, about 340 tons of molten iron was charged into a converter for top-bottom-blown compound blowing, in which oxygen was top-blown and a stirring gas was bottom-blown, and dephosphorization was performed. The molten iron used was molten iron after desulfurization treatment, and the silicon concentration of the molten iron was 0.3 to 0.5% by mass and the phosphorus concentration was 0.12 to 0.14% by mass. A lime-based flux was projected into the converter from a top-blown lance together with refined oxygen to a concentration of 5 kg / t-molten iron. Argon or nitrogen was blown in the range of 10 to 50 Nm 3 / min to stir the molten metal from the tuyere installed for bottom blowing of the converter. In addition, acid feeding was performed by a top-blown lance, and about 50,000 Nm 3 / h was blown in the first half of the smelting de-Si period and about 30,000 Nm 3 / h in the latter half of the dephosphorization period. The lance height H was set for each lance nozzle so that the dynamic pressure was as equal as possible. The target molten iron temperature at the start of blowing was about 1250 ° C, and the target molten iron temperature at the end of blowing was 1380 ° C. The upper blown lance of the invention example used is a nozzle in which only 6 to 8 peripheral holes are installed, and the inclination angle θ is 14 to 20 °, the jet straightness γ is 0.31 to 0.75, and the lap ratio λ is 0. It was 19 to 0.56.

また、比較例として噴流直進度γが1.00となるよう設計した傾角θ=14°の4孔ノズル(No.1)、および、噴流直進度γが0.84となるよう設計した傾角θ=14°の5孔ノズル(No.2)の試験を実施した。なおラップ率λに関してはそれぞれ1.00、0.87であった。操業条件は発明例と同一である。 Further, as a comparative example, a 4-hole nozzle (No. 1) with a tilt angle θ = 14 ° designed so that the jet straightness γ is 1.00, and a tilt angle θ designed so that the jet straightness γ is 0.84. A test of a 5-hole nozzle (No. 2) at = 14 ° was carried out. The lap ratio λ was 1.00 and 0.87, respectively. The operating conditions are the same as those of the invention example.

表1にノズル条件および操業結果を示す。なお、各条件につき、40~80チャージ程度実施した。表1において、スロッピング頻度は各条件実施時発生したスロッピングチャージ数をカウントし、条件ごとの実施チャージ総数にて除算し百分率をとった指標である。脱りん量ΔPは条件ごとに実施チャージの平均値を算出した。 Table 1 shows the nozzle conditions and operation results. For each condition, about 40 to 80 charges were carried out. In Table 1, the sloping frequency is an index obtained by counting the number of sloping charges generated when each condition is implemented, dividing by the total number of implemented charges for each condition, and taking a percentage. For the dephosphorization amount ΔP, the average value of the implemented charges was calculated for each condition.

Figure 2022006385000002
Figure 2022006385000002

表1に示すように、発明例においてはスロッピング頻度を比較例に比べ低減させており、また溶鉄当たりの副原料(粉体媒溶材)を同一とした条件の中でも脱りん量を向上させ、効率の良い脱りん吹錬を実現しうることが確認できた。 As shown in Table 1, in the examples of the invention, the sloping frequency is reduced as compared with the comparative example, and the amount of dephosphorization is improved even under the condition that the auxiliary raw material (powder medium and molten material) per molten iron is the same. It was confirmed that efficient dephosphorization can be realized.

本発明の上吹きランスは、転炉を用いた脱りん吹錬に適用して好適である。 The top-blown lance of the present invention is suitable for application to dephosphorization and smelting using a converter.

1 上吹きランス
11 ランス軸
2 ランス先端部
3 ノズル部
4 周孔
41 周孔出口
42 周孔中心軸
5 スロート部
6 火点相当領域
7 石灰分布(石灰投射領域)
100 浴面相当面位置
101 噴流軌跡
P 上吹きランス下端位置での周孔出口中心をつなぐ円の直径
H 上吹きランス高さ(上吹きランス下端から浴面相当位置までの距離)
θ ノズル傾角
O 上吹きランス下端中心位置
1 Top blow lance 11 Lance shaft 2 Lance tip 3 Nozzle 4 Peripheral hole 41 Peripheral hole exit 42 Peripheral hole central axis 5 Throat part 6 Fire point equivalent area 7 Lime distribution (lime projection area)
100 Bath surface equivalent surface position 101 Jet locus P Diameter of the circle connecting the center of the peripheral hole outlet at the lower end position of the upper blow lance H Top blow lance height (distance from the lower end of the upper blow lance to the equivalent position of the bath surface)
θ Nozzle tilt angle O Top blow lance lower end center position

Claims (4)

転炉脱りん処理用の上吹きランスであって、
ランス軸に対し回転対称に配置された複数の周孔を有し、下記の(1)式で定義される噴流直進度γが0.31以上0.75以下であることを特徴とする転炉脱りん処理用上吹きランス。
γ=Xjet/Xlinear ・・・(1)
ここで、Xiは、条件iにおいて、浴面相当面上のランス軸投影位置からの距離を表し、
添字jetは、干渉によって偏向させられた噴流の中心位置を示し、
添字linearは、周孔中心軸線の延長上の位置を表す。
It is a top-blown lance for converter dephosphorization.
A converter characterized by having a plurality of peripheral holes arranged rotationally symmetrically with respect to the lance axis and having a jet straightness γ defined by the following equation (1) of 0.31 or more and 0.75 or less. Top-blown lance for dephosphorization treatment.
γ = X jet / X linear ... (1)
Here, Xi represents the distance from the lance axis projection position on the surface corresponding to the bath surface under the condition i.
The subscript jet indicates the center position of the jet deflected by the interference.
The subscript liner represents a position on the extension of the central axis of the peripheral hole.
転炉内の溶鉄に上吹きランスから酸素ガスとともにCaOを主成分とする脱りん用媒溶材を転炉内の溶鉄に吹き付けて、溶鉄からりんを酸化除去するための上吹きランスであって、下記の(2)式で定義される媒溶材のラップ率λが、0.19以上となるよう設計されていることを特徴とする請求項1に記載の転炉脱りん処理用上吹きランス。
λ=(火点内へ投射された媒溶材総重量)/(供給した媒溶材総重量) ・・・(2)
It is a top-blown lance for oxidatively removing phosphorus from the molten iron by spraying the molten iron in the converter with oxygen gas from the top-blown lance and a medium for dephosphorization containing CaO as the main component. The top blown lance for converter dephosphorization treatment according to claim 1, wherein the lap ratio λ of the insoluble material defined by the following equation (2) is designed to be 0.19 or more.
λ = (total weight of the medial material projected into the fire point) / (total weight of the supplied medial material) ・ ・ ・ (2)
上吹きランスを用い、該上吹きランスから酸素ガスを吹き付けて溶鉄からりんを酸化除去する転炉吹錬方法であって、
前記上吹きランスは、ランス軸に対し回転対称に配置された複数の周孔を有し、下記の(1)式で定義される噴流直進度γを0.31以上0.75以下とすることを特徴とする転炉吹錬方法。
γ=Xjet/Xlinear ・・・(1)
ここで、Xiは、条件iにおいて、浴面相当面上のランス軸投影位置からの距離を表し、
添字jetは、干渉によって偏向させられた噴流の中心位置を示し、
添字linearは、周孔中心軸線の延長上の位置を表す。
It is a converter blowing method that uses a top-blown lance and blows oxygen gas from the top-blown lance to oxidize and remove phosphorus from molten iron.
The top blown lance has a plurality of peripheral holes arranged rotationally symmetrically with respect to the lance axis, and the jet straightness γ defined by the following equation (1) is set to 0.31 or more and 0.75 or less. A converter jet method characterized by.
γ = X jet / X linear ... (1)
Here, Xi represents the distance from the lance axis projection position on the surface corresponding to the bath surface under the condition i.
The subscript jet indicates the center position of the jet deflected by the interference.
The subscript liner represents a position on the extension of the central axis of the peripheral hole.
転炉内の溶鉄に上吹きランスから酸素ガスを吹き付けるとともに、CaOを主成分とする脱りん用媒溶材を転炉内の溶鉄に供給して溶鉄からりんを酸化除去する転炉吹錬方法であって、前記脱りん用媒溶材の少なくとも一部を上吹きランスから転炉内の溶鉄浴面に向けて吹き付け添加するにあたり、下記の(2)式で定義される媒溶材のラップ率λを、0.19以上とすることを特徴とする請求項3に記載の転炉吹錬方法。
λ=(火点内へ投射された媒溶材総重量)/(供給した媒溶材総重量) ・・・(2)
Oxygen gas is blown from the top-blown lance to the molten iron in the converter, and a medium for dephosphorization containing CaO as the main component is supplied to the molten iron in the converter to oxidize and remove phosphorus from the molten iron. Therefore, when at least a part of the dephosphorization medium-melting material is sprayed and added from the top-blown lance toward the molten iron bath surface in the converter, the lap ratio λ of the medium-melting material defined by the following equation (2) is determined. , The converter blowing method according to claim 3, wherein the value is 0.19 or more.
λ = (total weight of the medial material projected into the fire point) / (total weight of the supplied medial material) ・ ・ ・ (2)
JP2020108571A 2020-06-24 2020-06-24 Top blowing lance for converter dephosphorization treatment and converter blowing method Active JP7380444B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020108571A JP7380444B2 (en) 2020-06-24 2020-06-24 Top blowing lance for converter dephosphorization treatment and converter blowing method
JP2023143335A JP2023160925A (en) 2020-06-24 2023-09-05 Top blowing lance for converter dephosphorization treatment and converter blowing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020108571A JP7380444B2 (en) 2020-06-24 2020-06-24 Top blowing lance for converter dephosphorization treatment and converter blowing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023143335A Division JP2023160925A (en) 2020-06-24 2023-09-05 Top blowing lance for converter dephosphorization treatment and converter blowing method

Publications (2)

Publication Number Publication Date
JP2022006385A true JP2022006385A (en) 2022-01-13
JP7380444B2 JP7380444B2 (en) 2023-11-15

Family

ID=80110237

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020108571A Active JP7380444B2 (en) 2020-06-24 2020-06-24 Top blowing lance for converter dephosphorization treatment and converter blowing method
JP2023143335A Pending JP2023160925A (en) 2020-06-24 2023-09-05 Top blowing lance for converter dephosphorization treatment and converter blowing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023143335A Pending JP2023160925A (en) 2020-06-24 2023-09-05 Top blowing lance for converter dephosphorization treatment and converter blowing method

Country Status (1)

Country Link
JP (2) JP7380444B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348331A (en) * 2005-06-14 2006-12-28 Jfe Steel Kk Top-blowing lance for refining molten metal, and blowing method for molten metal
JP2009203491A (en) * 2008-02-26 2009-09-10 Kobe Steel Ltd Method for producing dephosphorized molten iron
JP2011001585A (en) * 2009-06-17 2011-01-06 Sumitomo Metal Ind Ltd Method for dephosphorization of molten iron
WO2012108529A1 (en) * 2011-02-10 2012-08-16 新日本製鐵株式会社 Method for desiliconizing and dephosphorizing hot metal
WO2013094634A1 (en) * 2011-12-20 2013-06-27 Jfeスチール株式会社 Converter steelmaking method
JP2015092018A (en) * 2013-10-02 2015-05-14 Jfeスチール株式会社 Method for refining hot pig iron in converter
JP2015098648A (en) * 2013-10-17 2015-05-28 Jfeスチール株式会社 Top-blown lance for refinement and method for refining molten iron
JP2015108165A (en) * 2013-12-03 2015-06-11 Jfeスチール株式会社 Method for refining molten metal, and facilities for refining molten metal
JP2017057469A (en) * 2015-09-17 2017-03-23 Jfeスチール株式会社 Top blown lance of converter and operation method of converter
WO2019039285A1 (en) * 2017-08-21 2019-02-28 新日鐵住金株式会社 Top-blowing lance for converter blowing and molten iron refining method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348331A (en) * 2005-06-14 2006-12-28 Jfe Steel Kk Top-blowing lance for refining molten metal, and blowing method for molten metal
JP2009203491A (en) * 2008-02-26 2009-09-10 Kobe Steel Ltd Method for producing dephosphorized molten iron
JP2011001585A (en) * 2009-06-17 2011-01-06 Sumitomo Metal Ind Ltd Method for dephosphorization of molten iron
WO2012108529A1 (en) * 2011-02-10 2012-08-16 新日本製鐵株式会社 Method for desiliconizing and dephosphorizing hot metal
WO2013094634A1 (en) * 2011-12-20 2013-06-27 Jfeスチール株式会社 Converter steelmaking method
JP2015092018A (en) * 2013-10-02 2015-05-14 Jfeスチール株式会社 Method for refining hot pig iron in converter
JP2015098648A (en) * 2013-10-17 2015-05-28 Jfeスチール株式会社 Top-blown lance for refinement and method for refining molten iron
JP2015108165A (en) * 2013-12-03 2015-06-11 Jfeスチール株式会社 Method for refining molten metal, and facilities for refining molten metal
JP2017057469A (en) * 2015-09-17 2017-03-23 Jfeスチール株式会社 Top blown lance of converter and operation method of converter
WO2019039285A1 (en) * 2017-08-21 2019-02-28 新日鐵住金株式会社 Top-blowing lance for converter blowing and molten iron refining method

Also Published As

Publication number Publication date
JP2023160925A (en) 2023-11-02
JP7380444B2 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
TWI473883B (en) Converter steelmaking method
JP5644355B2 (en) Hot metal refining method
JP4715384B2 (en) Method for dephosphorizing hot metal and top blowing lance for dephosphorization
JP2006348331A (en) Top-blowing lance for refining molten metal, and blowing method for molten metal
JP5135836B2 (en) Hot metal dephosphorization method
JP2017057469A (en) Top blown lance of converter and operation method of converter
JP4487812B2 (en) Method for producing low phosphorus hot metal
JP2022006385A (en) Top-blown lance for converter dephosphorization treatment and converter blowing method
JP2014037599A (en) Method of refining molten iron
JP5915568B2 (en) Method of refining hot metal in converter type refining furnace
JP2011074411A (en) Top-blowing lance for refining, and converter refining method
JP2012082492A (en) Converter refining method
JP7001148B2 (en) How to remove phosphorus from hot metal
JP2011084789A (en) Converter blowing method
JP6544531B2 (en) How to smelt molten metal
JP4686880B2 (en) Hot phosphorus dephosphorization method
JP6813144B1 (en) How to remove molten iron
WO2021014918A1 (en) Molten iron dephosphorization method
JP2012082491A (en) Converter refining method
JP2019090078A (en) Immersion lance for blowing and refining method of molten iron
JP2005139529A (en) Method for dephosphorization-refining molten pig iron
JP4025713B2 (en) Dephosphorization method of hot metal
JP2010095785A (en) Method for dephosphorizing molten iron
JP3444046B2 (en) Chromium ore powder charging method in smelting reduction furnace
JPS6056009A (en) Steel making method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230905

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7380444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150